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A B S T R A C T 

Graph patterns are able to represent the complex structural relations among 

objects in many applications in various domains. Managing and mining graph 

data, on which we study in this thesis, are no doubt among the most important 

tasks. We focus on two challenging problems, namely, graph summarization and 

graph change detection. 

The objective of graph summarization is to obtain a concise representation of 

a single large graph or,a collection of graphs, which is interpretable and suitable 

for analysis. A good summary can reveal the hidden relationships between nodes 

in a graph. The key issue of summarizing a single graph is how to construct a 

high-quality and representative summary, which is in the form of a super-graph. 

We propose an entropy-based unified model for measuring the homogeneity of 

the super-graph. The best summary in terms of homogeneity could be too large 

to explore. By using the unified model, we relax three summarization criteria to 

obtain an approximate homogeneous summary of appropriate size. We propose 

both agglomerative and divisive algorithms for approximate summarization, as 

well as pruning techniques and heuristics for both algorithms to save computation 

cost. Experimental results confirm that our approaches can efficiently generate 

high-quality summaries. 

In the area of summarizing a collection of graphs, we study the problem of 

summarizing frequent subgraphs, since it is not much necessary to summarize a 

collection of random graphs. The bottleneck for exploring and understanding fre-

quent subgraphs is that they are numerous. A summary can be a solution to this 



11 

issue, so the goal of frequent subgraph summarization is to minimize the restora-

tion errors of the structure and the frequency information. The unique challenge 

in frequent subgraph summarization comes from the fact that a subgraph can 

have multiple embeddings in a summarization template graph. We handle this 

issue by introducing a partial order between edges to allow accurate structure 

and frequency estimation based on an independence probabilistic model. The 

proposed algorithm discovers k summarization templates in a top-down fashion 

to control the restoration error of frequencies within a. There is no restoration 

error of structures. Experiments on both real and synthetic graph datasets show 

that our framework can control the frequency restoration error within 10% by a 

compact summarization model. 

The objective of graph change detection is to discover the changing areas on 

graphs when they evolves at a high speed. The most changing areas are those 

areas having the highest number of evolutions (additions/deletions) of nodes 

and edges, which is called burst areas. We study on finding the most burst areas 

in a stream of fast graph evolutions. We propose to use Haar wavelet tree to 

monitor the upper bound of the number of evolutions. Our approach monitors 

all potential changing areas of different sizes and computes incrementally the 

number of evolutions in those areas. The top-fc burst a r ^ are returned as soon 

as they are detected. Our solution is capable of handling a large amount of 

evolutions in a short time, which is consistent to the experimental results. 

Besides finding changing areas based on the number of node and edge evolu-

tions, a more interesting problem is to analyze the impact of these evolutions to 

graphs and find the regions that exhibit significant changes when these evolutions 

happen. The more different the relationship between nodes in a certain region is, 

the more significant this region is. This problem is challenging since it is hard to 

define the range of changing regions that is closely related to actual evolutions. 

We formalize the problem by using a similarity measure based on neighborhood 

random walks, and design an efficient algorithm which is able to identify the 
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significant changing regions without recomputing all similarities. Meaningful 

examples in experiments demonstrate the effectiveness of our algorithms. 



文摘要 

在很多領域中，圖被用來表示對象之間的關系，因為它能夠描述對象之間 

複雜的結構信息。本論文研究了圖败據的管理和挖掘，重放在關於圖败據的 

兩個具有挑戰性的問題：靜態圖的摘要，和動態圖的變化檢測。 

經態圖的摘要是指基於壹個大圖或是壹群圖，生成壹個易於用戶分析的并 

且大小適當的簡潔的表達形式。生成的摘要能夠揭示圖中的隠藏信息。單個圖 

摘要的難在於如何生成高質量的，具有代表性的超圖。我們提出利用一个通 

用的熵 te架去衡量超圖中集的同質性。同質性最好的超圖的大小仍然很大， 

所以我們提出放鬆三個摘要標準以得到大小適當的摘要近似。我們提出了層次 

聚合和分裂兩個算法，並且在每個算法中，利用剪枝和啓發技巧節省計算量。 

實驗結果表明我們的方法可以快速生成高質量的摘要。 

在概括壹群圖的研究方向上，因為生成隨機圖集合的摘要的意義不大，我 

們把重放在概括壹系列的頻繁子圖。頻繁子圖是指在圖数據庫中頻繁出現的 

子圖，其最小頻率大於壹個給定的閥值。頻繁子圖分析的瓶頸在於子圖的败 

量，大量的頻繁子圖使得分析這些子圖變得很困難。生成頻繁子圖的摘要可以 

解決這個問題。頻繁子圖摘要的目標是降低結構信息和頻率信息的恢復誤差。 

我們提出利用獨立概率模型去生成頻繁子圖的摘要，使其沒有結構誤差，並且 

頻率的恢復誤差在可控制的範圍之内。基於真實和人造数據的實驗結果顯示我 

們的方法能有效的將頻率誤差控制在10%之内。 

動態圖的變化檢測的目標是快速發現動態圖中變化的區域。變化最大的區 

域可以用‘和邊的變化次败來衡量。我們研究如何在變化流中監控變化最大的 

區域。基於Haar小波，我們的框架能夠監控潛在變化區域的變化次败的上限。 

我们用增量方式計算不同大小的變化區域的總變化次数，所以能夠及時返回變 

iv 



V 

化最大的）c個區域。我們的算法能夠在短時間内處理大量的變化流，實驗結果 

驗證了這査。 

除了用和邊的變化次败來衡量變化的程度，壹個更有趣的問題是分析這 

些和邊的變化對圖的影蠻，尤其的是對之間的關系的影蠻。哪個區域中 

之間的關係變化越大，那麽這個區域就越重要。這個問題的難在於如何確定 

變化區域•的大小，使得它能夠真實反映實際的變化。我們提出基於鄰域隨機行 

走來衡量之間的相似度，並基於這個相似度的變化來確定變化程度最大的區 

域。我們提出的算法避免了大部分之間的相似度的重新計算。實驗結果給出 

了真實有意義的變化的例子。 
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CHAPTER 

INTRODUCTION 

Graph patterns have the expressive ability to represent the complex struc-

tural relationship among objects in many applications in various domains, where 

graphs are the fundamental representation of data. In social networks, million of 

users are conducting numerous interactive activities (e.g., following, messaging, 

tagging, etc.) everyday. By modeling users as nodes and activities as edges, we 

can construct a huge social graph representing multiple relationships between 

uses. Photos users uploaded, music users listened, movies users watched, plus 

users themselves can also be modeled as a very large multipartite graph, where 

edges may indicate users' preferences. In World Wide Web, numerous web pages 

are hosted in different web sites. These web pages are connected by hyperlinks 

which allow users to go from one page to another page by clicking them. By 

viewing web pages as nodes and hyperlinks as edges, the whole web is a very 

large graph. In most search engines nowadays, search results are returned in 

an order which is partially determined by the structure of the graph. Machines 

hosting web sites can also be considered as nodes in graphs. In global computer 

networks, routers and hosts, plus the data links between them form a large graph. 

The particular characteristic of this graph is its location attribute, i.e., routers 

and hosts could be anywhere on the earth. In sensor networks, the communica-

tion range of a senor is usually limited. A sensor could interchange data with a 

certain number of nearby sensors. If we consider sensors as nodes, and add edges 



Chapter 1. Introduction 20 

between a sensor and all its neighbors within its communication range, this forms 

a graph. In areas other than engineering, graphs also exist. In biology, proteins, 

together with interactions between them, are viewed as graphs. Such protein-

protein interaction networks are useful in revealing the relationships between the 

functions and the structures of proteins. In chemistry, chemical compounds are 

represented by graphs. A basic task in drug design is to find the active chemical 

compounds to a certain disease. 

Due to the wide existences and the modeling abilities of graphs, researchers 

are attracted recently to put a lot of efforts in managing and mining graph 

data. The research in graph data management includes managing and indexing 

large amount of graph data for querying and searching. For example, given a 

query graph, (sub)graph matching is to find the matched (sub)graphs in a graph 

database. Given a graph and a node pair, reachability query is to determine 

whether there is at least a path between the node pair. The research in graph 

pattern mining includes discovering patterns, classes or clusters of graphs. For 

example, frequent subgraph mining is to find all subgraphs, whose number of 

embeddings is larger than a pre-defined threshold, in a collection of graphs. 

Clustering graph nodes is to discover the dense areas on graphs, in terms of the 

number of edges. These clusters can reveal the hidden relationships between 

nodes, because nodes in the same dense area are usually considered as similar 

to each other. Clustering graphs is to find the clusters of similar graphs or 

subgraphs, based on the underlying sttuctures. Graph classification is to learn 
r^-V) 

a classifier from labeled graphs, and class other graphs into different classes 

accurately. 

Under the context of managing and mining graph data, we focus on two 

challenging problems in this thesis, namely, graph summarization and graph 

change detection. The difficulties of managing and exploring graph data lie in 

the large size of graphs themselves, and the huge number of graphs in a collection. 

The objective of graph summarization is to obtain an concise representation of a 



Chapter 1. Introduction 3 

single large graph or a collection of graphs for easy management and exploration. 

In summarizing a single graph, a good summary can reveal the hidden rela-

tionships between nodes in a graph. The key task of summarizing a single graph is" 

to construct a high-quality and representative summary, while keeping the sum-

mary size small. The summary is in form of a super-graph, where each node/edge 

in the super-graph represents a number of nodes/edges in the input graph. We 

propose the criteria of homogenous partition for summarization. The best sum-

mary is the one where all nodes and edges in the super-graph are homogenous. 

Unfortunately, it is almost as large as the input graph and still difficult for ex-

ploration. Then we propose an entropy-based unified model for measuring the 

homogeneity of the super-graph. Based on the unified model, we relax all the cri-

teria of homogeneity in order to obtain an approximate homogeneous summary 

in appropriate size. We introduce both agglomerative and divisive algorithms for 

approximate summarization. In both algorithms, we present pruning techniques 

and heuristics for fast computation. Experimental results confirm that our ap-

proaches can efficiently generate high-quality summaries. This work is published 

in [39] and invited for publication in [38 . 

It is not much necessary to summarize a collection of random graphs, so we 

study the problem of summarizing frequent subgraphs in the task of summarizing 

a collection of graphs. The huge number of generated frequent subgraphs is the 

main bottleneck for users to explore and understand them. A compact summary 

which can represent both the structure and the frequency information of these 

subgraphs could be a possible solution to this issue. The objective of frequent 

subgraph summarization is to minimize the restoration error of the structure and 

the frequency information restored from summaries, that is, we can restore any 

frequent subgraph based on only compact summaries. We propose to use maxi-

mal frequent subgraph as summarization template graphs. To further reduce the 

size of summaries, we also use union of maximal frequent subgraphs as template 

graphs. The unique challenge here is that a subgraph can have multiple embed-
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dings in a template graph, which can deteriorate the restoration accuracy. We 

solve this issue by introducing a partial order between edges. The restoration 

of structures and frequencies is based on an independence probabilistic model. 

We propose a top-down algorithm, which can discover k summarization tem-

plate graphs by controlling restoration error of frequencies within a. There is no 

restoration error of structures. Experiments on both real and synthetic graph 

datasets show that our framework can control the frequency restoration error 

within 10% by a compact summarization model. This work is the most recent 

work and submitted for publication. 

In many applications related to graphs, graphs are not static but evolve all 

the time. New nodes or edges can join graphs, while old nodes or edges can leave 

graphs. These addtions/deletions of nodes/edges are called evolutions on graphs. 

A natural resultant problem is to determine the changing areas on graphs. There 

are two meanings of changes. One is based on raw evolutions, i.e., whether a 

region changes dramatically is measured by the number of evolutions happened 

inside it. The other is based on the relationship change. When evolutions happen, 

relationships between nodes also change, so the degree of change in an area could 

be measured by the variation of relationships between nodes in the area. Graph 

change detection is to discover these changing areas on graphs when they evolve 

fast. 

Measured by the number of raw evolutions, the most changing areas, which 

are called burst areas, could be the regions with the most evolutions. We study 

on monitoring top k burst areas in a stream of graph evolutions coming in at a 

high speed. Here the potential burst areas could be hop areas of different sizes 

of all nodes. Our proposed approach monitors all these potential changing areas 

by using a structure based on Haar wavelet, by which the upper bound of the 

number of evolutions could be computed fast. Due to the number of changing 

areas are large, we propose an algorithm to compute the number of evolutions 

in large hop areas from the ones in small hop areas incrementally. In this way, 
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the computation is fast enough to cooperate with the stream environment. Once 

the top k burst areas are detected, they are returned as soon as possible. Our 

solution is capable of handling a large amount of evolutions in short time, which 

is consistent to the experimental results. Examples of burst areas in social net-

works are presented to show that they are meaningful burst areas. This work is 

published in [37 . 

One more interesting task is to analyze the impact of raw evolutions to 

the relationships between nodes on graphs. The significant changing areas are 

defined as the changing regions in which the relationships between nodes vary 

dramatically. The difficulties of this task are: (1) how to measure the relation-

ships between nodes; (2) how to identify the appropriate region range that is 

closely related to the actual evolutions. We propose the neighborhood random, 

walks to measure the similarity between nodes based on an analysis of differ-

ent possible candidates. Under the context of evolving graphs, we design an 

efficient algorithm that is able to update the similarities without recomputing 

all of them. Once we identify the top nodes whose relationships to other nodes 

change dramatically, we expand from them to obtain subgraphs as the significant 

changing areas. Experiments demonstrate the effectiveness of our algorithms by 

presenting real meaningful examples. This work is published in [40 . 

The key contributions of the thesis is summarized below. The more detailed 

contributions in each specific applications are presented in later chapters. 

1. In the problem of summarizing graphs, we introduce the new criteria for 

controlling the quality. In the problem of graph change detection, we for-

malized the problems from abstract concepts into detailed definitions. 

2. We propose efficient and effective algorithms for summarizing graphs. The 

generated summaries are of high quality. We propose fast algorithm to 

monitor burst areas in graph evolution streams. We propose incremen-

tal algorithms to save computation cost in solving the problems of graph 

change detection. 
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.3. We conduct extensive experiments on many real and synthetic datasets to 

verify the efficiency and effectiveness of our proposed algorithms. 

The reminder of this thesis is organized in two parts. We present our work 

on graph summarization in Part I. Part I starts with an introduction to graph 

summarization in Chapter 2, followed by the related works in Chapter 3. We 

explain the details of approximate homogenous graph summarization in Chapter 

4, and the details of frequent subgraph summarization in Chapter 5. We address 

our work on graph change detection in Part 11. Part II starts with an introduction 

to this problem in Chapter 6, followed by the related works in Chapter 7. We 

explain the details of detecting burst areas in fast evolving graphs is presented in 

Chapter 8, and the details of spotting significant changing subgraphs in evolving 

graphs are described in Chapter 9. Finally, we conclude the thesis in Chapter 

10. 
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CHAPTER 2 

INTRODUCTION TO G R A P H 
S U M M A R I Z A T I O N � 

It is not an easy task for users to manage and explore graph data, due to 

the complex structures, and the increasing sizes of graphs themselves, as well as 

the huge number of graphs in a collection. Graph summarization is a potential 

solution to this problem. In this part, we study the graph summarization prob-

lem in two different contexts: a single large graph, and a collection of frequent 

subgraphs. The objective of graph summarization is easy management and ex-

ploration, so the generated summary must be a concise representation of input 

graph(s), which is interpretable and suitable for analysis. 

、 

2.1. Summarizing a Single Large Graph 

The goal of summarizing a large graph G is to obtain a concise graph rep-

resentation Gs�which is smaller than G in size, for visualization or analysis. 

Although specific^ummarization representations can be various in different ap-

proadies, the main idea behind them is to construct a super-graph Gs with 

super-nodes and super-edges. The nodes in G are partitioned into several node 

sets and each node set is represented by a single super-node in Gs. Two super-

nodes are connected by a super-edge in Gs if there exist edges in G between 

nodes from two corresponding node sets. The basic assumption is that nodes in 
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the same node set are similar to each other under the criteria of homogeneity, 

otherwise, using a single node to represent them will not be reasonable. 

In the literature, there are two major approaches for super-graph construc-

tion, where the main difference lies in how to create super-edges between two 

super-nodes. A strict approach [42] requires that a super-edge exists between two 

super-nodes in Gs only if every pair of nodes residing in the two corresponding 

super-nodes is connected by an edge in G. A relaxed approach [50, 63] allows 

two super-nodes to be connected with a super-edge in Gs if there is at least one 

connected node pair in G among all the node pairs summarized by the two super-

nodes. Here, each super-edge is associated with a participation ratio to indicate 

the percentage of connected nodes among all the nodes in the two super-nodes. 

Unfortunately, both approaches have their disadvantages. In the strict ap-

proach, since only cliques or bipartite cliques can be represented by super-nodes 

according to the very rigorous requirement, the size of the summarized graph 

cannot be small in most cases, even when super-nodes are near-cliques, which 

makes the summarized super-graph still difficult to explore and access. In the 

relaxed approach, the issue lies in the quality of the summarization, which we 

will discuss soon in the later chapter. For example, if the participation ratio be-

tween two super-nodes is close to 1, it means almost all nodes in one super-node 

have neighbors in the other super-node. If the participation ratio is close to 0’ 

it means almost no nodes have neighbors in the other super-node. So we can 

infer whether nodes in one corresponding node set may have edges connected to 

certain nodes in the other node set with high confidence. However, if the partic-

ipation ratio is somewhat around 0.5，then the summarized super-nodes cannot 

provide much connection information of the neighborhood in the original graph. 

Because it implies that only partial nodes in one super-node have neighbors in 

the other super-node, and the chance of a node having neighbors almost equals 

the one of a random guess. 

We focus on the information-preserving graph summarization for attribute 
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graphs, which means the summarized representation must satisfy the quality 

criteria as much as possible. The summary for a graph in our solution con-

sists of two parts: a super-graph and- a list of probability distributions for each 

super-node and super-edge. Figure 2.1 shows a conceptual example. A DBLP co-

author graph to be summarized is presented in Figure 2.1(a). Inside the dotted 

area is the structure information of the co-author graph, where nodes represent 

authors and edges represent collaborations between these authors. There is at-

tribute information associated with authors possibly, for example, the table in 

Figure 2.1(a) associated with nodes shows the main research topics of each au-

thor. Figure 2.1(b) shows our proposed summarized representation, where the 

summarized super-graph is within the dotted area. Each super-node represents 

a number of authors, and is affiliated with a topic distribution indicating the 

research topics of the authors in the super-node, as well as the homogeneity 

of these research topics. Each super-edge has two connection-strength distribu-

tions indicating the homogeneity of the neighbor relationship between the nodes 
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in the two connected super-nodes in two different directions. We will have a 

careful analysis of the meaning of homogeneity in Chapter 4. 

The major contributions of this research are summarized below. • • 

• We focus on how to obtain an optimized approximate homogeneous parti-

tion on which a graph summarization can be constructed by relaxing both 

attribute requirement and structure requirements. Inspired by information 

theory, we propose a unified entropy model which unifies both attribute 

information and structural information. 

• We propose a new lazy algorithm to compute the exact homogeneous par-

tition by delaying the reconstruction of matrix, as well as two new approx-

imate homogeneous algorithms aiming to find the optimized approximate 

partition. 

• We conduct experiments on various real datasets and the results confirm 

that our proposed approaches can efficiently summarize a graph to achieve 

low average entropy. 

2.2. Summarizing Numerous Frequent 
« 

Subgraphs 

Frequent subgraph mining has been an important research problem in the lit-

.erature, with many efficient algorithms proposed [24, 29，55’ 59, 7，22’ 43]. Given 
% * 

a collection V of graphs, frequent subgraph mining is to discover all subgraphs 

whose frequencifes are no less than a user-specified threshold fmin- Frequent 

subgraphs are useful in many applications, for example, as the active chemi-

cal structures in HlV-screening datasets, the spatial motifs in protein structural 
families, the discriminative features in chemical compound classification [15], and 
. . . . ' : • 
the index attributes [61] in graph databases to support graph queries. 
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One major issue of frequent subgraph mining is the difficulty of exploring 

and analyzing numerous patterns generated due to the exponential number • of 

combinations. Given a graph with n edges, the total number of possible sub-

graphs could be 2”. Tens of thousands of frequent subgraphs may be generated 

under a moderate minimum frequency threshold. This issue is inherited from 

frequent itemset mining, while on graph data, it is magnified much more due 

to the complex graph structure. A resulting solution for this issue is mining 

only closed or maximal frequent subgraphs [60，23，49], which generates fewer 

subgraph patterns. However, due to the structure complication and the rigid 

definition of maximal and closed subgraphs, maximal and closed graph patterns 

are still quite numerous. The difficulty to explore a large number of patterns 

still exists. 

Frequent subgraphs may be utilized by machines or by users. For exam-

ple, when frequent subgraphs "serve as discriminative index features in graph 

databases, they are utilized by machines, where machines inspect individual fre-�-
quent subgraph to find whether it is discriminative. In this case, the huge number 

* 

of frequent subgraphs might not be the main issue. When frequent subgraphs 

serve as active chemical structures in HIV-screening datasets, they are mainly 

explored by users, where inspecting them one by one is almost an impossible 

task. Users focus�on exploring frequent subgraphs as a whole set to obtain the 
comprehensive understanding of them. Then a concise representation of all fre-� 

quent subgraphs is necessary for users in order to explore frequent subgraphs 

easily, and what is more, to make frequent subgraphs interpret able. It seems 

that sampling is a potential solution to this problem. The sampling approach is 

to select some frequent subgraphs as the representatives of all frequent subgraphs 

13, 36, 64,�20, 5]. The representative subgraphs are similar to ‘some frequent 

subgraphs, where the similarity measures may be maximum common subgraph, 

graph edit distance, etc. These representative subgraphs are dissimilar to each 

other based on a pre-defined threshold. While choosing a small number of rep-
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Figure 2.2: Summarization by Sam- Figure 2.3: Summarization by Tem-

pling plate Subgraphs 

resentative subgraphs reduces significantly the number of output subgraphs, a 

problem is that it loses too much information about other unselected subgraphs, 

such as their structures and frequencies. A concept example is shown in Figure 

2.2. Let the shaded areas denote a set of frequent subgraphs. The sampling 

approach uses rounded circles to cover all frequent subgraphs and only reports 

the centers of these circles as the representative subgraphs. 

In frequent itemset mining, there have been several methods which use prob-

abilistic models to summarize frequent itemsets [57, 56，27]. These probabilistic 

models, as a concise summarization, are effective to restore the itemsets and their 

frequencies. In this paper, we aim to summarize frequent subgraphs by preserv-

ing the structure and frequency information of frequent subgraphs as much as 

possible. A concept example is shown in Figure 2.3. Let the shaded areas denote 

a set of frequent subgraphs. We are aiming to partition the whole set of frequent 

subgraphs into some subsets�where the root of each subset, which is the black 

dots in Figure 2.3, is called template subgraph or union template subgraph. And 

all the frequent subgraphs in a subset are subgraphs of the (union) template 

subgraph of this subset. The black dot outside the shaded area means that it is 

a union template subgraph. This problem is more challenging than itemset sum-

marization, due to two difficulties in subgraph mining: "multiple embeddings" 

(i.e., a subgraph can have multiple embeddings in a large graph.) and "topolog-
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ical constraint" (i.e., the topological structure specifies the connectivity among 

nodes and edges.). To solve the problem, we make an independence assump-

tion between edges in a frequent subgraph. We take a regression approach to 

estimate the parameters in the independence probabilistic model by least square 

estimation. To ensure a good summarization quality, we allow users to specify 

an error tolerance a and our algorithms take a top-down approach to discover 

k template subgraphs. Multiple regression models will be built based on the k 

template subgraphs to control the frequency restoration error within a. 

The main contributions of this research are 

• We introduce to summarize frequent subgraphs with an independence prob-

abilistic model. Specifically, we propose to restore frequent subgraphs and 

their frequencies from template subgraphs by a regression approach to ob-

tain a concise representation of all frequent subgraphs. 

• We propose an efficient algorithm in a top-down fashion to discover a set of 

template subgraphs, together with the probabilistic models, as the summa-

rization. Multiple regression models are built on these template subgraphs 

and the restoration errors are below a maximum error tolerance. 

• We have evaluated our subgraph summarization approach on both real and 

synthetic, graph datasets. Experimental results show that our method can 

achieve a concise summarization with high accuracy in terms of subgraph 

frequency restoration error. 



CHAPTER 3 

R E L A T E D W O R K S 

In this chapter, we present an overview the related works to graph sttaima-

rization, which are categorized into four parts. 

3.1. Large Graph Summarization 

There axe a few existing works which are focusing on large graph summa-

rization. Navlakha et al. [42] propose to substitute super-nodes for cliques in 

graphs without attribute information to generate summaries. Given a graph, 

each clique on the graph is represented by a super-node. The summary is a com-

bination of the super-nodes and the original nodes that cannot be represented. 

If there is an edge between two super-nodes, or a super-node and a original node, 

then all the possible pairs of nodes must be connected by edges in the original 

graph. It is obvious that usually a graph cannot have many cliques, so they 

also use super-nodes to represent near-cliques or dense areas, with an extra table 

to record the edges that do not exist or need to be removed. The quality of a 

summary is measured by the size of the summary, which is based by Minimum 

Description Length (MDL) principle. MDL can find the best hypothesis leading 

to the best compression of data. Even with the help of the additional table, the 

compression ratio of a summary generated by the above method is still too large, 

which is almost one half of the size of the original graph. To further reduce the 
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summary size, an error bound e is introduced for edges, that is, for an original 

node, if it or its super-node connects another super-node in a summary, then 

the number of missing edges is at most (1 — e) times of the number of nodes in 

the other super-node. They propose both a greedy algorithm and a randomized 

algorithm to calculate the exact summary and the error-bounded summary. The 

greedy algorithm iteratively merges two nodes which introduce small extra space 

cost. The randomized algorithm randomly selects a node u, and finds a node v 

of small extra space cost in it's 2-hop neighborhood to merge with u. 

Tian et al. [50] propose to summarize large attribute graphs by aggregating 

nodes into groups and use super-nodes to represent groups of nodes. The at-

tributes are categorical. Two super-nodes are connected by a super-edge if there 

is at least one pair of nodes, one from each group, connected in the original graph. 

They require the nodes in each group having the same attribution information, 

so the total number of possible attribute values cannot be too many. Otherwise, 

the size of summaries will be too large for users to explore. On the super-graph, 

there is a participation ratio associated with each super-edge, which is the per-

centage of pairs of nodes that are connected among all potential possible pairs. 

They prove NP-completeness of this problem and present two heuristic aggre-

gating algorithms in a bottom-up fashion and a top-down fashion, respectively. 

They design a merging distance mainly based on the similarity between partic-

ipation ratio vectors. Two super-nodes have a small merging distance if their 

participation ratio vectors are similar. Given a graph, the bottom-up algorithm 

iteratively merges two super-nodes with the minimum merging distance until 

the number of super-nodes left is k. In the top-down algorithm, nodes in the 

graph are initially grouped i ^ ^ ^ i ^ t e r s and nodes in each cluster have the same 

attribute information. A super-node Si is first selected to be split based on the 

number of the connection errors to its neighbors. Suppose Sj is a neighbor of Si� 

and the number of the connection errors between Si and Sj is the largest among 

all the neighbors of Si. Then Si is split into two super-nodes whose participation 
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ratios to Sj is 0 and 1. This procedure is repeatedly performed till there are k 

super-nodes. Th^ir approach does not work well when the number of attribute 

values is not small and their criteria are not strict enough to obtain high-quality 

summaries. 

Zhang et al. [63] extend Tian's approach [50] to summarize graph with 

two contributions. First, they propose to deal with numerical attribute values, 

not just categorical. Second, they recommend possible values of k, which is the 

number of super-nodes in summaries. Their algorithm for categorizing numerical 

values agglomerative, which iteratively merges two value-adjacent super-nodes 

until no two super-nodes are value-adjacent. Then super-nodes of continuous 

values are cut into c groups of categories, where c is given by users. Next, they 

apply algorithms in [50] to generate summaries. During the splitting or merging 

process, their algorithm keeps tracking the interestingness measure of the current 

summary, and recommends the value of k. The interestingness measure is based 

on three characteristics: diversity, coverage and conciseness. 

3.2. Graph Generation Models 

Graph generating models can be considered as a summarization since they 

are able to partially reveal the hidden relationships between nodes in graphs. 

Chakrabarti et al. [12] study the problem from various points of views in physics, 

mathematics, sociology, and computer sciences. Based on the analysis of real so-

cial networks, the main characteristics they found for social graphs are power 

laws, small diameters and community effects. The characteristic of power laws 

indicates that most nodes in social graphs have few neighbors, while only a very 

small portion of nodes are of high degree. The characteristic of small diameters 

indicates that the distance between reachable pair of nodes is small, the effective 

diameter of the studied social graph is only 6. The characteristic of community 

effects indicates that nodes on graph can be grouped into clusters, whose clus-

tering coefficients measure their dumpiness. Based on the above characteristics 
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of social graphs, they survey a lot of graph generators and suggest the possible 

solutions for each unique requirements. 

Leskovec et al. [32] focus on the problem of generating a synthetic graph 
that has the same properties to a given one. The difficulty lies in that the param-
eters of the generating model must be consistent to the given graph. The authors 

t • 

utilize Kronecker product of matrix to achieve fast synthetic graph generation. 

They estimate the parameters of Kronecker model using maximum likelihood es-

timation. The estimation process is speeded up by the permutation distribution 

of the parameters. The same authors study the problem of evolving graph gen-

erator in [33]. Similar to [12], they first find the evolving rules from the sample 

graph data, including densification laws and shrinking diameters. Densification 

laws show that the average degree of nodes increases as time goes by, resulting 

in the smaller diameters of graphs. With these two observations, the forest fire 

model is introduced which simulates a burning fire of nodes and each node has 

a certain probability to link a new node which is found during the spread of the 

fire. 

3.3. Frequent Subgraph Summarization 

There are quite a number of works related to frequent subgraph summa-

rization, but unfortunately, none of them could restore all frequent subgraphs 

within a certain restoration error. The main issue in frequent subgraph milling is 

the huge number of frequent subgraphs. Recently, researchers [13’ 36’ 64’ 20’ 5 

.have focused on selecting a small number of representative graph patterns to 

represent many similar subgraphs. 

Chen et al. [13] select structural representatives from all frequent subgraphs 

based on clustering. Their proposed algorithm consists of two steps: smoothing 

and clustering. In the'first step of smoothing, frequent subgraphs are grouped 

together if they have the same number of nodes, and the number of different edges 

is less than a threshold. After grouping, the support transactions of each frequent 
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graph are changed to the aggregation of transactions of frequent subgraphs in the 

same group. The support now is the number of the aggregated transactions. Jn 

the second step of clustering, these groups of subgraphs are further be partitioned 

into clusters based on the graph edit distance. The centroids of each clusters are 

selected as representative subgraphs. 

Liu et al. [36] propose to select representative subgraphs based on two con-

ditions. First, a selected frequent subgraph can cover a number of graphs. One 

graph can be covered by another graph if their support transactions are similar, 

measured by Jaccard distance. Second, the support transactions of the selected 

subgraphs must not be similar by the same measure. Three algorithms are in-

troduced to find representative subgraphs. The first algorithm starts from the 

closed frequent subgraphs and find all subgraphs satisfied the second condition 

by subgraph matching. Then, for subgraphs cannot be represented by the cur-

rent set of representative subgraphs, they are added to the set. This procedure is 

repeated until all the subgraphs are inspected. At last, the candidate represen-

tative set is further shrank to find the minimum representative set by removing 

subgraphs whose covered frequent subgraphs are subset of the covered frequent 

subgraphs of another representative subgraph. The other two algorithms search 

representative subgraphs directly from a graph collection. Both of them employ 

the framework of gSpan [59] to find frequent subgraphs. During the depth first 

search of all potential subgraphs, subgraphs which are covered by other mined 

frequent subgraphs are pruned directly. 

Hasan et al. [20，5] propose to discover representative frequent subgraphs 

by using random walks. The approach in [20] starts with finding all frequent 

edges. Then it chooses an edge randomly and repeats extending this edge by 

randomly selecting more edges from frequent edge set, as long as these edges are 

connected. In each step of extension, if it is a maximal frequent subgraph, a 

random walk is performed to exclude the nearby frequent subgraphs with simi-

lar structures. This procedure is performed iteratively until enough number of 
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frequent subgraphs are outputted. In [5], the authors select a small number of 

maximal frequent subgraphs through sampling without computing all the maxi-

mal frequent subgraphs. Once a frequent subgraph is identified, a subset of all its 

super and sub patterns are sampled to see if they are frequent subgraphs. Three 

sampling techniques are compared, which are uniform sampling, support-biased 

sampling and discriminatory sampling. 

3.4. Frequent Subgraph Mining 

The task before summarizing frequent subgraphs is to find all frequent sub-

graphs. Any summarization framework without pre-computing all frequent sub-

graphs could not restore all of them. Many algorithms have been proposed for 

finding frequent subgraphs in graph databases, where the frequency of a subgraph 

is the total number of graphs containing the subgraph in the database. Similar 

to the Apriori-based approaches in frequent itemset mining, Apriori-based algo-

rithms for frequent subgraph mining are proposed in [24, 29, 55], where the search 

strategy follows a breadth-first manner in terms of number of edges. Subgraphs of 

small sizes are searched first. Once identified, a new larger candidate subgraphs 

are generated by joining two highly overlapping frequent subgraphs, which dif-
% 

fer by one edge. So, in each iteration, the size of these candidate subgraphs 

is increased by one. Other algorithms [59, 7, 22, 43] employ a pattern-growth 

style. New candidate subgraphs are generated by adding a new edge to the cur-

rent ones. It is possible that a candidate subgraph is extended from multiple 

frequent subgraphs. The gSpan algorithm in [59] constructs a depth-first search 

(DFS) tree for searching frequent subgraphs. Depending on the order of edges' 

addition, a DFS code is generated for each search tree. By using DFS codes, 

gSpan can prune the search space by duplicate removal without graph matching, 

which speeds up the computation. There are also research efforts on finding the 

frequent subgraphs in a single large graph [8’ 34’ 18, 31], where an important 

problem is how to define the frequency. A solution [31] considers the 
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number of non-overlapping embeddings as the frequency. 



CHAPTER 4 

A P P R O X I M A T E H O M O G E N E O U S 
G R A P H SUMMARIZATION 

In this chapter, we present the details of our research work on approximate 

homogeneous graph summarization. This chapter is organized as follows. Section 

4.1 analyzes the graph summarization problem carefully and Section 4.2 presents 

our concept of approximate homogenous partition based on information theory. 

We propose the summarization framework in Section 4.3 and report experimental 

results in Section 4.4. 

4.1. Problem Statement 

An attribute graph G is a triple (V, E,尸)，where V and E are the node set 

and the edge set of the graph, respectively. P is a finite set of attributes, and each 

node V eV or edge (w, v) E E is mapped to one or more attributes in 厂，denoted 

as r{v) or r{u,v). Given r{v) = {Ai,A2, • • • , A^), let ^{v) = (cii，a2，.- -，aj) 

denote the attribute value vector of v, where ai is the value of attribute Ai. In 

this work, we concentrate on categorical attributes. For a categorical attribute 

Ai with I distinct values, we can represent an attribute value using a Z-bitmap, 

where all bits are zero except for the bit which corresponds to the attribute 

value. To simplify the presentation in this paper, we assume that the edges of 

the graph to be summarized are of the same attribute value, but our framework 
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can be extended to handle graphs which have multiple attributes associated with 

both nodes and edges. 

Given an attribute graph, we aim to find a concise and interpretable sum-

mary which is friendly for users to explore and analyze. This can be done by 

partitioning all nodes V in a graph G into k homogeneous non-overlapping node 

sets {Vi, V2, • • • , Vit}, where the criterion of homogeneity is discussed later. Here, 

each Vi represents a non-empty subset of node set V. Let V denote the node 

partition {Vi, V2> • • • , Vk)^ and let V{v) denote the unique node set Vi that a 

node V belongs. Furthermore, because a node i; in a node set Vi has edges to 

link other nodes in another node set V}, we use N{v) = {^C^i^aOK^^ ua：) E 
to denote the set of Vj. In addition, for Vj G N{v), we use \Vj\y to denote the 

number of edges from v to any nodes in Vj. 

Based on the homogeneous partition V �a graph summarization Gs can be 

constructed as follows. A super-node Si represents a node set V̂ , for all node 

sets in V�and all nodes of G summarized by a super-node in Gs have the same 

attribute values. The super-edges among super-nodes in Gs imply that every 

node of G summarized by a super-node has the same pattern of connecting nodes 

to other nodes summarized by other super-nodes. For example, suppose that Si 

has super-edges to Sj�Sk�and Si. It shows that every node of G summarized by 

Si has edges to some nodes of G summarized by Sj�Sk�and Si. In the following 

of this chapter, we use VJ and Si interchangeably. 

Now the question is what is a homogeneous partition. In a homogeneous 

partition V�every node set V̂  in P is considered to be homogeneous, which 

consists of the following three criteria: First, nodes are homogenous according 

to the attribute information, i.e., nodes in the same node set must have the 

same attribute value vectors. Second, nodes are homogenous according to the 

neighbor information, i.e., if a node v ^Vi connects to V̂ -, then all the nodes in 

Vi must connect to Vj. Third, nodes are homogenous according to the connection 

strength, which is measured in terms of edges. If Vi and Vj are connected, all 
< . 

-•• ff »• 
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nodes in VJ have the same number of edges to liodes in Vj. With these three 

criteria, we present the definition of exact homogeneous partition below. 

Definition 4.1. Exact Homogeneous Partition. An exact homogeneous 

partition V = {Vi, V2, • • • , Vk} of a graph G = (V, E, P) satisfies the following 

three criteria for every node v E V: (1) = 7(V；); (2) N{v) ~ N{Vi)\ and (3) 

Vj\y = \Vj\vii for every Vj G N{v). Here, 7(Vi) denotes the common attribute 

values of nodes in V； under the assumption that all nodes in Vi have the same 

attribute values. N{Vi) denotes the common node sets for every node in the 

node set Vi, and \Vj\vi denotes the common number of edges from every node in 

Vi linking to nodes in node set Vj. 

The above definition of exact homogeneous partition extends the definition 

of exact grouping in [50]. The difference is that the exact grouping in [50] only 

considers the first two criteria but not the third one. Without the third one, 

nodes in a certain node set having more edges connecting to another node set, 

are considered to be the same as the one having less edges, which is obviously 

not reasonable. For example, in a DBLP co-author work, authors with more col-

laborations to a certain research group are more important than authors having 

few collaborations. It is not reasonable to place them together into the same 

node set apparently. -

A summary G5 of a graph G constructed by an exact homogeneous partition 

can be considered as the best summarization with respect to the homogeneity 

criterion, since nodes in the same node .sets are exactly the same in terms of 

attribute and structure information. Unfortunately, due to the high complexity 

of graph attributes and structures, as well as the increasing size of graph itself, 

such exact homogeneous partition cannot achieve a high compression ratio. The 

size of Gs based on the exact homogeneous partition is too large to serve as 

a graph summarization, which makes it beyond possible for users to handle. 

As we will see later in the experimental results, the size of Gs based on exact 

homogeneous partition can be almost as large as G. To solve this issue, we need 
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to relax partial or all the criteria in Definition 4.1. The approach in [50] loosens 

only the second criterion, by allowing nodes in Vi "connect to similar node sets 

of Vj but not necessarily to be the same. But it still requires that all attribute 

values of nodes in the same node set VJ must be exactly the same vector. 
> 

It is questionable if it is sufficient to relax only the second criterion in Def-

inition 4.1 due to the following issues: (1) Keeping the same attribute vector in 

each node set makes it very difficult to handle a graph with multiple attributes, 

in particular, when the number of attributes is not small. Suppose a node has m 

attributes and each attribute has d possible values, there are total dJ^ possible 

combinations of these values. Though the real existing combinations may not 

be so many, it is still impossible to find a partition of a relative small size, say 

k, such that all nodes in the same node set Vi have the same attributes, when 

k is less than the number of existing combinations. (2) In the third criterion 

in Definition 4.1, it requests that all nodes in the same node set VJ should have 

the same number of edgfes connecting to nodes in any other node set. Due to 
the various possibility of neighborhood structures, this can also lead to a graph < » 
summary which is not much smaller than the original graph G. 

To achieve compact summarization Gs, we propose to relax all the criteria 

.in Definition 4.1. In order to relax these criteria, a quality function for each 

criterion is needed to control the quality of relaxation. Let us first give a high 

level definition for approximate homogeneous partition, and explain it later. 
• J 

* 

Definition 4.2, -Approx ima te Homogeneous Partition. Given a graph 

G = (V, jE, JT), a nimber k, a graph node partition V is called approximate 

homogeneous partition, if it satisfies the following three criteria for every Vi G V. 

•(1) Q ^ m < ei; (2) QNî v,){Vi) < 62； and (3) < es, V\4 G (TV…‘）U 

N{vj)). Here, let Vk E Vu Q-rO), …iO(.)’ QlVj\vJ-) are three quality measure 

functions, and Ci, €2，arid €3 are three thresholds to control the quality of the 

partition； 

In an approximate homogeneous partition, nodes in the same node set are 
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considered to be homogeneous as long as their attributes and neighborhood rela-

tionship, patterns to other node sets are similar to each other. Besides, a overall 

ranking function is necessary to rank the partitions based on the overall sum-

marization quality to obtain the best one. Suppose R(-) is the function that 

reflects the three criteria in Definition 4.2 to measure the quality of approximate 

homogeneous partition, we study how to compute an approximate homogeneous 

partition V of size k for a graph G = {V, E, F) by minimizing the ranking func-

tion R{V). The key issues are as follows. What quality measure and the function 

R(V) should we use? Can we make it threshold free (without ei, e2, and 63)? 

We address these issues in the following sections. 

t 

4.2. An Approximate Homogeneous Partition 

Based on Information Theory 
In this paper, we propose an information-preserving criterion, based on in-

formation theory. We first review some background knowledge, followed by de-

tailed discussions about how to utilize a unified entropy model to measure the 

quality of the three relaxations in Definition 4.2. 

Let Xi be a boolean random binary variable and p{xi) be its Bernoulli dis-

tribution function, p(x) = [p(工 1)，…，P(�)]is a Bernoulli distribution vector 

58] over d independent Boolean random variables Xi, • • • , Xd-

binary d-element vector. Given a set of binary vectors D == {b] 

the assumption of independence, the probability by which they 

a distribution vector 6 is estimated as 

Let bj denote a 

，…，b n } ’ under 

are generated by 

P{D\e) = n HP(而= 
bjGD t=l 

(4.1) 

6�which fits the where b] is the zth element of the binary vector bj. The best 

tiiodel, is ‘ 

§ = argma.x\og{P{D\e)). (4.2) 
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The well-known solution based on the maximum likelihood estimation is 

Sbj€D bj p � = 1 ) = 一了石： (4.3) 

We use information theory to measure the quality of these distribution vec-

tors. Recall that in information theory, entropy [14] is a measure of the un-

certainty (randomness) associated with a random variable X, which is defined 

as ‘ 

H{X) = - J 2 p { x ) \ o g , p { ^ ) . (4.4) 
xex 

Consider a random variable Xi whose value domain is {0,1}, the probability of 

Xi equals 0 or 1 is p{xi = 0) or p{xi = 1). The entropy of an unknown sample of 

the random variable Xi is maximized when p(xi = 0) = p(xi = 1) = 1/2, which 

is the most difficult situation to predict the value of an unknown sample. When 

p(xi = 0) — p(xi = 1), we know that the value of the unknown sample is more 

likely to be either 0 or 1 accordingly, which is quantified in a lower entropy. The 

entropy is zero when p(xi = 0) = 1 or p(xi = 1) = 1. For a Bernoulli distribution 

vector p(x), assuming the contained random variables are independent of each 

other, the total entropy of a Bernoulli distribution vector is 

if(p(x)) = (4.5) 
i=l Xi=0 

If binary vectors within the set D are similar to each other, or homogeneous, 

then for each random variable Xj, most of its values should be similar, resulting 

in a low i7(p(x)). 

4.2.1. Entropy-Based Relaxations of Criteria 

In the following part, we discuss the three relaxations in Definition 4.2. 

Based on these observations, we can measure the quality of the three relaxations 

in a unified model inspired by information theory. 

Observation for Q^: For each node Vi G V, 7(1^) = (ai,…’ ad) is the attribute 

vector of Vi, where Oi is the value of attribute Ai. As mentioned, we repre-
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Node ai 32 33 34 

Si 
V1 1 1 1 0 

Si •2 1 1 1 1 Si 
V3 0 1 1 1 

S2 
V4 1 1 0 0 

S2 V5 1 0 0 1 S2 
ve 0 0 1 1 

Entropy P(ai=1) p(a2=1) p(a3=1) P(a4=1) 
Si 1.85 0.66 -1 1 0.66 

S2 3.70 0.66 0.33 0.33 0.66 

ai 32 33 84 

Figure 4.1: Entropy-Based At- Figure 4.2: The Conversion from At-

tribute Homogeneity tributes to Nodes 

sent categorical attribute values as bitmaps, so we also use â  to indicate the 

bitmap when there is no confusion. For a certain node set, Vj, in an .approx-

imate homogeneous partition, the attribute information of each node Vi e Vj 

is in form of a binary vector by concatenating these bitmaps together, denoted 

as a = ( a i , a ^ ) . The attribute information of a node set is homogeneous if 

the corresponding binary vectors are similar to each other. A binary Bernoulli 

distribution vector can be estimated from these vectors by Eq. (4.2). When the 

majority of nodes in a node sets share a same attribute value, the corresponding 

bit in the Bernoulli distribution vectors approaches to 1. When the majority of 

nodes do not have a certain attribute value, the corresponding bit approaches to 

0. In this case, we can infer from the Bernoulli distribution where a node has or 

has not a certain attribute value by the expected value of the corresponding bit. 

Then it is better if each column in the Bernoulli distribution vector approaches 

to 1 or 0. When the value is 0.5, it is the worst case that we are uncertain to 

infer any useful attribute information, since the confidence of the expected value 

is like the one of a random guess. Entropy is an excellent quality measure in this 
-t » • 

case, and low entropy means high confidence based on Eq. (4.5). 

As shown in Figure 4.1, each row in the top table represents a node in the 

graph. For each node, there are four attributes: (ai, a2, as, 04). The first three 
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Figure 4.3: Entropy-Based Homogeneity of Connection Strength 

rows belong to the super-node Si (or node set Vi), while the remaining belong 

to the super-node S2 (or node set V2). It is easy to see that nodes in Si are more 

similar to each other than nodes in S2. The corresponding Bernoulli distribution 

vectors for 5i and S2�are represented in the lower table, as well as their entropy 

values. As we can see, the entropy value of S\ is much lower than that of S2� 

which is consistent to that nodes in S\ are more similar to each other. 

Observation for QN{vk)' Nodes in the same homogeneous node set VJ should 

have similar neighborhood relationship in the super-graph. Note that if a node 

set has good quality according to the third criterion, it must be also good by the 

second one, since the second criterion is in fact a special case of the third one. 

If there is only one neighbor for nodes in a node set, then the second criterion 

and the third one are the same. Obviously, is a stronger condition than 

QN(vk)i because Q\Vj\vk measures the quality based on not only whether there are 

connections between nodes in Vi and Vj, but also the number of connections for 

Vk G Vi. Therefore, we can ignore Qnm^ and concentrate on which we 

will discuss next. 

Observation for Consider a super-graph Gs�and we use Vj (node set) 

and Si (super-node) in Gs interchangeably. If there is a super-edge between 
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super-nodes Si and S j � t h e n nodes in Si should have similar total number of 

edges to nodes in Sj. As discussed, it is not appropriate to put two nodes 

together, whose connection strengths to a certain node set differ a lot, because 

their importance to the node set is not in the same level. We can keep two 

histograms for each super-edge [S^ Sj), namely, Si-to-Sj and Sj-to-Si, to record 

the distributions of neighbors in Sj {Si) of nodes in Si {Sj). We explain it by 

using an example as shown in Figure 4.3. There are three node sets (super-nodes) 

in the partition: Si, S2, and Sz. At the upper left corner in Figure 4.3, it shows 

how these super-nodes are connected by super-edges. For example, it indicates 

that every node in S2 has 10 neighbors in Si on average. The histogram of S2-

to-jSi is drawn on upper right corner, where the x-axis indicates the number of 

neighbors in Si for a node in 82- The y-axis indicates the number of nodes in 

S2 corresponding to each value on x-axis. The histogram shows that there are 

2 nodes within S2 which have 9 edges connected to nodes in Si，2 nodes which 

have 10 edges and 1 node which has 12 edges. Intuitively, a homogeneous node 

set should have a tight spread range on x-axis in the histogram. Again, entropy 

is a good measure to show how homogeneous inside each node set. To do so, 

we present the histogram in another way as shown in the bottom right corner. 

The x-axis still indicates the number of neighbors in for a node in S2�while 

the thickness of each bar indicates the number of nodes in 5i corresponding 

to each value on x-axis. Based on this intuition, we transform each bar in the 

bottom histogram to a binary vector of all I's. For example, for bar indicating 

the number of neighbors�is 9, a binary vector of length 9 is constructed. We 

first concatenate O's at the end of each binary vector to make them of the same 

length. Then we remove the common I's in the suffix of these vectors, because 

the entropy on these columns are all zero and we focus on only the difference 

in these binary vectors. The remaining binary vectors are shown in the bottom 

left table in Figure 4.3. Similar to Q^, a Bernoulli distribution vector is learned 

from these binary vectors. The more similar these vectors are, the lower entropy 
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of the distribution vector is, as shown in the table. 

In summary, the homogeneity of a node set can be measured by the con-

cept of entropy of these Bernoulli Vectors. Let e = (Si, Sj) denote a super-edge 

between two super-nodes Si and S j � a n d let Vi denote a node in super-node Si. 

The entropy of super-node Si consists of two parts: the attribute part and the 

neighborhood connection strength part. We propose to convert the attribute ho-

mogeneity into neighbor relationship homogeneity to unify the two parts. Figure 

4.2 shows our conversion. For each attribute value, we add an additional node 

in the original graph G. Here we have four attribute values {ai, a2, <23，(24}, so we 

add four corresponding nodes in G. For each node, we add edges between it and 

those nodes corresponding to its attribute values. For example, in Figure 4.2， 

node vi has attribute values {01,02,^3}, so we add edges between vi and nodes 

representing ai, 02, and ^3. In this way, we convert the attribute homogeneity 

into neighbor relationship homogeneity. Then, we apply the same approach as we 

have discussed in Observation for to calculate the attribute homogeneity. 

The entropy for Si is 

k+l 
EntropyiSi) = ^ i f{p(bf 二 1))， （4.6) 

where A; is a user-given parameter for controlling the number of node subsets 

in the partition V and I is total number of distinct attribute values, b"Ms the 

mth element in b, and p(bj" = 1) is the Bernoulli distribution vector estimated 

by Eq. (4.3) for Si to Sj or dj�depending on whether the connections are to a 

super-node or attribute value node. As we can see from the above analysis, the 

total entropy for every super-node in exact homogeneous partition is zero. 

Users might prefer attribute homogeneity over connection strength homo-

geneity or vice versa. To achieve this, we allow users to assign weights during 

the entropy calculation as follows in Eq. (4.7). 

. I k 
WeightedEntropyiSi) = = 1))H-(1-A) ^ i : f ( p ( b f = 1)). (4.7) 
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Now, p(aj" = 1) is the Bernoulli distribution vector estimated by Eq. (4.3) for 

Si to node aj, and p(bj" = 1) is the Bernoulli distribution vector estimated by 

Eq. (4.3) for Si to super-node Sj. When A equals 1/2, the entropy score is one 

half of the entropy computed by Eq. (4.6). And the weighted entropy for every 

super-node in the exact homogeneous partition is still zero. 

The optimized approximate homogeneous partition is the partition that min-

imizes the ranking score of the super-graph, which is the total weighted entropy 

of all nodes: 

R{V) = IŜ I X WeightedEntropy{Si), (4.8) 

where \Si\ is the number of nodes contained in Si. What we study next is how 

to find the optimized approximate homogeneous partition V for a given graph 

G. Based on V, the graph summarization Gs can be constructed. 

4.3. Homogeneous Graph Summarization 

In this section, we present the algorithms for exact homogeneous partition 

and approximate homogeneous partition. 

4.3.1. A Lazy Algorithm for Exact Homogeneous 

Partition 

Exact homogeneous partition is the best summary in terms of homogeneity, 
• * 

and we extend the algorithm in [50] to compute exact homogeneous partition 

using a simple but effective approach. 

Algorithm 4.1 outlines the procedures to compute the exact homogeneous 

partition based on Definition 4.1. Recall that a is the concatenated attribute 

vector for nodes. Suppose there are m distinct attribute vectors, the nodes in 

graph G are partitioned into m groups first according to the distinct vectors. 

Then, the algorithm constructs an n x m node-to-group matrix M, where M{i,j) 

is the number of i/j's neighbors in Sj. One thing worth noting is that nodes 
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Algorithm 4.1 A Lazy Algorithm for Exact Homogeneous Partition  

Input: A graph G = {V, E, r) 

Output: The exact homogeneous partition V. 

1： Partition V into m node sets based on distinct attribute value vectors a; 

2: Construct an n x m node-to-group matrix M; 

3： while True do 

4： Sort rows within each group; 

5： Let split flag be an all-zero binary vector of length n; 

6： for each cell M{i,j) in M do 

7： if M{iJ) + M(i + 1’ j) then 

8： split f lag [i] = True; 

9： end if 

10： end for 

11： if split flag is all False then 

12： break; 

13： end if 

14： Split each node sets according to split flag to form m' new node subsets; 

15： Reconstruct the n x m' node-to-group matrix M; 

16： end while 

17： Output the exact homogeneous grouping V. 

belonging to the same group are stored adjacently in M and the order of groups 

in rows is the same as the order of groups in columns. At line 5, Algorithm 4.1 

marks the split positions using a binary vector of length n. After inspecting all 

the groups, Algorithm 4.1 reconstructs the node-to-group matrix M based on 

the marked split positions. 

Because the matrix reconstruction is costly, we do not reconstruct M imme-

diately after a split position is found. There are many unnecessary reconstruc-

tions during the split operations. An example is shown in Figure 4.4. Suppose 

the left matrix is the initial node-to-group matrix after sorting, and we find Si 
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Figure 4.4: Data Structure for Lazy Exact Homogeneous Partition 

should be split into two subsets. If we reconstruct the matrix in each loop, the 

matrix will be like the one on the right. As we can see that the next node set to 

be split is Sn+i, the last reconstruction of matrix is not necessary. Instead, we 

mark these split positions using a binary array and reconstruct only once after 

we check all the possible positions. We call it lazy exact homogeneous partition. 

Next we will present two algorithms for approximate homogeneous partition: 

an agglomerative merging algorithm and a divisive /c-means algorithm. 

4.3.2. An Agglomerative Algorithm for Approximate 

Homogeneous Partition 

As discussed, though exact homogeneous partition is of the highest quality 

based on homogeneity, its size is almost as large as the original graph. To further 

reduce the size of a summary of exact partition, we propose an agglomerative 

algorithm which is presented in Algorithm 4.2, which takes the exact homoge-

neous partition V as the input. The main idea of the agglomerative algorithm is 

to maintain a matrix to record the change in total weighted entropy for each pair 

of node sets if they are merged, and merges the pair with the minimum value 

repeatedly. Each merging will decrease the total number of node sets by one. 

In the loop from line 3 to line 6，Algorithm 4.2 calculates the initial value 

of total weighted entropy of the exact partition after merging each possible node 

pair (Vi, Vj). Recall that the input is the exact partition, whose total weighted 
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Algorithm 4.2 The Agglomerative Algorithm for Approximate Partition 
Input: The exact homogeneous partition V = {Vi, • • • , Vm}\ a number k. 

Output: The approximate homogeneous partition Va. 

1: Va 二 V.、 

2： Let A be an m X 771 empty matrix; 

3： for each subset pair Vi and Vj in V do 

4: Vii = {ViyjVj]\{VuVj}\ 

5: A,,- = RCPij) /* Eq. (4.8) */ 

6： end for 

7： while \Va\ > k do 

8： Let (Vi, V^) be the pair of node sets with the minimum 八”； 

9: V A - ^ V A U { V i U V m } \ { V M \ 

10： Update A based on Vi and Kn； 

11： end while 

12： Output the approximate homogeneous partition Va\ 

entropy is zero. At the end of line 6, Matrix A(z, j ) stores，the change of total 

weighted entropy if we merge node set Vi and Vj, Note that we only use the 

upper half of A(i, j ) since A(i, j ) = A{j, i). In each iteration from line 7 to line 

11, the algorithm merges the pair of node sets with the minimum change in total 

weighted entropy to generate new partition, and update matrix A. 

Now, the problem is how to update matrix A. A naive way is to recompute 

the whole A based on the current partition Ta, which is slow and not necessary, 

since merging one pair of nodes only affects partial values in A. Suppose (Vi, Vj) 

is the pair to merge, and i < j. The merging is done by adding all nodes in Vj to 

Vi and deleting Vj. This operation only affects the values in two types of cells in 

A. The first type is the cells for pairs involving K, which is easy to understand, 

since Vi is now changed to Vi U Vj. Thus, we have to recompute the change in 

total weighted entropy for these pairs of node sets. 

The other type is the pairs of node sets involving the neighbors of (K, Vj)-
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> 

Figure 4.5: An Example of Updating Matrix A 

An example is shown in Figure 4.5. Suppose 14 and V； are neighbors of (V ,̂ Vj). 

It does not matter whether V̂  and Vi are both neighbors of (K, V̂.)，or just one of 

them is. Before the merging of (K, Vj), A{k, I) stores the change in total weighted 

entropy if we merge V̂  and Vi, while Vi and Vj are still separated. Once Vi and 

Vj are merged, the change of I) consists of three parts: 

1. \Vk U Ml X WeightedEntropy�v“Vj}(Vk U Vi) 

— \Vk\ X WeightedEntropy^ViyjyiVk) 一 |V/| x WeightedEntropy^y.y.}(V；); 

2. |Vi| X WeightedEntropy\^yf^uVi){yi) + \ Vj\ x WeightedEntropy{Vk�Vi}(Vj) 

_ VJI X WeightedEntropy{Vf^，Vi�(yi) 一丨巧I x WeightedEntropy{v^y^]{Vj)\ 

3. The change of neighbors of (V/, Vk) except Vi and Vj. 

The subscript of WeightedEntropy means the portion of the total weighted 

entropy related to node sets in the subscript. As we can see, after the merging of 

(Vi, Vj), the third part does not change, so we only need to recompute the first 

part and the second part. 
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4.3.3. A Divisive /c-Means Algorithm for Approximate 

Homogeneous Partition 

In this section, we present a divisive k-means based approximate algorithm 

to find the optimized approximate homogeneous partition using the Kullback-
争 

Leibler (KL) divergence. The Kullback-Leibler divergence [58] is a measure of the 

difference between two distribution vectors p and q, which is defined as follows, 

m p II q) = E E 咖 ) l o g 禁 . (4.9) 
t=i 1<=0 q �� 

In the view of information theory, KL divergence measures the expected number 

of extra bits required to encode samples from p when using a code based on q, 

rather than using a code based on p. We assume the Bernoulli distribution vector 

for a certain node group Si is p. For each node in group S i�le t q be the Bernoulli 

distribution vector for a node Vi E Both p and q are the concatenated vector 

of aj and bj in Eq. (4.7). Then we have 

KL(p(x) II q(x)) 
Vi^Si 

ViESi 
d 

ViP^i = 1) „/ n、1 p{xi 

i—1 

= l)(logp(xi = 1) - \ogq{xi = 1)) 
VieSi t=i 

+ p{xi = O)(logp(xi = 0) - logq{xi = 0))) 

'P{xi = 1) log(7(xt == 1) 一 p{xi = 0) log q{xi = 0) — H{p)) 
Vi€Si i= 

, �J l v i e S i P i - ^ i = 1) 1 , 1、 Ylvi^Si Pi^i = 0) 1 , ^ 
= 几 ⑷ g ( 一 ~ ^ 1 社 二 1) - " " " " = 

d 
=n(si) = 1) loggOci = 1) - q{xi = 0) logq'(a;i = 0)) 

t=i 

=n{si) * i / (p(x)) . 
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、 
•r- -

Thus, the optimized approximate homogeneous partition that minimizes R{Va) 
is the partition that minimizes the sum of KL{p{x.) || q(x)), which leads to the 

following divisive fc-means approximate algorithm presented in Algorithm 4.3. 

Algorithm 4.3 starts from one node set by putting all the nodes in G to-

gether. In each loop from line 2 to 20, Algorithm 4.3 first splits the node set 

with the maximum total weighted entropy, and then applies /c-means cluster-

ing method based on KL-divergence. The split 'procedure is from line 3 to line 
V � 

14. First, a random perturbation of nodes in the node sets with the maximum 

weighted entropy is performed. Then we inspect these nodes one by one accord-

ing to the order in the perturbation. If moving the node from the old node set 

to a new node set decreases the total weighted entropy, we move it, otherwise, 

it stays in the old node set. Once the split is finished, Algorithm 4.3 performs 

/c-means clustering from line 16 to line 20, to minimize the sum of KL-divergence. 

When the number of node sets equals k, the approximate homogeneous partition 

Va is returned. 

4.4. Experimental Evaluation 

In this section, we report the experimental results of our proposed summa-

rization framework on various real datasets from DBLP Bibliography [1]. The 

algorithms are implemented by using matlab and C + + . All the experiments 

were run on a PC with Intel Core-2 Quad processor and 3GB RAM, running 

Windows XP. One thing worthy noting is that we did not optimize our sources 

for multiple core environment. 
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A lgo r i t hm 4.3 The Divisive A:-Means Algorithm for Approximate Partition 
Input: A graph G = (V, E, F), a number k\ 

O u t p u t : The approximate homogeneous partition Va' 

1: Va = {V}\ 

2： while I Pa I < A: do 

3： Let Vm be the node set with the maximum x WeightedEntropy{Vm)\ 

4: Generate a random perturbation L of nodes in Kn, 

5： Vi = Kn； 

6： Vj = 0; 

7： for V e L do 

8： we = X WeightedEntropy{Vi) + x WeightedEntropy{Vj)\ 

9： we' = (iVil - 1) X WeightedEntropy{Vi \ {t;�) 

+ (1^1 + 1) X WeightedEntropyiYj U 
0： if we' < we then 

1： > i = W i ‘ 

2: Vj = VjU{v}- -

3： end if 

4: end for 

5： VA = VAU{VuVj}\Vm 

6： repeat 

7： Evaluate the Bernoulli distribution vectors aj 's and bj's for Vk G V\ 

8： Concatenate aj 's and bj's together for V^ G Va\ 

9： Assign each node v 6 V(G) to a new cluster Vk according to the 

Kullback-Leibler divergence in Eq. (4.9); 

20： un t i l the change of R{Va) is small or no more changes of the cluster 

assignment 

21： end while 

22： Output the approximate homogeneous partition Va. 
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Table 4.1: The DBLP Bibliography Datasets 

Datasets # of Nodes # of Edges Average Degree 

D1 DM 1695 2282 1.35 

D2 DB 3328 11379 3.42 

D3 DB+DM , 5023 15262 3.03 

D4 DB+DM+IR 6184 18710 3.02 

Table 4.2: The Keywords of Topics 

Topics # Keywords 

32 text, classification, vector, categorization 

66 mining, patterns, frequent, sequential... 

76 service, scheduling, extending, media 

80 clustering, matrix, density, spectral 

:.4.1. Datasets 

We construct a co-author graph with top authors and their co-author rela-

tionships, where the authors are from three research areas: database (DB), data 

mining (DM) and information retrieval (IR). Based on the publication titles of 

the selected authors, we use a topic modeling approach [21，62] to extract 100 

research topics. Each extracted topic consists of a probability distribution of 

keywords which are most representative for the topic. 

By using authors from partial or all areas, we construct four real datasets in 

our experiments. The basic statistics of the four datasets are presented in Table 

4.1, including the number of nodes, the number of edges and the average degree of 

nodes. There are total 100 topics in the original datasets and in the experiments, 

we remove the topics from authors, whose probabilities are extremely small. 

Each author is related to several topics whose probabilities are larger than 5%. 

Example of the topics are shown in T ^ l e 4.2, as well as the top keywofSs in 
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Figure 4.6: Topic Frequency in Dataset D1 and Dataset D2 

Table 4.3: The Exact Partition of The DBLP Bibliography Datasets 

each topic. 

All these topics are not of equal importance. We present the frequency dis-

tribution of topics in datasets D1 (DM) and D2 (DB) in Figure 4.6 in descending 

order. The x-axis is the topic order and the y-axis the frequency of a topic which 

is defined as the number authors doing research on the topic. For dataset D1 in 

Figure 4.6(a), the majority of topics appear less than 100 times, while only less 

than ten topics are very hot among authors. For dataset D2, the frequencies of 

most topics are below 200. 

4.4.2. Exact Homogeneous Partition 

Table 4.3 presents a comparison between the number of groups and the 

nodes in the original graphs. The number of distinct attribute vectors and the 

number of exact�名roups are quite close to the number of nodes. Therefore, the 

exact homogeneous partition cannot obtain a graph summary of a reasonable 
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D1 D2 D3 D4 

# of Nodes 1695 3328 5023 6184 

# of Distinct Attribute Vectors 1492 2931 4401 5409 

# of Exact Partitions 1604 3219 4829 5912 
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Figure 4.7: Exact Homogeneous Sum- Figure 4.8: The Running Time of Ex-

marization of Dataset DM act Algorithms 

size. Figure 4.7 shows the graph structure of the main connected component 

generated by exact partition algorithm on dataset DM, which is very large and 

not possible for users to explore. In Figure 4.8, we compare the running time of 

our lazy exact homogeneous partition algorithm with the exact partition algo-

rithm, denoted as exact partition. Unlike the lazy partition algorithm, the exact 

partition algorithm reconstructs the matrix M in Algorithm 4.1 immediately 

after discovering a split position. The lazy exact partition algorithm is more 

than 10 times faster than the exact partition algorithm due to the saved time of 

matrix construction. 

4.4.3. Approximate Homogeneous Partition 

We perfumed our approximate homogeneous algorithms using three values 

of A: 0.25, 0.5 and 0.75. Due to the high time complexity, we only apply our ag-

glomerative algorithm on datasets Dl, D2 and D3. Figure 4.9 shows the running 

time of the agglomerative algorithm performed on these three datasets. Both 

the x-axis and the y-axis are in log scale. We performed our divisive /c-means 

algorithm on all the four datasets and report the results for datasets D2, D3 

and D4 in Figure 4.10. fc-means algorithm is almost lOx times faster than the 

國Lazy Exact Partition 
• E x a c t Partition 
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Figure 4.10: The Running Time of The Divisive /c-Means Algorithm 

agglomerative algorithm when k is small, which common in real applications. 

An interesting phenomenon is that the running time of small A in\ihe agglomer-

ative algorithm is less, while the running time of large A in the d iv ide /c-means 

algorithm is less. The reason is that the agglomerative algorithm starts frorh^ 

the exact partition, and a large A cannot boost the affect of attribute too much. 

In the divisive fc-means algorithm, a large A usually means less iterations in the 

A:-means clustering algorithm, as we observed during the experiments. 

Figure 4.11(a) shows the average entropy of the approximate homogeneous 

partition by the agglomerative algorithm on dataset Dl, where we present the 

average entropy for different values of group number and A. As the group num-

ber shrinks, the average entropy increases. Since the input of the bottom-up 

approximate algorithm is the exact homogeneous partition, the average entropy 

is 0 at the beginning. Figure 4.11(b) shows the average entropy of the approx-

Chapter 4. Approximate Homogeneous Graph SummarizsLtion 43 

10， 

<
l

【
r
)
 

<
1
【
I
)
 

•9-X=0.25 
-B-X=0.50 
AX=0.75 

40 BO 160 320 640 

10， 

10' 

•e-X=0.25 
•B-X=0.50 
AX=0.75 

40 80 1603206401260 4829 

(a) Dl (DM) (b) D2 (DB) (c) D3 (DB+DM) 

Figure 4.9: The Running Time of The Agglomerative Algorithm 

！5
 

{
S
P
U
0
3
0
S
)

 B
E
F
 

r 
, AX=0.75 

10 I— •——, •  
10 20 30 40 50 60 70 80 

I：^ 
I #  ex=o.5o 

， |AX=0.75 
1 。 1 0 20 30 40 50 60 70 80 



60 BO 60 

(a) The agglomerative algorithm(b) The divisive fc-means algo- (c) D2 (DB), A = 0.5 

on D1 (DM) rithm on D1 (DM) ‘ 

Figure 4.11: R(Pa)/^ 

imate homogeneous partition by the divisive /c-means algorithm on dataset Dl. 

As we can see, when k is in the range from 10 to 80，the summary generated 

by the divisive /c-means algorithm is much better that one generated by the 

agglomerative algorithm, in terms of the average entropy. Figure 4.11(c) re-

ports the results on dataset D2 by these two algorithms when A is 0.5, which 

once again shows that the divisive /c-means algorithm performs better than the 

agglomerative algorithm, when k is small. 

We present some interesting examples from summary of dataset D2 (DB), 

generated by the agglomerative algorithm when the group number is 60. For 

ease of presentation, we remove the distribution on edges, while the values of the 

entropy for these distributions are small. Each node in Figure 4.12 represents 

a group of researchers. The tables in Figure 4.12 present the topic number 

and the main keywords of each topic. Figure 4.12(a) shows that a group of 

researchers in time series domain tend to cooperate with themselves, where the 

size of node Sg is 25. Figure 4.12(b) shows that researchers working on three 

different topics cooperate a lot, where the size of node S5 is 28. We can infer 

from these keywords that these researchers are working on the core database 

technology. Figure 4.12(c) shows three groups of researchers cooperate a lot, 

where two of them mainly work on knowledge representation, while the third 

group mainly works on decision tree. The size of node Sg, Sie and ^20 are 26，12 

、 

6-X = 0i5 
•B-X = 0.50 
A x = 0.75 
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Figure 4.13: Outliers Found by The Divisive /c-Means Algorithm 

and 35, respectively. 

Figure 4.13 plots the average entropy of all columns in all the Bernoulli 

distribution vectors from datasets D1 and D2. The x-axis is the average entropy 

of attributes and the y-axis is the average entropy of connection strength. Figure 
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Topic Keywords: 
12 time, series, real, subsequence 

(a) Example 

Topic Keywords 
54 implementation, db2, advanced, universal 
90 database, object, oriented, serve, sql 
75 control, concurrency, transaction, recovery 

Topic Keywords: 

66 
knowledge, base, 

representation, 
acquisition, bases 

Topic Keywords; 

66 
knowledge, base, 

representation, 
acquisition, bases 

Topic Keywords: 
18 decision, trees, tree, induction 

(c) Example 3 

Figure 4.12: Real Examples from Summaries 
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4.13(a) shows results from dataset D1 (DM) when k = 40. As we can see, most 

points are close to (0.3, 0.4) indicating a good confidence, while a few points are 

closed to (1, 1), which are considered as outliers in the summary. There are also 

outliers at (0, 1), which means these outliers have the same attribute information 

but not the neighborhood relationships. 

Figure 4.13(b) shows results from dataset D2 (DB) when k = 60. Most 

points are close to (0.35, 0.4), while a few outliers are far away from the main 

cluster. 



CHAPTER 5 

F R E Q U E N T SUBGRAPH 
SUMMARIZATION WITH E R R O R 
C O N T R O L 

In this chapter, we address our research work on frequent subgraph summa-

rization. This chapter is organized as follows. We formally define the problem of 

frequent subgraph summarization in Section 5.1 and propose the summarization 

algorithms in Section 5.2. Section 5.3 describes how to query the summarization 

to restore a subgraph and its frequency. We report the experimental results in 

Section 5.4. 

5.1. Problem Statement 

A graph G is a triple {V^ E,厂)，where V and E are the node set and the 

edge set, respectively.厂 is a finite set of labels, and each node v ^ V ox edge 

{u^v) £ E is mapped to one or more labels in JT, denoted as r(v) or r(u, v). A 

graph p is a subgraph of a graph G if there exists a subgraph isomorphism from 

g to G、denoted bs g C G. G is called a supergraph of g. 

Definition 5.1. Subgraph Isomorphism； For two graphs g and G、G contains 

a subgraph that is isomorphic to g、if there is an injective function h : Vg 

Vg, such that 6 Vg^Pgiy) = rb("C^))’ and V(n,^;) G Eg,{h(u),h{v)) e Eq 
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and rg(u,v) = rG{h{u)^ where Pg and Pq are the label set of g and G� 

respectively. 

Definit ion 5.2. Frequent Subgraph. Given a collection V of graphs, a graph 

g is frequent if f{g) > /饥生打，where f[g) is the number of graphs in V containing 

g�and fmin is a user-specified minimum frequency threshold. 

A frequent subgraph p is a maximal one if and only if there does not exist 

another frequent subgraph g' and g C g'. A frequent subgraph ^ is a closed 

one if and only if there does not exist another frequent subgraph g\ g C g' 

and f{g') = fig)- Anti-monotonicity holds for frequent subgraphs in a graph 

database, which means the subgraphs of a frequent subgraph are also frequent. 

5.1.1. Subgraph Summarization and Restoration Error 

Given a set T of frequent subgraphs, we aim to find a concise and in-

terpretable summarization of frequent subgraphs which is friendly for users to 

explore and analyze. We decompose the meaning of friendly into two aspects: 

descriptive and informative. By descriptive, we can identify that a particular 

subgraph is a member from the summarization. By informative, the concise rep-

resentation should maintain as much information of the frequent subgraphs as 

possible, to be specific, structures and frequencies. That is, users can restore the 

structure and the frequency of a certain subgraph accurately, based on only the 

concise summarization itself. If there is no error between the restored subgraphs 

and the original subgraphs, this summarization is lossless. While due to the 

high complexity of graph structures, the lossless summarization may not achieve 

a high compression ratio. In our proposed framework, there is no information 

loss in structures, while frequencies are summarized by probabilistic models. We 

define the relative restoration error as follows. 

Definit ion 5.3. Average Relat ive Res tora t ion Er ror . Let T denote the set 

of frequent subgraphs. For each subgraph g ^ T, f{g) and r{g) are the true 
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Figure 5.1: Partial Order Graph of Frequent Subgraphs Based on Containment 

Relationship 

frequency and the restored frequency of g�respectively. The relative frequency 

restoration error of g is - / (p) | / / (p) , denoted as 5{g). The average relative 

restoration error of the frequent subgraph set T is 

1 
T 

r[g) 一 fig) 

f{9) 
(5.1) 

Given the average relative restoration error as the summarization quality 

measure, the optimal frequent subgraph summarization can be defined in two 

ways. One is given a fixed integer as the number of partitioned subsets in sum-

marization S�the total restoration error should be minimal. The other is given 

a maximum tolerance a of the average relative restoration error, the number of 

partitioned subsets in summarization should be minimal. We adopt the latter 

one, because we aim to summarize frequent subgraphs with preserved frequen-

cies. 
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5:1.2. Regression for Subgraph Summarization 

Before we formally define the problem, let us first review the concept of 

regression models and how it adapts well in the context of frequent subgraph 

summarization. As mentioned, a frequent subgraph indicates all its subgraphs 

are frequent, which is called anti-monotonicity. Based on the subgraph contain-

ment relationship, a partial order graph (POG) is composed with all frequent 

subgraphs. Figure 5.1 shows an example. Each node in the POG is a frequent 

subgraph and subgraphs in the same level are of the same size, measured by the 

number of edges. In the POG, two subgraphs are connected by a directed edge 

from the larger one to the smaller one, if one is a subgraph of the other and differs 

by one edge. Suppose p is a subgraph in the POG, we use connected children to 

represent its connected neighbors smaller than g, and g is called connected par-

ent. We use reachable children to represent all the nodes that can be explored by 

traveling along with the edges in the POG, starting from g. A maximal subgraph 

does not have a connected parent in POG. If there is more than one maximal 

frequent subgraph, we add a union of all maximal frequent subgraphs as the root 

of the POG. If there is more than one connected component in a POG, we handle 

each component one by one. 

Suppose g and g' are two connected subgraphs in the POG, where g and g' 

differ by only one edge e, that is, pU {e} = g'. Let p{g'\g) denote the conditional 

probability that a graph G from V containing g also contains g'. Since p U { e } = 

g\ we denote as p(e\g)^ the conditional probability that a graph G from 

a graph database V containing g also contains edge e. Let f{g) denote the 

frequency of a frequent subgraph g�then 

P �P ) = P ( e b ) 二 傲 . (5.2) 

Given any two frequent subgraphs gi and gi that differ by / — 1 edges 

{ei，e2，•.. ,e/-i}, then 

f{9i) = f{9i) x p ( e i ’ e 2 ， … ( 5 . 3 ) 
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Let Qi denote the graph piU{ei, • • •，Si-i}. Following the chain rule of conditional 

probabilities, we have 

f{9i) = /(Pi) X Y[p{ei\9i)- (5.4) 
i = l 

In order to model the joint probability distribution, we apply the following in-

dependence assumption: whether a frequent subgraph g contains an edge e is 

independent of the structure of ^ \ {e}. Without loss of generality, we use p{e) 

to denote p(e|*), where * denotes an arbitrary subgraph g that g U {e} is fre-

quent. Under this assumption, we can rewrite Eq. (5.4) for subgraph gi and gi 

as follows: 
i-i 

f{9i) 二 /("i) X ！！^̂ ⑷. (5-5) 
i = l 

Given a frequent subgraph g�let Q 二 {夕1，"2，…,Qn] be the frequent sub-

graphs reachable from g in the POG. Suppose we know the frequency f{g) of g� 

as well as all the probabilities p(ej) of edges in g, with the independent assump-

tion, we can estimate the frequency of each graph gt E： Q according to Eq. (5.5). 

By applying the logarithmic transformation on both sides of the equation, we / 
t-i 

l o g / � =l o g / ( ^ i ) + X^logp(ej). (5.6) 

have 

Similar to the regression approach in [27], we can build a regression model Y = 

Xp + E for Q, where E is the matrix of error terms, 

l o g / � ^eiGt/i • logp(ei) 

Y = • • • and P = • • • 

log/(p) - l o g / ( p n ) leiGSn • . . 1 ^ logp{ei) 
(5.7) 

Here, laegj is an indicator that edge ê  belongs to graph gj. laegj 二 1 if Ci G Qj, 

and lei^Qj = 0, otherwise. The least square estimation [46] of the above regression 

model is to minimize the sum of squares of the errors (residues), which is 

5 = min|(y- xpy{Y - xp)^ (5.8) 



Chapter 5. Frequent Subgraph Summarization with Error Control -52 

Then the solution is 

P = argrmn | ( y - XP)'{Y - = [X'Xy^X'Y. (5.9) 

Union of M a x i m a l F requen t Subgraphs : By applying the above regres-

sion approach, we are able to summarize any frequent subgraph g in the POG, 

together with all its reachable children, as a regression model. We call g a tem-

plate subgraph, or a template for brief. Recall that in the POG of frequent 

subgraphs, each node represents a frequent subgraph, which is either itself a 

maximal frequent subgraph or a subgraph of a maximal frequent subgraph. In 

order to maintain the information of all frequent subgraphs, each maximal fre-

quent subgraph needs to be represented by a regression model. Therefore, the 

total number of such models can be as large as the number of maximal frequent 

subgraphs, which is too many. To solve this issue, we introduce a union of maxi-

mal frequent subgraphs as a template, called union template. For example, given 

two maximal frequent subgraphs gi and 92�if there are common sub-structures 

between them, we consider to merge them into a compact union by eliminat-

ing the duplicated sub-structures as much as possible. It is worth noting that 

two maximal frequent subgraphs without any common sub-structure can not be 

merged into a union template, because if they are merged, the union template 

is not a connected graph. A single regression model built on a union template 

that is not a connected graph is of no difference from a set of regression mod-

els built on each connected component (maximal frequent subgraph) separately. 

Because first, the number of parameters in the single regression model and the 

total number of parameters in the set of regression models are the same. Sec-

ond, the average relative restoration error of the single regression model and the 

average relative restoration error of the set of regression models are the same. 

Details of how to construct a union template is discussed in Section 5.2.2. 
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5.1.3. Problem Definition 

It is obvious that the accuracy of the estimated regression models depends 

on whether the independence assumption is valid among the reachable children 

of a template subgraph, which is not common in mostly graph databases. So, we 

divide all frequent subgraphs into groups and apply the independence assumption 

locally on each group to make sure that the restoration error can be controlled. 

We present the formal definition of the frequent subgraph summarization with 

error tolerance below. 

P r o b l e m 5.1. F requency-Prese rved Subgraph S u m m a r i z a t i o n wi th Er-

ror Tolerance a. Given a set of frequent subgraphs T �a n d a maximum average 

relative error tolerance a for the restored frequency, the problem of frequent sub-

graph summarization is to partition T into as few groups as possible, and each 

group Q satisfy the following: (1) Q can be summarized as a single regression 

model, and (2) 5avg{Q) < cf, where 5avg is defined in Definition 5.3. 

The meaning of requirement (1) is that the template subgraph of each group 

should be either a frequent subgraph in J" or a connected union template sub-

graph, which is a union graph of maximal frequent subgraphs. Without this 

requirement, we can easily merge any number of template subgraphs into a large 

unconnected one and create a single regression model to reduce the number of 

g r o u p s . ‘ 

5.2. Summarization Algorithms 

Before explaining our framework in details, let us discuss some unique chal-

lenges in summarizing subgraphs. 
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5.2.1. Challenges 

The problem of summarizing frequent subgraphs is an extension of concisely 

summarizing a large collection of frequent itemsets, which have been studied [4， 

57, 56, 27]. The key criteria to evaluate the quality of a summarization lie in two 

aspects: coverage and frequency. First, the concise representation is capable of 

representing all frequent itemsets in the collection, which is usually based on the 

set containment relationship. Second, the frequency of any frequent itemsets can 

be estimated from the concise summarization accurately. The existing researches 

have made significant contributions for summarizing frequent itemsets. 

However, it is much more challenging to summarize a set of frequent sub-

graphs which can meet these two key criteria. The challenge comes from two 

fundamental difficulties in subgraph mining: "multiple embeddings" and "topo-

logical constraint". The multiple embedding problem refers to the issue that 

given a template subgraph pattern g�for a targeted frequent subgraph 队 we 

may find several isomorphic embeddings of Qi in g, as shown in Figure 5.2. The 

right subgraph has two embeddings in the left one. Thus, even though we can 

determine the subgraph is covered by a template subgraph, it becomes a prob-

lem if we try to apply the template subgraph to the frequency estimation (which 

is typically done in the frequent itemset summarization). When we consider 

multiple embeddings as observations, this will increase the residue in the regres-

sion model, as well as the frequency restoration error and the estimation cost of 

regression models. 

In addition, the multiple embedding problem can further complicate the 

frequent subgraph partition problem. Generally, in frequent itemset mining, we 

can easily split the collection of patterns into two sets, one including an item and 

the other not. Considering we have a template itemset pattern, we can easily 

represent its two sub-collection of patterns. However, considering a template 

subgraph, we consider splitting its covered frequent subgraphs into two groups, 

one including an edge and the other not. Even though the similar strategy 
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Figure 5.2: An Example of Multiple Embeddings 

can be applied to template subgraphs by simply fixing one edge in the template 

subgraph (for one group) and dropping the edge (for the other group), the related 

issue is the topological constraint. We need to perform subgraph matching to 

determine whether one subgraph is covered or not. In the typical frequent itemset 

summarization, the probabilistic method is either based on item independence 

or conditional independence model. Can such models be applied to subgraphs? 

How does the topological constraint affect the models? These problems need to 

be addressed in frequent subgraph summarization. 

To handle this issue, if a subgraph has multiple embeddings in its corre-

sponding template, we only select one embedding in the construction of the 

regression model, because, as discussed, selecting all embeddings increases the 

residue of regression models, and results in a larger restoration error. A selection 

strategy is good if there is no need for extra storage cost to record selections. And 

apparently, we should follow the same strategy in a single regression model to 

further save the storage space. We set up a lexicographical order among the edge 

sets of frequent subgraphs in the following manner. Each edge in the template 

subgraph is assigned to a global id, siich that all the frequent subgraphs covered 

by the template subgraph can be represented by a set of edge id's. By introduc-

ing a partial order between these id's, we can select the embedding whose id set 

is the smallest or largest according to the lexicographical order of edge id sets. 

T h e o r e m 5.1. The average relative restoration error of a regression model by 

selecting the embedding with the smallest id set is the same as one of the regression 

model by selecting the embedding with the largest id set. 
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The proof of Theorem 5.1 is obvious by reversing the partial order of edge 

id's and the one with the largest id set before reversing now become the smallest 

one after reversing. In our framework, we always select the smallest embedding 

of a subgraph. For example, in Figure 5.2, if e i � 6 2 , then the right graph is 

obtained by removing 62 from the left one. 

The second challenge comes from multiple regression models. When there 

is more than one template subgraphs, a frequent subgraph could belong to more 

than one template subgraphs, as we can see from the POG in Figure 5.1. For 

example, if the template subgraphs are the maximal frequent subgraphs, then the 

frequent subgraphs in the lower levels belong to all these template subgraphs. 

In this situation, a simple solution is to manipulate each template subgraph 

separately and consider the intersection part as observations to all template 

subgraphs containing them. Again, this will increase the residue in the regression, 

thus large restoration error, as well as overhead regression model estimation cost. 

One may argue that we can assign the intersection part to the template subgraph 

which achieves smallest total restoration error. Suppose we have k template 

subgraphs, this solution is not feasible, due to the maximum possible number of 

intersection part is or at least k^ — k if only considering intersections between 

two templates. What's more, even if the optimal assignment is obtained, and 

the total restoration error is minimized, a subgraph cannot be easily identified 

from generated models except we store the invert index of all the assignments, 

which, in the worst case, might be as large as the frequent subgraph set. 

Our solution is to restrict the intersection part between template subgraphs 
f 

to belong to only one template subgraph. The assignments are recorded in the 

POG by removing the unnecessary edges to make sure that each node (subgraph) 

can only be traced back to one template subgraph. As discussed, it is not fea-

sible to compute the optimal assignment with the minimum total restoration 

error. We choose a good way by assigning the intersection part of two template 

reachable children to one that has smaller size in term of the number of edges. 
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Algor i thm 5.1 The Summarization Framework 
Inpu t : POG Q̂  Error tolerance a 

O u t p u t : Template Subgraphs with Regression Models 

T = {the root of POG Q}\ 

while true do 

9' = argmaxg{5avg(5)|p ^ T}\ 
4 

5 

6 

7 

8 

9 

10 

if Savgig) > cr t h e n 

T = T U d i v i d e ( ^ ' ) ： 

else 

break ； 

end if 

end while 

Return T. 

The approach has several advantages: (1) In general, by assigning interactions 

to smaller templates, we can balance the number of frequent subgraphs in each 

regression model. (2) The independence assumption is dangerous in practice. 

By assigning interaction parts to one template subgraph, we in fact split the fre-

quent subgraph set consisting of all the reachable children of these two template 

subgraph into two conditional set, and transform the independence assumption 

into a conditional independence assumption. (3) The frequent subgraphs in in-

tersection parts can be easily maintained for queriable summarization. Details 

are discussed in Section 5.3. 

5.2.2. Template Subgraph Division 

Algorithm 5.2 presents procedures of how to divide a template subgraph. 

The input template subgraph g can be either a real maximal frequent subgraph 

or a union of several maximal frequent subgraphs in the POG. We discuss them 

below. 
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Summar iza t ion Framework 

As mentioned, we call the root graphs of regression models as template sub-

graphs. Our summarization framework is presented in Algorithm 5.1, which is 

done in a top-down fashion. The algorithm starts from a single template sub-

graph, the root of the POG, which is a union template subgraph for all maximal 

frequent subgraphs. Let ^ be a template subgraph, we use Savgig) to denote the 

average restoration error of the regression model build on g with its reachable 

children. In each repeated loop from line 2 to line 9, the algorithm repeatedly 

divides the template subgraph whose average restoration error is larger than 

the one of any other template subgraph, and the threshold a, into two template 

subgraphs, until all the template subgraphs have a average restoration error < a. 

Templa te subgraph is a f requent subgraph 

We discuss how to handle a real frequent subgraph. The corresponding part 

in Algorithm 5.2 is from Line 2 to 12. When the template subgraph g to be 

divided is a single frequent subgraph, the potential new template subgraphs are 

the connected children of g. Take Figure 5.3 as an example. Assume g is the 

template subgraph to be divided, and Ci, C2, and C3 are g's connected children 

in the POG. Suppose Cj is selected (1 < z < 3). Then we have two template 

subgraphs: Ci and g. There exist frequent subgraphs that are the descendants of 

both Ci and g. We restrict them to belong to only one template subgraph, either 

Ci or g, in order to obtain better regression models. The rule is to let the sharing 

part belong to the smaller template subgraph ĉ . 

We discuss how to build regression models for this case. Let e be the edge 

that appears in g but does not appear in ĉ . All the descendants of c； in the 

POG do not contain e. In other words, the descendants of g are divided into two 

parts: frequent subgraphs containing e and frequent subgraphs not containing 

e. By selecting Cj, the POG rooted at g is divided into two subgraphs. One 

POG subgraph Gi is rooted at Ci and contains all descendants of q. The other 

POG subgraph Gg contains g and all its descendants excluding those in Gi. As 
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Algori thm 5.2 divide (Template g) 
if p is a non-union template subgraph then 

C = the directed children of g in POG Q\ 

Cand = 0; • ‘ 

for Each q G C do 

let Gi be the POG subgraph of g rooted at ĉ ; 

let Gg he g\ Gi /*g corresponds to G^*/; 

Build regression models Ri and Rj for Gi and Gg (or equivalently Cj and 

Ci = total residue of Ri\ 

Cg = total residue of Rg\ 

Cand 二 Cand U {(c^, g, + e^)}; 

end for 

{Cmin, 9min) = argmiiicje I (Ci,g,e) e Cand}; 

Update the regression models for q and g in the POG G based on Cmin 

and gmin\ 

Return {gmin, Ĉ nm} 

else 

let C be the children of g, g2,…,gk), in order; 

Cand 二 0; 

for 2 = 1 to /c do 

Build a regression model Ru for (仍’ • • • , gi)] 

Build a regression model Rik for (pi+i，• •. , 9k)] 

€{ = total residue of Ru； 

= total residue of Rik； 

Cand <r- Cand U {(z, ei + e^)}; 

end for 

p = axgmini{e | (i, e) € Cand}; 

Return {(pi, • • •，5?p)，（i?p+i，•…，P/：)} 

end if 
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Figure 5.3: Division of Non-Union Template g 

indicated in Figure 5.3, the dotted lines indicate some descendant of Gg may be 

a supergraph of some graph in Gi because of the existence of the edge e, and 

must be deleted. We build regression models for Gi and Gg, respectively. When 

building a regression model for a template subgraph (either Gi or Gg), we need 

to handle a descendant of the template subgraph that has multiple embeddings. 

Because multiple embeddings lead to different regression equations, we order the 

edge id set of the template subgraph, and take the embedding with the smallest 

edge id set as valid. 

To compute the edge id set of a template subgraph, logically, we need to 

determine the edge IDs for the template subgraph, and assign edge IDs for the 

descendants of the template subgraph repeatedly. The process requires to com-

pute subgraph matching and identify the multiple embeddings level by level in 

the corresponding POG. The edge id set computed in this way for a subgraph g' 

in the POG is the minimum among the embeddings of g' to all its ancestors in 

the POG. We cache the matching information, so the total number of subgraph 

matching computation is at most m, which is the number of edges of the POG. 

Upon the edge id set computed for a template subgraph, the regression equations 

can be formalized, and therefore a regression model can be built according to 

Eq. (5.6). Among all the possible children of g�we select the child node q of g in 

the POG which results in the minimum sum of residues of the regression models 

for both GI and GG. 
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^ 9 1 � ‘ ^ 9 2 ^ 9 3 

Figure 5.4: Division of Union Template g 

Templa te subgraph is a union of maximal subgraphs 

In order to reduce the number of regression models to be built, we intro-

duce union template subgraphs. Conceptually, a union template subgraph is 

a supergraph containing a set of maximal frequent subgraphs that share some 

common edges. We use the notion of the union template subgraph to discuss om, 

approach, but we actually do not need to compute the supergraph for a set of 

template subgraphs. 

We first explain how to build a regression model for a union template sub-

graph Suppose g^ contains k maximal frequent subgraphs {^i, • • • , gk}- The 

corresponding POG is rooted at g'̂  and has {^i, • • • , g^} as the children of g\ 

Figure 5.4 shows an example. Suppose the dotted circle indicates a union tem-

plate subgraph, and gi,沒2’ and gz are the maximal frequent subgraphs. Take g^ 

as a template supergraph, we can build a regression model using the same way as 

we discussed above. There are two issues. First, we do not know the frequency 

of the conceptual supergraph g^ whose frequency can be zero. Here, we take the 

frequency of the maximal frequent subgraphs from {^i’.. • , Qk}- For a subgraph 

g, suppose its embeddings in gi is the smallest one, then the regression equation 

in Eq. (5.6) is 

l o g / (仍）= l o g / � + � ‘ ) ’ (5.10) 

where ei，... , e,- are the edges that appear in gi but does not in the embedding 
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of g. Second, we need to order edge IDs for g^ and therefore for all {仍，…,gk} 

and their descendants, in order to reduce the number of regression equations. 

We order the edge IDs as follows. We arrange all {^i, • • • , gk} in a certain 

order, which we will discuss below. Based on the order of all maximal frequent 

subgraphs, we order edge IDs in a pairwise fashion,(队 Here, we determine 

the largest subgraph shared by Qi and 识 ( t h e highest common descendant of 

gi and 分i+i in the POG), and assign the same IDs used in 仏 for the shared 

largest subgraph for those in "i+i. We repeat this procedure one-by-one for all 

the maximal frequent subgraphs under g^. This is important to note that there 

may exist several different largest subgraphs shared by both Qi and 识 B u t , 

there exist new multiple embedding problems if we use all of them to order edge 

IDs. Consider Figure 5.5. Let gi be the top-left graph, and pt+i be the top-right 

graph. Qi and "i+i have two shared subgraphs. Both shared subgraphs contain 

an edge (6, c) with the same id 62- If we use all possible shared subgraphs to 

order IDs, we may end up new multiple embedding problems. When we use only 

one shared subgraph, since all multiple embeddings have been handled already, 

we do not have any new multiple embedding problems. 

There are several ways to arrange all {^1, 92,.. • , gk} under in an order. 

In addition to a random order; we consider arranging all {51, • • • , Qk} in an 

ascending order based on their sizes measured by the number of edges, in the 

following way. First, We add the smallest subgraph to the selected set. Next, we 

select next subgraph as the smallest one that has repeated sub-structure with one 

subgraph in the selected set. The reason is that the restoration error for a small 

template subgraph can be small. Given two template subgraphs ĝ  and 仍+1，for 

Qil < |5i+i|’ we will remove some repeated sub-structure part that appear in 识 

from Qi+i. Hence, the new pi+i becomes smaller, and it may help to reduce the 

errors when using 仍+i. 

As shown in our algorithms, initially, we have one union template sub-

graph representing all the maximal frequent subgraphs ("i，P2,... ,Qk) in an 



Figure 5.5: An Example of ID Assignment Conflict 

order. Then, we select Qi which will minimize the sum of the residue of the 

left regression model (for (pi, • • • , Qi)) and one of the right regression models (for 

(pi+i, • • • ，Qk)). Then, we can repeat the same procedure for both - - • , Qi) and 

(Pi+i,‘ • • , Qk), respectively, until all regression models are built for all required 

frequent subgraphs whose restoration errors are < cr, as shown in Algorithm 5.1. 

Algor i thm Correc tness 

One thing worth noting is that when transforming the nonlinear regression 

model to a linear one in Section 5.1，the criterion of optimality is changed. The 

transformed linear regression model is estimated based on least square estima-

tion, while the optimality is to minimize the average relative restoration error. 

The consequent question is that whether our summarization framework is cor-

rect. 

Let f[g) and r{g) be the true and the restored frequency of subgraph g, 

respectively. The least square error for the linear regression model in Eq. (5.7) 
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IS 

E'E = {Y - Xpy{Y — X/3) 

= — 工 析 

7 = 1 

；(log 
f{9' 

i=l 

/
 

r
r
v
 

—log 
fig' (5.11) 

Following the proof in [27], we have 

log — 1 分 
Hgj) — f{9j) 

f{9j) 
0. (5.12) 

As we can see from Eq. (5.12)，when the sum of least square errors of a regression 

model approaches to 0, the relative restoration error approaches 0. We now prove 

that after each division, the sum of the least square errors of new regression 

models is less than or equal to the sum of least square errors of the regression 

model before division. 

Let Y — Xp denote the regression model of the template graph to be 

divided, where Y eW, X e ]R"m，^nd e with n �m . Now we divide 

the frequent subgraphs, which are reachable from the template graph in the 

POG, into two sets with rii and n2 subgraphs in each set (n = ni + 712), then we 

have 

X = 
f x ： ] ( v A ( v A 

y2 J 
(5.13) 

where Xi G Xi 6 IFTaxm, y^ ^ 脱m and Ŷ  G R"^ Then the least square 

errors of these three regression models are 

^ = rmn {/(/?) ^ {Y - XP)'{Y - X ^ ) } , 

= rmn {/i(/5)全{Y, - — Xi/5)}, 

� =m i n {/2(^)全（n - X2^y(V2 - X2J0)}, 

(5.14) 

(5.15) 

(5.16) 
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and the corresponding optimal solutions are 

P = argmm {{Y - Xpy(Y — XP)], 

01 = argmm {{Y, - X,py{Y, - X,P)]. 

02 = argmin [{Y2 — — X^P)] 

(5.17) 

(5.18) 

(5.19) 
P 

The following theorem is true. 

Theo rem 5.2. Si + 82 < 5. 
/S A 

Proof. Since P2 are the minimizer of problem in Eq. (5.15) and (5.16), re-

spectively, we have 

= / i ( A ) < f i 0 ) , and 如 = h i P i ) < /2(/3). (5.20) 

A A 

Then we only have to show that 6 = fi{P) + /2(卢).Solving Eq. (5.14) yields 

P = {X'Xy'^XY, and 

6 = Y'Y - Y'X{X'X)-^XY. 

Then substituting in /i(/3) and /2(卢）gives 

fiCP) = YlYi + Y'X'{X'X)-\X[Xi){X'X)-^XY 

-2YlXi{X'X)-^XY, i = 

Note that 

= Y;Y, + ¥^¥2, 

X'X = X[Xi + x'^x^, 

Y'X = Y[X + 

A A 

We have J\(J3) + f2{P) = <5, which completes the proof 

2. 

• 

At Line 6 in Algorithm 5.2, each time we obtair a new template subgraph, 

always assign the interaction part to one template with fewer edges. Based 
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on Theorem 5.2, the sum of the residue of the regression models decrease after 

division, which means the average least square error decreases. So at least one 

of the average least square errors of the two regression models is less than or 

equal to the average error before division. Similar case happens in the division 

of union template subgraphs. As the division continues, the residues and the 

average relative restoration errors will decrease. Eventually, algorithm will stop 

when the average restoration error < a. Our experimental results demonstrate 

that restoration errors are decreasing as the number of templates increases. 

5.3. Queriable Summarization 

Given om, frequent subgraph summarization with restoration error control, 

we can provide an answer when a user wants to know the frequency of a frequent 

subgraph. Since every frequent subgraph in the POG belongs to one and only 

one template subgraph, in order to tell the frequency of a frequent subgraph q, we 

only need to know which template subgraph it belongs to and which embedding 

in a single template subgraph it needs to use. 

In our summarization framework, there is a partial order among edges to 

avoid the problems caused by multiple embeddings in a template graph. Upon 

all the template subgraphs obtained, we can identify which template subgraph a 

query graph q belongs by utilizing the global edge IDs. Once the global edge IDs 

are all fixed, a frequent subgraph q belongs to the template subgraph in which 

the edge ID set of the embedding is smallest. 

It is worth noting that we discuss the global edge id set when handling the 

union template subgraph for maximal frequent graphs. The main issue then is 

how to reduce the number of regression equations. Another aspect of the global 

edge id set is to determine which template subgraph a given query graph needs 

to use. Recall that we use the embedding of a subgraph with the small IDs. 

Based on the order of regression models computed for the template subgraphs, 

we need to reorder the global edge IDs to determine the right template subgraph 



Chapter 5. Frequent Subgraph Summarization with Error Control -67 

or the right regression model to use. In doing so, suppose that the regression 

models are built in the following order for (仍，分2，•.. 9k)： we simply reorder edge 

IDs in a way that the edge IDs used in 糾 1 must be greater than those edge IDs 

used in gi. 

5.4. Experimental Evaluation 

In this section, we demonstrate the performance of our proposed summa-

rization framework. The algorithms are implemented using matlab and C+ + . 

All the experiments were run on a server with 4 CPU and 24GB memory running 

GNU/Linux. One thing worthy noting is that we did not optimize our sources 

for multiple CPU environment, while matlab sometime utilizes more than one 

CPU to do matrix computation. 

5.4.1. Datasets 

We use three datasets: two real datasets and a synthetic one. The real 

datasets are the AIDS antiviral screen compound dataset^ from Developmental 

Theroapeutics Program in NCI/NIH. In the current released version, there are 

total 43850 chemical compounds, which are classified into three categories: Con-

firmed Active (CA); Confirmed Moderately active (CM); and Confirmed Inactive 

(CI). We use CA and CM in our experiments. CA contains 463 compounds and 

CM contains 1093 compounds. We use the approach in [30], which is a popular 

frequent subgraph generator in the frequent subgraph mining area, to generate 

the synthetic data. There are six parameters that the generator takes as input: 

number of graphs (D), average size of graphs (T), number of frequent patterns 

as possible frequent graphs (L), average size of frequent patterns (I), distinct 

edge labels (E) and distinct node labels (V). We generated 5,000 graphs with 

average size of 20. Other parameters are as follows. The size of seed frequent 

^http://dtp•nci.nih.gov/docs/aids/aids_data.html 
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Table 5.1: The Number of Frequent Subgraphs in Datasets 

C A 

support 

The number of frequent subgraphs 

11% 

15231 

12% 

14318 

13% 

8094 

14% 

7612 

C M 

support 

The number of frequent subgraphs 

6% 

5997 

7% 

4265 

8% 

3415 

10% 

2627 

D5000T20L200I10E1V10 

minimum frequency fmin 

The number of frequent subgraphs 

270 

12903 

280 

8093 

290 

2404 

300 

1592 

subgraph is 10. There are 10 distinct node labels and only 1 edge label. Let 

D5000T20L200I10E1V10 denote the synthetic dataset. 

We present the number of frequent subgraphs of each real and synthetic 

dataset in Table 5.1 for various settings which we use in the following experi-

ments. For CA and DM, we report their number of frequent subgraphs in terms 

of different values of support and for D5000T20L200I10E1V10, we report the 

number of frequent subgraphs in terms of different values of minimum frequency. 

We observed the following situation during generating the synthetic data. Some-

times, only decreasing a frequency by 1, we found that the number of frequent 

subgraph outputted by gSpan is more than a hundred times than the original 

one. 

5.4.2. Experiment Setting 

We adopt the gSpan [59] algorithm for mining frequent subgraphs. In our 

summarization framework, the input is a POG of all frequent subgraphs. This 

can be done by slightly modifying the gSpan algorithm, because the gSpan algo-

rithm generates frequent subgraphs based on their minimum DFS code. Other-
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wise, if we are given only a set of frequent subgraphs, we need to call a subgraph 

matching algorithm to build a POG first, and then apply our approach on it. We 

measured the performances of four algorithms on these datasets, namely, asc, 

ran, asc-int, and ran-int. All of these algorithms follow the same summarization 

framework in Algorithm 5.1 in Section 5.2. As discussed, in a union template 

subgraph, we could arrange the order of maximal frequent subgraphs in different 

ways to avoid the issues caused by multiple embeddings and common reachable 

children, ran denotes that we arrange the order randomly in division, while 

asc denotes that maximal frequent subgraphs are always sorted in the ascending 

order of their sizes, measured by number of edges, during the union template 

creation. As discussed in Section 5.2.1, a frequent subgraph could belong to 

more than one template subgraph, resulting in it belonging to multiple regres-

sion models. In the algorithm ran and asc, we restrict the intersection part 

between template subgraphs belong to only one template subgraph. We will 

relax this restriction to develop two baseline algorithms, i.e., Algorithm ran-int 

and asc-int�which are corresponding algorithms to ran and asc, but allowing 

a frequent subgraph could belong to more than one template subgraph. That 

is, every regression model contains its intersection part with other regression 

models. 

5.4.3. Experimental Results 

Figure 5.6 and Figure 5.7 reports our results on real dataset CM. We ex-

ecuted our algorithms thoroughly with different combinations of the average 

restoration error tolerance a and the minimum support used for mining frequent 

graphs. We present partial of these results here. Figure 5.6(a) and 5.6(b) show 

the results when the minimum support of frequent subgraphs is 7%. We tried 

different values of tolerance, and reported the number of template subgraphs gen-

erated. In general, the limitation of no sharing children between template graphs 

increases both the quality and speed. As we can see, the performances of asc-int 
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(b) Running time vs. error tolerance a 

Figure 5.6: Experimental Results on Real Datase t^M {support = 7%) 

and ran-int algorithms, which allow sharing children, are far by worse than ones 

of acs and ran. In the executions of our algorithms, we set a global maximum 

number of template subgraphs generated, that is the reason the curves of asc-int 

and ran-int are only shown at the right most part of in the figures. They can-

not generate any useful template graph within reasonable time. The number of 

template graphs generated by asc is smaller than ones of ran in dataset CM for 

the same error tolerance. We ran asc-int and ran-int on all three datasets. Their 

performances on other datasets are similar to one in Figure 5.6(a) and 5.6(b), so 

we ignore these two in the following experimental reports. 

Figure 5.7(a) and 5.7(b) report the quality and timing results with different 

fa) Number of template subgraphs vs. error tolerance a 
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[a) Number of template subgraphs vs. support 

° 6% 7% 8% 9% 
Support 

(b) Running time vs. support 

Figure 5.7: Experimental Results on Real Dataset CM (a = 10%) 

values of support when the tolerance of average restoration error is 10%. Gen-

erally, a smaller value of support means a large size of frequent subgraphs. For 

dataset CM, asc works better and when the support becomes smaller, the speed 

of acs is faster than ran. While as the number of frequent subgraphs decreases, 

both the quality and the speed of acs are quite close to ones of ran. 

Figure 5.8 and Figure 5.9 reports our results on real dataset CA. We ob-

served similar results here. Within a set of frequent subgraphs, acs can achieve 

smaller number of template subgraphs with the same bound of tolerance, as in-

dicated in Figure 5.8(a). While for the running time of these two algorithms, acs 

does not always outperform ran. In Figure 5.8(b), when the tolerance is 10%, 

ran finished earlier but with a worse quality. With the tolerance set to 15%, 

in Figure 5.9(a) and 5.9(b), asc and ran have similar trends to ones in Figure 

5.7(a) and 5.7(b). acs always generates less template than ran. Compared with 

the number of frequent subgraphs in CM and CA shown in Table 5.1，we can 

find that the generated template subgraphs are up to 100 times fewer than the 

frequent subgraphs in both datasets. 

In the results of the synthetic dataset, as shown in Figure 5.10 and Figure 

5.11, we substitute support by minimum frequency fmin- For frequent subgraph 

with minimum frequency 280, shown in Figure 5.10(a) and 5.10(b), asc outper-

-^asc 
+ r a n 

-^asc 
~|~ran 

X-
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14% 

Number of template subgraphs vs. support (b) Running time vs. support 

Fig' Te 5.9: Experimental Results on Real Dataset CA {a = 15%) 

-^asc 
ran +r 

X X 

6% 10% 14% 
Error Tolerance a 

6% 10% 14% 
Error Tolerance a 

18% 

(a) Number of template subgraphs vs. error tol 

erance a 

(b) Running time vs. error tolerance o 

Figure 5.8: Experimental Results on Real Dataset CA (support — 13%) 

forms ran in various settings of error tolerance and minimum frequency. When 

we set the error tolerance 10%, asc still outperforms ran in Figure 5.11(a) and 

5.11(b). 

In l^igure 5.12, the average restoration errors of asc-ini and ran-int are 

several times larger than ones of asc and ran. As we can see, the decreasing 

rate of average restoration error is quite slow and it seems there is not much 

difference between a small number of template graph and a large number of 

template graphs. Let us go back to Figure 5.6(a). When the number of template 

-K-asc 
-hran 

-X-asc 
+ r a n 

asc 
ran 
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300 

(a) Number of template subgraphs vs. minimum 

frequency 

(b) Running time vs. minimum frequency 

Figure 5.11: Experimental Results on Synthetic Dataset 

D5000T20L200I10E1V10 {a = 10%) 

graphs equals 10 roughly, the maximum of average restoration error for template 

graphs is roughly 18%. While in Figure 5.12(a), the average error of all frequent 

subgraphs is less than 10%. Things are getting worse for ran. Based on this 

argument, we can make sure that the summarization proposed framework can 

achieve better quality. 

6% 10% 14% 
Error Tolerance a 

18% 
50 6% 10% 14% 

Error Tolerance a 
18% 

(a) Number of template subgraphs vs. error tol 

erance a 

Figure 5.10: 

(b) Running time vs. error tolerance a 

Experimental Results on Synthetic Dataset 

D5000T20L200I10E1V10 (fmin = 280) 
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Figure 5.12: Average Relative Restoration Error of All Frequent Subgraphs 

We present the trend of average restoration error of all frequent subgraphs 

as the number of template graph increases in Figure 5.12. In frequent itemset 

summarization, there are research works for minimizing the total restoration er-

ror given a fixed number of patterns [57, 27]. Similarly, since our summarization 

framework is in a top-down fashion, we could set a maximum number k of tem-

plate graphs in our summarization framework, build k regression models and use 

these k regression models to restore the frequencies of all frequent subgraphs. We 

report the average value of the relative restoration error of all frequent subgraphs, 

which is considered as a quality measure of our framework. 
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CHAPTER 6 

INTRODUCTION TO G R A P H CHANGE 
D E T E C T I O N 

Graphs are not always static, and many applications show that graphs evolve 

over time. In social science, large social networks evolve, which is caused by the 

node proximity changes [52]. In bioinformatics, finding the co-evolution relation-

ships of structures and functions in structural genomics is an important task to 

understand evolution progresses [47]. In computer network, traffic jam occurring 

at a link may affect the traffic routing in a large range. Monitoring the dynamic 

topology changes and their influences provides network administrators with the 

insights on network configuration [9]. Also, in wireless sensor networks, query 

processing is done by exchanging information between sensors whose communi-

cation ranges are limited. The fact that a sensor runs out of power, has impacts 

on the other sensors in terms of network routing, and hence, query processing 

time. It is important to note, even beforehand, which subgraphs will be affected 

significantly when such a change occurs. 

Generally speaking, graph changes when new nodes/edges join graphs, or 

old nodes/edges leave graphs. The meaning of changes on graphs could fall into 

two categories. One is based on raw node/edge evolutions, the other is based on 

the impact of evolutions to node relationship. Graph change detection aims to 

find changing areas on graphs when they evolve fast. In this part, we study the 



Chapter 6. Introduction to Graph Change Detection 77 

P. .. i p � f \ 

j^Tpm^ 
(a) Time t (b) Time t + 6t 

Figure 6.1: An Evolving User-Story Graph 

problems in the two categories one by one. We start with the introduction to the 
I 

problems of changing area detection in this chapter, followed by an overview of 

related works in Chapter 7. The research work on monitoring top k burst areas 

is presented in Chapter 8 and the research work on spotting significant changing 

areas is addressed in Chapter 9. 

6.1. Monitoring Top k Burst Areas 

In most social networks such as Digg [2], one of the common activities among 

users is making comments on stories. Then a bipartite graph can be constructed 

by considering users and stories as nodes. There is an edge between a user and a 

story if the user submits a comment on the story. Let us assume Figure 6.1(a) is 

a user-story graph at some time t. As time goes by, users submit more comments 

on stories and the graph evolves. Suppose at time t -}- the user-story graph 

looks like the one shown in Figure 6.1(b). Since both the involvement of users 

and the popularity of stories are various, the degree of change may be different 

at each region in the graph. For example, as shown in the dotted line area, this 

region is much different from the one at time t, while the remaining part looks 

similar, which means that the users in this region are more active and the stories 

in it are more attractive. 

Inspired by the motivation from Figure 6.1, we study a new problem of 

discovering the burst areas, which exhibit dramatic changes for a limited period, 
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in fast graph evolutions. Intuitively, dramatic changes mean the total evolutions 

happened inside burst areas are much more than the ones in other areas. There 

are several difficulties of this problem. First, evolving graphs in social networks 

are huge, which contain a large amount of nodes and edges. Second, the sizes of 

burst areas could be various. And last, the durations of burst periods are difficult 

to predict, since a burst could last for minutes, hours, days or even weeks. All 

these difficulties make this problem challenging and interesting. A candidate 

solution must be efficient enough to deal with a great number of computations. 

We focus on bipartite evolving graphs, since fast evolving graphs in social 

networks are mostly heterogeneous bipartite graphs. Similar to commenting 

stories, other possible activities of users could be writing blogs, tagging photos, 

watching videos, or playing games. Each one of these activities, plus the users 

and the entities, can form a fast evolving bipartite graph. In an evolving graph, 

there is a weight associated with each node or edge. The evolutions are in form 

of the changes of the weights of nodes/edges. The weight of a non-existing 

node/edge is zero, so it does not matter whether the coming nodes/edges are 

new to the graph. 

The main contributions of this research are summarized below. 

• We formalize the problem of discovering burst areas in rapidly evolving 

graphs. The burst areas are ranked by the total evolutions happened inside 

and the top k results are returned. 

• Instead of calculating the total evolutions of every possible period, we pro-

pose to use Haar wavelet trees to maintain the upper bounds of total evolu-

tions for burst areas. We also develop an incremental algorithm to compute 

the burst areas of different sizes in order to minimize the memory usage. 

• We present an evaluation of our proposed approach by using large real data 

sets and demonstrate that our method is able to find burst areas efficiently. 
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6.2. Spotting Significant Changing Regions 

Let Q be an evolving graph. In this work, we take an edge-centric view 

regarding changes. We focus on edge changes (deletions/additions) which will 

cause structural changes. On the other hand, node changes also have impacts 

on structural changes. But adding isolated nodes before they are connected to 

any other nodes seems less important, while deleting nodes can be considered as 

removing edges connected to the deleted nodes. 

Given two graphs Gi and Gj—i from Q at time ti and time U-i, there are 

many small subgraphs that change while the majority of the graph remains un-

changed. A small changing subgraph can be a connected subgraph where every 

edge is changed (deleted from Gi—i or added into Gi), and such a small changing 

subgraph can be easily identified. However, the influence of a single edge change 

(deletion/addition) on the other parts of the large graph is more important than 

the physical change itself. For example, when a researcher A works with another 

researcher B for a new research issue, A^s collaborators and B's collaborators 

may have new opportunities to work together. Consider the two researchers as 

two nodes. The newly added edge between them may change the closeness of the 

nodes that are directly/indirectly connected to the two nodes. Suppose that the 

closeness of two nodes can be measured. A changing subgraph is an induced sub-

graph in which the closeness between nodes changes. We focus on the problem 

of spotting significant changing induced subgraphs in an evolving graph. 

A simple large evolving graph Q is illustrated in Figure 6.2, in which only 

several edges change at a time spot. The upper left subgraph shows a connected 

subgraph where every edge is changed. The lower left subgraph shows a con-

nected subgraph which involves two changing edges, {vi, vj) and {vk, vi), and 

other none-changing edges such as [vj.vk) if its two nodes are involved in some 

changing edges. On the right, it shows a larger connected induced subgraph, 

as indicated by the dotted area. It includes the changes as well as other parts 
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that a4.e significantly influenced by such changes. The issues that we concentrate 

on in this research include how to measure the closeness changes between two 

nodes that are caused by some edge changes, how to identify the boundary of 

the influences of a change, and how to determine a changing subgraph in which 

changing parts have influences on each other. 

Let Gi and be two graphs in an evolving graph at time U and tt-\ . 

In order to find changing subgraphs at time U, a possible solution is based on 

graph distance measures [9]. It to enumerate all the possible subsets of the 

node sets of Gi (Gi_i), and compute all possible connected induced subgraphs 

in Gi {Gi-i). If the graph distance between two induced subgraphs that include 

the same nodes is large, then it is considered as a significant changing subgraph. 

However, this solution is infeasible, since the total number of subsets of the node 

set is up to 2", where n is the number of nodes in the evolving graph. In addition, 

it may result in many changing subgraphs that are overlapped, which may cause 

confusion. 

The main contributions of this research are summarized below. 

• We formalize the problem of spotting significant changing subgraphs in an 

evolving graph and propose to measure the node closeness with structure 

information using neighborhood random walks. 
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• We develop an incremental algorithm to speed up the node closeness com-

putation, as well as a novel strategy about expanding the important node 

to acquire the connected induced subgraph which can reflect the closeness 

change between nodes. 

• We present an evaluation of our proposed approach by using various large 

real data sets demonstrating that our method is able to find the suitable 

subgraph effectively and efficiently. 



CHAPTER 

R E L A T E D W O R K S 

In this chapter, we present an overview the related works to graph change 

detection, which fall into three categories. 

7.1. Community Detection in Static Graphs 

The problem of identifying communities in large and sparse graphs has at-

tracted considerable research efforts in literature. Most of the existing studies 

11, 19, 17] only handle static graph data. Chakrabarti [11] proposes an approach 

for parameter-free graph partitioning. The key idea is to measure the encoding 

cost of a graph. A partition is better if it has smaller encoding cost, which is 

based on the minimum description length principle. Their algorithm has two 

steps. In the inner loop, their algorithm minimizes the total encoding cost by 

reassigning nodes to groups with smaller cost. In the outer loop, the algorithm 

selects the group which has the largest cost and splits the group into two new 

groups. These new groups have the minimum total encoding cost among all 

possibilities. 

Gibson et al. [19] study the problem of finding dense subgraph in massive 

graphs, where graphs are too large to apply traditional clustering techniques. 

They propose a shingling algorithm to hash all nodes into shingles. Two nodes 

containing similar sets of shingles are considered to be similar. The procedure of 
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shingling is conducted more than once to reduce the size of data dramatically. 

Then, a clustering algorithm is employed to group nodes based on these shingles. 

Their algorithm is scalable and can handle graphs of billions of edges by using 

modest amounts of memory space. 

Dourisboure et al. [17] also focus on the problem of community discov-

ery in large graphs. The distinct advantage is that their approach can capture 

partially overlapping communities. The nodes which have small out-degrees are 

filtered. Then, they propose to mark nodes as centers of communities or fans to 

communities based on the density of their neighborhoods. At the final step, all 

communities found are clustering into groups and each group is represented by 

a set of keywords. 

7.2. Community Detection in Evolving Graphs 

There are only a few studies [28, 6, 48] that aim to find communities in 

time-evolving graphs. Such communities are usually dense areas which have 

many edges and last for a period of time. Kumar et al. [28] propose an ap-

proach to discover the bursty communities in a time-evolving graph, which is 

constructed from web blogs. Their approach consists of two steps. First, all pos-

sible communities are extracted, and then, bursty events are detected in a stream 

of events of each communities. The blog data is collected from seven popular 

blog sites. Then all people writing these blogs, called bloggers, are considered 

as nodes. There are links between bloggers if a blogger posts a story which has 

links to stories posted by the other blogger. Each edge is tagged with a time 

stamp which is the time when the post is submitted. During the extraction of 

potential communities, they prune nodes of small degrees. With the extracted 

communities at different time interval, they identify the relevant events which 

are represented by keywords and perform burst analysis on these events. 

Bansal et al. [6] focus on seeking stable keyword clusters in a keyword graph, 

which is extracted from a large collection of blog posts and evolves with additions 
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of blog posts over time. Nodes in a keyword graph are keywords and there is 

an edge between two keywords if they frequently appear together in documents. 

Small clusters in the keyword graph, are extracted for each snapshot by removing 

nodes and edges that are not statistically significant. Clusters are sets of nodes 

in maximum bi-connected subgraphs. A graph of clusters is further generated by 

using the generated clusters as nodes. Two clusters are connected by an edges 

if their time stamps are adjacent. The weight of each edge is how much the 

keyword sets of these two clusters overlap. Finally, paths with high total weight 

in the cluster graph are discovered and presented as the sets of persistent keyword 

clusters. They propose two algorithms to search paths with high total weight 

in breadth first style and depth first style, respectively. They also extend their 

approach to a streaming environment for discovering stable keyword clusters 

online. 

Sun et al. [48] propose GraphScope that is able to discover communities 

in large and dynamic graphs without user-defined parameters. Their approach, 

which detects communities in each time stamp, is similar to the one in [11 . 

By using the minimum description length principle, at each time stamp, their 

algorithm searches the partition of nodes with the minimum lossless encoding 

cost by repeatedly splitting partition of high cost and merging pair of partitions 

of low costs. When the encoding cost converges, all partitions at current time 

stamp are added to a segment. The segment is split if the encoding costs of 

partitions at two adjacent time stamps differ a lot. 

7.3. Node Similarity Based on Random Walks 

In terms of distance and similarity measures, the concept of random walk 

has been widely used to develop various measures that are suitable for different 

tasks. Jeh and Widom [25] design a measure called SimRank, which defines the 

similarity between two nodes in a graph based on their neighborhood structures. 

SimRank between two nodes u and v is essentially the expected meeting distance 
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of two random walks that start from u and v respectively, and randomly surfer 

in the graph. They propose an algorithm to compute SimRank values iteratively, 

until the values of all node pair converge. 

Palmer and Faloutsos [44] define a similarity function, named REP, to mea-

sure the similarity between categorical attributes. They first convert a categorical 

dataset into an attribute-attribute graph. Then, REP between two attributes x 

and y is defined to be the refined escape probability that a random walk starting 

from X will return to x before reaching y. 

There are several studies that utilize random walk with restart [53] in differ-

ent applications, including automatic captioning for multimedia data [45], and 

center-piece subgraph discovery [51]. Pan et al. [45] propose to tag photos based 

on the similarity between photos and keywords. Random walk with restart is 

introduced for the first time in this work. They construct a hybrid graph where 

both photos and keywords are viewed as nodes. Two photos are connected if they 

share some common features, such as color and texture. A photo and,a keyword 

are connected if the photo already has the keyword as a tag. Then those photos 

that are not tagged are assigned with the keywords of similar photos based on 

random walk with restart. 

Tong et al. [53] present a fast algorithm to calculate the similarity between 

nodes based on random walk with restart. In order to obtain the converging 

values of random walk with restart, computation of large inverse matrix is nec-

essary, which is time consuming. Their key idea is to avoid this computation, 

and use a low rank approximation instead. Tong et al. [51] study the problem 

of find a subgraph which connects a given set of query nodes. The goodness 

score between nodes is based on random walk with restart. Individual nodes are 

connected by key paths, which prefer nodes of high goodness scores. 



CHAPTER 8 

DISCOVERING B U R S T A R E A S IN 
FAST EVOLVING G R A P H S 

In this chapter, we present our research work on burst area detection in fast 

evolving graphs. This chapter is organized as follows. Section 8.1 introduces 

the preliminary background knowledge and formalizes the problem of burst area 

discovery in evolving graphs. Section 8.2 presents our incremental computation 

approach, which includes how to maintain the upper bounds of the number of 

evolutions using Haar wavelet tree, and how to compute burst areas of different 

sizes incrementally. Section 8.3 reports the experimental results. 

8.1. Problem Statement 

An evolving graph can be represented as a sequence of graphs, Q = 

(Gi, G2, ...)• Each graph Gi in the sequence is a snapshot of the evolving graph 

Q at time U. The advantage of this way is that it is convenient for users to study 

the characteristics of an evolving graph at a particular time stamp, as well as the 

differences between graphs of adjacent time stamps. One issue of this approach 

is the large storage cost in proportion to both the size of the evolving graph 

and the time intervals between snapshots. Another approach models an evolving 

graph as an initial graph, which is optional, and a stream of graph evolutions. 

This approach is more appropriate in domains where graphs are evolving fast. 
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For example, the interactive activities in social networks can be considered as 

an evolution stream. In this chapter, we model evolving graphs using the second 

approach since we are more interested in the burst areas in fast graph evolutions. 

An evolving graph Q 二（G, A) consists of two parts, an initial graph G and 

a sequence of evolutions A. The initial graph G is a snapshot of the evolving 

graph at time to with a set of nodes V{G) and a set of edges E[G). Let Wi denote 

the weight of node Vi £ V and Wij denote the weight of edge eij = {Vi,Vj). Each 

item 6t in the evolution stream A is a set of quantities indicating the weight 

changes of nodes or edges at the time t. There might be a number of evolutions 
I 

at the same time. Let 61 and denote the weight change of node Vi and edge 

Bij at time t�respectively. Without loss of generality, we assume the evolutions 

come periodically. 

Given a large evolving graph Q = (G, A), we study the problem of finding 

burst areas. Since a burst area is actually a connected subgraph of the evolving 

graph, any connected subgraph might be a possible burst area. Apparently, it is 

more likely that the total evolution in a subgraph with many nodes/edges is more 

than the one in a subgraph with fewer nodes/edges. Thus, it is insignificant to 

compare total evolutions among subgraphs that have large differences in terms 

of node/edge quantity. Consequently, we introduce the r-radius subgraph, which 

is more meaningful and challenging. 

For a given node Vi in a graph, the eccentricity EC of Vi is the maximum 

length of the shortest paths between Vi and all other nodes in the graph. Based 
t 

on the definition of eccentricity, the r-radius subgraph is defined as below. 

Definition 8.1. r -Radius Subgraph. A subgraph g 二（V (̂50，E[g)) in a graph 

G is an r-radius subgraph, if 

min EC{vi) = r. (8.1) 
Vi€V{g) 

The r-radius subgraphs in a large graph may be overlapping, which leads 

to redundancy. To avoid this, we introduce the concept of maximal r-radius 

subgraph. 
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(a) An r-Hadius Subgraph (b) A Maximal r-Radius Subgraph 

‘ Figure 8.1: An Example of r-Radius Subgraph 
• � 

Definition 8.2. Maximal r -Radius Subgraph. An r-radius subgraph ĝ  is 

a maximal r-radius subgraph if there exists no other r-radius subgraph 广 C G, 
‘ • 

which contains g^. 

Figure 8.1 shows an example of r-radius subgraph and maximal r-radius 

subgraph. Suppose Figure 8.1(a) and Figure 8.1(b) demonstrate the same graph 

G, The subgraph in the dotted line area in Figure 8.1(a) is.a 2-radius subgraph. 

It is contained by the subgraph in the dotted line area in Figure 8.1(b), which 

is a maximal r-radius subgraph. It is a difficult task to identify all maximal r-
• . «• 

radius subgraphs in a large evolving graph. We observe that a maximal r-radius 

subgraph is in fact a maximal r-hop neighborhood subgraph, which we define 

below. Let A/J. denote the set of nodes (except Vi) whose shortest path distances 

to Vi are less than or equal to r. 

Definit ion 8.3. r -Hop Neighborhood Subgraph. An r-hop neighborhood 

subgraph gl. in a graph G is defined as the induced subgraph of G containing all 

the nodes in N ; . Vi is called the center of 

In the following of this chapter, we use r-hop subgraph for short. We char-
t 
acterize the relationship between maximal r-radius subgraphs and r-hop neigh-

borhood subgraphs in Theorem 8.1. 

Theorem 8.1. For each maximal r-radius subgraph g^ C G, there is a corre-

sponding r-hop neighborhood subgraph gH^. C G, and g^ = g^.. 
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Proof Sketch: We will prove that (1) 3vi G g^ C g:�and (2) /Bvj e p；., 

Vj i g � . 

Let gT be a maximal r-radius subgraph belonging to G. Recall that the 

eccentricity EC{vi) is the maximum length of the shortest paths between Vi and 

all other nodes in g^. Then based on Definition 8.1，there exists a node Vi G V{g^) 

and EC[vi) == r. Let d(vi, Vj) denote the length of the shortest path between 

Vi and Vj. Because EC{vi) = r, so \fvj e we have d{vi, Vj) < r. Let 

gl. be an r-hop neighborhood subgraph based on Definition 8.3. Since Vu) e 

V{g'),d{vuvj) < r, so \/vj 6 Vj ^ "；，where AT； = V(g'J. Therefore, 

3叫 G gT C 礼 . 

Suppose G g\,. and Vk 0 g^, we have d(vi, Vk) < r. Let g' denote the 

subgraph that V{g') = V{g^) U {l'/c}, then g' is also an r-radius subgraph, which 

is contradict to the condition that ĝ  is a maximal r-radius subgraph. Therefore, 

Theorem 8.1 indicates that a maximal r-radius subgraph must be an r-hop 

neighborhood subgraph. This is only a necessary condition, not sufficient. It 

is worth, noting that an r-hop neighborhood subgraph might not be an r-radius 

subgraph. Take node V4 in Figure 8.1(a) as an example. Let us construct a 

2-hop neighborhood subgraph g^ ,̂ which contains node 1*3, V4 and vg. gl̂  is not 

a maximal 2-radius subgraph, but a maximal 1-radius subgraph p么，because 

= = 1. We consider r-hop neighborhood subgraphs as the 

candidates of burst areas. ‘ 

Recall 5\ and S!/ denote the weight changes of node Vi and edge Cij at 

time t, respectively. Obviously, if Vi G N^., which means Vi is in the r-hop 

neighborhood subgraph g^., then should be counted in g^.. belongs to an 

r-hop neighborhood subgraph when both Vi and Vj are in the subgraph. We 

define the burst score of an r-hop neighborhood subgraph as follows. 

Definition 8.4. Bur s t Score. The node burst score of an r-hop neighborhood 
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subgraph g^. at time t is the total weight of the node evolutions happened inside. 

BurstScore^ 二 赶. (8.2) 

The edge burst score of an r-hop neighborhood subgraph g^. at time t is the total 
身 

weight of the edge evolutions happened inside. 

BurstScore^ = ^ Sl^. (8.3) 
Vj^Vkegl. 

So, the burst score of an r-hop neighborhood subgraph g .̂ is the sum of the node 

burst score and the edge burst score. 

Now, we formally define the problem of discovering top k burst areas in fast 

evolving graphs. 

P rob lem 8.1. Discovering Top k Burs t Areas. For an evolving graph Q — 

{G, A), given a maximum hop size TViai’ a burst window range (/mm, ^max), the 

top k burst area discovery problem is that for each burst window size between 

Imin and Imax and each hop size between 1 and r謂̂；, finding the top k r-hop 

neighborhood subgraphs with the highest burst scores in Q at each time stamp 

continuously. 

For conciseness, in the following, we focus on edge evolutions in hetero-

geneous bipartite evolving graphs. Our proposed solution can deal with node 

evolutions as well. 

8.2. Discovering Burst Areas 

A direct solution to discover top k burst areas would be maintaining total 

{Imax — Imin + 1) X r buTSt scores of each window size and each hop size over 

sliding windows. At each time stamp t, these burst scores are updated based on 

the evolutions happened inside the corresponding r-hop neighborhood subgraphs. 

Then, for each window size and e -̂ch hop size, a list of top k r-hop subgraphs 
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Level 0 

Level 1 

Level 2 

Level 3 

Level 4 

Wi W2 W3 W4 W5 Wg W7 Wg 

(W1+W2) / 2 (W3+W4) 12 (Wg+Wg) 1 2 (W7+W8)/2 

(W1+W2+W3+W4) M (W5+W6+W7+W0) 14 

(Wi +W2+W3+W4+W5+W6+W7+W8) 18 

Figure 8.2: Haar Wavelet Decomposition 

based on the burst scores is returned as the answer. Before we explain our 

proposed solution in details, which is much more efficient in both time complexity 

and memory consumption, we introduce some background knowledge first. 

8.2.1. Haar Wavelet Decomposition 

The wavelet decomposition is widely used in various domains, especially in 

signal processing. One of the conceptually simplest wavelet, Haar wavelet, is 

applied to compress time series and speed up the similarity search in time series 

database. The Haar wavelet decomposition of a time series is done by averaging 

two adjacent values on the time series repeatedly in multiple resolutions in a 

hierarchical structure, called Haar wavelet tree. The hierarchical structure can 

be constructed in 0(n) time. Figure 8.2 illustrates how to construct the Haar 

wavelet tree^ of an eight-value time series, which is shown at Level 0. Then at 

Level 1，there are four average values of adjacent values in Level 0. The averaging 

process is performed repeatedly until there is only one average value left. 

^The Haar, wavelet decomposition consists of both averages and differences. For conciseness, 

ignore the difference coefficients which are not used in our solution. 
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1 = 3 Wt-2 Wt-1 Wt 

1 = 4 Wt-3 Wt-2 Wt 

1 = 5 Wm Wt-3 Wt-2 Wt-1 w, 

Wt-9 Wt.s Wt-7 W,̂  Wt-5 WM Wt-3 Wt-2 Wt-1 Wt 

Figure 8.3: Upper Bounds of Burst Scores Using Haar Wavelet Decomposition 

8.2.2. Bounding Burst Scores of r-Hop Neighborhood 

Subgraphs 

As defined in Definition 8.4, the burst score of an r-hop neighborhood sub-

graph is the total weight change happened inside during a period of time. Given 

an evolving graph Q = (G, A) and a window size range {Imin, ^max), we introduce 

first how to bound the burst scores for an r-hop subgraph. 

Figure 8.3 shows an example. Wt is the sum of all the weight change hap-

pened in an r-hop neighborhood subgraph at time stamp t, Based on the Haar 

wavelet decomposition, we can construct a Haar wavelet tree as shown at the 

bottom in Figure 8.3. Suppose Imin = 3 and 1 戰工 = 5 , the three corresponding 

burst windows are shown at the top. As we can see that, the burst windows of 

size 3 and 4 are contained by window A at Level 2，while the burst window of 

size 5 is contained by windows B at Level 3. This leads to the following lemma. 

Lemma 8.2. A burst window of length I at time t is contained in the window at 

Level�logj /] in the hierarchical Haar wavelet tree at time t. 

Proof Sketch: Let W = itit-f+i, it̂ t-z+2,…，ŷ t denote the burst window of length 

I. Based on the definition of the Haar wavelet decomposition, the length of 

window at time t at Level n is 2". Let W = Wt, Wt-i^ ...,"^;_2(�i�g i])+i' Because 
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2 ( n � g 2� > I �w e have W C W. • 

Instead of average coefficients, we maintain the sums of windows in the Haar 

wavelet tree. Since the weight changes are all positive, the sum of the values in 

a window in the Haar wavelet tree is the upper bound of the burst scores of all 

burst windows it contains, which leads to the following theorem. 

T h e o r e m 8.3. The burst score of a length I burst window at time t is bounded by 

the sum coefficient of the window at Level �log^ /] at time t in the Haar wavelet 

tree. 

We can use Theorem 8.3 to prune candidate burst areas. If the burst score 

bound of an r-hop neighborhood subgraph is larger than the minimum score 

in the current top k burst areas, then we perform a detailed search to check 

whether it is a true top k burst area. Otherwise, the r-hop subgraph is ignored. 

It is not necessary to build the whole Haar wavelet tree of all levels to compute 

burst score bounds of r-hop subgraphs. As we can see from Theorem 8.3, only 

the levels from�log'2"*…]—1 to�logt"=" | are needed to compute the burst score 

bounds. L e v e l � l o g ^ l — 1 is directly computed from Level 0. 

Now, the problem is how to maintain the wavelet tree at each time stamp 

t�since graph evolutions come in as a stream. There are mainly two approaches. 

1. Cont inuous U p d a t i n g : The entire Haar wavelet tree is updated at each 

time stamp t continuously. The approach ensures there is no delay in 

response time to return top k answers. 

2. Lazy Upda t ing : Only windows at the lowest level are updated at each 

time stamp t. The sums maintained in the upper levels in the Haar wavelet 

tree are not computed until all data in the corresponding windows is avail-

able. For a burst window of size I �t h e response time delays at most ^̂ . 

In our solution, we propose to maintain the Haar wavelet trees in a dynamic 

manner, which can achieve both low computation cost and no delay in response 
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Figure 8.4: Updating Haar Wavelet Tree 

time. Figure 8.4 presents a running example, which illustrates how the Haar 

wavelet tree changes as time goes by. Function t') denotes the sum of weights 

in the window from time t to t\ 

As shown in Figure 8.4, suppose at time t, a Haar wavelet tree is built 

according to the weight changes at Level 0. Then at time t 4- 1, instead of 

updating the entire Haar wavelet tree, we only shift each level left for one window 
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(a) 1-hop • (b) 2-hop (c) 1-hop (d) 2-hop 

Figure 8.5: Evolutions in 1-hop and 2-hop Subgraphs 

and add the newly weight change Wt+i to the last window at each level. Since 

weight change are all positive, the sums of the last windows are still the upper 
i 

bounds of burst scores of corresponding burst windows. At time t + 2, since all 

weights at Level 0 used to compute the sum of the last window at Level 1 are 

available, we compute the actual sum of the last window at Level 1 based on 

Level 0. Then based on the weights at Level 1, the sum of the last window at 

Level 2 is recomputed. While the last window at Level 3 is not recomputed since 

the last two windows at Level 2 are overlapping. Instead, we add Wt+i to it. 

Time t + 3 is similar to time t + l. At time i + 4，the last windows at all levels are 
% 

recomputed, because the last two windows of lower levels are not overlapping. In 

general, last window at the lowest level (Leve l�log叫̂—1) is computed every 

2�i°g2""”-i time stamps, while last windows at upper levels are recomputed once 

the last two windows at lower levels are not overlapping. 

8.2.3. Incremental Computation of Multiple Hop Sizes 

Suppose we need to monitor r-hop neighborhood subgraphs of different hop 

sizes, an easy solution is to maintain a Haax wavelet tree for each hop size. The 

total memory usage would be 0、TN、, where N is t h e c a l number of nodes. Ob-

viously, it is not efficient due to the high computation cost, as well as the large 

memory assumption. In this section, we introduce our algorithm to maintain 

burst score bounds of multiple hop sizes using at most 0{N) memory consump-
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tion. Our solution is to maintain Haar wavelet trees for 1-hop neighborhood 

subgraphs only. The burst score bounds of an r-hop subgraph is calculated from 

subgraphs of smaller hop size in an incremental manner. 

We first examine how edge evolutions affect the burst scores of nearby r-

hop neighborhood subgraphs using exar^ples in Figure 8.5. Figure 8.5(a) shows 

an example for 1-hop neighborhood subgraph g^ .̂ The dotted line is the edge 

evolution happened. It is apparent that if the edge evolution belongs to 此 ,Vi 

must be one of the nodes of the edge evolution. Figure 8.5(b) shows an example 

for 2-hop neighborhood subgraph g^ .̂ As we can see that if the edge evolution 

belongs to g l � e i t h e r it is within g � , or N^ \ {wi}. An edge evolution belongs 

N^̂  \ {i^i} means both nodes of the edge evolution belong to N^̂  \ {巧}. We are 

focusing on heterogenous bipartite graph. Suppose 1»1’1»4’"̂ 5 and V2, vs belong to 

the two sides of a bipartite graph, respectively. Then there are no such evolutions 

as shown by the dotted edges in Figure 8.5(c) and 8.5(d). 

Now we explain how to compute the burst scores of r-hop neighborhood 

subgraphs incrementally from the burst scores of 1-hop subgraphs. Prom the 

above obversion, we know that the burst score of an r-hop subgraph is the sum 

of the two parts. One is the burst score of (r — 2)-hop subgraph, the other is 

the total evolutions within N^. \ JST广 Edge evolutions in TV；. \ TV；-̂  must be 

connected to one of the nodes in Â；"̂  \ N : � “\ Let Vj e N^'^ \ N : � \ then we 

have the following lemma. 

L e m m a 8.4. The total number of edge evolutions in iVJ. \ N::: equals 

BurstScore^VJ. (8.4) 

Based on Lemma 8.4, the burst scores of r-hop neighborhood subgraphs are 

calculated incrementally by using the following equation. 

BurstScorel. = BurstScorel''^ + ^ BurstSocrel. (8.5) 
vjeK-^N：；-'' 
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where Burst Scored, denotes the burst score of r-hop neighborhood subgraph g^., 

and BurstScore^. = {). It is obvious that Eq. 8.5 is also correct if we substitute 

the upper bounds of the burst areas for them. 

8.2.4. Top k Burst Area Discovery 

The whole algorithm is presented in Algorithm 8.1. At line 3, the algorithm 

maintains Haar wavelet trees of all 1-hop neighborhood subgraphs at each time 

t. If a node is seen for the first time, a new Haar wavelet tree is constructed. 

Otherwise, based on Section 8.2.2, Algorithm 8.1 updates all the Haar wavelet 

trees which have evolutions happened inside. In each loop from line 4 to line 

12, the algorithm discovers incrementally the top k results from small hop size 

to large hop size. At line 6，Algorithm 8.1 computes the upper bounds of burst 

scores according to Eq. 8.5. If the burst score bound of an r-hop neighborhood 

subgraph is larger than the minimum burst score mink in the corresponding top 

k list, Algorithm 8.1 performs a detailed search at line 10 to verify whether it 

is a real top k result. If the true burst score is larger than mink, it is added to 

the corresponding top k list substituting the /c-th item. To save memory space, 

instead of storing r-hop subgraphs, we only store centers of the r-hop subgraphs 

in the top k list. 

8.3. Experimental Evaluation � 

In this section, we report our experimental results on two real datasets to 

show both the effectiveness and the efficiency of our proposed algorithm. 
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Algorithm 8.1 The Top k Burst Area Discovery Algorithm 
Input: An evolving graph Q = (G, A), a maximal hop size Vmax, a window range 

(Imin, Imax), the value of k 
Output: The top k burst areas at each time t 

while time t < tmax do 

2: for Vi e V{G) do 

3： Update the Haar wavelet tree for 1-hop subgraph ĝ .； 

end for 

f o r 二 1 t o Tmax d o 

for Vi e V{G) do 

Compute burst score bound B^. of r-hop subgraphs g .̂ using Eq. 8.5; 

f o r I = Imin t o Imax d o 

mink = the minimum burst score of the top k list of hop size r and 

window length l\ 

0： if Bl,. > mink then 

1： Obtain BurstScorel. by detailed search; 

2: if Burst Scored,. > mink then 

3： remove the k-th. node Vj in the corresponding top k list; 

4： add Vi to the corresponding top k list. 

5： end if 

6： end if 

7： end for 

8： end for 

9： end for 

20： end while 
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Figure 8.6: Total Evolutions of The Evolving User-Story Graphs from Digg 

8.3.1. Diastases 

The two real diastases are extracted from Digg [2], where users can make 

their comments on stories. The nodes of the heterogenous bipartite evolving 

graph are users and stories. Graph evolutions are the comments submitted by 

users. 

The corpus of users' comments collected contains comments for around four 

month [35]. For better utilization, we split it into two two-month datasets, Digg 

A and Digg B. Comments in the datasets are categorized day by day and there 

are a large number of comments in each day. So, we further divide a day into 

four time stamps and randomly assigned the comments in the same day into one 

of the four time stamps. There are total 9583 users and 44005 articles. The 

total time stamps of both datasets is 232. The evolution characteristics of these 

two datasets are summarized in Figure 8.6, which shows the total number of 

evolutions happened at each time stamp. There are periodic troughs in both 

figures, indicating that users submit fewer comments during weekend. 
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(c) t = 46 (d) t = 64 

Figure 8.7: Top 1 Burst Areas in Digg A {I = S) 

8.3.2. Effectiveness 

We demonstrate two examples discovered by our proposed algorithm in 

dataset Digg A in Figure 8.7. We monitor top 10 burst areas for each time 

stamp, where the length of burst window is 8. Among all these burst areas, the 

burst area with the highest burst score is reported in Figure 8.7. The 1-hop burst 

area with the highest score happened at time 35. We present the 1-hop neigh-

borhood subgraph at time 35 in Figure 8.7(b). For reference, the corresponding 

1-hop subgraph at time 27 is presented in Figure 8.7(a), which is the subgraph 

when all the evolutions have not happened. The round nodes and the square 
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nodes represent users and stories, respectively. The center round nodes in both 

graphs are the center of the 1-hop burst area. As we can see that the subgraph 

in Figure 8.7(b) has more nodes and edges than the one in Figure 8.7(a), which 

indicates that the center node is an active user during the burst period. Similar 

results could be observed in Figure 8.7(c) and Figure 8.7(d), which show the 

2-hop burst area with the highest burst score among all the top 10 burst areas 

of each time stamp. The burst area happened at time 64 and we also present 

the same burst area at time 48 for reference. The centers of these two subgraphs 

are shown as the central white nodes in the figures. These figures show that 

the stories, which were commented by the user of the center node, also received 

many comments from other users during the burst period. 

Figure 8.8(a) and Figure 8.8(b) present the center node ID of the top 1 

1-hop and 2-hop burst areas from time 90 to time 140, respectively. At each 

time stamp, we plot the center node ID of top 1 burst area whose burst window 

length is 8, as well as the one of top 1 burst area whose burst window length 

is 16. The figures show that the top 1 burst area of large window length is not 

always the same as one of small window size, which explains why it is necessary 

to find burst areas of various burst window lengths. 

8 .3 .3 .�Eff ic iency 

We perform our efficiency experiments on dataset Digg A and Digg B. Figure 

8.9(a) and Figure 8.9(b) show the overall running time of the direct algorithm, 

which is discussed -at the beginning in Section 8.1，as well as the one of our 

proposed algorithm. The value of k in Figure 8.9(a) and 8.9(b) is 10 and 20, 

respectively. As we can see, our proposed algorithm is much faster than the 

direct algorithm. The lower part of each bar of the direct algorithm is the 

running time of updating all burst scores, and the lower part of each bar of our 

proposed.algorithm is the running time of maintaining Haar wavelet trees. One 

advantage of our proposed algorithm is that the maintaining cost is less than 
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Figure 8.8: Center Node ID of Top 1 Burst Areas 

1/10 of the one of the direct algorithm. This will be useful when we do not 

monitor evolution streams continuously, but submit ad-hoc queries to find top k 

burst areas at some interesting time stamps. 

Figure 8.9(c) and 8.9(d) show the overall running time for the direct algo-

rithm and our proposed algorithm, when the value of k changes. The length I 

of burst window in Figure 8.9(c) and 8.9(d) is 16 and 32，respectively. We can 

observe similar experimental results that our proposed algorithm uses much less 

time. Figure 8.10 presents the corresponding results for dataset Digg B, which 

prove again the efficiency of our proposed algorithm. 
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Figure 8.9: Performance Study on Digg A 

fe report the pruning ability in dataset Digg A and Digg B in Figure 8.11. 

Figure 8.11(a) and 8.11(b) show the pruning ability of our proposed algorithm in 

Digg A and Digg B when the length of burst window varies. We report two sets of 

results where k is 10 and 20. Figure 8.11(c) and 8.11(d) show the pruning ability 

of our proposed algorithm in Digg A and Digg B as the value of k changes. We 

report two sets of results where I is 16 and 32.The results show that our proposed 

algorithm is able to prune most of the detailed searches. As we can see, as the 

increase of the value of I or k, the pruning ability decreases slightly. 

Direct Algorithm 

Updating Burst Scores 
Finding Top-k Burst Areas 

Proposed Algorithm 

Updating Wavelet Trees 
Finding Top-k Burst Areas 
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Figure 8.10: Performance Study on Digg B 
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Figure 8.11: Pruning Ability of The Proposed Algorithm 
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CHAPTER 9 

S P O T T I N G SIGNIFICANT CHANGING 
SUBGRAPHS IN EVOLVING G R A P H S 

In this chapter, we explain in detail how to spot significant changing sub-

graphs in evolving graphs. The chapter is organized as follows. Section 9.1 

introduces the preliminary background and formalizes the problem of spotting 

significant subgraphs. We present our incremental computation approach and 

the expanding algorithm in Section 9.2 and Section 9.3，respectively. Section 9.4 

reports the experimental results and Section 9.5 discusses some alternate node 

closeness measures. 

9.1. Changing Subgraph Discovery 

We model an evolving graph as a sequence of undirected graphs, denoted 

as ^ = (Gi, G ŷ • • • )> where nodes/edges can be added and/or deleted into/from 

Gi-i which results in another large graph Gi. Gi{Vi, Ei) is a snapshot of graph Q 

at time U with a set of nodes VJ and a set of edges E�, For simplicity, given two 

graphs GiiYi, Ei) and Gi_i(V5_i, the two sets of nodes, Vi and Vi_i, are 

identical, while the two sets of edges, Ei and are possibly different. The 

notations used in this chapter are summarized in Table 9.1. 

Consider an evolving graph. An edge change may make some nodes become 

closer and at the same time may make some other nodes become looser. As 
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Table 9.1: Notations in Chapter 9 

Symbol" 

•
t
 i.

 ̂
^

 
i

 
i

 r
^
 

G
-

 G

 A
 F
t

 ̂

 ̂

 D

 n
 K
 

Definition 

An evolving graph 

The snapshot of evolving graph G at time U 

The adjacency matrix of graph Gi 

The transition matrix of graph Gi 

A node on a graph 

The set of neighbors of node Vj 

The sum of edge weights between node Vj and N{vj) 

The diagonal matrix where djj = d{vj) at time U 

The node closeness matrix at time ti 

The node importance score at time U 

八 

Figure 9.1: Relationship Changes as Edge Changes 

shown in Figure 9.1, there are two graphs Gi and G2 in an evolving graph at 

time ti and <2，respectively. At time ^i, there is an edge between Vi and Vj, 

and there is a path between Vj and Vk. At time ^2，there are more paths from 

Vj to Vky where the edge between Vi and Vj remains unchanged. In comparison 

with Gi at time ^i, the closeness between Vj and Vk becomes closer, because the 

newly added edges make it easier for Vj to traverse to Vk. On the other hand, the 

closeness between Vj and Vi becomes looser, because Vj has more opportunities 

to traverse to other nodes. This fact motivates us to consider an accumulative 
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score that measures the overall impacts of all changes on a node when a graph 

evolves. Reconsidering Vj in Figure 9.1, we need to consider the relationships 

between Vj and Vi, between Vj and Vk, and between Vj and any other node, in 

order to judge the change influence on Vj. Given such an accumulative score, it 

becomes possible to find significant changing subgraphs when a graph evolves. 

We explore this issue using neighborhood random walks on graphs to help 

spotting significant changing subgraphs. We first review some basic concepts 

of random walks on graphs. Let Ai denote the adjacency matrix of a weighted 

graph Giy where Ai(j, k) maintains the weight for the edge (vj,vfc)- A random 

walk on Gi is performed in the following way. A particle starts at a certain node 

1)0 of the graph Gi. Suppose it walks to a node Vs in the s-th step and it is about 

to move to one of the neighbors of Vg, denoted as f t € N{vs), with probability 

Pst, where Pst is ^{(s, 幻fceN(v，）Ai(s，紀)，and N{vs) contains all neighbors of 

node Vs. The node sequence of the random walk is a Markov chain. Let Di be 

the diagonal matrix with the diagonal value d{s) = 卯eAr—a)或(s，then the 

transition probability matrix Pi of the Markov chain for graph Gi is 

Pi = D-^Ai. . (9.1) 

The probability of going from Vj to Vk through a random walk of length I can be 

obtained by multiplying the transition probability matrix I times and is given as 

pRj.k). 

An infini te s t ep app roach (Z oo): One possible distance measure from 

node Vj to node Vk is defined as the steady-state probability P/( j , k), I oo, 

which is the probability that the particle starting from Vj will be on node Vk 

after an infinite number of steps. While it might be working some field such as 

biology [10], it has a big drawback. When Gi is not a bipartite graph, with the 

memoryless property of Markov chains, the steady-state probability distribution 

follows the equation below [41]: 

Vj, lim i ^ , ( j ， f c ) = 母) (9.2) 
� e v i 咖） 
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Here, VJ is the set of nodes of graph Gi. Recall that d{s) = X^_y&.eN(v，）k). 

Eq. (9.2) states that the probability of random walk to a certain node Vk from 

any initial node vj shares the same limit value. In other words, random talk to 

a certain node is independent from the initial node. Therefore, such a measure 

cannot be effectively used to measure the closeness of two nodes. 

A n inf ini te s t ep app roach w i th r e s t a r t -> oo and 0 < c < 1): It is 

important to note that the change of closeness between two nodes should follow 

the principle that such a change is caused by a nearby edge change rather than 

an edge change that is far away. Here the issue is the locality of edge changes. 

In other words, the closeness measure needs to easily capture the nearby local 

structural information. Note that a random walk with an infinite number of steps 

{I —oo) can possibly visit the entire graph and might go to as far as possible from 

where it starts. One possible approach is to use a restart probability c (c < 1). 

Here c(l — cY implies the probability of jumping back to the initial starting 

node at the l-th step. Since c < 1, when I is small (close to the initial starting 

node), the probability of jumping back is high; and when I is large (away from 

the initial starting node), the probability of jumping back becomes small [45]. It 

requires to compute the transition probability matrix Pi until it converges, which 

is a time consuming process. In the literature, a small c � 0 . 5 is usually used. 

However, in our problem setting, with a small c <C 0.5, there are possibilities 

that random walks will visit nodes that are far away from the initial node, and 

make it uncertain how the local structural information is captured. The problem 

cannot be solved by simply using a large c value, because the meaning of random 

walk with a larger c value becomes less obvious. 

A fixed s t e p app roach w i th r e s t a r t (fixed I and 0 < c < 1): With a fixed /， 

we focus on the local structural information using neighbors of a node,巧,from 

which the random walk starts. The node, Vj, to start random walks is the node 

that is involved in an edge change. The neighbors of Vj are the nodes that Vj can 

reach in I steps. Random walks are only conducted" in the /-step neighborhood of 
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the node Vj with a restart probability c. It is important to note that our algorithm 

is designed in a way that a user can enlarge the I value if needed at run time. We 

adopt the similar expected /-distance in [26, 25]. In the expected /-distance, a 

parameter c is used to let the expected /-distance prefer the shorter path. The 

proof in the Appendix shows such a parameter c is the restart probability used in 

45] with minor difference which can be ignored. In short, neighborhood random 

walk distance, which is also called the node closeness�is the expected /-distance 

defined on random walks whose length is smaller or equal to 1. 

Defini t ion 9.1. Ne ighborhood R a n d o m Walk Dis tance (Node Close-

ness) . L e t Pi be the n x n transition probability matrix of a graph Gi. Given I 

as the length that a random walk can go, the neighborhood random walk distance 

k) from Vj to Vk is defined as follows: 

P ( T ) c ( l - c ) — 叫 T), (9.3) 

r:vj —Vk\length{r) <l 

where 0 < c < 1, and r is a path from Vj to Vk whose length is length(T) with 
t 

transition probability p{r). 

The matrix form of the neighborhood random walk distance is as follows. 

n 卜 ; — ( 9 . 4 ) 

7=1 

Here, Pi is the transition probability matrix for graph Gi, and Hi is the neighbor-

hood random walk distance matrix for graph Gi. We then define the importance 

score of a node as the accumulative change of its closeness to other nodes in 

Eq. (9.5). 

Vhivj) = Y^ i n L i k k) 一 k)\. (9.5) 

Here, VIi{vj) is the importance score of a node Vj when a graph evolves from 

graph Gi-i to Gi, 

The problem of spotting significant changing subgraphs in an evolving graph 

becomes a clustering problem based on the change importance score VIi{vj) 



Chapter 9. Spotting SigniGcant Changing Subgraphs in Evolving Graphs 111 

Algor i thm 9.1 The Framework 

Inpu t : Two graphs Gi and Gi_i of an evolving graph Q at time U and an 

integer range I �a n d a restart probability c 
•I 

O u t p u t : The significant changing subgraphs from Gi-i to Gi 

1: Compute the importance scores for nodes in Gi\ 
2: Find significant changing subgraphs from nodes with high importance scores; 

using neighborhood random walk distances. We propose a two-step framework 

as illustrated in Algorithm 9.1. First, we compute the importance score VIi[vj) 

for any node Vj in graph Gi that is involved in edge changes. Second, based on 

the importance scores, we find significant changing subgraphs. 

9.2. Node Importance Score Computation 

In this section, we discuss in detail how to calculate the difference of node 

closeness in two graphs Gi-i and Gi and the node importance scores. 

9.2.1. The Straightforward Algorithm 

We can develop a straightforward algorithm, which is presented in Algorithm 

9.2, to compute the difference of node closeness and the node importance score 

based on the definitions. The straightforward algorithm iteratively calculates the 

respective closeness matrices Hi—i and Hi at time U-i and U based on Eq. (9.4) 

by the power method (Lines 1-12). The closeness difference matrix is simply 

computed as Ci = Hi — !!‘一 i，based on which the importance scores of nodes can 

be easily computed by Eq. (9.5). In each loop from lines 8 to 11，Algorithm 9.2 

needs to multiply two matrices Qi and P��which takes O(n^) time, where n is 

the number of nodes in the evolving graph G. Since the total number of loops is 

/ - I , the time complexity of Algorithm 9.2 is 0{ln^). One can use the fast sparse 

matrix multiplication instead of the normal matrix multiplication to improve the 

speed, but usually that is not enough to lower the running time especially when 
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Algor i thm 9.2 The Straightforward Algorithm 

Inpu t : The adjacency matrices Ai^i and Ai for two graphs Gi-i and Gi at time 

U-i and it, an integer range Z, and a restart probability c 

O u t p u t : The closeness difference matrix Ci and the node importance vector Vli 

Pi = D-'Au 

Pi-i = 

Qi = Pi\ 

Qi-i = -Pi-1； 

Hi = c(l - c)Oi； 

ni_i = c( i -c)Qi_i； 

for 7 = 2 to / do 

8： Qi = Qi* Pi] 

9： Qi-i = Qi-i * Pi-i； 

10： n^ = Hi + c(l - c)7Q“ 
11: rii一 i = i + 

12： end for 

13： C i ^ U i - rii-i; 

14： for each Vj in V do 

15： = 

16: end for 

G is large and there are a lot of edge changes. 

Due to the high computational complexity of Algorithm 9.2, we seek for a 

more efficient way to compute the node importance scores. Since we care more • • • 
for the node pair whose closeness may be different in and G i � i t is not 

necessary to compute the whole closeness matrices Ui-i and Hi. One possible 

way to improve the efficiency of Algorithm 9.2 is to calculate the closeness of 

those node pairs that may change, rather than computing all node pairs. 

Let AA = Ai — Ai-i be the difference adjacency matrix. All non-zero entries 

in AA represent the edge difference between GI and GI-i. Let V{AA) be a node 
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set, where each node Vj € V{AA) has at least one non-zero entry on the ；-th row 

of Ai4 (i.e., at least one changing edge connected to V j ) . Suppose that {t；^,!；/.} 

is a pair of nodes whose closeness 11 (j, k) needs to be computed. Then, there 

must exist nodes v^^ Vn E ^(AA), where (vm^v-n) is a changing edge, such that 

the neighborhood random walks starting from iVn or Vn can reach Vj and Vf.. In 

other words, Vm or Vn or both must lie in some tour path that connects Vj and Vk-

Such node pair {vj^vk} forms the influence set of Vm and Vn�since the closeness � 

of {vj.Vk} is influenced and changed by the edge change of Therefore, 

by pruning the nodes in V that are not in the influence set of any node in 

we can improve the speed of Algorithm 9.2. The solution is to construct induced 

subgraphs G\ and G ; ] ， w h i c h consist of only the nodes in the influence sets of 

V{AA), and use the corresponding adjacency matrix and in Algorithm 

9.2. The closeness difference related to all other nodes are all zero. The time 

complexity of this approach is 0{l{an)^), where a is the fraction of nodes that 

are in influence sets. 

Unfortunately, the above approach does not always work very well. For 

example, in social networks, the average graph diameter is usually small due to 

the small world property [16]. As a result, the size of the induced subgraphs 

G'i and for such networks is close to that of the original graphs G � a n d 

Gi-\. In other words, the corresponding a is close to 1 and the complexity of 

this approach is almost the same as that of Algorithm 9.2. 

9.2.2. A Novel Incremental Algorithm 

As mentioned above, in order to compute the node importance score, we only 

need to consider the node pairs whose closenesses change and it is not necessary 

to calculate the closeness for all node pairs. In this section, we introduce a novel 

incremental algorithm that computes the closeness difference directly for those 

node pairs with changing closeness. 

Let us start from a simple case. Suppose that there is only one edge e 
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that is different between two graphs Gi and Gi_i. It can be either the addition 

of e to Gi or the deletion of e from Gi_i. The question is to identify those 

node pairs whose closenesses change due to the difference of e, as well as the 

quantities changed. Recall our closeness measure in Eq. 9.3. The answer to 

the above question is that if a node pair has at least one tour path passing 

through the edge e or one of the two nodes incident to edge e, the closeness of 

the node pair changes. By identifying those paths, we can find the node pairs 

with changing closenesses. Furthermore, the summation of the differences of 

these path probabilities is exactly the quantity changed in the closeness of each 

node pair. 

By Eq. (9.4)，the iterative form of the node closeness is 

7=1 

7=1 

(9.6) 

(9.7) 

Therefore, the closeness difference matrix is 

二 (c(i 一 cypl + - (c(i - cYpU + n；：}) 

By Eq. (9.7), we can see that the key step in computing ATL[ is to compute 

{P- — jFJLi), which is easy when I = 1. When I > 1, obviously we cannot compute 

it in a naive way by the power method s i p c e ^ ^ computational expensive. Recall 

that Pi{jy k) is the probability of going from Vj to Vk through random walks of 

length I on graph Gi. We now show how to calculate AP} = P卜 in an 

efficient way. Apparently, 

Pl{j.k)= ^̂办)， （9.8) 
r:Vj —Vfc 
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where r is a tour path from node Vj to Vk, and Pt(r) is the probability of path 

r in Gi, Suppose r = (fi,t'2, •-•.vi), where Vi = vj and vi — Vk�then Pi{r)= 
n 二 1 •̂ iĈ ^m, The Slim of the probability of all these distinct tour 

paths is P}(j, k). 

In order to compute AP/, we only need to consider the different paths on 

Gi and as well as the difference in the probability of the same paths. For 

simplicity, we only discuss the case when there are only additions of edges or 

increase of edge 了ights. We will show later that our algorithm can handle 

deletions of edges and decrease of edge weights as well. 

Let (I'm, ̂ n) be one of the added edges or one of the edges whose weights 

increase. For any node pair {vj,vk}y if there is a tour path r of the maximum 

length I starting from Vj�passing through the edge Vn) and ending at Vk, then 

the node closeness lli{j, k) will increase by Pi(丁)’ since this path does not exist 

in On the other hand, if there is a tour path r of the maximum length I 

starting from Vj, passing Vm or Vn or both, and ending at Vn�but without passing 

through {vm.Vn)̂  then the node closeness !!‘()’ A;) will decrease by ( p i _ i ( r ) -

Pi(r)), since the path r exists in both Gi and Gi^i, and with the increase of 

d{m) and d{n) in Gi, the probability of the path 丁 decreases. We formalize the 

above analysis in Theorem 9.1. 

Theorem 9.1. Given two graphs Gi and Gi-i of an evolving graph G, let {vm, Vn) 

denote the changing edge, then AP}(J�k) can be computed as follows: 

T:Vj->^Vk](Vjn,Vn)ET 
(9.9) 

- P i - i ( r ) ) . 
T:Vj-^Vk]{vTn,Vn)^r\Vm OT Vrx^T 

Theorem 9.1 suggests an effective way to calculate the change quantity of the 

closeness between node pairs. The key is to find all the related paths distinctly 

and completely so that the change quantity is computed correctly. To enumerate 
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(a) 

(b) 

no edgee edge e may exist 

no nodev m no edgee 
node Vm may exist 

Figure 9.2: Path Enumeration for Correct Closeness Difference Computation 

夺 11 the possible positions of the edge (vm, Vn) in a path r is obviously not a good 

solution due to the exponential number of combinations with respect to the 

number of changing edges and the range I. 

We first discuss the case of the path r \ Vj Vk when (i>m，Wn) ^ 丁. We 

can calculate the closeness difference in the following way. For the changing edge 

e = {vm.yn)^ we first calculate the probability of a path t i from Vj to Vm with 

length Zi, where li <1—1. We then calculate the probability of a path T2 from Vn 
\ 

to Vk with length I2 = I — h — l. In this way, we ensure that the computed paths 

from Vj to Vk passing the edge (vm^vn) is of length I. The closeness difference 

that is accounted for such paths can be computed as 

p(Ti)Pi(m,n)p(T2), (9.10) 
Ti-.Vj-^VmWi-.Vn-^Vt, 

where 7ri(j, k) denotes the first term of k) in Eq. (9.9). 

In order to compute p{ri : Vj �V m ) and p{r2 : Vn …Vk) correctly without 

missing and double-computing any path, we perform the random walks as shown 

in Figure 9.2(a). We do not allow a path t i from Vj to Vm to pass e，while we 

do not have this restriction on path T2. 

As for the other case of the path t : Vj — Vk when v^ or Vn G r but 
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{vmyVn)贫 T, the closeness difference can be computed in a similar way: 

兀2a AO = P(T3)P(T4)， (9.11) 
T3 :Vj …Vm;T4-Vm �Vk or T3 :Vj -^Vn ；T4 :Vn 

where n2(j, k) denotes the second term of AP/(j, k) in Eq. (9.9). For the cor-

rectness of computation, we do not allow T3 to contain the node Vm (or Vn when 

T3 is from Vj to Vn) and we do not allow T4 to contain the edge e, as shown in 

Figure 9.2(b). 

The whole incremental algorithm to compute the closeness difference matrix 

is presented in Algorithm 9.3. 1 and 3 at line 5 and 6 denote the index of all 

changed nodes and all unchanged nodes, respectively. A changed node is the 

node that at least one added edge connects to it. Let P denote a matrix. 

denotes the submatrix of all rows and all z-th columns, where i e 1. P[X,: 

denotes the submatrix of all z-th rows and all columns. P[J,I] denotes the 

submatrix of all j-th rows and all z-th columns, where j E J and i e X. 

When we explain the strategy of our incremental algorithm, for simplicity, 

we assume only one edge is added to the graph during the evolving, but in reality, 

there may be many edge changes at one time. Apparently, it is not a good way 

to handle them one by one. In Algorithm 9.3, We handle all the changed edges 

together in matrix form instead of one by one. The key idea is similar, we use 

two arrays of P p and to store the corresponding probabilities of the t i and T2 

types of paths. Four other arrays of P^l^, and PJ"̂  are used to store the 

probabilities of the T3 and 7*4 types of paths on graph Gi-i and Gi�respectively. 

The algorithm computer the difference distances matrix Ci incrementally In 

each loop starting at line 14, the algorithm first computer the probabilities of 

four types paths. For a certain length k < I, there are k possible positions for 

the changed edge {vm, Vn) or node Vm or Vn on the tour path. During the loop 

from line 22 to line 33, the algorithm enumerate all the k possibilities and sum 

up all the paths to obtain the matrix R, which equals to the item {Pi — P/_i) 

in Eq. (9.7). One may argue that in order to store the six arrays of matrices, a 
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Algor i thm 9.3 The Incremental Algorithm  

Inpu t : The adjacency matrices Ai-i and Ai for two graphs and Gi at time 

ti-i and ti, respectively a integer of range I 

O u t p u t : The difference distances matrix Ci and the node change importance 
vector VI. 

Pi-1 
Pi = d-^Av, 

Pci = Pi - Pm \ 
X = Index of all changed nodes; 
J = Index of all unchanged nodes; 

pr[\] = pui[.,'r\\ 
pp[\] = pi%:); 

for A: = 2 : / do 

Pui[J,J\P?[k-l\\ 

R = n X n zero matrix; 

for m = r : /c do 

if m = = 1 then 

:1 = R[X, ；1 + Pci[X, t[Pp (/c 一 ml; 

:1 =丑[工,:1 + Pi*(fc - m]Pui - - m]Pi-X； 
else if m == k then 

RM = RM + PP [m 一 ilPciP.i); 
R = R + Pp[m - l]Pui[X, ：] - - l]Pi-i[I,：); 

R = R + PP[m-l]Pci[T,l\Pr^ [A： - ml; 

:1 = R[J, ：] + PP[m - - m]Pui - P[l,\m - Iji^JlJfc - m\Pi. 
end if 

end for 

Ci = c ( l - c 产 f i + C“ 
end for 

for each Vj in V do 

end for 
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large amount of memory is needed. But the fact is that in worst case, each sparse 

matrix contains n\X\ entries. So the total number of entries are Qnl\X\. Since I 
is a small number and |X| is usually much smaller than n, the total number of 

entries is then smaller than n^. 

We have discussed how to handle the additions of edges and the increase of 

edge weights. In fact, our algorithm can also handle the situation when there 

are deletions of edges and decrease of edge weights. Let us first suppose that 

there are only deletions of edges and decrease of edge weights from Gi-i to Gi. 

It is easy to see that this is exactly the same as the evolvement from Gi to Gi_i, 

where only additions of edges and increase of edge weights happen. The only 

difference is that the closeness difference matrix should be multiplied by -1. In 

general, we can first handle all the additions of edges, together with the increase 

of edge weights, and then handle the deletions of edges and decrease of edge 

weights. In order to do this, we can add a ghost graph, GJ, such that {G[ — Gi_i) 

contains all the edges added or with increased weights and (Gi — G[) contains 

all the edges deleted or with decreased weights. The sum of these two closeness 

difference matrices gives the same closeness difference matrix from to Gi. 

9.3. Spotting Significant Subgraphs 

With the closeness difference matrix II- at time U and the node importance 

score vector V/ , we now explain how to expand those nodes of high importance 

scores to obtain significant changing subgraphs. As mentioned, a changing sub-

graph is significant if the node closeness in the subgraph changes a lot. In our 

experiments, we find that the node importance scores follow the power law distri-

bution. Therefore, instead of defining an absolute threshold for the score, we use 

the value ^ as the threshold such that more than 85% of the scores are smaller 

than it. Apparently, significant changing subgraphs should contain all the im-

portant nodes (i.e., those with high importance scores beyond the threshold i) 

and most of the nodes whose closenesses with the important nodes change a lot. 
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We develop an expanding strategy which is similar to the density clustering. The 

basic idea is to include the nodes whose closeness differences with the important 

nodes are high. 

We present the expanding algorithm in Algorithm 9.4. A max heap is used 

to store all the neighbors of current subgraph g. At line 2，the union graph of 

Gi-i and Gi only keeps the information of connectivity. The algorithm starts 

from an important node Vj with the maximum importance score in each loop 

at line 4 to generate a significant changing subgraph. At line 9，the algorithm 

fetches the first node Vk in heap H. l{V{g)) in line 11 is the index of all the nodes 

in subgraph g. From line 11 to 15, the algorithm checks whether the max node 

closeness difference from the important nodes in the current significant subgraph 

g to Vk is smaller than the threshold e. If so, the algorithm clears the heap H 

and outputs the significant changing subgraph g. At line 17，threshold e is set 

to be 1/5 of the maximum transition probability of the important node lastly 

included into the subgraph. Next, all the unvisited neighbors of the node lastly 

included into the subgraph are inserted into the heap H at line 20 to 25. This 

procedure is repeated until all the important nodes are visited. In the final result 

set of the significant changing subgraphs, two subgraphs are merged if they are 

directly connected. 

9.4. Experimental Evaluation 

In this section, we present the experimental results on four real datasets to 

show both the effectiveness and the efficiency of our proposed algorithms. 
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Algor i thm 9.4 The Expanding Algorithm 

Inpu t : The adjacency matrices and Ai for two graphs Gi_\ and Gi at time 

ti_i and tt； the closeness difference matrix Ili at time U 

O u t p u t : The significant changing subgraphs 

1： Let if be a max heap; 

2: Let G' be the union graph of Gi_i and Gi； 

3: while not all the important nodes visited do 

4: Vj = the unvisited important node with the highest importance score; 

5: Let Vm be the node that Ili{j, m) is maximum among all unvisited nodes; 

6： Insert〈巧.，ni(j•，m)�to the max heap 

7: e = 0; 

8: while H is not empty do 

9: Vk = the first node in H; 

0： if > 0 then 

1: if inax(ni(I(V(g)), k)) < e then 

2： Empty I f ; 

3: Output the current subgraph g; 

4: end if 

5： end if 

6: if Vk is an importance node then 

7: € = max(ni(/c, :))/5; 

8: end if 

9： Mark Vk as visited and add Vk to the current subgraph g\ 

20: for each neighbor VN of VK on the union graph G' do 

21: if Vn is unvisited and not in H then � 

22： Let Vm be the node that 11,(71, m) is maximum among all unvisited nodes; 

23: Insert (un, ni(n, m)) into the heap H] 

24： end if 

26: end for 

26： end while 

27: end while 
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Table 9.2: Dataset Characteristics 

Datasets Nodes Average Edges Added Time Steps 

D B 5492 1734 10 

D M 5574 1079 10 

Enron2001 16639 320 184 

Enron2002 16639 203 164 

9.4. Datasets 

The four real datasets are extracted from the DBLP [1] co-authorship 

dataset and the Enron email dataset [3]. In the DBLP co-authorship dataset, 

each author is represented by a node and there is an edge between two authors 

if they co-authored some paper" In the Enron email dataset, each email sender 

or receiver is considered as a node and there are edges between senders and re-

ceivers. The first two datasets DB and DM are from the DBLP co-authorship 

dataset. DB contains the co-authorship information of six major database confer-

ences from 1998 to 2007, including SIGMOD, PODS, VLDB，ICDE, EDBT and 

ICDT. DM contains the co-authorship information of five major data mining con-

ferences from 1998 to 2007, including KDD, ICDM, PKDD, SDM and PAKDD. 

DB has 5492 nodes and DM has 5574 nodes. The other two datasets Enron2001 

and Enron2002 are extracted from the Enron email dataset. Enron2001 contains 

the email communication information of each day from 2001-07-01 to 2001-12-

31, while Enron2002 contains the email communication information of each day 

from 2002-01-01 to 2002-7-31. The number of nodes of both Enron2001 and En-

ron2002 is 16639. The characteristics of these datasets are summarized in Table 

9.2. 

The authors in [54] introduced three aggregation methods: global aggrega-

tion, exponential aggregation and sliding window. It is worth noting that our 

proposed approaches can cooperate with all these tliree aggregation methods. In 
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Figure 9.3: The Goodness of Significant Subgraphs in Dataset DB 

our experiments, we choose global aggregation to perform our experiments, which 

aggregates the new edges or edge weights to the adjacency matrix of previous 

time. Let AAi be the adjacency matrix of the graph at time step ti, then 

. i 
Ai = J2 ^^t (9.12) 

t=i 
The average number of added edges per time step is presented in Table 9.2. 

9.4.2. Effect iveness 

Let us first introduce our criterion of the significant subgraphs. Let Qi denote 

a significant subgraph found at time U. We evaluate the goodness of significant 

subgraphs as q 

Goodness = 々；;•^卢 (9.13) 

where Ani ( j , k) = l i l t{j , k) — I l i 一 i s the closeness difference for Vj and Vk 

between Gi-i and Gi, The goodness is essentially the fraction of the closeness 

differences between Gi-i and Gi that are captured by significant subgraphs. 

We use c = 0.15 in all experiments. Figures 9.3 and 9.4 present the average 

goodness for different values of f , which is a parameter in Algorithm 9.4, when 

varying the length of neighborhood random walks I from 2 to 10. For dataset 
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Figure 9.4: The Goodness of Significant Subgraphs in Dataset DM 

(a) Dataset DB (b) Dataset DM 

Figure 9.5: Two Significant Subgraphs 

DB, our algorithm captures 92% changes in node closeness, while for dataset 

DM, our algorithm captures more than 96%. For a higher value of ^ and longer 

length of I, the goodness scores increase. 

Two significant subgraphs found are presented as examples in Figures 9.5(a) 

and 9.5(b), which is from the experiments with I = 4 and ^ = 0.8. For privacy, 

we replace author names by abbreviations. The newly added edges are dotted 

in both subgraphs. Figure 9.5(a) shows the subgraph from dataset DB. There 
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(a) Dataset Enron2001 (b) Dataset Enron2002 

Figure 9.6: Overall Running Time on Dataset Enron2001 and Enron2002 

are originally three communities (dense areas) and the newly added edges make 

three communities connected, which usually indicates that there is a joint re-

search work involving multiple research groups. Apparently, only the subgraph 

consisting of the added edges cannot provide this information. There are other 

nodes connecting to some of the nodes in three communities, and these nodes 

are not included in the significant subgraph because the difference of the node 

closeness between them and the node importance scores are small. In Figure 

9.5(b), the researcher BR co-authored papers with researchers in a very dense 

community. Researchers in the same research group tend to co-author a lot and 

f o r m v e r y dense community. Therefore, it is obvious that BR should be a new 

member to some research group. 

9.4.3. Efficiency 

We perform our efficiency testing on datasets Enron2001 and Enron2002. 

Figures 9.6(a) and 9.6(b) show the overall running time for the three algorithms: 

the straightforward algorithm in Algorithm 9.2, the incremental algorithm in 

Algorithm 9.3 to compute the node importance scores, as well as the expanding 

algorithm in Algorithm 9.4 to generate the significant subgraphs. Each figure 

{^Slraighlforward Alg. 
rninaemenlal Alg. ‘ 
I I Expanding Alg 

^Straightforward Alg. 
[•incremental Alg. 
•Expanding Alg. 
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(b) The Incremental Algorithm 

Figure 9.7: Average Running Time on Dataset Enron2001 and Eiiron2002 

shows two groups of running time for / — 4 and I = 6. On the Enron2001 

Dataset, the incremental algorithm is almost twice faster than the straightfor-

ward algorithm, while on the Enron2002 Dataset, the incremental algorithm is 

about four times faster. The running time of the expanding algorithm increases 

slightly when I becomes larger. 

Figure 9.7(a) presents the average running time of the straightforward al-

gorithm versus the average number of edges in the graphs at each time spot for 

both dataset Enron2001 and Enron2002. As we can see that the running time 

of the straightforward algorithm is proportional to the total number of edges in 

the graph at current time spot. The average rimning time of the incremental 

algorithm versus the average number of the newly added edges in the graphs for 

both datasets is shown in Figure 9.7(b). The running time of the incremental 

algorithm is proportional to the total number of edges added. This explains 

why the incremental algorithm is faster. The running time of the incremental 

algorithm is more related to the number of changing edges while the running 

time of the straightforward one is more related to the total number of edges in 

the current graph. When the number of changing edges is much smaller than 

th6 total number of edges in the current graph, which is true in most evolving 

•1 = 4 併 
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n 
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graphs, the incremental algorithm is much faster than the straightforward one. 

9.5. Discussion of Alternate Node Closeness 

Measures 

9.5.1. Relationship between Expected /-Distance and 

Random Walk with Restart 

The node closeness matrix using the expected /-distance is not much dif-

ferent from one using random walk with restart. The proof is presented below. 

Based on the iterative form of the definition of random walk with restart, the 

node closeness matrix IT;' of graph Gi can be expressed as following. 

n'； = (1 - + c/, (9.14) 

where c is the restart probability, Pi is the transition matrix of Gi and I is 

identity matrix. Then we have 

= ( 1 - C)((l - + cI)Pi + Cl 

• = (1 一 c)((l — c)((l - + cI)Pi + cI)Pi + cl 

= + (9.15) 
7=1 

1-1 
= c ( i 一 cypi - cypy + (1 - cy+'pi + d 

7=1 
I 

= Y.c{i- cyp^ + (1 - c 严 Pi + cl 

7=1 

=n; + (1 - cY+ip; + ci. 

The last line of Eq. (9.15) contains three items. The first item is the node 

closeness matrix II- using the expected /-distance. The third item cl affects 
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only the diagonal entries of the node closeness matrix, which is ignored since we 

do not consider the node self-closeness. Then, the difference using random walk 

with restart and the expected /-distance lies in the second item (1 — cY'^^P-. 

When I goes to infinity, the node closeness matrices using expected /-Distance 

and random walk with restart are the same expect the diagonal entries. Even 

when I is small, the corresponding entries of two matrices do not differ so much 

since (1 — cY^^P- is very small comparing with II- = c(l — c^P^ . 

9.5.2. Using Random Walk with Restart 

It is worth noting that our framework can be adapted to cooperate with the 

definition of random walk with restart. The node closeness matrix using random 

walk with restart is presented in Eq. (9.14). And based on the proof in Eq. 9.15， 

the closeness difference matrix is 

Air l 二（1 - c Y i P i - P U ) + c)'{Pt- It。. (9.16) 

k=l 

Then we can incrementally calculate the AII'I in the following way. 

少 1 = A i r j ; 

An'f = (1 — — pf_i) + c{i — c)(p, -

= ( 1 -

>̂2 = ( i - c ) ( A n ' f + ( i - c ) $ i ) , 
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An'f = (1 一 _ Pli) + - 一 1: 

7=1 

— 1 - + C少2; 

$3 = ( i - c ) ( A n \ ' + ( i -c)$2 )； 

An'; = ( 1 - 舰 - p U ) + c r ( P 7 - P I , ) 

7=1 

As we can see from the last line, the key teisk is still to calculate {P- — P!一i), 

which is the same as using the expected /-distance. The only difference is that 

the algorithm needs to store an intermediate matrix 少知 at each step. 



CHAPTER 10 

CONCLUSIONS 

We focus on two challenging topics in this thesis under the context of man-

aging and mining graph data, namely, graph summarization and graph change 

detection. In graph summarization, we study the following challenging problems. 
t 

• Approximate Homogeneous Graph Summarizat ion. We studied the 

problem of graph summarization using a new information-preserving ap-

proach based on information theory. A graph is summarized by parti-

tioning node set into subsets and constructing a super-graph based on the 

partition. We analyzed the exact and approximate homogeneous partition 

criteria and proposed a unified entropy framework to relax all three criteria 

for homogeneity. Our proposed summarization framework can obtain the 

graph summary of small size and high quality, whose quality is measured 

by the total weighted entropy of each node subset in the partition. We pro-

posed a lazy exact partition algorithm, as well as two other approximate 

partition algorithms to compute the exact homogeneous partition and the 

approximate homogeneous partition, respectively. 

• Frequent Subgraph Summarization with Error Control. We pro-

posed a frequent subgraph summarization framework with an independence 

probabilistic model. We formally defined the problem and applied a re-

gression approach to estimate the parameters in the summarization model. 
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Our summarization framework takes a top-down approach to recursively 

partition a summarization graph template, until the user-specified error 

tolerance is met. Our summarization model can effectively control the 

frequency restoration error within 10% with a compact size. 

In graph change detection, we study two different meanings of graph change, 

and focus on finding meaningful changing areas, which are summarized as follows. 

• Discovering Burs t Areas in Fast Evolving Graphs . We studied the 

problem of finding top-A: burst areas under the context of fast graph evolu-

tions. We proposed to update the Haar wavelet tree in a dynamic manner 

to avoid high computation complexity while keeping its high pruning abil-

ity. The top-fc burst areas are computed incrementally from small hop size 

to large hop size in order to minimize memory consumption. 

• Spo t t ing Significant Changing Subgraphs in Evolving Graphs . We 

studied the challenging problem of spotting significant changing subgraphs 

in evolving graphs. We proposed to use the neighborhood random walk to 

measure the node closeness, as well as a novel incremental algorithm for 

fast computation. The significant subgraphs are generated based on the 

node importance scores. 

In the near future, we are planning to extend our recent work of frequent 

subgraph summarization in three directions. The first direction is to integrate 

our summarization algorithm into the pattern mining process to avoid the com-

putation cost of finding all frequent subgraphs. Frequent subgraph mining is a 

time-consuming task even for graph collections of moderate sizes. An integrated 

framework could provide users the estimated structures and frequencies for bet-

ter understanding before running the mining algorithm. The second direction is 

summarizing frequent subgraphs mined from a single large graph where the anti-

monotonicity property does not always hold due to the different definitions of 
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frequency. Therefore, new challenge of avoiding false-positive frequent subgraphs 

arises. The last direction is to construct a summary which supports subgraph 

query. Query optimization depends on accurate estimation of the number of 

query results. Subgraph query estimator is difficult due to the complex struc-

tures of graphs, which could have numerous correlations between edges. More-

over, such subgraph query estimator can answer aggregate queries on graphs 

approximately. 

In the middle future, we will focus on OLAP of huge graph collections. 

OLAP on traditional traction data works well and serves as an important role 

in business intelligence, while OLAP on graph data is difficult for the following 

issues. First, the multidimensional model for OLAP on graph data is not clear. 

Second, answering aggregation queries of graphs is slow, which makes it impos-

sible to handle large graph collections. Third, whether the concept of cube in 

traditional OLAP can be applied on graph data to utilize material view for saving 

computation cost is not clear yet. We would like to develop a hybrid multidi-

mensional model consists of both explicit and implicit dimensions for attribute 

graphs. The explicit dimensions are the dimensions from traditional OLAP for 

attribute information on graphs. The implicit dimensions are for structure in-

formation. Based on this combined approach, we will study on how to answer 

aggregation queries on graph data efficiently. 
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