
Summarizing Static Graphs and
Mining Dynamic Graphs

LIU, Zheng

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Doctor of Philosophy

in

Systems Engineering and Engineering Management

The Chinese University of Hong Kong

August 2011

UMI Number: 3500821

\

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI
Dissonation Publishing

UMI 3500821

Copyright 2012 by ProQuest LLC.
All rights reserved. This edition of the work is protected against

unauthorized copying under Title 17, United States Code.

P r o Q u g s f

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor. Ml 48106- 1346

Thesis/Assessment Committee

Professor Wai Lam (Chair)

Professor Jeffrey Xu Yu (Thesis Supervisor)

Professor Man-Cho So (Committee Member)

Professor Xuemin Lin (External Examiner)

This thesis is dedicated to my parents who brought me into this world,

Zengtao Liu and Ling Wu.

A B S T R A C T

Graph patterns are able to represent the complex structural relations among

objects in many applications in various domains. Managing and mining graph

data, on which we study in this thesis, are no doubt among the most important

tasks. We focus on two challenging problems, namely, graph summarization and

graph change detection.

The objective of graph summarization is to obtain a concise representation of

a single large graph or,a collection of graphs, which is interpretable and suitable

for analysis. A good summary can reveal the hidden relationships between nodes

in a graph. The key issue of summarizing a single graph is how to construct a

high-quality and representative summary, which is in the form of a super-graph.

We propose an entropy-based unified model for measuring the homogeneity of

the super-graph. The best summary in terms of homogeneity could be too large

to explore. By using the unified model, we relax three summarization criteria to

obtain an approximate homogeneous summary of appropriate size. We propose

both agglomerative and divisive algorithms for approximate summarization, as

well as pruning techniques and heuristics for both algorithms to save computation

cost. Experimental results confirm that our approaches can efficiently generate

high-quality summaries.

In the area of summarizing a collection of graphs, we study the problem of

summarizing frequent subgraphs, since it is not much necessary to summarize a

collection of random graphs. The bottleneck for exploring and understanding fre-

quent subgraphs is that they are numerous. A summary can be a solution to this

11

issue, so the goal of frequent subgraph summarization is to minimize the restora-

tion errors of the structure and the frequency information. The unique challenge

in frequent subgraph summarization comes from the fact that a subgraph can

have multiple embeddings in a summarization template graph. We handle this

issue by introducing a partial order between edges to allow accurate structure

and frequency estimation based on an independence probabilistic model. The

proposed algorithm discovers k summarization templates in a top-down fashion

to control the restoration error of frequencies within a. There is no restoration

error of structures. Experiments on both real and synthetic graph datasets show

that our framework can control the frequency restoration error within 10% by a

compact summarization model.

The objective of graph change detection is to discover the changing areas on

graphs when they evolves at a high speed. The most changing areas are those

areas having the highest number of evolutions (additions/deletions) of nodes

and edges, which is called burst areas. We study on finding the most burst areas

in a stream of fast graph evolutions. We propose to use Haar wavelet tree to

monitor the upper bound of the number of evolutions. Our approach monitors

all potential changing areas of different sizes and computes incrementally the

number of evolutions in those areas. The top-fc burst a r ^ are returned as soon

as they are detected. Our solution is capable of handling a large amount of

evolutions in a short time, which is consistent to the experimental results.

Besides finding changing areas based on the number of node and edge evolu-

tions, a more interesting problem is to analyze the impact of these evolutions to

graphs and find the regions that exhibit significant changes when these evolutions

happen. The more different the relationship between nodes in a certain region is,

the more significant this region is. This problem is challenging since it is hard to

define the range of changing regions that is closely related to actual evolutions.

We formalize the problem by using a similarity measure based on neighborhood

random walks, and design an efficient algorithm which is able to identify the

Ill

significant changing regions without recomputing all similarities. Meaningful

examples in experiments demonstrate the effectiveness of our algorithms.

文摘要

在很多領域中，圖被用來表示對象之間的關系，因為它能夠描述對象之間

複雜的結構信息。本論文研究了圖败據的管理和挖掘，重放在關於圖败據的

兩個具有挑戰性的問題：靜態圖的摘要，和動態圖的變化檢測。

經態圖的摘要是指基於壹個大圖或是壹群圖，生成壹個易於用戶分析的并

且大小適當的簡潔的表達形式。生成的摘要能夠揭示圖中的隠藏信息。單個圖

摘要的難在於如何生成高質量的，具有代表性的超圖。我們提出利用一个通

用的熵 te架去衡量超圖中集的同質性。同質性最好的超圖的大小仍然很大，

所以我們提出放鬆三個摘要標準以得到大小適當的摘要近似。我們提出了層次

聚合和分裂兩個算法，並且在每個算法中，利用剪枝和啓發技巧節省計算量。

實驗結果表明我們的方法可以快速生成高質量的摘要。

在概括壹群圖的研究方向上，因為生成隨機圖集合的摘要的意義不大，我

們把重放在概括壹系列的頻繁子圖。頻繁子圖是指在圖数據庫中頻繁出現的

子圖，其最小頻率大於壹個給定的閥值。頻繁子圖分析的瓶頸在於子圖的败

量，大量的頻繁子圖使得分析這些子圖變得很困難。生成頻繁子圖的摘要可以

解決這個問題。頻繁子圖摘要的目標是降低結構信息和頻率信息的恢復誤差。

我們提出利用獨立概率模型去生成頻繁子圖的摘要，使其沒有結構誤差，並且

頻率的恢復誤差在可控制的範圍之内。基於真實和人造数據的實驗結果顯示我

們的方法能有效的將頻率誤差控制在10%之内。

動態圖的變化檢測的目標是快速發現動態圖中變化的區域。變化最大的區

域可以用‘和邊的變化次败來衡量。我們研究如何在變化流中監控變化最大的

區域。基於Haar小波，我們的框架能夠監控潛在變化區域的變化次败的上限。

我们用增量方式計算不同大小的變化區域的總變化次数，所以能夠及時返回變

iv

V

化最大的）c個區域。我們的算法能夠在短時間内處理大量的變化流，實驗結果

驗證了這査。

除了用和邊的變化次败來衡量變化的程度，壹個更有趣的問題是分析這

些和邊的變化對圖的影蠻，尤其的是對之間的關系的影蠻。哪個區域中

之間的關係變化越大，那麽這個區域就越重要。這個問題的難在於如何確定

變化區域•的大小，使得它能夠真實反映實際的變化。我們提出基於鄰域隨機行

走來衡量之間的相似度，並基於這個相似度的變化來確定變化程度最大的區

域。我們提出的算法避免了大部分之間的相似度的重新計算。實驗結果給出

了真實有意義的變化的例子。

ACKNOWLEDGEMENTS

I express my sincere gratitude to Professor Jeffrey Xu Yu. It might be the

luckiest thing in my life to get to know Professor Yu, who opened the gate of

research for me and is leading me on the road to a successful researcher. Profes-

sor Yu was my supervisor when I was an MPhil candidate in the Department of

System Engineering and Engineering Management, and now he continues super-

vising me on my PhD study. Without his patient guidance, enthusing encour-

agement and considerable support, all the research projects I have done, as well

as this thesis, would not be possible.

I am grateful to Professor Ruomin Jin, Professor Hong Cheng and Dr. Yip-

ing Ke for all those cooperations in my research works. I would like to thank

Professor Xuemin Lin for supporting my visiting to University of New South

Wales and teaching me�how to be a hardworking researcher.

It is my honor to have an outstanding thesis committee: Professor Wai

Lam, Professor Xuemin Lin, and Professor Anthony So, to evaluate my research

works and this thesis. Thank your all for your valuable time and constructive

comments.

A lot of thanks to Doctor Jianjun Gao, Doctor Nan Tang, and my friends

and colleagues in our database research group for all the interesting things we

shared, all the joyful time we spent, and all the colorful life we lived. I also would

like to take this opportunity to thank all the clerical staffs, all the technical staffs

in the Department of System Engineering and Engineering Management for their

wonderful support. .

vi

Vll

Finally, I want to say thank you to my parents and my fiancee Tina Chen

for letting me fly freely in places far away. My parents never prevent me from

any hobby, which makes me eventually be a man of wide interests. It was a luck

coincidence for me to meet Tina, by whom the Chinese Music played is always

enjoyable.

C O N T E N T S

Abstract

Abstract in Chinese

Acknowledgements

Contents

List of Tables ,

List of Figures

1. Introduction

I Summarizing Static Graphs

2. Introduction to Graph Summarization

2.1. Summarizing a Single Large Graph . .

I V

V I

Vlll

Xll

Xlll

2.2. Summarizing Numerous Frequent Subgraphs 11

3. Related Works 15

3.1.- Large Graph Summarization 15

3.2. Graph Generation Models 17

3.3. Frequent Subgraph Summarization 18

3.4. Frequent Subgraph Mining 20
viii

Contents ‘ ‘ ix

4. Approximate Homogeneous Graph Summarization 22

4.1. Problem Statement 22

4.2. An Approximate^ Homogeneous Partition Based on Information

Theory 26

4.2.1. Entropy-Based Relaxations of Criteria 27

4.3. Homogeneous Graph Summarization 32

4.3.1. A Lazy Algorithm for Exact Homogeneous Partition . . . 32

4.3.2. An Agglomerative Algorithm for Approximate Homoge-

neous Partition 34

4.3.3. A Divisive A:-Means Algorithm for Approximate Homoge-

neous Partition 37

4.4. Experimental Evaluation ‘ 38

4.4.1. Datasets 40

4.4.2. Exact Homogeneous Partition 41

4.4.3. Approximate Homogeneous Partition 42

5. Frequent Subgraph Summarization with Error Control 47

5.1. Problem Statement 47

5.1.1. Subgraph Summarization and Restoration Error 48

5.1.2. Regression for Subgraph Summarization 50

5.1.3. Problem Definition 53

5.2. Summarization Algorithms 53

5.2.1. Challenges 54

5.2.2. Template Subgraph Division 57

5.3. Queriable Summarization 66

5.4. Experimental Evaluation 67

5.4.1. Datasets 67
f

5.4.2. Experiment Setting 68

5.4.3. Experimental Results 69

Contents x

II Mining Evolving Graphs 75

6. Introduction to Graph Change Detection 76

6.1. Monitoring Top k Burst Areas 77

6.2. Spotting Significant Changing Regions 79
*

7. Related Works 82

7.1. Community Detection in Static Graphs 82

7.2. Community Detection in Evolving Graphs 83

7.3. Node Similarity Based on Random Walks 84

8. Discovering Burst Areas in Fast Evolving Graphs 86

8.1. Problem Statement 86

8.2. Discovering Burst Areas 90

8.2.1. Haar Wavelet Decomposition 91

8.2.2. Bounding Burst Scores of r-Hop Neighborhood Subgraphs 92

8.2.3. Incremental Computation of Multiple Hop Sizes 95

8.2.4. Top k Burst Area Discovery 97

8.3. Experimental Evaluation 97

8.3.1. Datasets 99

8.3.2. Effectiveness 100

8.3.3. Efficiency 101

9. Spotting Significant Changing Subgraphs in Evolving Graphs 106

9.1. Changing Subgraph Discovery ‘ 106

9.2. Node Importance Score Computation I l l

9.2.1. The Straightforward Algorithm I l l

9.2.2. A Novel Incremental Algorithm 113

9.3. Spotting Significant Subgraphs 119

9.4. Experimental Evaluation 120

9.4.1. Datasets 122

Contents ^

9.4.2. Effectiveness 123

9.4.3. Efficiency 125

9.5. Discussion of Alternate Node Closeness Measures 127

9.5.1. Relationship between Expected /-Distance and Random

Walk with Restart 127

9.5.2. Using Random Walk with Restart 128

I

10. Conclusions 130

Bibliography 132

1ST OF TABLES

4.1. The DBLP Bibliography Datasets 40

4.2. The Keywords of Topics 40

4.3. The Exact Partition of The DBLP Bibliography Datasets 41

5.1. The Number of Frequent Subgraphs in Datasets 68

9.1. Notations in Chapter 9 107

9.2. Dataset Characteristics 122

Xll

1ST OF F I G U R E S

2.1. An Example of Graph Summarization 10

2.2. Summarization by Sampling 13

2.3. Summarization by Template Subgraphs 13

4.1. Entropy-Based Attribute Homogeneity 28

4.2. The Conversion from Attributes to Nodes 28

4.3. Entropy-Based Homogeneity of Connection Strength 29

4.4. Data Structure for Lazy Exact Homogeneous Partition 34

4.5. An Example of Updating Matrix A 36

4.6. Topic Frequency in Dataset D1 and Dataset D2 41

4.7. Exact Homogeneous Summarization of Dataset DM 42

4.8. The Running Time of Exact Algorithms 42

4.9. The Running Time of The Agglomerative Algorithm 43

4.10. The Running Time of The Divisive /c-Means Algorithm 43

4.11. R[VA)lk 44

4.12. Real Examples from Summaries 45

4.13. Outliers Found by The Divisive /c-Means Algorithm 45

5.1. Partial Order Graph of Frequent Subgraphs 49

5.2. An Example of Multiple Embeddings 55

5.3. Division of Non-Union Template g 60

5.4. Division of Union Template g 61

5.5. An Example of ID Assignment Conflict 63
... xiii

List of Figures XIV

5.6. Experimental Results on Real Dataset CM {support = 7%) 70

5.7. Experimental Results on Real Dataset CM {a 二 10%) 71

5.8. Experimental Results on Real Dataset CA {support = 13%) . . . 72

5.9. Experimental Results on Real Dataset CA {a = 15%) 72

5.10. Experimental Results on Synthetic Dataset {fmin 二 280) 73

5.11. Experimental Results on Synthetic Dataset (a = 10%) 73

5.12. Average Relative Restoration Error of All Frequent Subgraphs . . 74

6.1. An Evolving User-Story Graph 77

6.2. An Example of An Evolving Graph 80

8.1. An Example of r-Radius Subgraph 88

8.2. Haar Wavelet Decomposition 91

8.3. Upper Bounds of Burst Scores Using Haar Wavelet Decomposition 92

8.4. Updating Haar Wavelet Tree 94

8.5. Evolutions in 1-hop and 2-hop Subgraphs 95

8.6. Total Evolutions of The Evolving User-Story Graphs from Digg . 99

8.7. Top 1 Burst Areas in Digg A {I = 8) 100

8.8. Center Node ID of Top 1 Burst Areas 102

8.9. Performance Study on Digg A 103

8.10. Performance Study on Digg B 104

8.11. Pruning Ability of The Proposed Algorithm 105
I

9.1. Relationship Changes as Edge Changes 107

9.2. Path Enumeration for Correct Closeness Difference Computation 116

9.3. The Goodness of Significant Subgraphs in Dataset DB 123

9.4. The Goodness of Significant Subgraphs in Dataset DM 124

9.5. Two Significant Subgraphs 124

9.6. Overall Running Time on Dataset Enron2001 and Enron2002 . . 125

9.7. Average Running Time on Dataset Enron2001 and Enron2002 . . 126

CHAPTER

INTRODUCTION

Graph patterns have the expressive ability to represent the complex struc-

tural relationship among objects in many applications in various domains, where

graphs are the fundamental representation of data. In social networks, million of

users are conducting numerous interactive activities (e.g., following, messaging,

tagging, etc.) everyday. By modeling users as nodes and activities as edges, we

can construct a huge social graph representing multiple relationships between

uses. Photos users uploaded, music users listened, movies users watched, plus

users themselves can also be modeled as a very large multipartite graph, where

edges may indicate users' preferences. In World Wide Web, numerous web pages

are hosted in different web sites. These web pages are connected by hyperlinks

which allow users to go from one page to another page by clicking them. By

viewing web pages as nodes and hyperlinks as edges, the whole web is a very

large graph. In most search engines nowadays, search results are returned in

an order which is partially determined by the structure of the graph. Machines

hosting web sites can also be considered as nodes in graphs. In global computer

networks, routers and hosts, plus the data links between them form a large graph.

The particular characteristic of this graph is its location attribute, i.e., routers

and hosts could be anywhere on the earth. In sensor networks, the communica-

tion range of a senor is usually limited. A sensor could interchange data with a

certain number of nearby sensors. If we consider sensors as nodes, and add edges

Chapter 1. Introduction 20

between a sensor and all its neighbors within its communication range, this forms

a graph. In areas other than engineering, graphs also exist. In biology, proteins,

together with interactions between them, are viewed as graphs. Such protein-

protein interaction networks are useful in revealing the relationships between the

functions and the structures of proteins. In chemistry, chemical compounds are

represented by graphs. A basic task in drug design is to find the active chemical

compounds to a certain disease.

Due to the wide existences and the modeling abilities of graphs, researchers

are attracted recently to put a lot of efforts in managing and mining graph

data. The research in graph data management includes managing and indexing

large amount of graph data for querying and searching. For example, given a

query graph, (sub)graph matching is to find the matched (sub)graphs in a graph

database. Given a graph and a node pair, reachability query is to determine

whether there is at least a path between the node pair. The research in graph

pattern mining includes discovering patterns, classes or clusters of graphs. For

example, frequent subgraph mining is to find all subgraphs, whose number of

embeddings is larger than a pre-defined threshold, in a collection of graphs.

Clustering graph nodes is to discover the dense areas on graphs, in terms of the

number of edges. These clusters can reveal the hidden relationships between

nodes, because nodes in the same dense area are usually considered as similar

to each other. Clustering graphs is to find the clusters of similar graphs or

subgraphs, based on the underlying sttuctures. Graph classification is to learn
r^-V)

a classifier from labeled graphs, and class other graphs into different classes

accurately.

Under the context of managing and mining graph data, we focus on two

challenging problems in this thesis, namely, graph summarization and graph

change detection. The difficulties of managing and exploring graph data lie in

the large size of graphs themselves, and the huge number of graphs in a collection.

The objective of graph summarization is to obtain an concise representation of a

Chapter 1. Introduction 3

single large graph or a collection of graphs for easy management and exploration.

In summarizing a single graph, a good summary can reveal the hidden rela-

tionships between nodes in a graph. The key task of summarizing a single graph is"

to construct a high-quality and representative summary, while keeping the sum-

mary size small. The summary is in form of a super-graph, where each node/edge

in the super-graph represents a number of nodes/edges in the input graph. We

propose the criteria of homogenous partition for summarization. The best sum-

mary is the one where all nodes and edges in the super-graph are homogenous.

Unfortunately, it is almost as large as the input graph and still difficult for ex-

ploration. Then we propose an entropy-based unified model for measuring the

homogeneity of the super-graph. Based on the unified model, we relax all the cri-

teria of homogeneity in order to obtain an approximate homogeneous summary

in appropriate size. We introduce both agglomerative and divisive algorithms for

approximate summarization. In both algorithms, we present pruning techniques

and heuristics for fast computation. Experimental results confirm that our ap-

proaches can efficiently generate high-quality summaries. This work is published

in [39] and invited for publication in [38 .

It is not much necessary to summarize a collection of random graphs, so we

study the problem of summarizing frequent subgraphs in the task of summarizing

a collection of graphs. The huge number of generated frequent subgraphs is the

main bottleneck for users to explore and understand them. A compact summary

which can represent both the structure and the frequency information of these

subgraphs could be a possible solution to this issue. The objective of frequent

subgraph summarization is to minimize the restoration error of the structure and

the frequency information restored from summaries, that is, we can restore any

frequent subgraph based on only compact summaries. We propose to use maxi-

mal frequent subgraph as summarization template graphs. To further reduce the

size of summaries, we also use union of maximal frequent subgraphs as template

graphs. The unique challenge here is that a subgraph can have multiple embed-

Chapter 1. Introduction 4

dings in a template graph, which can deteriorate the restoration accuracy. We

solve this issue by introducing a partial order between edges. The restoration

of structures and frequencies is based on an independence probabilistic model.

We propose a top-down algorithm, which can discover k summarization tem-

plate graphs by controlling restoration error of frequencies within a. There is no

restoration error of structures. Experiments on both real and synthetic graph

datasets show that our framework can control the frequency restoration error

within 10% by a compact summarization model. This work is the most recent

work and submitted for publication.

In many applications related to graphs, graphs are not static but evolve all

the time. New nodes or edges can join graphs, while old nodes or edges can leave

graphs. These addtions/deletions of nodes/edges are called evolutions on graphs.

A natural resultant problem is to determine the changing areas on graphs. There

are two meanings of changes. One is based on raw evolutions, i.e., whether a

region changes dramatically is measured by the number of evolutions happened

inside it. The other is based on the relationship change. When evolutions happen,

relationships between nodes also change, so the degree of change in an area could

be measured by the variation of relationships between nodes in the area. Graph

change detection is to discover these changing areas on graphs when they evolve

fast.

Measured by the number of raw evolutions, the most changing areas, which

are called burst areas, could be the regions with the most evolutions. We study

on monitoring top k burst areas in a stream of graph evolutions coming in at a

high speed. Here the potential burst areas could be hop areas of different sizes

of all nodes. Our proposed approach monitors all these potential changing areas

by using a structure based on Haar wavelet, by which the upper bound of the

number of evolutions could be computed fast. Due to the number of changing

areas are large, we propose an algorithm to compute the number of evolutions

in large hop areas from the ones in small hop areas incrementally. In this way,

Chapter 1. Introduction 5

the computation is fast enough to cooperate with the stream environment. Once

the top k burst areas are detected, they are returned as soon as possible. Our

solution is capable of handling a large amount of evolutions in short time, which

is consistent to the experimental results. Examples of burst areas in social net-

works are presented to show that they are meaningful burst areas. This work is

published in [37 .

One more interesting task is to analyze the impact of raw evolutions to

the relationships between nodes on graphs. The significant changing areas are

defined as the changing regions in which the relationships between nodes vary

dramatically. The difficulties of this task are: (1) how to measure the relation-

ships between nodes; (2) how to identify the appropriate region range that is

closely related to the actual evolutions. We propose the neighborhood random,

walks to measure the similarity between nodes based on an analysis of differ-

ent possible candidates. Under the context of evolving graphs, we design an

efficient algorithm that is able to update the similarities without recomputing

all of them. Once we identify the top nodes whose relationships to other nodes

change dramatically, we expand from them to obtain subgraphs as the significant

changing areas. Experiments demonstrate the effectiveness of our algorithms by

presenting real meaningful examples. This work is published in [40 .

The key contributions of the thesis is summarized below. The more detailed

contributions in each specific applications are presented in later chapters.

1. In the problem of summarizing graphs, we introduce the new criteria for

controlling the quality. In the problem of graph change detection, we for-

malized the problems from abstract concepts into detailed definitions.

2. We propose efficient and effective algorithms for summarizing graphs. The

generated summaries are of high quality. We propose fast algorithm to

monitor burst areas in graph evolution streams. We propose incremen-

tal algorithms to save computation cost in solving the problems of graph

change detection.

Chapter 1. Introduction 6

.3. We conduct extensive experiments on many real and synthetic datasets to

verify the efficiency and effectiveness of our proposed algorithms.

The reminder of this thesis is organized in two parts. We present our work

on graph summarization in Part I. Part I starts with an introduction to graph

summarization in Chapter 2, followed by the related works in Chapter 3. We

explain the details of approximate homogenous graph summarization in Chapter

4, and the details of frequent subgraph summarization in Chapter 5. We address

our work on graph change detection in Part 11. Part II starts with an introduction

to this problem in Chapter 6, followed by the related works in Chapter 7. We

explain the details of detecting burst areas in fast evolving graphs is presented in

Chapter 8, and the details of spotting significant changing subgraphs in evolving

graphs are described in Chapter 9. Finally, we conclude the thesis in Chapter

10.

Part

Summarizing Static Graphs

7

CHAPTER 2

INTRODUCTION TO G R A P H
S U M M A R I Z A T I O N �

It is not an easy task for users to manage and explore graph data, due to

the complex structures, and the increasing sizes of graphs themselves, as well as

the huge number of graphs in a collection. Graph summarization is a potential

solution to this problem. In this part, we study the graph summarization prob-

lem in two different contexts: a single large graph, and a collection of frequent

subgraphs. The objective of graph summarization is easy management and ex-

ploration, so the generated summary must be a concise representation of input

graph(s), which is interpretable and suitable for analysis.

、

2.1. Summarizing a Single Large Graph

The goal of summarizing a large graph G is to obtain a concise graph rep-

resentation Gs�which is smaller than G in size, for visualization or analysis.

Although specific^ummarization representations can be various in different ap-

proadies, the main idea behind them is to construct a super-graph Gs with

super-nodes and super-edges. The nodes in G are partitioned into several node

sets and each node set is represented by a single super-node in Gs. Two super-

nodes are connected by a super-edge in Gs if there exist edges in G between

nodes from two corresponding node sets. The basic assumption is that nodes in

Chapter 2. Introduction to Graph Summajrization 9

the same node set are similar to each other under the criteria of homogeneity,

otherwise, using a single node to represent them will not be reasonable.

In the literature, there are two major approaches for super-graph construc-

tion, where the main difference lies in how to create super-edges between two

super-nodes. A strict approach [42] requires that a super-edge exists between two

super-nodes in Gs only if every pair of nodes residing in the two corresponding

super-nodes is connected by an edge in G. A relaxed approach [50, 63] allows

two super-nodes to be connected with a super-edge in Gs if there is at least one

connected node pair in G among all the node pairs summarized by the two super-

nodes. Here, each super-edge is associated with a participation ratio to indicate

the percentage of connected nodes among all the nodes in the two super-nodes.

Unfortunately, both approaches have their disadvantages. In the strict ap-

proach, since only cliques or bipartite cliques can be represented by super-nodes

according to the very rigorous requirement, the size of the summarized graph

cannot be small in most cases, even when super-nodes are near-cliques, which

makes the summarized super-graph still difficult to explore and access. In the

relaxed approach, the issue lies in the quality of the summarization, which we

will discuss soon in the later chapter. For example, if the participation ratio be-

tween two super-nodes is close to 1, it means almost all nodes in one super-node

have neighbors in the other super-node. If the participation ratio is close to 0’

it means almost no nodes have neighbors in the other super-node. So we can

infer whether nodes in one corresponding node set may have edges connected to

certain nodes in the other node set with high confidence. However, if the partic-

ipation ratio is somewhat around 0.5，then the summarized super-nodes cannot

provide much connection information of the neighborhood in the original graph.

Because it implies that only partial nodes in one super-node have neighbors in

the other super-node, and the chance of a node having neighbors almost equals

the one of a random guess.

We focus on the information-preserving graph summarization for attribute

onnecilon
m.
I sue

i
Conneclion Strength

_ i
Topics

C

(b) Our Proposed Graph Summary

Figure 2.1: An Example of Graph Summarization

graphs, which means the summarized representation must satisfy the quality

criteria as much as possible. The summary for a graph in our solution con-

sists of two parts: a super-graph and- a list of probability distributions for each

super-node and super-edge. Figure 2.1 shows a conceptual example. A DBLP co-

author graph to be summarized is presented in Figure 2.1(a). Inside the dotted

area is the structure information of the co-author graph, where nodes represent

authors and edges represent collaborations between these authors. There is at-

tribute information associated with authors possibly, for example, the table in

Figure 2.1(a) associated with nodes shows the main research topics of each au-

thor. Figure 2.1(b) shows our proposed summarized representation, where the

summarized super-graph is within the dotted area. Each super-node represents

a number of authors, and is affiliated with a topic distribution indicating the

research topics of the authors in the super-node, as well as the homogeneity

of these research topics. Each super-edge has two connection-strength distribu-

tions indicating the homogeneity of the neighbor relationship between the nodes

Chapter 2. Introduction to Graph Summajrization 10

Node Topics
Vi Text ClassincafJon, Te)d Summarization.…

V2 Pattern Mining, Association Rules,…

•3 Spectral Clustering. Helerogeneous Graphs....

V4 Service Scheduling, Optimization....

(a) DBLP Co-Author Network

i
i

i
i

n

Chapter 2. Introduction to Graph Summajrization 11

in the two connected super-nodes in two different directions. We will have a

careful analysis of the meaning of homogeneity in Chapter 4.

The major contributions of this research are summarized below. • •

• We focus on how to obtain an optimized approximate homogeneous parti-

tion on which a graph summarization can be constructed by relaxing both

attribute requirement and structure requirements. Inspired by information

theory, we propose a unified entropy model which unifies both attribute

information and structural information.

• We propose a new lazy algorithm to compute the exact homogeneous par-

tition by delaying the reconstruction of matrix, as well as two new approx-

imate homogeneous algorithms aiming to find the optimized approximate

partition.

• We conduct experiments on various real datasets and the results confirm

that our proposed approaches can efficiently summarize a graph to achieve

low average entropy.

2.2. Summarizing Numerous Frequent
«

Subgraphs

Frequent subgraph mining has been an important research problem in the lit-

.erature, with many efficient algorithms proposed [24, 29，55’ 59, 7，22’ 43]. Given
% *

a collection V of graphs, frequent subgraph mining is to discover all subgraphs

whose frequencifes are no less than a user-specified threshold fmin- Frequent

subgraphs are useful in many applications, for example, as the active chemi-

cal structures in HlV-screening datasets, the spatial motifs in protein structural
families, the discriminative features in chemical compound classification [15], and
. . . . ' : •
the index attributes [61] in graph databases to support graph queries.

Chapter 2. Introduction to Graph Summajrization 12

One major issue of frequent subgraph mining is the difficulty of exploring

and analyzing numerous patterns generated due to the exponential number • of

combinations. Given a graph with n edges, the total number of possible sub-

graphs could be 2”. Tens of thousands of frequent subgraphs may be generated

under a moderate minimum frequency threshold. This issue is inherited from

frequent itemset mining, while on graph data, it is magnified much more due

to the complex graph structure. A resulting solution for this issue is mining

only closed or maximal frequent subgraphs [60，23，49], which generates fewer

subgraph patterns. However, due to the structure complication and the rigid

definition of maximal and closed subgraphs, maximal and closed graph patterns

are still quite numerous. The difficulty to explore a large number of patterns

still exists.

Frequent subgraphs may be utilized by machines or by users. For exam-

ple, when frequent subgraphs "serve as discriminative index features in graph

databases, they are utilized by machines, where machines inspect individual fre-�-
quent subgraph to find whether it is discriminative. In this case, the huge number

*

of frequent subgraphs might not be the main issue. When frequent subgraphs

serve as active chemical structures in HIV-screening datasets, they are mainly

explored by users, where inspecting them one by one is almost an impossible

task. Users focus�on exploring frequent subgraphs as a whole set to obtain the
comprehensive understanding of them. Then a concise representation of all fre-�

quent subgraphs is necessary for users in order to explore frequent subgraphs

easily, and what is more, to make frequent subgraphs interpret able. It seems

that sampling is a potential solution to this problem. The sampling approach is

to select some frequent subgraphs as the representatives of all frequent subgraphs

13, 36, 64,�20, 5]. The representative subgraphs are similar to ‘some frequent

subgraphs, where the similarity measures may be maximum common subgraph,

graph edit distance, etc. These representative subgraphs are dissimilar to each

other based on a pre-defined threshold. While choosing a small number of rep-

Chapter 2. Introduction to Graph Summajrization 13

Figure 2.2: Summarization by Sam- Figure 2.3: Summarization by Tem-

pling plate Subgraphs

resentative subgraphs reduces significantly the number of output subgraphs, a

problem is that it loses too much information about other unselected subgraphs,

such as their structures and frequencies. A concept example is shown in Figure

2.2. Let the shaded areas denote a set of frequent subgraphs. The sampling

approach uses rounded circles to cover all frequent subgraphs and only reports

the centers of these circles as the representative subgraphs.

In frequent itemset mining, there have been several methods which use prob-

abilistic models to summarize frequent itemsets [57, 56，27]. These probabilistic

models, as a concise summarization, are effective to restore the itemsets and their

frequencies. In this paper, we aim to summarize frequent subgraphs by preserv-

ing the structure and frequency information of frequent subgraphs as much as

possible. A concept example is shown in Figure 2.3. Let the shaded areas denote

a set of frequent subgraphs. We are aiming to partition the whole set of frequent

subgraphs into some subsets�where the root of each subset, which is the black

dots in Figure 2.3, is called template subgraph or union template subgraph. And

all the frequent subgraphs in a subset are subgraphs of the (union) template

subgraph of this subset. The black dot outside the shaded area means that it is

a union template subgraph. This problem is more challenging than itemset sum-

marization, due to two difficulties in subgraph mining: "multiple embeddings"

(i.e., a subgraph can have multiple embeddings in a large graph.) and "topolog-

Chapter 2. Introduction to Graph Summajrization 14

ical constraint" (i.e., the topological structure specifies the connectivity among

nodes and edges.). To solve the problem, we make an independence assump-

tion between edges in a frequent subgraph. We take a regression approach to

estimate the parameters in the independence probabilistic model by least square

estimation. To ensure a good summarization quality, we allow users to specify

an error tolerance a and our algorithms take a top-down approach to discover

k template subgraphs. Multiple regression models will be built based on the k

template subgraphs to control the frequency restoration error within a.

The main contributions of this research are

• We introduce to summarize frequent subgraphs with an independence prob-

abilistic model. Specifically, we propose to restore frequent subgraphs and

their frequencies from template subgraphs by a regression approach to ob-

tain a concise representation of all frequent subgraphs.

• We propose an efficient algorithm in a top-down fashion to discover a set of

template subgraphs, together with the probabilistic models, as the summa-

rization. Multiple regression models are built on these template subgraphs

and the restoration errors are below a maximum error tolerance.

• We have evaluated our subgraph summarization approach on both real and

synthetic, graph datasets. Experimental results show that our method can

achieve a concise summarization with high accuracy in terms of subgraph

frequency restoration error.

CHAPTER 3

R E L A T E D W O R K S

In this chapter, we present an overview the related works to graph sttaima-

rization, which are categorized into four parts.

3.1. Large Graph Summarization

There axe a few existing works which are focusing on large graph summa-

rization. Navlakha et al. [42] propose to substitute super-nodes for cliques in

graphs without attribute information to generate summaries. Given a graph,

each clique on the graph is represented by a super-node. The summary is a com-

bination of the super-nodes and the original nodes that cannot be represented.

If there is an edge between two super-nodes, or a super-node and a original node,

then all the possible pairs of nodes must be connected by edges in the original

graph. It is obvious that usually a graph cannot have many cliques, so they

also use super-nodes to represent near-cliques or dense areas, with an extra table

to record the edges that do not exist or need to be removed. The quality of a

summary is measured by the size of the summary, which is based by Minimum

Description Length (MDL) principle. MDL can find the best hypothesis leading

to the best compression of data. Even with the help of the additional table, the

compression ratio of a summary generated by the above method is still too large,

which is almost one half of the size of the original graph. To further reduce the

Chapter 3. Related Worlcs 16

summary size, an error bound e is introduced for edges, that is, for an original

node, if it or its super-node connects another super-node in a summary, then

the number of missing edges is at most (1 — e) times of the number of nodes in

the other super-node. They propose both a greedy algorithm and a randomized

algorithm to calculate the exact summary and the error-bounded summary. The

greedy algorithm iteratively merges two nodes which introduce small extra space

cost. The randomized algorithm randomly selects a node u, and finds a node v

of small extra space cost in it's 2-hop neighborhood to merge with u.

Tian et al. [50] propose to summarize large attribute graphs by aggregating

nodes into groups and use super-nodes to represent groups of nodes. The at-

tributes are categorical. Two super-nodes are connected by a super-edge if there

is at least one pair of nodes, one from each group, connected in the original graph.

They require the nodes in each group having the same attribution information,

so the total number of possible attribute values cannot be too many. Otherwise,

the size of summaries will be too large for users to explore. On the super-graph,

there is a participation ratio associated with each super-edge, which is the per-

centage of pairs of nodes that are connected among all potential possible pairs.

They prove NP-completeness of this problem and present two heuristic aggre-

gating algorithms in a bottom-up fashion and a top-down fashion, respectively.

They design a merging distance mainly based on the similarity between partic-

ipation ratio vectors. Two super-nodes have a small merging distance if their

participation ratio vectors are similar. Given a graph, the bottom-up algorithm

iteratively merges two super-nodes with the minimum merging distance until

the number of super-nodes left is k. In the top-down algorithm, nodes in the

graph are initially grouped i ^ ^ ^ i ^ t e r s and nodes in each cluster have the same

attribute information. A super-node Si is first selected to be split based on the

number of the connection errors to its neighbors. Suppose Sj is a neighbor of Si�

and the number of the connection errors between Si and Sj is the largest among

all the neighbors of Si. Then Si is split into two super-nodes whose participation

Chapter 3. Related Worlcs 17

ratios to Sj is 0 and 1. This procedure is repeatedly performed till there are k

super-nodes. Th^ir approach does not work well when the number of attribute

values is not small and their criteria are not strict enough to obtain high-quality

summaries.

Zhang et al. [63] extend Tian's approach [50] to summarize graph with

two contributions. First, they propose to deal with numerical attribute values,

not just categorical. Second, they recommend possible values of k, which is the

number of super-nodes in summaries. Their algorithm for categorizing numerical

values agglomerative, which iteratively merges two value-adjacent super-nodes

until no two super-nodes are value-adjacent. Then super-nodes of continuous

values are cut into c groups of categories, where c is given by users. Next, they

apply algorithms in [50] to generate summaries. During the splitting or merging

process, their algorithm keeps tracking the interestingness measure of the current

summary, and recommends the value of k. The interestingness measure is based

on three characteristics: diversity, coverage and conciseness.

3.2. Graph Generation Models

Graph generating models can be considered as a summarization since they

are able to partially reveal the hidden relationships between nodes in graphs.

Chakrabarti et al. [12] study the problem from various points of views in physics,

mathematics, sociology, and computer sciences. Based on the analysis of real so-

cial networks, the main characteristics they found for social graphs are power

laws, small diameters and community effects. The characteristic of power laws

indicates that most nodes in social graphs have few neighbors, while only a very

small portion of nodes are of high degree. The characteristic of small diameters

indicates that the distance between reachable pair of nodes is small, the effective

diameter of the studied social graph is only 6. The characteristic of community

effects indicates that nodes on graph can be grouped into clusters, whose clus-

tering coefficients measure their dumpiness. Based on the above characteristics

Chapter 3. Related Worlcs 36

of social graphs, they survey a lot of graph generators and suggest the possible

solutions for each unique requirements.

Leskovec et al. [32] focus on the problem of generating a synthetic graph
that has the same properties to a given one. The difficulty lies in that the param-
eters of the generating model must be consistent to the given graph. The authors

t •

utilize Kronecker product of matrix to achieve fast synthetic graph generation.

They estimate the parameters of Kronecker model using maximum likelihood es-

timation. The estimation process is speeded up by the permutation distribution

of the parameters. The same authors study the problem of evolving graph gen-

erator in [33]. Similar to [12], they first find the evolving rules from the sample

graph data, including densification laws and shrinking diameters. Densification

laws show that the average degree of nodes increases as time goes by, resulting

in the smaller diameters of graphs. With these two observations, the forest fire

model is introduced which simulates a burning fire of nodes and each node has

a certain probability to link a new node which is found during the spread of the

fire.

3.3. Frequent Subgraph Summarization

There are quite a number of works related to frequent subgraph summa-

rization, but unfortunately, none of them could restore all frequent subgraphs

within a certain restoration error. The main issue in frequent subgraph milling is

the huge number of frequent subgraphs. Recently, researchers [13’ 36’ 64’ 20’ 5

.have focused on selecting a small number of representative graph patterns to

represent many similar subgraphs.

Chen et al. [13] select structural representatives from all frequent subgraphs

based on clustering. Their proposed algorithm consists of two steps: smoothing

and clustering. In the'first step of smoothing, frequent subgraphs are grouped

together if they have the same number of nodes, and the number of different edges

is less than a threshold. After grouping, the support transactions of each frequent

Chapter 3. Related Worlcs 37

graph are changed to the aggregation of transactions of frequent subgraphs in the

same group. The support now is the number of the aggregated transactions. Jn

the second step of clustering, these groups of subgraphs are further be partitioned

into clusters based on the graph edit distance. The centroids of each clusters are

selected as representative subgraphs.

Liu et al. [36] propose to select representative subgraphs based on two con-

ditions. First, a selected frequent subgraph can cover a number of graphs. One

graph can be covered by another graph if their support transactions are similar,

measured by Jaccard distance. Second, the support transactions of the selected

subgraphs must not be similar by the same measure. Three algorithms are in-

troduced to find representative subgraphs. The first algorithm starts from the

closed frequent subgraphs and find all subgraphs satisfied the second condition

by subgraph matching. Then, for subgraphs cannot be represented by the cur-

rent set of representative subgraphs, they are added to the set. This procedure is

repeated until all the subgraphs are inspected. At last, the candidate represen-

tative set is further shrank to find the minimum representative set by removing

subgraphs whose covered frequent subgraphs are subset of the covered frequent

subgraphs of another representative subgraph. The other two algorithms search

representative subgraphs directly from a graph collection. Both of them employ

the framework of gSpan [59] to find frequent subgraphs. During the depth first

search of all potential subgraphs, subgraphs which are covered by other mined

frequent subgraphs are pruned directly.

Hasan et al. [20，5] propose to discover representative frequent subgraphs

by using random walks. The approach in [20] starts with finding all frequent

edges. Then it chooses an edge randomly and repeats extending this edge by

randomly selecting more edges from frequent edge set, as long as these edges are

connected. In each step of extension, if it is a maximal frequent subgraph, a

random walk is performed to exclude the nearby frequent subgraphs with simi-

lar structures. This procedure is performed iteratively until enough number of

Chapter 3. Related Worlcs 38

frequent subgraphs are outputted. In [5], the authors select a small number of

maximal frequent subgraphs through sampling without computing all the maxi-

mal frequent subgraphs. Once a frequent subgraph is identified, a subset of all its

super and sub patterns are sampled to see if they are frequent subgraphs. Three

sampling techniques are compared, which are uniform sampling, support-biased

sampling and discriminatory sampling.

3.4. Frequent Subgraph Mining

The task before summarizing frequent subgraphs is to find all frequent sub-

graphs. Any summarization framework without pre-computing all frequent sub-

graphs could not restore all of them. Many algorithms have been proposed for

finding frequent subgraphs in graph databases, where the frequency of a subgraph

is the total number of graphs containing the subgraph in the database. Similar

to the Apriori-based approaches in frequent itemset mining, Apriori-based algo-

rithms for frequent subgraph mining are proposed in [24, 29, 55], where the search

strategy follows a breadth-first manner in terms of number of edges. Subgraphs of

small sizes are searched first. Once identified, a new larger candidate subgraphs

are generated by joining two highly overlapping frequent subgraphs, which dif-
%

fer by one edge. So, in each iteration, the size of these candidate subgraphs

is increased by one. Other algorithms [59, 7, 22, 43] employ a pattern-growth

style. New candidate subgraphs are generated by adding a new edge to the cur-

rent ones. It is possible that a candidate subgraph is extended from multiple

frequent subgraphs. The gSpan algorithm in [59] constructs a depth-first search

(DFS) tree for searching frequent subgraphs. Depending on the order of edges'

addition, a DFS code is generated for each search tree. By using DFS codes,

gSpan can prune the search space by duplicate removal without graph matching,

which speeds up the computation. There are also research efforts on finding the

frequent subgraphs in a single large graph [8’ 34’ 18, 31], where an important

problem is how to define the frequency. A solution [31] considers the

Chapter 3. Related Worlcs 21

number of non-overlapping embeddings as the frequency.

CHAPTER 4

A P P R O X I M A T E H O M O G E N E O U S
G R A P H SUMMARIZATION

In this chapter, we present the details of our research work on approximate

homogeneous graph summarization. This chapter is organized as follows. Section

4.1 analyzes the graph summarization problem carefully and Section 4.2 presents

our concept of approximate homogenous partition based on information theory.

We propose the summarization framework in Section 4.3 and report experimental

results in Section 4.4.

4.1. Problem Statement

An attribute graph G is a triple (V, E,尸)，where V and E are the node set

and the edge set of the graph, respectively. P is a finite set of attributes, and each

node V eV or edge (w, v) E E is mapped to one or more attributes in 厂，denoted

as r{v) or r{u,v). Given r{v) = {Ai,A2, • • • , A^), let ^{v) = (cii，a2，.- -，aj)

denote the attribute value vector of v, where ai is the value of attribute Ai. In

this work, we concentrate on categorical attributes. For a categorical attribute

Ai with I distinct values, we can represent an attribute value using a Z-bitmap,

where all bits are zero except for the bit which corresponds to the attribute

value. To simplify the presentation in this paper, we assume that the edges of

the graph to be summarized are of the same attribute value, but our framework

Chapter 4. Approximate Homogeneous Graph SummarizsLtion 23

can be extended to handle graphs which have multiple attributes associated with

both nodes and edges.

Given an attribute graph, we aim to find a concise and interpretable sum-

mary which is friendly for users to explore and analyze. This can be done by

partitioning all nodes V in a graph G into k homogeneous non-overlapping node

sets {Vi, V2, • • • , Vit}, where the criterion of homogeneity is discussed later. Here,

each Vi represents a non-empty subset of node set V. Let V denote the node

partition {Vi, V2> • • • , Vk)^ and let V{v) denote the unique node set Vi that a

node V belongs. Furthermore, because a node i; in a node set Vi has edges to

link other nodes in another node set V}, we use N{v) = {^C^i^aOK^^ ua：) E
to denote the set of Vj. In addition, for Vj G N{v), we use \Vj\y to denote the

number of edges from v to any nodes in Vj.

Based on the homogeneous partition V �a graph summarization Gs can be

constructed as follows. A super-node Si represents a node set V̂ , for all node

sets in V�and all nodes of G summarized by a super-node in Gs have the same

attribute values. The super-edges among super-nodes in Gs imply that every

node of G summarized by a super-node has the same pattern of connecting nodes

to other nodes summarized by other super-nodes. For example, suppose that Si

has super-edges to Sj�Sk�and Si. It shows that every node of G summarized by

Si has edges to some nodes of G summarized by Sj�Sk�and Si. In the following

of this chapter, we use VJ and Si interchangeably.

Now the question is what is a homogeneous partition. In a homogeneous

partition V�every node set V̂ in P is considered to be homogeneous, which

consists of the following three criteria: First, nodes are homogenous according

to the attribute information, i.e., nodes in the same node set must have the

same attribute value vectors. Second, nodes are homogenous according to the

neighbor information, i.e., if a node v ^Vi connects to V̂ -, then all the nodes in

Vi must connect to Vj. Third, nodes are homogenous according to the connection

strength, which is measured in terms of edges. If Vi and Vj are connected, all
< .

-•• ff »•

Chapter 4. Approximate Homogeneous Graph Summarization 24
j —

I

nodes in VJ have the same number of edges to liodes in Vj. With these three

criteria, we present the definition of exact homogeneous partition below.

Definition 4.1. Exact Homogeneous Partition. An exact homogeneous

partition V = {Vi, V2, • • • , Vk} of a graph G = (V, E, P) satisfies the following

three criteria for every node v E V: (1) = 7(V；); (2) N{v) ~ N{Vi)\ and (3)

Vj\y = \Vj\vii for every Vj G N{v). Here, 7(Vi) denotes the common attribute

values of nodes in V； under the assumption that all nodes in Vi have the same

attribute values. N{Vi) denotes the common node sets for every node in the

node set Vi, and \Vj\vi denotes the common number of edges from every node in

Vi linking to nodes in node set Vj.

The above definition of exact homogeneous partition extends the definition

of exact grouping in [50]. The difference is that the exact grouping in [50] only

considers the first two criteria but not the third one. Without the third one,

nodes in a certain node set having more edges connecting to another node set,

are considered to be the same as the one having less edges, which is obviously

not reasonable. For example, in a DBLP co-author work, authors with more col-

laborations to a certain research group are more important than authors having

few collaborations. It is not reasonable to place them together into the same

node set apparently. -

A summary G5 of a graph G constructed by an exact homogeneous partition

can be considered as the best summarization with respect to the homogeneity

criterion, since nodes in the same node .sets are exactly the same in terms of

attribute and structure information. Unfortunately, due to the high complexity

of graph attributes and structures, as well as the increasing size of graph itself,

such exact homogeneous partition cannot achieve a high compression ratio. The

size of Gs based on the exact homogeneous partition is too large to serve as

a graph summarization, which makes it beyond possible for users to handle.

As we will see later in the experimental results, the size of Gs based on exact

homogeneous partition can be almost as large as G. To solve this issue, we need

Chapter 4. Approximate Homogeneous Graph SummarizsLtion 25

to relax partial or all the criteria in Definition 4.1. The approach in [50] loosens

only the second criterion, by allowing nodes in Vi "connect to similar node sets

of Vj but not necessarily to be the same. But it still requires that all attribute

values of nodes in the same node set VJ must be exactly the same vector.
>

It is questionable if it is sufficient to relax only the second criterion in Def-

inition 4.1 due to the following issues: (1) Keeping the same attribute vector in

each node set makes it very difficult to handle a graph with multiple attributes,

in particular, when the number of attributes is not small. Suppose a node has m

attributes and each attribute has d possible values, there are total dJ^ possible

combinations of these values. Though the real existing combinations may not

be so many, it is still impossible to find a partition of a relative small size, say

k, such that all nodes in the same node set Vi have the same attributes, when

k is less than the number of existing combinations. (2) In the third criterion

in Definition 4.1, it requests that all nodes in the same node set VJ should have

the same number of edgfes connecting to nodes in any other node set. Due to
the various possibility of neighborhood structures, this can also lead to a graph < »
summary which is not much smaller than the original graph G.

To achieve compact summarization Gs, we propose to relax all the criteria

.in Definition 4.1. In order to relax these criteria, a quality function for each

criterion is needed to control the quality of relaxation. Let us first give a high

level definition for approximate homogeneous partition, and explain it later.
• J

*

Definition 4.2, -Approx ima te Homogeneous Partition. Given a graph

G = (V, jE, JT), a nimber k, a graph node partition V is called approximate

homogeneous partition, if it satisfies the following three criteria for every Vi G V.

•(1) Q ^ m < ei; (2) QNî v,){Vi) < 62； and (3) < es, V\4 G (TV…‘）U

N{vj)). Here, let Vk E Vu Q-rO), …iO(.)’ QlVj\vJ-) are three quality measure

functions, and Ci, €2，arid €3 are three thresholds to control the quality of the

partition；

In an approximate homogeneous partition, nodes in the same node set are

Chapter 4. Approximate Homogeneous Graph SummarizsLtion 26

considered to be homogeneous as long as their attributes and neighborhood rela-

tionship, patterns to other node sets are similar to each other. Besides, a overall

ranking function is necessary to rank the partitions based on the overall sum-

marization quality to obtain the best one. Suppose R(-) is the function that

reflects the three criteria in Definition 4.2 to measure the quality of approximate

homogeneous partition, we study how to compute an approximate homogeneous

partition V of size k for a graph G = {V, E, F) by minimizing the ranking func-

tion R{V). The key issues are as follows. What quality measure and the function

R(V) should we use? Can we make it threshold free (without ei, e2, and 63)?

We address these issues in the following sections.

t

4.2. An Approximate Homogeneous Partition

Based on Information Theory
In this paper, we propose an information-preserving criterion, based on in-

formation theory. We first review some background knowledge, followed by de-

tailed discussions about how to utilize a unified entropy model to measure the

quality of the three relaxations in Definition 4.2.

Let Xi be a boolean random binary variable and p{xi) be its Bernoulli dis-

tribution function, p(x) = [p(工 1)，…，P(�)]is a Bernoulli distribution vector

58] over d independent Boolean random variables Xi, • • • , Xd-

binary d-element vector. Given a set of binary vectors D == {b]

the assumption of independence, the probability by which they

a distribution vector 6 is estimated as

Let bj denote a

，…，b n } ’ under

are generated by

P{D\e) = n HP(而=
bjGD t=l

(4.1)

6�which fits the where b] is the zth element of the binary vector bj. The best

tiiodel, is ‘

§ = argma.x\og{P{D\e)). (4.2)

Chapter 4. Approximate Homogeneous Graph SummarizsLtion 27

The well-known solution based on the maximum likelihood estimation is

Sbj€D bj p � = 1) = 一了石： (4.3)

We use information theory to measure the quality of these distribution vec-

tors. Recall that in information theory, entropy [14] is a measure of the un-

certainty (randomness) associated with a random variable X, which is defined

as ‘

H{X) = - J 2 p { x) \ o g , p { ^) . (4.4)
xex

Consider a random variable Xi whose value domain is {0,1}, the probability of

Xi equals 0 or 1 is p{xi = 0) or p{xi = 1). The entropy of an unknown sample of

the random variable Xi is maximized when p(xi = 0) = p(xi = 1) = 1/2, which

is the most difficult situation to predict the value of an unknown sample. When

p(xi = 0) — p(xi = 1), we know that the value of the unknown sample is more

likely to be either 0 or 1 accordingly, which is quantified in a lower entropy. The

entropy is zero when p(xi = 0) = 1 or p(xi = 1) = 1. For a Bernoulli distribution

vector p(x), assuming the contained random variables are independent of each

other, the total entropy of a Bernoulli distribution vector is

if(p(x)) = (4.5)
i=l Xi=0

If binary vectors within the set D are similar to each other, or homogeneous,

then for each random variable Xj, most of its values should be similar, resulting

in a low i7(p(x)).

4.2.1. Entropy-Based Relaxations of Criteria

In the following part, we discuss the three relaxations in Definition 4.2.

Based on these observations, we can measure the quality of the three relaxations

in a unified model inspired by information theory.

Observation for Q^: For each node Vi G V, 7(1^) = (ai,…’ ad) is the attribute

vector of Vi, where Oi is the value of attribute Ai. As mentioned, we repre-

Chapter 4. Approximate Homogeneous Graph SummarizsLtion 28

Node ai 32 33 34

Si
V1 1 1 1 0

Si •2 1 1 1 1 Si
V3 0 1 1 1

S2
V4 1 1 0 0

S2 V5 1 0 0 1 S2
ve 0 0 1 1

Entropy P(ai=1) p(a2=1) p(a3=1) P(a4=1)
Si 1.85 0.66 -1 1 0.66

S2 3.70 0.66 0.33 0.33 0.66

ai 32 33 84

Figure 4.1: Entropy-Based At- Figure 4.2: The Conversion from At-

tribute Homogeneity tributes to Nodes

sent categorical attribute values as bitmaps, so we also use â to indicate the

bitmap when there is no confusion. For a certain node set, Vj, in an .approx-

imate homogeneous partition, the attribute information of each node Vi e Vj

is in form of a binary vector by concatenating these bitmaps together, denoted

as a = (a i , a ^) . The attribute information of a node set is homogeneous if

the corresponding binary vectors are similar to each other. A binary Bernoulli

distribution vector can be estimated from these vectors by Eq. (4.2). When the

majority of nodes in a node sets share a same attribute value, the corresponding

bit in the Bernoulli distribution vectors approaches to 1. When the majority of

nodes do not have a certain attribute value, the corresponding bit approaches to

0. In this case, we can infer from the Bernoulli distribution where a node has or

has not a certain attribute value by the expected value of the corresponding bit.

Then it is better if each column in the Bernoulli distribution vector approaches

to 1 or 0. When the value is 0.5, it is the worst case that we are uncertain to

infer any useful attribute information, since the confidence of the expected value

is like the one of a random guess. Entropy is an excellent quality measure in this
-t » •

case, and low entropy means high confidence based on Eq. (4.5).

As shown in Figure 4.1, each row in the top table represents a node in the

graph. For each node, there are four attributes: (ai, a2, as, 04). The first three

9 0 0 0
• 1 0 1 0 0

12 1 1 1
p(b|=1) 0.6 0.2 0.2
Entropy 1.37

〉

1 1

1 1

1 1

T^ 1
V： 1

3 1

1 1 T 1 t 1 1 ! 1 1 1 一

^ 1p111j2

Figure 4.3: Entropy-Based Homogeneity of Connection Strength

rows belong to the super-node Si (or node set Vi), while the remaining belong

to the super-node S2 (or node set V2). It is easy to see that nodes in Si are more

similar to each other than nodes in S2. The corresponding Bernoulli distribution

vectors for 5i and S2�are represented in the lower table, as well as their entropy

values. As we can see, the entropy value of S\ is much lower than that of S2�

which is consistent to that nodes in S\ are more similar to each other.

Observation for QN{vk)' Nodes in the same homogeneous node set VJ should

have similar neighborhood relationship in the super-graph. Note that if a node

set has good quality according to the third criterion, it must be also good by the

second one, since the second criterion is in fact a special case of the third one.

If there is only one neighbor for nodes in a node set, then the second criterion

and the third one are the same. Obviously, is a stronger condition than

QN(vk)i because Q\Vj\vk measures the quality based on not only whether there are

connections between nodes in Vi and Vj, but also the number of connections for

Vk G Vi. Therefore, we can ignore Qnm^ and concentrate on which we

will discuss next.

Observation for Consider a super-graph Gs�and we use Vj (node set)

and Si (super-node) in Gs interchangeably. If there is a super-edge between

Chapter 4. Approximate Homogeneous Graph SummarizsLtion 29

i m

I

s

Chapter 4. Approximate Homogeneous Graph SummarizsLtion 30

super-nodes Si and S j � t h e n nodes in Si should have similar total number of

edges to nodes in Sj. As discussed, it is not appropriate to put two nodes

together, whose connection strengths to a certain node set differ a lot, because

their importance to the node set is not in the same level. We can keep two

histograms for each super-edge [S^ Sj), namely, Si-to-Sj and Sj-to-Si, to record

the distributions of neighbors in Sj {Si) of nodes in Si {Sj). We explain it by

using an example as shown in Figure 4.3. There are three node sets (super-nodes)

in the partition: Si, S2, and Sz. At the upper left corner in Figure 4.3, it shows

how these super-nodes are connected by super-edges. For example, it indicates

that every node in S2 has 10 neighbors in Si on average. The histogram of S2-

to-jSi is drawn on upper right corner, where the x-axis indicates the number of

neighbors in Si for a node in 82- The y-axis indicates the number of nodes in

S2 corresponding to each value on x-axis. The histogram shows that there are

2 nodes within S2 which have 9 edges connected to nodes in Si，2 nodes which

have 10 edges and 1 node which has 12 edges. Intuitively, a homogeneous node

set should have a tight spread range on x-axis in the histogram. Again, entropy

is a good measure to show how homogeneous inside each node set. To do so,

we present the histogram in another way as shown in the bottom right corner.

The x-axis still indicates the number of neighbors in for a node in S2�while

the thickness of each bar indicates the number of nodes in 5i corresponding

to each value on x-axis. Based on this intuition, we transform each bar in the

bottom histogram to a binary vector of all I's. For example, for bar indicating

the number of neighbors�is 9, a binary vector of length 9 is constructed. We

first concatenate O's at the end of each binary vector to make them of the same

length. Then we remove the common I's in the suffix of these vectors, because

the entropy on these columns are all zero and we focus on only the difference

in these binary vectors. The remaining binary vectors are shown in the bottom

left table in Figure 4.3. Similar to Q^, a Bernoulli distribution vector is learned

from these binary vectors. The more similar these vectors are, the lower entropy

Chapter 4. Approximate Homogeneous Graph SummarizsLtion 31

of the distribution vector is, as shown in the table.

In summary, the homogeneity of a node set can be measured by the con-

cept of entropy of these Bernoulli Vectors. Let e = (Si, Sj) denote a super-edge

between two super-nodes Si and S j � a n d let Vi denote a node in super-node Si.

The entropy of super-node Si consists of two parts: the attribute part and the

neighborhood connection strength part. We propose to convert the attribute ho-

mogeneity into neighbor relationship homogeneity to unify the two parts. Figure

4.2 shows our conversion. For each attribute value, we add an additional node

in the original graph G. Here we have four attribute values {ai, a2, <23，(24}, so we

add four corresponding nodes in G. For each node, we add edges between it and

those nodes corresponding to its attribute values. For example, in Figure 4.2，

node vi has attribute values {01,02,^3}, so we add edges between vi and nodes

representing ai, 02, and ^3. In this way, we convert the attribute homogeneity

into neighbor relationship homogeneity. Then, we apply the same approach as we

have discussed in Observation for to calculate the attribute homogeneity.

The entropy for Si is

k+l
EntropyiSi) = ^ i f{p(bf 二 1))， （4.6)

where A; is a user-given parameter for controlling the number of node subsets

in the partition V and I is total number of distinct attribute values, b"Ms the

mth element in b, and p(bj" = 1) is the Bernoulli distribution vector estimated

by Eq. (4.3) for Si to Sj or dj�depending on whether the connections are to a

super-node or attribute value node. As we can see from the above analysis, the

total entropy for every super-node in exact homogeneous partition is zero.

Users might prefer attribute homogeneity over connection strength homo-

geneity or vice versa. To achieve this, we allow users to assign weights during

the entropy calculation as follows in Eq. (4.7).

. I k
WeightedEntropyiSi) = = 1))H-(1-A) ^ i : f (p (b f = 1)). (4.7)

Chapter 4. Approximate Homogeneous Graph SummarizsLtion 32

Now, p(aj" = 1) is the Bernoulli distribution vector estimated by Eq. (4.3) for

Si to node aj, and p(bj" = 1) is the Bernoulli distribution vector estimated by

Eq. (4.3) for Si to super-node Sj. When A equals 1/2, the entropy score is one

half of the entropy computed by Eq. (4.6). And the weighted entropy for every

super-node in the exact homogeneous partition is still zero.

The optimized approximate homogeneous partition is the partition that min-

imizes the ranking score of the super-graph, which is the total weighted entropy

of all nodes:

R{V) = IŜ I X WeightedEntropy{Si), (4.8)

where \Si\ is the number of nodes contained in Si. What we study next is how

to find the optimized approximate homogeneous partition V for a given graph

G. Based on V, the graph summarization Gs can be constructed.

4.3. Homogeneous Graph Summarization

In this section, we present the algorithms for exact homogeneous partition

and approximate homogeneous partition.

4.3.1. A Lazy Algorithm for Exact Homogeneous

Partition

Exact homogeneous partition is the best summary in terms of homogeneity,
• *

and we extend the algorithm in [50] to compute exact homogeneous partition

using a simple but effective approach.

Algorithm 4.1 outlines the procedures to compute the exact homogeneous

partition based on Definition 4.1. Recall that a is the concatenated attribute

vector for nodes. Suppose there are m distinct attribute vectors, the nodes in

graph G are partitioned into m groups first according to the distinct vectors.

Then, the algorithm constructs an n x m node-to-group matrix M, where M{i,j)

is the number of i/j's neighbors in Sj. One thing worth noting is that nodes

Chapter 4. Approximate Homogeneous Graph SummarizsLtion 33

Algorithm 4.1 A Lazy Algorithm for Exact Homogeneous Partition

Input: A graph G = {V, E, r)

Output: The exact homogeneous partition V.

1： Partition V into m node sets based on distinct attribute value vectors a;

2: Construct an n x m node-to-group matrix M;

3： while True do

4： Sort rows within each group;

5： Let split flag be an all-zero binary vector of length n;

6： for each cell M{i,j) in M do

7： if M{iJ) + M(i + 1’ j) then

8： split f lag [i] = True;

9： end if

10： end for

11： if split flag is all False then

12： break;

13： end if

14： Split each node sets according to split flag to form m' new node subsets;

15： Reconstruct the n x m' node-to-group matrix M;

16： end while

17： Output the exact homogeneous grouping V.

belonging to the same group are stored adjacently in M and the order of groups

in rows is the same as the order of groups in columns. At line 5, Algorithm 4.1

marks the split positions using a binary vector of length n. After inspecting all

the groups, Algorithm 4.1 reconstructs the node-to-group matrix M based on

the marked split positions.

Because the matrix reconstruction is costly, we do not reconstruct M imme-

diately after a split position is found. There are many unnecessary reconstruc-

tions during the split operations. An example is shown in Figure 4.4. Suppose

the left matrix is the initial node-to-group matrix after sorting, and we find Si

Chapter 4. Approximate Homogeneous Graph SummarizsLtion 34

S.

S,

Si S2…
V1 0 0
•2 1 2
V3 1 3
V4 1 0
vs 2 1
•6 2 1

Si S.

False True False
Vl V2 •3

>

1

2
 3

 4

V
 V

 V

 V

{
r
l
 1

+

1

n

s
 s

s, •5
•6

S n+1

Figure 4.4: Data Structure for Lazy Exact Homogeneous Partition

should be split into two subsets. If we reconstruct the matrix in each loop, the

matrix will be like the one on the right. As we can see that the next node set to

be split is Sn+i, the last reconstruction of matrix is not necessary. Instead, we

mark these split positions using a binary array and reconstruct only once after

we check all the possible positions. We call it lazy exact homogeneous partition.

Next we will present two algorithms for approximate homogeneous partition:

an agglomerative merging algorithm and a divisive /c-means algorithm.

4.3.2. An Agglomerative Algorithm for Approximate

Homogeneous Partition

As discussed, though exact homogeneous partition is of the highest quality

based on homogeneity, its size is almost as large as the original graph. To further

reduce the size of a summary of exact partition, we propose an agglomerative

algorithm which is presented in Algorithm 4.2, which takes the exact homoge-

neous partition V as the input. The main idea of the agglomerative algorithm is

to maintain a matrix to record the change in total weighted entropy for each pair

of node sets if they are merged, and merges the pair with the minimum value

repeatedly. Each merging will decrease the total number of node sets by one.

In the loop from line 3 to line 6，Algorithm 4.2 calculates the initial value

of total weighted entropy of the exact partition after merging each possible node

pair (Vi, Vj). Recall that the input is the exact partition, whose total weighted

Chapter 4. Approximate Homogeneous Graph SummarizsLtion 35

Algorithm 4.2 The Agglomerative Algorithm for Approximate Partition
Input: The exact homogeneous partition V = {Vi, • • • , Vm}\ a number k.

Output: The approximate homogeneous partition Va.

1: Va 二 V.、

2： Let A be an m X 771 empty matrix;

3： for each subset pair Vi and Vj in V do

4: Vii = {ViyjVj]\{VuVj}\

5: A,,- = RCPij) /* Eq. (4.8) */

6： end for

7： while \Va\ > k do

8： Let (Vi, V^) be the pair of node sets with the minimum 八”；

9: V A - ^ V A U { V i U V m } \ { V M \

10： Update A based on Vi and Kn；

11： end while

12： Output the approximate homogeneous partition Va\

entropy is zero. At the end of line 6, Matrix A(z, j) stores，the change of total

weighted entropy if we merge node set Vi and Vj, Note that we only use the

upper half of A(i, j) since A(i, j) = A{j, i). In each iteration from line 7 to line

11, the algorithm merges the pair of node sets with the minimum change in total

weighted entropy to generate new partition, and update matrix A.

Now, the problem is how to update matrix A. A naive way is to recompute

the whole A based on the current partition Ta, which is slow and not necessary,

since merging one pair of nodes only affects partial values in A. Suppose (Vi, Vj)

is the pair to merge, and i < j. The merging is done by adding all nodes in Vj to

Vi and deleting Vj. This operation only affects the values in two types of cells in

A. The first type is the cells for pairs involving K, which is easy to understand,

since Vi is now changed to Vi U Vj. Thus, we have to recompute the change in

total weighted entropy for these pairs of node sets.

The other type is the pairs of node sets involving the neighbors of (K, Vj)-

Chapter 4. Approximate Homogeneous Graph SummarizsLtion 36

>

Figure 4.5: An Example of Updating Matrix A

An example is shown in Figure 4.5. Suppose 14 and V； are neighbors of (V ,̂ Vj).

It does not matter whether V̂ and Vi are both neighbors of (K, V̂.)，or just one of

them is. Before the merging of (K, Vj), A{k, I) stores the change in total weighted

entropy if we merge V̂ and Vi, while Vi and Vj are still separated. Once Vi and

Vj are merged, the change of I) consists of three parts:

1. \Vk U Ml X WeightedEntropy�v“Vj}(Vk U Vi)

— \Vk\ X WeightedEntropy^ViyjyiVk) 一 |V/| x WeightedEntropy^y.y.}(V；);

2. |Vi| X WeightedEntropy\^yf^uVi){yi) + \ Vj\ x WeightedEntropy{Vk�Vi}(Vj)

_ VJI X WeightedEntropy{Vf^，Vi�(yi) 一丨巧I x WeightedEntropy{v^y^]{Vj)\

3. The change of neighbors of (V/, Vk) except Vi and Vj.

The subscript of WeightedEntropy means the portion of the total weighted

entropy related to node sets in the subscript. As we can see, after the merging of

(Vi, Vj), the third part does not change, so we only need to recompute the first

part and the second part.

Chapter 4. Approximate Homogeneous Graph SummarizsLtion 37

4.3.3. A Divisive /c-Means Algorithm for Approximate

Homogeneous Partition

In this section, we present a divisive k-means based approximate algorithm

to find the optimized approximate homogeneous partition using the Kullback-
争

Leibler (KL) divergence. The Kullback-Leibler divergence [58] is a measure of the

difference between two distribution vectors p and q, which is defined as follows,

m p II q) = E E 咖) l o g 禁 . (4.9)
t=i 1<=0 q ��

In the view of information theory, KL divergence measures the expected number

of extra bits required to encode samples from p when using a code based on q,

rather than using a code based on p. We assume the Bernoulli distribution vector

for a certain node group Si is p. For each node in group S i�le t q be the Bernoulli

distribution vector for a node Vi E Both p and q are the concatenated vector

of aj and bj in Eq. (4.7). Then we have

KL(p(x) II q(x))
Vi^Si

ViESi
d

ViP^i = 1) „/ n、1 p{xi

i—1

= l)(logp(xi = 1) - \ogq{xi = 1))
VieSi t=i

+ p{xi = O)(logp(xi = 0) - logq{xi = 0)))

'P{xi = 1) log(7(xt == 1) 一 p{xi = 0) log q{xi = 0) — H{p))
Vi€Si i=

, �J l v i e S i P i - ^ i = 1) 1 , 1、 Ylvi^Si Pi^i = 0) 1 , ^
= 几 ⑷ g (一 ~ ^ 1 社 二 1) - " " " " =

d
=n(si) = 1) loggOci = 1) - q{xi = 0) logq'(a;i = 0))

t=i

=n{si) * i / (p(x)) .

Chapter 4. Approximate Homogeneous Graph SummarizsLtion 38

、
•r- -

Thus, the optimized approximate homogeneous partition that minimizes R{Va)
is the partition that minimizes the sum of KL{p{x.) || q(x)), which leads to the

following divisive fc-means approximate algorithm presented in Algorithm 4.3.

Algorithm 4.3 starts from one node set by putting all the nodes in G to-

gether. In each loop from line 2 to 20, Algorithm 4.3 first splits the node set

with the maximum total weighted entropy, and then applies /c-means cluster-

ing method based on KL-divergence. The split 'procedure is from line 3 to line
V �

14. First, a random perturbation of nodes in the node sets with the maximum

weighted entropy is performed. Then we inspect these nodes one by one accord-

ing to the order in the perturbation. If moving the node from the old node set

to a new node set decreases the total weighted entropy, we move it, otherwise,

it stays in the old node set. Once the split is finished, Algorithm 4.3 performs

/c-means clustering from line 16 to line 20, to minimize the sum of KL-divergence.

When the number of node sets equals k, the approximate homogeneous partition

Va is returned.

4.4. Experimental Evaluation

In this section, we report the experimental results of our proposed summa-

rization framework on various real datasets from DBLP Bibliography [1]. The

algorithms are implemented by using matlab and C + + . All the experiments

were run on a PC with Intel Core-2 Quad processor and 3GB RAM, running

Windows XP. One thing worthy noting is that we did not optimize our sources

for multiple core environment.

Chapter 4. Approximate Homogeneous Graph SummarizsLtion 39

A lgo r i t hm 4.3 The Divisive A:-Means Algorithm for Approximate Partition
Input: A graph G = (V, E, F), a number k\

O u t p u t : The approximate homogeneous partition Va'

1: Va = {V}\

2： while I Pa I < A: do

3： Let Vm be the node set with the maximum x WeightedEntropy{Vm)\

4: Generate a random perturbation L of nodes in Kn,

5： Vi = Kn；

6： Vj = 0;

7： for V e L do

8： we = X WeightedEntropy{Vi) + x WeightedEntropy{Vj)\

9： we' = (iVil - 1) X WeightedEntropy{Vi \ {t;�)

+ (1^1 + 1) X WeightedEntropyiYj U
0： if we' < we then

1： > i = W i ‘

2: Vj = VjU{v}- -

3： end if

4: end for

5： VA = VAU{VuVj}\Vm

6： repeat

7： Evaluate the Bernoulli distribution vectors aj 's and bj's for Vk G V\

8： Concatenate aj 's and bj's together for V^ G Va\

9： Assign each node v 6 V(G) to a new cluster Vk according to the

Kullback-Leibler divergence in Eq. (4.9);

20： un t i l the change of R{Va) is small or no more changes of the cluster

assignment

21： end while

22： Output the approximate homogeneous partition Va.

Chapter 4. Approximate Homogeneous Graph SummarizsLtion 40

Table 4.1: The DBLP Bibliography Datasets

Datasets # of Nodes # of Edges Average Degree

D1 DM 1695 2282 1.35

D2 DB 3328 11379 3.42

D3 DB+DM , 5023 15262 3.03

D4 DB+DM+IR 6184 18710 3.02

Table 4.2: The Keywords of Topics

Topics # Keywords

32 text, classification, vector, categorization

66 mining, patterns, frequent, sequential...

76 service, scheduling, extending, media

80 clustering, matrix, density, spectral

:.4.1. Datasets

We construct a co-author graph with top authors and their co-author rela-

tionships, where the authors are from three research areas: database (DB), data

mining (DM) and information retrieval (IR). Based on the publication titles of

the selected authors, we use a topic modeling approach [21，62] to extract 100

research topics. Each extracted topic consists of a probability distribution of

keywords which are most representative for the topic.

By using authors from partial or all areas, we construct four real datasets in

our experiments. The basic statistics of the four datasets are presented in Table

4.1, including the number of nodes, the number of edges and the average degree of

nodes. There are total 100 topics in the original datasets and in the experiments,

we remove the topics from authors, whose probabilities are extremely small.

Each author is related to several topics whose probabilities are larger than 5%.

Example of the topics are shown in T ^ l e 4.2, as well as the top keywofSs in

0 „
0 20 40 60 80 100 0 20 40 60 80 100

Topic Order Topic Order

(a) D1 (DM) (b) D2 (DB)

Figure 4.6: Topic Frequency in Dataset D1 and Dataset D2

Table 4.3: The Exact Partition of The DBLP Bibliography Datasets

each topic.

All these topics are not of equal importance. We present the frequency dis-

tribution of topics in datasets D1 (DM) and D2 (DB) in Figure 4.6 in descending

order. The x-axis is the topic order and the y-axis the frequency of a topic which

is defined as the number authors doing research on the topic. For dataset D1 in

Figure 4.6(a), the majority of topics appear less than 100 times, while only less

than ten topics are very hot among authors. For dataset D2, the frequencies of

most topics are below 200.

4.4.2. Exact Homogeneous Partition

Table 4.3 presents a comparison between the number of groups and the

nodes in the original graphs. The number of distinct attribute vectors and the

number of exact�名roups are quite close to the number of nodes. Therefore, the

exact homogeneous partition cannot obtain a graph summary of a reasonable

Chapter 4. Approximate Homogeneous Graph SummarizsLtion 41

D1 D2 D3 D4

of Nodes 1695 3328 5023 6184

of Distinct Attribute Vectors 1492 2931 4401 5409

of Exact Partitions 1604 3219 4829 5912

i O Q j

A
o
u
a
n
b
a
J
」

x
o
s
n
b
a
J
J

10 D1 D2 D3
Datasets

D4

Figure 4.7: Exact Homogeneous Sum- Figure 4.8: The Running Time of Ex-

marization of Dataset DM act Algorithms

size. Figure 4.7 shows the graph structure of the main connected component

generated by exact partition algorithm on dataset DM, which is very large and

not possible for users to explore. In Figure 4.8, we compare the running time of

our lazy exact homogeneous partition algorithm with the exact partition algo-

rithm, denoted as exact partition. Unlike the lazy partition algorithm, the exact

partition algorithm reconstructs the matrix M in Algorithm 4.1 immediately

after discovering a split position. The lazy exact partition algorithm is more

than 10 times faster than the exact partition algorithm due to the saved time of

matrix construction.

4.4.3. Approximate Homogeneous Partition

We perfumed our approximate homogeneous algorithms using three values

of A: 0.25, 0.5 and 0.75. Due to the high time complexity, we only apply our ag-

glomerative algorithm on datasets Dl, D2 and D3. Figure 4.9 shows the running

time of the agglomerative algorithm performed on these three datasets. Both

the x-axis and the y-axis are in log scale. We performed our divisive /c-means

algorithm on all the four datasets and report the results for datasets D2, D3

and D4 in Figure 4.10. fc-means algorithm is almost lOx times faster than the

國Lazy Exact Partition
• E x a c t Partition

Chapter 4. Approximate Homogeneous Graph SummarizsLtion 42

i
o
 o

 o

 o

i
f

 i

 H
I

 T
—

(
S
p
u
8
a
s
)

 a
E
F

1

D2 (DB) (b) D3 (DB+DM) D4 (DB+DM+IR)

Figure 4.10: The Running Time of The Divisive /c-Means Algorithm

agglomerative algorithm when k is small, which common in real applications.

An interesting phenomenon is that the running time of small A in\ihe agglomer-

ative algorithm is less, while the running time of large A in the d iv ide /c-means

algorithm is less. The reason is that the agglomerative algorithm starts frorh^

the exact partition, and a large A cannot boost the affect of attribute too much.

In the divisive fc-means algorithm, a large A usually means less iterations in the

A:-means clustering algorithm, as we observed during the experiments.

Figure 4.11(a) shows the average entropy of the approximate homogeneous

partition by the agglomerative algorithm on dataset Dl, where we present the

average entropy for different values of group number and A. As the group num-

ber shrinks, the average entropy increases. Since the input of the bottom-up

approximate algorithm is the exact homogeneous partition, the average entropy

is 0 at the beginning. Figure 4.11(b) shows the average entropy of the approx-

Chapter 4. Approximate Homogeneous Graph SummarizsLtion 43

10，

<
l

【
r
)

<
1
【
I
)

•9-X=0.25
-B-X=0.50
AX=0.75

40 BO 160 320 640

10，

10'

•e-X=0.25
•B-X=0.50
AX=0.75

40 80 1603206401260 4829

(a) Dl (DM) (b) D2 (DB) (c) D3 (DB+DM)

Figure 4.9: The Running Time of The Agglomerative Algorithm

！5

{
S
P
U
0
3
0
S
)

 B
E
F

r
, AX=0.75

10 I— •——, •
10 20 30 40 50 60 70 80

I：^
I # ex=o.5o

， |AX=0.75
1 。 1 0 20 30 40 50 60 70 80

60 BO 60

(a) The agglomerative algorithm(b) The divisive fc-means algo- (c) D2 (DB), A = 0.5

on D1 (DM) rithm on D1 (DM) ‘

Figure 4.11: R(Pa)/^

imate homogeneous partition by the divisive /c-means algorithm on dataset Dl.

As we can see, when k is in the range from 10 to 80，the summary generated

by the divisive /c-means algorithm is much better that one generated by the

agglomerative algorithm, in terms of the average entropy. Figure 4.11(c) re-

ports the results on dataset D2 by these two algorithms when A is 0.5, which

once again shows that the divisive /c-means algorithm performs better than the

agglomerative algorithm, when k is small.

We present some interesting examples from summary of dataset D2 (DB),

generated by the agglomerative algorithm when the group number is 60. For

ease of presentation, we remove the distribution on edges, while the values of the

entropy for these distributions are small. Each node in Figure 4.12 represents

a group of researchers. The tables in Figure 4.12 present the topic number

and the main keywords of each topic. Figure 4.12(a) shows that a group of

researchers in time series domain tend to cooperate with themselves, where the

size of node Sg is 25. Figure 4.12(b) shows that researchers working on three

different topics cooperate a lot, where the size of node S5 is 28. We can infer

from these keywords that these researchers are working on the core database

technology. Figure 4.12(c) shows three groups of researchers cooperate a lot,

where two of them mainly work on knowledge representation, while the third

group mainly works on decision tree. The size of node Sg, Sie and ^20 are 26，12

、

6-X = 0i5
•B-X = 0.50
A x = 0.75

Chapter 4. Approximate Homogeneous Graph SummarizsLtion 44

HytmrnW
咖

咖

咖

3

2

1

}
f

/

 s
8
s
>
d
G
J
l
u
3

4

2

0̂2 O!4 oi oi
Average of Column Entropy of Bernoulli Vectors

.2 0.4 0.6 0.8
Average of Column Entropy of Bernoulli V/eclors

(a) D1 (DM), A; = 40 (b) D2 (DB), fc = 60

Figure 4.13: Outliers Found by The Divisive /c-Means Algorithm

and 35, respectively.

Figure 4.13 plots the average entropy of all columns in all the Bernoulli

distribution vectors from datasets D1 and D2. The x-axis is the average entropy

of attributes and the y-axis is the average entropy of connection strength. Figure

Chapter 4. Approximate Homogeneous Graph SummarizsLtion 45

Topic Keywords:
12 time, series, real, subsequence

(a) Example

Topic Keywords
54 implementation, db2, advanced, universal
90 database, object, oriented, serve, sql
75 control, concurrency, transaction, recovery

Topic Keywords:

66
knowledge, base,

representation,
acquisition, bases

Topic Keywords;

66
knowledge, base,

representation,
acquisition, bases

Topic Keywords:
18 decision, trees, tree, induction

(c) Example 3

Figure 4.12: Real Examples from Summaries

S
J
O
P
a
>
 ！
l
l
n
o
E
a
m
 j
o

 A
d
o
q
u
g

 1
3
-
0
0
 P
 v
a
c
v
>
<

u
 ̂

 d

 ̂

 S
i

 f
f
l
l

d
 d

 d

 d

S
J
O
P
a
>
 I

 一

I
n
o
E
a
g

 A
d
l
u
B

 1
3
-
0
0
 w
o
 u
a
G
U
>
<

Chapter 4. Approximate Homogeneous Graph SummarizsLtion 46

4.13(a) shows results from dataset D1 (DM) when k = 40. As we can see, most

points are close to (0.3, 0.4) indicating a good confidence, while a few points are

closed to (1, 1), which are considered as outliers in the summary. There are also

outliers at (0, 1), which means these outliers have the same attribute information

but not the neighborhood relationships.

Figure 4.13(b) shows results from dataset D2 (DB) when k = 60. Most

points are close to (0.35, 0.4), while a few outliers are far away from the main

cluster.

CHAPTER 5

F R E Q U E N T SUBGRAPH
SUMMARIZATION WITH E R R O R
C O N T R O L

In this chapter, we address our research work on frequent subgraph summa-

rization. This chapter is organized as follows. We formally define the problem of

frequent subgraph summarization in Section 5.1 and propose the summarization

algorithms in Section 5.2. Section 5.3 describes how to query the summarization

to restore a subgraph and its frequency. We report the experimental results in

Section 5.4.

5.1. Problem Statement

A graph G is a triple {V^ E,厂)，where V and E are the node set and the

edge set, respectively.厂 is a finite set of labels, and each node v ^ V ox edge

{u^v) £ E is mapped to one or more labels in JT, denoted as r(v) or r(u, v). A

graph p is a subgraph of a graph G if there exists a subgraph isomorphism from

g to G、denoted bs g C G. G is called a supergraph of g.

Definition 5.1. Subgraph Isomorphism； For two graphs g and G、G contains

a subgraph that is isomorphic to g、if there is an injective function h : Vg

Vg, such that 6 Vg^Pgiy) = rb("C^))’ and V(n,^;) G Eg,{h(u),h{v)) e Eq

Chapter 5. Frequent Subgraph Summarization with Error Control -48

and rg(u,v) = rG{h{u)^ where Pg and Pq are the label set of g and G�

respectively.

Definit ion 5.2. Frequent Subgraph. Given a collection V of graphs, a graph

g is frequent if f{g) > /饥生打，where f[g) is the number of graphs in V containing

g�and fmin is a user-specified minimum frequency threshold.

A frequent subgraph p is a maximal one if and only if there does not exist

another frequent subgraph g' and g C g'. A frequent subgraph ^ is a closed

one if and only if there does not exist another frequent subgraph g\ g C g'

and f{g') = fig)- Anti-monotonicity holds for frequent subgraphs in a graph

database, which means the subgraphs of a frequent subgraph are also frequent.

5.1.1. Subgraph Summarization and Restoration Error

Given a set T of frequent subgraphs, we aim to find a concise and in-

terpretable summarization of frequent subgraphs which is friendly for users to

explore and analyze. We decompose the meaning of friendly into two aspects:

descriptive and informative. By descriptive, we can identify that a particular

subgraph is a member from the summarization. By informative, the concise rep-

resentation should maintain as much information of the frequent subgraphs as

possible, to be specific, structures and frequencies. That is, users can restore the

structure and the frequency of a certain subgraph accurately, based on only the

concise summarization itself. If there is no error between the restored subgraphs

and the original subgraphs, this summarization is lossless. While due to the

high complexity of graph structures, the lossless summarization may not achieve

a high compression ratio. In our proposed framework, there is no information

loss in structures, while frequencies are summarized by probabilistic models. We

define the relative restoration error as follows.

Definit ion 5.3. Average Relat ive Res tora t ion Er ror . Let T denote the set

of frequent subgraphs. For each subgraph g ^ T, f{g) and r{g) are the true

Chapter 5. Frequent Subgraph Summarization with Error Control -49

Figure 5.1: Partial Order Graph of Frequent Subgraphs Based on Containment

Relationship

frequency and the restored frequency of g�respectively. The relative frequency

restoration error of g is - / (p) | / / (p) , denoted as 5{g). The average relative

restoration error of the frequent subgraph set T is

1
T

r[g) 一 fig)

f{9)
(5.1)

Given the average relative restoration error as the summarization quality

measure, the optimal frequent subgraph summarization can be defined in two

ways. One is given a fixed integer as the number of partitioned subsets in sum-

marization S�the total restoration error should be minimal. The other is given

a maximum tolerance a of the average relative restoration error, the number of

partitioned subsets in summarization should be minimal. We adopt the latter

one, because we aim to summarize frequent subgraphs with preserved frequen-

cies.

Chapter 5. Frequent Subgraph Summarization with Error Control -50

5:1.2. Regression for Subgraph Summarization

Before we formally define the problem, let us first review the concept of

regression models and how it adapts well in the context of frequent subgraph

summarization. As mentioned, a frequent subgraph indicates all its subgraphs

are frequent, which is called anti-monotonicity. Based on the subgraph contain-

ment relationship, a partial order graph (POG) is composed with all frequent

subgraphs. Figure 5.1 shows an example. Each node in the POG is a frequent

subgraph and subgraphs in the same level are of the same size, measured by the

number of edges. In the POG, two subgraphs are connected by a directed edge

from the larger one to the smaller one, if one is a subgraph of the other and differs

by one edge. Suppose p is a subgraph in the POG, we use connected children to

represent its connected neighbors smaller than g, and g is called connected par-

ent. We use reachable children to represent all the nodes that can be explored by

traveling along with the edges in the POG, starting from g. A maximal subgraph

does not have a connected parent in POG. If there is more than one maximal

frequent subgraph, we add a union of all maximal frequent subgraphs as the root

of the POG. If there is more than one connected component in a POG, we handle

each component one by one.

Suppose g and g' are two connected subgraphs in the POG, where g and g'

differ by only one edge e, that is, pU {e} = g'. Let p{g'\g) denote the conditional

probability that a graph G from V containing g also contains g'. Since p U { e } =

g\ we denote as p(e\g)^ the conditional probability that a graph G from

a graph database V containing g also contains edge e. Let f{g) denote the

frequency of a frequent subgraph g�then

P �P) = P (e b) 二 傲 . (5.2)

Given any two frequent subgraphs gi and gi that differ by / — 1 edges

{ei，e2，•.. ,e/-i}, then

f{9i) = f{9i) x p (e i ’ e 2 ， … (5 . 3)

Chapter 5. Frequent Subgraph Summarization with Error Control -51

Let Qi denote the graph piU{ei, • • •，Si-i}. Following the chain rule of conditional

probabilities, we have

f{9i) = /(Pi) X Y[p{ei\9i)- (5.4)
i = l

In order to model the joint probability distribution, we apply the following in-

dependence assumption: whether a frequent subgraph g contains an edge e is

independent of the structure of ^ \ {e}. Without loss of generality, we use p{e)

to denote p(e|*), where * denotes an arbitrary subgraph g that g U {e} is fre-

quent. Under this assumption, we can rewrite Eq. (5.4) for subgraph gi and gi

as follows:
i-i

f{9i) 二 /("i) X ！！^̂ ⑷. (5-5)
i = l

Given a frequent subgraph g�let Q 二 {夕1，"2，…,Qn] be the frequent sub-

graphs reachable from g in the POG. Suppose we know the frequency f{g) of g�

as well as all the probabilities p(ej) of edges in g, with the independent assump-

tion, we can estimate the frequency of each graph gt E： Q according to Eq. (5.5).

By applying the logarithmic transformation on both sides of the equation, we /
t-i

l o g / � =l o g / (^ i) + X^logp(ej). (5.6)

have

Similar to the regression approach in [27], we can build a regression model Y =

Xp + E for Q, where E is the matrix of error terms,

l o g / � ^eiGt/i • logp(ei)

Y = • • • and P = • • •

log/(p) - l o g / (p n) leiGSn • . . 1 ^ logp{ei)
(5.7)

Here, laegj is an indicator that edge ê belongs to graph gj. laegj 二 1 if Ci G Qj,

and lei^Qj = 0, otherwise. The least square estimation [46] of the above regression

model is to minimize the sum of squares of the errors (residues), which is

5 = min|(y- xpy{Y - xp)^ (5.8)

Chapter 5. Frequent Subgraph Summarization with Error Control -52

Then the solution is

P = argrmn | (y - XP)'{Y - = [X'Xy^X'Y. (5.9)

Union of M a x i m a l F requen t Subgraphs : By applying the above regres-

sion approach, we are able to summarize any frequent subgraph g in the POG,

together with all its reachable children, as a regression model. We call g a tem-

plate subgraph, or a template for brief. Recall that in the POG of frequent

subgraphs, each node represents a frequent subgraph, which is either itself a

maximal frequent subgraph or a subgraph of a maximal frequent subgraph. In

order to maintain the information of all frequent subgraphs, each maximal fre-

quent subgraph needs to be represented by a regression model. Therefore, the

total number of such models can be as large as the number of maximal frequent

subgraphs, which is too many. To solve this issue, we introduce a union of maxi-

mal frequent subgraphs as a template, called union template. For example, given

two maximal frequent subgraphs gi and 92�if there are common sub-structures

between them, we consider to merge them into a compact union by eliminat-

ing the duplicated sub-structures as much as possible. It is worth noting that

two maximal frequent subgraphs without any common sub-structure can not be

merged into a union template, because if they are merged, the union template

is not a connected graph. A single regression model built on a union template

that is not a connected graph is of no difference from a set of regression mod-

els built on each connected component (maximal frequent subgraph) separately.

Because first, the number of parameters in the single regression model and the

total number of parameters in the set of regression models are the same. Sec-

ond, the average relative restoration error of the single regression model and the

average relative restoration error of the set of regression models are the same.

Details of how to construct a union template is discussed in Section 5.2.2.

Chapter 5. Frequent Subgraph Summarization with Error Control -53

5.1.3. Problem Definition

It is obvious that the accuracy of the estimated regression models depends

on whether the independence assumption is valid among the reachable children

of a template subgraph, which is not common in mostly graph databases. So, we

divide all frequent subgraphs into groups and apply the independence assumption

locally on each group to make sure that the restoration error can be controlled.

We present the formal definition of the frequent subgraph summarization with

error tolerance below.

P r o b l e m 5.1. F requency-Prese rved Subgraph S u m m a r i z a t i o n wi th Er-

ror Tolerance a. Given a set of frequent subgraphs T �a n d a maximum average

relative error tolerance a for the restored frequency, the problem of frequent sub-

graph summarization is to partition T into as few groups as possible, and each

group Q satisfy the following: (1) Q can be summarized as a single regression

model, and (2) 5avg{Q) < cf, where 5avg is defined in Definition 5.3.

The meaning of requirement (1) is that the template subgraph of each group

should be either a frequent subgraph in J" or a connected union template sub-

graph, which is a union graph of maximal frequent subgraphs. Without this

requirement, we can easily merge any number of template subgraphs into a large

unconnected one and create a single regression model to reduce the number of

g r o u p s . ‘

5.2. Summarization Algorithms

Before explaining our framework in details, let us discuss some unique chal-

lenges in summarizing subgraphs.

Chapter 5. Frequent Subgraph Summarization with Error Control -54

5.2.1. Challenges

The problem of summarizing frequent subgraphs is an extension of concisely

summarizing a large collection of frequent itemsets, which have been studied [4，

57, 56, 27]. The key criteria to evaluate the quality of a summarization lie in two

aspects: coverage and frequency. First, the concise representation is capable of

representing all frequent itemsets in the collection, which is usually based on the

set containment relationship. Second, the frequency of any frequent itemsets can

be estimated from the concise summarization accurately. The existing researches

have made significant contributions for summarizing frequent itemsets.

However, it is much more challenging to summarize a set of frequent sub-

graphs which can meet these two key criteria. The challenge comes from two

fundamental difficulties in subgraph mining: "multiple embeddings" and "topo-

logical constraint". The multiple embedding problem refers to the issue that

given a template subgraph pattern g�for a targeted frequent subgraph 队 we

may find several isomorphic embeddings of Qi in g, as shown in Figure 5.2. The

right subgraph has two embeddings in the left one. Thus, even though we can

determine the subgraph is covered by a template subgraph, it becomes a prob-

lem if we try to apply the template subgraph to the frequency estimation (which

is typically done in the frequent itemset summarization). When we consider

multiple embeddings as observations, this will increase the residue in the regres-

sion model, as well as the frequency restoration error and the estimation cost of

regression models.

In addition, the multiple embedding problem can further complicate the

frequent subgraph partition problem. Generally, in frequent itemset mining, we

can easily split the collection of patterns into two sets, one including an item and

the other not. Considering we have a template itemset pattern, we can easily

represent its two sub-collection of patterns. However, considering a template

subgraph, we consider splitting its covered frequent subgraphs into two groups,

one including an edge and the other not. Even though the similar strategy

Chapter 5. Frequent Subgraph Summarization with Error Control -55

Figure 5.2: An Example of Multiple Embeddings

can be applied to template subgraphs by simply fixing one edge in the template

subgraph (for one group) and dropping the edge (for the other group), the related

issue is the topological constraint. We need to perform subgraph matching to

determine whether one subgraph is covered or not. In the typical frequent itemset

summarization, the probabilistic method is either based on item independence

or conditional independence model. Can such models be applied to subgraphs?

How does the topological constraint affect the models? These problems need to

be addressed in frequent subgraph summarization.

To handle this issue, if a subgraph has multiple embeddings in its corre-

sponding template, we only select one embedding in the construction of the

regression model, because, as discussed, selecting all embeddings increases the

residue of regression models, and results in a larger restoration error. A selection

strategy is good if there is no need for extra storage cost to record selections. And

apparently, we should follow the same strategy in a single regression model to

further save the storage space. We set up a lexicographical order among the edge

sets of frequent subgraphs in the following manner. Each edge in the template

subgraph is assigned to a global id, siich that all the frequent subgraphs covered

by the template subgraph can be represented by a set of edge id's. By introduc-

ing a partial order between these id's, we can select the embedding whose id set

is the smallest or largest according to the lexicographical order of edge id sets.

T h e o r e m 5.1. The average relative restoration error of a regression model by

selecting the embedding with the smallest id set is the same as one of the regression

model by selecting the embedding with the largest id set.

Chapter 5. Frequent Subgraph Summarization with Error Control -56

The proof of Theorem 5.1 is obvious by reversing the partial order of edge

id's and the one with the largest id set before reversing now become the smallest

one after reversing. In our framework, we always select the smallest embedding

of a subgraph. For example, in Figure 5.2, if e i � 6 2 , then the right graph is

obtained by removing 62 from the left one.

The second challenge comes from multiple regression models. When there

is more than one template subgraphs, a frequent subgraph could belong to more

than one template subgraphs, as we can see from the POG in Figure 5.1. For

example, if the template subgraphs are the maximal frequent subgraphs, then the

frequent subgraphs in the lower levels belong to all these template subgraphs.

In this situation, a simple solution is to manipulate each template subgraph

separately and consider the intersection part as observations to all template

subgraphs containing them. Again, this will increase the residue in the regression,

thus large restoration error, as well as overhead regression model estimation cost.

One may argue that we can assign the intersection part to the template subgraph

which achieves smallest total restoration error. Suppose we have k template

subgraphs, this solution is not feasible, due to the maximum possible number of

intersection part is or at least k^ — k if only considering intersections between

two templates. What's more, even if the optimal assignment is obtained, and

the total restoration error is minimized, a subgraph cannot be easily identified

from generated models except we store the invert index of all the assignments,

which, in the worst case, might be as large as the frequent subgraph set.

Our solution is to restrict the intersection part between template subgraphs
f

to belong to only one template subgraph. The assignments are recorded in the

POG by removing the unnecessary edges to make sure that each node (subgraph)

can only be traced back to one template subgraph. As discussed, it is not fea-

sible to compute the optimal assignment with the minimum total restoration

error. We choose a good way by assigning the intersection part of two template

reachable children to one that has smaller size in term of the number of edges.

Chapter 5. Frequent Subgraph Summarization with Error Control -57

Algor i thm 5.1 The Summarization Framework
Inpu t : POG Q̂ Error tolerance a

O u t p u t : Template Subgraphs with Regression Models

T = {the root of POG Q}\

while true do

9' = argmaxg{5avg(5)|p ^ T}\
4

5

6

7

8

9

10

if Savgig) > cr t h e n

T = T U d i v i d e (^ ') ：

else

break ；

end if

end while

Return T.

The approach has several advantages: (1) In general, by assigning interactions

to smaller templates, we can balance the number of frequent subgraphs in each

regression model. (2) The independence assumption is dangerous in practice.

By assigning interaction parts to one template subgraph, we in fact split the fre-

quent subgraph set consisting of all the reachable children of these two template

subgraph into two conditional set, and transform the independence assumption

into a conditional independence assumption. (3) The frequent subgraphs in in-

tersection parts can be easily maintained for queriable summarization. Details

are discussed in Section 5.3.

5.2.2. Template Subgraph Division

Algorithm 5.2 presents procedures of how to divide a template subgraph.

The input template subgraph g can be either a real maximal frequent subgraph

or a union of several maximal frequent subgraphs in the POG. We discuss them

below.

Chapter 5. Frequent Subgraph Summarization with Error Control -58

Summar iza t ion Framework

As mentioned, we call the root graphs of regression models as template sub-

graphs. Our summarization framework is presented in Algorithm 5.1, which is

done in a top-down fashion. The algorithm starts from a single template sub-

graph, the root of the POG, which is a union template subgraph for all maximal

frequent subgraphs. Let ^ be a template subgraph, we use Savgig) to denote the

average restoration error of the regression model build on g with its reachable

children. In each repeated loop from line 2 to line 9, the algorithm repeatedly

divides the template subgraph whose average restoration error is larger than

the one of any other template subgraph, and the threshold a, into two template

subgraphs, until all the template subgraphs have a average restoration error < a.

Templa te subgraph is a f requent subgraph

We discuss how to handle a real frequent subgraph. The corresponding part

in Algorithm 5.2 is from Line 2 to 12. When the template subgraph g to be

divided is a single frequent subgraph, the potential new template subgraphs are

the connected children of g. Take Figure 5.3 as an example. Assume g is the

template subgraph to be divided, and Ci, C2, and C3 are g's connected children

in the POG. Suppose Cj is selected (1 < z < 3). Then we have two template

subgraphs: Ci and g. There exist frequent subgraphs that are the descendants of

both Ci and g. We restrict them to belong to only one template subgraph, either

Ci or g, in order to obtain better regression models. The rule is to let the sharing

part belong to the smaller template subgraph ĉ .

We discuss how to build regression models for this case. Let e be the edge

that appears in g but does not appear in ĉ . All the descendants of c； in the

POG do not contain e. In other words, the descendants of g are divided into two

parts: frequent subgraphs containing e and frequent subgraphs not containing

e. By selecting Cj, the POG rooted at g is divided into two subgraphs. One

POG subgraph Gi is rooted at Ci and contains all descendants of q. The other

POG subgraph Gg contains g and all its descendants excluding those in Gi. As

Chapter 5. Frequent Subgraph Summarization with Error Control 59

Algori thm 5.2 divide (Template g)
if p is a non-union template subgraph then

C = the directed children of g in POG Q\

Cand = 0; • ‘

for Each q G C do

let Gi be the POG subgraph of g rooted at ĉ ;

let Gg he g\ Gi /*g corresponds to G^*/;

Build regression models Ri and Rj for Gi and Gg (or equivalently Cj and

Ci = total residue of Ri\

Cg = total residue of Rg\

Cand 二 Cand U {(c^, g, + e^)};

end for

{Cmin, 9min) = argmiiicje I (Ci,g,e) e Cand};

Update the regression models for q and g in the POG G based on Cmin

and gmin\

Return {gmin, Ĉ nm}

else

let C be the children of g, g2,…,gk), in order;

Cand 二 0;

for 2 = 1 to /c do

Build a regression model Ru for (仍’ • • • , gi)]

Build a regression model Rik for (pi+i，• •. , 9k)]

€{ = total residue of Ru；

= total residue of Rik；

Cand <r- Cand U {(z, ei + e^)};

end for

p = axgmini{e | (i, e) € Cand};

Return {(pi, • • •，5?p)，（i?p+i，•…，P/：)}

end if

8

9

20

21

22

23

24

25

26

Chapter 5. Frequent Subgraph Summarization with Error Control -60

Figure 5.3: Division of Non-Union Template g

indicated in Figure 5.3, the dotted lines indicate some descendant of Gg may be

a supergraph of some graph in Gi because of the existence of the edge e, and

must be deleted. We build regression models for Gi and Gg, respectively. When

building a regression model for a template subgraph (either Gi or Gg), we need

to handle a descendant of the template subgraph that has multiple embeddings.

Because multiple embeddings lead to different regression equations, we order the

edge id set of the template subgraph, and take the embedding with the smallest

edge id set as valid.

To compute the edge id set of a template subgraph, logically, we need to

determine the edge IDs for the template subgraph, and assign edge IDs for the

descendants of the template subgraph repeatedly. The process requires to com-

pute subgraph matching and identify the multiple embeddings level by level in

the corresponding POG. The edge id set computed in this way for a subgraph g'

in the POG is the minimum among the embeddings of g' to all its ancestors in

the POG. We cache the matching information, so the total number of subgraph

matching computation is at most m, which is the number of edges of the POG.

Upon the edge id set computed for a template subgraph, the regression equations

can be formalized, and therefore a regression model can be built according to

Eq. (5.6). Among all the possible children of g�we select the child node q of g in

the POG which results in the minimum sum of residues of the regression models

for both GI and GG.

Chapter 5. Frequent Subgraph Summarization with Error Control -61

^ 9 1 � ‘ ^ 9 2 ^ 9 3

Figure 5.4: Division of Union Template g

Templa te subgraph is a union of maximal subgraphs

In order to reduce the number of regression models to be built, we intro-

duce union template subgraphs. Conceptually, a union template subgraph is

a supergraph containing a set of maximal frequent subgraphs that share some

common edges. We use the notion of the union template subgraph to discuss om,

approach, but we actually do not need to compute the supergraph for a set of

template subgraphs.

We first explain how to build a regression model for a union template sub-

graph Suppose g^ contains k maximal frequent subgraphs {^i, • • • , gk}- The

corresponding POG is rooted at g'̂ and has {^i, • • • , g^} as the children of g\

Figure 5.4 shows an example. Suppose the dotted circle indicates a union tem-

plate subgraph, and gi,沒2’ and gz are the maximal frequent subgraphs. Take g^

as a template supergraph, we can build a regression model using the same way as

we discussed above. There are two issues. First, we do not know the frequency

of the conceptual supergraph g^ whose frequency can be zero. Here, we take the

frequency of the maximal frequent subgraphs from {^i’.. • , Qk}- For a subgraph

g, suppose its embeddings in gi is the smallest one, then the regression equation

in Eq. (5.6) is

l o g / (仍）= l o g / � + � ‘) ’ (5.10)

where ei，... , e,- are the edges that appear in gi but does not in the embedding

Chapter 5. Frequent Subgraph Summarization with Error Control -62

of g. Second, we need to order edge IDs for g^ and therefore for all {仍，…,gk}

and their descendants, in order to reduce the number of regression equations.

We order the edge IDs as follows. We arrange all {^i, • • • , gk} in a certain

order, which we will discuss below. Based on the order of all maximal frequent

subgraphs, we order edge IDs in a pairwise fashion,(队 Here, we determine

the largest subgraph shared by Qi and 识 (t h e highest common descendant of

gi and 分i+i in the POG), and assign the same IDs used in 仏 for the shared

largest subgraph for those in "i+i. We repeat this procedure one-by-one for all

the maximal frequent subgraphs under g^. This is important to note that there

may exist several different largest subgraphs shared by both Qi and 识 B u t ,

there exist new multiple embedding problems if we use all of them to order edge

IDs. Consider Figure 5.5. Let gi be the top-left graph, and pt+i be the top-right

graph. Qi and "i+i have two shared subgraphs. Both shared subgraphs contain

an edge (6, c) with the same id 62- If we use all possible shared subgraphs to

order IDs, we may end up new multiple embedding problems. When we use only

one shared subgraph, since all multiple embeddings have been handled already,

we do not have any new multiple embedding problems.

There are several ways to arrange all {^1, 92,.. • , gk} under in an order.

In addition to a random order; we consider arranging all {51, • • • , Qk} in an

ascending order based on their sizes measured by the number of edges, in the

following way. First, We add the smallest subgraph to the selected set. Next, we

select next subgraph as the smallest one that has repeated sub-structure with one

subgraph in the selected set. The reason is that the restoration error for a small

template subgraph can be small. Given two template subgraphs ĝ and 仍+1，for

Qil < |5i+i|’ we will remove some repeated sub-structure part that appear in 识

from Qi+i. Hence, the new pi+i becomes smaller, and it may help to reduce the

errors when using 仍+i.

As shown in our algorithms, initially, we have one union template sub-

graph representing all the maximal frequent subgraphs ("i，P2,... ,Qk) in an

Figure 5.5: An Example of ID Assignment Conflict

order. Then, we select Qi which will minimize the sum of the residue of the

left regression model (for (pi, • • • , Qi)) and one of the right regression models (for

(pi+i, • • • ，Qk)). Then, we can repeat the same procedure for both - - • , Qi) and

(Pi+i,‘ • • , Qk), respectively, until all regression models are built for all required

frequent subgraphs whose restoration errors are < cr, as shown in Algorithm 5.1.

Algor i thm Correc tness

One thing worth noting is that when transforming the nonlinear regression

model to a linear one in Section 5.1，the criterion of optimality is changed. The

transformed linear regression model is estimated based on least square estima-

tion, while the optimality is to minimize the average relative restoration error.

The consequent question is that whether our summarization framework is cor-

rect.

Let f[g) and r{g) be the true and the restored frequency of subgraph g,

respectively. The least square error for the linear regression model in Eq. (5.7)

Chapter 5. Frequent Subgraph Summarization with Error Control -63

J

讓
，
i

e
 J
p

&
&

Chapter 5. Frequent Subgraph Summarization with Error Control -64

IS

E'E = {Y - Xpy{Y — X/3)

= — 工 析

7 = 1

；(log
f{9'

i=l

/

r
r
v

—log
fig' (5.11)

Following the proof in [27], we have

log — 1 分
Hgj) — f{9j)

f{9j)
0. (5.12)

As we can see from Eq. (5.12)，when the sum of least square errors of a regression

model approaches to 0, the relative restoration error approaches 0. We now prove

that after each division, the sum of the least square errors of new regression

models is less than or equal to the sum of least square errors of the regression

model before division.

Let Y — Xp denote the regression model of the template graph to be

divided, where Y eW, X e]R"m，^nd e with n �m . Now we divide

the frequent subgraphs, which are reachable from the template graph in the

POG, into two sets with rii and n2 subgraphs in each set (n = ni + 712), then we

have

X =
f x ：] (v A (v A

y2 J
(5.13)

where Xi G Xi 6 IFTaxm, y^ ^ 脱m and Ŷ G R"^ Then the least square

errors of these three regression models are

^ = rmn {/(/?) ^ {Y - XP)'{Y - X ^) } ,

= rmn {/i(/5)全{Y, - — Xi/5)},

� =m i n {/2(^)全（n - X2^y(V2 - X2J0)},

(5.14)

(5.15)

(5.16)

Chapter 5. Frequent Subgraph Summarization with Error Control -65

and the corresponding optimal solutions are

P = argmm {{Y - Xpy(Y — XP)],

01 = argmm {{Y, - X,py{Y, - X,P)].

02 = argmin [{Y2 — — X^P)]

(5.17)

(5.18)

(5.19)
P

The following theorem is true.

Theo rem 5.2. Si + 82 < 5.
/S A

Proof. Since P2 are the minimizer of problem in Eq. (5.15) and (5.16), re-

spectively, we have

= / i (A) < f i 0) , and 如 = h i P i) < /2(/3). (5.20)

A A

Then we only have to show that 6 = fi{P) + /2(卢).Solving Eq. (5.14) yields

P = {X'Xy'^XY, and

6 = Y'Y - Y'X{X'X)-^XY.

Then substituting in /i(/3) and /2(卢）gives

fiCP) = YlYi + Y'X'{X'X)-\X[Xi){X'X)-^XY

-2YlXi{X'X)-^XY, i =

Note that

= Y;Y, + ¥^¥2,

X'X = X[Xi + x'^x^,

Y'X = Y[X +

A A

We have J\(J3) + f2{P) = <5, which completes the proof

2.

•

At Line 6 in Algorithm 5.2, each time we obtair a new template subgraph,

always assign the interaction part to one template with fewer edges. Based

Chapter 5. Frequent Subgraph Summarization with Error Control -84

on Theorem 5.2, the sum of the residue of the regression models decrease after

division, which means the average least square error decreases. So at least one

of the average least square errors of the two regression models is less than or

equal to the average error before division. Similar case happens in the division

of union template subgraphs. As the division continues, the residues and the

average relative restoration errors will decrease. Eventually, algorithm will stop

when the average restoration error < a. Our experimental results demonstrate

that restoration errors are decreasing as the number of templates increases.

5.3. Queriable Summarization

Given om, frequent subgraph summarization with restoration error control,

we can provide an answer when a user wants to know the frequency of a frequent

subgraph. Since every frequent subgraph in the POG belongs to one and only

one template subgraph, in order to tell the frequency of a frequent subgraph q, we

only need to know which template subgraph it belongs to and which embedding

in a single template subgraph it needs to use.

In our summarization framework, there is a partial order among edges to

avoid the problems caused by multiple embeddings in a template graph. Upon

all the template subgraphs obtained, we can identify which template subgraph a

query graph q belongs by utilizing the global edge IDs. Once the global edge IDs

are all fixed, a frequent subgraph q belongs to the template subgraph in which

the edge ID set of the embedding is smallest.

It is worth noting that we discuss the global edge id set when handling the

union template subgraph for maximal frequent graphs. The main issue then is

how to reduce the number of regression equations. Another aspect of the global

edge id set is to determine which template subgraph a given query graph needs

to use. Recall that we use the embedding of a subgraph with the small IDs.

Based on the order of regression models computed for the template subgraphs,

we need to reorder the global edge IDs to determine the right template subgraph

Chapter 5. Frequent Subgraph Summarization with Error Control -67

or the right regression model to use. In doing so, suppose that the regression

models are built in the following order for (仍，分2，•.. 9k)： we simply reorder edge

IDs in a way that the edge IDs used in 糾 1 must be greater than those edge IDs

used in gi.

5.4. Experimental Evaluation

In this section, we demonstrate the performance of our proposed summa-

rization framework. The algorithms are implemented using matlab and C+ + .

All the experiments were run on a server with 4 CPU and 24GB memory running

GNU/Linux. One thing worthy noting is that we did not optimize our sources

for multiple CPU environment, while matlab sometime utilizes more than one

CPU to do matrix computation.

5.4.1. Datasets

We use three datasets: two real datasets and a synthetic one. The real

datasets are the AIDS antiviral screen compound dataset^ from Developmental

Theroapeutics Program in NCI/NIH. In the current released version, there are

total 43850 chemical compounds, which are classified into three categories: Con-

firmed Active (CA); Confirmed Moderately active (CM); and Confirmed Inactive

(CI). We use CA and CM in our experiments. CA contains 463 compounds and

CM contains 1093 compounds. We use the approach in [30], which is a popular

frequent subgraph generator in the frequent subgraph mining area, to generate

the synthetic data. There are six parameters that the generator takes as input:

number of graphs (D), average size of graphs (T), number of frequent patterns

as possible frequent graphs (L), average size of frequent patterns (I), distinct

edge labels (E) and distinct node labels (V). We generated 5,000 graphs with

average size of 20. Other parameters are as follows. The size of seed frequent

^http://dtp•nci.nih.gov/docs/aids/aids_data.html

Chapter 5. Frequent Subgraph Summarization with Error Control -68

Table 5.1: The Number of Frequent Subgraphs in Datasets

C A

support

The number of frequent subgraphs

11%

15231

12%

14318

13%

8094

14%

7612

C M

support

The number of frequent subgraphs

6%

5997

7%

4265

8%

3415

10%

2627

D5000T20L200I10E1V10

minimum frequency fmin

The number of frequent subgraphs

270

12903

280

8093

290

2404

300

1592

subgraph is 10. There are 10 distinct node labels and only 1 edge label. Let

D5000T20L200I10E1V10 denote the synthetic dataset.

We present the number of frequent subgraphs of each real and synthetic

dataset in Table 5.1 for various settings which we use in the following experi-

ments. For CA and DM, we report their number of frequent subgraphs in terms

of different values of support and for D5000T20L200I10E1V10, we report the

number of frequent subgraphs in terms of different values of minimum frequency.

We observed the following situation during generating the synthetic data. Some-

times, only decreasing a frequency by 1, we found that the number of frequent

subgraph outputted by gSpan is more than a hundred times than the original

one.

5.4.2. Experiment Setting

We adopt the gSpan [59] algorithm for mining frequent subgraphs. In our

summarization framework, the input is a POG of all frequent subgraphs. This

can be done by slightly modifying the gSpan algorithm, because the gSpan algo-

rithm generates frequent subgraphs based on their minimum DFS code. Other-

Chapter 5. Frequent Subgraph Summarization with Error Control -69

wise, if we are given only a set of frequent subgraphs, we need to call a subgraph

matching algorithm to build a POG first, and then apply our approach on it. We

measured the performances of four algorithms on these datasets, namely, asc,

ran, asc-int, and ran-int. All of these algorithms follow the same summarization

framework in Algorithm 5.1 in Section 5.2. As discussed, in a union template

subgraph, we could arrange the order of maximal frequent subgraphs in different

ways to avoid the issues caused by multiple embeddings and common reachable

children, ran denotes that we arrange the order randomly in division, while

asc denotes that maximal frequent subgraphs are always sorted in the ascending

order of their sizes, measured by number of edges, during the union template

creation. As discussed in Section 5.2.1, a frequent subgraph could belong to

more than one template subgraph, resulting in it belonging to multiple regres-

sion models. In the algorithm ran and asc, we restrict the intersection part

between template subgraphs belong to only one template subgraph. We will

relax this restriction to develop two baseline algorithms, i.e., Algorithm ran-int

and asc-int�which are corresponding algorithms to ran and asc, but allowing

a frequent subgraph could belong to more than one template subgraph. That

is, every regression model contains its intersection part with other regression

models.

5.4.3. Experimental Results

Figure 5.6 and Figure 5.7 reports our results on real dataset CM. We ex-

ecuted our algorithms thoroughly with different combinations of the average

restoration error tolerance a and the minimum support used for mining frequent

graphs. We present partial of these results here. Figure 5.6(a) and 5.6(b) show

the results when the minimum support of frequent subgraphs is 7%. We tried

different values of tolerance, and reported the number of template subgraphs gen-

erated. In general, the limitation of no sharing children between template graphs

increases both the quality and speed. As we can see, the performances of asc-int

- X - a s c
—|—ran
- O - a s c - i n t
• ^ r s n — i n t

10% 26% 34% 42% 50% 58% 66%
Error Tolerance a

- X - a s c
- j—ran
- ^ a s c - -int
• O r a n - -int

k 火一火 火 ±
10% 26% 34% 42% 50% 58% 66%

Error Tolerance ct

Chapter 5. Frequent Subgraph Summarization with Error Control -70

(b) Running time vs. error tolerance a

Figure 5.6: Experimental Results on Real Datase t^M {support = 7%)

and ran-int algorithms, which allow sharing children, are far by worse than ones

of acs and ran. In the executions of our algorithms, we set a global maximum

number of template subgraphs generated, that is the reason the curves of asc-int

and ran-int are only shown at the right most part of in the figures. They can-

not generate any useful template graph within reasonable time. The number of

template graphs generated by asc is smaller than ones of ran in dataset CM for

the same error tolerance. We ran asc-int and ran-int on all three datasets. Their

performances on other datasets are similar to one in Figure 5.6(a) and 5.6(b), so

we ignore these two in the following experimental reports.

Figure 5.7(a) and 5.7(b) report the quality and timing results with different

fa) Number of template subgraphs vs. error tolerance a

u

 o

 o

 o
 o
 o

 o

u

5

o

5

o

5

0
 2

 2

 1

 1

W
L
j
d
2
6
q
n
w
 9
J
e
l
d
E
9

 卜
 j
o

社

o

o

o

o

o

o

o

o

5

o

5

o

5

o

5

3
 3

 2

 2

 1

 1

(
S
P
U
0
0
9
S
)
 9
U
J
!
i

 C
T
U
j
u
u
n
y

6% 7% 87o 9%
Support

[a) Number of template subgraphs vs. support

° 6% 7% 8% 9%
Support

(b) Running time vs. support

Figure 5.7: Experimental Results on Real Dataset CM (a = 10%)

values of support when the tolerance of average restoration error is 10%. Gen-

erally, a smaller value of support means a large size of frequent subgraphs. For

dataset CM, asc works better and when the support becomes smaller, the speed

of acs is faster than ran. While as the number of frequent subgraphs decreases,

both the quality and the speed of acs are quite close to ones of ran.

Figure 5.8 and Figure 5.9 reports our results on real dataset CA. We ob-

served similar results here. Within a set of frequent subgraphs, acs can achieve

smaller number of template subgraphs with the same bound of tolerance, as in-

dicated in Figure 5.8(a). While for the running time of these two algorithms, acs

does not always outperform ran. In Figure 5.8(b), when the tolerance is 10%,

ran finished earlier but with a worse quality. With the tolerance set to 15%,

in Figure 5.9(a) and 5.9(b), asc and ran have similar trends to ones in Figure

5.7(a) and 5.7(b). acs always generates less template than ran. Compared with

the number of frequent subgraphs in CM and CA shown in Table 5.1，we can

find that the generated template subgraphs are up to 100 times fewer than the

frequent subgraphs in both datasets.

In the results of the synthetic dataset, as shown in Figure 5.10 and Figure

5.11, we substitute support by minimum frequency fmin- For frequent subgraph

with minimum frequency 280, shown in Figure 5.10(a) and 5.10(b), asc outper-

-^asc
+ r a n

-^asc
~|~ran

X-

Chapter 5. Frequent Subgraph Summarization with Error Control -71

o
 o

 o

 o

o

5

o

5

2

1

1

(
s
p
u
o
o
山
s
)
 6
u
!
u
u
n
y

o
 o

 o

 o

 o

5

o

5

o

5

2
 2

1

1

«
4
d
e
J
6
q
n
s
 a
J
e
l
d
E
a
l

 p
 #

11% 12% 13%
Support

14% 11% 12% 13%
Support

14%

Number of template subgraphs vs. support (b) Running time vs. support

Fig' Te 5.9: Experimental Results on Real Dataset CA {a = 15%)

-^asc
ran +r

X X

6% 10% 14%
Error Tolerance a

6% 10% 14%
Error Tolerance a

18%

(a) Number of template subgraphs vs. error tol

erance a

(b) Running time vs. error tolerance o

Figure 5.8: Experimental Results on Real Dataset CA (support — 13%)

forms ran in various settings of error tolerance and minimum frequency. When

we set the error tolerance 10%, asc still outperforms ran in Figure 5.11(a) and

5.11(b).

In l^igure 5.12, the average restoration errors of asc-ini and ran-int are

several times larger than ones of asc and ran. As we can see, the decreasing

rate of average restoration error is quite slow and it seems there is not much

difference between a small number of template graph and a large number of

template graphs. Let us go back to Figure 5.6(a). When the number of template

-K-asc
-hran

-X-asc
+ r a n

asc
ran

Chapter 5. Frequent Subgraph Summarization with Error Control -72

000

500

o
 o

 o

 o

o
 o

 o

 o

o

5

o

5

3

2

2

1

(
s
f
J
U
O
U
3
s
)

 «
E
P
 6
u
!
u
u
n
y

o
 o

 o

 o

 o

0

8

6

4

2

1

S
L
|
d
e
j
&
q
n
s
 a
l
e
l
d
E
a
l
p

井

00

00

o
 o

 o

 o

o
 o

 o

 o

5

4

3

2

(
s
p
u
o
u
a
s
)

 1
1

B
u
j
u
u
n
y

o
 o

 o

 o

 o

5

o

5

o

5

2
 2

1

1

S
L
I
d
B
J
C
T
C
l
n
s

 3
J
e
l
d
£
9
1
 i
o

 #

270 280 290
Minimum Frequency

270 280
Minimum Frequency

300

(a) Number of template subgraphs vs. minimum

frequency

(b) Running time vs. minimum frequency

Figure 5.11: Experimental Results on Synthetic Dataset

D5000T20L200I10E1V10 {a = 10%)

graphs equals 10 roughly, the maximum of average restoration error for template

graphs is roughly 18%. While in Figure 5.12(a), the average error of all frequent

subgraphs is less than 10%. Things are getting worse for ran. Based on this

argument, we can make sure that the summarization proposed framework can

achieve better quality.

6% 10% 14%
Error Tolerance a

18%
50 6% 10% 14%

Error Tolerance a
18%

(a) Number of template subgraphs vs. error tol

erance a

Figure 5.10:

(b) Running time vs. error tolerance a

Experimental Results on Synthetic Dataset

D5000T20L200I10E1V10 (fmin = 280)

关asc
- | - r a n

^asc
‘ r a n

-K-asc
ran

Chapter 5. Frequent Subgraph Summarization with Error Control -73

o
 o

 o

 o
 o

 o

o
 o

 o

 o

 o

 o

6
 5

 4

 3
 2

 1

(
s
p
u
o
:
1
3
g
)
 3
U
J
P

 6
u
!
u
u
n
y

o
 o

 o

 o

 o

0

8
 6

 4

 2

1

w
n
d
e
j
s
q
n
s
 3
J
e
l
d
E
9
1
J
0

 耽

0
 o

 o

 o

 o

 o

1

o

9

 8

 7

 6

1
 1

(
S
P
U
8
3
S
)

 J
1
 6
u
!
u
u
n
y

0
 o

 o

 o

 o

 o

2

o

8
 6

 4

 2

1
 1

①
】
B
l
d
£
3
1
‘
0
 #

no/ \ I i J I 1 1 1 1 •
10 20 30 40 50 60 70 80 90 100

of Template Subgraphs

(a) CM {support 二 7%)

25%

20%

15%

10%
f
x

丨

\

f

- X - a s c
ran
asc - in t
ran- in t

5%[^ X X k

no/
10 20 30 40 50 60 70 80 90 100

of Template Subgraphs

(b) CA {support = 13%)

Figure 5.12: Average Relative Restoration Error of All Frequent Subgraphs

We present the trend of average restoration error of all frequent subgraphs

as the number of template graph increases in Figure 5.12. In frequent itemset

summarization, there are research works for minimizing the total restoration er-

ror given a fixed number of patterns [57, 27]. Similarly, since our summarization

framework is in a top-down fashion, we could set a maximum number k of tem-

plate graphs in our summarization framework, build k regression models and use

these k regression models to restore the frequencies of all frequent subgraphs. We

report the average value of the relative restoration error of all frequent subgraphs,

which is considered as a quality measure of our framework.

-4—ran
- ^ a s c - -int
- ^ r a n - •int

f — K
I
如
,

I
}

-
X

丨
X

V

A

•

X

/

V

>

X

/

V

V

广

X

Chapter 5. Frequent Subgraph Summarization with Error Control -74

J
o
t
g
 U
O
I
J
B
J
O
l
s
G
y

山
⑶
B
J
3
>
<

%
 %

 %

 %

 %

o
 o

 o

 o

 o

5
 4

 3

 2

 1

J
o
t
山
 u
o
n
e
j
o
j
s
a

比
山
6
e
J
9
>
v

Part II

Mining Evolving Graphs

75

CHAPTER 6

INTRODUCTION TO G R A P H CHANGE
D E T E C T I O N

Graphs are not always static, and many applications show that graphs evolve

over time. In social science, large social networks evolve, which is caused by the

node proximity changes [52]. In bioinformatics, finding the co-evolution relation-

ships of structures and functions in structural genomics is an important task to

understand evolution progresses [47]. In computer network, traffic jam occurring

at a link may affect the traffic routing in a large range. Monitoring the dynamic

topology changes and their influences provides network administrators with the

insights on network configuration [9]. Also, in wireless sensor networks, query

processing is done by exchanging information between sensors whose communi-

cation ranges are limited. The fact that a sensor runs out of power, has impacts

on the other sensors in terms of network routing, and hence, query processing

time. It is important to note, even beforehand, which subgraphs will be affected

significantly when such a change occurs.

Generally speaking, graph changes when new nodes/edges join graphs, or

old nodes/edges leave graphs. The meaning of changes on graphs could fall into

two categories. One is based on raw node/edge evolutions, the other is based on

the impact of evolutions to node relationship. Graph change detection aims to

find changing areas on graphs when they evolve fast. In this part, we study the

Chapter 6. Introduction to Graph Change Detection 77

P. .. i p � f \

j^Tpm^
(a) Time t (b) Time t + 6t

Figure 6.1: An Evolving User-Story Graph

problems in the two categories one by one. We start with the introduction to the
I

problems of changing area detection in this chapter, followed by an overview of

related works in Chapter 7. The research work on monitoring top k burst areas

is presented in Chapter 8 and the research work on spotting significant changing

areas is addressed in Chapter 9.

6.1. Monitoring Top k Burst Areas

In most social networks such as Digg [2], one of the common activities among

users is making comments on stories. Then a bipartite graph can be constructed

by considering users and stories as nodes. There is an edge between a user and a

story if the user submits a comment on the story. Let us assume Figure 6.1(a) is

a user-story graph at some time t. As time goes by, users submit more comments

on stories and the graph evolves. Suppose at time t -}- the user-story graph

looks like the one shown in Figure 6.1(b). Since both the involvement of users

and the popularity of stories are various, the degree of change may be different

at each region in the graph. For example, as shown in the dotted line area, this

region is much different from the one at time t, while the remaining part looks

similar, which means that the users in this region are more active and the stories

in it are more attractive.

Inspired by the motivation from Figure 6.1, we study a new problem of

discovering the burst areas, which exhibit dramatic changes for a limited period,

Chapter 6. Introduction to Graph Change Detection 78

in fast graph evolutions. Intuitively, dramatic changes mean the total evolutions

happened inside burst areas are much more than the ones in other areas. There

are several difficulties of this problem. First, evolving graphs in social networks

are huge, which contain a large amount of nodes and edges. Second, the sizes of

burst areas could be various. And last, the durations of burst periods are difficult

to predict, since a burst could last for minutes, hours, days or even weeks. All

these difficulties make this problem challenging and interesting. A candidate

solution must be efficient enough to deal with a great number of computations.

We focus on bipartite evolving graphs, since fast evolving graphs in social

networks are mostly heterogeneous bipartite graphs. Similar to commenting

stories, other possible activities of users could be writing blogs, tagging photos,

watching videos, or playing games. Each one of these activities, plus the users

and the entities, can form a fast evolving bipartite graph. In an evolving graph,

there is a weight associated with each node or edge. The evolutions are in form

of the changes of the weights of nodes/edges. The weight of a non-existing

node/edge is zero, so it does not matter whether the coming nodes/edges are

new to the graph.

The main contributions of this research are summarized below.

• We formalize the problem of discovering burst areas in rapidly evolving

graphs. The burst areas are ranked by the total evolutions happened inside

and the top k results are returned.

• Instead of calculating the total evolutions of every possible period, we pro-

pose to use Haar wavelet trees to maintain the upper bounds of total evolu-

tions for burst areas. We also develop an incremental algorithm to compute

the burst areas of different sizes in order to minimize the memory usage.

• We present an evaluation of our proposed approach by using large real data

sets and demonstrate that our method is able to find burst areas efficiently.

Chapter 6. Introduction to Graph Change Detection 79

6.2. Spotting Significant Changing Regions

Let Q be an evolving graph. In this work, we take an edge-centric view

regarding changes. We focus on edge changes (deletions/additions) which will

cause structural changes. On the other hand, node changes also have impacts

on structural changes. But adding isolated nodes before they are connected to

any other nodes seems less important, while deleting nodes can be considered as

removing edges connected to the deleted nodes.

Given two graphs Gi and Gj—i from Q at time ti and time U-i, there are

many small subgraphs that change while the majority of the graph remains un-

changed. A small changing subgraph can be a connected subgraph where every

edge is changed (deleted from Gi—i or added into Gi), and such a small changing

subgraph can be easily identified. However, the influence of a single edge change

(deletion/addition) on the other parts of the large graph is more important than

the physical change itself. For example, when a researcher A works with another

researcher B for a new research issue, A^s collaborators and B's collaborators

may have new opportunities to work together. Consider the two researchers as

two nodes. The newly added edge between them may change the closeness of the

nodes that are directly/indirectly connected to the two nodes. Suppose that the

closeness of two nodes can be measured. A changing subgraph is an induced sub-

graph in which the closeness between nodes changes. We focus on the problem

of spotting significant changing induced subgraphs in an evolving graph.

A simple large evolving graph Q is illustrated in Figure 6.2, in which only

several edges change at a time spot. The upper left subgraph shows a connected

subgraph where every edge is changed. The lower left subgraph shows a con-

nected subgraph which involves two changing edges, {vi, vj) and {vk, vi), and

other none-changing edges such as [vj.vk) if its two nodes are involved in some

changing edges. On the right, it shows a larger connected induced subgraph,

as indicated by the dotted area. It includes the changes as well as other parts

Figure 6.2: An Example of An Evolving Graph

that a4.e significantly influenced by such changes. The issues that we concentrate

on in this research include how to measure the closeness changes between two

nodes that are caused by some edge changes, how to identify the boundary of

the influences of a change, and how to determine a changing subgraph in which

changing parts have influences on each other.

Let Gi and be two graphs in an evolving graph at time U and tt-\ .

In order to find changing subgraphs at time U, a possible solution is based on

graph distance measures [9]. It to enumerate all the possible subsets of the

node sets of Gi (Gi_i), and compute all possible connected induced subgraphs

in Gi {Gi-i). If the graph distance between two induced subgraphs that include

the same nodes is large, then it is considered as a significant changing subgraph.

However, this solution is infeasible, since the total number of subsets of the node

set is up to 2", where n is the number of nodes in the evolving graph. In addition,

it may result in many changing subgraphs that are overlapped, which may cause

confusion.

The main contributions of this research are summarized below.

• We formalize the problem of spotting significant changing subgraphs in an

evolving graph and propose to measure the node closeness with structure

information using neighborhood random walks.

Chapter 6. Introduction to Graph Change Detection 80

N) ：

Chapter 6. Introduction to Graph Change Detection 81

• We develop an incremental algorithm to speed up the node closeness com-

putation, as well as a novel strategy about expanding the important node

to acquire the connected induced subgraph which can reflect the closeness

change between nodes.

• We present an evaluation of our proposed approach by using various large

real data sets demonstrating that our method is able to find the suitable

subgraph effectively and efficiently.

CHAPTER

R E L A T E D W O R K S

In this chapter, we present an overview the related works to graph change

detection, which fall into three categories.

7.1. Community Detection in Static Graphs

The problem of identifying communities in large and sparse graphs has at-

tracted considerable research efforts in literature. Most of the existing studies

11, 19, 17] only handle static graph data. Chakrabarti [11] proposes an approach

for parameter-free graph partitioning. The key idea is to measure the encoding

cost of a graph. A partition is better if it has smaller encoding cost, which is

based on the minimum description length principle. Their algorithm has two

steps. In the inner loop, their algorithm minimizes the total encoding cost by

reassigning nodes to groups with smaller cost. In the outer loop, the algorithm

selects the group which has the largest cost and splits the group into two new

groups. These new groups have the minimum total encoding cost among all

possibilities.

Gibson et al. [19] study the problem of finding dense subgraph in massive

graphs, where graphs are too large to apply traditional clustering techniques.

They propose a shingling algorithm to hash all nodes into shingles. Two nodes

containing similar sets of shingles are considered to be similar. The procedure of

Chapter 7. Related Worlds ^

shingling is conducted more than once to reduce the size of data dramatically.

Then, a clustering algorithm is employed to group nodes based on these shingles.

Their algorithm is scalable and can handle graphs of billions of edges by using

modest amounts of memory space.

Dourisboure et al. [17] also focus on the problem of community discov-

ery in large graphs. The distinct advantage is that their approach can capture

partially overlapping communities. The nodes which have small out-degrees are

filtered. Then, they propose to mark nodes as centers of communities or fans to

communities based on the density of their neighborhoods. At the final step, all

communities found are clustering into groups and each group is represented by

a set of keywords.

7.2. Community Detection in Evolving Graphs

There are only a few studies [28, 6, 48] that aim to find communities in

time-evolving graphs. Such communities are usually dense areas which have

many edges and last for a period of time. Kumar et al. [28] propose an ap-

proach to discover the bursty communities in a time-evolving graph, which is

constructed from web blogs. Their approach consists of two steps. First, all pos-

sible communities are extracted, and then, bursty events are detected in a stream

of events of each communities. The blog data is collected from seven popular

blog sites. Then all people writing these blogs, called bloggers, are considered

as nodes. There are links between bloggers if a blogger posts a story which has

links to stories posted by the other blogger. Each edge is tagged with a time

stamp which is the time when the post is submitted. During the extraction of

potential communities, they prune nodes of small degrees. With the extracted

communities at different time interval, they identify the relevant events which

are represented by keywords and perform burst analysis on these events.

Bansal et al. [6] focus on seeking stable keyword clusters in a keyword graph,

which is extracted from a large collection of blog posts and evolves with additions

Chapter 7. Related Works 84
^

of blog posts over time. Nodes in a keyword graph are keywords and there is

an edge between two keywords if they frequently appear together in documents.

Small clusters in the keyword graph, are extracted for each snapshot by removing

nodes and edges that are not statistically significant. Clusters are sets of nodes

in maximum bi-connected subgraphs. A graph of clusters is further generated by

using the generated clusters as nodes. Two clusters are connected by an edges

if their time stamps are adjacent. The weight of each edge is how much the

keyword sets of these two clusters overlap. Finally, paths with high total weight

in the cluster graph are discovered and presented as the sets of persistent keyword

clusters. They propose two algorithms to search paths with high total weight

in breadth first style and depth first style, respectively. They also extend their

approach to a streaming environment for discovering stable keyword clusters

online.

Sun et al. [48] propose GraphScope that is able to discover communities

in large and dynamic graphs without user-defined parameters. Their approach,

which detects communities in each time stamp, is similar to the one in [11 .

By using the minimum description length principle, at each time stamp, their

algorithm searches the partition of nodes with the minimum lossless encoding

cost by repeatedly splitting partition of high cost and merging pair of partitions

of low costs. When the encoding cost converges, all partitions at current time

stamp are added to a segment. The segment is split if the encoding costs of

partitions at two adjacent time stamps differ a lot.

7.3. Node Similarity Based on Random Walks

In terms of distance and similarity measures, the concept of random walk

has been widely used to develop various measures that are suitable for different

tasks. Jeh and Widom [25] design a measure called SimRank, which defines the

similarity between two nodes in a graph based on their neighborhood structures.

SimRank between two nodes u and v is essentially the expected meeting distance

Chapter 7. Related Worlds ^

of two random walks that start from u and v respectively, and randomly surfer

in the graph. They propose an algorithm to compute SimRank values iteratively,

until the values of all node pair converge.

Palmer and Faloutsos [44] define a similarity function, named REP, to mea-

sure the similarity between categorical attributes. They first convert a categorical

dataset into an attribute-attribute graph. Then, REP between two attributes x

and y is defined to be the refined escape probability that a random walk starting

from X will return to x before reaching y.

There are several studies that utilize random walk with restart [53] in differ-

ent applications, including automatic captioning for multimedia data [45], and

center-piece subgraph discovery [51]. Pan et al. [45] propose to tag photos based

on the similarity between photos and keywords. Random walk with restart is

introduced for the first time in this work. They construct a hybrid graph where

both photos and keywords are viewed as nodes. Two photos are connected if they

share some common features, such as color and texture. A photo and,a keyword

are connected if the photo already has the keyword as a tag. Then those photos

that are not tagged are assigned with the keywords of similar photos based on

random walk with restart.

Tong et al. [53] present a fast algorithm to calculate the similarity between

nodes based on random walk with restart. In order to obtain the converging

values of random walk with restart, computation of large inverse matrix is nec-

essary, which is time consuming. Their key idea is to avoid this computation,

and use a low rank approximation instead. Tong et al. [51] study the problem

of find a subgraph which connects a given set of query nodes. The goodness

score between nodes is based on random walk with restart. Individual nodes are

connected by key paths, which prefer nodes of high goodness scores.

CHAPTER 8

DISCOVERING B U R S T A R E A S IN
FAST EVOLVING G R A P H S

In this chapter, we present our research work on burst area detection in fast

evolving graphs. This chapter is organized as follows. Section 8.1 introduces

the preliminary background knowledge and formalizes the problem of burst area

discovery in evolving graphs. Section 8.2 presents our incremental computation

approach, which includes how to maintain the upper bounds of the number of

evolutions using Haar wavelet tree, and how to compute burst areas of different

sizes incrementally. Section 8.3 reports the experimental results.

8.1. Problem Statement

An evolving graph can be represented as a sequence of graphs, Q =

(Gi, G2, ...)• Each graph Gi in the sequence is a snapshot of the evolving graph

Q at time U. The advantage of this way is that it is convenient for users to study

the characteristics of an evolving graph at a particular time stamp, as well as the

differences between graphs of adjacent time stamps. One issue of this approach

is the large storage cost in proportion to both the size of the evolving graph

and the time intervals between snapshots. Another approach models an evolving

graph as an initial graph, which is optional, and a stream of graph evolutions.

This approach is more appropriate in domains where graphs are evolving fast.

Chapter 8. Disccrverihg Burst Areas in Fast- Evolving Graphs 87

For example, the interactive activities in social networks can be considered as

an evolution stream. In this chapter, we model evolving graphs using the second

approach since we are more interested in the burst areas in fast graph evolutions.

An evolving graph Q 二（G, A) consists of two parts, an initial graph G and

a sequence of evolutions A. The initial graph G is a snapshot of the evolving

graph at time to with a set of nodes V{G) and a set of edges E[G). Let Wi denote

the weight of node Vi £ V and Wij denote the weight of edge eij = {Vi,Vj). Each

item 6t in the evolution stream A is a set of quantities indicating the weight

changes of nodes or edges at the time t. There might be a number of evolutions
I

at the same time. Let 61 and denote the weight change of node Vi and edge

Bij at time t�respectively. Without loss of generality, we assume the evolutions

come periodically.

Given a large evolving graph Q = (G, A), we study the problem of finding

burst areas. Since a burst area is actually a connected subgraph of the evolving

graph, any connected subgraph might be a possible burst area. Apparently, it is

more likely that the total evolution in a subgraph with many nodes/edges is more

than the one in a subgraph with fewer nodes/edges. Thus, it is insignificant to

compare total evolutions among subgraphs that have large differences in terms

of node/edge quantity. Consequently, we introduce the r-radius subgraph, which

is more meaningful and challenging.

For a given node Vi in a graph, the eccentricity EC of Vi is the maximum

length of the shortest paths between Vi and all other nodes in the graph. Based
t

on the definition of eccentricity, the r-radius subgraph is defined as below.

Definition 8.1. r -Radius Subgraph. A subgraph g 二（V (̂50，E[g)) in a graph

G is an r-radius subgraph, if

min EC{vi) = r. (8.1)
Vi€V{g)

The r-radius subgraphs in a large graph may be overlapping, which leads

to redundancy. To avoid this, we introduce the concept of maximal r-radius

subgraph.

Chapter 8. Disccrverihg Burst Areas in Fast- Evolving Graphs 88

(a) An r-Hadius Subgraph (b) A Maximal r-Radius Subgraph

‘ Figure 8.1: An Example of r-Radius Subgraph
• �

Definition 8.2. Maximal r -Radius Subgraph. An r-radius subgraph ĝ is

a maximal r-radius subgraph if there exists no other r-radius subgraph 广 C G,
‘ •

which contains g^.

Figure 8.1 shows an example of r-radius subgraph and maximal r-radius

subgraph. Suppose Figure 8.1(a) and Figure 8.1(b) demonstrate the same graph

G, The subgraph in the dotted line area in Figure 8.1(a) is.a 2-radius subgraph.

It is contained by the subgraph in the dotted line area in Figure 8.1(b), which

is a maximal r-radius subgraph. It is a difficult task to identify all maximal r-
• . «•

radius subgraphs in a large evolving graph. We observe that a maximal r-radius

subgraph is in fact a maximal r-hop neighborhood subgraph, which we define

below. Let A/J. denote the set of nodes (except Vi) whose shortest path distances

to Vi are less than or equal to r.

Definit ion 8.3. r -Hop Neighborhood Subgraph. An r-hop neighborhood

subgraph gl. in a graph G is defined as the induced subgraph of G containing all

the nodes in N ; . Vi is called the center of

In the following of this chapter, we use r-hop subgraph for short. We char-
t
acterize the relationship between maximal r-radius subgraphs and r-hop neigh-

borhood subgraphs in Theorem 8.1.

Theorem 8.1. For each maximal r-radius subgraph g^ C G, there is a corre-

sponding r-hop neighborhood subgraph gH^. C G, and g^ = g^..

Chapter 8. Disccrverihg Burst Areas in Fast- Evolving Graphs 89

Proof Sketch: We will prove that (1) 3vi G g^ C g:�and (2) /Bvj e p；.,

Vj i g � .

Let gT be a maximal r-radius subgraph belonging to G. Recall that the

eccentricity EC{vi) is the maximum length of the shortest paths between Vi and

all other nodes in g^. Then based on Definition 8.1，there exists a node Vi G V{g^)

and EC[vi) == r. Let d(vi, Vj) denote the length of the shortest path between

Vi and Vj. Because EC{vi) = r, so \fvj e we have d{vi, Vj) < r. Let

gl. be an r-hop neighborhood subgraph based on Definition 8.3. Since Vu) e

V{g'),d{vuvj) < r, so \/vj 6 Vj ^ "；，where AT； = V(g'J. Therefore,

3叫 G gT C 礼 .

Suppose G g\,. and Vk 0 g^, we have d(vi, Vk) < r. Let g' denote the

subgraph that V{g') = V{g^) U {l'/c}, then g' is also an r-radius subgraph, which

is contradict to the condition that ĝ is a maximal r-radius subgraph. Therefore,

Theorem 8.1 indicates that a maximal r-radius subgraph must be an r-hop

neighborhood subgraph. This is only a necessary condition, not sufficient. It

is worth, noting that an r-hop neighborhood subgraph might not be an r-radius

subgraph. Take node V4 in Figure 8.1(a) as an example. Let us construct a

2-hop neighborhood subgraph g^ ,̂ which contains node 1*3, V4 and vg. gl̂ is not

a maximal 2-radius subgraph, but a maximal 1-radius subgraph p么，because

= = 1. We consider r-hop neighborhood subgraphs as the

candidates of burst areas. ‘

Recall 5\ and S!/ denote the weight changes of node Vi and edge Cij at

time t, respectively. Obviously, if Vi G N^., which means Vi is in the r-hop

neighborhood subgraph g^., then should be counted in g^.. belongs to an

r-hop neighborhood subgraph when both Vi and Vj are in the subgraph. We

define the burst score of an r-hop neighborhood subgraph as follows.

Definition 8.4. Bur s t Score. The node burst score of an r-hop neighborhood

Chapter 8. Disccrverihg Burst Areas in Fast- Evolving Graphs 90

subgraph g^. at time t is the total weight of the node evolutions happened inside.

BurstScore^ 二 赶. (8.2)

The edge burst score of an r-hop neighborhood subgraph g^. at time t is the total
身

weight of the edge evolutions happened inside.

BurstScore^ = ^ Sl^. (8.3)
Vj^Vkegl.

So, the burst score of an r-hop neighborhood subgraph g .̂ is the sum of the node

burst score and the edge burst score.

Now, we formally define the problem of discovering top k burst areas in fast

evolving graphs.

P rob lem 8.1. Discovering Top k Burs t Areas. For an evolving graph Q —

{G, A), given a maximum hop size TViai’ a burst window range (/mm, ^max), the

top k burst area discovery problem is that for each burst window size between

Imin and Imax and each hop size between 1 and r謂̂；, finding the top k r-hop

neighborhood subgraphs with the highest burst scores in Q at each time stamp

continuously.

For conciseness, in the following, we focus on edge evolutions in hetero-

geneous bipartite evolving graphs. Our proposed solution can deal with node

evolutions as well.

8.2. Discovering Burst Areas

A direct solution to discover top k burst areas would be maintaining total

{Imax — Imin + 1) X r buTSt scores of each window size and each hop size over

sliding windows. At each time stamp t, these burst scores are updated based on

the evolutions happened inside the corresponding r-hop neighborhood subgraphs.

Then, for each window size and e -̂ch hop size, a list of top k r-hop subgraphs

Chapter 8. Disccrverihg Burst Areas in Fast- Evolving Graphs 91

Level 0

Level 1

Level 2

Level 3

Level 4

Wi W2 W3 W4 W5 Wg W7 Wg

(W1+W2) / 2 (W3+W4) 12 (Wg+Wg) 1 2 (W7+W8)/2

(W1+W2+W3+W4) M (W5+W6+W7+W0) 14

(Wi +W2+W3+W4+W5+W6+W7+W8) 18

Figure 8.2: Haar Wavelet Decomposition

based on the burst scores is returned as the answer. Before we explain our

proposed solution in details, which is much more efficient in both time complexity

and memory consumption, we introduce some background knowledge first.

8.2.1. Haar Wavelet Decomposition

The wavelet decomposition is widely used in various domains, especially in

signal processing. One of the conceptually simplest wavelet, Haar wavelet, is

applied to compress time series and speed up the similarity search in time series

database. The Haar wavelet decomposition of a time series is done by averaging

two adjacent values on the time series repeatedly in multiple resolutions in a

hierarchical structure, called Haar wavelet tree. The hierarchical structure can

be constructed in 0(n) time. Figure 8.2 illustrates how to construct the Haar

wavelet tree^ of an eight-value time series, which is shown at Level 0. Then at

Level 1，there are four average values of adjacent values in Level 0. The averaging

process is performed repeatedly until there is only one average value left.

^The Haar, wavelet decomposition consists of both averages and differences. For conciseness,

ignore the difference coefficients which are not used in our solution.

Chapter 8. Disccrverihg Burst Areas in Fast- Evolving Graphs 92

1 = 3 Wt-2 Wt-1 Wt

1 = 4 Wt-3 Wt-2 Wt

1 = 5 Wm Wt-3 Wt-2 Wt-1 w,

Wt-9 Wt.s Wt-7 W,̂ Wt-5 WM Wt-3 Wt-2 Wt-1 Wt

Figure 8.3: Upper Bounds of Burst Scores Using Haar Wavelet Decomposition

8.2.2. Bounding Burst Scores of r-Hop Neighborhood

Subgraphs

As defined in Definition 8.4, the burst score of an r-hop neighborhood sub-

graph is the total weight change happened inside during a period of time. Given

an evolving graph Q = (G, A) and a window size range {Imin, ^max), we introduce

first how to bound the burst scores for an r-hop subgraph.

Figure 8.3 shows an example. Wt is the sum of all the weight change hap-

pened in an r-hop neighborhood subgraph at time stamp t, Based on the Haar

wavelet decomposition, we can construct a Haar wavelet tree as shown at the

bottom in Figure 8.3. Suppose Imin = 3 and 1 戰工 = 5 , the three corresponding

burst windows are shown at the top. As we can see that, the burst windows of

size 3 and 4 are contained by window A at Level 2，while the burst window of

size 5 is contained by windows B at Level 3. This leads to the following lemma.

Lemma 8.2. A burst window of length I at time t is contained in the window at

Level�logj /] in the hierarchical Haar wavelet tree at time t.

Proof Sketch: Let W = itit-f+i, it̂ t-z+2,…，ŷ t denote the burst window of length

I. Based on the definition of the Haar wavelet decomposition, the length of

window at time t at Level n is 2". Let W = Wt, Wt-i^ ...,"^;_2(�i�g i])+i' Because

Chapter 8. Disccrverihg Burst Areas in Fast- Evolving Graphs 93

2 (n � g 2� > I �w e have W C W. •

Instead of average coefficients, we maintain the sums of windows in the Haar

wavelet tree. Since the weight changes are all positive, the sum of the values in

a window in the Haar wavelet tree is the upper bound of the burst scores of all

burst windows it contains, which leads to the following theorem.

T h e o r e m 8.3. The burst score of a length I burst window at time t is bounded by

the sum coefficient of the window at Level �log^ /] at time t in the Haar wavelet

tree.

We can use Theorem 8.3 to prune candidate burst areas. If the burst score

bound of an r-hop neighborhood subgraph is larger than the minimum score

in the current top k burst areas, then we perform a detailed search to check

whether it is a true top k burst area. Otherwise, the r-hop subgraph is ignored.

It is not necessary to build the whole Haar wavelet tree of all levels to compute

burst score bounds of r-hop subgraphs. As we can see from Theorem 8.3, only

the levels from�log'2"*…]—1 to�logt"=" | are needed to compute the burst score

bounds. L e v e l � l o g ^ l — 1 is directly computed from Level 0.

Now, the problem is how to maintain the wavelet tree at each time stamp

t�since graph evolutions come in as a stream. There are mainly two approaches.

1. Cont inuous U p d a t i n g : The entire Haar wavelet tree is updated at each

time stamp t continuously. The approach ensures there is no delay in

response time to return top k answers.

2. Lazy Upda t ing : Only windows at the lowest level are updated at each

time stamp t. The sums maintained in the upper levels in the Haar wavelet

tree are not computed until all data in the corresponding windows is avail-

able. For a burst window of size I �t h e response time delays at most ^̂ .

In our solution, we propose to maintain the Haar wavelet trees in a dynamic

manner, which can achieve both low computation cost and no delay in response

Chapter 8. Disccrverihg Burst Areas in Fast- Evolving Graphs 94

eve I 0 W,-6 Wt-5 W,.4 W | -3 W|-2 Wm Wi

evel 1 S(t-5,t-4) S(t-3 丨.t-2) S(t-1’t) -S(t-1 .t+1)

evel 2 S(t-3. t) S(t-3 .1+1)

evel 3 S(t-7 .t+1)

evel 0 W,.7 Wt.6 W,-5 Wm W,.3 Wi

evel 1 S(t-7, t-6) S{t-5. t-4) S(t-3 ,t-2) S(t- 1.t)

evel 2 S(t-7 • t-4) S(t-3.t)

evel 3 S(t-7, t)

evel 0 W,.5 Wt-4 Wt-3 w卜2 W|.1 w, Wki

evel 1 S(t-5 .t-4) S(t-3. t-2) S(t- l . t) S(t+1 • t+2)

evel 2 S(t-3.t) S(t-1 .t+2)

evel 3 S(t-7 t+2)

evel 0 WM Wi.3 W,-2 WM w, Wki Wt>2 Wt+3

evel 1 S(t-3.t-2) S(t-1.t) S(t+1 .t+2) S{t+2, t+3)

evel 2 S(t-3. t) S(t-1 .t+3)

evel 3 S(t-7. t+3)

Wi.3 W,.2 Wi-1 w, W(+3 w …

S(t-3, t-2) S(t-1.t) S(t+1.t+2) S(t+3, t+4)

S(t-3. t) S(t+1.t+4)

S(t-3, t+4)

t+1

t+2

t+3

t+4

Figure 8.4: Updating Haar Wavelet Tree

time. Figure 8.4 presents a running example, which illustrates how the Haar

wavelet tree changes as time goes by. Function t') denotes the sum of weights

in the window from time t to t\

As shown in Figure 8.4, suppose at time t, a Haar wavelet tree is built

according to the weight changes at Level 0. Then at time t 4- 1, instead of

updating the entire Haar wavelet tree, we only shift each level left for one window

Chapter 8. Disccrverihg Burst Areas in Fast- Evolving Graphs 95

(a) 1-hop • (b) 2-hop (c) 1-hop (d) 2-hop

Figure 8.5: Evolutions in 1-hop and 2-hop Subgraphs

and add the newly weight change Wt+i to the last window at each level. Since

weight change are all positive, the sums of the last windows are still the upper
i

bounds of burst scores of corresponding burst windows. At time t + 2, since all

weights at Level 0 used to compute the sum of the last window at Level 1 are

available, we compute the actual sum of the last window at Level 1 based on

Level 0. Then based on the weights at Level 1, the sum of the last window at

Level 2 is recomputed. While the last window at Level 3 is not recomputed since

the last two windows at Level 2 are overlapping. Instead, we add Wt+i to it.

Time t + 3 is similar to time t + l. At time i + 4，the last windows at all levels are
%

recomputed, because the last two windows of lower levels are not overlapping. In

general, last window at the lowest level (Leve l�log叫̂—1) is computed every

2�i°g2""”-i time stamps, while last windows at upper levels are recomputed once

the last two windows at lower levels are not overlapping.

8.2.3. Incremental Computation of Multiple Hop Sizes

Suppose we need to monitor r-hop neighborhood subgraphs of different hop

sizes, an easy solution is to maintain a Haax wavelet tree for each hop size. The

total memory usage would be 0、TN、, where N is t h e c a l number of nodes. Ob-

viously, it is not efficient due to the high computation cost, as well as the large

memory assumption. In this section, we introduce our algorithm to maintain

burst score bounds of multiple hop sizes using at most 0{N) memory consump-

Chapter 8. Disccrverihg Burst Areas in Fast- Evolving Graphs 96

tion. Our solution is to maintain Haar wavelet trees for 1-hop neighborhood

subgraphs only. The burst score bounds of an r-hop subgraph is calculated from

subgraphs of smaller hop size in an incremental manner.

We first examine how edge evolutions affect the burst scores of nearby r-

hop neighborhood subgraphs using exar^ples in Figure 8.5. Figure 8.5(a) shows

an example for 1-hop neighborhood subgraph g^ .̂ The dotted line is the edge

evolution happened. It is apparent that if the edge evolution belongs to 此 ,Vi

must be one of the nodes of the edge evolution. Figure 8.5(b) shows an example

for 2-hop neighborhood subgraph g^ .̂ As we can see that if the edge evolution

belongs to g l � e i t h e r it is within g � , or N^ \ {wi}. An edge evolution belongs

N^̂ \ {i^i} means both nodes of the edge evolution belong to N^̂ \ {巧}. We are

focusing on heterogenous bipartite graph. Suppose 1»1’1»4’"̂ 5 and V2, vs belong to

the two sides of a bipartite graph, respectively. Then there are no such evolutions

as shown by the dotted edges in Figure 8.5(c) and 8.5(d).

Now we explain how to compute the burst scores of r-hop neighborhood

subgraphs incrementally from the burst scores of 1-hop subgraphs. Prom the

above obversion, we know that the burst score of an r-hop subgraph is the sum

of the two parts. One is the burst score of (r — 2)-hop subgraph, the other is

the total evolutions within N^. \ JST广 Edge evolutions in TV；. \ TV；-̂ must be

connected to one of the nodes in Â；"̂ \ N : � “\ Let Vj e N^'^ \ N : � \ then we

have the following lemma.

L e m m a 8.4. The total number of edge evolutions in iVJ. \ N::: equals

BurstScore^VJ. (8.4)

Based on Lemma 8.4, the burst scores of r-hop neighborhood subgraphs are

calculated incrementally by using the following equation.

BurstScorel. = BurstScorel''^ + ^ BurstSocrel. (8.5)
vjeK-^N：；-''

Chapter 8. Disccrverihg Burst Areas in Fast- Evolving Graphs 97

where Burst Scored, denotes the burst score of r-hop neighborhood subgraph g^.,

and BurstScore^. = {). It is obvious that Eq. 8.5 is also correct if we substitute

the upper bounds of the burst areas for them.

8.2.4. Top k Burst Area Discovery

The whole algorithm is presented in Algorithm 8.1. At line 3, the algorithm

maintains Haar wavelet trees of all 1-hop neighborhood subgraphs at each time

t. If a node is seen for the first time, a new Haar wavelet tree is constructed.

Otherwise, based on Section 8.2.2, Algorithm 8.1 updates all the Haar wavelet

trees which have evolutions happened inside. In each loop from line 4 to line

12, the algorithm discovers incrementally the top k results from small hop size

to large hop size. At line 6，Algorithm 8.1 computes the upper bounds of burst

scores according to Eq. 8.5. If the burst score bound of an r-hop neighborhood

subgraph is larger than the minimum burst score mink in the corresponding top

k list, Algorithm 8.1 performs a detailed search at line 10 to verify whether it

is a real top k result. If the true burst score is larger than mink, it is added to

the corresponding top k list substituting the /c-th item. To save memory space,

instead of storing r-hop subgraphs, we only store centers of the r-hop subgraphs

in the top k list.

8.3. Experimental Evaluation �

In this section, we report our experimental results on two real datasets to

show both the effectiveness and the efficiency of our proposed algorithm.

Chapter 8. Disccrverihg Burst Areas in Fast- Evolving Graphs 98

Algorithm 8.1 The Top k Burst Area Discovery Algorithm
Input: An evolving graph Q = (G, A), a maximal hop size Vmax, a window range

(Imin, Imax), the value of k
Output: The top k burst areas at each time t

while time t < tmax do

2: for Vi e V{G) do

3： Update the Haar wavelet tree for 1-hop subgraph ĝ .；

end for

f o r 二 1 t o Tmax d o

for Vi e V{G) do

Compute burst score bound B^. of r-hop subgraphs g .̂ using Eq. 8.5;

f o r I = Imin t o Imax d o

mink = the minimum burst score of the top k list of hop size r and

window length l\

0： if Bl,. > mink then

1： Obtain BurstScorel. by detailed search;

2: if Burst Scored,. > mink then

3： remove the k-th. node Vj in the corresponding top k list;

4： add Vi to the corresponding top k list.

5： end if

6： end if

7： end for

8： end for

9： end for

20： end while

1 100 2 0 0 2 5 0

Time

100

(a) Digg A (b) Digg B

Figure 8.6: Total Evolutions of The Evolving User-Story Graphs from Digg

8.3.1. Diastases

The two real diastases are extracted from Digg [2], where users can make

their comments on stories. The nodes of the heterogenous bipartite evolving

graph are users and stories. Graph evolutions are the comments submitted by

users.

The corpus of users' comments collected contains comments for around four

month [35]. For better utilization, we split it into two two-month datasets, Digg

A and Digg B. Comments in the datasets are categorized day by day and there

are a large number of comments in each day. So, we further divide a day into

four time stamps and randomly assigned the comments in the same day into one

of the four time stamps. There are total 9583 users and 44005 articles. The

total time stamps of both datasets is 232. The evolution characteristics of these

two datasets are summarized in Figure 8.6, which shows the total number of

evolutions happened at each time stamp. There are periodic troughs in both

figures, indicating that users submit fewer comments during weekend.

Chapter 8. Disccrverihg Burst Areas in Fast- Evolving Graphs 99

r i N pl

esoj-
6 0 0 -

5 5 0

500

4 5 0 .

400：

3 5 0

3 0 0

1/

lA K

100

！00

(c) t = 46 (d) t = 64

Figure 8.7: Top 1 Burst Areas in Digg A {I = S)

8.3.2. Effectiveness

We demonstrate two examples discovered by our proposed algorithm in

dataset Digg A in Figure 8.7. We monitor top 10 burst areas for each time

stamp, where the length of burst window is 8. Among all these burst areas, the

burst area with the highest burst score is reported in Figure 8.7. The 1-hop burst

area with the highest score happened at time 35. We present the 1-hop neigh-

borhood subgraph at time 35 in Figure 8.7(b). For reference, the corresponding

1-hop subgraph at time 27 is presented in Figure 8.7(a), which is the subgraph

when all the evolutions have not happened. The round nodes and the square

Chapter 8. Disccrverihg Burst Areas in Fast- Evolving Graphs 100

fa) t = 27 (b) t = 35

Chapter 8. Disccrverihg Burst Areas in Fast- Evolving Graphs 101

nodes represent users and stories, respectively. The center round nodes in both

graphs are the center of the 1-hop burst area. As we can see that the subgraph

in Figure 8.7(b) has more nodes and edges than the one in Figure 8.7(a), which

indicates that the center node is an active user during the burst period. Similar

results could be observed in Figure 8.7(c) and Figure 8.7(d), which show the

2-hop burst area with the highest burst score among all the top 10 burst areas

of each time stamp. The burst area happened at time 64 and we also present

the same burst area at time 48 for reference. The centers of these two subgraphs

are shown as the central white nodes in the figures. These figures show that

the stories, which were commented by the user of the center node, also received

many comments from other users during the burst period.

Figure 8.8(a) and Figure 8.8(b) present the center node ID of the top 1

1-hop and 2-hop burst areas from time 90 to time 140, respectively. At each

time stamp, we plot the center node ID of top 1 burst area whose burst window

length is 8, as well as the one of top 1 burst area whose burst window length

is 16. The figures show that the top 1 burst area of large window length is not

always the same as one of small window size, which explains why it is necessary

to find burst areas of various burst window lengths.

8 .3 .3 .�Eff ic iency

We perform our efficiency experiments on dataset Digg A and Digg B. Figure

8.9(a) and Figure 8.9(b) show the overall running time of the direct algorithm,

which is discussed -at the beginning in Section 8.1，as well as the one of our

proposed algorithm. The value of k in Figure 8.9(a) and 8.9(b) is 10 and 20,

respectively. As we can see, our proposed algorithm is much faster than the

direct algorithm. The lower part of each bar of the direct algorithm is the

running time of updating all burst scores, and the lower part of each bar of our

proposed.algorithm is the running time of maintaining Haar wavelet trees. One

advantage of our proposed algorithm is that the maintaining cost is less than

1000

o
90

7000

90

Q 5000
•S
O 40C

140

140

130

130

1 1 0 120
Time

-hop

110 120
Time

(b) 2-hop

Figure 8.8: Center Node ID of Top 1 Burst Areas

1/10 of the one of the direct algorithm. This will be useful when we do not

monitor evolution streams continuously, but submit ad-hoc queries to find top k

burst areas at some interesting time stamps.

Figure 8.9(c) and 8.9(d) show the overall running time for the direct algo-

rithm and our proposed algorithm, when the value of k changes. The length I

of burst window in Figure 8.9(c) and 8.9(d) is 16 and 32，respectively. We can

observe similar experimental results that our proposed algorithm uses much less

time. Figure 8.10 presents the corresponding results for dataset Digg B, which

prove again the efficiency of our proposed algorithm.

Chapter 8. Disccrverihg Burst Areas in Fast- Evolving Graphs 102

9000

8000

7000

6000

Q 5000

O 4000

3000

16 32 40 48 32 40 48
'max

(b) k=20

(c) /=16 (d) 1=32

Figure 8.9: Performance Study on Digg A

fe report the pruning ability in dataset Digg A and Digg B in Figure 8.11.

Figure 8.11(a) and 8.11(b) show the pruning ability of our proposed algorithm in

Digg A and Digg B when the length of burst window varies. We report two sets of

results where k is 10 and 20. Figure 8.11(c) and 8.11(d) show the pruning ability

of our proposed algorithm in Digg A and Digg B as the value of k changes. We

report two sets of results where I is 16 and 32.The results show that our proposed

algorithm is able to prune most of the detailed searches. As we can see, as the

increase of the value of I or k, the pruning ability decreases slightly.

Direct Algorithm

Updating Burst Scores
Finding Top-k Burst Areas

Proposed Algorithm

Updating Wavelet Trees
Finding Top-k Burst Areas

Chapter 8. Disccrverihg Burst Areas in Fast- Evolving Graphs 103

o
 o

 o

 o

 o

5

4

3

2

1

(
s
p
u
c
o
s
g
)
 «E
_
U
,

 O
T
U
!
u
u
n
y

o
 o

 o

 o

 o

o
 o

 o

 o

 o

5

4

3

2

1

(
s
p
u
o
o
a
s
 3
£
l
i

 C
T
U
j
u
u
n
y

.
l
i
l
.
/
送
-
T
s
s
^

N
 j

o
 o

 o

 o

 o

5

o

5

o

5

2
 2

1

1

(
S
P
U
0
:
I
3
§
)
 S
E
L
L

 6
u
!
u
u
n
y

I

I I
30

n
^
i

w
i
i
i

0
 o

 o

 o

 o

 o

2

o

8
 6

 4

 2

1
 1

(
S
F
3
U
O
0
3
S
)

 i
p

戊
u
!
u
u
n
比

6
ni

li；
I

I
I ！

� 1=16 (d) 1=32

Figure 8.10: Performance Study on Digg B

Chapter 8. Disccrverihg Burst Areas in Fast- Evolving Graphs 104

Direct Algorithm Proposed Algorithm

H Updating Burst Scores
Finding Top-k Burst Areas

Updating Wavelet Trees

Finding Top-k Burst Areas

56 24

o
 o

 o

3

2

1

(
s
p
u
s
a
s
)
 w
e
f
 6
u
!
u
u
n
y

(b) k=20

o
 o

 o

 o

o

5

o

5

2

1

1

(
S
P
U
0
0
3
S
)
 9
U
J
P

 6
u
!
u
u
n
y

(
s
p
u
o
o
a
s
)
 O
E
P

 6
u
!
u
u
n

比

(a) k=10

35
I

o
 o

 o

 o

8

6

4

2

《
S
F
3
U
0
3
①
的
)
3
U
J
L
L

功
u
!
u
u
n
比

32 40

[a) Digg A, k = 10

24 32 40 48
I max

(b) Digg B, k = 20

(c) Digg A, / = 16 (d) Digg B’ Z 二 32

Figure 8.11: Pruning Ability of The Proposed Algorithm

Chapter 8. Disccrverihg Burst Areas in Fast- Evolving Graphs 105

S ^ Pruned Searches

Detailed Searches

Pruned Searches

Detailed Searches

30

u

4
 3

 2

1

o

s
a
q
o
j
e
a
s
 (
p
a
u
m
d
)

 i
o

 J
a
q
E
n
z

30

7

-
l
l
m
j
l

0

1

X
I

-
 .

 -

I

5
 4

3
 2

1

o

s
a
l
p
j
e
o
s
 (
p
d
c
s
d
)

 j
o

 J
a
q
u
i
n
z

0

0
0
 6

 4

 2

C

1

s
^
l
p
j
e
山
S
 (
P
3
u
r
u
d
)

 j
o
 j
s
q
u
i
r
i
f
g

0

8

6

4

2

(

1

s
a
i
p
j
e
a
s
 (
f
J
3
U
E
d
)

 j
o

 J
a
c
^
E
n
N

二

I

I

 .

I
I
;
琴
进
结
翻

-

n

I I i

n

M
M

r~—：

f

n

1

r
a
 穿

r
i

一

n
崔
V

CHAPTER 9

S P O T T I N G SIGNIFICANT CHANGING
SUBGRAPHS IN EVOLVING G R A P H S

In this chapter, we explain in detail how to spot significant changing sub-

graphs in evolving graphs. The chapter is organized as follows. Section 9.1

introduces the preliminary background and formalizes the problem of spotting

significant subgraphs. We present our incremental computation approach and

the expanding algorithm in Section 9.2 and Section 9.3，respectively. Section 9.4

reports the experimental results and Section 9.5 discusses some alternate node

closeness measures.

9.1. Changing Subgraph Discovery

We model an evolving graph as a sequence of undirected graphs, denoted

as ^ = (Gi, G ŷ • • •)> where nodes/edges can be added and/or deleted into/from

Gi-i which results in another large graph Gi. Gi{Vi, Ei) is a snapshot of graph Q

at time U with a set of nodes VJ and a set of edges E�, For simplicity, given two

graphs GiiYi, Ei) and Gi_i(V5_i, the two sets of nodes, Vi and Vi_i, are

identical, while the two sets of edges, Ei and are possibly different. The

notations used in this chapter are summarized in Table 9.1.

Consider an evolving graph. An edge change may make some nodes become

closer and at the same time may make some other nodes become looser. As

Chapter 9. Spotting Significant Changing Subgraphs in Evolving Graphs 107

Table 9.1: Notations in Chapter 9

Symbol"

•
t
 i.

 ̂
^

i

i

 r
^

G
-

 G

 A
 F
t

 ̂

 ̂

 D

 n
 K

Definition

An evolving graph

The snapshot of evolving graph G at time U

The adjacency matrix of graph Gi

The transition matrix of graph Gi

A node on a graph

The set of neighbors of node Vj

The sum of edge weights between node Vj and N{vj)

The diagonal matrix where djj = d{vj) at time U

The node closeness matrix at time ti

The node importance score at time U

八

Figure 9.1: Relationship Changes as Edge Changes

shown in Figure 9.1, there are two graphs Gi and G2 in an evolving graph at

time ti and <2，respectively. At time ^i, there is an edge between Vi and Vj,

and there is a path between Vj and Vk. At time ^2，there are more paths from

Vj to Vky where the edge between Vi and Vj remains unchanged. In comparison

with Gi at time ^i, the closeness between Vj and Vk becomes closer, because the

newly added edges make it easier for Vj to traverse to Vk. On the other hand, the

closeness between Vj and Vi becomes looser, because Vj has more opportunities

to traverse to other nodes. This fact motivates us to consider an accumulative

Chapter 9. Spotting Significant Changing Subgraphs in Evolving Graphs 108

score that measures the overall impacts of all changes on a node when a graph

evolves. Reconsidering Vj in Figure 9.1, we need to consider the relationships

between Vj and Vi, between Vj and Vk, and between Vj and any other node, in

order to judge the change influence on Vj. Given such an accumulative score, it

becomes possible to find significant changing subgraphs when a graph evolves.

We explore this issue using neighborhood random walks on graphs to help

spotting significant changing subgraphs. We first review some basic concepts

of random walks on graphs. Let Ai denote the adjacency matrix of a weighted

graph Giy where Ai(j, k) maintains the weight for the edge (vj,vfc)- A random

walk on Gi is performed in the following way. A particle starts at a certain node

1)0 of the graph Gi. Suppose it walks to a node Vs in the s-th step and it is about

to move to one of the neighbors of Vg, denoted as f t € N{vs), with probability

Pst, where Pst is ^{(s, 幻fceN(v，）Ai(s，紀)，and N{vs) contains all neighbors of

node Vs. The node sequence of the random walk is a Markov chain. Let Di be

the diagonal matrix with the diagonal value d{s) = 卯eAr—a)或(s，then the

transition probability matrix Pi of the Markov chain for graph Gi is

Pi = D-^Ai. . (9.1)

The probability of going from Vj to Vk through a random walk of length I can be

obtained by multiplying the transition probability matrix I times and is given as

pRj.k).

An infini te s t ep app roach (Z oo): One possible distance measure from

node Vj to node Vk is defined as the steady-state probability P/(j , k), I oo,

which is the probability that the particle starting from Vj will be on node Vk

after an infinite number of steps. While it might be working some field such as

biology [10], it has a big drawback. When Gi is not a bipartite graph, with the

memoryless property of Markov chains, the steady-state probability distribution

follows the equation below [41]:

Vj, lim i ^ , (j ， f c) = 母) (9.2)
� e v i 咖）

Chapter 9. Spotting Significant Changing Subgraphs in Evolving Graphs 109

Here, VJ is the set of nodes of graph Gi. Recall that d{s) = X^_y&.eN(v，）k).

Eq. (9.2) states that the probability of random walk to a certain node Vk from

any initial node vj shares the same limit value. In other words, random talk to

a certain node is independent from the initial node. Therefore, such a measure

cannot be effectively used to measure the closeness of two nodes.

A n inf ini te s t ep app roach w i th r e s t a r t -> oo and 0 < c < 1): It is

important to note that the change of closeness between two nodes should follow

the principle that such a change is caused by a nearby edge change rather than

an edge change that is far away. Here the issue is the locality of edge changes.

In other words, the closeness measure needs to easily capture the nearby local

structural information. Note that a random walk with an infinite number of steps

{I —oo) can possibly visit the entire graph and might go to as far as possible from

where it starts. One possible approach is to use a restart probability c (c < 1).

Here c(l — cY implies the probability of jumping back to the initial starting

node at the l-th step. Since c < 1, when I is small (close to the initial starting

node), the probability of jumping back is high; and when I is large (away from

the initial starting node), the probability of jumping back becomes small [45]. It

requires to compute the transition probability matrix Pi until it converges, which

is a time consuming process. In the literature, a small c � 0 . 5 is usually used.

However, in our problem setting, with a small c <C 0.5, there are possibilities

that random walks will visit nodes that are far away from the initial node, and

make it uncertain how the local structural information is captured. The problem

cannot be solved by simply using a large c value, because the meaning of random

walk with a larger c value becomes less obvious.

A fixed s t e p app roach w i th r e s t a r t (fixed I and 0 < c < 1): With a fixed /，

we focus on the local structural information using neighbors of a node,巧,from

which the random walk starts. The node, Vj, to start random walks is the node

that is involved in an edge change. The neighbors of Vj are the nodes that Vj can

reach in I steps. Random walks are only conducted" in the /-step neighborhood of

Chapter 9. Spotting Significant Changing Subgraphs in Evolving Graphs 110

the node Vj with a restart probability c. It is important to note that our algorithm

is designed in a way that a user can enlarge the I value if needed at run time. We

adopt the similar expected /-distance in [26, 25]. In the expected /-distance, a

parameter c is used to let the expected /-distance prefer the shorter path. The

proof in the Appendix shows such a parameter c is the restart probability used in

45] with minor difference which can be ignored. In short, neighborhood random

walk distance, which is also called the node closeness�is the expected /-distance

defined on random walks whose length is smaller or equal to 1.

Defini t ion 9.1. Ne ighborhood R a n d o m Walk Dis tance (Node Close-

ness) . L e t Pi be the n x n transition probability matrix of a graph Gi. Given I

as the length that a random walk can go, the neighborhood random walk distance

k) from Vj to Vk is defined as follows:

P (T) c (l - c) — 叫 T), (9.3)

r:vj —Vk\length{r) <l

where 0 < c < 1, and r is a path from Vj to Vk whose length is length(T) with
t

transition probability p{r).

The matrix form of the neighborhood random walk distance is as follows.

n 卜 ; — (9 . 4)

7=1

Here, Pi is the transition probability matrix for graph Gi, and Hi is the neighbor-

hood random walk distance matrix for graph Gi. We then define the importance

score of a node as the accumulative change of its closeness to other nodes in

Eq. (9.5).

Vhivj) = Y^ i n L i k k) 一 k)\. (9.5)

Here, VIi{vj) is the importance score of a node Vj when a graph evolves from

graph Gi-i to Gi,

The problem of spotting significant changing subgraphs in an evolving graph

becomes a clustering problem based on the change importance score VIi{vj)

Chapter 9. Spotting SigniGcant Changing Subgraphs in Evolving Graphs 111

Algor i thm 9.1 The Framework

Inpu t : Two graphs Gi and Gi_i of an evolving graph Q at time U and an

integer range I �a n d a restart probability c
•I

O u t p u t : The significant changing subgraphs from Gi-i to Gi

1: Compute the importance scores for nodes in Gi\
2: Find significant changing subgraphs from nodes with high importance scores;

using neighborhood random walk distances. We propose a two-step framework

as illustrated in Algorithm 9.1. First, we compute the importance score VIi[vj)

for any node Vj in graph Gi that is involved in edge changes. Second, based on

the importance scores, we find significant changing subgraphs.

9.2. Node Importance Score Computation

In this section, we discuss in detail how to calculate the difference of node

closeness in two graphs Gi-i and Gi and the node importance scores.

9.2.1. The Straightforward Algorithm

We can develop a straightforward algorithm, which is presented in Algorithm

9.2, to compute the difference of node closeness and the node importance score

based on the definitions. The straightforward algorithm iteratively calculates the

respective closeness matrices Hi—i and Hi at time U-i and U based on Eq. (9.4)

by the power method (Lines 1-12). The closeness difference matrix is simply

computed as Ci = Hi — !!‘一 i，based on which the importance scores of nodes can

be easily computed by Eq. (9.5). In each loop from lines 8 to 11，Algorithm 9.2

needs to multiply two matrices Qi and P��which takes O(n^) time, where n is

the number of nodes in the evolving graph G. Since the total number of loops is

/ - I , the time complexity of Algorithm 9.2 is 0{ln^). One can use the fast sparse

matrix multiplication instead of the normal matrix multiplication to improve the

speed, but usually that is not enough to lower the running time especially when

Chapter 9. Spotting SigniGcant Chajiging Subgraphs in Evolving Graphs 112

Algor i thm 9.2 The Straightforward Algorithm

Inpu t : The adjacency matrices Ai^i and Ai for two graphs Gi-i and Gi at time

U-i and it, an integer range Z, and a restart probability c

O u t p u t : The closeness difference matrix Ci and the node importance vector Vli

Pi = D-'Au

Pi-i =

Qi = Pi\

Qi-i = -Pi-1；

Hi = c(l - c)Oi；

ni_i = c(i -c)Qi_i；

for 7 = 2 to / do

8： Qi = Qi* Pi]

9： Qi-i = Qi-i * Pi-i；

10： n^ = Hi + c(l - c)7Q“
11: rii一 i = i +

12： end for

13： C i ^ U i - rii-i;

14： for each Vj in V do

15： =

16: end for

G is large and there are a lot of edge changes.

Due to the high computational complexity of Algorithm 9.2, we seek for a

more efficient way to compute the node importance scores. Since we care more • • •
for the node pair whose closeness may be different in and G i � i t is not

necessary to compute the whole closeness matrices Ui-i and Hi. One possible

way to improve the efficiency of Algorithm 9.2 is to calculate the closeness of

those node pairs that may change, rather than computing all node pairs.

Let AA = Ai — Ai-i be the difference adjacency matrix. All non-zero entries

in AA represent the edge difference between GI and GI-i. Let V{AA) be a node

Chapter 9. Spotting Significant Changing Subgraphs in Evolving Graphs 113

set, where each node Vj € V{AA) has at least one non-zero entry on the ；-th row

of Ai4 (i.e., at least one changing edge connected to V j) . Suppose that {t；^,!；/.}

is a pair of nodes whose closeness 11 (j, k) needs to be computed. Then, there

must exist nodes v^^ Vn E ^(AA), where (vm^v-n) is a changing edge, such that

the neighborhood random walks starting from iVn or Vn can reach Vj and Vf.. In

other words, Vm or Vn or both must lie in some tour path that connects Vj and Vk-

Such node pair {vj^vk} forms the influence set of Vm and Vn�since the closeness �

of {vj.Vk} is influenced and changed by the edge change of Therefore,

by pruning the nodes in V that are not in the influence set of any node in

we can improve the speed of Algorithm 9.2. The solution is to construct induced

subgraphs G\ and G ;] ， w h i c h consist of only the nodes in the influence sets of

V{AA), and use the corresponding adjacency matrix and in Algorithm

9.2. The closeness difference related to all other nodes are all zero. The time

complexity of this approach is 0{l{an)^), where a is the fraction of nodes that

are in influence sets.

Unfortunately, the above approach does not always work very well. For

example, in social networks, the average graph diameter is usually small due to

the small world property [16]. As a result, the size of the induced subgraphs

G'i and for such networks is close to that of the original graphs G � a n d

Gi-\. In other words, the corresponding a is close to 1 and the complexity of

this approach is almost the same as that of Algorithm 9.2.

9.2.2. A Novel Incremental Algorithm

As mentioned above, in order to compute the node importance score, we only

need to consider the node pairs whose closenesses change and it is not necessary

to calculate the closeness for all node pairs. In this section, we introduce a novel

incremental algorithm that computes the closeness difference directly for those

node pairs with changing closeness.

Let us start from a simple case. Suppose that there is only one edge e

Chapter 9. Spotting Significant Changing Subgraphs in Evolving Graphs 114

that is different between two graphs Gi and Gi_i. It can be either the addition

of e to Gi or the deletion of e from Gi_i. The question is to identify those

node pairs whose closenesses change due to the difference of e, as well as the

quantities changed. Recall our closeness measure in Eq. 9.3. The answer to

the above question is that if a node pair has at least one tour path passing

through the edge e or one of the two nodes incident to edge e, the closeness of

the node pair changes. By identifying those paths, we can find the node pairs

with changing closenesses. Furthermore, the summation of the differences of

these path probabilities is exactly the quantity changed in the closeness of each

node pair.

By Eq. (9.4)，the iterative form of the node closeness is

7=1

7=1

(9.6)

(9.7)

Therefore, the closeness difference matrix is

二 (c(i 一 cypl + - (c(i - cYpU + n；：})

By Eq. (9.7), we can see that the key step in computing ATL[is to compute

{P- — jFJLi), which is easy when I = 1. When I > 1, obviously we cannot compute

it in a naive way by the power method s i p c e ^ ^ computational expensive. Recall

that Pi{jy k) is the probability of going from Vj to Vk through random walks of

length I on graph Gi. We now show how to calculate AP} = P卜 in an

efficient way. Apparently,

Pl{j.k)= ^̂办)， （9.8)
r:Vj —Vfc

Chapter 9. Spotting Significant Changing Subgraphs in Evolving Graphs 115

where r is a tour path from node Vj to Vk, and Pt(r) is the probability of path

r in Gi, Suppose r = (fi,t'2, •-•.vi), where Vi = vj and vi — Vk�then Pi{r)=
n 二 1 •̂ iĈ ^m, The Slim of the probability of all these distinct tour

paths is P}(j, k).

In order to compute AP/, we only need to consider the different paths on

Gi and as well as the difference in the probability of the same paths. For

simplicity, we only discuss the case when there are only additions of edges or

increase of edge 了ights. We will show later that our algorithm can handle

deletions of edges and decrease of edge weights as well.

Let (I'm, ̂ n) be one of the added edges or one of the edges whose weights

increase. For any node pair {vj,vk}y if there is a tour path r of the maximum

length I starting from Vj�passing through the edge Vn) and ending at Vk, then

the node closeness lli{j, k) will increase by Pi(丁)’ since this path does not exist

in On the other hand, if there is a tour path r of the maximum length I

starting from Vj, passing Vm or Vn or both, and ending at Vn�but without passing

through {vm.Vn)̂ then the node closeness !!‘()’ A;) will decrease by (p i _ i (r) -

Pi(r)), since the path r exists in both Gi and Gi^i, and with the increase of

d{m) and d{n) in Gi, the probability of the path 丁 decreases. We formalize the

above analysis in Theorem 9.1.

Theorem 9.1. Given two graphs Gi and Gi-i of an evolving graph G, let {vm, Vn)

denote the changing edge, then AP}(J�k) can be computed as follows:

T:Vj->^Vk](Vjn,Vn)ET
(9.9)

- P i - i (r)) .
T:Vj-^Vk]{vTn,Vn)^r\Vm OT Vrx^T

Theorem 9.1 suggests an effective way to calculate the change quantity of the

closeness between node pairs. The key is to find all the related paths distinctly

and completely so that the change quantity is computed correctly. To enumerate

Chapter 9. Spotting Significant Changing Subgraphs in Evolving Graphs 116

(a)

(b)

no edgee edge e may exist

no nodev m no edgee
node Vm may exist

Figure 9.2: Path Enumeration for Correct Closeness Difference Computation

夺 11 the possible positions of the edge (vm, Vn) in a path r is obviously not a good

solution due to the exponential number of combinations with respect to the

number of changing edges and the range I.

We first discuss the case of the path r \ Vj Vk when (i>m，Wn) ^ 丁. We

can calculate the closeness difference in the following way. For the changing edge

e = {vm.yn)^ we first calculate the probability of a path t i from Vj to Vm with

length Zi, where li <1—1. We then calculate the probability of a path T2 from Vn
\

to Vk with length I2 = I — h — l. In this way, we ensure that the computed paths

from Vj to Vk passing the edge (vm^vn) is of length I. The closeness difference

that is accounted for such paths can be computed as

p(Ti)Pi(m,n)p(T2), (9.10)
Ti-.Vj-^VmWi-.Vn-^Vt,

where 7ri(j, k) denotes the first term of k) in Eq. (9.9).

In order to compute p{ri : Vj �V m) and p{r2 : Vn …Vk) correctly without

missing and double-computing any path, we perform the random walks as shown

in Figure 9.2(a). We do not allow a path t i from Vj to Vm to pass e，while we

do not have this restriction on path T2.

As for the other case of the path t : Vj — Vk when v^ or Vn G r but

Chapter 9. Spotting Significant Changing Subgraphs in Evolving Graphs 117

{vmyVn)贫 T, the closeness difference can be computed in a similar way:

兀2a AO = P(T3)P(T4)， (9.11)
T3 :Vj …Vm;T4-Vm �Vk or T3 :Vj -^Vn ；T4 :Vn

where n2(j, k) denotes the second term of AP/(j, k) in Eq. (9.9). For the cor-

rectness of computation, we do not allow T3 to contain the node Vm (or Vn when

T3 is from Vj to Vn) and we do not allow T4 to contain the edge e, as shown in

Figure 9.2(b).

The whole incremental algorithm to compute the closeness difference matrix

is presented in Algorithm 9.3. 1 and 3 at line 5 and 6 denote the index of all

changed nodes and all unchanged nodes, respectively. A changed node is the

node that at least one added edge connects to it. Let P denote a matrix.

denotes the submatrix of all rows and all z-th columns, where i e 1. P[X,:

denotes the submatrix of all z-th rows and all columns. P[J,I] denotes the

submatrix of all j-th rows and all z-th columns, where j E J and i e X.

When we explain the strategy of our incremental algorithm, for simplicity,

we assume only one edge is added to the graph during the evolving, but in reality,

there may be many edge changes at one time. Apparently, it is not a good way

to handle them one by one. In Algorithm 9.3, We handle all the changed edges

together in matrix form instead of one by one. The key idea is similar, we use

two arrays of P p and to store the corresponding probabilities of the t i and T2

types of paths. Four other arrays of P^l^, and PJ"̂ are used to store the

probabilities of the T3 and 7*4 types of paths on graph Gi-i and Gi�respectively.

The algorithm computer the difference distances matrix Ci incrementally In

each loop starting at line 14, the algorithm first computer the probabilities of

four types paths. For a certain length k < I, there are k possible positions for

the changed edge {vm, Vn) or node Vm or Vn on the tour path. During the loop

from line 22 to line 33, the algorithm enumerate all the k possibilities and sum

up all the paths to obtain the matrix R, which equals to the item {Pi — P/_i)

in Eq. (9.7). One may argue that in order to store the six arrays of matrices, a

Chapter 9. Spotting Significant Changing Subgraphs in Evolving Graphs 118

Algor i thm 9.3 The Incremental Algorithm

Inpu t : The adjacency matrices Ai-i and Ai for two graphs and Gi at time

ti-i and ti, respectively a integer of range I

O u t p u t : The difference distances matrix Ci and the node change importance
vector VI.

Pi-1
Pi = d-^Av,

Pci = Pi - Pm \
X = Index of all changed nodes;
J = Index of all unchanged nodes;

pr[\] = pui[.,'r\\
pp[\] = pi%:);

for A: = 2 : / do

Pui[J,J\P?[k-l\\

R = n X n zero matrix;

for m = r : /c do

if m = = 1 then

:1 = R[X, ；1 + Pci[X, t[Pp (/c 一 ml;

:1 =丑[工,:1 + Pi*(fc - m]Pui - - m]Pi-X；
else if m == k then

RM = RM + PP [m 一 ilPciP.i);
R = R + Pp[m - l]Pui[X, ：] - - l]Pi-i[I,：);

R = R + PP[m-l]Pci[T,l\Pr^ [A： - ml;

:1 = R[J, ：] + PP[m - - m]Pui - P[l,\m - Iji^JlJfc - m\Pi.
end if

end for

Ci = c (l - c 产 f i + C“
end for

for each Vj in V do

end for

Chapter 9. Spotting Significant Changing Subgraphs in Evolving Graphs 119

large amount of memory is needed. But the fact is that in worst case, each sparse

matrix contains n\X\ entries. So the total number of entries are Qnl\X\. Since I
is a small number and |X| is usually much smaller than n, the total number of

entries is then smaller than n^.

We have discussed how to handle the additions of edges and the increase of

edge weights. In fact, our algorithm can also handle the situation when there

are deletions of edges and decrease of edge weights. Let us first suppose that

there are only deletions of edges and decrease of edge weights from Gi-i to Gi.

It is easy to see that this is exactly the same as the evolvement from Gi to Gi_i,

where only additions of edges and increase of edge weights happen. The only

difference is that the closeness difference matrix should be multiplied by -1. In

general, we can first handle all the additions of edges, together with the increase

of edge weights, and then handle the deletions of edges and decrease of edge

weights. In order to do this, we can add a ghost graph, GJ, such that {G[— Gi_i)

contains all the edges added or with increased weights and (Gi — G[) contains

all the edges deleted or with decreased weights. The sum of these two closeness

difference matrices gives the same closeness difference matrix from to Gi.

9.3. Spotting Significant Subgraphs

With the closeness difference matrix II- at time U and the node importance

score vector V/ , we now explain how to expand those nodes of high importance

scores to obtain significant changing subgraphs. As mentioned, a changing sub-

graph is significant if the node closeness in the subgraph changes a lot. In our

experiments, we find that the node importance scores follow the power law distri-

bution. Therefore, instead of defining an absolute threshold for the score, we use

the value ^ as the threshold such that more than 85% of the scores are smaller

than it. Apparently, significant changing subgraphs should contain all the im-

portant nodes (i.e., those with high importance scores beyond the threshold i)

and most of the nodes whose closenesses with the important nodes change a lot.

Chapter 9. Spotting Significant Changing Subgraphs in Evolving Graphs 120

We develop an expanding strategy which is similar to the density clustering. The

basic idea is to include the nodes whose closeness differences with the important

nodes are high.

We present the expanding algorithm in Algorithm 9.4. A max heap is used

to store all the neighbors of current subgraph g. At line 2，the union graph of

Gi-i and Gi only keeps the information of connectivity. The algorithm starts

from an important node Vj with the maximum importance score in each loop

at line 4 to generate a significant changing subgraph. At line 9，the algorithm

fetches the first node Vk in heap H. l{V{g)) in line 11 is the index of all the nodes

in subgraph g. From line 11 to 15, the algorithm checks whether the max node

closeness difference from the important nodes in the current significant subgraph

g to Vk is smaller than the threshold e. If so, the algorithm clears the heap H

and outputs the significant changing subgraph g. At line 17，threshold e is set

to be 1/5 of the maximum transition probability of the important node lastly

included into the subgraph. Next, all the unvisited neighbors of the node lastly

included into the subgraph are inserted into the heap H at line 20 to 25. This

procedure is repeated until all the important nodes are visited. In the final result

set of the significant changing subgraphs, two subgraphs are merged if they are

directly connected.

9.4. Experimental Evaluation

In this section, we present the experimental results on four real datasets to

show both the effectiveness and the efficiency of our proposed algorithms.

Chapter 9. Spotting Significant Changing Subgraphs in Evolving Graphs 121

Algor i thm 9.4 The Expanding Algorithm

Inpu t : The adjacency matrices and Ai for two graphs Gi_\ and Gi at time

ti_i and tt； the closeness difference matrix Ili at time U

O u t p u t : The significant changing subgraphs

1： Let if be a max heap;

2: Let G' be the union graph of Gi_i and Gi；

3: while not all the important nodes visited do

4: Vj = the unvisited important node with the highest importance score;

5: Let Vm be the node that Ili{j, m) is maximum among all unvisited nodes;

6： Insert〈巧.，ni(j•，m)�to the max heap

7: e = 0;

8: while H is not empty do

9: Vk = the first node in H;

0： if > 0 then

1: if inax(ni(I(V(g)), k)) < e then

2： Empty I f ;

3: Output the current subgraph g;

4: end if

5： end if

6: if Vk is an importance node then

7: € = max(ni(/c, :))/5;

8: end if

9： Mark Vk as visited and add Vk to the current subgraph g\

20: for each neighbor VN of VK on the union graph G' do

21: if Vn is unvisited and not in H then �

22： Let Vm be the node that 11,(71, m) is maximum among all unvisited nodes;

23: Insert (un, ni(n, m)) into the heap H]

24： end if

26: end for

26： end while

27: end while

Chapter 9. Spotting Significant Changing Subgraphs in Evolving Graphs 122

Table 9.2: Dataset Characteristics

Datasets Nodes Average Edges Added Time Steps

D B 5492 1734 10

D M 5574 1079 10

Enron2001 16639 320 184

Enron2002 16639 203 164

9.4. Datasets

The four real datasets are extracted from the DBLP [1] co-authorship

dataset and the Enron email dataset [3]. In the DBLP co-authorship dataset,

each author is represented by a node and there is an edge between two authors

if they co-authored some paper" In the Enron email dataset, each email sender

or receiver is considered as a node and there are edges between senders and re-

ceivers. The first two datasets DB and DM are from the DBLP co-authorship

dataset. DB contains the co-authorship information of six major database confer-

ences from 1998 to 2007, including SIGMOD, PODS, VLDB，ICDE, EDBT and

ICDT. DM contains the co-authorship information of five major data mining con-

ferences from 1998 to 2007, including KDD, ICDM, PKDD, SDM and PAKDD.

DB has 5492 nodes and DM has 5574 nodes. The other two datasets Enron2001

and Enron2002 are extracted from the Enron email dataset. Enron2001 contains

the email communication information of each day from 2001-07-01 to 2001-12-

31, while Enron2002 contains the email communication information of each day

from 2002-01-01 to 2002-7-31. The number of nodes of both Enron2001 and En-

ron2002 is 16639. The characteristics of these datasets are summarized in Table

9.2.

The authors in [54] introduced three aggregation methods: global aggrega-

tion, exponential aggregation and sliding window. It is worth noting that our

proposed approaches can cooperate with all these tliree aggregation methods. In

？ 3 4 5 6
Length of Neighborhood Random Walks

Figure 9.3: The Goodness of Significant Subgraphs in Dataset DB

our experiments, we choose global aggregation to perform our experiments, which

aggregates the new edges or edge weights to the adjacency matrix of previous

time. Let AAi be the adjacency matrix of the graph at time step ti, then

. i
Ai = J2 ^^t (9.12)

t=i
The average number of added edges per time step is presented in Table 9.2.

9.4.2. Effect iveness

Let us first introduce our criterion of the significant subgraphs. Let Qi denote

a significant subgraph found at time U. We evaluate the goodness of significant

subgraphs as q

Goodness = 々；;•^卢 (9.13)

where Ani (j , k) = l i l t{j , k) — I l i 一 i s the closeness difference for Vj and Vk

between Gi-i and Gi, The goodness is essentially the fraction of the closeness

differences between Gi-i and Gi that are captured by significant subgraphs.

We use c = 0.15 in all experiments. Figures 9.3 and 9.4 present the average

goodness for different values of f , which is a parameter in Algorithm 9.4, when

varying the length of neighborhood random walks I from 2 to 10. For dataset

Chapter 9. Spotting Significant Changing Subgraphs in Evolving Graphs 123

\
0.98

« 0)
•D 0.96 o o O

0.94

0.92,

0.95^ ^
2 3 4 5 6

Length of Neighborhood Random Walks

Figure 9.4: The Goodness of Significant Subgraphs in Dataset DM

(a) Dataset DB (b) Dataset DM

Figure 9.5: Two Significant Subgraphs

DB, our algorithm captures 92% changes in node closeness, while for dataset

DM, our algorithm captures more than 96%. For a higher value of ^ and longer

length of I, the goodness scores increase.

Two significant subgraphs found are presented as examples in Figures 9.5(a)

and 9.5(b), which is from the experiments with I = 4 and ^ = 0.8. For privacy,

we replace author names by abbreviations. The newly added edges are dotted

in both subgraphs. Figure 9.5(a) shows the subgraph from dataset DB. There

Chapter 9. Spotting Significant Changing Subgraphs in Evolving Graphs 124

8
 7

 6

9
 9

 9

•

 .

^̂
•

o
 o

 o

«
«
®
C
E
O
O

1=4 1=6 1=4 1=6
Length of Neighborhood Random Walks Length of Neighborhood Random Walks

(a) Dataset Enron2001 (b) Dataset Enron2002

Figure 9.6: Overall Running Time on Dataset Enron2001 and Enron2002

are originally three communities (dense areas) and the newly added edges make

three communities connected, which usually indicates that there is a joint re-

search work involving multiple research groups. Apparently, only the subgraph

consisting of the added edges cannot provide this information. There are other

nodes connecting to some of the nodes in three communities, and these nodes

are not included in the significant subgraph because the difference of the node

closeness between them and the node importance scores are small. In Figure

9.5(b), the researcher BR co-authored papers with researchers in a very dense

community. Researchers in the same research group tend to co-author a lot and

f o r m v e r y dense community. Therefore, it is obvious that BR should be a new

member to some research group.

9.4.3. Efficiency

We perform our efficiency testing on datasets Enron2001 and Enron2002.

Figures 9.6(a) and 9.6(b) show the overall running time for the three algorithms:

the straightforward algorithm in Algorithm 9.2, the incremental algorithm in

Algorithm 9.3 to compute the node importance scores, as well as the expanding

algorithm in Algorithm 9.4 to generate the significant subgraphs. Each figure

{^Slraighlforward Alg.
rninaemenlal Alg. ‘
I I Expanding Alg

^Straightforward Alg.
[•incremental Alg.
•Expanding Alg.

碑 '

齡

Chapter 9. Spotting Significant Changing Subgraphs in Evolving Graphs 125

o
 o

 g

 s

o
 o

 o

 o

o

5

o

5

2

1

1

(
s
f
J
U
O
U
3
s
)

 «
E
P

4000

3500

3000
S--
? 2500
8
(g2000
i 1500
F

1000

500

•
1 G
_
i
麵
i

5000 10000 15000 20000 25000 30000
of Edges in the Graph

(a) The Straightforwaxd Algorithm

100 200 300 400 500
of Added Edges

(b) The Incremental Algorithm

Figure 9.7: Average Running Time on Dataset Enron2001 and Eiiron2002

shows two groups of running time for / — 4 and I = 6. On the Enron2001

Dataset, the incremental algorithm is almost twice faster than the straightfor-

ward algorithm, while on the Enron2002 Dataset, the incremental algorithm is

about four times faster. The running time of the expanding algorithm increases

slightly when I becomes larger.

Figure 9.7(a) presents the average running time of the straightforward al-

gorithm versus the average number of edges in the graphs at each time spot for

both dataset Enron2001 and Enron2002. As we can see that the running time

of the straightforward algorithm is proportional to the total number of edges in

the graph at current time spot. The average rimning time of the incremental

algorithm versus the average number of the newly added edges in the graphs for

both datasets is shown in Figure 9.7(b). The running time of the incremental

algorithm is proportional to the total number of edges added. This explains

why the incremental algorithm is faster. The running time of the incremental

algorithm is more related to the number of changing edges while the running

time of the straightforward one is more related to the total number of edges in

the current graph. When the number of changing edges is much smaller than

th6 total number of edges in the current graph, which is true in most evolving

•1 = 4 併

1 1 1 1
n

厂
一 。

厂、, 令 1 = 4 -9-1 = 6

Chapter 9. Spotting Significant Changing Subgraphs in Evolving Graphs 126

o

8
 6

 4

.
1

(
s
p
c
o
u
①
w
)
 o
e
f

o

8
 6

 4

(
s
p
c
o
o
e
s
)
 o
e
f

Chapter 9. Spotting Significant Changing Subgraphs in Evolving Graphs 127

graphs, the incremental algorithm is much faster than the straightforward one.

9.5. Discussion of Alternate Node Closeness

Measures

9.5.1. Relationship between Expected /-Distance and

Random Walk with Restart

The node closeness matrix using the expected /-distance is not much dif-

ferent from one using random walk with restart. The proof is presented below.

Based on the iterative form of the definition of random walk with restart, the

node closeness matrix IT;' of graph Gi can be expressed as following.

n'； = (1 - + c/, (9.14)

where c is the restart probability, Pi is the transition matrix of Gi and I is

identity matrix. Then we have

= (1 - C)((l - + cI)Pi + Cl

• = (1 一 c)((l — c)((l - + cI)Pi + cI)Pi + cl

= + (9.15)
7=1

1-1
= c (i 一 cypi - cypy + (1 - cy+'pi + d

7=1
I

= Y.c{i- cyp^ + (1 - c 严 Pi + cl

7=1

=n; + (1 - cY+ip; + ci.

The last line of Eq. (9.15) contains three items. The first item is the node

closeness matrix II- using the expected /-distance. The third item cl affects

Chapter 9. Spotting Significant Changing Subgraphs in Evolving Graphs 128

only the diagonal entries of the node closeness matrix, which is ignored since we

do not consider the node self-closeness. Then, the difference using random walk

with restart and the expected /-distance lies in the second item (1 — cY'^^P-.

When I goes to infinity, the node closeness matrices using expected /-Distance

and random walk with restart are the same expect the diagonal entries. Even

when I is small, the corresponding entries of two matrices do not differ so much

since (1 — cY^^P- is very small comparing with II- = c(l — c^P^ .

9.5.2. Using Random Walk with Restart

It is worth noting that our framework can be adapted to cooperate with the

definition of random walk with restart. The node closeness matrix using random

walk with restart is presented in Eq. (9.14). And based on the proof in Eq. 9.15，

the closeness difference matrix is

Air l 二（1 - c Y i P i - P U) + c)'{Pt- It。. (9.16)

k=l

Then we can incrementally calculate the AII'I in the following way.

少 1 = A i r j ;

An'f = (1 — — pf_i) + c{i — c)(p, -

= (1 -

>̂2 = (i - c) (A n ' f + (i - c) $ i) ,

Chapter 9. Spotting Significant Changing Subgraphs in Evolving Graphs 129

An'f = (1 一 _ Pli) + - 一 1:

7=1

— 1 - + C少2;

$3 = (i - c) (A n \ ' + (i -c)$2)；

An'; = (1 - 舰 - p U) + c r (P 7 - P I ,)

7=1

As we can see from the last line, the key teisk is still to calculate {P- — P!一i),

which is the same as using the expected /-distance. The only difference is that

the algorithm needs to store an intermediate matrix 少知 at each step.

CHAPTER 10

CONCLUSIONS

We focus on two challenging topics in this thesis under the context of man-

aging and mining graph data, namely, graph summarization and graph change

detection. In graph summarization, we study the following challenging problems.
t

• Approximate Homogeneous Graph Summarizat ion. We studied the

problem of graph summarization using a new information-preserving ap-

proach based on information theory. A graph is summarized by parti-

tioning node set into subsets and constructing a super-graph based on the

partition. We analyzed the exact and approximate homogeneous partition

criteria and proposed a unified entropy framework to relax all three criteria

for homogeneity. Our proposed summarization framework can obtain the

graph summary of small size and high quality, whose quality is measured

by the total weighted entropy of each node subset in the partition. We pro-

posed a lazy exact partition algorithm, as well as two other approximate

partition algorithms to compute the exact homogeneous partition and the

approximate homogeneous partition, respectively.

• Frequent Subgraph Summarization with Error Control. We pro-

posed a frequent subgraph summarization framework with an independence

probabilistic model. We formally defined the problem and applied a re-

gression approach to estimate the parameters in the summarization model.

Chapter 10. Conclusions 131

Our summarization framework takes a top-down approach to recursively

partition a summarization graph template, until the user-specified error

tolerance is met. Our summarization model can effectively control the

frequency restoration error within 10% with a compact size.

In graph change detection, we study two different meanings of graph change,

and focus on finding meaningful changing areas, which are summarized as follows.

• Discovering Burs t Areas in Fast Evolving Graphs . We studied the

problem of finding top-A: burst areas under the context of fast graph evolu-

tions. We proposed to update the Haar wavelet tree in a dynamic manner

to avoid high computation complexity while keeping its high pruning abil-

ity. The top-fc burst areas are computed incrementally from small hop size

to large hop size in order to minimize memory consumption.

• Spo t t ing Significant Changing Subgraphs in Evolving Graphs . We

studied the challenging problem of spotting significant changing subgraphs

in evolving graphs. We proposed to use the neighborhood random walk to

measure the node closeness, as well as a novel incremental algorithm for

fast computation. The significant subgraphs are generated based on the

node importance scores.

In the near future, we are planning to extend our recent work of frequent

subgraph summarization in three directions. The first direction is to integrate

our summarization algorithm into the pattern mining process to avoid the com-

putation cost of finding all frequent subgraphs. Frequent subgraph mining is a

time-consuming task even for graph collections of moderate sizes. An integrated

framework could provide users the estimated structures and frequencies for bet-

ter understanding before running the mining algorithm. The second direction is

summarizing frequent subgraphs mined from a single large graph where the anti-

monotonicity property does not always hold due to the different definitions of

Chapter 10. Conclusions - ,

frequency. Therefore, new challenge of avoiding false-positive frequent subgraphs

arises. The last direction is to construct a summary which supports subgraph

query. Query optimization depends on accurate estimation of the number of

query results. Subgraph query estimator is difficult due to the complex struc-

tures of graphs, which could have numerous correlations between edges. More-

over, such subgraph query estimator can answer aggregate queries on graphs

approximately.

In the middle future, we will focus on OLAP of huge graph collections.

OLAP on traditional traction data works well and serves as an important role

in business intelligence, while OLAP on graph data is difficult for the following

issues. First, the multidimensional model for OLAP on graph data is not clear.

Second, answering aggregation queries of graphs is slow, which makes it impos-

sible to handle large graph collections. Third, whether the concept of cube in

traditional OLAP can be applied on graph data to utilize material view for saving

computation cost is not clear yet. We would like to develop a hybrid multidi-

mensional model consists of both explicit and implicit dimensions for attribute

graphs. The explicit dimensions are the dimensions from traditional OLAP for

attribute information on graphs. The implicit dimensions are for structure in-

formation. Based on this combined approach, we will study on how to answer

aggregation queries on graph data efficiently.

BIBLIOGRAPHY

DBLP bibliography, h t t p : //www. inf ormatik. u n i - t r i e r . de /~ley/db/

index.html.

2] Digg. http://www. cs.cnm.edu/enron/.

3] Enron email datasets. h t t p : //www. cs . emu. edu/enron/.

4] Foto Afrati, Aristides Gionis, and Heikki Mannila. Approximating a collec-

tion of frequent sets. In Proceedings of the tenth ACM SIGKDD international

conference on Knowledge discovery and data mining�KDD，04’ pages 12-19,

New York, NY, USA, 2004. ACM.

5] Mohammad A1 Hasan and Mohammed J. Zaki. Output space sampling for

graph patterns. Proc. VLDB Endow., 2:730-741, August 2009.

6] Nilesh Bansal, Fei Chiang, Nick Koudas, and Prajik Wm. Tompa. Seeking

stable clusters in the blogosphere. In Proceedings of the 33rd international

conference on Very large data bases�VLDB，07，pages 806-817. VLDB En-

dowment, 2007.

Christian Borgelt and Michael R. Berthold. Mining molecular fragments:

Finding relevant substructures of molecules. In Proceedings of the 2002 IEEE

International Conference on Data Mining, ICDM '02, pages 51-, Washing-

ton, DC, USA, 2002. IEEE Computer Society.

133

http://www

Bibliography 134

8] Bjorn Bringmann and Siegfried Nijssen. What is frequent in a single graph?

In Proceedings of the 12th Pacific-Asia conference on Advances in knowledge

discovery and data mining�PAKDD'08, pages 858-863, Berlin, Heidelberg,

2008. Springer-Verlag.

9] Horst Bunke, Peter J. Dickinson, Miro Kraetzl, and Walter D. Wallis. A

Graph- Theoretic Approach to Enterprise Network Dynamics (Progress in

Computer Science and Applied Logic (PCS)). Birkhauser, 2006.

10] Orhan Qamoglu, Tolga Can, and Ambuj K. Singh. Integrating multi-

attribute similarity networks for robust representation of the protein space.

Bioinformatics, 22:1585-1592, July 2006.

11] Deepayan Chakrabarti. Autopart: parameter-free graph, partitioning and

outlier detection. In Proceedings of the 8th European Conference on Prin-

ciples and Practice of'Knowledge Discovery in Databases, PKDD '04, pages

112-124, New York, NY, USA, 2004. Springer-Verlag New York, Inc.

12] Deepayan Chakrabarti and Christos Faloutsos. Graph mining: Laws, gen-

erators, and algorithms. ACM Comput Surv., 38(1):2, 2006.

13] Chen Chen, Cindy Xide Lin, Xifeng Yan, and Jiawei Han. On effective

presentation of graph patterns: a structural representative approach. In

Proceeding of the 17th ACM conference on Information and knowledge man-

agement, CIKM，08, pages 299-308, New York, NY, USA, 2008. ACM.

14] Thomas M. Cover and Joy A. Thomas. Elements of information theory.

Wiley-Interscience, New York, NY, USA, 1991.

15] Mukund Deshpande, Michihiro Kuramochi, Nikil Wale, and George Karypis.

Frequent substructure-based approaches for classifying chemical com-

pounds. IEEE Trans, on Know I. and Data Eng., 17:1036-1050, August

2005.

Bibliography 135

16] S. N. Dorogovtsev and J. F. F. Mendes. Evolution of Networks: Prom

Biological Nets to the Internet and WWW (Physics). Oxford University

Press, USA, March 2003.

17] Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. Extraction and

classification of dense communities in the web. In Proceedings of the 16th

international conference on World Wide Web^ WWW，07，pages 461-470,

New York, NY, USA, 2007. ACM.

18] Mathias Fiedler and Christian Borgelt. Subgraph support in a single large

graph. In Proceedings of the Seventh IEEE International Conference on

Data Mining Workshops, ICDMW ’07, pages 399-404, Washington, DC,

USA, 2007. IEEE Computer Society.

19] David Gibson, Ravi Kumar, and Andrew Tomkins. Discovering large dense

subgraphs in massive graphs. In Proceedings of the 31st international con-

ference on Very large data bases, VLDB '05, pages 721-732. VLDB Endow-

ment, 2005.

20] Mohammad A1 Hasan, Vineet Chaoji, Saeed Salem, Jeremy Besson, and

Mohammed J. Zaki. Origami: Mining representative orthogonal graph pat-

terns. In Proceedings of the 2007 Seventh IEEE International Conference on

Data Mining�pages 153-162, Washington, DC, USA, 2007. IEEE Computer

Society.

21] Thomas Hofmann. Probabilistic latent semantic indexing. In SIGIR '99:

Proceedings of the 22nd annual international ACM SIGIR conference on

Research and development in information retrieval, pages 50-57, New York,

NY, USA, 1999. ACM.

22] Jun Huain, Wei Wang, and Jan Prins. Efficient mining of frequent subgraphs

in the presence of isomorphism. In Proceedings of the Third IEEE Inter-

Bibliography 136

national Conference on Data Mining, ICDM '03, pages 549-, Washington,

DC, USA, 2003. IEEE Computer Society.

23] Jun Huan, Wei Wang, Jan Prins, and Jiong Yang. Spin: mining maximal

frequent subgraphs from graph databases. In Proceedings of the tenth ACM

SIGKDD international conference on Knowledge discovery and data mining,

KDD，04, pages 581-586, New York, NY, USA, 2004. ACM.

24] Akihiro Inokuchi, Takashi Waskio, and Hiroshi Motoda. An apriori-based

algorithm for mining frequent substructures from graph data. In Proceedings

of the 4th European Conference on Principles of Data Mining and Knowledge

Discovery, PKDD ’00，pages 13-23, London, UK, 2000. Springer-Verlag.

25] Glen Jeh and Jennifer Widom. Simrank: a measure of structural-context

similarity. In Proceedings of the eighth ACM SIGKDD international con-

ference on Knowledge discovery and data mining�KDD '02, pages 538-543,

New York, NY, USA, 2002. ACM.

26] Glen Jeh and Jennifer Widom. Scaling personalized web search. In Proceed-

ings of the 12th international conference on World Wide Web^ WWW，03,

pages 271-279, New York, NY, USA, 2003. ACM.

27] Ruoming Jin, Muad Abu-Ata, Yang Xiang, and Ning Ruan. Effective and

efficient itemset pattern summarization: regression-based approaches. In

Proceeding of the 14th A CM SIGKDD international conference on Knowledge

discovery and data mining�KDD '08, pages 399-407, New York, NY, USA,

2008. ACM.

28] Ravi Kumar, Jasmine Novak, Prabhakar Raghavan, and Andrew Tomkins.

On the bursty evolution of blogspace. World Wide Web, 8:159-178, June

2005. �

29] Michihiro Kuramochi and George Karypis. Frequent subgraph discovery. In

Proceedings of the 2001 IEEE International Conference on Data Mining�

Bibliography 137

ICDM ’01’ pages 313-320, Washington, DC, USA, 2001. IEEE Computer

Society.

30] Michihiro Kuramochi and George Karypis. Grew-a scalable frequent sub-

graph discovery algorithm. In Proceedings of the Fourth IEEE International

Conference on Data Mining, ICDM '04, pages 439-442, Washington, DC,

USA, 2004. IEEE Computer Society.

31] Michihiro Kuramochi and George Karypis. Finding frequent patterns in a

large sparse graph. Data Min. Knowl Discov.�11:243-271, November 2005.

32

33

34

35

Jure Leskovec and Christos Faloutsos. Scalable modeling of real graphs using

kronecker multiplication. In ICML '07: Proceedings of the 24 th international

conference on Machine learning, pages 497-504, New York, NY, USA, 2007.

ACM.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time:

densification laws, shrinking diameters and possible explanations. In KDD

,05: Proceedings of the eleventh ACM SIGKDD international conference on

Knowledge discovery in data mining, pages 177-187, New York, NY, USA,

2005. ACM.

Shirong Li, Shijie Zhang, and Jiong Yang. Dessin: mining dense subgraph

patterns in a single graph. In Proceedings of the 22nd international confer-

ence on Scientific and statistical database management, SSDBM'IO, pages

178-195, Berlin, Heidelberg, 2010. Springer-Verlag.

Yu-Ru Lin, Jimeng Sun, Paul Castro, Ravi Konuru, Hari Sundaram, and

Aisling Kellihef. Metafac: community discovery via relational hypergraph

factorization. In Proceedings of the 15th ACM SIGKDD international con-

ference on Knowledge discovery and data mining, KDD '09, pages 527-536,

New York, NY, USA, 2009. ACM.

Bibliography

36] Yong Liu, Jianzhong Li, and Hong Gao. Summarizing graph patterns. In

Proceedings of the 2008 IEEE 24th International Conference on Data En-

gineering, pages 903-912, Washington, DC, USA, 2008. IEEE Computer

Society.

37] Zheng Liu and Jeffrey Xu Yu. Discovering burst areas in fast evolving

graphs. In Proceedings of the 15th international conference on Database

systems for advanced applications, DASFAA'IO, pages 171-185, Berlin, Hei-

delberg, 2010. Springer-Verlag.

38] Zheng Liu and Jeffrey Xu Yu. Approximate homogeneous graph siimmarza-

tion. The Journal of the Association for Information Systems (Invited for

Publication), 2011. ‘

39] Zheng Liu and Jeffrey Xu Yu. On summarizing graph homogeneously. In

Proceedings of the 16th international conference on Database systems for ad-

vanced applications, DASFAA'll, pages 299-310, Berlin, Heidelberg, 2011.

Springer-Verlag. ,

40] Zheng Liu, J.X. Yu, Yiping Ke, Xuemin Lin, and Lei Chen. Spotting signif-

icant changing subgraphs in evolving graphs. In Data Mining, 2008. ICDM

'08. Eighth IEEE International Conference on, pages 917 -922, dec. 2008.

41] Laszlo Lovasz. Random walks on graphs: A survey.

42] Saket Navlakha, Rajeev Rastogi, and Nisheeth Shrivastava. Graph sum-

marization with bounded error. In Proceedings of the 2008 ACM SIG-

MOD international conference on Management of data, SIGMOD，08，pages

419-432, New York, NY, USA, 2008. ACM.

43 Siegfried Nijssen and Joost N. Kok. A quickstart in frequent structure

mining can make a difference. In Proceedings of the tenth ACM SIGKDD

international conference on Knowledge discovery and data mining, KDD '04, •
pages 647-652, New York, NY, USA, 2004. ACM.

Bibliography 157

44] Christopher R. Palmer and Christos Faloutsos. Electricity based exter-
I

nal similarity of categorical attributes. In Proceedings of the 7th Pacific-

Asia conference on Advances in knowledge discovery and data mining�

PAKDD'03, pages 486—500; Berlin, Heidelberg, 2003. Springer-Verlag.

45] Jia-Yu Pan, Hyung-Jeong Yang, Christos Faloutsos, and Pinar Duygulu.

Automatic multimedia cross-modal correlation discovery. In Proceedings of

the tenth ACM SIGKDD international conference on Knowledge discovery

and data mining, KDD ’04，pages 653-658, New York, NY, USA, 2004.

ACM.

46] Ping Sa Rudolf J. FVeund, William J. Wilson. Regression Analysis: Statis-

tical Modeling of a Response Variable. Academic Press; 2 edition, 2006.

47] Boris E. Shakhnovich and J. Max Harvey. Quantifying structure-function

uncertainty: A graph theoretical exploration into the origins and limitations

of protein annotation. Journal of Molecular Biology, 337(4):933 - 949, 2004.

48] Jimeng Sun, Christos Faloutsos, Spiros Papadimitriou, and Philip S. Yu.

Graphscope: parameter-free mining of large time-evolving graphs. In Pro-

ceedings of the 13th ACM SIGKDD international conference on Knowledge

discovery and data mining, KDD ’07，pages 687-69仏 New York, NY, USA,

2007. ACM. -

49] Lini T. Thomas, Satyanarayana R. Valluri, and Kamalakar Karlapalem.

Margin: Maximal frequent subgraph mining. ACM Trans. Knowl Discov.

Data, 4:10:1-10:42, October 2010.

50] Yuanyuan Tian, Richard A. Hankins, and Jignesh M. Patel. Efficient ag-

gregation for graph summarization. In Proceedings of the 2008 ACM SIG-

MOD international conference on Management of data, SIGMOD '08, pages

567-580, New York, NY, USA, 2008. ACM.

Bibliography 158

51] Hanghang Tong and Christos Faloutsos. Center-piece subgraphs: problem

definition and fast solutions. In Proceedings of the 12th ACM SIGKDD

international conference on Knowledge discovery and data mining, KDD

’06，pages 404-413, New York, NY, USA, 2006. ACM.

52] Hanghang Tong, Christos Faloutsos, and Yehuda Koren. Fast direction-

aware proximity for graph mining. In Proceedings of the 13th A CM SIGKDD

international conference on Knowledge discovery and data mining, KDD '07,

pages 747-756, New York, NY, USA, 2007. ACM.

53] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. Fast random walk

with restart and its applications. In Proceedings of the Sixth International

Conference on Data Mining, ICDM '06, pages 613-622，Washington, DC,

USA, 2006. IEEE Computer Society.

54] Hanghang Tong, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos.

Proximity tracking on time-evolving bipartite graphs. In Proceeding of the

2008 SI AM conference on Data Mining, SDM ’ 08, pages 704-715, 2008.

55] N. Vanetik, E. Gudes, and S. E. Shimony. Computing frequent graph pat-

terns from semistructured data. In Proceedings of the 2002 IEEE Inter-

national Conference on Data Mining, ICDM，02，pages 458-, Washington,

DC, USA, 2002. IEEE Computer Society.

56] Chao Wang and Srinivasan Parthasarathy. Summarizing itemset patterns

using probabilistic tnodels. In Proceedings of the 12th ACM SIGKDD in-

ternational conference on Knowledge discovery and data mining, KDD ’06,

pages 730-735, New York, NY, USA, 2006. ACM.

57] Xifeng Yan, Hong Cheng, Jiawei Han, and Dong Xin. Summarizing itemset

patterns: a profile-based approach. In Proceedings of the eleventh ACM

SIGKDD international conference on Knowledge discovery in data mining,

KDD '05, pages 314-323, New York, NY, USA, 2005. ACM.

Bibliography 141

58] Xifeng Yan, Hong Cheng, Jiawei Han, and Dong Xin. Summarizing itemset

patterns: a profile-based approach. In KDD '05: Proceedings of the eleventh

ACM SIGKDD international conference on Knowledge discovery in data

mining, pages 314-323, New York, NY, USA, 2005. ACM.

59] Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern min-

ing. In Proceedings of the 2002 IEEE International Conference on Data

Mining, ICDM '02, pages 721-, Washington, DC, USA, 2002. IEEE Com-

puter Society.

60] Xifeng Yan and Jiawei Han. Closegraph: mining closed frequent graph

patterns. In Proceedings of the ninth ACM SIGKDD international conference

on Knowledge discovery and data mining, KDD '03, pages 286-295, New

York, NY, USA, 2003. ACM.

61] Xifeng Yan, Philip S. Yu, and Jiawei Han. Graph indexing based on discrim-

inative frequent structure analysis. ACM Trans. Database Syst, 30:960-993,

December 2005.

62] ChengXiang Zhai, Atulya Velivelli, and Bei Yu. A cross-collection mixture

model for comparative text mining. In KDD '04： Proceedings of the tenth

ACM SIGKDD international conference on Knowledge discovery and data

mining�pages 743-748, New York, NY, USA, 2004. ACM.

63] Ning Zhang, Yuanyuan Tian, and Jignesh M. Pat el Pat el. Discovery-driven

graph summarization. In Proceedings of the 36th international conference on

Data Engineering�ICDE，10’ pages 880-891, Long Beach, CA, USA, 2010.

IEEE.

64] Shijie Zhang, Jiong Yang, and Shirong Li. Ring: An integrated method

for frequent representative subgraph mining. In Proceedings of the 2009

Ninth IEEE International Conference on Data Mining, ICDM ’09, pages

1082-1087, Washington, DC, USA, 2009. IEEE Computer Society.

