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Abstract of thesis entitled: 
Multi-period Value-at-Risk Scaling Rules: Calculations and 

Approximations • 
Submitted by ZIIOU，Pcngpeng 
for the degree of Doctor of Philosophy ‘ 
at The Chinese University of Hong Kong in August, 2011.' 

« 

The thesis firstly introduces, a commonly used risk measure in 
the liiiancial market - Value-at-Risk (VaR) and then tlui re-
search about multi-period risk management is proposed. A gen-
eral tool for multi-period Value-at-Risk (VaR), proposed by the 
Basel. Committee on Banking Supervision (1996), is tho square-
root-of-time rule (SQRT rule), which is derived based on the 
Gaussian distributional assumption. Owing to the theoretical 
lirriitalions of Gaussian and theUessoris from the financial catas-
trophe, this thesis develops new scaling rules based on the distri-
butioiivS that belong to the so-callcd convolution equivalent class 

and the semi-heavy tailed distribution class in which the tails of 
distribution seem adequate and comply with the empirical tail 
property of real financial data. In this thesis, under some reg-
ularity conditions, a result about multi-period VaR scaling ap-
proach based on convolution equivalence assumption (CE rule) 
is derived and proved, which rnâ y provide a conservative risk 
value to regulators. 'Furthermore, this thesis provides a precise 
numerical multi-period VaR scaling approach based on. the semi-
heavy tail assumption (SH rule), which ih a numerical method 

i 
that�can be considered as an alternative to the SQRT rule and 
an interr^l scaling model for risk managers. Based on the as-
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sumption of a specific the seiiii-lieavy form in the tail, wc devise 
a scmi-parametric estimation for single-period VaR calculation. 
The steps for using the two rules (Denoted by the SP-CE rule 
and the SP-SII rule) are summarized. For the whole parametric 
distributional assumption such as the example of the Normal In-
verse Gaussian (NIG) distribution, we give specific scaling rul(\s: 
the NIG-CE rule and the NIG-SH rule. The thesis also derives 
the saddlcpoirit approximation to the NIG model's multi-period 
VaR for internal risk management. Simulations and real data 
analysis evaluated and verified the feasibility of the CE rule , 
the SH rule and the approximated VaR method. It is found 
that, unlike the SQRT rule, the newly derived scaling rule has 
the advantage that captures the long horizon risk in a feasible “ 
way that can help regulators and risk managers. Specifically, the 
C E rule proposed under convolution equivalence assumption is 
highly recommended to regulators. About the internal super-
vision, the scmiparametric estimation of the single-period VaR 
combined with the semi-heavy rule (dcnpted by SP-SH) would 
be the preferred choice. In the parametric modeling, the NIG 
fitting combined with the semi-hoavy rule (denoted by NIG-SH) 
is reasonable. The saddlepoint approximation provides a fast 
and acciirate VaR when the assumption is close to the true one. 

K e y w o r d s : Value-at-risk (VaR), convolution equivalent, semi-
heavy tail, saddlepoint approximation, backtcsting. 
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摘要 

本文首先问顧了在金融市埸應用甚廣的風險测虽•工具-風險值。’初步 
了解之後，有關長期風險管理的問題得以提出來研究。一般通用的有關 
提期風險的法則，是rh巴塞爾委員會於1996年提出的時問平方根法則（稱 
為SQRT法則），它旌於金融资產的收益服從正態分佈的假設，已經被金 
融監管機構的監赞员和金融企業内部風險赞理經现廢為接受。考爐到正態 
分佈的理論)f�限性，退荷金融危機給予的教訓，本文試圓在符合尾部厚於 
止態以及輕於縣闲败的分佈族-卷稍等惯分佈族和半厚庵分佈族中建立新 

廷朋風險管理法則。在一定正則條件下，本文拔於卷稍等惯的分佈假設 
推導和證明了 一個遞推定现（稱為CE法則），並將之推腐給外部金融機 
構歡管者來使用。史進一步，在半原尾的分佈彳S設前提下，本文提供一flA1 
準確的可以通過简單計算1�1丨得到長朋風險值的計算法則（稱為SH法則）。 
迫個計箅法則可以為風險管理經观提供在平方根法則外的内部監管備選 
模型=這兩個法則（CE法則和SH法則）的條件以及其背景中卷稍等價分 
佈族和半厚尾分佈族的關係在過程中會涉及和討論。假設資本收益分佈尾 
部服從半厚尾假設，我們發展出一個運用順序統計虽來構造的短期風險值 
的半參败計算方法。本文總結了這個方法與前而兩種法則相結合來運用的 
步驟（分別表示為SP-CE規則和SP-SH規則）。當假設收益分佈服從一個 
全參败分佈結構時，以正態逆高斯（NIG)分佈為例，我們給出了其相應 
的极朋風險遞推規則-分別為NIG-CE規則和NIG-SH規則U我們丨"1時ii推禅 
了在這侗分佈假設下畏期風險值的鞍點逼近，作為一個内部風險管理模型 
來推出。模擬和贲例檢測和驗證了CE法則、SH法則和鞍點逼近方法的可 
行性。研究發現，不同於SQRT法則，新的遞推法則以可行的方式更好地 
抓住了提期風險的特徵，能夠辩助金融機構監管蒋和風險管理經理史好地 
處现風險。特別地，在卷積等價假設卜•得到的CE法則可推薦給金融監特 
者。在企業内部風險管现方面，短期風險值的半參數計算方法結合SH法則 
(記作SP-SH規則）為表現最好的模荆。全參數模别例如擬1VNIG分佈結 
合SH法則（記作NIG-SH規則）在高分位表現上確也不錯。在分佈假設接 
近真宵•的時候，鞍點遥近提供了一個快速而準確的長期風險值近似方法。 
文章最後，總結之餘同時提出了進一步的討論。 

丨朔鍵字：風險值（VaR),卷積等惯，半厚尾，鞍點逼近，平方根 
法則，後驗檢驗。 
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Chapter 1 

Introduction 

、 • 
People have to admit the fact that risk may happen almost 

everywhere, which have a significant impact on human activi-
ties. Risk may bring undesirable event and irresistible disaster 
that may destroy the existing social framework, hurt people's 
confidence and cause irreparable pain. Therefore, it is impor-
tant that, before the occurance of possible risks, it is necessary 
to assess the risk status, detect the system vulnerability and en-
hance the prevention capability. We generally call this process 
risk management In financial oconomics, the turmoil in stock 
market, the movements of exchange rates, the wrong commercial 
decision and so on, would drive to wreck the financial stability of. 
many companies and put them at risk. Among all kinds of risks 
ill finance, the most important conccni would be the so-called 
market risk. The market risk calculatcs the uncertain loss that 
may occur and arise from the unforeseen movements in mar-
ket prices of risk factors. Typical risk factors are equity prices, 
stock market indexes, interest rates, foreign exchange rates and 
commodity prices. ‘ 

With the development of globalization of financial markets, 
external regulators from different countries quickly move to-
ward to risk-based consensus on improving supervision, while 
risk niaiiagers from various firiiis begin to play more and more 
important roles on conducting internal risk management. The 
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potential loss due to market risk must be measured in a iiunibcr 
of ways. Traditionally, the most popularly used risk measure is 
the Value-at-Risk (VaR). 

» • 

1.1 Value-at-Risk 

Vahie-at-Risk refers to.the worst outcome that is likely to oc-
cui at a given coiilideiicc level. The practical odgiiis of VaR is 
said from 1922 in the New York Stock Exchange, while the math-
ematical roots of VaR were developed already in the context of 
portfolio theory by Markowitz et al. in the 1950s. Since 1994, 
J.P. I^lorgan proposed a risk measure, now called the Value-at-
Risk (VaR) to quantify the firms' exposure to market risk and 
made available its RiskMetrics system on the Internet. From 
then on VaR became wide^read and' prominent. With the de-
velopment of the global finance, the Basel Committee on Bank-
ing Supervision adopted VaR as a standard tool for regulators. 
Nowadays VaR is not only used to manage market risk expo-
sure but also other forms of risk, such as the credit risk, the 
operational risk, the liquidity risk and so on. 

In firian^l theory, the relationship between risk and return 
are very important. To give the quantitative definition of VaR, 
consider the log-return first. 

Let l)t, 二 1，…，n be the observed daily price of an asset， 

so the simple return of the asset between time t and time 亡一1 is 
denoted by rv = {Pt—Pt-i)/Pt~i, f = 1，...•，n. The simple return 
can be seen an intuitive description of relative pricc change, but 
for a variety of reasons it is much easier to use log-return (also 
called the continuously compounded return). 

Rt = l o g ( ^ ) 二 log(尸d - log(P,_i) 

The distribution of the log-return Rt is known as the return 
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distribution. Herein, when return X/, i — 1 , . . ., n is referred, it 
means log-return of an asset. 

Def in i t i on 1.1. Let X be a r.v. whose cumulative distribution 
function G{x) dcscribcs the profit and return distribution (or 
Propfit & Loss, P & L) of the risky financial missel X . For a 
given confidence level p G" (0,1), the Value-at-risk (VaR) of an 
asset X at level p is given by 

VaRj, = inf{x : a(x) < 1 - p}, (1.1) 
X 

where G{ij) 二 > y). 

Prom the mathematical concept from (1.1)，VaR can be seen 
as the quantilc function of an return distribution. Tig. 1.1 from 

、 

Khindanova & Rachev (2000) displays the examples of VaR un-
der the continuous return distribution and discontinuous distri-
bution, respectively. In practice, the confidence level p is usually 
selected with 0.95 and 0.99. (Individual trading is typically set 
at the level 0.95. 0.99 is required by tl^ Basel Committee. For 
example, banks include Goldman Sachs and Merrill Lynch em-
ploy 95% internally while report 99% to regulators.) Wc now 
briefly review different aspects of VaR. 
• VaR - a risk measure internally and externally 

Choosing a proper risk meeusure is of great supervisory im-
portance. ‘ 

The definition of coherent risk statistic proposed by Artzner 
et al. (1999) claim that it is better for a risk measure p to sat-
isfy: (1) Translation invariance: p{X -f a) = p{X) + a; (2) Pos-
itive homogeneity: p{XX)=入p⑷；(3) Moriotonicity: p{X) < 
p{Y), if X < y； (4) Subadditivity: H-r) < p{X) + fj{Y). 
These axioms arc widely accepted. It should be noted that VaR 
fails to satisfy the last one so that VaR has been criticized as 
a risk measure. But VaR is still the most prominent measure. 
Danielsson et al (2005) showed that VaR is-subadditive in the 



CHAPTER 1. INTRODUCTION 16 

O VaR. 

a. 

a 

O VaR« VaR� 
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Fig. 1.1: VaR for continuous and discontinuous return distribution. 
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tail regions if the tails in the joint distribution arc not extremely 
fat. Since asset returns with extrcrnely fat tails are no frequently 
found, oncc the extremal events appears, it can be treated as 
special cases. Therefore, VaR is feasible for internal manage-
ment. 

I Icy do, Kou and Pong (2007) clarified how to cliooso tho risk 
measures, that depends on whether it is for external or internal 
purpose. The risk measure p belonging to the proposed class 
called the natural risk statistics, which relaxed subaclditivity 
into comoriotonic data, should satisfy the following axioms: (1) 
Positive homogeneity and translation in variance: p{aX + b)= 
a � ( X ) + 6, V a > 0; (2) Moiiotonicity: p{X) < p{Y), if X < Y; 
(3) Conionotoriic subadditivity: p{X+Y) < p{X)+p{Y), if X，Y 
are comonotonic under each scenario; (4) Empirical law invari-
aiicc: p{X) = p{y)y if X and Y have the same order statistics 
under each scenario. VaR is a special case of the natural risk 
statistics. Therefore VaR is a rational choice for external regu-
lation. References about the external risk measure can be also 
found in Ahmed et al (2008)，Eling and Tibiletti (2010). 

Above all, VaR can be useful both for regulatory purpose and 
internal purpose. Thus, we can separate the external model with 
regulatory purpose (such as helping regulators to formulate the 
guidance on regulatory capital) from the internal model with the 
business purpose (such as helping the calculation of economic 
capital). Therefore, VaR calculated from external model should 
be prudential, while VaR from internal model should pay more 
attention to accuracy, 
o VaR - cMculation and evaluation 

VaR is a versatile model. The calculation approaches [can be 
divided into three categories. (A) Parametric 'models. The ma-
jor representatives of the Gaussian parametric family, are the 
Delta-normal method (J.P. Morgan - RiskMetrics, 1996). The 
related improvement is Delata-gamma method (Fong and Va-
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sicek, 1997). There are also non-Gaussian parametric models, 
for instance, stable distributions (Cheng and Rachev，1994; Mit-
tiiik et ai, 2002; Fraiii, 2008). (B) Nonpararnetric models. For 
example, bootstrapped historical simulation (Duflie and Pan, 
1997) and kernel methods (Chen and Tang, 2005; Epperlein and 
Smillie, 2006; Cai and Wang, 2008; Huang, 2009). (C) Serriipara-
rnetric models. For example, Extreme value approaches (Ern-
brechts et aL, 1997; McNeil and Prey, 2000; Ncftci, 2000; Drees, 
2003), CAViaR, (Engle and Maiigaiiell, 2004; Taylor, 2008; Yu 
et aL, 2010) and others ( Fan ，2003; Chen et aL, 2006; Chen et 
al., 2008). Gourieroux et al. (2000), Khiridariova and Radiev 
(2000) summarized several methods on VaR calculation. Liter-
atures on the modeling of volatility have Exponential weighted 
moving average (EWMA) (J.P. Morgan, 1996), ARCH (Engle, 
2002), GARCH (Bollerslev, 1986; Bollerslve et al. , 1992; Aii-
gelidis et al., 2004)，threshold-ARCH (TARCH) (Glosten et al” 
1993; Zakoian，1994), exponential GARCH (EGARCH) (Nelson, 
1991), Heston model (1993). Poon and Granger (2003) gave a 
review on volatility modeling. 

The evaluation of VaR is called backtesting as laid out by 
the Basel Committee, which compares the actual data with the 
calculated values. Since future does not always depend on the 
past, the evaluation of regulatory VaR is challenging. Actu-
ally, backtesting may be useful for the accuracy of interval VaR. 
Literatures dealing with the evaluation of internal VaR have Ku-
piec (1995), Christoffersen (1998), Engle and Manganelli's DQ 
tost (2004), Christoffersen and Polletier (2004), Berkowitz et al. 
(2009). However, practitioners and academics have not reached 
a common conclusion for the best performing model, 
o VaR - from Basel II to Basel III I 

The principles devised by the Basel Committee are of central 
importance in banking sector. Prom the Basel I Accord (1988) 
to the currcnt Basel II Accord (1996), the supervision on its 
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inoiiibcr fiiiaiu'ial institutions are gradually strengthened. VaR 
has been adopted to determine the capital requirements. Ac-
cording to the Basel II, the Mar'ket Requwed Capital (MRC) is 
calculated by M H Q = Y l Z i VciRt-i, where 
VaRt is the VaR with confidence level 99% by impleinenting 
internal models on day t over the preceding 60 days, and k is 
the multiplier ranges from 3 to 4 depending on the backtesting 
results. � 

As evidcriccd by the financial crisis, it is found that the mea-
sure for the capital requirement is not conservative enough and 
there comes the Ba^el III Accord (2009). The new principle will 
charge more capital via • 

1 CO , GO ’ 
m a x ( / c — �̂ VaRt-u VaRt^i)+mfix{l— ^ sVaRt-i, sVaRt-i) 

I— 
It is better the regulatory capital depends on more conservative 
VaR. More details on VaR can be referred to Jorisoii (2007). 

1.2 Multi-period Scaling Problem 

The VaR models have been well established and accepted 
in the single-period risk management. Banks use their daily 
VaR for controlling internal risks every day. However, it is not 
enough to only consider the single-period ret urn. Wc should also 
consider the long-term development. Undoubtedly, the multi-
period model will bccome increasingly important. 

For internal multi-period risk supervision, the holding period 
can take any time length, and depends on the liquidity of as-
sets and the frequency of trading transactions. Beder (1995) 
analyzed the significance of holding period and concluded the 
necessity of larger VaR for long horizons. Actually, in practical 
external model, with regulatory purpose, the holding period re-
quired by regulators is set to 10-day. And the multi-period VaR 
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model advocated by The Basel Committee (1996)，is called the 
square-root-of-time rule (SQRT rule), which is derived based on 
the assumption that the asset returns follow the Gaussian dis-
tribution. The banking supervision institution would ask its 
member to report their 10-day VaR for potential long-horizon 
risk regulation. By using SQRT rule, the n-clay VaR can be 
represented through the 1-day VaR.. 

The Gaussian-based scaling approach is simple and fast but it 
has a serious drawback that it fails to capture the feature of the 
heavy tails. Kaufmann (2005) carefully studied the long-term 
risk management and found the SQRT rule can perform a good 
approximation under many all single-period financial models. 

However, different models may have different scaling rules. 
For example, the multi-period model for complex model such 

J£fcs-AR(1)-GARCH(1,1) cannot be calculated analytically. The 
SQRT rule as a routine is uncritically used and accepted by 
many banks and financial institutions. Operationally, some fi-
nancial institutions are even interested to extrapolate 1-day to 
252-day VaR. Many banks use it as an internal risk manage-
ment model. For regulators the misuse is also widespread. Ku-
piec and O'Brien (1995) pointed out that the simple SQRT rule 
docs not hold when the market risk factors are non-Gaussian. 
Dielbold et al. (1998) firstly criticized that an inappropriate use 
of SQRT rule would overestimate the variability of long-horizon 
volatility. However, the SQRT rule still occupied the long-run 
risk model. The Basel II Accord has proposed a multiplier (or 
multiplication factor) between 3 and 4 on banks' internal 99% 
VaR with holding period 10. The multiplier^requires banks to 
hold more buffering capital. Stahl (1997) tried to advance the 
theoretical justification for the. multiplier based on Chebyshev 
Inequality. Stahl's view is seriously refuted by Danielson et al. 
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(1998) and they criticized a lot on the conservatism of existing 
rule and studied new scaling approach based on the assumption 
of extreme returns. 

Comparing with the Gaussian distribution, financial data al-
ways exhibits some asymmetric, fatter tail and excess kurtosis 
(leptokurtic or platokurtic) properties. Many papers (Danielson 
and De Vries, 1998; 2000; Dacorogna et aL, 2001) criticized the 
Gaussian assumption for its underestimation of short-term po-
tential risk and pointed out the overestimation of long-term risk 
by using the SQRT rule. According to their suggestions, they 
proposed a-root rule, which is derived from the heavy-tailed (or 
power-law tailed) distributions. 

VaR^'^ � a s p — 1， 

where a represents the tail index in the heavy-tailed return dis-
tribution P{Xt < —x) = as X oo, and L is a slowly 
varying function satisfying lima;_oo L{sx)/L{x) = 1 for all s > 0. 
The natural estimator for the tail index is the so-called Hill es-
timator (Hill, 1975). Danielsson and Vries (2000) developed a 
semiparametric estimator of VaR by using order statistics based 
on the assumption of power-law tailed distribution. Many banks 
with risk-seeking spirit began to employ a—root rule internally. 

Another scaling rule similar to the a—root rule depends on 
the the hypothesis of self-similarity. The self-similarity is one of 
the empirical properties of real asset returns (Cont, 2001). The-
oretically, self-similarity means the distribution of asset returns 
at day n equals in law to n? multiplies with the distribution at 
day 1. The coefficient 7 represents the Hurst index (or scaling 
exponent) and the scaling rule for VaR has l/aT?(打）二 niV^aiVi), 
which can be found in Mentegna and Stanley (1995) for the 
Levy stable case. Then Provizionatou et aL (2005) derived two 
empirical calculating or estimating approaches for the scaling 
exponent which has locally determined time-varying properties. 
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Menkens (2007) analyzed the empirical relationship of VaR and 
self-similarity. 

Within the last few years, the financial world has undergone 
a serious financial disaster. This questioned the current risk 
management practice about calculation of VaR. Someone is go-
ing to ask: is the regulation too conservative or not conservative 
enough? The Gaussian return may not be feasible. But as al-
ready referred, extremely fat tail seldom appears, either. In 
Danielsson and Zigrand (2005)，by assuming the returns follow 
a jump diffusion processes, the authors found traditional time 
scaling VaR would lead to a systematic underestimation of risk 
and the worsen status may closely relate to the time horizon 
and confidence level. Courtois and Walter (2010) studied the 
multiplier rule and VaR with the Variance Gamma processes 
with drift (VGPD). They empirically verified in the multi-period 
problem, the risk must be highly nelated to the horizon while the 
difficulty lies in the choice of horizon. The 30-day VaR may be 
two times as big as the 10-day VaR. If setting longer horizon, 
the VaR may become much greater. The optimal horizon is 
about 30-day based on the 1-year forecast. Other literatures 
about multi-period risk management arc: Dowd et al. (2003) 
talked about the inaccuracy and problems of SQRT rule and 
tried extrapolating volatility forecasts over longer horizons; Gi-
annopoulos (2003) explored the VaR modeling based on general 
Filtered Historical Simulation. About the temporal aggrega-
tion of GARCH processes, Drost and Nijman (1993) supplied 
and generalized the GARCH model and derived the aggreation 
formula which can be applied to the field of risk management. 
Hafner (2008) generalized Drost and Nijman's formula into mul-
tivariate GARCH processes. Goldberg et ai (2008) analyzed 
the 5-day and 10-day VaR based on the E V T and RiskMet-
rics single-period model. Eberlein and Madan (2009) studied 
the scaling and distribution of returns at long horizons, which 
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finally developed a mixed appioadi and found the advocated 
strategy for constructing long horizon return by running a Levy 
process half the daily return while scaling the remainder at rate 
1/2. There are more specific working papers on the long-term 
risk management from the RiskLab in ETH，Zurich (Kaufmann 
and Patie, 2003; Embrechts et al.�2004; Brumrnelhuis and Kauf-
mann, 2004). 

People had developed the scaling approach that based on 
heavier tailed distribution. In addition to distributions with 
power-law tail, there are also other heavier tailed distribution 
classes such as convolution equivalent tail (Watanabe and Ya-
mamuro, 2010a) and semi-heavy tail (Barndorff-Nielsen, 1998). 
Those tails are heavier than tails of the Gaussian distribution 
and feasible for financial applications. For both external and 
internal risk supervisions, we can concentrate on these distribu-
tions with more accurate tail to derive new multi-period scaling 
rules. The thesis is just based on this kind of idea. 

o Contributions of the thesis 
The aim of the thesis is to develop new scaling methodologies 

for multi-period financial risk management. 
(I) The first contribution of this thesis is, the derivation and 

proof of a prudential scaling rule，under a more suitable assump-
tion than Gaussian, which is in line with the expectations of the 
public. The rule is named convolution equivalent rule (CE rule). 
This would contribute to the justification of increasing capital 
requirements. (II) The second contribution lies on the improve-
ment of internal scaling approach. A more accurate scaling rule 
based on semi-heavy tailed assumption has been proved that it 
can provide more accurate VaR than the traditional SQRT rule. 
It is called semi-heavy rule (SH rule). (Ill) During the process, 
we show the proof of the semi-heavy tail property of the NEF-
GHS distribution. (IV) We also employed a semiparametrc es-
timation (SP) approach of single-period VaR for the semi-heavy 
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tailed distributional assumption. (V) The application of saddle-
point approximation to the multi-period VaR would bo regarded 
as an additional contribution. 

1.3 Outline of the thesis 

We will show how the scaling rules (CE rule and SH rule), 
the semiparametric estimation (SP), the parametric framework 
(NIG) and the saddlepoint method derived and used in the cal-
culation of multiperiod VaR. The structure of this thesis is orga-
nized as follows. Chapter 2 briefly introduces the background of 
exponential class and the related knowledge. Thus a scaling rule 
based on convolution equivalenc (CE rule) is derived. Chpter 3 
focuses on the semi-heavy tail and constructs a numerical semi-
heavy tail rule (SH rule). It gives a semi-parametric estimation 
of the single-period VaR and explains how to apply derived scal-
ing rule for multi-period supervision. It also takes a parametric 
distribution - normal inverse Gaussian (NIG) distribution as an 
example to show specific scaling rules. In Chapter 4, we employ 
the saddlepoint approximation to the multi-period VaR when 
the distributional assumption is the NIG distribution. Chapter 
5 offers some simulations on the scaling rules, semiparametric 
estimation and saddlepoint approximation. It also conducts a 
real data analysis on stock prices of bankings. The final chapter 
summarizes the results and gives further discussion. 

• End of chapter. 



Chapter 2 

Exponential Class and Scaling 
Rule 

Summary 

This chapter firstly introduces the definitions of two dis-
tribution classes - the exponential class and the con-
volution equivalent class. Then we give some theoret-
ical background about these classes, their properties, 
the relationships between classes and some related the-
orems. Consequently, a scaling theorem relating single-
period VaR to multi-period VaR based on the convolu-
tion equivalence assumption will be derived and proved. 
Finally we will take the NEF-GHS distribution as an 
example to exhibit the rule. 

The inadequacy of the Gaussian distribution have been fre-
quently discussed. When managing risk, people have always 
reported that the financial asset return follows a heavier tailed 
distribution so that modeling the extreme market risk should 
become the goal. How heavy the tail of distribution should be? 
It is a problem. A lot of alternative distributions with property 
of heavier tail were proposed to fit the financial data, such as 
the stable distribution (McCulloch, 1996), the power-law tailed 

13 
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distribution (Praetz，1972) and the generalized extreme value 
(GEV) distribution (Embrechts et aL, 1997). The referred dis-
tributions have all received considerable attention, but it seems 
that the extremely heavy tail may be too heavy as no extreme 
event happens. There are another class of distributions with 
exponential-like tails, the distributions with tail that are lighter 
than the power-law tailed distribution. Some distributions in 
these classes have heavier tails than the Gaussian tail. In this 
chapter, we shall introduce one such class - convolution equiva-
lent class. Let us begin to introduce the class. 

2.1 Basic Theoretic Background 

In this section, two distribution classes with benign tail prop-
erty arc presented. These kinds of distribution classes are first 
introduced by Christyakov (1964) for 7 = 0 (to be defined later), 

•independently proposed by Chover, Ney and Wainger (1973) for 
7 > 0. Until now they have received a lot of attention from the 
academic world in probability and stochastic processes. There 
is little literature in studying their applications in the field .of fi-
nancial risk rnaiiageineiit. We now focus on this area and define 
the exponential class. ^ 

Def in i t i on 2.1. Let Y have distribution function G(-). Then it 
has an exponential tail with rate 7 > 0 if 

lim 巧(i =eTi ( — o o < y < o o)， （2.1) 
；r—00 G{x) 

where G{y) 二 > y). This class of distributions is denoted 
by callcd the exponential class. 

Because the tail probability of the exponential distribution 
Exp{\) satisfies ^ ^ = ： 丨 丨 = ^ ^ ^ it is.obvious that 
exponential distribution with p.d.f. g(x) = Xexp{-Xx) belongs 
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to In the literature, a distribution G in with 7 > 0 is 
usually said to have and an exponentially decreasing tail. For 
every G e it satisfies the property 

lim = 00, V e � 7 . 
x—>oo 

Def in i t ion 2.2. A cumulative distribution function (c.d.f.) G 
with support [0’ 00) is said to belong to the convolution equiva-
lent class if G E and 

Q ^ Q(x) 
lim — = exists and is finite, (2.2) 

” ‘ � G{x) 
where G * G{u) = /狀 G{u - x) dG{x). . 

More generally, a distribution G on (—00,00) is also said to 
belong to if G4 does. In the literature, G is said to have a 
convolution equivalent tail. 

From the above definitions, we know that S^ C In fact, 
exponential distribution Exp{X) with p.d.f. g{x) = Aexp(—Ax) 
belongs to — which means the exponential distribution is 
not convolution equivalent. Since exponential distribution just 
belongs to £,,’ we call the exponential- class. 

In the paper of Watanabc ‘ (2008), Lemma 2.5 cisscrts that 
if G i , G 2 G £7，then Gi * G2 E Particularly, if G € £， 

G*" G for all n > 1, where the representation G*" means 
the n-fold convolution. This is the convolution property for 
From the paper of Watanabe and Yarnariiuro (2010b), infinite 
divisible distributions in will be closed under convolution 
roots, or generally does not have the convolution property 
as Applying Karamata's representation, Albin and Sunden 
(2009) give the following representation form of distributions 
from the class That is, an absolutely continuous c.d.f. G 
belongs to if and only if , 

PXl ‘ 

G{u) == 1 - e x p { - / ( a � + b{x)) dx}，Vit G R 
—00 
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i 

for some measurable functions a and b with a -f 6 > 0 such that 

liin a{x) = a, lim [ a{x) Sx = oo and lirri [ b(x) dx exists. 
？-KX) U —00�y_沈 I卜>00 
It also demonstrates distribution with form when a{x) = al|o,oo) 
and b{x) = j3cos(e^ — l)I(o,oc)^ where \{3\ < a and a > 0 are 
fixed. Then G{u) 二 1 — exp{— + b{x))dx} is in the 
class £飞 because oo f^ cos(e^ — 1) dx exists. 

The special cases of ©)，£, when j = 0' are called‘ subexpo-
nential distribution & and long-tailed distribution £. (that is, 
the distributions in 6 or £ have tails that decay slower than 
the exponential tail.) For G E it satisfies lim工。装:『)二 1 

and for G G 6，it satisfies � 实j �) : 2 . If the tail prob-

ability of distribution G is regularly varying (Bingham, Goldie 
and Tcugcls, 1987) at infinity with a noii-positivc index, which 
means limt̂ —co ^ ^ = p < 0, so G G 6 . For example, given 
constants > 0，the tail probability of Pareto distribution 
G[x) — 1 —(念)一�X > Xo is regularly varying with index —p < 0. 
It is shown that G G © C £. Subexponential family is useful 
for studying the applications of probabilistic theory in insurance 
and finaiico. Literatures about subexponential distribution can 
be found in Teugels (1975), Embrechts et al (1979)，Embrechts 
and Goldie (1980), Kliippelberg (1989), Goldie and Kliippelberg 
(1998), Rogozin (2000)，Shimura and Watanabe (2005)，Watan-
abe and Yamamiiro (2010b). 

Here we will pay attention to distributions that belongs to 
the convolution equivalent class 6 ) . It is found the following 
theorem about the limit in its definition. “ 

、、 

T h e o r e m 2.1 (Chovcr-Ney-Wainger, 1973a; Clirie, 1986;;Pakes; 
2004). For any distribution G G ©飞 with rate 7 > limli^ can 
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be represented as 

lim 二 2M, (2.3) 

where M 二 = f dG{x). 

Proof: The proof of this theorem can be found in Foss and 
Korshunov (2007)，where they only use analytic and direct prob-
abilistic methods. Earlier proofs based on the Banach algebra 
technique can be found in Chover, Ney and Waiiiger (1973), 
Clirie (1986]fQlH Pakes (2004). 

The analyticaljforni of the limit has been obtained from The-
orem 2.1，whicliis about the tail of 2-fold convolution. The 
natural question that will be proposed immediately is what hap-
pens when it is fc-fold convolution. The answer is given in the 
following theorem. 

T h e o r e m 2.2 (Chover-Ney-Wainger, i973b; Ernbrechts-Goldie, 
1982). For every n ^ l,ifC G with rate 7 > 0； then 

l i m 二 n M “ ； （2.4) 
G{x) x—>00 

where the representation G*" means the 71-fold convolution 
n 

G * G 

Proof: This theorem is an immediate consequence of Theo-
rem 2.1. Details about the proof of this theorem can be found 
in Chover, Ney and Wainger (1973b), Embrcchts and Goldie 
(1982). ‘ 

The special case of this theorem is under the assumption of 
subexponential distribution class. If G G S , then for every posi-
tive integer n ， G * ^ ^ { x ) / G { x ) = n. This property has been 
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widely used in insurance, portfolio theory and risk management. 
The a—root rule (Danielssori and De Veries, 1998) has been de-
rived based on this subexponential property (Feller，1971). 

Correspondingly，we can define the density classes just as the 
definitions of distribution classes. For two measurable functions 
gi and go which is defined from the support [()，po) to the image 
0, oo), the convolution of two densities gi and 仍 is denoted by 

»• nx ‘ 
* 奶⑷=/ f ['工—y)g{y)dy. 

J{) 

Denote g'^* = g • g and g似=g •没…一i)*, for every positive 
integer n greater than 2. According to Kliippelberg (1989), a 
measurable function g : [0，oo) —> [0, oo) is said to belong to the 
cla îs for 7 > 0 if g{x) > 0 for all large x, 

- lirri 气卞=e义 y G (-00,00), 

and if g G it satisfies the condition 

一 lim = 2c 
x-^00 g[x) , 

exists and finite. Then we can define g G From the 
above theorems, it is known that the constant c satisfies, c = 

g(x)dx. For a distribution G with a density g G for 
7 > ()’ it is found that g{x)/G — 7. In this case, G G 6 ) if and 
only if 5f E SD^. For further detail, please refer to Kliippelberg 
(1989). The density classes can also be easily extended to den-
sities in the entire real line. 

More literatures about the exponential class and convolution 
equivalent class can be found in the following papers. Chover, 
Ney and Waingcr (1973), Enibrechts and Goldie (1980, 1982) 
and Cline (1987) are about the theoretical base concerning the 
，one-sided distribution. Bravernian (1995,1997) studied the prob-
abilistic application. Pakes (2004, 2007) proved more properties 
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and theories on the two-sided distributions. A systematic dis-
cussion about the convolution equivalent is Foss & Korshunov 
(2007). Albin and Suridcn (2009) gave the relationship between 
the semi-heavy tailed distribution class to the twq cWses. Yu， 

Wang & Yang (2010) study the property of the dosure qf dis-
tribution from convolution equivalent class under convolution 
roots. Fasen (2009), Watanabe and Yamamuro(20J'Oa)-, Wang 
& Wang (2011) give some new developments and the probabilis-
tic applications in this area. . 

E x a m p l e 2.1. Inverse Gaussian (IC) Distribution 

The convolution equivalent class with 7 > 0 contains in-
verse Gaussian (IG) distributions (also known as the Wald dis-
tribution, see Johnson, Kotz, & Balakrishnan, 1994), which has 
been widely applied. The IG distribution forms a two-parameter 
family of continuous probability distributions with support on 
(0，00). The general forms of the probability density and cumu-
lative distribution of an inverse Gaussian distribution are given 
by 

r /、 ^ / (如—O^? 1 ") r � 
刷 二 T ^ e x p f ^ } ， （2“)) 

Fig{x) = — a ) ) +exp {2a} ( - ( 去 a ) : 

for X > 0，where a > 0,/? > 0. and.外） is standard normal 
distribution. The IG distribution with parameters a and (3 is 
denoted by IG(a,/3). According to the main theorem of Ein-
bretchs (1983)，IG(a,/?) belongs to the class 6"/2. 

If X �IG(a,/3)，the mean, variance, skewness and kurtosis 
are obtained, 

二 h八X) = a/P, Var{X) 二 

Ske\Dness{X) = 3 \ / l / a , Kurtosis[X) = lb/a. 
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The moment generating function of IG(/i, v) is given by 

, M �= e x p { a ( l 一 � 1 - 脊 ) } . 

Let /i = ct/P^y = o?I(5. We have another parameterization 
of the lG distribution which is denoted by u). Some basic 
propcrites of the inverse Gaussian (IG) distributions are: 

1. If a random variable X is distributed by IG(/i, u), then for 
each L > 0, the random variable tX is distributed by IG(i/i, tu). 

2. If X i , . . . , Xn are independent random variables with Xi 
distributed by "ow?)，< 二 1,…，n，then X]二i Xi is dis-
tributed by I G ( " o 叫 n )， w h e r e a ; � =Y a = \ 叫. 

The inverse Gaussian (IG) distribution has several properties 
analogous to the Gaussian distribution. Its cumulant generating 
function (denoted by c.g.f., logarithm of the moment generating 
function (m.g.f.)) can be represented as the inverse of the c.g.f. 
of a Gaussian random variable. While the Gaussian describes 
a Browiiiari Motion's level at a fixed time, the inverse Gaussian 
describes the distribution of the time a Brownian Motion with 
positive drift takes to reach a fixed positive level. The inverse 
Gaussian (IG) distributions have been applied to a wide range 
of fields. Most of these applications are based on the idea of first 
passage times of a Brownian motion with drift. These fields in-
clude actuarial science, demography, employment management, 
finance, and even linguistics; see Seshadri (1999) and references 
therein. 

The normal inverse Gaussian (NIG) is a convolution equiv-
alent distribution to be discussed in the next chapter. Later we 
shall prove how it belongs to the convolution equivalent class. 
Actually, the NIG distribution is a normal mixture distribution. 
A random variable X with the distribution NIG(a,/?,/i，(5) is 
defined as follows. If 
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Y �I G ( J 7， 7 2 ) with 7 = s jo? — (3, 

where 0 < |/3| < a and (J > 0. We then define X �N I G ( a，p , 6,") 
and denote the density (p.d.f) by /yv/(7(工；<^，从Then 

,00 

fNici^] 0 �二 / fcix] Id + Py, y) . ficiv] h , 7^) ciy, 

where fc{x\ 11 + f3y, y) represents the Gaussian distribution with 
the mean parameter equal to jj^ + /3y and the variance parameter 
equal to y and f i c i y ] 7^) represents the inverse Gaussian 
distribution with density (2.5) with parameters cv 二（J?，/?=千. 

The NIG distribution belongs to and it has a closed foriti 
p.d.f., that wc will see in the next chapter. 

The IG distribution have many parameterizations. For ex-
ample, when a = y/p^ b 二 a/y/P, it becomes a parameterization 
from Baxndorff-Nielsen (1998) of the IG distribution which is 
denoted by IG(a, b). It can be generalized to a distribution class 
the generalized inverse Gaussian (GIG) distribution by adding 
one parameter p. Then the GIG(a, h,p) belongs to (same 
as the IG distribution but it has conditions on the other param-
eters) only if a > 0,6 5 0,p < 0. The IG(a, h) is a special case 
of GIG(a，6，p) when p 二 —1/2. 

Some distributions include generalized hyperbolic (GH) dis-
tribution (Eberlein and Hammerstein, 2003) are convolution 
equivalent when the parameters are restrained to some region 
(the NIG distribution is a subclass of the-GH distribution). Also 
for example - the CGMY(C，G, M, Y) proposed by Carr, Geinan, 
Maclaii and* Yor (2002) distribution, is deiiiied on C, G, M > 
0 , y < 2. It belongs to Gm when 0 < Y < 2. Please refer 
to Schoutens (2003) for an overview of the above distributions. 
The proof of convolution equivalence is not direct. It will be 
demonstrated when we introduce the concept of semi-heavy tail 
in the next chapter. 
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2.2 Scaling Rule under Convolution Equiva-
lence' 

In this section, the newly derived scaling rule is based on the 
assumption of a specific distribution class - convolution equiva-
lent class. 

« 

Under the assumptions of convolution equivalence, applying 
the definition of VaR and Theorem 2.4 we obtain a scaling the-
orem for'VaR of multi-period from VaR of single-period. 

T h e o r e m 2.3. Assume G{x) is the distribution of return of a 
given asset. Let G{x) G Then the VaR of n_days (VaRJ^) 
can be asymptotically obtained from the VaR of I-days (VaRp) 
via the following scaling rule 

�\ / a i ? J + l [ logn + (n — l) logM], as p 1 . (2.6) 

Proof: Let X �G and { X J , t = 1 , 2 , . . . be i.i.d. observa-
tions of log-returns from G. Then 

l—p = P[X > VaRl)=聊ciRl). 

when p — 1, VaR — oo. Prom definition of VaR, for a fixed 
suitably number —oo < y < +oo, we have 

G{VaRl)�exp[7(y - VaRl)]G{y),' as VaRl � , 

l - p = 对)G(y)(l + 0(1)). (2.7) 

Assume distributions of returns 
of n days - Y!' Xi are 

the n — fold convolution of G, 
� - - �l - p = � > V a R p = … . * 

It is known that when p —> 1, VaR — oo. 
JJsing Theorem 2.4，G^ �nA^'卜丄^，for large x, 

�̂ 尸 ( X � > WaK'^ = + o ( l ) ) . , , 
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Also from the definition of VaR, for fixed —oo < y < +00, 

G{VaR!；)�cxp[7(y — VaR;)]G{y)^ 

. l _ p = n A T — i e ^ T ^ 尺?)巧(y)(l + 0(1))^, 

Comparing (2.7) and (2.8), we obtain ，̂(乂“丑; 
as p — 0. Thus 

(2.8) 

- V a R l ) �l o g n + (n - 1) log M, p — 1， 

Equation (2.6) is established and the proof is complete. 
% 

We know that the inverse Gaussian (IG) distribution sat-
isfies the condition of convolution equivalence. Since the IG 
distribution just has support on the positive real line, it has 
not been widely applied in the model of market risk. We in-
troduce another distribution which may have greater potential. 
That distribution is the NEF-GHS distribution, when restrict-
ing its parameter in some region, it belongs to the convolution 
equivalent class Consider the respective scaling rules for the 
NEF-GHS distribution under convolution equivalence. 

E x a m p l e 2.2. The NEF-GHS scaling rule 
The Natural Exponential Family - Generalized Hyperbolic Se-

cant (NEF-GHS) distribution, which was originally introduced 
by Morris (1982) in the" context of natural exponential families 
(NEF) with specific quadratic variance functions (QVF). Den-
sity of the NEF-GHS distribution is of the form (without loss 
of generality, location and scale parameter are not introduced 
here). • -

f ix- A, e) 二 e x p { A a ; —像 9)} . C(工，A). 

In the case of NEF-GHS distribution, 二 — Alog(cos((9)) 
and (^{x, A) is the p.d.f. of generalized hyperbolic- distribution 
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(GHS) (a detailed discussion can be found in Baten (1934), 
Harkness and Harkness (1968) and J0rgonsen (1997)). A GHS 
distribution is the A-th convolution of a distribution called hy-
perbolic secant (HS) distribution, which is symmetric and has 

• -

leptokurtic properties with p.d.f. fns 二 2cos(7nE/2)-,工 G 脱.GHS 
is still symmetric and has higher leptokurtic flexibility but can-
not take skewness into account while NEF-GHS can. This NEF-
GHS distribution has most of the good properties of the simple 
hyperbolic secant (HS) distribution (it is a more peaked than 
the normal distribution). -

In the next chapter, as an example for proving the property of 
semi-heavy tailness, we will show how to derive the semi-heavy 
tail property of the NEF-GHS distribution. Here let us just write 
down the result from Example, 3.1 (see Chapter 3), which says 
when 没 < 0，the NEF-GHS belongs to the convolution equiv-
alent class &一0. Since the moment generati^fiinction (m.g.f.) 
is' M{u) = exp{—Alog[cos(u) — ^sin(u)]}/ thus the respective 
NEF-GHS scaling rule for multi-period VaR can be represented 
as 

Vann �Va/?工一4[logn+(n-l)(—Alog(cos(9+卢sin0))], asp — e 

About scaling theorem - Theorem 2.2, people can easily ob-
tain an asymptotic multi-period VaR when the single-period 

• 
VaR is given. If 7 is known, this asymptotic scaling model can 
be reasonable and especially good for higher qiiaritile VaR 99% 
and multi-period VaR with long holding periods. This rule is 
based on the assumption of convolution equivalent tailed, dis-
tribution, which can be called convolution equivalent rule (CE 
rule). We should notice that it is an addition rule compared 
with traditional square-root-of-time rule" (the SQRT rule is a 
multiplication riile). Although distributions with convolution 
equivalent tail possess very excellent properties, it is still not 
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easy for people to apply the CE rule because the estimation for 
the parameter 7 seems a tough task for practitioners. For appli-
cation of the CE rule，we first define a new class of distributions 
called - semi-heavy tailed distribution class, which is closely re-
lated to the convolution equivalent class. Some distributions 
with semi-heavy tail are also convolution equivalent. 

• End of chapter. 



Chapter 3 

Semi-Heavy Tailed Scaling 
Calculation 

Summary 

Many empirical findings assert that, the returns of most 
financial assets exhibit certain semi-heavy tails. One of 
the popular models - normal inverse Gaussian (NIG) dis-
tribution possesses the semi-heavy tails. In this chapter, 
given the single-period VaR，we will conduct a numer-
ical scaling calculation for multi-period VaR, based on 
the assumption of semi-heavy tailed distribution which 
is convolution equivalent. In fact, the numerical calcula-
tion rule (SH rule) can be a very useful scaling method 
to construct long-term internal model for financial risk 
managers. Furthermore, a semiparametric estimation 
(SP) for empirically estimating the parameters of the 
semi-heavy tail is derived. Combining with its scaling 
rule, we provide a systematic multi-period VaR model 
(SP-SH rule). We finally take the NIG distribution as 
an example (NIG-SH rule) to show how to write down 
the parametric semi-heavy tail rule. 

26 
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USD.DHM ioe mums 

Fig. 3.1: The real USD/DEM data. 
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The empirical properties of real financial data have been fre-
quently discussed. Many,data sets exhibit heavy tails, skewness 
and high kiirtosis. Fig. 3.1 shows that the real foreign ex-
change rate data DEM/USD possesses fat tail and thin waist 
while the fitting with Gaussian distribution would become inad-
equate. The fat tail phenomenon (also called extreme events), 
tends to occur more frequently than the normal distribution 
would predict. Consequently, greater emphasis has been placed 
on using distributions with fatter tails that give a larger weight-
ing to extreme events. Literatures on heavy tails concentrate 
on power-law tail (Newman, 2005; Clauset et al.’ 2009) such 
as Pareto distribution, stable distribution, and Extreme Value 
distributions. A review paper can be referred to Bradley and 
Taqqu (2001). Financial data is not extremely heavy as power-
law tail does, however, there is another group of research study-
ing exponential-like tail. Heyde and Kou (2004) analyzed the 
controversy between the two types of tails. Meerschaert and 
Roy (2010) proposed an exponential-like distribution, and called 
it - tempering Pareto distribution. In other papers (Fenner et 
al., 2005; Clauset et al., 2009)，this distribution is called the 
power law with exponentiaFcutoff. We follow Barndorff-Nielsen 
(1998)，s name - semi-heavy tail. The semi-heavy tailed distribu-
tion may be the most feasible heavy-tailed distribution in finance 
for modeling the log-return of asset prices. It is well known that 
the distribution for asset returns have semi-heavy tails, i.e., ac-
tual kurtosis is higher than the kurtosis of the normal distribu-
tion. ^But semi-heavy tail is more than the NIG distribution. 
Actually, there are still other properties of semi-heavy tail stim-
ulating further study. 

In this chapter, we will deduce the scaling properties based 
on the semi-heavy tailed distribution class. 
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3.1 The Semi-heavy Scaling Approach 

Def in i t i on 3.1. A distribution function G is said to have a semi-
heavy tail if its probability density function (p.d.f.) g satisfies 

g{x)�Cx—Pe—，as a: —̂  oo, for constant C, p G M and 7 > 0. 
(3.1) 

The proofs of semi-heavy tailed properties of certain distri-
butions are very direct. The idea is just.to write the den-
sity function into its equivalent forms. Then compare it with 
the representation form of semi-heavy tailed distribution to sec 
whether that distribution complies with the definition. Con-
sider the proof of the semi-heavy tail property by taking the 
NEF-GHS distribution as an example. 

E x a m p l e 3.1. The proof of the semi-heavy tail property 
The full density of NEF-GHS(A, 0) (without loss of generality, 

location and scale parameter are not introduced here) is 

9A-2 \ I nrj, 
f{x； A, 6) 二 exp{^x + A log(cos(的）}’ 

where A > 0, \6\ < 7r/2. ^ It can be shown that the NEF-GHS 
distribution reduces to GHS for 0 二 0 (bell-shaped with ex-
ponential decreasing tail) and reduces to HS for 0 = Q and 
A = 1. Furthermore, as /? 二 tan0 —> 00, the NEF-GIIS distri-
bution can be approximated by a Gamma distribution. Thus, 
for j3 e (0,00), the distribution is a compromise between the 
bell-shaped distribution and Gamma distribution. For the con-
venience of deriving the serni-heaviness of the distribution' tail, 
we use the product form of the gamma function.‘ 

9A-2 oo 



X — o o , 

Co is constant. Finally, it j s proved that the NEF-GHS distri-
bution has approximately semi-heavy tail. � ’ 

N 

IS 
- 1 

30 

to 
It 

CHAPTER 3. SEMI-HEAVY TAILED SCALING CALCULATION 
» • 

To write f{x) into the form of (3.1), the only problem 
consider the product part, g{x) — H^oi^ + 了》I+ 
is seen that 

” 产 -

Because (�vJ)2+:2̂‘ < •工，and th&sches-^JIq-^ j：^ .is 
convergent, aceoFciing to. Weierstrass theorem, the series 

(‘x+2jW.2 uniformly convergent; That is, Ve > 0’ 
s.t. 工 1 ( 已 Therefore, for all x when e is small 
enough (or is large enough.), the parts of the series after Nq 

• (> 0) has small influence to the value 'of infiiike summation and 
,can be ignored so that < . ' * . 

- . ' • • • 

. ‘ - > ̂  ‘ 
、二 . ” 彻 . • 各 、 ‘ 2 工 ‘ 

. - � •；� Then integrate both sides on the interval [0,x 
‘ « • A ‘ 

‘ • • - No ‘ • , ‘ 

，log[办: 
V 

气V 

.• * 
Thus, ’. 

= �� , : { l o g [ ( A + 2 j f + + 21og(A + 2j)} 

No ( A + 2力 2 

“；‘• 、•/ . . 

which means g{x) o^ oo, w h e r e為 > 0 
number such that, … ‘ ‘ 

is a large 

I
,
 

⑷
、
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After the introduction of how to prove the semi-heavy tail 
property of a general distribution, we now begin to clarify the 
relationship between the semi-heavy tailed distribution class， 

the exponential class and the convolution equivalent distribution 
class by the following theorem. 

、 

T h e o r e m 3.1. If C is a semi-heavy tail distribution with p.d.f. 
g given in (3.1)，then we have the following statements: 

(a) G e £’. (b) If p > 1，C e 6). 

Proof: For g{x) satisfying (3.1), integrating both sides thcii 
•CO 

G(x) = / f ( t ) cU � 一 � — �a ^ x oo. 
Jx 7 7 ‘ 

(a) It is easy to prove that ” 

恥 — y ) f (工 ,, 
l i m . ~ = 二 lim ^ 二 e”乂’ 

j;—oo (5(:7：) ：卜 oo 

which means G G 
(b) Using Lemma 2.3 in Pakcs (2004)’ C{x)�和",e”:': sat-

isfies the condition that G{x) 二 where 7, c > 
0, cj < 1 and L(x) is slowly varying. When c = 0，we have 1, 
then G G Here, c = 0 if p > 1, it shows that lirria:—划�实  

exists and finite which is equal to 2 f e^^ dG[x). For semi-heavy 
tailed c.d.f. with p < 1, it haa f广 ê ^ dG{x) == 00 and the limit 
for (2) cannot exist. 
Hcnce, if > 1, G G This completes the proof. 

Corollary 2.9 of Albin & Suiiden (2009) gives the representa-
tion form of the semi-heavy tail distribution in the exponential 

t  
class. That is, the distribution G has semi-heavy tails satisfy 
(3.1) if and only if the c.d.f. can be represented as 

C{x) 二 1 _ exp{— f c � cU} for x eR, (3.2) 
J —00 

/ 
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for some measurable function c > U that satisfies liiii�>oo 小）= 
7，and 

lim [ (c(0 -�!i，oo)(/:) - 7/[t)，oo)⑴）d, = log(-) . (3.3) 

Thus (3.2) and (3.3) may contribute to the proof of the following 
theorem. 

Adding one more semi-heavy tail condition into tlio distribu-
tion of log-return of a given asset in Theorem 2.3, we have the 
following theorem 

T h e o r e m 3.2. If the distribution of return of a given asset G 
has a semi-heavy tail distribution 'with p.d.f. g given in (S.l)：. 

where p > I, then the VaR of n-days (VaR^^) and the VaR of 
I-days (VaR^) are 7�dated by 

P 
1 , + ^{VaR^^ 一 VaRl)�logn -f (n — 1) log M,. 

, (3.4) 
as p —> 1’ where M = McAl) ~ f ^^^ dC(x) 

Proof : Because G(x) 二 J.^ f{t)di �导 : c — / ^ e i : ’ like the 
proof of Theorem 4.2，'as p 1，VaR —> oo 

l - p = G { V a R l ) = 每 + o ( l ) ) . 

and 

r— p = G{VaR；) = nMT 卜 ig(V、/?；；广〜+。⑴） 

Finally, from the above two fomulas, the relationship (3.4) holds. 
Note that (3.2) and (3.3) can be also used lor the proof of this 
theorem. 
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Prom (3.4), given and the VaR of 1-day {VaRj,), an 
asymptotic value of the VaR of n-days {VaR^D can be obtained 
from numerical calculation. As p 1, it becomes just a root 
finding problem. 

VaR'^ ^ ^o\we{p\og{VaRl]) + -fVaR； = C}, 

where C = logn-f (n - 1) log M + p log(V^a/?J,) + ^iVaR^y 

E x a m p l e 3.2. The Variance-Gamma distribution is semi-
heavy tailed but not convolution equivalent. 

The Variance-Gamma (VG) distribution (which is called the 
generalized asymmetric Laplacc distribution by Kotz et al. (2001)) 
is one of the siibchibses of the generalized hyperbolic (GH) dis-
tribution (Prause, 1999). The VG distribution is closed under 
coiivolution. (Among the GH distributions, only the VG dis-
tribution and the NIG distribution have this property.) Details 
about the GH distribution for the application of risk manage-
ment are discussed in McNeil et al. (2005). 

The density of the VG{6, z/, "，a) distribution is 
/ \ 1/̂ -̂1/2 

X — FL 
X 

” /(I/卜i/2(�""V - (P) 
where E R and "， a � 0 . 

Let a 二 + O'^/a^ 'dnd (3 = Oju^. The tail decreases as 

卜le一((卜")工，as 2： — +00. 

Sincc U'> 0 s.t. I - l/u < 1, the VG ((?’"’/i’ cr) belongs to 
but not in the class S- .̂ So t 
the scaling rule given in (3.4) 
but not in the class So the VG distribution does not have 

The rule in Theorem 3.2 is called the semi-heavy tail rule (SII 
rule). When the parameters p and 7 arc estimated from the fi-
nancial data, people can easily employ the SH rule to obtain 
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an accuratc multi-period VaR by scaling the single-period VaR. 
Because conditions for the CE rule seem obviously looser, wc 
can also use the estimated 7 to apply to the convolution equiv-
alent rule (CE rule, in Chapter 2). The results by using the 
CE rule might be much more conservative and inaccurate com-
paring with the results obtained from the SH rule calculation. 
The CE rule câ P only be recommended as an external rule for 
regulators (conservative and robust values are needed for them 
to designate regulatory capital). However, the SI I rule could be 
employed as an internal model which can be considered as an 
alternative to the SQRT rule for risk managers. 

In the next section, based on the semi-heavy tail assump-
tion, we will derive a seiniparametric estimation for single-period 
VaR. Furthermore, given the estimator of the single-period VaR, 
we can combinc the semi-heavy rule (SH rule) to achieve the goal 
of better multi-period risk management. 

3.2 Semiparametric Estimation 

Suppose the upper tail under consideration follows the expo-
nentially tempered power law distribution (classical semi-heavy 
tail distribution). The tempered Pareto distribution is widely 
applicable in finance, physics and coirmiunication networks. It 
is also named with power-law distribution with exponential cut-
off, That is, for samples greater than a positive value xq > 0, 
Xi , X2, •. . ,Xn come from the distribution with tail function 

G{x) = P{Xi�工）二 Car…工，X > xo, 

where 7 are unknown parameters and C = rcge狗.Naturally 
the density is 

g{x) = C : c � e r� + 7 x ) �C x — ' Y ) 工 ’ as x -> 00, 
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which means that this distribution is semi-heavy tail with pa-
rameters p and 7. 

Let the decreasing order statistics of X i , X 2 , . . . , denoted 
by X � 2 X(2) > > 〜 ） > > . Similar to the 
approach of Hill estimator (1970) for power-law (Pareto) distri-
bution, Meerschaert, Roy and Shao (2010) developed the tail 
estimates of this tempered Parcto distribution, using a condi-
tional maximum likelihood approach based on the first \ <k < 
[i : inff • X � > 0} upper order statistics. In their 
X(fc-fi) < dx < X⑷，the conditional MLEs p and 
normal equations 

paper, given 
7 satisfy the 

(log 4 — log + 
p+诉� 

.二 0. 

1=1 
少 a : - + 

X ⑴ 

where C 二 They also proved that if the above system 
of normal equations have a solution with p > 0 and 7 > 0, 
then it is the unique conditional MLE. They also established 
the existence, consistency, and asymptotic normality of the un-
conditional MLE (the parameter estimates based on the whole 
data set). This estimation approach shares many excellent prop-
erties. 

To apply the semi-heavy tail scaling rule, we are interested 
in the solution with p > I and 7 > 0. Define 

7 i : = ^ ( l o g ^ ( i ) — l o g 4 ) , T2 ：= 义⑴—4； 

two positive quantities. EliniiiiaXe the significance of 7 firstly 
from the above two normal equations and focus 011 the estimate 
of p. For n > 1 and 1 < /c < n, the estimation with p > I and 
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7 >Ois finding the root of the equation J ^ L i = 
1，where p belongs to the interval [1’ k/Ti], and 7 == (A: — 广厂 2 . 
After these steps，we can get the estimators p and 7. 

Let k = n and t/j： = X � —f o - The unconditional MLE of 
parameters can be obtained from the following equations 

二 1 二 X.i 
log-^, (3.5) 0

 

>
 -二

 
1
 

/
 

I
I
 

N
^
 i
 

入
7
 

+
 

n Xi 
=> (Xi - fo). (3.6) 

Also, C — fô e'̂ ô. Here are the inference of the unconditional 
M L E 03，7), 

T h e o r e m 3.3. (1) As n 00, the probability that the equations 
(3.5) and (3.6) have a unique solution (p, 7), converges to 1. 
Also, the MLE (p, 7) are consistent estimators of (^,7). 

(2) (p, 7) are asymptotically joint Gaussian distribution with 
the asymptotic mean (p, 7) and the asymptotic variance-covariance 
matrix where 

M 二 E{{p + 7叫-2) E[X,{p + 7叫-2)、 

This theorem forms the basis to conduct the statistical infer-
ence of the following semiparametric csimation of VaR. 

The choicc k are of crucial importance. It should be noted 
that the estimation for parameters needs large data set. If people 
have enough confidence about the assumption of distribution 
form in the whole support, not only the tail part, setting k 
equals to n would be an acceptable choice. 
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Now consider the estimation of VaR. Just like the approach 
of Danielsson and Vries (1998;2000), for x > • • 

G{x) ( X •p exp[-7(a: — 

From the empirical distribution estimator — k/n and 
estimators p, 7, it suggested the following estimation for the dis-
tribution 

= 1 - - ；!))]. 
几入(fc十1) 

A 

To express x in terms of G(x), we have to invert the above furic-
八 

tion. Fix p = G{VaRp)^ the Value-at-Risk can be numerically 
solved as a root-finding procedure. That is, to solve the follow-
ing equation 

VaRj, ^ solve{plog VaR^ 4- ̂ VaRy = C] 

where C = plog^"(左+” + î X̂ (AH-i) + log(A;) - log[71(1 - p)]. Theo-
rem 3.3 can be employed for further statistical inference for the 
estimated serniparametric VaR. 

Based on this numerically obtained single-period estimation 

VaRp, also on the that have already been obtained from 
semi-parametric estimation, we can continuously employ multi-
period VaR scaling rules (2.6) and (3.4) if p > 1 (this condition 
can be satisfied by controlling the process of the estimation). 
Replace M^ by its empirical estimation M = ^ Z H i 已“̂入‘ to 
obtain the scaling result for regulators and risk managers. 

(A) Serniparametric CE rule (SP-CE rule) for external regu-
lation. 

1 
�l / a 7 ? } + : [ l o g n + ( n — l ) l o g M ]，a s p - > 1. (3.7) 

• 7 
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(B) Scmiparametric SH rule (SP-SH rule) for internal super-
vision. 

P 
/ 

log 
VaR'^ 

\VaRl 
+ 今(\/a/?p-\/a/?》）�logn + ( n — l ) l o g M , . 

. (3.8) 
as p —> 1 , 

In employing specific full parametric model to fit financial 
data, we need a more accurate approximation approach for multi-
period VaR forecasting. In the following section, we will intro-
duce the normal inverse Gaussian (NIG) distribution modeling 
and the specific scaling rules. Its saddlepoint approximation to 
multi-period VaR will be dealt with in the next chapter. 

. -

3.3 Normal Inverse Gaussian Distribution 

A prominent subset of the generalized hyperbolic (GH) dis-
tribution (Prause, 1999) is the normal inverse gaussian (NIG) 
distribution, which have four parameters: a represents the tail 
heaviness, (3 represents the asymmetry parameter, fi represents 
the location parameter and 6 represents the scale parameter^ 
The NIG distribution are considered as a benign distribution 
that fitted the financial data. We choose the NIG distribution 
here, because it is a full parametric distribution with totally 
semi-heavy tail and belongs to the convolution equivalent class 
(no need of parameter constraints). 

\ 
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German bank portfolio: NIG Fit 

Fig. 3.2: German Bank Portfolio data: The NIG fit v.s. Normal fit. 

The empirical experience suggest an excellent fit of the NIG 
distribution to the financial data. Fig. 3.2 displays the NIG fit 
with the German Bank Portfolio data. Comparing with Normal 
(Gaussian) fit，it is found the NIG is more feasible for describing 
real financial data than the Gaussian distributions. 

• The NIG distribution is able to model symmetric and asym-
metric distributions with possibly long tails in both directions. 
Its tail behavior is often classified as semi-heavy, i.e. the tails 
are lighter than those of non Gaussian power laws, but much 
heavier than Gaussian. When p 二 0，J 二 1，BarndorfF-Nielseii 
(1997) introduced and derived the semi-heavy tail property of 
the standard NIG distribution. 

fmcix) = - + px) 
TT V ( H - X 2 ) 

where Ki is the modified Bessel function of the second kind with 
index 1. 
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The Bessel functions Kx, X e R, 

1 
Kx{uj) = ^ / r r ^ - ie l "(帕—丨)d : r , 

^ Jo 
satisfies the relations 

uj > a 

K-xH = Kx{uj), 

2 
兀
1
2
 H

 

\
~
/
 

1
6
 

^
 

\
 

1
-
2
 

Using K y ( x ) �一 去 e — T as x —> oa 

/ W / G ⑷ 〜 — e x p ( \ / a 2 — 问 
TT 

1 TT 

x/(rT^V2 —X 2e as X oo, 

Finally, we obtain that f is represented as 

fNIG(工)�Constant exp{—(a — I3)x], as X —> CXD. 

For p = — I < -1，the NIG distribution has the semi-heavy tail 
property and belongs to the class Ga-p- It satisfies the condi-
tion of Theorem'2.3 and Theorem 3.2，so that we can employ 
the respective scaling rules (CE rule and SH rule). 

NIG Scaling Rules 
If the log-return of an asset has a NIG distribution, we can 

use Theorem 3.1 to calculate its multi-period VaR from scaling 
the single-period VaR. The moment generating function (m.g.f.) 
of the NIG(a，/3，l，0) is 

M(u) = exp[x/a2 - —如i - (/? + 以尸 
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The specific convolution e(|uivaleiit scaling rule (CE rule) lor 
the standard NIG distribution = 0,(5 = 1) then bccoiries 

VaR；�VaRip + —^[logn + (n — 1) - a s p — 1， 
‘ ^ a ~ p 

� (3-9) 
where a and (3 are the parameters of NIG distribution. 

Let a = 5a and P = 5(3, which are called invariant parame-
ters. This feature of parametrization NIG(Q；, ji, a) has density 

“ � - , , n � 叫 • ( 〒 ) ” 

It is a location-scale family. Through the location-scale trans-
formation, we have 

X �N I G (化 h a) ^ �N I G ( … 床 0,1). 
��� 0 
\ ‘ 

So after the location-scale transformation, the scaling rule for 
the NIG distribution with NIG(a’/?’ 5，/i) is finally simplified as 

�V a R l + — ( n - 1 ) [ < V ^ ~ M “ ) ， 
a — p 

(3.10) 
as p — 1. where S, a and (3 are the parameters of the NIG 
distribution. This can be denoted by the NIG-CE rule for ex-
ternal regulation. 

By using scaling method of (3.4), from (3.10), the less con-
servative and more accurate semi-heavy scaling rule can be ob-
tained by 

I log VaR^ -h (a - P)VaR'； = C, a s p — 1， (3.11) 
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where 

3 

Similarly to the semiparametric SH rule (SP-SH rule), this rule 
can be denoted by the NIG-SH rule of internal models for risk 
managers. 

Estimations of the NIG distribution 
As is konwn, the m.g.f. of the NIG(a, 6, fi) is as 

M(u) 二 exp{(5[x/a2 — /?2 — — + < )̂2�} 

The mean of the NIG-distribution is and the vari-
ance is do?I千.The skewness is and the kurtosis is 

+ These statistical quantities can be used for 
the estimation of parameters, which is called the Method of 
Moment (MoM) estimation approach. But a more efficient esti-
mator is the Maximum Likelihood estimation (MLE). The log-
likelihood function for the observations x = ( :r i ’ . . . , Xn) which 
follows the iV/G(a,/?，5,/i) is constructed as 

n 

L{x\a,f3,6, ii) = • �l o g JNiG{xi\oc, jj). 
i=l 

After fitting the NIG(a, /3,6, fi) with real financial data, p e o 
As A 

pie can get all estimations of parameters denoted by a, /3, J, /I 
Then given the single-period VaR, wc can explicitly employ the 
specific asymptotic scaling approaches like (3.10), (3.11) and 
saddlepoint approximation approach proposed in the next chap-
ter for multi-period VaR calculation. Under the model with the 
NIG distributional assumption, the single-period VaR at level p 

A A 

is the p-quantile of NIG(d, 0,6, ft). We can get the multi-period 
VaR adopting NIG-CE rule for regulators arid NIG-SH rule for 
internal managers. 
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In the following chapter, we employ the saddle-point approx-
imations technique for constructing a fast and accurate analyti-
cal approximation to the tail of the distribution of asset returns. 
We show how to obtain an accurate VaR without recoursing to 
Monte Carlo simulations. 

• End of chapter. 



Chapter 4 

Saddlepoint Approximation to 
VaR 

Summary 

Saddlepoint approximation is gradually emerging as a 
powerful tool for obtaining an accurate^ expression for 
density and distribution function. This chapter reviews 
the approach of saddlepoint approximation. Then under 
the specific distributional assumption - NIG distribu-
tion, through approximating its tail probability, we nu-
merically conduct a multi-period VaR claculation. This 
direct approximation approach of multi-period risk pro-
vides banking supervisors a fast and accurate way to 
quantify market risk. 

Saddlepoint approximation is known to give excellent approxi-
mation to the p.d.f. and the tail probability of a distribution. In 
financial risk management, sallepoint approximation have been 
used in the modeling of credit risk (Martin et a/., 2001; Huang 
et al., 2007). For the computation of VaR, Feuerverger and 
Wong (2000) devised a saddlepoint approximation approach to 
calculate VaR under multivariate normal or non-normal portfo-
lios with large complex risk factos. Broda and Paolella (2009) 

44 
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proposed a model for the calculation of portfolio VaR based on 
G O - G A R C H model, independent component analysis (ICA) and 
generalized hyperbolic (GH) distributional assumption. Tian 
and Chan (2010) applied saddlepoint approximation technique 
to the conditional hetGrosccdastic model coiiibiiicd with qua^i-
rcsidiial modeling of volatility. In this chapter, wo first give 
a review on this topic. For further details, please refer to the 
books Jensen (1994) and Butter (2007). Then based on the pro-
lirninary theory, we derived the multi-period estimation of VaR 
under the NIG distributional assumption. 

« 

4.1 Theoretical Preliminaries 

The saddlepoint approximation approach, introduced by Daniel 
(1954; 1987), is an accuratc and fast devicc especially for tail 
probability and density estimation. It is not surprising to sec 
that during the past two decades, research in the area has vastly 
increa^sed. The detailed theoretical review on saddlepoint ap-
proximation can be referred to the book written by Jensen (1994). 
For the application of the saddlepoint approximation techniques, 
see G not is and Casella (1999), Huzurbazar (2006) and Butler 
(2007). 

Roceritl}^ the saddlepoint approximation has been a powerful 
tool ill higher-order asymptotic approximation and therefore it 
has wide applications in many scientific^, areas. Derivations and 
iiiiplemciitations of it rely on tools such a.s exponential tilting, 
Edgeworth expansions, Hcrmite polynomials, complex integra-
tion and other advanced notions. 
• From Taylor to Laplace 

Perhaps the simplest way to approximate a positive function 
f{x) is to use the first few lorins of its Taylor series expansion. 
W(，will use that idea, not for f{x) itself but for h{x)三 log f{x). 
Then 



/ 
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f{x) ^ exp /i(x()) + {x 一 Xo)h\xi)) + 一 ‘to)2 ,,, 
91 h"{xo) 

rr 

Tli(，above approximation siinplities if wo choose x^ 二 i:, whore 
fi\x) = 0. Wc have 

/ ( : / : ) �e x p <|/Ki.) + ^ ^ : ~ ^ / � . � ( i ) 

Hcncc, we have 

f � [e x p (/i(.x) + � ! > da： 

k cxp{/l(x') 

2! 

( 2 7 r \ 1/: 

\ 

The above approach is called the Laplace approximatwTi. 
The next, perhaps the most natural step is to consider the 

extended case. Rewrite the function f as 

/(:r) - j m(x,0 , 

for some positive m(x, 0- This is always possible. By clofining 
Av(:i', t) = log7n(x', t), we consider the Laplacc approximation of 
the-integral of exp K{X, I) with rcspcct to the variable t. For any 
fixed X, we have 

f i x ) exp < K(X', l{x)) + 
{t - i{x)Y 

2! 
2
 

27V 
1/2 

Of'-' t{x) / 
where, for cach x, i{x) satistios t)/dt — 0 and ()忠、"< 0, 
and hence maximizes K(:r，/.). 
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• D e r i v a t i o n of saddlepoint approx imat ion by us ing the 
inverse Fourier transform 

For a probability density function (p.d.f.) /(:r)，its mom.ent 
generating function (m.g.f) is deHiied as 

Mx[t) = Eexp(i . X) cxp(^x')/(x) dx 

By using the inversion fonmila, we have 
1 /'-foe 

/ ⑷ 27r J_ 
1 f 

oc 
OQ 

27T 

Mx{ii)exp{-itx) (U 

exp{Kx{it) — iix}dt 

where i = \ f ^ �八 二 log Mx{i) called the the cmnulant 
generating function (c.g.f.) and Mx{it) is called the clicnucterr 
istic function (c.f.). 

Make a change of variable t' 二 it, then for 丁 in <i neighborhood 
of zero, 

f i x ) 二 2m 

2m 

T - f OO 

exp{/\x(/) — tx}dt 
.…OO 

1/2 

2兀八二“/ .⑷ ) 

2 

whore t{x) satisfies K'xit)=工.Viewed as a point in the com-
plex plane,- i{x) is neither a maximum nor a minimum but a 
saddlepoint of Kx{t) — tx. 

An approkimation to the cumulative function (c.d.f.) of X is 
eqiullly straightforward, 

F a ' ⑷二 ( 1 ) ⑷ +树 , ) < [丄—丄 
[r Q 
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where and are the standard normal distribution and 
density function, respectively, r sgn(^(x')) [2{£(x')x — (如))} 
and q — i{x){K[{r{i{x))}2^ see Lugannani and Rice (1980). 

For lattice variables, i{x) is the solution to K'{t) = x — A/2, 
where A is a constant by which the possible values of compo 
iicnts of X are separated. Without loss of goriorality, A — 1 is 
employed here. And q = 2 

The tail probability is approximated as a contour integral 
involving the moment generating function: (let T(x) = Sj：) 

P{X > x) 
exp{Kx{t)) — tx (it 

cxp (a(x)) ^ (-b(x)), X > E(X). 
1/2， x^E(X). 

1 -exp(a(x'))^(-b(x)), X < E{X). 

where a{x) — K{sx) 一 s^x + arid b{x) = 
• Der iva t ion of saddlepoint approx imat ion by us ing the 
E d g e w o r t h Expans ions 

An alternative derivation of saddlepoint approximation is 
baised on Edgeworth expansions. It provides a more precise pic-
ture of how the greater accuracy can be achieved. 

Let vY],. . . , Xji be iid with density f with mean fi and finite 
variance Let X = {X] + . . ‘ + Xn)/n. A useful form of an 
Edgeworth expansion can be written 

尸 { n i / 2 ( x — < w} = 4>(w) i - ( / ) (w) K[W 
2 

wbw'e and (p are the distribution and density function of a 
standard normal and k = E{Xi — jd)̂  is the skewness. 

Make the transformation x = aw + /.t, wc obtain the approx-
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imation to the density of X as 

/ T ( ^ ) 二 
Y/n 

a 
<t> T-fi 

(t/V^ X + Gy/n 
X — fl 
a / y/n _ 3 ols/Ti )卜⑴ 

Ignoring the terms in braces produces the usual normal approx-
imation, which is accurate to 0 (夫 ) . I f we are using values of x 
near fi, then the value of the above expression in braces is close 
to zero, and the approximation will then be accuratc to O(^). 
The trick of saddlepoint approximation is to make this always 
the cause. 
• Exponential tilting 

If X i , . . . , Xn are iid from /(X|T) 二 exp{rx — K { T ) } / ( X ) , 

then 

/ Y 卧 ） 

cxp{—n[r5; K{r)]}fx{^) 

— e x p j — n 
Or W / V 几 

X 1 + 
K 

6>/n 

X- lU j 
o v / v ^ ‘ 

3 
X- ^T 
(^r/y/nj 

\
]
 

/
 

1

1
 n
 

o
 +

 

Given x，w o choosc r so that ^r =无，which is equivalent to 
choosing r so that K'{T) 二 x, the familiar saddlepoint equation. 
Denote this value by f , we get the approximation 

/ ^ ( X ) = cxp{-N[FA: — / \ ( F ) ] } ^ 0 ( O ) X + 0 
f l 
、n 

where d" and tij are the mean, variance, and skewncss of 
/ ( •|T ) , respectively. Note that cr̂  二 八 ' “ � ’ we have 

/ x ( ^ ) 
n 

滅丨阴J 

y / 2 - / i M 
e x p { — n TX 一 / < ( r ) ] } X l + O 去 TX 一 / < ( r ) ] } X 
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E x a m p l e 4.1. Example: saddlepoint approximation to NEF-
GHS distribution 

Assume a series of returns of a given asset follow the NEF-
GHS distribution. The i.i.d. return is denoted by Xi then X^ ~ 
NEF^GHS(/i, 6,0, A), i = 1 ,2 , . . . . The NEF-GHS has the cxcel-
Iciit property of closure under convolution. Then distribution 
for = j y U is NEF-GHS(/i,(5,6>,nA), the multi-period 
VaR can be easyly derived as follows: 

The moment generating function (iri.g.f.) of is 

M(u) = exp{fiu — nX log [cos — ft 

where (3 三 tan 0. The cumulant generating function (c.g.f.) is 

K{u) 二 log(M"⑷）=(J.U — nX log[cos(5'u) — l3sm{6u) 

A saddlepoint s is obtained by solving K'(i) = x, thus 

ii 二 t = arc tan 
0 

X — fi — nX6f3 
nX6 + (x - fi)f3 

(4.1) 

Evaluate the p~th quantile qp of the distribution by using Lu-
gannani & Rice formula (1980) as follows 

p = J ) ( X � �t ) = 

e x p K O }巾（-) 

1/2, 
\ 

t > 

t < E(义(”)): 

(4.2) 

whore.a(0 = K(t) - it + b[t) = Y ^ ^ a i i d � ) ( • ) 
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denotes the c.d.f. of normal (Gaussian) distribution. In (4.2) 
⑷） 

= / i - f 

—fiu — riX log[cos(Jit) — f3 siri((5'ii) 
nA^(tan((!)?i) + 0) 

K"{U) = 

1 - ptd.Yi[6u)， 

(tan(fa) + 时 

(1 -/3tan(JrO)2 

Equation (4.1) can be updated into (4.2) and we can get the 
tail probability. From the tail probability, the quantile can be 
numerically calculated. A similar procedure will be discussed 
in the next section, under the specific assumption of the NIG 
distribution. 

It seems that the representation of the saddlepoiiit approx-
imation is complex. Actually, the saddlepoint approximation 
method can be very easily calculated by a desk calculator. Wang 
(1995) derived two simple methods to calculate the one-step 
quantile approximation via saddlepoint techniques. They can 
also be used to obtain approximate quantile estimate. Here we 
take the first approach in that paper to calculate quantile for 
comparison. Also, take the NEF-GHS distribution as an exam-
ple. In addition to and it should be noted 
that other quantities arc needed. 

K"(u) 二 

2nA(j3 [tan((hx) + 0 

such that 

K{t) arctari 
0 

1 - Pt'dn{Su) 

X — II — NX6P 

nX6 + {x — fi)P 

(1 —/nan((kO)2 

—riX 

log sgn{nX5 -f (x - fi)P) 
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K"(t) = nAj2 + (x - fi)6. 

Define 

where 

UJ 
r = uj log( —) 

u z 

UJ 三 sgn�i)yJ"2\i:L — K(i) 

z 三 iyjK"[t). 

Because L, r are both functions of x, when the parameters A 
and (3 are known or estimated, i, r are denoted by i(x), r(x) 
respectively. Then 

Qo 二 + 
少一 i (a ) ]2 — r ( n 巾—i(a)( j 

A . -
2t(go) 

where a = A(1 -h/3^). 
The one-step a-quantile can be approximated by Xa ^ gi = 

go-h Ago- If a more accurate approximation is needed, more iter-
ations can be implemented by using the above A with updated 
Qi. This approach is a heuristic approximation illustrating the 
convenience of saddlepoint-based method. 

E x a m p l e 4.2. Accuracy of the saddlepoint approximations 
In this example, we display in Figure 4.1 the loss exceedance 

curve (VaR. against tail probability) for the given asset which 
is assumed to follow a GH distribution with A = 1, a = 1, = 
0.3,6 二 1,/i 二 0. (A = 1，it is a special subclass - hyperbolic 
(HYP) distribution.) In this example, the true return distribu-
tion (HYP) are compared with the saddlepoint approximations 
and normal approximations. 
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Saddlepoint and normal approximations to VaR 

Truo GH Saddlopo Normal 

10 15 

Fig. 4.1: Accuracy of the saddlepoint approximations. 

Fig. The dotted line is the true hyperbolic distribution with the parameters 入= 

= l.fl = 0.3,S — l,fi = 0. The solid line repTesents the saddlepoint approximations 

with the, sample size n = 1. and dashed line corresponds to the noTrrial approximations with 

the simple siza n = 200. 

4.2 NIG Multi-period VaR Approximation 

Several techniques proposed in the literature for calculating 
VaR usually rely on the use of Monte Carlo simulation, which 
has ponderous burden in calculation and hence takes a long time. 
The aim of this section is to perform statistical' calculation of 
VaR based on saddlepoint approximations method that gives 
an analytical technique for a rapid and accurate construction of 
the return distribution. For single-period VaR approximation, 
the approach proposed by Tian and Chan (2008) considered the 
conditional heteroscedastic model, which is appropriate when 
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the return distribution of the asset is assumed to be normal 
inverse Gaussian (NIG) distribution. 

Also, when wc want to calculate the multi-period VaR, sad-
dlepoint approximation technique can be used. Assume the dis-
tribution of the return of a given asset is the NIG distribution, 
which ha^ Xi ~ N I G ( Q ： , / ? , = 1 , 2 , . . . . The NIG distribu-
tion has benign property of convolution closure. Then distribu-
tion for ； ^ ⑷ - 1 Xi is NIG (a, P, nŜ  nii)^ the multi-period 
VaR can be easily derived by following the procedures: 

The moment generating function (m.g.f.) of is 

M{u) = exp{n/j,u + ri5[y/— — y/a"^ — {/3 u)^]} 

The cumulant generating function (c.g.f.) is 

K{u) = \og{M{u)) 二 njjm + n6[y/a'^ — (P — \ld} _ (/̂  十 u? 

A saddlepoint s is obtained by solving K' {i) 二 ：c，thus we 
evaluate the p-th quantile q̂  of the distribution as follows 

p =尸(；^��t) = 

, e x p {a(0} ^ {-b{t))， t > � ) . 

1/2, t = 

[1 - exp {a{t)} ^ {-b{t)), t < 

(4.3) 

where a{L) = K{i) 一 it + lPK"{t), b{t) 二 yJi^K"{i) and 
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denotes the c.d.f. of normal distribution. In (4.3)， 

E(X ⑷） 
6P 

= + 

如 1 -

=nfiu + n6[y/ a'^ — jS) — — + uY 

S{0 + u) - ( V 4-
v / a 2 - ( / ? + uy . 7^1/2 - + ^ f ) 

二 " + 

V a ' 2 — + uY - (/? + u)^ 

X + uY) + 抄如1 - ( " + i Q ” 

‘ ‘ - (/^ + - (/? 4- uf - (p + i ^ ) 

Once the above quantities are calculated, it is straightforward 
to calculate the VaR. Use the value at saddlepoint to replace L 
of (4.3), then adjust t until the right-hand side of (4.3) equals 
to a given probability p. This step is a simple root-finding prob-
lem. Saddlepoint approximation to multi-period VaR is a direct 
method without scaling from single-period VaR. 

Above all, we have completed the saddlepoint approximation 
to the multi-period VaR under the distributional assumption -
the NIG distribution. In the next chapter, we conduct some 
data analysis to evaluate outcomes from using the scaling rules 
in the above two chapters and saddlepoint approximation in this 
chaptcr. 

• End of chapter, 



Chapter 5 

Data Analysis 

Summary 

We make use of the approaches proposed in the preced-
ing chapters to data analysis. Simulation study is aimed 
to evaluate the C E rule, the sernparanietric estimation 
(SP) with SH rule and the saddlepoint approximation to 
specific distributions - the NIG distribution. Two real 
data sets arc analyzed. Through empirical research, we 
explore the feasibility of these scaling methods with cal-
culations and approximations. 

In this chapter, we conduct a simple simulation study to eval-
uate the convolution equivalent scaling rule (CE rule), the senii-
parametric estimation with the semi-heavy rule (SP-SII rule) 
and the saddlepoint approximation to VaR. Data are simulated 
from the NIG distribution, which is appropriate for financial 
data (Venter and Jongh，2002). Although there are many draw-
backs of the SQRT rule, it is still better than many other rules. 
It is better than the a-root rule (Danielssori & Dc Vries, 1998) 
because of its acceptable prudence. And it is better than Drost-
Nijman rule (1993) because of its simplicity. In the section of 
real data example, internal rules (SP-SH rule and NIG-SH rule) 

56 
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is compared to the SQRT rule. The performance of the saddle-
point approximation technique in the multi-period risk riianage-
rrieiit is also studied. 

5.1 Simulation 

In this section, we evaluate |he performance of the convolu-
tion equivalent rule (CE rule), the systematic serniparamctric 
methodologies (SP-SII rule) and the saddle-point approxima-
tions by using Monte Carlo simulations. 
(A) Rule under convolution equivalent tail (CE rule). 

Data are simulated from the NIG(1’0.3，1，0) distribution arid 
the holding period is 10 days. Fig.5.1 shows the conservative 
property of the convolution equivalent scaling rule comparing 
with the normal approximated multi-period VaR (scaling via 
the SQRT rule). The multi-period VaR estimated from scal-
ing the single-period VaR by using convolution equivalent rule 
are bigger than the true VaR with a constant level, which can 
be a desirable, property for external regulation： The graph of 
calculated VaR by using convolution equivalent scaling rule can 
provide reference and justification for external risk regulators to 
implement stricter supervision. 
(B) Semiparametric estimation(SP) + Rule under semi-heavy 
tail (SH rale). 

Simulate data from the NIG(1,-0.04,1,0) distribution to eval-
uate the scmiparametric estimation. The multi-period holds for 
10 days. The sample size for simulated data is 10,000. The 
theoretical value for a, (3 should be around the values 1.5 and 

/S 

1.04 while the semiparametric estimation d,/? arc 1.6609 and 
0.9142 respectively. Detailed analysis and explanation of estima-
tion for parameters can be referred to Mecrschacrt et al (2010). 
The confidence level of VaR, is 99%. True theoretical VaR for 
single-period is 2.5836 while the estimated single-period VaR is 
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NIG tur* quintlla and Scaling lo VaR 

Fig. 5.1: NIG assumption with 10-day convolution equivalent rule. 

2.6057. True theoretical VaR for multi-period is 7.0842 while 
multi-period VaR calculated from the semiparametric combined 
with semi-heavy scaling rule is 7.7457. The respective backtcst-

for the true theoret-ing statistic \/介叫= 
ical multi-period VaR and the corresponding estimated VaR is 
99.3% and 99.6% respectively which shows the proposed method 
-semi-parametric estimation plus semi-heavy rule (denoted by 
SP-SH rule approach), is remarkably useful. 
(C) Saddlepoint approximated multi-period VaR. ‘ 

Simulate data to evaluate the saddlepoint approximation ap-
proach in the multi-period risk management. We want to test 
the accuracy of saddlepoint approximation to VaR under the 
NIG assumption model. Data are simulated from NIG�(1,0.3，1,0) 
distribution with holding period 10 days. The tail probabilities 
are from 0.000001 to 0.1. The graph in Fig. 5.2�displays that the 
NIG saddlepoint approximation to the quantile at the tail prob-
ability are much better than the normal approximation. The 
approximation is a quick and accurate method that can be cm-
ployed for higher quantile estimation. 
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NIG Sadpoint •pproxlmatlon* < 

Fig. 5.2: Sa(idlei)oint approxiiiiatiDii to 10-el ay Va.R 

Tab. 5.1: Descriptive statistics of Bank of Ainoricn (Corporation (BAG) and 
Citigroup, Inc. (C) daily Price. 

DESCRIPTION 11 Mean Std Skewiiess Kurtosis 

BAG (3282 17.20152 12.68852 0.G977284 -0.5884626 

C'itigroup 8658 12.31203 15.16061 1.035472 -0.5155512 

5.2 Real Example 

The calculations and approximations of VaR. arc basod on 
two financial time series: the stock prices of Bank of America 
Corporation (BAG) and Citigroup, Inc. (C). l l icsc daily price 
data axe collccted from 1986-05-29 and 1977-01-03 respectively, 
both to 2011-04-25. The data sets can be downloaded (Voin the 
Yahoo Finance website. Each of the two series consists mor(� 

•than 5000 observations. Fig. 5.3 and Fig. 5.4 display the two 
data sets, the respective log-return plots and Q-Q plots. Table 
5.1 gives the descriptive statistics of the two data sets. 

FYorn Fig. 5.3, Fig. 5.4 and Table 5.1, it is easily found tlie 
two data sets arc typical tiiiandal data that exhibits fatter tail 
and higher kurtosis. Q-Q plots show they are distinctly (.lilf(?rcnil, 
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from the Gaussian distribution. 
Usually, for multi-period problem, the holding period is of. 

great importance. 10-day is the standard holding period rc-
.quired by the Bixsel Committee. It seems interesting to (ieal 
with shorter or longer holding period both for internal supervi-
sion and external regulation purpose, such as 5-day (5-day has 
been studied by many researchers), 30-day (30-clay has been 
consider as the optimal holding period, see Courtois k Walter, 
2010). So we try three holding periods - 10-day, 5-day and 30-
day. 

We want to obtain the multi-period VaR from scaling the 
single-period VaR on the two data sets. The choice of single-
period Vy,R. becomes our Krst considc-aatioii. W � s ( ) k � ( � t tlm)(， 

classical approaches, the traditional- Caussiaii-based VaR, the 
senii-parametric approach that wc derived under tempered Pare to 
(seiiii-heavy) distribution assumption and the last one bâ scd 
a semi-heavy tailed parametric distribution - Normal In verso 
Gaussian (NIG) distribution. 

The single-period Value-at-Risk would be calculated by using 
three approaches: 

• Normal VaR: 
= / i + •中广 

where /i - estimated mean and a - estimated standard devi-
ation arc classical MLEs of normal distribution, (I)一 i is the 
iiivorso of the standard Gaussian distribution fimctiou; 

• Seiui-parainetric VaR: 

VaRp ^ solve{/31og V a Hp + 5 二（： 

whore C = log 入‘(人,十” + + log(A：) — — p) 
7 are the conditional MLEs,「人.=n(l 一/,)]��ami A'(“|) 
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represents the order statistic. Details arc given in Section 
3.2; 

• NIG VaR: 
Valip 二 人乙、,"，…A), 

A 八 

where (\ ,0,d� f i are the MLEs of the NIG distribution and 
F;�G is the quaiitilc function of the NIG distribution. 

The estimation results of all parameters are displayed as fol-
lows. For the BAG data, fh 二 0.000232, di 二 0.026954 in the 
normal assumption case, pi 二 1.436(;4()，7i = 6.383335 in the 
ease of sorniparametric estimation and rvi 二 20.652314,0\ = 
-0.165324, 二 0.012976，"1 二 0.000336 in the NIG assumption 
cikso. For the Citygroup Data, /.ii = 0.000185, ai = 0.026584 in 
the normal assumption case, p\ 二 1.812778，7i 二 4.342397 in 
the case of serniparametric estimation and a[ — 22.568687, p ] — 
0.721413,(^1 - 0.013464,//,i 二 —0.000245 in the NIG a^ssiimptioii 
ease. Th(�plots of fitting of the NIG distribulioii are given in 
Fig. 5.5 and Fig. 5.6. 

Two rules for external regulators, SP-CE rule and NIG-CP] 
nile are employed to calculate conservative regulatory multi-
period VaR.s under signiHc<ance level 99% and 95% with holding 
period 10-days, 5-days and 30-days. They are reported in Ta-
ble 5.2, where the values are calculated through semi-parametric 
ostiiuation and NIG fitting combined with respective corroctly 
s])ecifi(Kl convolution equivalent rule (CE rule), 'riiree scaling 
rules for internal risk managers to do multi-period risk inaii-
agement : SQRT rule, SP-SH rule and NIG-SH rule would be 
used based on each of the three single-period VaR (including 
correctly specified rule and niisspecifiod nile). All calculation 
results of VaR with confidence level 95% and 99% have boon 
illustrated in Table 5.3 - Table 5.6. Red values means the calcu-
lation of multi-period VaRs are calculatcd from the single-period 
Valiuvat-Risk by using correctly specified respective scaling nile 
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Tab. 5.2: l()-(iay Convolution equivalent, rules for regulators: BAC and City-
group data. ‘ 

Data Period Level SP-CE rule NIG-CE rule 
BAC 10-tlay 99% 0.319311 0.304337 

lU-day 95% 0.283579 0.266153 
5-(lay 99% 0.232233 0.2U4997 
5-(iay 95% 0.196501 0.166813 
30-day 99% 0.520889 0.621285 
30-day 95% 0.485157 0.583101 

Citygroiip 10-(lay 99% 0.325380 0.302425 
10-(lay 95% 0.293507 0.2G4977 
5-(lay 99% 0.233378 0.202416 

5-clay 95% 0.201505 0.1G49G8 

3U-da.v 99% 0.545195 0.625838 

30-day 95% 0.513322 0.588390 

while black values means the calculation of multi-period VaRs 
arc calculated from scaliirig the single-period Valiie-at-Risk by 
using inisspeciliod scaling rule. Table 5.3 and Table 5.4 display 
the 99% and 95% YaR of 10-day VaR, Table 5.5 and Table 5.G 
display the 99% and 95% VaR of 5-day VaR while Table 5.3 and 
Table 5.4 display the 99% and 95% VaR of 3()-day VaR. The 
three holding periods represent the regular supervision, shorter 
supervision and longer supervision, respectively. 

External risk regulators always consider that multi-period 
risk are higher than what wo actually seen. For banking su-
pervision departments, an external multi-period risk should be 
a conservative indicator so that the public can take sonic mea-
sures in time of falling to pieVcnt, the outbreak of larger finan-
cial catastrophe. The values calculated through SP-CE rule arid 
NIG-CE rule arc displayed in Tabic 5.2. 

Tabic 5.2 shows that the convolution equivalent rule for multi-
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period VaR would be the most prudential choice for external 
regulators. It may avoid a lot of potential losses caused in 
the long run because the larger VaR value would correspond 
to ail increase of capital requirement to prepare for the unfore-
seen emergencies. The results seem more conservative than the 
SQRT rule. The drawback may be that the CE rule lacks risky 
spirit in supervising which enlarge the possibility of hampering 
the development of the economy. McNcil and Frey (2000) em-
pirically justified such a result so that prudential values of VaR 
should be more feasible for external regulation. 

Thi) suitability of tho internal iiiodoLs for ost.imating financial 
risks should be compared. Backtesting is recommended by the 
Basel Committee to estimate the model risk. The idea is to 
compare the d-day VaR with the actual observed profit or loss 
over the next d days. Given the observed pricc data, firstly 
calculate log-returns Rf (In multi-period problem, the sum of 
single-period log-return is the log-return with respective holding 
period). Then tho most commonly used statistic that provides 
information about the quality of the internal calculation of VaR 
-the frequency of cxceedances. 

— 二 丨一 / ' o + l S 

This inca^surc is used by the Basel Committee on Banking Super-
vision and a good estimation for VaR will lead to a value which 
is close to the level p. In this chaptcr, p are chosen to equal 
to 0.95 or 0.99. Tho calculatcd multi-period values of VaR arc 
shown in all four tables for comparing the scaling rules. 

Table 5.3 - Tabic 5.6 display the VaRs calculated from throe 
internal scaling rules: SQRT rule, SP-SII rule arid NIG-SII rule. 
Ammig rod values in the diagonal, the SP-SH rule seems the 
most excellent tool of internal risk supervision for risk managers 
ill liiiaiicial iiistitiitioiis because the values of are the clos-
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Tab. 5.3: 10-day 99% VaR calculation results of BAG and Citygroiip data 
Data Methods SQRT rule SP-SH rule NlG-SH rule 

a 

BAG Normal 0. I !)：)(. 0.194146 0.206730 
(I) llNNrl'i) (0.987085) (0.989158) 

Somiparanictric 0.221728 0.2179016 

(0.990274) (().(,8!): UN) (0.990274) 

NIG -0.236700 0.218490 

(0.992028) (0.990274) {0.<)')().•)')：；) 

Citygroup Normal O.llXiJ 10 0.183810 0.208875 

(0.988437) (0.990981) 

Seiiiiparametric 0.209982 0.219931 

(0.99109G) “).”8!)7"(1� (0.992137) 

NIG 0.234398 0.213484 丨>?��nNI 

(0.993293) (0.991559) (0 

est to the true p among all three holding periods. It seems the 
NIG-SIi rule performs bettor in the higher confidoiicc level than 
the SQRT rule while it is no better in the lower confidence level. 
For simplicity, the SQRT rule would be an acccptable choicc 
when the confidence level is 99%, hut. it is not recoirirnended 
when the confidence level is 95%. Overall, among all correctly 
specified approaches, the SP-SII nilo is the host. In tho misspec-
ified case of scaling rules, which means among all non-diagonal 
block values, the SQRT rule has performed very well, which ver-
ified the conclusion of Kaufinann (2005). If we have obtained 
a better estimation of single-period VaR than normal-based es-
timation of VaR, the SQRT rule can perform very well in cal-
culation of multi-period VaR, cither under the scrni-paramctric 
structure or the parametric structure. The SP-SII rule also per-
forms constantly well although some values scern small when the 
holding period is long. The NIG-SH rule highly overestimates 
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Tab. 5.4: 10-day 95% VaR calculation results of BAG and Citygroup data 
Data Methods SQRT rule SP-SH rule NIG-SH rule 

( y / r c ” 

BAG Normal U.14()():Ui 0.127627 0.175354 
(0.1)757115) (0.969228) (0.984375) 

Semiparametric 0.108663 11 loinr.L 0.155205 
(0.953125) (1)9 ir.D.vi) (0.980389) 

NIG 0.115951 0.1U7567 

(0.961097) (0.951690) fUDS 10-27) 

Citygroup Normal o.ii^.ssr.i) 0.119441 0.177851 
M).97r>-I8(i) (0.961725) (0.987512) 

Semiparametric 0.109147 0.1)94054 0.157941 

(0.953053) (().!)；{7442) (0.982655) 

NIG 0.115977 0.099897 

(0.959066) (0.943571) (�,IN.I 丨.「,(、） 

6 

the VaR when the confidence level is 95%. 
The NIG saddlepoint approximated VaRs for two data sets 

are also calculated in Table 5.9. This seems also an accurate 
internal multi-period VaR approximation model especially wiien 
the confidence level is 99%. It is a direct calculation approach 
without scaling from single-period. Sincc the approximation is 
mainly on the tail, the calculated values could be more close 
to the true VaR in the high confidence level than in the low 
confidcncc level. The saddlepoint approximation approach is a 
fast and an accuratc internal VaR model for multi-period risk 
management. 

• End of chapter. 
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Tab. 5.5: 5-day 99% VaR calcu ation results of BAG and Citygroup data； 

Data Methods SQRT rule SP-SH rule NIG-SH rule 
( y / r e g ) {yf^^'i) 

BAG N'ormal i). 1-11)731 0.142237 0.137024 

(0.980930) (0.987255) (0.985981) 

Semiparametric 0.156785 (1.1,5,17.�1 0.146948 

(0.990441) (0.988211) 

NIG 0.1G7372 0.162791 I). L 
(0.991556) (0.991238) 

Citygroup Normal 0.1 0.137265 0.137549 

(().!)SS79(l) (0.988097) (0.988212) 

Semiparametric 0.148480 ().14()1()1 0.147398 

(0.990524) ⑴ 細 (0.990^92) 

NIG 0.165744 0.161511 �0.15:37：.；! 

(0.992257) (0.991910) {() l.M)!:5;i2) 

lab. 5.6: 5-day 95% VaR calculation results of BAG and Citygroup data 
Data Methods • SQRT rule SP-SH rule NIG-SH rule 

( V ^ / r c g ) 

BAG Normal n.rmm)r>(; 0.093899 0.109768 

(().l)719(il) (0.967819) (0.977218) 

Semiparametric 0.076836 ().(I7:IS2!) 0.092869 

(0.952684) ({).!M(i7')()) (0.967182) 

NIG 0.081990 0.078423 ().()"J(;s:J7 

(0.958101) (0.954278) (().l)7()2(VJj 

Citygroup Normal ().IH)81.S9 0.089856 0.110512 

10.971571) (0.964059) (0.978042) 

Semiparametric 0.077179 (1.070 Ifrl 0.093747 

(0.948342) {0.9：]7709) (0.967063) 

NIG 0.082008 0.074914 

(0.956200) (0.945106) ⑴.!)m:⑴） 



Fig. 5.3: Bank of America Corporation (BAG) data. 
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Fig. 5.4: Citigroup, Inc. (C) data. 
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* Fig. 5.5: Bank of America Corporation (BAG) data with NIG fit. 
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NIG Parameter Estimation 
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Fig. 5.6: Citigroup, Inc. (C) data with NIG fit. 
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Tab. 5.7: 30-day 99% VaR calculation results of BAG and Citygroup clata 
Data Methods SQRT rule SP-SH rule NIG-SH rule 

(yfreq^ ( y / r e q ) 

BAG Normal n.:M172p 0.312495 0.465234 
(().'J92]G3) (0.988644) (0.996481) 

Semi parametric 0.384044 0.478214 
(0.994082) ( 0 划 糊 (0.996641) 

NIG 0.409976 0.342677 O.'lNfUl") 
(0.995042) (0.992163) 

Citygroup Normal 0.286618 • 0.475769 

(0.987367) (0.997218) 

Semi parametric 0.363700 0.488546 
(0.993857) (0.997450) 

NIG 0.405989 0.325570 ll.-l'XU,；-；'.) 

(0.996291) (0.991423) (ii.'J97 I••；()：) 

？ab. 5.8: 30-day 95% VaR calculation results of BAG and Citygroup data 
Data Methods . SQRT rule SP-SH rule NIG-SH rule 

l^yfreq^ (\//ree/) ^yfreq^ 

BAG Normal O.'ijIlO.S 0.205667 0.428007 

(0 !)7(iM)7j (0.964171) (0.995202) 

Semiparanietric 0.188209 0.403340 

(0.954255) " i . ” : m r 丨⑴ (0.994882) 

NIG 0.200833 0.176503 0. 

(0.9G1292) (U.946897) ；：O.D'J.")!) I'J) 

Citygroup Normal 0.2-11)512 0.186129 0.4391Q7 

(0.978701)) (0.950974) (0.996755) 

Serni parametric 0.189049 O.j l7!ScS() 0.415023 

(0.953176) (0.996523) 

NIG 0.200879 0.156739 

(0.963027) (0.924316) 
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Tab. 5.9: Saddlepoint approximated VaRs of BAC and Citygroup data. 
Data Period Level VaR yfrcq 

BAC 10-day 99% 0.207593 0.989318 

lO-cla.y 95% 0.137342 U.97449U ’ 

5-(lay 99% 0.156103 0.990282 

5-day 95% 0.098841 0.971643 

:30-day 99% 0.340379 0.992003 

30-day 95% 0.235800 0.975048 

Citygroup 10-day 99% 0.203705 0.990634 

lD-(iay 95% 0.134751 0.972248 

5-day • 99% 0.153335 0.990986 

5-day 95% 0.097265 0.970762 

30-day 9 9 % � 0.333119 0.991886 

30-day 95%� 0.230178 0.975429 



Chapter 6 

Conclusion and Further 
Research 

This thesis studied inulti-pcniod Hnancial risk inanagciiKMit 
and developed new scaling rules based on clistribiit ions holoiig-
iiig to the convolution equivalent class ant I the scnii-heavy taileji 
distribuiion class - the CE rule and the Sll rule, respectively. 
The two scaling rules have their own conditions and assuiii})-
tions. Fig. 6.1 displays the applicable conditions, the rolation-
ships and tlio related backgrouiui. And the thesis also employed 
a Sciddlepoint appioximatioii method to obtain the uiult,i-p(�rio(l 

Va.R which provides a diroct calculation of the internal m()(i(�l 

for controlling risk, leased on tlio a,ssuiiiptioii of sonli-heavy 
tail, the estiiiiatioii of single-period VaR by sciiii-paranietvic a])-

})ioach' (SP) is derived and the res[)ective scaling rules arc also 
applied. The research found that the CE rules are suitable ior 
conducting external risk management because t he VaRs scaling" 
by using the CE rule are conservative enough to oiihanco t he cap-
ital rcquircnieiits. Ilowevcr, the Sli rule can be considered as an 
alternative to the SQRT rule. People need more accurate calcu-
lation appi.()ax:h(�s of VaR for internal \iso. And Ui(�Sl l i ul(�oiiors 
such an internal scaling model for risk luaiuigers. The newly de-
rived scaling rules can be divided into two groups. One is biusod 
oil tlic soiiiii)aranictrk' sciiii-heavy nilo (such as the SP-CE ruk� 

73 
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CE Rule SH Rule 

6.1: The {\.ssnini)tii)n and rt̂ hitioiisliip of I wo scaling rules. 

and SP-Sn rule) and the ot.her is l)aM(�(l on soiiio paraiuolric 
structuro t/hat satisfios Ui(�regularity {•onditions of scaling nilos. 
For (^xaiiiple, uiiclcf the iioniuil i im�i,si�Gaussian (listril)utioii 
(NIG) mo(l(�l, there a n � t h r NIG-CE rule and t.lio NIC-SH nilo. 
Througli real data analysis, the ‘S1)-CK rule and the NIG-CI^ 
l uk�provide pnideiithil choice for external rrgulators. Among 
conxu^tly specified iiitxn iial luodds，Ui() main finding is t.liat Uir 
SP-Sn rule performs the best iunong Uira�internal scaling mod-
els (the SQKV rule, the SP-Sli rule and the NIG-SIl rule). Tlu� 

NKi-SIl rule ixufoniLS better W1k�II the quaiitile is high wliili� 

()v(�r(�stimat,i()n of Vai l would happen when the (jiiaiitile is low. 
l ) u ( � t o the (-lujoretical drawbacks of the SQHT nil•’ the scini-
luuivy scaling rule (x)iiibim�(i with seiiii-paranictric (\s(.iin;iti()ii of 
single-period VaU (the Sl^-SII rule) m,(�lecoiiiineiKhHl to risk 
managers as th(�host, choirc for inuli.i-period intoriial risk iiiau-



CIlAPTEIi 6. CONCLUSION AND FURTllEli 1U':外JARHi 75 

agcMiioiit. 

For lurtluu' research, the (extensions of the CE rule and tlie 
SH n i k � t o a continuous process may sUniulate more theory on 
the convolution equivalent rlass and soiiii-heavy tail analysis. It 
is also an c)])eii (jiiestion whether Uio conditional hciiMoscxHlrus-
ti(�iiiodol with seini-heavy t.iiiknl innovations can outporforni 
the traditional Gaussian assuiiipt.km or ot her assiun|)t ion in t h(� 

niulti-|)tnio(l risk inaiiagcuicnt i)rol)l(�i". Th(�umlUvai.iaU�（、i.s(� 

would \)v. another diivction tor oxtcnisioii of this thesis. 

n End ol. chapter. 
、 3 
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