
study on Indication and Monitoring of Transgenic Paddy Rice 

Cultivation by Hyperspectral Remote Sensing Techniques 

LL Ru 

A Thesis Submitted in Partial Fulfillment 

of the Requirements for the Degree of 

Doctor of Philosophy 

in 

Geolnformation Science 

The Chinese University of Hong Kong 

June 2011 



UMI Number: 3497791 

All rights reserved 

INFORMATION TO ALL U S E R S 
The quality of this reproduction is dependent on the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

UMI 3497791 
Copyright 2012 by ProQuest LLC. 

All rights reserved. This edition of the work is protected against 
unauthorized copying under Title 17, United States Code. 

ProQuest LLC. 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor. Ml 48106-1346 



,Thesis/Assessment Committee 
V 

Professor ZHUANG Yuanzhi (Chair) 

Professor CHEN Jinsong (Supervisor) 

Professor LIN Hui (Co-Supervisor) 

Professor HE Junxian (Committee Member) 

Professor ZHANG Xia (External Examiner) 



ABSTRACT 

of thesis entitled: 

Study on Indication and Monitoring of Transgenic Paddy Rice Cultivation 

by Hyperspectral Remote Sensing Techniques 

Submitted by LI, Ru 
for the degree of Doctor of Philosophy 
at The Chinese University of Hong Kong 

in June 2011 

Due to the stochasticity, diversity and variability of gene expression, transgenic crop 

study, is confronted with some uncertainties, such as what kinds of the influence 

from foreign gene on the transgenic crop, and how to fulfill the monitoring of 

transgenic crop growth real-/ near real-time efficiently. The influence of foreign gene 

could be treated as a special source of stress to vegetation. Therefore, it is promising 

to detect the difference between transgenic and contrast group and so as to monitor 

the growth of sample to assist to fulfill sample screening work, focusing on the plant 

biophysical traits or responses to stress by spectral techniques. Hyperspectral remote 

sensing technique is a kind of practical and field spectroscopy technique, which is 
4 

simple, rapid, real-/ near real-time, user friendly and cheap. In this study, this 

technique was employed to indicate the differences between transgenic crop 

samples and their parents, and to monitor their growth. By the proposed approach, 

fine spectra of transgenic paddy rice were obtained； and the growth of samples were 

monitored the by their biophysical traits, finally the screening of cultivars were 

fulfilled in contrast controlled experiments. The biophysical traits or bio-process were 

concentrated on rather than on micro-structure or components of proteins. It will be 

implemented to monitor the growth of the samples real-/ near real-time, helping 

researchers know their samples clearly and screen samples efficiently. 

In order to develop and validate this approach, 6 experiments in different fields were 

conducted, including three kinds of genomes and their transgenic samples. They 

were classified as the experiment-repeat experiments and the gene-repeat 

experiments. Moreover, a three-month experiment was also conducted for 

evaluating the capability of the approach to monitor the sample growth under the 

condition of an artificial stress (herbicide stress). Morphologic and parameterized 



features of foliar spectra of samples were applied to indicate the growth of the 

samples. 

The results proved this approach proposed was not a substitute to the popular 

methods for gene detection and crop assessment, but an important, helpful and 

efficient complement to make the crop breeding study under control and efficient as 

much as possible. By the approach, the researcher could know their samples clearly 

and real-/near real- time. 

In the future, more factors should be considered. They are mainly: much more 

effective communication with biological researchers should be conducted; more 

research methods should be introduced, the study scope should be extended to the 

whole bands (350-2500nm) and more foliar chemicals should be involved as 

indicators of the growth status of the samples, etc. 



摘要 

基因表达过程充满随机性多样性和可变性，因而转基因作物研究，就会M到 

很多不确定性问题，访如转入基I因对受伴到底有何种影响，如何有效的实吋准实 

时的监测其生长等。转入基因对受体作物的影响nj以看作对一种特殊的胁迫。因 

而可以借助光谱技术，着重考虑样本生物性状和对胁迫的反丨企，探测转基阁样木 

与其母本间的差异，监测它们的生长状况，辅助科研人员完成样本的选育工作。 

高光谱遥感技术是一种实用光谱技术，具有简单、易用、快速，实时准实吋显示 

目标探测结果等特点。故本研究应 jg该技术,探测、指示转基因作物与其母本间 

的差异，实现对其生K的监测。本研究着眼于样本生物形状或生化过稗，而不足 

作为微观结构或组成的改变。在控制对照试验中，应用该技术，获得转基因水稻 

叶片精细光谱，可以实现样本生长的实时、准实时的监测，辅助研究人€掌握样 

本情况，完成样本选育。在这项硏究中，总计开展6次的野外实验。这些实验涉 

及不问转基因水稻品种，分别设计为实验重赏实验和基因重复实验。同吋，有一 

项持续时间长为3个月的样本监测实验。在该实验中，样本生长在人工胁迫状态 

下（除草剂）。光谱特征，钮括形态学特征和参数化特征都被引入该研究，W以 

指示样本的生长状态。实验结果显示，木研究奸发的方法是一种重要的实验室基 

因检测和评估专业方法有效补充。应用本方法nj•以帮助研究人员在转基因作物研 

究中，如ff种，更清晰的实时、准实时的了解样本状态，加强实验控制、节约成 

木。在将来的研究卞,•为了更进一步的改进本方法，应加强与生物硏究人员的有 

效沟通，应用更多的研究方法，将研究扩展到全波段（350-2500nm)，并引入更 

多的叶片生物化学物质成分作为样本生长状态的指示因子。 
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Chapter 1 Problems in transgenic crop study 

1.1. Introduction 

Biotechnology has received much attention nowadays, which was identified as one of the three 

most Important emerging and evolving fields along with nanotechnology and geo-technology by 

the US Department of Labor (Gewin, 2004). As a big progress of biotechnology, transgenic 

techniques are marked as one of the greatest technologies. By introducing foreign genes and 

making them to express functionally in plant in less than two decades, super transgenic crops 

(species) can be developed with improved resistance to insect and disease, seeds and fruits with 

enhanced nutritional qualities, and plants that are better adapted to adverse environmental 

conditions (Herrera-Estrella, et al., 2005). With the development of transgenic techniques, some 

problems or uncertainties are arising, such as problems of the detection of foreign genes 

(transferred) expression (gene silencing), problems of the monitoring of functional influences on 

the objects (both on the target objects and other uncertain objects) caused by transgenic 

expression (gene over- or suppressed expression). 

In some sense, these problems are the issues of how to find and assess the influences of foreign 

gene on transgenic plants and how to monitor the growth of transgenic plant. They are significant 

to assess the uncertainty of transgenic products, and are crucial to the study, development and 

application of these techniques and their products, especially for the studies such as crop 

breeding. 

1.1.1 Indication and monitoring of gene expression 

1.1.1.1 The definition of Gene expression at molecular level 

Gene expression is a technical term to describe how active a particular gene is, namely, how 

many times it is expressed or transcribed, to promote it encodes. It is "a process of the translation 

of the information encoded in a gene into an RNA transcript. Expressed transcripts include 

message RNAs translated into proteins, as well as other types of RNA, such as transfer RNA, 

ribosomal RNA, micro RNA, and non-coding RNA, which are not translated into protein. Gene 

expression is a highly specific process by which cells switch genes on and off in a timely manner, 

according to their state" (Marchionni, et al., 2008). In summary. Gene expression at molecular 

level could be described as produce proteins according to the encoding message from the 

transgene. 
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Figure 1-1. A model of the expression of a single gene (K rn, et al., 2005) 

1.1.2 Problems in indication and monitoring of gene Influence 

Gene expression is susceptible thus it shows the characteristics of uncertainty (Sanderson, 2007) 

and stochasticity (Kaern, et al., 2005, Raser, et al., 2005) including gene expression 

polymorphism(Kaern, et al., 2005, Raser and O'Shea, 2005), over- and suppressed-

expression(Baulcombe, 2004) and gene silencing and co-suppression (Van Blokland, et al., 1994) 

etc. 

1.1.2.1 Polymorphism of gene expression 

Expression polymorphisms can be identified as the significant difference at the expression level 

(Huang, et al., 2006). It means that the same gene unit or genome without external influences 

such as stresses (water, temperature, chemical injury and so on) would also have different 

expression, namely different phenotypes. The object the polymorphism happens in has no 

relation with the fact whether the organisms/ cells have transgene. 

mm 

Figure 1-2. Gene expression polymorphism 

"Cc, the first cloned cat (left) and Rainbow, Cc's geneticmother (right), display different coat 

patterns and personalities. Photo credit, College of Veterinary Medicine and Biomedical Sciences, 

Texas A&M University" (Raser and O'Shea, 2005). 



1.1.2.2 Over- and suppressed- expression of gene 

Over-express: in biology, is indentified to make too many copies of a protein or other substance. 

Over-expression of certain proteins or other substances may play a role in cancer development^ 

Over-expression (Figure 3) could introduce many effects. Suppressed expression (gene 

suppression) is an opposite term to over-expression, and could be described as one gene 

suppresses the expression of other genes. As following figure 4 showed, GFP had been 

suppressed (Baulcombe, 2004). 

Figure 1-3. Over- and suppressed- expression of gene 

"The canola plant with an over-expressed HSD gene (right) has more flower buds than the 

unmodified plant (left). More flowers produce more seeds and therefore higher oil yields"^. 

Figure 1-4. Over- and suppressed- expression of gene 

(a)" In the wild-type plant, a GFP transgene is constitutively transcribed, but the GFP fluorescence 

is suppressed, b, This plant has a mutation in RDR6 and the silencer signal is able to act only in the 

cells that are that are further than about 20 cells from the phloem and consequently they appear 

green under ultraviolet light The GFP transgene is not silenced in cells that are further" 

(Baulcombe, 2004). 

National Cancer Institute, http://www.cancer.gov/dictionary/?CdrlO=45812 

2 http://www.nrc-cnrc.gc.ca/eng/news/nrc/2007/1^7/genetic-boost.html. National Research Council Canada, 

2007 , 

http://www.cancer.gov/dictionary/?CdrlO=45812
http://www.nrc-cnrc.gc.ca/eng/news/nrc/2007/1%5e7/genetic-boost.html


1.1.2.3 Gene silencing and Co-suppression 

"In genetically modified plants, the introduced transgenes are sometimes not expressed, namely 

being silenced Transgenes integrate at different chromosomal locations. If they become inserted 

into euchromatin, in a transcriptionally active region, expression may be influenced by regulatory 

sequences of nearby host genes. If they insert in or near repetitive DNA or heterochromatin, they 

can be inactivated. Another important factor associated with gene silencing is the number of 

transgenes per integration site" (Stam, et al., 1997). Transgenes can also cause the silencing of 

endogenous plant genes if they are sufficiently homologous, a phenomenon known as 

co-suppression (Stam, et al., 1997). 

G e n e s i l e n c i n g b y a d d i n g e x t r a g e n e c o p i e s 
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Figure 1-5. Gene silencing: RNA degradation and DNA methylation (Van Blokland, et al., 1994) 

1.1.2.4 Unknown influences on receptor from foreign genes 

There would be also some unknown influences caused by foreign gene. These influences could be 

thought as by-products. In some sense, it is a serious issue. To find and monitor these influences 

is important to many studies, especially for crop breeding. 

The expression of gene is a process which is easily influenced by stochastic effects/noise (K rn, et 

al., 2005) and results in variability. Not only environment and history would contribute to 

variability in cellular phenotype but also organisms with same genes in same environment, with 

the same history, display variations in form and behavior that can be subtle or dramatic (Raser 

and O'Shea, 2005). In summary, there are full of uncertainties during the expressions of gene, and 

we need stable, reliable, fast, efficient and sensitive enough approaches to detect and monitor 

gene expression and influences quantitatively and qualitatively in the study. 

1.1.3 Comments on foreign gene monitoring 

Testing for a single bio-trait or genetically modified organ event may require only a simple 

method, whereas testing for presence of multiple events, possibilities for identification and 

quantification may require use of combinations of methods (Christiansen, et al., 2008, 

http://www.bio.vu.nl/genetica/Research-projects-new/Projects_Kooter/Proje(:ts_J.Kooter.htm 

http://www.bio.vu.nl/genetica/Research-projects-new/Projects_Kooter/Proje(:ts_J.Kooter.htm


Hoist-Jensen, 2007, 2009). Moreover no matter on DNA or protein the techniques based, they are 

applied at laboratory. They are quantitative, qualitative, stable and reliable enough to fulfill 

detection of gene expression and deduce itself influences on receptor. These techniques are at a 

micro view to confirm whether genes or special structures exist and then deduce or try to reveal 
t 

the potential influences caused by the foreign things on the receptor. They are efficient when the 

objective genes are known with indication of prior knowledge. However, because the gene 

expressed at molecular level is so complex that, as presented above, current dominated 

techniques are reliable and efficient with help of prior knowledge, but if no prior knowledge, it 

would be time and labor consuming and hard to accomplish the engaged task. A PCR method 

cannot detect a completely unknown gene modified organism (GMO), since prior knowledge of 

the DNA sequence is necessary for the primer design (Michelini, et al., 2008). The optimal DNA 

chip has been designed to solve this problem (Tengs, et al., 2007), but for large amount of 

samples, it is still embarrassed. 

Furthermore, taking into account the phenomena/ special problems, sometimes though the gene 

was transferred into receptor successfully it may not be expressed or expressed but researcher 

could not make sure whether this foreign thing has influences on the object organism or only on 

this organism. In this situation, these approaches are helpless because of a huge amount of work, 

expensive cost both at time and material consuming, and other uncontrolled problems. In 

addition, at different growth stage, the transgene may have different expressions and influences 

on different organism, real-time detection and monitoring of it are very important, especially for 

experiment lasting for a long time, such as crop breeding. 

1.2. Indication and Monitoring of cultivated Transgenic Paddy Rice Growth by 

Hyperspectral Remote Sensing Techniques 

Is there any technique, which is rapid, real-time or near real-time, stable, sensitive, easy to use 

and cheap, could satisfy to be early indicating of information of gene influences (e.g. transgenic 

expression) on receptor? Spectroscopy would be a candidate, which is non-destructive, fast, 

without pollution and no requirement of sample pre-treatment (Blanco, et al., 2002). 

In this study, the author proposed to employ hyperspectral remote sensing techniques, a kind of 

practical and field spectroscopy technique, to obtain fine spectra of transgenic plant, by 

monitoring the real-/ near real-time growth of sample, to fulfill early indication of possible the 

differences between transgenic crops and their contrast in the controlled contrast experiment. 

The idea is an approach from a macro view rather than the one focusing on the molecular level. It 

cortipares the differences between transgenic samples and their contrast which are cultivated in 

the controlled contrast environment. It will be implemented to monitor the growth of the 

samples real-/ near real-time, assist to screen samples and help researchers clearly know their 
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Figure 1-6. The frame of indication and monitoring of cultivated transgenic paddy rice growth by hyperspectral 

remote sensing techniques 

Rice is a vital food crop of the world. In a few years, GM rice will be ready for commercialization, 

including varieties with higher yields, greater tolerance of biotic and abiotic stresses, resistance to 

herbicides, improved nutritional quality, and novel pharmaceutical proteins. Therefore, we take 

transgenic rice as target samples to develop and validate our proposed approaches. 

The primary objectives of the proposed research are to: 

1. To Investigate hyperspectral properties of transgenic rice paddy at growing stages. 

2. To assess the sensitivity of the existed vegetation spectral indices when applied to 

transgenic paddy rice study and design more stable indices according to spectral features 

of paddy rice. 

samples. 

Hyperspectral technique could be applied to separate matter if it has unique spectral features 

(diagnostic absorption features by certain chemical bonds or molecular structure intact) with 

contiguous narrow spectral bands (Goetz, et al., 1985b). It is simple, practical, rapid, real-/ near 

real-time, user friendly and cheap. In the process, Hyperspectral remote sensing techniques play 

a role of detection and monitoring of gene by an indirect way from a macro-view. To be 

emphasized, the approach proposed is not the one replacing the current traditional methods for 

gene detection and crop assessment, but an important, helpful and efficient complement to 

make the study such as crop breeding under control and efficient as much as possible. 
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3. To locate and quantify the changes of transgenic rice paddy compared with their parents 

both on morphologic and parametric characteristics. 

4, To develop a practical method for indication and monitoring gene expression and its 

influences as Early warning system based HRST for transgene plant cultivation 

The research has the significances as follow: 

1. To fulfill systematic study on spectral analyses transgenic rice paddy, including analysis 

of spectral characteristics, sensitive bands to transgenic foliar chemicals. It is the 

fundamental work for remotely sensed rice plant. 

2. To analyze spectral characteristics of transgenic rice plant and develop a feasible 

workflow for indicating and monitoring of possible difference between transgenic 

samples and their contrast which would be useful to reveal the gene expression and 

influences on receptor, and assist crop breeding. It is of significance for transgenic crop 

breeding and it would be a new promising application area of hyperspectral remote 

sensing techniques. 

3. It is also significant to breeding works of other plants, transgenic or non-transgenic. The 

thesis proved the feasibility of application of hyperspectral techniques to assist studies 

in biological field. The approach explored and developed in the thesis is a practical 

approach and could be applied to assist plant breeding, not limited to paddy rice, 

directly with help of hyperspectral remote sensing techniques. 
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Chapter 2 Fundamentals for the new application of hyperspectral 

techniques to transgenic crop study 

As mentioned in the chapter 1, the approach had been proposed to apply hyperspectral remote 

sensing technique to indicate outliers among samples, assess and screen them quantitatively and 

qualitatively, and finally report the results to laboratory for validation by specific professional 

approaches to fulfill screening of cultivars from a macro view. Why could hyperspectral technique 

be applied to fulfill the task of indication and monitoring of transgenic crop growth and help crop 

breeding? In this chapter, the relevant techniques and their theory would be introduced and 

interpreted. For articulating the internal logical relationship within this proposed approach, 
等 _ 

mainly two kinds of problems should be answered. One is what (kind of) is the influence caused 

by foreign (or modified) gene on receipt, the other is why and by what hyperspectral technique 

could fulfill the expected task. 



2.1. Influence on receptor from foreign gene 

2.1.1 Influence on receptor from foreign gene 

Foreign (or modified) gene may cause two kinds of influences to the receptor: one is influence 

because of expression of gene and its associated effects (e.g. gene expression polymorphism), 

and the other is Influence because of non-gene-expression but with associated effects (e.g. gene 

silencing). When Gene transferred into receptor is expressed, sequence of amino acids is 

specified by coding region of the gene, these sequences of amino acids will make up the proteins 

(Sanderson, 2007). By the proteins made up, difference, bio-physiological or biochemical, would 

be made, no matter new material, nor changes of content of material, internal structure of cell or 

organism, intensity of biophysical process. However, because gene expression is susceptible, it 

shows the characteristics of uncertainty (Sanderson, 2007) and stochasticity (Kaern, et al., 2005, 

Raser and O'Shea, 2005). Therefore, in some situations, through the gene is not expressed, it still 

makes influences on the receptor. 

For limiting our study scope, we should get some general judgment or assumption about samples 

in the study: If foreign genes are expressed in plant cell/ organism, there would made some 

differences comparing to their parent, these differences are, not limited: components of cell are 

changed such as new material generated or the content of existing component increasing/ 

decreasing; structure of cell would be changed; biochemical or biophysical processes would be 

influenced. If changes happen, component or structure of leaf organism, they would be 

discovered by direct or indirect approaches of spectroscopy equipments with certain sensitivity 

and spectral resolution. 

2.1.2 Laboratory approaches of indication and monitoring of gene expression 

In general, the tools applied for detecting genes (Figure 1) are primarily bioassays: protein based 

(mainly immunological) assays and DNA based assays�mainly applying the polymerase chain 

reaction [PCR] technology) (Hoist-Jensen, 2009). Some researchers also classified the main 

categories of detection strategies as polymerase chain reaction (PCR)-based methods, DNA-based 

approaches (which may or may not involve the use of PGR) (Deisingh, et al., 2005). The high 

sensitivity and specificity of PGR allows it to be the best choice in detecting transgenes. The 

quality and quantity of target analyte will also influence the method of choice and again PCR 

methods are generally chosen (Deisingh and Badrie, 2005, Hoist-Jensen, et al., 2003). These are 

the dominating techniques to identify and detect gene existence and other relevant information. 
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I .‘ Figure 2-1. The tools applied to detect genes (Hoist-Jensen, 2009) 

Besides DMA- or protein- based methods, other technologies have been developed too, such as 

NIR Spectroscopy (Hurburgh, et al., 2000, Roussel, et al., 2001) and Chromatography (Byrdwell, et 

al.,,1996): Microchip electrophoresis (ME), with its high separation efficiency, short analysis time, 

and low sample and solvent consumptions, was investigated for the analysis of genetically 

modified organisms in maize (Kumar, et al., 2007). Wavelength-dispersive X-ray fluorescence 

(WDXRF) was also proposed for the determination of phosphorus in transgene food samples 

(Jastrzebska, et al” 2003). Fluorescence is the favored signaling technology and several 

techniques relying on energy transfer between a fluorophore and a proximal quencher molecule 
、、 

(Deisingh and Badrie, 2005, Whitcombe, et al., 1999). Now Green Fluorescence Protein has been 
widely applied as indicator of gene expression (Chalfie, 2009, Chalfie, et al., 1994, Harper, et al., 

% 

1999, Misteli, et al., 1997). 

2.1.3 Plant responses to transferred gene 

When we discuss the response of plant to gene influence, we could not avoid the response of 
•k 

plant to stress. The influence caused by foreign genes could be treated as a special internal stress. 

They are also Involved to respond stress, such as signaling, protection of proteins (NDong, et al., 

2002, Wang, et al” 2000). There would be changes-within plant as a result of stress, such as 

physiological； anatomical, morphological, biochemical, and even molecular ones(Jacksbn, 1986, 

Wang, et al., 2003, Wang, et al, 2000). 
10 



Jackson (1986) defined stress "as any disturbance that adversely influence growth". 

Lichtenthaler et al. (1988, 1996) gave extension that stress should be divided into Eu-stress and 

dis-stress. Eu-stress "is an activating and simulating stress and a positive element for plant 

development, whereas dis-stress is a severe and a real stress that cause damage and thus has a 

negative effect on the plant and its development' (Lichtenthaler and Rinderle, 1988, Lichtenthaler, 

1996). No matter how to define it, in common sense, stress makes influence on plant growth and 

productivity (Wang, et al., 2000). Therefore, to detect and monitor stress is also important to 

assist transgenic crop breeding and cultivating. 

Theoretically, it is hard to classify what response within plant is to stress and what is to gene by 

hyperspectral approach, but the growth conditions could be controlled to eliminate the 

uncertainties caused by stress (external factors). At least, detecting response to stress or 
• 

assessing the capability of tolerance of transgenic sample is also helpful to breeding. It could 

provide messages from the cultivators and assist to make the experiment under control. So in 

some sense, the influence caused by transgene could be treated as a type of stress, therefore the 

same spectral techniques can be applied to detect and monitor them. 

2.2 Hyperspectral techniques for detecting influences of transgene and stress 

Whatever the Influences or the effects caused by foreign gene or stress, the responses are firstly 

at a micro level, such as photosynthetic pigment content changes(Carter, 6A, et al., 2001), 

denaturation of functional and structural proteins(Smirnoff, 1998). By hyperspectral technique, it 

is hard to detect directly. However, by monitoring the growth of sample real-/ near real-time by 

spectral techniques in contrast conditions； it is promising to apply this technique to indicate the 

growth statues of the samples, assess and screen them quantitatively to help to fulfill screening 

of samples from a macro-view. 

As we know, hyperspectral technique is a kind of spectroscopy that is able to detect the existence 

of material and even internal structure of specific object. Moreover, if we have a time series data 

set, we could fulfill the work of monitoring the development of the plant. Vegetation has a 

perfect mechanism to respond the stress, Internal or external. When this mechanism starts, the 

activity of biochemical or physiological process would be changed. Taking photosynthetic activity 

as an example, when plant encounters hot temperature, is kind of external stress, plant 

photosynthetic process would die down for self-protection. Therefore, by finding and tracking the 

stress encountered by plant, useful information of plant growth changes could be found. 
« 

2.2.1 Introduction to spectroscopy 

The fundamental of hyperspectral technique is spectroscopy (Tong, et al., 2006), especially 

absorption spectroscopy. "Absorption spectroscopy refers to spectroscopic techniques that 
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measure the absorption of radiation, as a function of frequency or wavelength, due to its 

interaction with a sample."" It is a kind of electromagnetic spectroscopy (figure 2). 

"Electromagnetic spectroscopy involves interactions of matter with electromagnetic radiation."^ 

By studying these interactions, information of atom, molecular and its internal structure could be 

obtained. Theoretically, there are three types of absorption spectrum (figure 3): atom absorption 

spectrum, molecular spectrum {absorption, vibration and rotation) and crystal lattice vibration 

spectrum. According to the electromagnetic theory, the generation of the spectrum of any 

material has its strirtly physical rule (Pu, et al., 2000). Because of Electron transition in atom or 

molecular from one energy state to another, atom or molecular could absorb or emit certain 

frequency electromagnetic radiation and form spectrum with unique features. Spectrum because 

of lattice vibration is related to the structure of crystal lattice. Thus for specific crystal, it has 

specific spectral characteristics. By detecting the signal of these interactions (absorption or 

reflection of electromagnetic wave) Spectral Reflectance Curves, also could be defined as 

Reflectance Spectra would be obtained. Reflectance Spectra quantitatively assesses the 

percentage of the energy reflected by the object to the incident energy. Because the limitation of 

equipment the wavelength range of 350- 2500nm is the study scope, covering visible band (380-

760nm), near Infrared-red band (NIR: 760- 1400nm) and part of short-wave infra red-red band 

(SWIR: 1400-3000nm)6. 

^ h e words in "“ were cited from Wikipedia: http://en.witcipedia.org/wiki/Absorption spectrum 

® http://en.wikipedia.orfi/wiki/Spectroscopv 

® http://en.wikipedia.org/wiki/Near infrared 
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Figure 2-3. Three kinds of spectrum discussed 

(a)Atom absorption spectrum (rightf; (b) Molecule vibration (left)'"; (c) Crystal lattice vibration 

and lattice vibration spectrum: Visualization of the lattice vibration in the iron-based 

superconductor LaFeAsO and its dispersions" 

Figure 4 listed 44 absorption features in visible and near-infrared wavebands that had been 

related to particular foliar chemical concentrations (Curran, 1989). 
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Figure 2-4. 44 absorption features 

Absorption features in visible and near-Infrared wavebands that have been related to particular 

foliar chemical concentrations (Curran, 1989) 

2.2.2 Optical characteristics of plant leaf 

Vegetation spectrum, responding to electromagnetic energy, composed of absorption, 

reflectance and emission of energy, is decided by vegetation chemical and morphological features 

which are highly related to the development health and growth conditions of plants {Boochs, 

1990). Green vegetation has spectral characteristics different than soil, water and other typical 

ground objects (figure 1). Vegetation spectrum, responding to electromagnetic energy, composed 

of absorption and emission of energy, is decided by vegetation chemical and morphological 

features which are highly related to plant health and growth conditions of plants {Boochs, 1990). 

In visible bands, kinds of pigments, especially chlorophyll, are the main materials responding to 

electromagnetic energy and absorb large of incident light at regions which central band are 450 

nm (blue light) and 650 nm (red light) respectively (Jago ei at., 1999). Between these two 

absorptions, there is a small reflected peak caused by weaker absorption, we call it "green peak", 

thus we could.find plant is green. When plant is in unhealthy state, absorption by chlorophyll 

would decrease while reflection increases especially in red bands, thus we would find now plant 

is yellowish. In near Infrared bands, the responses are mainly controlled by Internal cell structure 

of leaf (Jago el at., 1999; Kumar, 2001). Healthy vegetation has a very high reflection (up to 45%-

50%), high transmission (up to 45%- 50%) and low absorption (5% approximately) at near infrared 

red bands (Philip et al" 1978), Therefore, at region red and near infrared red, at 760 nm 

approximately, there is a red-shift, namely red-edge would be formed. It is the most significant 

characteristic of green vegetation (Miller et al., 1991). The spectral region between 1300 and 

2500 nm, namely around 1400 nm, 1900 nm, is of interest because water within the leaves 

absorbs radiation at these wavelengths. Within this region, called the "mid-infrared" or the 

"water-absorption" region, leaf reflectance decreases towards long wavelength, with minimums 

near 1400 and 1850 nm, and becomes negligible beyond 2500 nm. The upper limit of 2500 nm is 

a result of the decrease of solar radiation with wavelength and the absorption of radiation by 

atmospheric water vapor (Jackson, 1986). Study shows reflection of leaves at middle infrared 

bands would decrease associated with decrease of water content of leaves. The specific vegetable 

spectral curve shape (characteristics) could be found In figure 1. 

Previous studies indicated that by vegetable spectrum, we could obtain information both of 

surface and inner leaf. In the past decades, researchers have had many achievements with these 

vegetation spectral characteristics and built lots of models/ relationship between spectral 

responses and vegetable bio-physical indices revealing internal regulations such as plant growth, 



environmental stress, and most of these have a wide and successful application. 

Figure 2-5. Generalized diagram of a leaf structure and its reflectance characteristics at visible and near IR 

wavelength" 

2.2.3 Bands response to stress 

In some sense, influence caused by transgene on the receptor could be treated as special stress 

within plant. Thus we could detect and monitor these two influences by the same spectral 

techniques. In fact, by current hyperspectral technique, it is impossible to reveal influences 

mentioned by stress. From a macro view, the stress effect could be responded by spectral 

technique (Jackson, 1986). Under different stresses, plant would have a different healthy state 

which represents distinguished characteristics responded by spectral signature. Leaf reflectance 

responses to environmental conditions that Inhibit growth generally involved increased 

reflectance in the visible (380- 760 nm) or infrared (760- 2500 nm) spectra (Carter, 1993). Carter 

(1994, 1993) pointed out about sensitive bands and indicated that leaf reflectance altered by 

stress was more consistent at visible bands (400- 720 nm) rather than it after band of 730nm. A 

http://www.EeoR.ucsb.eclu/~ieff/115a/remote sensinfi/femotesensing.html 

17 

http://www.EeoR.ucsb.eclu/~ieff/115a/remote


W A V E L E N G T H ( i ^ m ) 

Figure 2-6. The typical vegetation spectrum 

Laboratory reflectance spectra of an oak leaf in a fresh state (thin line) and after being dried 

(thick line). Because the strong absorptions due to water are absent, the dried leaf spectrum 

shows the protein, lignin and cellulose absorption features in the 1.5-2.5 micron region (Kokaly, 

et al., 1998). 

2.3. Hyperspectral remote sensing techniques 

23.1 Concept of hyperspectral remote sensing techniques 

Hyperspectral remote sensing is a kind of remote sensing technique which obtains data with 

high-spectral resolution, and its theoretic fundamental is spectroscopy (Tong, et al., 2006). It was 

discussed formally in 1985 when disusing the technique of imaging spectrometry (Goetz, et al., 

1985a). Hyperspectral remote sensing is closely related to "imaging spectrometry" at first. As 

described by Goetz (Goetz, et al., 1985a), imaging spectrometry "consists of the acquisition of 
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further result showed that leaf optical properties in a relatively narrow spectral band near 700 

nm are crucial for plant stress detection (Carter, GA and Knapp, AK, 2001), Because reflectance 

generally increases at wavelengths near 700 nm with plant stress, the steep slope of the 

reflectance curve in the far-red to near-infrared transition (namely red shift) spectrum tends to 

shift toward the blue spectrum, namely the blue shift of the reflectance curve red edge. But to 

specific stress, sensitive bands may be not same. 
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images in many narrow contiguous spectral bonds throughout the visible and solar-reflected 

infrared spectral bands simultaneously", "for each pixel a radiance spectrum con be derived." The 

data set acqiJired by imaging spectrometry could be called hyperspectral images. This kind of is a 

three-dimensional data cube, both with spatial and spectral information of the observed object. 

Compared with multi-spectral remote sensing, the significant character of hyperspectral remote 

sensing is the data acquired simultaneously in many, hundreds of, narrow contiguous spectral 

bands for directly indentify material with diagnostic absorption or reflected features. Thus, by 

spatial features, the distribution and amount of the objects could be found; by spectral 

information, one pixel one spectrum, the attribute of the material in pixel could be detected. 

Theoretically, the spectral range could be extended from 400nm to 2500nm (Goetz, et al., 1985a). 

Hyperspectral remote sensing is a definition compared to multi-spectral remote sensing. The 

former one concentrates the bands of image are contiguous (more number of spectral bands), 

even overlapping so that the diagnosed spectral features of the material could be detected 

(Goetz, 2009, Sankaran, et al" 2010). The figure 3 showed the two kinds of remote sensing data 

clearly, the one former one was hyperspectral data； the other was multispectral. 
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Figure 2-7. Spectral signatures from hyperspectral vs. multispectral sensors'^ 

With development of technique and scientific demand, hyperspectral remote sensing has to be 
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multi-platforms: satellite platform (MODIS: the Moderate Resolution Imaging Spectroradiometer), 

airborne platform (AVIRIS: Airborne Visible Infra-Red Imaging Spectrometer) and ground-based 

spectrometry (FieldSpec® 3 Hi-Res Portable Spectroradiometer). The first two devices are imaging 

spectrometer, and could obtain a real spatial-spectral-cube data, while the last only acquire 

spectral data. 

2.3.2 The historical, current and future development of hyperspectral remote sensing 

The first truly hypsepectral remote sensing Image acquired by AIS-1 in 1983(Tang, 2004, Vane, et 

al., 1984). However the first formal definition was given by Goetz in 1985 (Goetz, et al., 1985a). 

AIS covers the spectral range of [1200, 2.400nm] in 128 contiguous spectral bands with 9.3nm 

bandwidth. After AIS, a new spectrometer had been designed as Airborne Visible Infra-Red 

Imaging Spectrometer (AVIRIS). The spectral coverage of AVIRIS is 400nm to 2400nm in 224 

bands lOnm wide. Compared with AIS, AVIRIS data attracted a wide studies and applications 

(Carder, et al" 1993, Kruse, et al., 1993, Roberts, et al., 1993). After AVIRIS, hyperspectral remote 

sensing entered a new era; lots of hyperspectral sensors have been developed, such as the 

Compact Airborne Spectrographic Imager (CASI) (Babey, et al., 1989, Zarco-Tejada, et al., 1999), 

hyperspectral digital imagery collection experiment sensor (HYDICE) (Resmini, et al., 1997, Zhang, 

et al., 2006), the Moderate Resolution Imaging Spectroradiometer (MODIS) (FriedI, et al., 2002, 

Huete, et al., 2002), High Resolution Hanging Spectrometer(HIRIS)(Martin, et al” 1997, Rock, et 

al., 1988), the Hyperion Imaging Spectrometer (Pearlman, et al., 2003). In China, there are also 

some hyperspectral sensors such as Modular Airborne Imaging Spectrometer (MAIS), Operational 

Module Imaging Spectrometer (OMIS), Push-broom Hyperspectral Imager (PHI), Wide Angle 

Push-broom Hyperspectral Imager (WHI), Large Aperture Spectral Imaging System (LASIS) and 

HJ-IA and CE-1. 

Ground-based spectrometer also has a good development. The first truly portable field 

spectrometer (PFRS) was designed in 1970' covered spectral range from 400nm to 2500nm 

(Goetz, 2009). This device needs a long time up to 30 seconds for a measurement. Thus new 

generation of ground spectrometers have been designed, such as the products from Geophysical 

Environmental Research (GER) in New York, the most widely applied spectrometers nowadays are 

products of Analytical Spectral Devices (ASD) Company. The new spectrometer could cover the 

spectral range of solar reflected radiance, 350nm to 2500nm and one measurement within 

100ms. And the spectral resolution is up to 3nm for some specific wavelength, and band Interval 

is up to Inm. Thus, more fine and precise spectral reflectance data could be obtained and applied 

to build and calibrate model for studies of various principles including calibrate satellite image 

data. Many remote sensing studies begin based on spectral reflectance data acquired by 

ground-based spectrometer and then extend to image data. 
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2.3.3 Hyperspectral remote sensing of vegetation 

H Y P E R S P E C T R A L APPLICATIONS P R O D U C T S 
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Figure 2-8. Application of Hyperspectral remote sensing (Miglani, 2007.7) 

Because of precise contiguous bands of spectral reflectance data, diagnosed features of material 

could be detected. Thus, hyperspectral remote sensing technique is widely applied to various 

fields. Figure 4 showed some application fields of this technique. Since the special relationship 

between electromagnetic energy and relevant response of plant leaf in spectral range of 350nm 

to 2500nm, lots of studies had been concentrated on vegetation based on hyperspectral remote 

sensing technique. 

Curran (1989) reported 44 absorption features in visible and near-infrared wavebands that have 

been related to particular foliar chemical concentrations. It makes it possible to predict changes 

of vegetation chemical compounds and monitoring plant growth. These chemical compounds are 

highly related to plant growth, yields including photosynthetic pigments {Chlorophylls: Chi; 

Carotenoids: Car; Anthocayains: Anth), water content, nitrogen, lignin, cellulose and protein etc. 

Plant pigments, mainly related to photosynthesis, are very sensitive to stresses and important 

indices to plant health. They are also the principal factors influencing plant spectral feature in 

visible and near infrared red bands. By studying relationship between pigment content and its 

spectral reflectance, we could not only detect and monitor plant health status but also obtained 

more information related to leaf structures, plant developmental stages (Sims, DA, et al., 2002). 
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To solve this problem, pigment content should be estimated by spectral technique. Previous 

studies provod many high related bands to pigments content and built correlation models. 

Nitrogen is an important indicator of photosynthetic rate and overall nutritional status (Curran, 

1989). Leaf lignin concentration is an important factor to control plant growth (Serrano, et al., 

2002). These all important foliar chemicals could are promising to be used as indicators of plant 

growth. The study details of the relevant foliar chemicals would be reviewed in chapters 4. 
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Chapter 3 Experiment and its uncertainties 

3.1 Guideline of the experiment 

The procedure of gene expression is complex, and its influences on receptor are of stochasticity, 

diversity and variability. Therefore, in this study the expression of foreign gene and its influences 

on receptor were not explored directly. The author focused on the bio-traits or responses to 

stress of samples to detect Spectral differences among samples. By analyzing these differences, 

the samples could be monitored real-/near real-time, the interested space of samples can be 

optimized and finally priori knowledge for laboratory work can be extracted. By this study, the 

author wanted to develop an operational and efficient approach based on hyperspectral remote 

sensing techniques to assist transgenic crop study (e.g. crop breeding) in large sample space 

condition. 

Figure 1 showed the guideline of the study. All samples should be cultivated in contrast 

conditions controlled by professional biological technician. Based on fine spectra,of sample leaves, 

indicative parameters (e.g. the content of the foliar chemicals) would be obtained. Then with help 

of these indicators, the following information could be confirmed: 

^ Whether there are any spectral differences or outliers (of spectral morphology 

parameter) among samples (transgenic one and their counterpart) exist? 

V If yes, the spectral differences would be described quantitatively, located where the 

responding bands are, and deduced what caused differences. 

Finally a report would be submitted to the laboratory for further study and validation. Spectral 

monitoring, laboratory study and field cultivation would respond feedback to each other to make 

crop breeding and screening efficient with low cost. Thus, the researcher would know his sample 

clearly rea^/near real- time even with mass samples. 
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Strictly controlled contrast experiment 
Parents + transgenic groups 

Completely same conditions: soil, temperature, sunlight, management, etc. 
Exclude external noises as much as possible 

Feedback 

To breeding 

DifTcrences made by 
transgene? 

—at target organs? 

—at other ones'/ 

Without gene expression； 

Without expression at now stage： 

Not identified by currriit 

equipment； 

Unsuitable paramctcrs 

System report 

Figure 3-1. Guideline of the controlled experiment in this study 

3.2 Collaborating institutes, samples and devices in the experiments 

3.2.1 Collaborating institutes and samples 

For validating and revising the approach proposed, the data of different types of transgenic 

samples and their contrast are required. Generally speaking, three kinds of data are needed, the 

data of same gene in different year and place, the data of different gene and the data from 

different growth stages. These procedures are recognized as "the gene-repeat experiment" and 

"the experiment-repeat experiment'. 

The study was supported by China National Hybrid Rice R&D Center (CNHRRDC) and Institute of 

Subtropics agrjcuiture (ISA), Chinese Academy of Sciences (CAS) both in Hunan Province. 

CNHRRDC (figure 2) is a research institute of professional paddy rice steered by academician Yuan 

Longping. They have many professional breeding fields in Hunan and Hainan. ISA (figure 3) has a 

standard greenhouse so that study works could be done whole year and the crop growth 

condition could be controlled easily. 6 times experiments of more than two years were conducted 
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totally. The longest one lasted three months, and a long growth period data of paddy rice were 

obtained. And the samples of the 6 experiments were also the objects of professional breeding 

studies in CNHRRDC ^ d ISA, and they had a strict requirement about the samples and their 

growth conditions. Therefore, it ensured that the proposed approach is matched with the study, 

such as crop breeding work. 

(a) 

Figure 3-2. China National Hybrid Rice R&D Center(CNHRRDC) 

CNHRRDC: (a) Hainan National Rice Breeding Field in Sanya, Hainan Province; (b) Transgenic 

paddy rice field in Changsha, Hunan Province. 

(a) (b) 

Figure 3-3. Institute of Subtropics agriculture (ISA) 

(a) ISA, CAS;�b) Professional greenhouse in ISA, Changsha 

The Samples were cultivated in two conditions, one was in the field in natural condition, and the 

other was in pot (20cm in diameter and 30 cm in height approximately) in the greenhouse or 

natural condition, in field, before flowering stage, the samples would be separated from the 

surrounding. 
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3.2.2 The gene-repeat and experiment-repeat experiment 

3.2.2.1 The gene-repeat experiment 

In the gene-(sample) repeat experiment, the same kind of transgenic paddy rice with their 

contrast parents was cultivated in different years to validate weather the proposed approach was 

useful and stable enough. The samples were transferred into different gene unit of phycocyanin 

genome. And by laboratory validation the genes had been successfully transferred. This genome 

was forecasted to promote the receptor's photosynthetic efficiency and help to produce rice of 

high quality. These samples were cultivated by China National Hybrid Rice R&D Center three 

times in Changsha, Hunan Province and Sanya, Hainan Province. We obtained spectral data at the 

same growth stage in these experiments. 

3.2.2.2 The experiment-repeat experiment 

To assess the sensitivity and stability of the proposed approach, we had done the 

experiment-re peat experiment. In these experiments, different kinds of transgenic samples were 

selected including phycocyanin gene, fluorescence protein gene units and BT & BAR gene. The 

last two genes ware forecasted to enhance resistance of herbicide and insects. The samples were 

transferred different gene units and cultivated in independent experiments, respectively. 

3.2.3 Devices 

(a) (b) 

Figure 3-4. Devices 

(a), an observation with probe-leaf-clip system; (b) a Field Spectroradiometer. 

Considering that the differences between transgenic samples and their parent would be slight, 

fine spectra of leave were acquired. In the study, an integrated system was employed consisting 

of an Analytical Spectral Devices (ASD) FieldSpec 3 Spectrometer, the contact-probe and the 

leaf-clip (Figure 4). ASD is an Instrument with a spectral range of 350-2500nm and a rapid data 

collection time of 0.1 second per spectrum, which is compact, field portable and accuracy. It has 
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a spectral resolution of 3 nm at 700nm and 10 nm at 1400/2100 nm while spectral interval is 1.4 

nm for 350-1050 and 2nm for 1000-2500nm. In the study we set the view of field of ASD to 25 
J 

degrees. The Noise Equivalent Radiance (NEdL) is UV/VNIR 1.1*10-9 \N/cm2/nm/sr @700 nm, NIR 

2.4*10-9 W/cm^/nm/sr @1400 nm and NIR 4.7*10-9W/cm^/nm/sr @2100 nm". More details 

about the ASD could be read from its website. The equipment is easy to use especially convenient 

for field data collection. High intensity Contact p r o b e i s excellent for mineral, leaf, grain, and 

granule applications (ASD Document 600544 Rev. C, p26). Its view spot is in size of lOnm, Halogen 

bulb color temperature is 2901 +/- 109% degree K and specular reflectance is 5% max off flat first 

surface mirror. Because of the design of the contact probe, the incident light to sensor is not 

perpendicular to the leaf surface but a constant angle (approximate 30° , Figure 5). 

Figure 3-5. The contact-probe and the incident angle of light 

Leaf-clip interfaces with the ASD high intensity probe. The contact probe and the leaf-clip consist 

of the pre-head of data collection. This unit had two kinds of reference panels. They are the white 

and the black standard background which are replaceable. The white background is 0.120 mm 

thick X .935" OD Gor-tex white PTFE reflector material. The black background is 0.004" thick x 

0.935 OD black painted Vinyl. Figure 6 showed reflectance curves of background (standard 

reference panel) associated with leaf-clip and samples with white and black background 

respectively. Baseline-reference panel as standard reference is used to calibrate ASD 

spectrometer and calculate the spectral reflectance. In the ranges before 400nm, and after 

2000nm, the black background is sensitive to noise. Except for those bands, the max reflectance 

is no more than 0.034, and the changes range from 0.031 to 0.034 approximately. For the white 

background, though the curve is smoother than the black one, but it causes high reflected 

shoulder (left figure) because of multi-reflection. These multi-reflections are complex and select 

to enhance reflected energy since the unique characteristics of leaf responding to incident 

electromagnetic wave. Thus, if the effect caused by background was acceptable, the black panel 

is an ideal choice for data acquisition. In this study； we took baseline-reference panel and black 

background as reference to calibrate reflectance data. 

14 http://www.asdi.com/prQdiicts/fieldspec-3-portable-spectroradiometer 

“http://www.asdi.com/accessories/hiRh-intensitv-contact-probe 
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Figure 3.6. Spectral reflectance of the reference background (reference panel) 

3.3 Uncertainty problems 

3.3.1 The definition and classification of Uncertainties in remote sensing 

“Uncertainty: The lack of certainty, a state of having limited knowledge where it is impossible to 

exactly describe existing state or future outcome, more than one possible outcome."—Wikipedia"' 

It is an Indicator to describe the certain influences caused by the factors which are not controlled 

or avoided under current techniques, or could be controlled in certain region (not solved) but 

unnecessary to be paid much attention to specific application which is accurate. Therefore, the 

uncertainty of remote sensing is certain, but this uncertainty could not be controlled certainly, 

mostly we could only give a qualitative description about it. For strictly contrast, the 

experimental uncertainty should be considered seriously during the experiment. 

The first kind of uncertainty which is not controlled or avoided for remote sensing generally 

involves: (1) system errors or flaws, such as uncertainty of remote sensing including 

signal-^tioise ratio (SNR) of device, uncertainty of kinds of resolutions (spatial, temporal for 

time series data, spectral and radiation); (2) uncertainty of data itself such as uncertainty of time 

series data which also includes model uncertainty problems; (3) model uncertainty both 

empirical and physical models since the inaccuracy description or acceptance & refusal of 

variations. The second kind of uncertainty of remote sensing could be controlled in a certain 

region: (4) uncertainty during specific applications (processed) which mainly is caused by 

personal preference during model running; it's a kind of subjective and post- uncertainty. If 

before running model, a unique rule has been made to ensure standardized operation, 

16 http://en.wikipedia.ore/wiki/Ur)ceitaitUv 
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uncertainty problems could be finally controlled in the same group for the contrast experiment. 

Sometime, for some reasons, such as time or material consuming cost, manager would sacrifice 

some accuracy for saving, and this scarification also brings uncertainty which could be avoided. 

3.2.2 Uncertainties in experiments 

3.2.2.1 Time of the Measurement 

Plant has its own mode in biochemical and physiological process to fit environment and stress 

such as high temperature and extra-light condition. Thus, plant is not active all the time (Figure 7). 

Taking photosynthesis as example, the following figure 7 showed the changes of photosynthesis 

in daytime. Thus for long time monitoring or contrast experiment, when to measure is very 

important. Observation time of different experiments must be matched. Otherwise, 

unreasonable results would be obtained and mislead further study. Especially for contrast 

experiments, spectral data measurements are required at the same time at the same growth 

conditions to suppress external uncertainties. Generally speaking, spectral measurement could 

be conducted during 10:30- 11:30 under a stable weather condition (natural condition). 

10 

: 0 0 1 0 : 0 0 1 2 : 0 0 I '1 :00 :00 

Figure 3-7. Photosynthetic mode of plant In daytime 

A. One peak mode; B. two peak mode; C. Special one peak mode(Xu, 2002} 

3.2.2.2 Interval of the measurement 

For filtering the random noise in the measurement, ASD spectrometer collects several spectral 

data one time as one measurement. However because of heating effect of the probe light, the 

leaf spot located in the probe view field would be hurt (Figure 8). Also some bands are sensitive 

to the water change going with temperature change caused by the probe. Thus suitable sampling 

times should be considered. In this study, for every measurement, 5 pieces of spectra were 

collected within 5 seconds. 
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(a) (b) 

Figure 3-8. Heat effect caused by probe light 

(a). Leaf damaged by high temperature; (b). Spectral curve under temperature fast change 

condition. 

.2.2.3 Noise from the reference black background 

The black background (reference panel) of the pre-head of data collection would also contribute 

to the leaf spectral. Table 1 showed the statistic information of spectral reflectance of the black 

background (420-2400nm). 

Table 3-1. Statistics of the spectral reflectance of the background reference panel 

N 

background 1979 

Mean 

.032495 

Std. Deviation Minimum Maximum 

.0005412 .0307 .0333 

For assessing the influence made by background, an assumption was made: the final energy from 

background passing the leaf fits to the regulation described by the typical leaf spectral 

reflectance. Then the final energy was added to normal spectra as noise, and the spectral indices 

were calculated. Four spectral indices were chosen to represent kinds of types. 

Table 3-2. Spectral indices with difference wavelength 

Index Description source 
f 

Chapp=Chlorophyll aR675/R700 (Chappelle, E. W., et al., 1992) 

datt=0.0236*[R672/{R550*R708)f795« (Datt, B., 1998) 

Red edge position: (Pu and Gong, 2000) 

max(flrst derivate in red edge ) 

Photochemical reflectance index (PRI) (Gamon, et al., 1992) 

PRI=(R531-R570)/{R531+R570) 

Rdaa=sum(R700-730) section 4-2 

NDWI1240=(R860-R1240)/(R860+R1240) (Chen； et al., 2005, Zarco-Tejada, 
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Figure 3-9. Two kinds of spectral reflectance 

3.2.2.5 Mean spectra of the group and spectra of the individual sample 

When the stable features at the group (class) level are focused, the mean spectra would be 

applied. However, when calculating the average, features of individual would be neglected. To 

suppress uncertainty in this procedure, a pre-test would be set to ensure the data are consistent. 

3.2.2.6 Uncertainties in model applied 

Many models, instant of spectral index, are empirical based on statistic regression. It has lots of 
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NDWI1640={NIR858-SWIR1640)/(NIR858+SWIR1640) 

NDWI2130=(NIR858-SWIR2130)/(NIR858+SWIR2130) 

et al., 2003) 

The two values of the spectral indices were paired. Then the paired sample T-test was done to 

test if there was any significant difference within them. The alpha (significance) was set as 0.01. 

The result showed that all selected spectral indices had no significant difference between the 

original and noised values in strict statistic condition. It revealed that though the black 

background brought uncertainties to the measurement results, these influences were acceptable. 

3.2.2.4 Canopy-level and fine leaf-level spectra 

In this study, the fine leaf-level spectra were applied. Because the real differences between the 

isogenous paddy rice would be very slight. It is easy to be overlaid by external absorption such as 

vapor absorption. It will bring lots of uncertainties to make the study without reliability. The Fine 

leaf-level spectrum is obtained under stable artificial illumination condition, and the atmosphere 

influence could be avoided totally. Figure 9 showed the spectral reflectance of the two levels. 

Illumination condition influence 
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uncertainty itself. Thus, when applying them as indicators of sample growth, it would not be 

reliable. For overcoming this problem, more spectral indices should be assessed and used 

together for cross-validation. 

3.2.2.7 Problems in measurement 

For eliminating uncertainties caused by data collecting, the center of FOV located at the center of 

the middle front of the second leaf counted from the core of paddy rice to the out. And the spot 

of the probe view located at the middle of the leave to suppress misunderstanding caused by 

differences of leave. The principal vein of leaf was vertical to the view line from the fiber. Two 

measurements were taken at one leaf by micro moving along the principal vein. By this 
i 

measurement, the consistency of data collected could be ensured. 
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Chapter 4 Indicators of the foliar chemicals and the sample growth 

Spectral reflectance of vegetation is high correlated with vegetation chemical contents, 

biophysical parameters (Broge, NH, et al., 2001) and even physiological stresses (Blackburn, et al., 

2008). Broge and Leblanc (2001) declared that spectral reflectance in the visible (VIS) bands was 

characterized mainly by chlorophyll pigments and formed special shape such as red edge. Curran 

(1989) listed 44 absorption features in visible and near-Infrared (NIR) wavebands that have been 

related to particular foliar chemical concentrations and could be detected by fine spectrometers 

such as field spectrometer. Thus, it is promising and helpful to take spectral indices as the 



indicators of the foliar chemicals to respond the changes and differences in the samples from the 

stress. These indicators are also used to describe the growth status of the sample. In this chapter, 

spectral Indices indicating the contents of the 8 foliar chemicals were selected to assessed, 

revised or developed for paddy rice, namely chlorophyll a, chlorophyll b, carotenoids, 

anthocyanin, water, nitrogen and lignin. By these spectral indices could be used to parameterize 

the spectral features of transgenic sample which was helpful to assess the sample quantitatively. 

4.1 Foliar photosynthetic pigments estimation 

4.1.1 Introduction 

There are two kinds of models: one is based on physical mechanism such as parameters of edge; 

while the other is based on statistic analysis or half statistic and half physical. These parameters 

are also called spectral index. 

Figure 1 showed the first kind of parameters namely edges. Edges related to photosynthesis 

include red edge, red absorption, blue edge, green peak and yellow edge (figure 1). They cover 

the whole photosynthesis bands, and are comprehensive parameters to indicate photosynthesis 

of leaves. All of them Include parameters of the edge position, the reflectance at the edge and 

area. Edge position, is generally defined as the largest changing rate of the curve at a certain band. 

The reflectance value at the edge position is the reflectance of the edge while the sum of first 

derivative of spectral curve is the area of the edge. The red edge is around 680- 760 nm, while 

the red absorption around 650- 690nm, the yellow edge around 560- 640 nm, the blue edge 

around 490- 530 nm, and the green peak around 510- 560 nm {Filella, et al., 1994, Gitelson, et al., 

1999, Gong, et al., 2002, Horler, et al., 1983). Carter et al. (1992) hypothesized that the increase 

of reflectance in photosynthetic bands may be a result of decreased chlorophyll content. This 

hypothesis had been proved later (Bauerle, et al., 2004, Carter, G. A., et al” 2001). These 

(K, N and P) no matter on Experiment or theoretical analysis {Nagendra, 2001, Stamps, et al. 

1987, Tang, 2004). 
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Figure 4-1-1. Spectra of samples and morphological details of photosynthesis sensitive bands 

There are lots of studies on the relationship of vegetation spectral reflectance edges and the 

vegetation relevant biophysical process. All of these study show that edges are powerful 

indicators to study vegetation when remote sensing approaches are applied to most vegetation 

studies. In this section, the second kinds of parameters were focused to assess their sensitivity in 

a universal criterion based on same data set. Totally 9 parameters about chlorophyll a+b, 8 about 

carotenoids were chosen to be assessed. 

.1.2 Methodology 

•1 Spectral indices developed as indicators of chlorophyll 

Most studies of pigment by remote sensing focused on the relationship between reflectance 

spectral indices and chlorophyll a & b, because chlorophyll is the dominated pigment during 

photosynthesis and easily be detected by remote sensing approaches. 

Chappelle et al. (1992, Datt, B, 1998) found out R675/R700, short for Chapp, was a good indicator 

of chlorophyll a concentration in soybean leaves. This parameter was proved that at low 

chlorophyll concentration, was negative to chlorophyll concentration, while was positive at high 

concentration (Gitelson, AA, et al., 2003). After assessing several models about prediction of 

chlorophyll a+b, Datt(1998) developed new index, short for datt. It'was combined sensitive 

photosynthetic bands reported. Gitelson et al. (2003) showed a new model, short for Git03, the 

basic form of which was (凡 )一 1 一 ( 7 ? 舰 j x ^NiR' and he pointed out that the reciprocal 

reflectance R'̂  during [520, 580nml and [695, 740nm] related closely to the total chlorophyll 
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concentration in leaves of all species and was a very good linear positive correlation to the total 

pigment and a high accuracy (Gitelson, AA, et al., 2003). Chlorophyll Absorption in the 

Reflectance Index (CARI) was first constructed by kirn et al. (1994b). Bannari et al. (2007a) 

reported that it could be used to "reduce the variability of photosynthectically active radiance due 

to the presence of diverse non-photosynthetic materials". Because of so sensitive to the 

background reflectance properties, the modified CARI (mCARI) was developed (Daughtry, CST, et 

al., 2000). This new model introduced the ratio between the reflectance in narrow bands around 

700nm and 670nm aiming to suppress "the combined effect of the underlying soil reflectance and 

the canopy"non-photosunthetic materials" (Bannari, et al., 2007a). Haboudane et al. (2002) 

presented a new CARI index Transformed Chlorophyll Absorption in the Reflectance Index (TCARI). 

They reported that TCARI could minimize the soil background reflectance while was sensitive to 

chlorophyll concentration. Peuelas et al. (1994) pointed out that the Normalized difference 

between dR and dG (EGFN), a kind of derivative analysis indices, was positive linear correlated 

with chl and N content. Triangle Vegetation Index (TVI) was firstly developed by Broge and 

Leblanc (2001). "The index wascalculated as the area of theriangle defined by the green peak, the 

chlorophyll absorption (ninimum, and the NIR shoulder in spectral space. It is based on the fact 

that both chlorophyll absorption causing decrease of red reflectance and leaf tissue abundance 

causing increased NIR reflectance would increase the total are,o of the triangle" (Broge, NH and 
• ^ 

Leblanc, E., 2001). Chlorophyll Absorption Ration Index (CARI2) was defined by kim (1994b). This 

index was based on the idea that the ratio of 550 and 700nm reflectance to be constant at the 

leaf level regardless of the differences in chlorophyll concentrations. 

Table 4-1-1. Spectral Indices developed as indicators of chlorophyll a& b (Bannari, et al” 2007a, Gitelson, AA, et 

al., 2003) * 

Indices Description source . 

Chapp=Chlorophyll aR675/R700 (Chappelle, E. W., et al. ,1992) 

datt=0.0236*[R67^/(R550*R708)f (Datt, B., 1998) 

Git03= (R750-80o)/(R695-74o)-1 (Gitelson, A. A., et al., 2003) 

Chlorophyll Absorption in the Reflectance Index (CARI) 

CARI =(R700-R670)-0.2*(R700-R550) 

(Kim, et al., 1994a) 

• 

V 

Modified CARI (mCARI) 

mCARI =[(R700-R670)-0.2*(R700-R550)]*(R700/R670) 

(Daughtry, C. S. T” et al L, 2 0 0 0 ) . 

Transformed Chlorophyll Absorption in the Reflectance Index (Haboudane, D., et al” 

(TCARI) 

TCARI =3*[(R700-R670)-0.2*(R700-R550)*(R700/R670)] 

2002)• 

\ 

Normalized difference between dR and dG (EDGN) 
« 

(Pe uelas, et al., 1994) 
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EGFN=(Dr-Rg)/(Dr+Rg) 

Dr: max{first derivate in red edge ), Rg: max(first derivate in 

green peak) (related to Chi a+b and Nitrogen content) 

Triangle Vegetation Index (TVI) (Broge, N. H., et al., 2001) 

TVI=0.51 det(AB,AC) | =0.5(120(Rnir-Rgreen)-200(Rred-Rgreen)) 

A=(550nm,Rgreen), B=(670nm,Rred), C=(750nm,Rnir) 

Chlorophyll Absorption Ration Index (CARI2) (Broge, N. H. and Leblanc, E.. 

CARI2=CAR(R700/R670), CAR= | (a*670+R670+b) |/(3"2+1)六0.5 2001) 

a=(R700-R500)/150, b=R550-(a*550) 

7̂50-800= Average(Sum{Reflectance(750:800))); 

RNIR=Average(Sum(Reflectance(700:750))); 

Rred=Average(Sum(Reflectance(650:690))), the red absorption feature; 

Rgreen=Average(Sum(Reflectance(5l0:560))) the green peak feature. 

So do the other abbreviations in the follow tables. 

4.1.2.2 Spectral indices developed as indicators of carotenoids 

Structure Insensitive Pigment Index (SIPI) is an empirical index to estimate the ratio of 

carotenoids to chl a which could be best described using a logarithmic model (Bannari, et al., 

2007a, Blackburn, GA, 1998, Penuelas, et al., 1995). However, SIPI lacks sensitivity when the ratio 

of carotenoids to chia s low (Bannari, et al” 2007a). To remove the chlorophyll contribution from 

Inverse reflectance in the green edge, Carotenoids Reflectance Index (CRI) was developed and 

this model showed a very high R̂  in regression equation (Gitelson, AA, et al., 2002). CRI550 

represents the reciprocal reflectance would be affected by both Car and Chl at 550, while CRI700 

is the one only affected by Chl. Based on CRI, Gitelson (2006) developed a new three-band model, 

Modified CRI (mCRI) to estimate carotenoids and anthocyanin contents in high plant leaves. Datt 

developed an empirical spectral index, datt一car, which was linear positive related to total 

carotenoids content (Datt, B, 1998). Photochemical reflectance index (PRI) was applied to 

estimate to photosynthetic light use efficiency and was related to epoxidation state of the 

xanthophylls cycle pigments such as carotenoids. Chlorophyll Absorption Ration Index (CARI2) 

could be used as indicator of carotenoids. 

Table 4-1-2. Spectral indices developed as indicators of carotenoids (Ustin, et al., 2009) 

Indices Description Source 

Structure Insensitive Pigment Index (SIPI) (Penuelas, et al., 1995, Sims, D. 

SIPI =(R800-R445)/{R800-R680) A., et al., 2002) 
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Carotenoid Reflectance Index (CRI) 

C R I 5 5 0 = R ' ^ i o - R " ^ 5 O 

CRI700=R-^ io-R ' '7OO 

Modified CRI (mCRI) 

mCRIgreen=(R"^5io-52o-R'W57o)xRnir 

mCRIredge=(R '^ io 520 -R'^9o-7io)^Rnir 

(Gitelson, A. A., et al., 2002) 

(Gitelson, A. A., et al., 2006) 

datt_car=0.0049*[R67 奶 R550xR708)r (Datt, B., 1998) 

Photochemical reflectance index (PRI) 

PRI=(R531-R570)/(R531+R570) 

(Gamon,et al., 1992) 

Chlorophyll Absorption Ration Index 

CARI2=CAR(R700/R670), CAR= | (a*670+R670+b) | /(3八2+1广0.5 

a=(R700-R500)/150, b=R550-(a*550) 

(Broge, NH and Leblanc, E., 2001) 

4.1.2.3 Spectral indices developed as indicators of anthocyanin 

Anthocyanin Reflectance Index (ARI) was developed by Gitelson (2001) and then the author gave 

a modified form based on the idea of the three-band model (Gitelson, AA, et al., 2006). 

Red:Green Ratio (RGR) was related to the ratio of anthocyanin to chlorophyll(Sims, DA and 

Gamon, JA, 2002), And Gamon (1999) also pointed out that this index is highly linear related to 

the total anthocyanin content and in the index, "red" refers to bands in [600, 699nm] while 

"green" is in [500, 599]. 

4.1.2.4 Spectral reflectance data and in situ data 

In this section, the data set of Leaf Optical Properties Experiment 93 (Lopex93) was applied. The 

data set includes spectral and relevant biochemical data of 70 leaf samples representative of 

more than 50 species. Spectral data were obtained by a 19 double-beam Perkin Elmer Lambda 

spectrophotometer over the 400-2500nm wavelength with an interval of Inm The spectral 

resolution were 1 to 2nm in 400-1000nm and 4 to 5 nm in 1000-2500nm. The properties of 

spectral reflectance data are much closed to the data obtained by ASD spectrometer. For each 
V 

sample, 5 rpeasurements would be conducted in different area of the leaf to overcome the leaf to 

leaf variability. 

Meanwhile reflectance data of transgenic paddy rice were used too. These data were obtained by 

ASD spectrome'ter with the contact probe and leaf-clip (Details explained in Chapter 3). The 

samples of paddy rice were in reviving stage. Biological contents (photosynthetic pigments) 

measurements were measured by spectrophotometer. The samples were first put in the solution 
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1:1 (alcohol: acetone) for 24 hours. And then spectral absorption at specific bands was obtained 

for calculating contents of pigments by the equations (Li, et al., 2005, LICHTENTHALER, 1987) as 

follow: 

Chlorophyll a: chl a=11.24*A661.6-2.04*A644.8 (4-1-1) 

Chlorophyll b: chl b=20.13*A644.8-4.19*A661.6 (4-1-2) 

Total carotenoids: car=(1000*A470-1.9*chl a-63.14*chl b)/2l4 (4-1-3) 

4.1.2.5 Statistical analysis model 

In this section, linear statistical model would be chosen to describe the relationship between 

spectral features and foliar chemicals. The dependent variable is the measured contents of chl a, 

chl b, chl a+b and car, while the independent variable is spectral index. The basic model is given 

by the following equation (LI, 2006): 

Where �A\0’cr�）， i=l ,2, . . . ,n 

The errors e are assumed normally distributed with mean zero and variance a ^. The linear fit 

model is as follow: 

. � = f 3 � + l 3 � X (4-1-5) 

Thus, the linear regression equation could be formed as: 

2 2 

= (4-1-6) 

According to The least square estimation, the estimated values of ^ ^ , P � a r e ones which 

could minimize the results of the equation 7, that is: 

= X , ) (4 -1-7) 

mm 

So the coefficients ^ . P � w o u l d be obtained. 

n f - Y - \ 
. _ U X r X l Y r Y 

P广 Y-kX (4-1-8) = — 2 ~ ~ - (4-1-9) 

‘ ‘ t t x r x ^ 
/=i \ , 

、 一 
Where y and are the mean values of variable of Y and X. 

Two parameters were calculated to evaluate the regression model, one is RMSE which "indicates 
� 40 



the magnitude of the average error produced by a model", and the other is "the coefficient of 

determination (R2) to evaluate the strength of linear relationship between the observed and 

predicted valises" (Bannari, et al., 2007a). 

RMSE = 
Z Y-Y 

n 
(4-1-10) R ‘ 

B v . - r 
(=1 V . 
n / - 、 

Z YrY 
(4-1-11) 

Also curve estimation approaches would be applied as reference for specific spectral index. The 

details of these approaches show in the table 3. 

Table 4-1-3. Regression model applied 

Model Regression equation 

linear 

Quadratic 

X = + /人 X, 

Logarithmic = P,+P,ln{x) 

Exponential 

Power 

少’ 二 Pu e 

产 丨 ) 

4.1.3 Results and discussion 

.1.3.1 Assessment of correlation of spectral indices with photosynthetic pigments 

In this study, six statistic parameters were selected to indicate the relationships. Column "Pearson 

correlation" represents the correlation coefficient of Pearson correlation statistics to describe the 

strength of correlation. Pearson coefficients range from -1 to 1. Large absolute value indicates 

stronger relationships of the two variables. The first line of "Fit equation" column gives the linear 

regression equation. "R^'Vepresents the proportion of variance in the dependent variable 

explained by the regression model. Small value means the model does not fit the data well. "Std. 

Error of the Estimate" shows the predicted error caused by the model. If R̂  were two small； less 

than 0.5 means the linear regression is not fit the data. Then the second line of "Fit equation" 

would show other regression model results and the same as "/?^"and "Std. Error of the Estimate" 

(Std. Error) column. The results of estimated residual were also assessed and the standard 

deviation of it was given. Also Durbin-Watson test was used to test whether the residuals are 



auto-correlated. It "ranges in value from 0 to 4. A value near 2 indicates non-autocorrelation, a 

value toward 0 indicates positive autocorrelation, and a value toward 4 indicates negative 

autocorrelation."^^ If the residuals are auto-correlated, that implies that regress equation do not 

explain the regulation in the variable enough or the regression model is not fit to the data. These 

three parameters were used to assess the fit equation. 

The ambiguity of correlation between spectral indices mentioned previously and contents of 

photosynthetic pigments were found. Thus, in this study, correlations between contents of 

chlorophyll a (chl a), chlorophyll b (chl b), chlorophyll a+b (chl a+b) and carotenoids and spectral 

indices were assessed respectively. Table 4 showed the regression results of the content of 

chlorophyll a and spectral indices. The content of chlorophyll a was dependent variable while 

spectral index were an independent one. All spectral indices showed correlations with chlorophyll 

a； with the least Pearson correlation coefficient was larger than 0.6. Spectral index datt showed 

the largest relationship with chl a up to 0.789. While the R̂  of linear fit equation was the largest 

one, the Std. Error of the Estimate and standard deviation of residual were the least one. 

These parameters proved that the datt were the best index in the selected items to indicate the 

contents of chlorophyll a in vegetation leaf. Chapp also showed good performance. From the 

results, linear regression was found that it could not explain the relationship between mCARI and 

chl a with R̂  in 0.454. However, when power model was applied the R̂  was up to the largest, 

0.626. So mCARI would also show good performance when power model applied. The worst 

performances were shown by Git03 and EFGN though these two indices also had large Pearson 

correlation coefficients. The fact that Durbin-Watson test result {1.846, 1.626)of the fit 

equation of the two were very near to 2 means lower performance would be not because of 

the model. A possible reason was the smaller data set. When more data joined the 

regression, the results of correlation analysis may be acceptable. 

Table 5 showed the results of correlation between spectral indices and the content of chlorophyll 

b. The content of chlorophyll b was a dependent variable while spectral index was an 

independent one. The results showed that spectral indices had a relative good correlation with 

chlorophyll b. Except for Git03, mCARI and CARI2, the Pearson correlation coefficient of the 

others were more than 0.6, and the lowest value was also up to 0.513(Git03). However, except 

datt (0.577), the R̂  of linear regression were not good, lower than 0.5. Spectral index datt 

showed good performance again in the mode estimated chlorophyll b with the least Std. Error of 

the Estimate and Std. deviation of residual. Meanwhile, the result of Durbin-Watson test of datt 

was also the least that meant the regression model of datt and chl b could be improved to be 

much better. When other models were applied, the other spectral indices, chap, CARI, mCARI, 

SPSS 13.0 for Windows, help- topics: "Durbin-Watson Significance Tables' 



TCARI and TVI performance of estimation for chl b were improved. Git03 also showed the worst 

performance. EFGN and CARI were also not suitable to built model for Chl b prediction However, 

the Pearson correlation coefficient of CARI2 was not the least and with large Durbin-Watson test 

near to 2; it implied the bad performance may be caused by lack of enough data. 

Table 5 showed the results of correlation between spectral indices and the content of chlorophyll 

a+b. The content of chlorophyll a+b was dependent variable while spectral index was 

independent one. To be noted, the chlorophyll a+b could not be calculated directly because of 

data missing, thus here the content of chlorophyll a+b was replaced by the sum of the content of 

chl a+the content of chl b approximately (Zhang, 1985). Like correlation with chlorophyll a and 

b, all spectral indices had a good Pearson correlation coefficient. The mode estimated chlorophyll 

a+b built with datt were the best one with the least Std. Error of the Estimate and Std. deviation 

of residual. The model built with Chapp was also good. When non-linear regression models were 

applied, the performance of mCARI, TVI and CARI2 were improved. Git03 also had not good 

performance and then was EGFN. Especially for Git03, all regression models for chl a, chl b and 

chl a+b, had a large Durbin-Watson test results near to 2. Besides the influence contributed by 

small data set, it was also an important reason. From these results, it could be found that the 

complicated spectral indices maybe could not enhance the performance of the index to predict 

chlorophyll. Complicated index took account of more factors however it limited the applicable the 

index. 

Table 7 showed the results of correlation between spectral indices and the content of carotenoids. 

The content of carotenoids was a dependent variable while spectral index was an independent 

one. CARI500, CARI700, mCARIgreen, mCARIred and PRI have good Pearson correlation 

coefficient all more than 0.6, while SIPI, Datt_car and CAR12 were very lower. The 

Durbin-Watson tests results of these three were large, near to 2. It implied there was no or very 

slight relationship with carotenoids and the indices with data set used. Table 7 showed the results 

of correlation between spectral indices and the ratio of the content of carotenoids to the content 

of chlorophyll a. The results showed there was almost no relationship between the two variables. 
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Figure 4-1-2. Correlation between spectral indices as chlorophyll.indlcators 

Table 9 and 10 listed Pearson correlation coefficients between selected spectral indices. As 

indicators of the content of chlorophyll, these indices were highly related each other except git03 

'and TVI. There were 9 the correlation coefficients which was more than 0.9, namely coefficients 

of datt and chapp, datt and CARI, datt and EGFN, mCARI and CARI. mCARI and TCARI, mCARI and 

CARii, CARI and TCARI, CARI and CARI2, and CARI2 and TCARI. CARI, mCARI and TCARI were the 

model built based on the same idea, and TCAI and mCARI were revised version of CARI. Thus, 

they were highly correlated, and in the test data set； these three model could be replaced each 
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4.1.3.2 Correlation between spectral indices � 

i 

The spectral Indices were applied to describe the relationship between vegetation spectral 
- \ 

reflectance properties and its photosynthetic pigment contents" Thus, when they describe) the 

same pigment content, they should be correlated to each other. The intensity of rel^ttohship 

between spectral Indices could be used as an indicator of consistency and reliability within the 

indices. And it also showed an indirect transfer of relationship between pigments content and 

other spectral indices. 
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other. However, CARI2 was a totally diff model, compared with cari, mcari and tacri, it was most 

strongly related with the follow ones, more than 0.97. It revealed as the indicators of consistency 

and reliability of chlorophyll content, they were highly consistent and reliable. Datt still had good 

relationship with other indices. It coincided with correlation analysis about spectral indices with 

the content of chlorophyll in table 4-6. 

Git03 and TVI showed no relationship, the correlation coefficient was only -0.330. Also, figure2 

showed TVI with EFGN, chap and datt were also clustered as much as it with others. TVI was a 

complicated index (table 1). More factors were considered when built the model for detailed 

description. However, it made the model over-sensitive and narrows its application scope. Figure 

2 also showed what kind of relationships the indices had, positive, negative, linear or exponential 

regression, etc. 

It was much 

indicators. In 

proved, it coi 

datt一car and CARI2. Though, the previous analysis (table 8 and 9) implied that same indices had 

no relationships with the content of carotenoids and the ratio of carotenoids/ chl a, there were 
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Figure 4-1-3. Correlation between spectral indices and carotenoids indicators 

more complex about the relationship between spectral indices as carotenoids 

figures, most indices showed no relationship. Because PRI was an index widely 

jld be taken as reference. PRI was strongly related with CAR500, CARI700, mCRIred, 
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some kind of relationships, more complicated, between them. When we do not have more 

accurate data or data missed, they could be still as indicators for carotenoids in some sensing. 

The poorest spectral index as an indicator for carotenoids was SIPI (table 7, 8 and 10). Figure 3 

showed it almost had no relationships with others. By censoring the data of SIPI, the factor that 

the values of SIPI were very clustered. It implied SIPI would be not very sensitive to the target 

content. 

• 

4.1.3.3 Assessment of spectral index sensitivity 

Index Sensitivity is also an important feature when the index was applied to predict or distinguish 

different level of target content. There are kinds of the responses encountered, one is to the 

target changes, and the other is to noise. Here the former is the one of interested. A good 

sensitive index could amplify the differences or changes of target content, namely in a 

scatter-plot, the normalized values of the index to their counterparts, the plot points should be 

discrete enough in a certain correlation-ship. This characteristic shows that the index could 

respond certain changes sensitively. When assessing the sensitivity of a spectral index, the mean, 

the standard deviation and the coefficient of variation (CV) of the index could be applied to 
1R 

describe the dispersion of the sample data. Coefficient of variation could be defined as the 

ratio of the mean to the standard deviation. 

CV = — (4-1-12) 

Where (T , j j are mean and standard deviation of the data, respectively. 

For comparison between parameters, firstly the data should be normalized (standardize) to 

project them to a universal space without unit. 

、， ， . (index - min) 
Normalization = — ( 4 - 1 - 1 3 ) ^ 

(max- min) 

Table 4-1-11. Sensitivity of spectral indices (based on normalized data) 

Item mean Std. deviation CV 

Chapp 0.5586 0.2398 0.4292 

datt 0.467 0.2436 0.5216 

Git03 0.1998 0.1967 0 . 9 8 4 S 

CARI 0.2889 0.2109 0.73 

mCARI 0.3036 0.2221 0 . 7 3 J 5 

http://en.wikipedia.cuR/wiki/Coefficient of variation 
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TCARI 0.3469 0.2055 0.5925 

EGFN 0.2306 0.1985 0.861 

TVI 0.5812 0.2069 0.3559 

CARI2 0.5092 0.2152 0.4226 

SIPI 0.8059 0.2089 0.2592 

CRI550 0.5559 0.300] 0.5399 

CRI700 0.6134 0.2718 0.4431 

mCRIgreen 0.5819 03006 0.5166 

CRIred 0.58 0.2637 0.4546 

datt_car 0.5837 0.2537 0.4347 

PRI 0.3698 0.2671 0.7223 

In the table 11, red meant largest three items while black with shading meant the lowest three. 

CARI550, mCRIgreen and CRIred had largest standard deviations which implied they were more 

dispersing than others. Git03, TCARI and EGFN had smallest standard deviation. Low dispersion 

meant lower sensitive. CV is other parameter which could be applied to describe discreteness of 

data. The larger values meant lower discreteness of data. From the table, git03 and EGFN had 

very large cv. Results of Standard deviation and CV was consistent with these two indices. 

However, CV also would become not reliable. Taking SIPI as an example, it had lowest CV which 

implied it was dispersing. However, it was much more clustered than others. Larger mean value 

made CV of SIPI was lowest. Thus, CV was just for reference. 

4.1.4 Conclusion 

In this section, 

assessed. The 9 spectral indices are good related to chlorophyll a and a+b, also most of them can 

be as indicators as chlorophyll b. Chapp and datt are the best indicators. For caretonoids, the 

spectral indices are not as good as indicators of chlorophyll. However, most of them had a good 

relationship to PRI which was widely accepted. When we do not have more accurate data or data 

missed, they could be still as indicators for carotenoids. 

An e什icient index should be dispersing enough to ensure sensitivity to aimed content or changes. 

Through analysis, complicated model was found to be not the best one, a good model as an 

indicator should be simple while have enough resistance to noise. However, most spectral indices 

are based on several bands. Thus, in section 4.2 and 4.3, new models should be developed to 

overcome these flaws. 
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4.2 New spectral indices as indicators of the Photosynthetic pigments of paddy rice 

Photosynthesis is one of most important biochemical processes for plants. The chlorophyll 

pigments which "are integrally related to the physiological function of leaves" (Sims, DA and 

Gamon, JA, 2002) are "essential in the process of photosynthesis"{Blackburn and Ferwerda, 2008) 

and they are "of tremendous significance in the biosphere" and "necessary for photosynthesis" 

(Blackburn, GA, 2007). Chlorophylls are the most important pigments from a physiological 

perspective which is related to the amount of solar radiation and total leaf nitrogen and provides 

valuable information about physiological status of plants (Gitelson, AA, et al., 2003). By censoring 

of chlorophyll, insights into plant-environment interactions could be obtained (Richardson, et al., 

2002). Carotenoids are also important pigments which "composed of carotenes and xanthophylls 

which can absorb incident radiation and contribute energy to photosynthesis". Thus some 

scholars acclaimed "chemical concentrations of foliage are important indicators of ecosystem 

processes"(Huang, et al., 2004) and important indicators of vegetation physiological stresses, leaf 

development, senescence and plant nutrient status etc(Blackburn and Ferwerda, 2008). 

Remote sensing estimation of photosynthetic pigments is promising because these pigments each 

have different spectral absorption features (Bannari, et al., 2007a). Based on this idea, many 

spectral indices or model had been developed such as CARI, TVI, PRI, and CRI etc. However, as 

mentioned in the section 4-1, these spectral indicators are not very ideal, for instant some are 

individual-band-based (in narrow spectral bands) thus are sensitive to noise. "To provide 

sufficient sensitivity to o small variation of chlorophyll, a broad spectral range is 

required"(G\\.e\sor\, AA, et al., 2003). And most spectral indices were developed based on remote 

sensing images of which data are seriously polluted by external factors (e.g. water vapor and 

aerosol absorption) thus they are not sensitive or suitable applied directly to the data acquired by 

ground-based fine-resolution and Signal-to-noise of the equipment (e.g. ASD Spectrometer). 

Meanwhile, in this study, spectral indices would be applied as sensitive indicators to monitor 

sample growth and help to sample and outlier screening, thus the spectral index should be 

reliable and specific. Also, in the study, all spectral data were acquired by ground-based fine 

spectrometer therefore it was much more necessary to develop new spectral index as pigments 

indicators. 

4.2.1 Pigment absorption 

Figurel showed photosynthetic pigments absorption position. Chlorophyll pigments have a 

strong absorption during 400- 700nm. At green band, there is a strong reflected peak, thus plant 

looks green. In the 550- 680nm (red bands), there is very strong spectral absorption where 

absorption rate is almost up to 95%. Because of plant leaf special internal structure, in infrared 

red band (after 680nm approximately), reflected rate has increased rapidly. It is the most 
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Chlorophyll 

^ ^ ^ 600 - ^ ^ ^ m i m 

Wavelength of light (nm) 

Figure 4-2-1. Typical photosynthetically active radiation (PAR) action spectrum, shown beside absorption 

spectra for chlorophyll a, chlorophyll b, and carotenoids" 

In this section, the data set of Leaf Optical Properties Experiment 93 (Lopex93) and the spectral 

reflectance data of paddy rice acquired were applied. Reflectance data were obtained by ASD 

hUp://www.uic.edu/classes/bios/bioslQ0/lecturesf04ani/lectlQ.hlin 
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significant and unique characteristic of vegetation. Chlorophyll a mainly has two reflected peak 

one is located at 400-500nm, the other is in 650-700nm. The former has stronger reflected rate 

than the latter. However, the former reflected peak of chlorophyll overlaps with the one of 

chlorophyll b and carotenoids. Near the second position, thought absorption of chlorophyll a still 

overlaps with It of chlorophyll b, the chlorophyll a is the primary one and more strong than 

chlorophyll b's. For chlorophyll b and carotenoids, the absorption features in 400-580 could be 

chosen for prediction of them. However, in this range, different absorptions of pigments overlap 

with each other complicatedly, thus the results of estimation of chlorophyll b and carotenoids 

would not be as accurate as the one of chlorophyll a. Chappelle et al.(1992) applied 675nm and 

700nm to estimate chlorophyll. Gitelson et al. (1996) found the ratio of reflectance at 750 nm to 

700 nm (R750/R700) was directly proportional to chlorophyll concentration. Datt (Datt, B., 1998) 

concluded that theSSO, 672 and 708nm were the best bands of indicator of chlorophyll a, 

chlorophyll a+ b and total carotenoids. Based on these reported bands, many spectral indices 

have been developed (Blackburn, GA, 1999, Daughtry, C, S. T., et al., 2000, Gamon, et al., 1992, 

Gitelson, AA, et al., 2003, Gitelson, AA, et al., 2006). Therefore, generally empirical models for 

estimation of chlorophyll choose band around 500nm and 700nm (Sims, DA and Gamon, JA, 

2002). 
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spectrometer with the contact probe and leaf-clip. The samples of paddy rice were in reviving 

stage. 

4.2.2 New spectral indices as indicators of chlorophyll pigments 

4.2.2.1 New spectral index as indicators of chlorophyll pigments 

The previous spectral indices were based on individual band thus were sensitive to noise. 

Gitelson et al. (2003),applying the average of reflectance from 520 to 550 nm and 695 to 705 nm, 

developed a reciprocal reflectance model which was related closely to the total chlorophyll 

content in leaf. Another index reported in the same reference used the average of reflectance 

from 695 to 740 nm and from 750 to 800nm. The general form of this model was given 

(尺丄 1 - ‘ J- It is a kind of idea to reduce noise; however, essentially it is still based 

on narrow spectral bands, when noise was suppressed, useful information would be suppressed. 

Meanwhile sensitivity of index would be influenced too. Thus, in this section, a new kind of 

indices based on area around by the axis and spectral reflectance curve will be developed. 

—Low Chlorophyll 
—Medium Chlorophyll 
—High Chlorophyll 

600 615 630 645 660 675 690 705 720 735 750 765 7^0 795 
Wavelength (nm) 

Figure 4-2-2. Red edge shift 

"Red shift is due to chlorophyll concentration change. High chlorophyll increases absorption in the 

red region and pushes the red edge to longer wavelengths"^^. (Red edge area was marked by red 

line on the original picture.) 

Red edge is a shift of vegetation reflectance from Red bands to Near Infrared bands. It was proved 

widely as a unique spectral feature of vegetation which was highly related to chlorophyll content 

in leaf. In the figure2, in the red edge range from 670 to 780nm (Clevers, et al., 2004), when 

chlorophyll concentration decreases, the red edge moved to short wavelength, the area of red 

http;//www.seos-pioiect.ou/modules/ap.riculluie/ciRiiLulture cOl.s02.html 
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edge increased dramatically. It is able to reduce noise and responds the changes of chlorophyll 

sensitive. Thus, the area around by red edge would be an ideal parameter to build the prediction 

model of chlorophyll. 

Red edge position (REP) is generally defined as the largest changing rate (the inflection point) of 

spectral reflectance curve at red-NIR slop (Clev/ers, et al., 2004, Dawson, et al., 1998), namely, the 

band (position) where the maximum of the first derivative of the original curve at the bands is. 

The REP can be studied by plotting t//? / d X , as a function of 入.Equation 1 defines REP with 

lA-step. It could be defined with 4入-steps. Step in derivate equation controls effects of data 

smooth. The larger it is, the smoother the derivative curve is. 
/ \ 

/ • I 

(4-2-1) 
DL 2AA 

Previous research work defined the area of the red edge (RDa) as the sum of first derivative of 

spectrum in the red edge (equation 2) and found RDa highly related with chlorophyll (Filelia and 

Penuelas, 1994). 

Rda= Y^^imnUrniciVj (4-2-2) 

b80-780m») 

According to the definition of Filelia et al., RDa is the sum of gradients. In this section the area of 

red edge (RDaa) was redefined as sum of reflectance in the red edge directly as equation 3. 
Rclaa = YJ、彻⑷(4-2-3) 

680-780/,," 

Plant leaf has a unique characteristic in red and near infared red spectral wavelength. 

Photosynthetic pigments have strong absorption in red range and even no absortpion in the near 

infared range. Therefore some researchers proved thay to take non-sensitive bands as reference, 

the new regresson model could be calibrated and noise could be spuressed. Previous studies 

found reflectance at 445 (R445, the same below) nm was constant until total chlorophyll content 

dropped less than 4% of maximal chlorophyll content and R445 would be good reference(Sims, 

DA and Gamon, JA, 2002). The ratio of R550 and R700nm was constant at the level regardless of 

the differences between chlorophyll concentrations (Kim, et al., 1994b). 940nm would be 

another reference band to build spectral index for chlorophyll estimation. Hoel et al. (1998) 

pointed out that at 940nm, chlorophyll had no absorption. The chlorophyll meter(SPAD 502) is 

just bulled based on this idea. 

Thus, these three band regions were chosen to be constant to chlorophyll. For matching with 

Rdaa and resistance to noise, the reference indices were extended from a point band to a range 

of bands. 

Therefore, new indices for chlorophyll prediction would be defined spectral area index of Ind as 
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following: 

lndl=Rdaa/ (R440-450) (4-2-4) 

lnd2=Rdaa/ (R540-560/R690 710) (4-2-5) 

lnd3=Rdaa/(R93o.950) (4-2-6) 

For comparison, the index of Inda in which Rdaa was replaced by Rda were calculated too and 

marked as Indal, Inda2 and Inda3. 

Analyzing the red edge shift in figure 2, the amplitude would be not very big. Generally the 

amplitude of red shift ranges from several nanometers to decades nanometers. Therefore, when 

calculating the area of red edge inputting the whole reflectance data with edges, the sensitivity of 

the area responding to change of chlorophyll would be reduced seriously. In order to overcome it, 

revised area indices were proposal in this section based on the index of Ind. 

Generally, the red edge position locates in the range of [700-730]. It indicates that the spectral 
� 

responses in this range to chlorophyll changes, if any, are sharply, and the area of this range' 

contributes most to responses of the area in whole the edge responding to chlorophyll. Therefore, 

by adjusting the scope of the edge for calculating the area, the sensitivity of the area index 

responding to chlorophyll could be controlled. Thus, the spectral area indices of Ind were 

redefined as follow: 

lndl=Rdaa7(R435-455) (4-2-7) 

lnd2=RdaaV (R540-560/R690-710) (4-2-8) 

lnd3=Rdaa7(R93o-9so) (4-2-9) 

Where loo-nonm . 

For easy to understand, the symbols of these indices were assigned as: 

The indices defined in the original red edge [680, 780nm]: 

Rcla_o was the sum of first derivate spectral reflectance in red edge; 

Indal一o, lnda2_o and lnda3_o were the ones based on Rda_o. 

Rdaa一o represents the sum of spectral reflectance in red edge. 

The incices defined in the range of (700, 730nm]: 

Rda was the sum of first derivate spectral reflectance in [700, 730nm] 

Rdaa was the sum of spectral reflectance in [700, 730nm� 

Indl, Ind2 and Ind3 were the ones based on Rdaa. 

4.2.2.2 Results and discussion 

The indices defined with original input data were marked as lncl_o. And in this section spectral 

index of datt was also obtained for comparison. In the section 4.1, this index had been proved 
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superior to be indicator as chlorophyll content. 
• • 

4.2.2.2.1 Sensitivity analysis for reference indices to chlorophly concentrantion 

Figure 3 showed the relationship between the content of chlorophyll and the reference indices. 

These three reference showed no relationship with chlorophyll namely, the reference indices 

were non-sensitive to chlorophyll. 
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Figure 4-2-3. Sensitivity analysis for reference indices to chlorophly concentrantion 

4.2.2.2.2 Relationship between new indices and chlorophyll 

Table 1, 2 and 3 showed the results of correlation analysis between indices and chlorophyll. Ind2, 

Ind3, lnd3_o, Rdaa and Rdaa_o were high related to the content of chlorophyll a, chlorophyll b 

and chlorophyll a+b. Because of data missing, here chlorophyll a+b were replaced by chlorophyll 

a + chlorophyll b (Zhang, 1985). For prediction of chl a, the best indicator was Ind2, the 

correlation coefficient was up to -0.81. The result of IncB and Rdaa was similar. That was because 

the reference of Ind3 was concentrated around 1, thus IncB was almost equal to Rdaa 

approximately. The same results for IndS and Rdaa were shown when they were used to estimate 

chl b and chl a+b. Applying the redefined area as indicators of chlorophyll was more efficient, 

more sensitive and stronger related to chlorophyll than using the orignal one. Taking Rdaa divided 

by the reference index was kind of re-projection to make the results between different samples to 

compare each other directly. However, the reference index itself would be with random or 

systematic noise, thus the correlation coefficients of Ind and chlorophyll were smaller than them 

of Rdaa and chlorophyll. Also, the stability of the reference, e.g. reasonability of its construction, 

would affect the result too. In some sensing, it made new index complicated and brought risk. 

However, if more than one kind species sample were analyzed, this re-projection is necessary. 

Meanwhile, since Rdaa divided reference index, the relationship between ind_o and it had been 

strengthened. For example, when estimating chl a, the coefficient of Rdaa_o and Chl a was just 

0.574. By re-projected with the reference index (R930-950), it was enhanced -0.733, much highly 

related than the original Rdaa_o. It revealed that the reference index also could help to reduce 

and suppress the influence from non-related variables. 

The results obtained by the new defined indices were highly consistent with the one from datt. 

However, the new indices contain more physical mean and could be easily explained and 

understood. 
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4.2.2.2.3 Analysis of sensitivity to for new spectral indices 

In this section, new spectral indices were designed based on the idea that the area was able to 

reduce and suppress noises better than the one based a narrow bands (individual band). For 

further evaluation, the noise was added to the original spectral reflectance. The spectral 

reflectance data were added to random noises which were generated by the function of "randn" 

under Matlab software. They fitted to normal distribution of which mean and standard deviation 

was 0 and 1 respectively. The figure 4 showed the details of the curves. Table 4 gave the 

regression analysis results. Here "Rdao "and "datt" were chosen as examples. Rdaa was the index 

based on the area of the curve while datt was based narrow bands. The correlation coefficients of 

Rdaa and chl a had very slight changes for different noise level. For datt, when noises added, the 

correlation coefficients decrease obviously. The R2 of regression equation of datt also dropped 

seriously, while Rdaa' almost had no changes. These statistic results revealed the index based on 

the area could help to reduce and suppress noise well. 

� . . � “ noise jOk -
— : : : : : . 、 ] 

I ~ _ : 乂： ； " ^ S s s ^ J 

• ongnj 
noise 
noise 

750 1000 1250 1500 1750 2000 2250 2500 
Wavelength 

0.7 

0.6 • 

0.5 

0.4 
750 875 Wavelength 1000 1125 

Figure 4-2-4. Spectral reflectance curve mixed with different normally distributed random numbers. 

The black curve was the orignal data, the red curve was added 0.001*random noises and the blue 

one was add 0.0001*random noises. 
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4.2.2.2.4 Analysis of correlation within spectral indices and their sensitivity 

Table 4-2-5. Pearson correlations analysis between new spectral indices 

item Ind2 Ind3 lnda3_o Rdaa Rdaa_0 datt 

Ind2 1 

Ind3 

lnda3_o n .989(**) ' i " - -

Rdaa .873(**) ：一函“） 1 

Rclaa_0 n T s i s r * ) .891(“） 1 

datt -.712(* *) --•863(“） 

** Correlation is significant at the 0.01 level (2-tailed). 

In table 5, spectral reference could help to reduce and suppress the influence from non-related 

variables. Ind3 and lnda3_o were built with same spectral reference but with different variables 

of the area. However, by re-projection the non-sensitive proportion spectral reflectance in 

Rdaa_o were suppressed, and therefore the coefficient increased to 0 989. Rdaa_o was less 

sensitive to chlorophyll. Taking datt as a reference, it was found the correlation coefficient of it 

and datt was only 0.620 while the one with Rdaa was up to 0.839. The correlation coefficient of 

Incl2 and Rdaa was up to 0.947. It revealed the spectral reference of (R540-S60/R690-710) was more 

stable than the others. The correlation coefficient of (datt, Rdaa) and the coefficient of (datt, Ind3) 

was very close to each other. The correlation coefficient of (Rdaa—0, lnda3_o) was less than 0.6 

while the one of (Rdaa, lnda3_o) was more than 0.8, namely lnda3_o was closer to Rdaa. These 

results indicated it was reasonable to choose the range of [700, 730nm] as the red edge position 

location which was sensitive and strong related to chlorophyll. 

4.2.3 New spectral index as indicator of carotenoids 

4.2.3.1 Basic assumption 

By reviewing the pattern of carotenoids absorption, it could be found that the features of 

carotenoids absorption overlapped with the features of chlorophyll's (in figure 1) in wavelength 

ranging from 450 to 550 nm approximately. For estimating properties of carotenoids accurately, 

firstly the effects from chlorophyll absorption should be suppressed or reduced. 

In this section； an assumption of absorption in [450, 550nm] had been proposed, that is: 

The spectral reflectance features in this range are comprehensive effects of chlorophyll (chl) and 

carotenoids (car) absorption. And the effects of the two kinds of pigments are multiplicative. Thus, 

the spectral reflectance in this range could be expressed by the equation 10: 
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r m ) = p i l “ 均 * o , (c,以r) + € (4-2-10) 

Where R is a comprehensive spectral response, i is the wavelength, {chl), (J)^ {car) are 

spectral response to chlorophyll and carotenoids respectively, p and Z, are the coefficient and 

error of function. Therefore, spectral response of carotenoids would be given as follow: 

R (A) 
^ (D (car) = a + e (4-2-11) 

QMhi) 

Where a and e are the coefficient and error of function. 

4.2.3.2 New spectral index as indicator of carotenoids 

Based on the equation of 11, two input parameters .should be obtained first, namely sensitive 

bands for carotenoids in [450, 550nm� and features of spectral reflectance to chlorophyll 

absorption. 

4.2.3.2.1 Sensitive bands for carotenoids 

To carotenoids absorption pattern, the sensitive bands range was located during [450, 550nm]. 

Considering the resolution (3nm @ASD spectrometer) and the characteristic of signal-to-noise 

(SN) of equipment, the step was set as 10 nm. [450-459, 460-469... 560-569, 570-579]. 

"450-459"represents the sum of spectral reflectance from 450nm to 459 nm, the same as others. 

Backward of linear regression approach had been applied to finish sensitive bands selected task. 

The result of regression analysis showed the following bands were relatively sensitive to 

carotenoids: R530_539, R540_549. R550_559, R520_529, R560_569 and R570_579. This result 

coincided with the previous study (Barton, et al., 2001, Gamon, et al., 1997). In fact, Photochemical 

Reflectance Index (PRI) was just defined with reflectance at 531 and 570 nm. In this section. R530_539 

and R560_569 were chosen as input variables. 

4.2.3.2.2 Chlorophyll absorption responding bands. 

Backward of linear regression approach had been applied to assess correlation-ship between the 

bands selected and chlorophyll. The result showed that the best significant regression model was 

combined with R48b_489, R500一509, R530_539, and R570-579. Here, R480_489 was selected as 

input variable. And the spectral responses at R480一489 and R500一579 are additive assumed in 
t 

equation 12. 

A / , » � (况4f!0 489 + ^500 509) ^ 
Q {chl)=—— = ( 4 - 2 - 1 2 ) 

"930 950 

72 



If when assuming the responses in the two bands ranges are multiplicative, the equation 12 could 

be redefined as: 

^ , , , , -iHf) * 尺 mi iO') ) ^ ^ 
Q ( c / l / ) = ( 4 - 2 - 1 3 ) 

"‘Mil 

4.2.3.2.3 New spectral index for carotenoids estimation 

Thus； the proportion of spectral response caused by Carotenoids could be defined as equation 14 

or 15: 

CD = = … * 「 ； (4-2-14) 

- , � ^5.10 5.V) _ R ‘ m <)50 , , 
- 0 ) ( ， . ) 二 ~ " ^ = ‘ - — . 

^^ V so 八 MK) SO')‘ 

When assuming additive relationship for responses of chlorophyll (figure 4a), the two variables 

were obviously high related, and the correlation coefficient of them was up to -0.779. 

If changing R480_489 and R500_509 from additive relationship to multiplicative one to 

c a l c u l a t e ^ (r/?/) , ( J ) (car), the results showed there was no relation between ( J ) (car) 

and the content of carotenoids (figure 4b). The correlation coefficient of the variables based on 

idea was -0.368 which implies the variables were not related. 

Therefore, the assumption about carotenoids was reasonable and acceptable for description of 

the spectral features responding to carotenoids absorption while the proportion of spectral 

response to chlorophyll was described as additive relationship. New index calculated by equation 

14 was accepted to describe and estimate the content of carotenoids. 
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( a ) 

(b) 

Figure 4-2-5. Relationship between the content of Caretonoinds (mg/g, per fresh weight) and new spectral 

Index. 

(a) the proportion of spectral response to chlorophyll is described as additive 

relationship(equation 12,14); (b) the proportion of spectral response to chlorophyll is described 

as multiplicative relationship(equation 13,15). 

4.2.4 Conclusion 

The area of red edge defined as the sun of the first derivate spectral reflectance had been pointed 

out related with chlorophyll, however the statistic results showed It was very weak related to 

chlorophyll. Therefore, In this section, 15 spectral parameters as chlorophyll indicators were 

designed. The results showed that lndl_o and lnd2_o were not related to chlorophyll. Taking 

account that the red edge position locates in the range of l700-720nm� generally, Rdaa was 

revised and limited within [700, 720nm] and Indl, Ind2 and Ind3 based on Rdaa. The Rdaa was 

proved much more sensitively and strongly related to chlorophyll. Indl was not related to all 

chlorophyll parameters while Incl2 was opposite. Because the spectral reference for Ind3 was 

close to 1 approximately； thus its characteristic was similar to It of Rdaa. Then the sensitivity of 

the spectral reference had been assessed. The results showed the Rdaa, Ind2 and Ind3 were all 

no-related to chlorophyll. Meanwhile, the results showed that by diving spectral reference, a kind 

action of re-projection, the influence from non-related variables could be reduced and 

suppressed. 

In this section, an assumption was proposed. For estimating carotenoids, that was the effect of 

chlorophyll and carotenoids were multiplicative in�450, 550nm) and a new spectral index 

(J) (car) was defined. (J) (car) was strongly related to carotenoids and could be applied as 



the indicator of carotenoids content. 

H o w e v e r , t h e s e n e w s p e c t r a l indices w e r e d e v e l o p e d b a s e d on data of L o p e x 9 3 a n d paddy rice. 

Its app l i cat ion in w i d e r a n g e s h o u l d be evaluated. 
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4.3 Estimation of the content of water, nitrogen and lignin 

Chemical concentrations of vegetation leaf are important indicators of internal bio-processes. 

Besides photosynthetic pigments (chlorophyll a and b, carotenoids), nitrogen concentration, 

water content, lignin are also included. They are good indicators for vegetation growth 

monitoring. 

4.3.1. Nitrogen and lignin content estimation methods 

Cur ran (1989) pointed that nitrogen was an important indicator of photosynthetic rate and 

overall nutritional status. Previous' studies focused on extraction of nitrogen information from 

dried ground leaves (Dury, et a!., 2002, Grossman, et al., 1996). There were also many attempts of 

extraction nitrogen information from fresh leaves (Dury and Jia, 2002, Huang, et al., 2004). 

However, the serious problems for direct estimation of nitrogen were the masking effects of leaf 

76 



water absorption. "Leaf water absorption and the overlapping of other chemical absorption 

features tend to mask subtle nitrogen absorption feature"{Oark, et al., 1984, Huang, et al., 2004), 

and they also pointed out that by continuum removal technique, some of these absorption 

features of no interest could be suppressed. Some researchers reported an indirectly inversion 

method for nitrogen content that nitrogen content was highly related to chlorophyll content in 

leaf, and then the prediction of nitrogen status was transformed to estimate chlorophyll 

content{Sun, et al., 2005). 

Leaf lignin concentration is an important factor to control plant growth in that it is related to litter 

decomposition rates and nitrogen and lignin have same sensitive absorption bands (Serrano, et 

al., 2002). Therefore, these two studied together. 

In this section, the absorption features of spectral reflectance or related responding wavelength 

to nitrogen and lignin were chosen and assessed, according to the references. 

4.3.2. Bands selected based on stepwise regression analysis 

Nitrogen and lignin related wavelength ranges were censored in previous studies (Curran, 1989, 

Huang, et al., 2004, Okuyama, et al., 1998, Serrano, et al., 2002, Song, et al., 2009). Considering 

the strong absorption of leaf water (figure 1), the related wavelength ranges were relocated 

(tablel). Meanwhile, the individual band was replaced by the sum of a certain wavelength range 

to suppress noises. The range (step) was set as 20nm, and a total of 39 regression variables 

almost covered the whole near and short-wave infrared bands excluding water strong absorption. 

The input data could be expressed as the following form: 

K .SU'p 

川丨lA丨）二 

Where i and j is the wavelength of i and j nm, k represents the k"' parameter for regression, d, is 

the fh value in the data series. 

These 39 variables were calculated based on the original spectral reflectance. The First derivative 

and the second derivative was able to enhance subtle absorption features of leaf bio-chemicals 

and overlaying features (Huang, et al., 2004). Thus these variables were also calculated based on 

the first and second derivative of spectral reflectance. These data were analyzed with the 

approach of stepwise regression. 

Table4-3-l. Pre-selected potential absorption features 

Wavelength 
Potential absorption features(variables) 

ranges (nm) 

580-700 R580 599,R600 619,R620 639,R640 659,R660 679,R680 699 

1000-1080 RIOOO 1019.R1020 1039.R1040 1059.R1060 1079 
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1500-1800 R1500_1519,R1520_1539,R1540_1559,R1560_1579,R1580_1599,R1600_1619,R 

1620—1639,R1640_1659,R1660_1679,R1680_1699,R1700_1719,R1720_1739,R1 

� 740 1759,R1760 1779,R1780 1799 

2100-2200 R2100 2119,R2120 2139,R2140 2159,R2160 2179,R2180 2199 

2230-2410 R2230 2249,R2250 2269,R2270 2289,R2290 2309,R2310 2329,R2330 2349,R 

2350_2369,R2370_2389,R2390_2409 

Vegetation Spectral Reflectance and Water Strong Absorpt ions 

Water strong absorptions (nm): | | 

boo 710〜735,810、840,890 〜990,1070 1300 1 5 0 0 0 0〜2 0 0 0 , 2 4 0 0、3 3 0 0 

：丨r 

If 
2 S3 MK 1553 

Wavtknilh 

Figure 4-3-1. Strong water absorptions under natural illumination conditions. 

The ranges in green circles are seriously influenced by vapor in atmosphere. However, when with 

the contact probe and the leaf-clip unit, these effects of vapor absorption could be avoided. 

Serano et al. (2002) developed Normalized Difference Nitrogen Index (NDNI) and Normalized 

Difference Lignin Index (NDLI) for estimation of nitrogen and lignin content respectively. In this 

section these two indices were also obtained. It is necessary to assess both NDNI and NDLI when 

they are used as indicators of foliar chemicals in this study. Also, by comparison, a 

cross-validation for the absorption features each other can be done. 

l o g ( l / / ? | 5 | o ) — l 0 g ( l / / ? ,(叨、 
mm = 

NDLI = 

k)g(i/y?,5,。）+ i o g ( i / / ^ _ ) 

logo / /e,754 ) + lOg(W/e,(�80) 

(4-3-2) 

(4-3-3) 

4.3.3 Results and discussion 

For variables based on the original spectral reflectance, except for the ones located in (1000, 

lOSOnm), others were highly related to nitrogen. And the strongest was the 
78 
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with nitrogen, up to 0.736. This result is consistent with the previous studies (Huang, et al . 2004, Song, 

et al., 2009). (580, 700nm) was chlorophyll sensitive bands. In the figure 2. the variables in this range 

also were highly related with nitrogen. Derivative transform could enhance absorption features. 

However, the derivative results represent change rate of absorption. It is not sensitive to broad 

bands and small changing rate of the reflectance. Thus the coefficients between variable and 

nitrogen decreased dramatically, especially for the variables based on the second derivative 

spectral reflectance. R1720_1739 and R1760_1779 were the most strongly related to nitrogen, 

the coefficients were more than 0.8. A possible explanation is these ranges were strongly related 

by water strong absorption, the absorption intensity changes quickly. When the second derivative 

was applied, there were only 5 variables were related to nitrogen. NDNI was also highly related to 

nitrogen. 

Figure 4-3-2. Correlation coefficients between varibies and nitrogen concentration, 

"orlglal" represents variables obtained bases on the original spectral reflectance data; "First 

derivative" represents variables based on the first derivative spectral reflectance data; "Second 

derivative" represents variables based on the second derivative spectral reflectance data. The 

variables (X axis) marked 1 to 40 were R580_599, R600_619, R620_639, R640一659, R660一679, 

R680_699, R1000_1019, R1020_1039, R1040_1059, R1060_1079, R1500_1519, R1520_1S39, 

R1540_1559, R1560_1579, R1580_1599, R1600_1619, R1620_1639, R1640_1659, R1660_1679, 

R1680_1699, R170CL1719, R1720_1739, R1740_1759, R1760_1779, R1780_1799, R2100_2119, 

R2120_2139, R214CL2159, R2160_2179, R2180_2199, R2230_2249, R2250_2269, R2270_2289, 

R2290_2309, R2310^2329, R2330一2349, R2350_2369, R2370_2389, R2390_2409 and NDNI. 

Table 2 showed the regression model based on different variables. All models had been done 

coilinearity statistics test. The tolerance of colllnearity is a statistic parameter describing whether 



the variables are multi-collinear between them. The tolerance ranges from 0 to 1, the closer it is 

to 1, and the less coHinear the variables are. Model 2 had largest R ,̂ up to 0.754, the two input 

variable almost had no collinearity. However, the input variable, R2160_2179 was no related to 

nKrogen, the absolute value of the coefficient less than 0.3 Thus this model was not optimal in practice 

Model 3 was the same as Model 2. Model 1 was built by R1500_1519 and R640_659 which 

correlation coe什icients with nitrogen were -0.736 and 0.674. The R^ of it was up to 0.639 thus it was 

the optimal one. Model 4 was also acceptable. 

Tabl« 4-3-2. Model summary for nitrogen concentration estimation 

Model 

4 

Data type 

(spectral 

reflectance) 

Predictors 

Original 

First 

derivative 

Second 

derivative 

Original 

(Constant) 

R1500_1519 

R640一659 

(Constant) 

R1760一1779 

R2160_2179 

(Constant) 

R600一619 

R2140_2159 

R640_659 

(Constant) 

NDNI 

c o e f f i c i e n t s 

23.948 

-2.845 

7.742 

.639 

Collinearity Statistics 

(Tolerance) 

.679 

.679 

17.358 

-14.811 

-14.028 

.754 

19.374 

-13.219 

4.770 

-10.561 

.993 

.993 

.883 

• 894 

.980 

4.459 

107.720 
0.536 

Dependent Variable: Nitrogen. 

B. Regression analysis for lignin 
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Figure 4-3-3. Correlation coefficients between varibles and lignin concentration. 

The labels were the same meaning as those in figure 2. And the varibels (X axis) marked 1 to 39 

were the same as varibles in fIgureZ, while the 40"̂  is NDLI. 

located in (1500, 1660nm). For the variables based on the original data, the strongest sensitive 

bands located in (2100, 2400nm). These two ranges are where water absorption was relatively 

weak. The variables based on second derivative were not obviously related to lignin. Tables 3 

summarized regression model for lignin estimation. Model based on first derivative had largest R^ 

up to 0.749, and the input variable R1760_1779 was the most strongly related to lignin 

concentration while R1680_1699 was almost had no relation with lignin. Model 3 was the same 

case. Though the input variables of model 1 were so strong multl-collinear, the Variance Inflation 

Factor (VIF) was not very big (3.656), much less than 10. Thus this model was not optimal. Besides 

model 1, model 4 was also satisfied. 

Table 4-3-3. Model Summary for lignin concentration estimation 

model Data type Collinearlty 

{spectral Predictors coefficients Statistics 

reflectance) (Tolerance) 

1 (Constant) 20.764 

original R2390_2409 8.238 0.560 0.274 

‘ R1720一1739 -4.748 0.274 

2 First (Constant) 20.965 
n 7AQ 

derivative R1760_1779 15.453 U. / H J 0.972 
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R1680_1699 7.600 0.972 

3 (Constant) —7—•一059 
_ 

Second 
R640_659 14.078 0.492 0.982 

derivative 
R600_619 7.979 0.982 

. 4 (Constant) '23.558 
original 0.534 

NDLI -440.159 1 

Dependent Variable: Lignin. 

4.3.4 Conclusion 

In this section, 39 potential absorption wavelengths were selected for nitrogen and lignin 

concentration estimation. Based on the original, the first and the second derivative spectral 

reflectance, totally 1190 variables were calculated. By stepwise regression analysis, the sensitive 

bands were selected, and optimal model for nitrogen and lignin concentration estimation were 

obtained. Meanwhile, both NDNI and NDLI were assessed. They were highly related to nitrogen 

and lignin respectively and sensitive enough to be indicators of the two leaf chemicals. 

By assessment in this section, models for nitrogen concentration estimation and lignin were 

selected as indicators of nutritional status in paddy rice growth monitoring. The models are： 

Y_nitrogen=23.948 -2.845R1500—1519 +7.742R640_659 (4-3-4) 

Y_nitrogen=4.459+107.720NDNI (4-3-5) 

YJignin=20.764+8.238 R2390_2409-4.748 R1720_1739 (4-3-6) 

YJignin=23.558-440.159NDLI (4-3-7) 

Where Rz_x represents the sum of the spectral reflectance ranging from z to x nm. 

However, these models were the results of statistics, thus they are significant in statistic level and 

could not explain the real nitrogen and lignin status, e.g. Model 2 in table 2 and Model 3 in table 

3. The statistic results were limited with the samples, sample quality, sample numbers and its 

distribution. They are just indicators. 
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Chapter 5 Monitoring and screening transgenic paddy rice under 

controlled contrast experiments by field-hyperspectral measurements 

5.0.1 Assumption of gene expression 

In the proposed study, we had an important assumption: 

Namely: if foreign genes were expressed in plant, there would made some differences comparing 

with their parent, these differences were, not limited, component of cell would be changed such 

as new matter generated or the content of existing component increasing/ decreasing because of 

gene encoding; structure of cell would be changed; biochemical or biophysical processes would 

be influenced because of foreign gene expression. 

If changes happened, no matter associate with component or structure, they would be 

discovered by direct or indirect approaches of spectroscopy with equipments of certain sensitive 

and resolution 

5.0.2 Basic idea and function 

To be noted, by present resolution/ sensitivity of equipment (ASD), it could not to accomplish 

that transgene has been expression just by hyperspectral remote sensing technique. 

What can be done to gene expression by hyperspectral approach? 

By fine spectral data which are sensitive and stable to plant biochemical and biophysical process, 

we could extract spectral absorption and reflectance and construct relationship or model 

between these spectral characteristics and plant parameters such as pigments, biochemical and 

biophysical processes. Just as mentioned above, the changes of these parameters are sensitive to 

plant growth status, thus we could deduce relevant information from these changes. When 
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putting all samples under strictly controlled contrast conditions during whole growth stages, 

excluding or making samples suffering from the same external influences such as temperature, 

fertilizer and management, we could locate changes causing influences and inverse where 

changes happen in plant or what caused these changes. These results then would be given 

feedback to professional researchers having further analysis of pertinency and make conclusion 

about the expression and influences to receptor by laboratory approaches. In summary, 

hyperspectral remote sensing techniques play a role of detection and monitoring of gene by an 

indirect way from a macro-view. 

Figure 5-0-1. Early Indication based HRST for transgene plant cultivation 

5.0.3 Spectral analysis methods 

5.0.3.1 Analysis based on spectral morphological features 

This is a qualitative method focusing on spectral morphologic characteristics. 

Input spectra data 
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Figure 5-0-2. Analysis based on spectral morphological features 

5.0.3.2 Analysis based on parameterized features 

This is a quantitative method concentrating on diagnosing spectral characteristics such as 

chlorophyll absorption, red edge and red shift. By characteristic analysis could locate and qualify 

the changes compared with the parent directly. 

Figure 5-0-3. Analysis based on spectral parameterized features 

5.1 Comparison analysis based on spectral reflectance edges within Sample 

g r o u p s ^ ^ 

Spectral parameters (indices) of the edges are highly related to foliar chemicals thus they are 

good indicators for vegetation growth monitoring. In this section, they would be applied to 

describe and asses the difference of the growth of the samples. 

5.1.1 Data acquisition system 

Fine spectra of samples were collected to avoid external noise such as atmospheric influence and 

incident stray from background by an Analytical Spectral Devices (ASD) FieldSpec 3 Spectrometer 

(Figurela, the details of ASD could be found in chapters). With help of high density contact probe 

(Figurelb) which had self-lightening system and white reference board (white panel), we built a 

closed data collection units which could ensure to avoid external noise clearly. The spectral data 

ranged from 350 to 2500nm. 

Parts of the results in this section had been published in the journal of Spectroscopy and Spectral Analysis 

(2010,30(l):202-205) and reported at 30仆 Asia Conference on Remote Sensing (2009), Beijing, China. 
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Figure 

(a) (b) 

Observation with probe-leaf-clip system; b. Field Spectrometer 

Spectra of samples 

500 750 1000 1250 1500 1750 2000 2250 2500 

Photosynthesis sensitive bands 

Figure 5-1-2. Spectra curves and the morphological details of photosynthesis sensitive bands. 

In figure 1, at near Infrared bands, the reflectance of leaves was higher than normal, up to 0.8. It 

was because of the bi-/multi-reflection. In the data collection system, a white reference board 

was used. When incident light in near infrared bands reached leaf surface or internal structure, 

some had been reflected directly and captured by ASD detector, a little had been absorbed, and 

the left reached to the white board and was reflected back because of the special structure and 

spectral characteristics of the leaves in near-infrared band, and then was captured. So the 

reflectance at near infrared bands had been selected enhancement. The fewer the incident light 
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has‘ been absorbed by leaf" is/the mdre the. reflection has been enhanced. ‘Coosidering the 
•. 、 ， 、 • • . . . • ‘ . 」 / • • , 

spectral characteristics of I'eaf二jt was' not ajinear relationship between reflection enhancement 
• .、• ，. • .….i . ‘ � • ’ 

and spectral bands. It ampiified the reflects nice with different intensrty among bands at a physical 
,.... • . 1 '... * . . . . • 

level with： little infotmatiph loss-which is jb.st What yye' wa^t to. 

5.1.2 Calculation of the edgfes : 广 

‘V ‘ . , • • J . ‘ . 
Most of the ^dges positions..were defined as the. largest changing rat^ of the cirrve al a certain 

. - ‘ - \ 

• ^ , • • ‘ 

bands, namely the maximum of the frrst derivative. ^ ‘ 

Edge position, such a$ red edge； blue edge, is generally defined as the largest changing rate 

(inflection) of the curve at a certain wavelength range, namely, the wavelength (position) where 
:. 4 ‘ * ' 
“ * , 

the maximum of the "first, derivative of the reftectanc^ fs. Because the-derivative rs a knid of 
• � . ^ 

changing r^te, even a very'small noise mfght cause a big peak in derivative cur\/e. So 4rstep 
- . . ‘ 

derivative equation was used to calculate the first derivative (equation 1). The step in derivative 
equation controls effects of data smooth. The larger it is, the smoother the derivate curve is. 

� •� t 

Large step would bring side effect that is the movement of peak position. Blue curve in Figure 3a 

showed the derivative curve with 4-step while the red one with 1-step. It could be found that 

there were peaks positions movements with Inm for 4-steps curve, comparing to the 1-step 

result. It was acceptable or could be treat as 1 nm accuracy about edge positions. After all, this 

strategy helps to suppress pseudo peaks efficiently. Figure 3b showed smooth derivative curves, 

and the different samples' edge positions had slight differences. This result indicated differences 

in samples which respond to the changes within samples or photosynthetic ability when the 

external influences were excluded. 
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. Figure 5-1-3. Sample spectra and their first derivative curves. 

In the left figure, blue line showed the derivative curve calculated with 4-step (equation4), and 
• . 

the red ond with 1-step. Pky meant the peak point of the curve. 
• 
* • • • • 

In this section, the"difference or growth status at group level was focused. Within a certain inner 
‘ • 4 

clustering (to make sure enough representation of the same sample group), we calculated the 

mean spectra for the same part of leaves in the same groups which could be treated as 
representative of the class spectra. Moreover, the coefficient of variation (cv) of data by band, • • 

h^re named Inner-clustering Coefficient for understanding easily, had been calculated to assess 
* 

the stability and inner clustering of mean spectrum of one class. Using mean spectra as input 

data was to find differences at class level, thus it was necessary to avoid interferences from the 

specific random differences in individual which would make the study complicated. By mean 

spectrum, the random diversity which could not be expressed in the class stably in individual 

cultivator could be weakened even filtered. 
Inner-clustering Coefficient (Inner-cc, cv) is defined as the ratio of standard variation of 

t 

reflectance to its mean of the identical part of the same class samples under same observing 

conditions (equation 2). It represents the stability and inner clustering of mean spectrum of the 

class. 

StihiR,,) Inner - cc(i) 
M 酬 ( 5 - 1 - 2 ) 

Ri,j is the reflectance of the 广 observation for the i"�band, or the reflectance of the individual 

sample in the 广 class. Stdv represents standard variation. The smaller the value of it is, the better 

the stability and clustering of mean spectrum is, and the more reliable mean spectrum as the 

representation of the class is. To a set of data, mean and standard variation of inner-cc could be 

used to describe data acceptance, namely inner-cc(mean(cc)； stdv(cc)) where mean and stdv 

represented the mean and standard variation of the Inner-cc. According to experience, when 

lnner-cc(mean, stdv)<(0.2,15%), there was enough inner clustering and stability of mean 

spectrum, and its error was acceptable, it could be used as the representation as the class. 

Moreover, this parameter also could use to assess data quality during original spectrum data 

pre-treatment and now available value range for Inner-cc was an empirical one, more precise 

data would be discussed later. Table 1 showed that the maximum of inner-cc is Tl's, it was still 

acceptable, and we could treat mean filtered spectra as the class representation. 

Table 5-1-1. Inner-cc of sample groups (classes) 

Inner-cc @ (450,780nm] 
sample 

max min lnner-cc(mean(cc),stclv(cc)) 

parent" 0.225888 6.71E-05 (0.10,6%) 
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T1 0.238021 

T2 0.158381 

T3 0.066849 

T4 0.193529 

0.041218 

0.005211 

0.001715 

0.021221 

(0.13, 7%) 

(0.09, 4%) 

(0.05, 2%) • 

(0.10, 4%) 

5.1.3 Samples and methodology 

5.1.3.1 Samples 

5 samples groups' (classes) spectra had been collected in late September in 2009. These samples 

were cultivated by China National Hybrid Rice Research and Development Center and grouped: 

Parent, Tl , T2, T3 and T4. Except for the parent, the others had been transferred into different 

gene unit of phycocyanin genome, and by laboratory validation the genes have been transferred 

into successfully. This genome was predicted to promote the receptor's photosynthetic efficiency 

and to produce rice of high quality which means the transferred gene would cause the difference 

of spectral features between these samples. All samples were planted under a strictly contrast 

environment to exclude external noise and ensure data's reliability. The samples in first 

experiment were all at maturity stage, slight yellow-green color but green mainly, few ones were 

yellow, and most samples grew exuberantly. Since the target genes were predicted to mainly 

affect the plant photosynthetic system, spectral data of the middle front of leaves were chosen 

which were actively responsive part to photosynthesis in photosynthetic bands [450nm, 780nm] 

(Blackburn, G. A., 2007, Gitelson and Merzlyak, 1996). 

5.1.3.2 Index selection 

Gitelson et al. (1996) found the ratio of reflectance at 7S0 nm to 700 nm (R750/R700) was 

directly proportional to chlorophyll concentration. Datt (1998) found that the index R 6 7 ^ ( R 5 5 0 X 

R708) was the best indicator of chlorophyll a, chlorophyll a+ b, and total carotenoids contents, 

and R672/R550 was the best indicator of chlorophyll b. There are also many other ones, such as 

the Chlorophyll Absorption in Reflectance Index (CARI) (Daughtry, C S. T., et al., 2000). However, 

in this section, the edge/ peak parameters (Figure 3) sensitive to photosynthesis were focused. 

These parameters chosen have good correlations to photosynthetic pigments and nitrogen 

components (K, N and P) no matter on experiences or theories analysis (Nagendra, 2001, Stamps, 

et al., 1987, Tang, 2004). They cover the whole photosynthesis bands, and are comprehensive 

parameters to describe photosynthesis of leaves. Besides those above, Photochemical 

Reflectance Index (PRI) (Penuelas, et al., 1997) and Simple Ratio PRI (S卜PRI) (Wu, et al., 2008) 

were given too. 
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The Red edge is around 680- 760 nm, while the Red absorption around 650- 690nm, the Yellow 

edge around 560- 640 nm, the Blue edge around 490- 530 nm, and the Green peak around 510-

560 nm(Filella and Penuelas, 1994, Gitelson, et al., 1999, Gong, et al., 2002, Horler, et al., 1983) 

All of them include parameters of the edge position, the reflectance there and area. Carter et al. 

(1992) hypothesized that the increase of reflectance in photosynthetic bands might be a result of 

decreased chlorophyll content. This hypotension was proved later (Bauerle, et al., 2004, Carter, G. 

A. and Knapp, A. K., 2001). In this study, the area of edge was defined as the sum of reflectance 

included in edge ranges, different to the sum of first derivative of spectrum in edge (Filella and 

Penuelas, 1994), The parameter area represents a comprehensive absorption and reflection 

process in photosynthetic sensitive bands. It is much easier to understand the relation between 

area and photosynthesis. 

For comparison, some spectral indices were also chosen which were related to specific 

photosynthetic pigments (chlorophyll a+b, carotenoids and anthocyanin) respectively for 

cross-validation (table 2, 3 and 4). Most of these parameters were assessed in chapter 4 and 

proved to have good performance as the foliar chemicals. 

Table 5-1-2. Spectral indices developed as chlorophyll (a+b) indicators (Bannari, et al., 2007b, Gitelson, A. A., et 

al.,2003): 

Indices Description source 

Chlorophyll (a+b)=R67洲700 (Chappelle, E, W., etal., 1992) 

Chlorophyll (a+b)= (R800-R700)/(R800+R700) (Gitelson, et al., 1994) 

Chlorophyll (a+b)=0.0236*[R67万(R550*R708)]() (Datt, B,, 1998) 

Chlorophyll (a+b)= (R75o-8oo)/(R695-74o)-l (Gitelson, A. A., etal., 2003) 

Structure Insensitive Pigment Index (SIPI) 

SIPI =(R800-R445}/(R800-R680) 

(Bannari, et al., 

etal., 1995) 

2007b, Penuelas, 

Chlorophyll Absorption in the Reflectance Index (CARI) 

CARI=(R700-R670)-0.2*(R700-R550) 

(Kim, etal., 1994a) 

Modified CARI (mCARI) 

mCARI=((R700-R670)-0.2*(R700-R550)]*(R700/R670) 

(Daughtry, C. S. T., etal., 2000) 

Transformed Chlorophyll Absorption in the Reflectance Index 

(TCARI) 

TCARI =3*l(R700-R670)-0.2*(R700-R550)*(R700/R670)] 

(Haboudane, D. ,et al., 2002) 

Simple Ratio Pigment Index (SRPI) 

SRPI =R430/R680 

(Bannari, et al., 

G. A., 1999) 

2007b, Blackburn, 

R75o-8oo= Average(Sum(Reflectance(750:800))); 

RNIR=Average{Sum(Reflectance(700:750))); 
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Rred=Average{Sum(Reflectance(650:690))), the red absorption feature; 

Rcreen=Average(Sum(Reflectance(510:560))) the green peak feature; 

R'^in is the reciprocal of reflectance at SlOnm; 

R'\io 520 is the reciprocal of the average reflectance ranging from 510nm to 520nm； 

So do the other abbreviations in the follow tables, 

Table 5-1-3. Spectral indices developed as carotenoids indicators (Ustin, et al., 2009): 

Indices Description Source 

Ratio Analysis of Reflectance Spectra (RARS) (Blackburn, G, A , 1998, 

RARS=R760/R500 Chappelle, E. W., et al., 1992)) 

Structure Insensitive Pigment Index (SIPI) (Penuelas, et al., ,1995, Sims, D. 

SIPI =(R800-R445)/(R800-R680) A. ancj Garnon, J. A., 2002) 

Carotenoid Reflectance Index (CRI) (GitelscJn, A. A., e al., 2002) 

CRI550=R"S IO-R"^SO 

CRI700=R -^ io-R Soo 

Modified CRI (mCRI) (Gitelson, A. A., e ，t al., 2006) 

mCRIgreen=(R"^sio 520 -R'^6o-57o)XRnir 

mCRIredge=(R'^io 520-R'̂ 9o-7io)><Rnir 

Eucalyptus Pigment Indices (EPI) (Datt^B., 1998) 

EPI=0.0049*[R67 的 R550XR708)]�7糊 

Table 5-1-4. Spectral indices developed as anthocyanin indicators (Ustin, et al., 2009): 

Indices Description source 

Anthocyanin Reflectance Index (Gitelson, A. A., et al 2001} 

Mnl-n 550 rv 700 
Modified Anthocyanin (Gitelson, A. A., et al 2006) 

mARI=(R 5̂30-570~R 6̂90-710)̂ RniR 

Red:Green Ratio (Gamon, J. A., et al. ,1999, Sims, 

RGR=Rred/Rgreen D. A. and Gamon, J.； 《.，2002) 
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.1.4 Results and discussion 

Figure 5-1-4. Positions of the edges. 

Figure 4 showed that the position of red edge had a relatively bigger change than others, the 

biggest was up to 3nm at class level. Except T4, the other samples' red edge moved towards to 

long-wave band. The Red edge highly related to chlorophyll content (Blackburn, G. A., 2007, Cho, 

et al., 2006, Sims, D. A. and Gamon, J. A., 2002) would move to long or short wavebands direction 

according to different change of chlorophyll in plants, blomass, and phenology regulations 

(Curran, et al., 1990, Filelia and Penuelas, 1994). Chlorophyll content had a direct positive 

relationship to photosynthetic capacity (Murchle, et al., 1997b). Therefore, this result indicated 

the samples except T4 had more strongly photosynthetic mechanism compared to their parents. 

The positions of red absorption, yellow edge, blue edge and green peak were stable, largest 

movement was no more than Inm compared to sample parents'. At yellow edge, all samples with 

trans-genes moved to short-wave band together. The same things happened at the green peak 

too； and the amplitude was up to 1 nm. The Yellow edge is an indicator of representing 

information of xanthophyl concentration. Xanthophyl is highly rtlated to photosynthesis (Gamon, 

et al., 1992), When plant Is in health with high content of chlorophyll in the period of growth 

activity, the Green peak would move to blue band direction, and its amplitude would reduce 

(Gitelson and Merzlyak, 1996, Gitelson, et al., 1999}. Gitelson (1996) Indicated further that the 

band near 550nm (around green peak) was determined by total carotenoids, Chi a and Chi b. 

Near 550nm, the two strong absorption (around 520 and 570) processes (blue and yellow edges) 

reached their minimum, producing the monotonous relationship with a high sensitivity to Chi a 

concentration. Combining the changes of reflectance shown following at green peak, it could be 

deduced that higher content of chlorophyll in sample plant comparing to their counterparts. It 

was noticed that all these changes/ movements happened at class level. Moreover, in figure4, the 



features of T4 had an inconsistent tendency of changes to the other transgenic sample groups. 

roOoct. 

Sample group) 
red edge roflcctancc RctI udgc area 

PnrenJ 0.17K83 .1.118908 
T1 0.37520<1%) 32.37767(2%) 
12 0.39(>62(5%) 31.94781(4%) 
13 0.41686(10%) 33.09989(0.3%) 
T'J 0.42636(13%) 36.81535(11%) 

bliitf txigc rcllcctancc Blue cdpc area 
parent 0.09644 3.17928 

T l 0.09534(1%) 3.18458(0.2%) 
T2 0.08847(8%) 2.87749(9%) 
T3 0.09145(5%) 2.93705(8%) 
T4 0.10297(7%) 3.35162(5%) 

15.11-570JPR1 SR PRI 
Parent 0.02202 1.04534 

I I (J.02570(丨 1.05300(1%) 
12 0.03041(38%) 1.06273(2%) 
r:? 0.02716(23%) 1.05589(1%) 
T4 0.01225(44%) 1.02540(2%) 
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Sample group* 
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red abs(^rptioii rcflccluncc Red absorption area 
Parent 0.048.11 2.14394 

11 0.05049(5%) 2.2I«)03(4%) 
12 0.04473(7%) 1.97426(8%) 
13 0.04234(12%) l.0U766(l 1%) 
\4 0.04752(2%) 2.17660(2%) 

green peak refleclance fireen peak area 
Parent 0.13669 5.94115 

T l 0.1.1048(5%) 5.74127(3%) 
12 (U”，l(ll%> 5.33551(10%) 
T? 0.13236(3%) 5.71177(4%) 
14 0.15437(13%) 6.ft08«4(l 1%) 

yellow edge rcflcctanco Yellow edge area 
I'arciil 0.11560 7.23.̂ 54 

Tl 0.1121U3%) 7.()432K(3%) 
T2 0.10428(10%) 6.40071(12%) 
T3 0.11133(4%) 6.78647(6%) 
T4 0.13199(14%) 8.13683(12%) 
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Figure 5-1-5. Comparison of spectral parameters between Parent, T l , T2, T3, and T4 

Reflectance and area of edges and PRI results, below the figures are the data tables showing the 

details of difference between samples and their parents. In the table the change percent of 

parameters were also calculated in bracket. 

Figure 5(a- e) showed information of the reflectance and area of edges. These two parameters for 

the samples had consistent tendency except at red edge, when the reflectance of edges increases, 

the area of edges we defined increases synchronously- The areas' changes indicated relevant 

information about photosynthetic intensity of green plant. It was comprehensive description of 

ability of incident light energy absorption. In a certain band range (e.g. red edge, the same as 

others), when there was high level of chlorophyll content (responding to a strong photosynthetic 

process in the same plant species in some sense, as mentioned above) (Murchie and Horton, 

1997b), more light energy toward long-wave bands would be absorbed by chlorophylls and less 

reflected, it made the edge moved to long-wave bands. Thus, it would cause lower reflectance 

and edge movement at these blocks in a certain energy intensity range. So excluding external 

noise, the higher the chlorophyll content was, the lower the reflectance and area of edges 

(reflectance of red edge foreclosed) was. At the red edge, because there was a high reflected 

shoulder, thus in this range, the reflectance value would change to be greater when moving 

towards long-wave bands. In the figure 4 (a) at the red edge； the differences between samples 

showed no clearly regulation of changes. The abnormal samples were located at T l and T2. Red 

edge of samples except T l moved to long-wave bands, according to greater reflectance value 

compared to sample parent according to the special characteristics of vegetation reflectance at 

near-Infrared bands. Reflectance of sample T3 was also greater than its parent, but its area of 

edge was smaller than parent's which was not consistent to other samples. Sample T4 showed 

biggest discrimination both to the other samples and its parent. At the red, yellow and blue edges, 

the changes of reflectance were up to 13% even to 14%, but these changes had no regulations, 

some were positive and the others were negative. Compared to T4, except at red edge, sample T2 

had a stable direction and amplitude of changes. Comparing to red edge, including the red 

absorption, the samples had stable regulations of change. And the changes of reflectance and 

area were consistent there. From figure 5(a- e), we could have a qualitative sort about the 

chlorophyll content between samples, that was T2； T l , T3, parent and T4 by descending generally. 

Meanwhile, parameter area was more stable than reflectance to indicate this difference because 

of resisting random noise. 

Figure 5(f) showed PRI and SR-PRI of samples. Sl-PRI is a revised one of PRI which has clearer 

physical meaning. These two parameters closely positively related to xanthophyll cycle pigment 

content, and could be used to estimate leaf photosynthetic light use efficiency (LUE) (Penuelas, et 

al" 1997). From these two indicators, it could be found the slight change of anthophyll cycle 
94 



pigment content. And PRI seems to be much more sensitive to the difference between samples 

than SR-PRI. From the figure 5 (f), it could be found that sample T2 had greatest PRI than others, 

then T3, T l , parent and T4. The curves shapes of PRI and SR-PRI were the reverse to the ones of 

edges fitly. Also sample T4 had unique features different from the other transgenic ones. It was 

consistent with the result which obtained from the analysis of the samples edges. In some sense, 

there were negative influences on sample T4. After these analyses, we finished one time 

screening. These results would be useful for breeding and assess samples' characteristics. 
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Figure 5-1-6. Spectral indicators for specific pigments. 

The information shown in (a- h) was consistent with that in figure 4 and 5. 

Because all samples were cultivated in the completed same conditions, and the data were fast 

collected under identical situation, thus, external noise (including photo-inhibitory and 

photo-protective response) could be excluded and the changes or differences of the parameters 
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given above could be treated as the indicators of different photosynthesis ability which would 

indicate much possibly the inner changes of sample plants organs for photosynthesis. Between 

samples, there was only one difference was the existence of transgenes, namely other all 

properties or characteristics of the samples should be the same generally in the strictly controlled 

contrast experiment. Thus, if there was any difference or change about photosynthesis in samples, 

it was possibly made by phycocyanin genes and of significance to be validated by laboratory 

approaches. By current analysis, we could have some assumptive interpretation that the correct 

expression of phycocyanin genome enhance the light-harvesting system of rice plant which 

caused positive effect to photosynthesis, namely in the photosynthetic pigment light-harvesting 

system which was composed of chlorophyll, it was generated a new non-complete approach 

which were supported by phycocyanin. Phycocyanin had different characteristics to other 

chromoprotein. The interaction of these two approaches changed the plant ability of 

photosynthesis then affected its spectral characteristics. The negative influences caused by 

trans-genes seemed to also affect the plant the light-harvesting system and then caused 

difference. Though this interpretation lacked relevant support from laboratory, it at least provides 

messages as prior knowledge for laboratory approaches for further study., 

5.1.5 Conclus ion 

In this study, fine spectra collected by ASD field spectrometer were used, and by quantitative 

analysis, differences (at class' level； not at individual') between samples with trans-gene and their 

counterpart at spectral level had been found. 

(1) The differences at all edges and absorption peak chosen in certain band range. It indicated 

that there was some matters bring changes to the transgenic samples stably. These parameters 

had high relationship with kinds of photosynthetic pigments, thus it could be deduced the 

differences of pigments content in samples. This information could be used to assess the 

photosynthetic ability of samples. (2) The discovered differences between samples comparing to 

their parent, some were positive and the other were negative to photosynthesis. (3) From sample 

T4, it could be found that the factor need to further study would also influence other organism 

not only photosynthetic ones. In water sensitive bands T4 had higher reflectance than all other 

ones. The approach and the report helped transgenic species researchers to avoid amount of 

workload, monitor their cultivars in time and under control. 

From all these results, it was deduced that it was significant to study on the monitoring and 

screening transgenic paddy rice by field hyperspectral techniques, especially in transgenic plant 

breeding. This approach could give a cheap, easy operation and real- or near-real time monitoring 

the influence of gene transferred into to samples, and helped researchers to easily control and 

maintain their long period experiment and was promising to transgenic plant breeding and other 
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relevant study. 

Because phycocyanin genome mainly possibly influences plant photosynthetic system, in this 

section just photosynthetic sensitive bands were focused. However, it is still unknown whether 

the genome would affect other organs is unknown in fact. Thus, it is necessary and important to 

extend the study to the whole bands (350- 2500nm). Also, we would collect biophysical data of 

plant in future work synchronously, to build a quantitative relationship between spectral 

parameters changes and photosynthesis of plant. 
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5.2 Comparison analysis based on spectral shape and parameterized features 

among Sample groups - a case of the gene repeat experiment�？ 

In this section, the same foreign genes of phycocyanin genome (chapter 5.1) were transferred 

into paddy rice samples. These samples were calculated in the other field block in the other 

season of the after year (2010). This is principal requirement of breeding, the experiment-repeat 

experiments, to prove the growth stability of samples. 

5.2.1 Experiment design 

The procedure of gene expression is complex, and its influences on receptor is of stochasticity 

(Kaern, et al., 2005), diversity and variability (Raser and O'Shea, 2005). Therefore, in this study 

the expression of gene and its influences on receptor were not explored directly, biophysical traits 

and responses to the stress (taking influences of foreign gene as stress) were focused on by 

detecting spectral differences among samples. By analyzing these differences, the samples would 

be monitored real-/ near real-time, interested space of samples was optimized and suppressed 

and finally priori knowledge and support information for laboratory work was extracted. By this 

study, an operational and efficient approach based on hyperspectral remote sensing technique to 

assist transgenic crop breeding with large number of samples would be developed, revised, 

validated further. 

Figure 1 showed the guideline of the study. All samples should be cultivated in contrast 

conditions which should satisfy the demands of crop breeding. Based on fine spectra of leave, 

“ T h i s section had been published in the Journal of Spectroscopy and Spectral Analysis (2011, 31(6)). 



indicative parameters would be obtained. Then with help of these parameters, it could be 

obtained useful information that if any spectral differences or outliers (of spectral morphology 

parameter) among samples (transgenic ones and their counterpart) exist; if any, they would be 

assessed quantitatively and located where the responding bands were and interpreted what 

caused to them. Finally a report would be formed to the laboratory for validation and further 

study. By this proposed approach, spectral monitoring, laboratory study and field cultivation 

could give feedback to each others to make crop breeding efficient with low cost. 

；roueh Monitoring under (ontrast Evperiiiient 

Input spectral data<^ 

Samples would be 
cultivated under strictly 

controlled conditions. 

Analysis based on 
morphologic 

characteristics 

Auxiliary 

Koutincnnnlysis 
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-gualitatiii-anaJysis, 

Report： 

with parent ami in groups 
1. if any spcctral differences 
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2. if 1 yes, responding l);)iui.s 
and what causcd it. 
3. qiinntitiUively describe iind 
assess these difference; 
4. exteriiiil stress check; 

‘ ~ F e e d back-priori knoWnlendge- Validntiun in Laburatury 

Figure General Design of the Experiment 

5.2.2 Samples and data acquisition 

5.2.2.1 Samples 

In this section, all samples, paddy 

Center/ Hunan Hybrid Rice Research 

were acquired around 11 am Aug. 4, 

stable biophysical and biochemical 

rice, were cultivated by China National Hybrid Rice R&D 

Center in Changsha Hunan province. Fine spectra of foliage 

2010. During this time range, samples were active and had 

processes relatively. Except for the contrast samples, the 

others had been transferred into different gene unit of phycocyanin genome and by laboratory 

validation the genes have been transferred successfully. This genome was predicted to promote 

the receptor's photosynthetic efficiency and help to produce rice of high quality. The researchers 

wanted by cultivating these samples to find out influences of single gene unit in the genome on 

the plant, then to screen superior sample for next step breeding. All samples were planted 

satisfying the demanding of crop breeding, namely cultivated as block in a very small field to 

ensure they, grow in a consistent condition of water, temperature, management to exclude 

external noise and ensure data's reliability. The samples grew exuberantly in stage of yellow 

ripeness when data collected. Totally spectra data of 9 groups were obtained. Transgenic groups 
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were assigned a number T l , T2... T8 and their contrast one was the Parent. Except for the genes 

transferred, there was no other difference among these samples theoretically. , 

5.2.2.2 Spectral data acquisition 

In this section, the same devices were employed. However the white reference panel was 

replaced by leaf-clip (figure 1). Leaf-clip has both white and black reference panels. In this study 

the black one was used, thus there was no effect caused by higher reflectance shoulder. 

Figure 5-2-2. Observation with probe-leaf-clip system 

For eliminating uncertainties caused by data collection, the center of FOV located at the center of 

the middle front of the second leaf counted from the core of paddy rice. The principal vein of leaf 

was vertical to the view line from the fiber. Two measurements were taken at the leaf with micro 

moving along the principal vein. By this measurement, the consistency of data collected could be 

ensured. Considering the characteristics of the genes transferred (predicted to mainly affect the 

plant photosynthetic system) and the noise sensitive bands of the equipment, in this study 

spectral data at band range from 420- 800nm was chosen. 

5.2.3 Methodology 

5.2.3.1 Spectral angle between groups 

In the two dimensional space defined by wavelength X and wavelength Y, the two vectors 

constituted by spectral data t and r, thus the spectral angle ^ of t and r could be defined by 

equation l{Sohn, et al., 2002). In this space, the spectral angle could offer the information about 

the similarity of the two vectors: the more similar the two vectors are, the smaller the angle is. 

When the angle equals to 0, the two vectors are almost the same. 
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6 , , = cos 0 G 0 . 1 (5-2-1) 

5.2.3.2 Continuum removal spectra 

Continuum removal is a technique for normalization according to the characteristics of the data 

essentially (Mutanga, et al., 2005). By this approach, the data (vector) is projected into a space of 

[0, 1] without unit. Thus the data could be compared both by spectral values and shape directly. 

Also by this transform, the spectral feature could be amplified. 

5.2.3.3 Spectral indices as indicators of chlorophyll and carotenoids 

Because the genes were highly related to photosynthesis of paddy rice, thus several advanced 

indices were chosen as indicators for the differences between the samples. These indices were 

proved highly correlated to photosynthetic pigments content (chlorophyll a and b and 

carotenoids) which is highly related to photosynthetic capacity of plant(MURCHIE, et al., 1997a). 

Furthermore, the changes caused by internal or external stresses to the plant could be responded 

by the pigments content and indicated by these indices. In this study, 10 indices had been chosen 

to indicate the content of chlorophyll a+ b and carotenoids. 

Table 5-2-1. Spectral indices developed as chlorophyll (a+b) indicators(Bannari, et al., 2007a, Gitelson, AA, et 

al., 2003): 

Spectral Indices Authors 

R67=R675/R700 (Chappelle, EW, et a iL 1992) 

datt=0.0236*[R672/(R550*R708)]°"''' (Datt, B, 1998) 

git= (R750-80o)/(R69S-74o)-1 (Gitelson, AA, et al.. 2003) 

Chlorophyll Absorption in the Reflectance Index (CARI) (Kim, et al., 1994b) 

CARI =(R700-R670)-0.2*(R700-R550) 

Transformed Chlorophyll Absorption in the Reflectance Index (TCARI) (Haboudane, D, et a il., 2002) 

TCARI=3*[(R700-R670)-0.2*(R700-R550)*(R700/R670)] 

R7S0 800= Average{Sum(Reflectance(750:800))), 

RN,R=Average{Sum(Reflectance(700:750))). 

R'^io is the reciprocal of reflectance at SlOnm. 

R'^io 520 is the reciprocal of the average reflectance ranging from SlOnm to 520nm 

The same as others. 

切able 5-2-2. Spectral indices developed as carotenoids indicators: 

Spectral Indices Authors 

1 0 3 
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Figure 5-2-3. Spectral Angles of the samples 

In figure 3, the spectral angles of each group with the other ones ware calculated. The result 

showed that, except for transgenic group T7 and T8, the left all had relative big angles with their 

Parent. T1 had smaller spectral angles with 12, T3 and T4 respectively. It indicated that these 

groups were more close and similar to each other on spectrum. Meanwhile, they had big angles 

with the Parent revealed that the transgenic samples had difference on spectrum to the contrast. 

In transgenic groups, the angles between T2, T3, T4 and T6 were also a little big, but they were 

less than the angle with the Parent. The transgenic groups could be divided into three classes 

according to the spectral angles, namely T1-T4, T5-T6 and T7-T8. Considering the values of the 

angles, when laboratory studying, T1-T4 and T5-T6 should be paid much attention, especially to 

Photochemical reflectance index (Gamon, et al., 1992) 

PRI=(R531-R570)/(R531+R570) 

Carotenoid Reflectance Index (CRI) (Gitelson, AA, et al., 2002) 

CRI700=R''5IO-R''7OO 

Chlorophyll Absorption Ration Index (Broge, NH and Leblanc, E., 2001) 

CARI2=CAR(R700/R670), CAR= | {a*670+R670+b) |/(3^2+1)八0.5 

a=(R700-R500)/150, b=R550-{a*550) 

Modified CRI (mCRI) (Gitelson, AA, et al., 2006) 

m C R I g r e e n = ( R " \ i o - 520 -R"S6O-57O)xRNIR 

mCRIredge=(R"'^5io - 520 -R .^so-710 卜 Rnir 

5.2.4 Result and discussion 

5.2.4.1 Analysis on spectral morphological features 
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W a v e b a n d s 

Figure 5-2-4. Spectral Continuum Removal Curve 

Figure 4 showed the spectral continuum removal image. In this figure, the spectral differences 

could be clearly found and assessed qualitatively. By this transform, the values of reflectance data 

had been projected to [0, 1]. Thus the differences between groups could be shown by the shifts 

of color (shifts of absorption or reflectance peak poisons) and the changes of color (intensity of 

absorption or reflectance) at certain band. The figure revealed that the main shifts located 

around 450nm, 550nm and 720nm. Furthermore, at these shift ranges, the intensity of 

absorption or reflectance was also of significant difference. So the next step study should focus 

on these shifts. 

5.2.4.2 Analysis ot parameterized features 

T5-T6. 
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Figure 5-2-5. Spectral indices correlated to foliar Chi a+b 

According to equation 3, the ratio of indices difference with the Parent (V) had been obtained and 

then plotted as figure 5. The figure showed that the differences of the chlorophyll a+b content of 

transgenic groups were all obvious with the Parent'. The V of Tl , 12, T3 and T4 were more similar 

to each other and significant different compared with the Parent. This result accorded with the 

one implied by the figure 3. Compared with T7 and T8, T5 and T6 were more close to the Parent. 

In summary, the 5 chosen indices showed the different chlorophyll a+b content compared with 

the contrast group consistently, especially T l - T4, the V values were more than 30%. The largest 

one was T3', up to 40% while the smallest was T5' and T6', however still more than 20%. These 

results could be applied as auxiliary information to screen the samples. 

, , ( 7 ’ ( / ) - " ( / • ) ) 

m 
x l O O % (5-2-2) 

T (i) and P(i) represent the 产 spectral index value of the transgenic groups and their Parent one' 

Spectral Indices for Carotenoid 

• m 

• CAR 12 
X cm 700 
XmCKi green 

Sample Groups 
(Tl, T8 and P) 

Figure 5-2-6. Spectral indices correlated to foliar Carotenoid 

The data shown in figure 6 were calculated followed equation 2. The figure showed that 

compared with the contrast group, T1-T4 had a good consistence about the content of 

carotenoids, and also more close to the Parent. The significant difference was in T5 and T6. T7 

and T8 was the most close to the Parent. 



5.2.5 Conclusion 

In the study, I proposed to use ASD field spectrometer to acquire fine spectra of transgenic 

samples in contrast experiment conditions, by Its biophysical traits and biochemical parameters 
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Dispersion of Spectral Indices Between Groups 
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Figure 5-2-7. Dispersion of spectral indices between groups taking datt and CARI2 as examples 

The 

results indicated that there were also differences represented by spectral indices among 

transgenic groups. Therefore, the ratio of indices difference with the Parent (V, by column) had 

been calculated to assess the differences of pigments contents among transgenic groups which 

would reveal the capability of photosynthesis indirectly. V is defined as equation 3. In figure7a, T l , 

T7 and T8 had relative smaller differences, less than 10% than the others. T5 and T6 had a 

negative difference compared with other groups which accorded with the previous results. 

Moreover, compared with the Parent, except T5 and T6, all others had a big value, more than 20%, 

even up to 30%. In general, the differences in transgenic groups were smaller than those against 

with the Parent obviously, and a good consistency in pigments contents was observed in 

transgenic groups. In figure 7b, the consistencies were more significant. All these indicate that 

the pigments contents and the capabilities of transgenic groups existed differences compared the 

Parent on the chosen indices. 
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to monitor of cultivars from a macro view. The study focused on exploring the spectral 

differences qualitatively and quantitatively among samples both from spectral shape and 

parameters and then form monitoring report to assist transgenic crop screening and breeding: by 

spectral angles, the similarities of samples had been analyzed; by continuum removal, the 

position of spectral differences had been analyzed qualitatively; by spectral indices high related to 

photosynthetic pigments contents, the spectral differences among samples had been assessed 

quantitatively. The results showed, under contrast conditions, the differences between transgenic 

groups and the Parent could be observed and assessed by hyperspectral remote sensing 

approach both on spectral morphology and specific indices. Applying our proposed approach, the 

differences in transgenic groups also could be observed and assessed. 
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5.3 Comparison analysis of transgenic paddy rice growth based on long time-series 

spectral data - a case of the experiment repeat experiment 

5.3.1 Introduction 

By censoring the status of growth on a time point helps to find the growth difference at the same 

condition, such as sample tolerances to stress. While monitoring the status in time-series data is 

helpful to find which sample grows stable and it's developing trend. 

This work concentrated on three points: growth trend of individual sample groups, comparison of 

the trends between the transgenic sample groups and comparison of the trends between the 
o 

transgenic samples and their contrast parents. 

5.3.2 Transgenic samples of long time series 

Transgenic samples, paddy rice, were cultivated in the greenhouse in Changsha, Hunan Province, 

China. The greenhouse where temperature could be maintained in a certain degree was managed 

by Institute of Subtropical Agriculture, Chinese Academy of Sciences. All samples were planted in 

winter. The first available data were acquired almost 1 month after the samples transferred into 

the greenhouse, and at that time the samples were in reviving or tillering stage. Because of low 

temperature, the samples grew slowly. There were total 10 times of data collection, lasting 64 

days. Except for the third, fourth and fifth time points, data acquisitions were conducted every 7 

days. z 

These samples were transferred Bar gene for enhancing resistance of herbicide. Before the 

measurement, all samples had been checked that Bar gene had been transferred into successfully 

validated by laboratory professional�PCR) approaches. Totally 6 sample groups were selected, 5 



were transgenic group and the left was the contrast. Theoretically, except gene transferred, these 

6 groups did not have difference; the transgenic samples and contrast one were hereditary; and 

the transgenic samples were isogenous. The time slices were marked as mOl, m02...ml0 while 

the samples were marked as T l , T2...T5 and P, respectively. Every four individual samples were 

cultivated in one pot since limitation of space. Thus, for eliminating the possible influence caused 

by growth condition, one pot was treated as one independent sample group. 

Spectral data were obtained by ASD spectrometer with contact probe and leaf-clip. The black 

reference panel was used as background. The center of FOV of the fiber was located at the center 

of the middle front of the second leaf counted from the core of paddy rice. The principal vein of 

leaf was vertical to the view line from the fiber. Two measurements were taken at one leaf by 

micro moving along the principal vein. For reducing heat damage to leaf, 5 pieces of spectra were 

collected every position as one measurement lasting several seconds. The mean of 5 spectra 

represents this measurement. 

5.3.3 Growth analysis within individual sample 

Figurel showed the individual sample group growth monitoring, expressed by chemicals in leaves. 

Data in figure was calculated as equation 1: 

(Index 一 Index ) 
A Index 二 (5 -3 -1 ) 

Index I 
Where ‘ represents spectral Index at time ‘ 

1 1 0 
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Figure 5-3-2. local condition of temperature and weather. The temperature in the green house was marked 

"In-door" while the other was marked "Out-door". 

Generally speaking, going with grown-up, the photosynthetic ability of samples would be 

1 1 2 

10 time slices from mOl to mlO. 

Table 5-3-1. Index selected and its relationship with foliar chemicals 
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enhanced. If this trend was expressed by negative related index, the curve of the index should 

show down-form. However, in figure 1, the results indicated the content of chlorophyll a (figure 

la) and chlorophyll b (figure lb) in leaves decreased in general except the status at the mOl 

compared with the status at mOl. It might be affected by temperature. Though the greenhouse 

could maintain temperature, the change of temperature out of the door were violent, the 

dispersion were up to 10 degree Celsius between day and night outside. The dramatic change 

also would interrupt the local-environment in the greenhouse. Temperature change is a kind of 

serious stress to the samples. For avoiding this effect, data acquisition was arranged in the middle 

of day. However it could not overcome it completely. This stress influences sample growth, on the 

other hand, it is also a kind of test of stress resistance. Figure 2 showed the relationship between 

temperature and example spectral index. It was found that when in-door temperature increases, 

the ARdaa (to Rdaa at mOl) decreased in general. At time m06, indoor temperature was up to 

32.5。，the ARdaa increased which revealed the content of chlorophyll pigments decreased. The 

samples at that time endured temperature stress. And from m06, the samples began entering 

flowering slowly. Previous studies pointed out that the threshold of high temperature stress was 

35�(Jagadish, et al., 2007, Michiels, et al., 1994). Satake et al.(1978) pointed out that if exposed to 

35°C more 5 days in flowering stage, rice would be set no seed. However, these data were all 

acquired under natural condition which would be not in very high humidity. Besides high 

temperature, very high humidity in the greenhouse was another objective factor which would 

have influences on rice growth. Meanwhile, many studies also reported that genotypic variation 

also a factor defining the threshold of high temperature stress {Matsui, et al., 2001, Prasad, et al,, 

2006, Satake and Yoshida, 1978). Figure 2 showed when the indoor temperature was closed to 

33。，temperature stress would happen (figure2 in green block). It was generally consistent with 

the results reported by Jagadish, et al. (2007). All samples had the same changing trends of 

chlorophyll pigments. Based on these analyses, Sample 12 and T5 may have stronger resistance to 

temperature stress. Figure If showed NWDI which related to leaf water content. It showed that 

at m02, m07 and m08, some samples should be watered. Figure Ig showed that T1 maybe 

consume nitrogen more quickly than the others. And at m02, all samples should be added 

fertilizer of nitrogen. Figure I h showed all samples had a stable lignin metabolism. Compared 

with lignin status at mOl, the concentration of leaf lignin decreased in general. Therefore, the 

greenhouse needed to be cooling and controlled humidity level. These were important findings 

for professional researcher to discriminate sample changes or external stress and manage the 

greenhouse. 

The foliar chemicals changes reflect the growth pattern of the samples (figurel). If these changes 

were synchronous, the patterns of these changes would be high related. Moreover, the larger the 

correlation coefficient of the two chemicals is, the stronger the interaction of them is. It is 
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important to study of interaction of relevant leaf mechanism. Because of Rdaa, Ind2 and IncB are 

homologous, thus only Rdaa, namely chlorophyll b marked by chl, was chosen to join the 

correlation analysis. Table 2 showed the relationship (interaction) among foliar chemicals of 

which input data were the same as data in figurel. The Chl change pattern was stable high 

related with the track of carotenoids, water content, and lignin content which indicated these 

chemicals had a strong interaction between each other. They were associated, shown by table 2. 

It also proved the importance of chlorophyll In leaf from another perspective. It seemed the 

change pattern of water was slightly related to Nitrogen'. However, this relationship was not 

stable. Maybe it was because that nitrogen change was more complicated than water and 

affected by more factors. 

Table 5-3-2. The relationship (interaction) between foliar chemicals 

Chemicals Chl Carotenoids Anthocyanin Water Nitrogen Lignin 

T1 

Chl 

Carotenoids .959 

Anthocyanin 

Water 

Nitrogen 

.593 

.857 

.490 

Lignin -.857 

~J2 ~ 

Chl 

Carotenoids 

Anthocyanin 

Water 

Nitrogen 

Lignin 

Chl 

Carotenoids 

Anthocyanin 

Water 

Nitrogen 

Lignin 

Chl 

.899 

：涵… 

7699 

-.697 

.912 

.726 

-.147 

Zsis 

14 

.550 

.797 

.297 

.946 

.505 

.746 

.137 

.765 

-.414 

.678 

.568 

.367 

-.441 

.761 

-.580 .019 

.294 

.045 

-.720 

.222 

.016 

-.356 

.514 .524 

.142 
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Carotenoids .982 1 

Anthocyanin .291 1 

Water .671 — .667 .153 1 

Nitrogen -.494 ''-.575 ‘ .159 - .000 1 

Lignin -.874 

T5 

— -.258~ ” — -386 — .505 

Lignin 

Chi 1 

Carotenoids .954 1 

Anthocyanin -.027 -.079 

Water .788 .715 

Nitrogen -.316 -.513 

.835 .787 

.327 

.052' .098 

.331 .456 

Chi 

Carotenoids 

Anthocyanin 

Water 

Nitrogen 

Lignin 

.950 

.197 

.837 

.756 

.852 

.159 

.774 

.560 

.907 

-.153 

.089 

.464 

.823 

• 366 1 

5.3.4 Growth analysis among sample groups 

As mentioned above, the possible difference between the transgenic samples was that they were 

planted in different pots and put different position in the greenhouse. Theoretically, if ensuring to 

avoid the influences of external factors, the sample should have same performances (growth 

status and trends). However, the gene expression is so complicated that the samples may be 

varied. Therefore, analysis among samples should be conducted. 

In this section, the contents of 8 chemicals were chosen as indicators of paddy rice growth 

monitoring. 

Defined a variable vector, chemical change (cc) as: 

cc=[chlorophyll_a(lnd2), chlorophyll 一 b(Rdaa), chlorophyll 一 ab(lnd3), carotenoids{car), * 
anthocyanin(mARI), water(NDWI), Nitrogen(nitrogen) and Lignin(lignin)] (5-3-2) 

Where chlorophyll_a(lnd2) represents that chemical chlorophyll a is indicated by spectral index of 

the Ind2, the same as the others. 

Thus cc represents a comprehensive biochemical status of a sample at certain time. The higher 

the correlation coefficient between cc of the two samples, the more similar the status of two 
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samples are. When the samples are isogenous and cultivated at the same condition, the growth 

difference of thee samples could be reflected by cc. Table 3 lists the correlation coefficients of the 

cc of ail samples. All samples were highly related to each other which indicated that the samples 

had the similar growth status. However, considering the samples isogenous grew in the same 

condition, that if any differences between them, it would be very slight. Moreover, the cc is a 

comprehensive index containing 8 pieces of information, thus the difference of some specific 

parameter would be overlaid. Therefore, the threshold (expressed by the correlation coefficients 

between the cc of samples) for the significance of the difference test should be small. In the table 

3, the threshold was set to 0.920. If the coefficient was lower than 0.920, the significance of the 

difference test should be conducted. In the table 3, at mOl, the coefficient of T4 and P was less 

than 0.920. Moreover, the coefficients between transgenic groups and the contrast, and T1 and 

the others (explained in figure 3), were not as high as the others at m07, m08 and m09. Therefore, 

growth analysis between transgenic group and contrast group should be conducted. 

Table 5-3-3. The correlation coefficients between the cc of samples 

Samples 11 

mOl 

T2 T3 T4 T5 

T1 1 

T2 .999 

T3 .967 

T4 .958 

T5 .995 

P .991 

.963 

.952 

.995 
一 

.999 

.930 

.977 

.918 

T1 

" t T 

T4 

'T5 

m02 

i 

.987 

.990 

•而 

1.000 

.999 

~999 

.982— 

.997 

.998 

.977 •972 

T1 

T2~ 

I T 

T4 

—T5 

.996 

；979 

.999 •997 .976 

.982 .999 
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T1 

I T 

I s 

" t a " 

T5 

t 1 

1 3 

T T 

T1 

一 T 2 

I T 

T4 
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.980 
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1 
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m05 
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. 9 9 ^ 
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~997 
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.973 .965 .978 .971 

T1 
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T3 
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T5 

T1 

12 
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" t 4 
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•943 
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5.3.5 Growth analysis among transgenic group and contrast group 

To compare chemicals status in leaf the contrast "group P, the difference between transgenic 

sample and its contrast groups at the same time slice following the equation 3. 

(/nc/ex (T ), - I n d e x ( P ) , 

A I n d e x = 

I n d e x ( P ) 

(5-3-3) 

lndex{T)j 
Where ‘ represents spectral Index of the sample T at time ‘ . 

Figure 3 gave the track of Individual sample group growth, expressed by chemicals in leaves and 

compared with the contrast group (P). The data in the figure 3 were calculated followed equation 

3. For chlorophyll a； except for T2, the others had higher chlorophyll a content than the contrast 

group at time mOl. Then the content of T3 and T4 began to decrease while that of T l , T2 and T5 

Increased at time m02. After m03, the content of all transgenic samples had the same trends 

increased then decreased. The figure 3a showed that after the time m06, transgenic sample had 

higher content of chlorophyll a which indicated that the samples were more active 

photosynthesis than the contrast. The same development patterns of the content of chlorophyll b, 

Carotenoids were showed in figure 3b, 3d. 
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the 10 time slices from mOl to mlO. 

Figure 2 showed that began m04, the temperature in door increase quickly, and favorable 

temperature made the sample vigorous. And transgenic samples were more active than the 

contrast. After m06 (except for m07), the samples suffered temperature stress, however, the 

transgenic samples still had higher content of chlorophyll a and b. The content of chlorophyll a+b 

indicated by IndS were not consistent with the information showed in figure 3a and 3b in general. 

Figure 3a and 3b indicated that the content of chlorophyll a and b of transgenic groups were 

higher than the contrast except for m04 and m05. However, the opposite difference was shown 

by figure3c. It was possible because of difference of reference bands for spectral index, Ind3. But, 

the content change of T1 chlorophyll a+b was consistent with the change patterns of chlorophyll 

a and b. And in tableS, the coefficients of the cc of T1 and the other transgenic samples were not 

as high as the others. One of the reasons might be the abnormal expression of chlorophyll a+b of 

other samples. Figure 3e indicated the track of the content of Anthocyanin, it was just for 

reference. The time m04 was a turning point among figure la, l b and Id. Excluding m05, all 

other time, transgenic samples, except for T l , had higher content of carotenoids than the 

contrast. Figure 3g showed the content changes of nitrogen vibrated seriously around zero. From 

the figure, T3； T4 and T5 were more sensitive, the chemical changes of them varied violent. 

The cc reflected that the contrast sample had very similar growth status expressed by foliar 

chemicals except for with T4 (0.918 in table 3 at mOl). Thus, it was necessary to conduct a 

significant test of the difference between T4 and P. the chemical content changes were set as 

input data (calculated follow eqautionl). 

Table 5-3-4. The significant test of the difference between T4 and P (a=0.01) 

Stat. Chi a Chi b Chi a+ b Carotenoids Anthocyanin Water Nitrogen Lignin 

Sig. 0.0993 0,1176 0.8420 0.0091 0.5642 0.00061 0.6926 0.0710 

h 0 0 0 1 0 1 0 0 

In table 4, sig. is the p-value associated with the t-statistic. In this section, when sig. is smaller 

than 0.01, the null hypothesis should be rejected and then h equals to 1. This result revealed the 

two tested variables were significantly different. From the table^ the content of carotenoids and 

water of T4 were significantly different to the contrast group's P's. And they were the principal 

factors causing the coefficient of the cc of P and T4 lower than 0.920. This result also indicated 

that the threshold was set to 0.92 was reasonable. Except for water and carotenoids, the other 

chemicals of T4 and P had no significant difference. 

5.3.6 Conclusion 

In this section, the long time series data of transgenic groups and the contrast were analyzed. The 
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samples growth pattern and status were analyzed within individual sample, within sample groups, 

and among transgenic group and contrast group respectively. By these analyses, some important 

indicative results were obtained. A potential temperature stress had been found. The Chi change 

pattern was stable high related with the track of carotenoids, water content, and lignin content. It 

revealed these chemicals have a strong interaction each other. A new description variable (vector) 

chemical change (cc) was defined to as Indicators of paddy rice growth monitoring. It is a 

comprehensive biochemical status of a sample at certain time. By censoring the correlation 

results of samples cc, the status of T4 and P at mOl were not consistent. After statistic test, the 

change of carotenoids and water contents of them were significantly different. All these results 

would be useful to assist professional biologists to fulfill crop screening and breeding. It helps 

them know their samples clearly and help experiment under control. 
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5.4 Analysis of difference response of transgenic samples to stress - a case of the 

foreign genes activated by artificial induction 

In sections 5.1-3, the transgenic samples growth under a normal condition without man-made 

stress, and the characteristics and growth status of the samples were evaluated. In this section, a 

controlled stress environment had been made for the samples aiming at the personality of the 

transgene. By these designs, the genes transferred into the receptor would be promoted, and 
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different characteristics of transgenic samples under this condition would be captured by the 

proposed approach. 

5.4.1 Samples and experiment 

5.4.1.1 Samples 

In this study the author cooperated with Centre of Crop Ecology in Environmental Stresses, CAS. 

Because of relative low temperature, maintaining around 25° , samples grew slowly. Until the 

experiment after been transferred into pots 90 days, they were still in stage of tillering. For 

controlling the growth conditions, every 4 same individuals of samples as a group were planted in 

a pot. They transferred Bar gene for resisting herbicide into samples. It made the sample more 

complicated during breeding. 

In the greenhouse, several kinds of high intensity lights were placed for supplement sunlight in 

winter Also air-condition, heater and dehumidifier were employed to automatically change 

setting to maintain indoor micro-environment for paddy rice growth. For suppressing external 

noise to samples, soil in and material of pots were the same. Water and fertilizer were controlled 

too. All pots were arranged on a platform approximately 1.2mters high for heat control. The 

samples were distinguished into 8 groups according the pots they were. Seven transgenic groups, 

they are T1 to T7, and one contrast group, parent. 

5.4.1.2 Experiment 

The experiment was done on March, 2010, in Changsha, China. All transgenic samples and their 

parent as contrast group were cultivated in a professional greenhouse. The author collected 

spectral reflectance data (-Oh) of samples. Then except for the contrast group, all others were 

sprayed herbicide of 03% Basta {C5H15N204P). In the following days, the author collected 

post-24h-spayed spectral reflectance data, post-48h, post-72h and posM68h ones (recognized as 

-Oh, 24h, 48h, 72h, 168h). By compared the transgenic samples with their parents and their 

brothers in the time series, the author wanted to find out if there is any difference of spectral 

response of transgenic samples to herbicide; if yes, what intensity of the responses is between 

sample groups in the same time point and In the groups in the time series respectively. These 

• responses would be the indicators of differences response capability between samples in 

biophysical and biochemical process. Particularly under controlled experiment, they could be as 

important reference to assess difference of samples by comparison to fulfill monitoring and 

screening samples. 

Considering that diurnal changes in metabolic actives, growth pattern and cell division were at 
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day/ night changes, the author collected data in a fixed time, beginning at 2pm and in a certain 

sorts of samples to suppress the effects of these changes. 

5.4.1.3 Equipment 

In this experiment, considering the differences between transgenic samples and their parent, the 

author acquired fine spectra of leave. The selected leaves were the second one of the plant 

counted from the core leaf to the out. And the spot of probe view located at the middle of the 

leave to suppress misunderstanding caused by differences of leave. In the study, an integrated 

system was employed consisting of an Analytical Spectral Devices (ASD) FieldSpec 3 Spectrometer 

with contact probe and leaf-clip (figure 1). Spectral reflectance data range from 350nm to 

2500nm. Leaf-clip interfaced with the ASD high intensity probe. 

Figure 5-4-1. ASD Spectrometer with probe; b. Data acquisition 

5.4.1.4 Data pre-test 

In this study, the author focused on the responding action on a group level, namely the author 

took the mean spectra to present the group as input data. 

Before calculating the mean spectra, the author first had outlier test, Grubbs Test, in groups to 

ensure the consistency of spectral data in the same group. For this test, the input data should fit 

to normal distribution, thus before the test, the author first had a Single sample lilliefors 

hypothesis test of composite normality with command 'lillietest'. For lillietest, namely, the test 

value equals to 0, the null hypothesis that the samples fit to normal distribution, should be 

accepted, and otherwise rejected. The results of these two data pre-test could be read from 
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tablel. In the whole bands of ASD, 2151 interpolation points from 350nm to 2500nm was 

conducted by outlier test, while bands only in 420nm to 2400nm were tested with lillietest since 

from 350nm to 419nm and 2401nm to 2500nm, 170 interpolation data were easily polluted by 

noise. The tablel shows some data did not fit to normal distribution. Most of these ones locate in 

near red infrared and even after bands. These bands (e.g. 1409nm- 1997nm) are water and 

temperature sensitive. Temperature sensitive in study for foliage is an indirect response of water 

sensitive. This problem should be paid more attention to in future to avoid temperature effect. In 

this study, for eliminating its effect, the author choose evaluating factors which do not locate in 

or take the readings in the range as input data shown in tablel as much as possible. Outlier test 

showed in some sample groups, there were lots of data were tested as outliers. Since the 

maximal number of outlier was 2055, compared 2511*8, the outliers were still a small probability. 

Thus removing the outliers would not affect further studies. And this outlier could be analyzed in 

the section 5.5. Moreover, the data showed that the number of outliers had no related to its 

normality. 

Standard variation is necessarily supplementary to describe the characteristics of sample data. In 

these five time slices, the maximum average of standard deviation calculated by band was 0.075 

and most of them were around 0.001. It indicated that the data were consistent. In all, from the 

tablel, applying the mean spectra data as input data to represent the group is reasonable and 

practicable. 

Table 5-4-1, Pre-test of consistency within sample groups 

" o h 

Sample Sample Outlier Normal Distribution' Standard variation (stdv)' 

groups numbers test* Normal Range(nm) Average Stdv Max Min 

T1 丁一 - 0 一 “ —5—2一 T43-668 0.009 0.005 0.018 0.001 一 

'T2 8 0 1 / 0.009 0.005 0.018 0.003 

T3 8 2055 1678 
534-566 

704-1915 
0.048 0.032 0.096 0.004 

T4 8 4 8 " " 44 530-574 0 : 0元一― 0.018 0.060 0.003 

T5 6 920 7 7—— 0.012 0.011 0.033 0.002 

T6 8 0 “ 7 / 0.008 0.004 0.019 0.002 

17 6 0 22 / 0.007 0.007 0.024 0.001 

708-718 

Parent 15 39 451 742-758 

1493-1864 

0.013 0.010 0.030 0.002 

24h 
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Sample Sample Outlier 

groups numbers test* 
Normal Range(nm) Averge Stdv Max Min 

T1 8 — 0 22 / 0.011 "57008 0.026 0.002 

12 8 0 63 1579-1609 0.008 "0.004 0.026 0.003 

T3 8 0 170 
724-746 

1603-1743 

421-508 

0.021 0.018 0.053 0.003 

T4 8 0 292 523-574 

1409-1997 

0.018 0.013 0.041 0.003 

T5 6 0 30 / 0.016 0.010 0.033 0.004 

T6 8 0 376 
421-493 

1010-1295 
0.012 0.008 0.027 0.002 

T7 6 0 0 / ‘———— 0.023 0.016 0.054 —0.002— 

Parent 15 1 34 / 0.015 0.007 0.030 0.003 

48h 

Sample 

groups 

Sample 

numbers 

Outlier 

test* 
Normal Range(nm) Average Stdv Max Min 

T1 8 920 904 
729-1383 

1575-1776 
0,010 0.005 0.019 0.004 

T2 8 66 76 / 0.010 0.007 0.022 0.002 

T3 8 155 188 2132-2291 0.034 0.028" 0.078 0.002 

421-496 

T4 8 1139 703 742-781 

1388-1593 

0.032 0.024 0.068 0.002 

T5 6 9 1 0.015 0.012 0.039 0.002 

T6 8 256 74 1398-1438 0.009 “ 一 0.004 0.018 0.003 

一丁 7 —6 — 14" 3 / 0.005 0.004 0.020 0.000 

Parent 15 0 29 / 0.013 0.008 0.027 " 0 . 6 0 2 

72h 

Sample 

groups 

Sample 

numbers 

Outlier 

test* 
Normal Range(nm) Average Stdv Max Min 

T1 8 0 35 / 0.010 0.004 0.021 0.003 

T2 8 0 79 
1495-1530 

2081-2105 
0.010 0.005 0.021 0.003 

T3 —8 5 222 1484-1573 0.015 0.010 0.034 0.004 
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1889-2003 

T4 8 807 451 1946-2374 0.009 — ‘ ~ 0.005 0.019 0.001 

T5 6 985 656 
734-1309 

1336-1376 
0.008 0.005 0.017 0.003 

1546-1679 

T6 8 206 319 1733-1786 

1905-2019 

0.007 0.004 0.033 0.003 

17 6 101 0 / 0.025 0.020 0.061 —0.003 

Parent 15 0 0 / 0.014 0.008 0.031 0.004 

168h 

Sample 

groups 

Sample 

numbers 

Outlier 

test* 
Normal Range(nm) Average Stdv Max Min 

T1 8 135 195 ”21^0-2266 0.012 0.007 0.029 ~ " O 7 O O 3 

T2 8 ' l l 2 240 557-714 0.012 0.005 0 . 0 2 � 0.003 

746-1029 

1133-1180 

T3 8 12 683 1215-1305 

1312-1385 

1584-1761 

0.031 0.025 0.073 0.003 

T4 8 90 / 0.013 0.011 0.032 0.001— 

T5 6 0 1 …T _ 0.014 0.007 0.029 0.002 

T6 8 " O — 9 / 0.015 0.005 0.022 0.002 

T7 6 10 5 / 0.014 0.007 0.029 0.006 

Parent 15 306 95 / 0.013 0.007 0.027 0.002 

*The number of samples of which found as outliers. 

**The data in 'Normal' column are the numbers of samples which do not fit to normal 

distribution. The data in 'Range' column means the continuous range of the non-normal 

distribution samples located in. 

***ln these columns, the standard variations calculated by the individual spectrum band in the 

group had been listed, including their averages, standard variations, maximums, and minimums. 

These data helped to describe the consistency of the samples in group. 

5.4.2 Quantitative analysis based on spectral morphological characteristics 

In this study, the author had done both qualitative and quantitative analysis of samples based on 

morphological and biochemical parameter characteristics of spectral reflectance. By spectral 
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morphological analysis, the author could locate the difference between samples in spectral bands, 

and then choose parameters orientated. In general the first kind analysis would be described as 

the spectral feature location. By biochemical parameter characteristics, the author could obtain 

the quantitative data responding to the differences between or stress to, if any, samples. These 

data were useful to assess growth status of samples. 

5.4.2.1 Spectral angle between samples 

In two-dimensional space defined by band x and band y, spectral signatures could be described as 

vector, thus the angle between these two spectral signatures, t and r, could be as follow (Sohn 

and Rebello, 2002). Therefore, spectral angle could be applied to represent the similarity of the 

two spectral signatures. The less the angle is, the more similar the two signatures are. 

n 

9,r = cos (-) “ 0 2 
(5-4-1) 

The spectral angles of each two samples at the 5 time points have been calculated in radian. From 

the figure 2, the spectral angles between theses samples were not very great; the greatest one 

was no more than 0.07 radian. At -Oh, sample T7 had great angles with the others, even great 

than angles of parent and transgenic ones. The biggest angles were the one of T7 & T1 and T7 

&T3. However, the spectral angles between the left groups, just except 17, mainly ranged around 

0.03 radian. Comparing the transgenic samples with the contrast group, the spectral angles were 

not very big, especially for T2, it showed much similarity of spectra to the parent. After 24 hours 

post sprayed herbicide, the angles of transgenic ones to their parent began to increase gradually. 

However the values of them between samples were not large in distance. The largest angle was 

the one between T1 and T5. The others were not different sharply. After 48 hours, the angles 

with parent were continuing bigger and the largest one became the one between T5 & parent 

and T5 & T7. After 72 hours, angles between T5 & parent and T5 & 17 were relatively still large. 

However, the biggest ones were T1 & T5 and T1 & T4. 168 hours after, the plants were of 

adaptation to the herbicide stresses and had a stable status of growth. Compared with the angles 

after 72 hours, the angle between of T4 and parent was the largest one, the angles of T4 with Tl , 

12 and T7, and T5 with Tl , 12, T7 and parent were relatively larger too. During these 168 hours, 

to the angles of T6 with the others were smaller than others, and they were stable. In this 

procedure, the parent had no stress on, the only differences between it was the influences 

caused by normal growth. Therefore, it could be as reference to assess the adaptation of samples 

to stress. Compared with the figures at -Oh and 168h, sample T l , T2, T3, T6 and T7 recovered to 

the original spectral angle values. In this study with existing data, the author could not 

quantitatively offer what big the spectral angles are significant to indicator the true difference 
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between samples. However, the angle at last showed a possibility of difference, providing an 

efficient practical strategy eliminating workload for monitoring samples compared with 

traditional methods. Thus, from these figures, some questions, as discoveries would be 

abstracted. 

During these 168 hours, sample T l , T3, T4, T5 and T7 were discriminated. The difference existed 

between transgenic samples was more obvious than that between transgenic ones and their 

parent. Especially for T7, it was much close to its parent. All these might provide useful 

information about these samples and be reported to professional technician of biology. And in 

the following work, T l , T4, T5 and T7 would be focused on. 
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Figure 5-4-2. Spectral angles among samples by time 

5.4.2.2 Spectral difference of continuum removal 

Vegetation spectrum, responding to electromagnetic energy, composed of absorption, 

reflectance and emission of energy, is decided by vegetation chemical and spectral morphological 

features which are highly related to the development health and growth conditions of plants 

(Boochs, et al., 1990, long, et al” 2006). In visible bands, kinds of pigments, especially chlorophyll, 

are the main things responding to electromagnetic energy (Gates, 1965). In near Infrared bands, 

the responses are mainly controlled by internal cell structure of leaf (Gates, 1965). Previous 

studies revealed that by vegetable spectrum, information both of surface and inner leaf could be 

obtained, including biochemical components and biophysical processes (Wessman, et al., 1988). 

Thus, by comparison the spectral shape, it is easy to locate the difference and deduce the 

possible reason for this difference. Reflectance is a relative magnitude without unit. However, it is 

easily affected by external factors such as background. Thus, before comparison, it should be 

normalized in high-accuracy analysis. 

In this study, spectral continuum removal (CV) was employed which project the data to [0,1]. All 

components in data contribute to this transform which emphasized the location and depth of 
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individual spectral absorption features (Clark and Roush, 1984). By this transformation, the data 

were projected to a space where they could be compared with each other directly associated 

with wavelength. For clearly describing the spectral the differences between samples, the author 

chose a baseline of data and subscribes CV of the other from it. There is a simple relationship 

between CV and spectral reflectance that the greater the CV value is, the greater the spectral 

reflectance value is. 

5.4.2.2.1 Comparison with the parent between groups 

By investigating the figures, it could be found that differences mainly located in range of 

[420,750nm], [1400, IGOOnm] and [1800, 2000nm]. The dispersions compared with parent group 

could be negative or positive. If the dispersion was negative, that means the transgenic sample 

had a lower reflectance than its contrast group at that certain bands, else was the opposite. The 

spectral reflectance which was calibrated represent the capability of certain object reflecting or 

absorbing light energy (In some situations, emitting is also involved). The absolute biggest 

dispersion was more than 30%. Before spraying herbicide, the biggest dispersion of transgenic 

samples with their counterpart was with T1 in [420, 750nm], and with T3 in [1800, 2000nm]. For 

others these variances were around 0. 24 hours later, transgenic samples responded to stress of 

herbicide, the dispersions had been enlarge totally, especially after red-infrared ranges. The 

largest dispersion was still with T1 in [420, 750nm]. But at this time, there was no significant 

difference between the responses to stress of transgenic samples. 48 hours after, the responses 

to stress of the samples began to be significantly different (the figure became more violent with 

clear edges between groups). [1400, 1600nm] and [1800, 2000nm] are bands water sensitive. 

When light from the high-intensity contact probe's self-lightning system, the surface temperature 

would be slight changed which would be responded by spectral reflectance of the leaf. By 

suppressing sampling time to eliminate the surface temperature (water content) change, 

however, the effect of surface temperature change could not be avoided totally. It was one of 

the reasons why there would more obvious differences in these two ranges at the figure. Of 

course the rear difference of water content in samples would also cause the results what the 

figures show. [420, 750nm] is the range photosynthesis sensitive bands. In this range, T l at the 

five time slices had a great positive dispersion, while T2, T4, T5 and T7 had several shifts from 

negative to positive or the opposite. T3 and T6 were more stable compared with their 

counterparts. By these comparisons, qualitatively information could be obtained about the 

‘capability of the sample responding to the herbicide stress. 
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Dispersion of S p e c t r a l Cont inuum R e m o v a l 
(at 48h with parent *100%) 
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Dispersion of S p e c t r a l Cont inuum R e m o v a l 
(at 72h with parent -100%) 
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D i s p e r s i o n o f Spectral C o n t i n u u m R e m o v a l 
(a t 168h w i t h p a r e n t *100%) 
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W a v e l e n g t h 

(e) 

Figure 5-4-3.Dlsperslon of spectral continuum removal results (compared with the contrast groups by time, 

•100%) 

5.4.2.2.2 Comparison in the inner groups 

For obtaining the responses to the stress of the same sample, the CV at -Oh was taken as baseline, 

and subtracted by its counterparts at the other time slices. By this analysis, the author could get 

information of responses during the procedure of stress adaption. From these figure； except for 

T l , T7 and Parent, the other groups had a shift of dispersion from negative to positive. Compared 

with the results between groups, the figures showed the dispersions mainly located [1000, 

1200nm] besides [420, 750nm], [1400, 1600nm] and (1800, 2000nm]. Also, for Tl , T3, T5 and T6, 

there were some slight differences shown in the figures in ranges [800, lOOOnm], All the samples 

adapting to the herbicide stress fitted to a same procedure generally: the most sensitive bands 

were photosynthetic ones. It revealed that herbicide had a very strong stress to the foliar 

photosynthetic pigments. This stress would positive (figure 4a) or negative (figure 4e) decided by 

the specific sample's tolerance and responses. And chlorophyll and carotenoids pigments would 

have different kinds of responses (figure 4c, f and g). 48 hours after, most samples had adapted to 

herbicide stress (or the stress was over), and the status reflected by spectrum recovered to the 

-Oh level. 168 hours after, the status was all most the normal growth, and the herbicide stress had 

little influence on the sample. This conclusion could be deduced from the growth pattern of the 

contrast group. The contrast group had not been sprayed herbicide since they would be 

destroyed totally. Thus the pattern expressed by the contrast could be set as a reference for 

comparison. Water content sensitive bands, mainly around 1400nm and 2000nm, also responded 

to the herbicide stress. Meanwhile these two ranges also were nitrogen and lignin sensitive 

bands (section 4-3). More data were needed to confirm whether the herbicide or water and 

nutritional stress made the responses. The different performance to adapt the stress reveals the 

inner discrimination of samples in general, and all these difference responses would be studied in 
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the Qualitative analysis based on parameterized features. 

Moreover, from 700 nm to 1000nm (infrared bands), spectral features of transgenic groups had 

no changes. According to optical properties of leaf, the features in these bands were decided by 

the leaf inner structure (Carter, GA and Knapp, AK, 2001). It demonstrated that the herbicide had 

no influence on the internal structure of transgenic leaf. 
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Dispersion of Spctral Continuum Removal 
with -Oh's MOO: Group T4 
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Figure 5-4-4.Dlspersion of spectral continuum removal with groups (compared with the status at -Oh, *100% ) 

5.4.3 Qualitative analysis based on parameterized features 

5.4.3.1 Parameter selection 

5.4.3.1.1 Photosynthetic pigments content indices 

According to the analysis above, the principal spectral differences were found, concentrating on 

the bands ranging in [420, 750nml, [1400, 1600nm] and [1800, 2000nm]. Considering the results 

of consistent test of the input data, (420, 750nm] is an ideal bands range. Furthermore, this range 

is photosynthetic bands which are much more sensitive to the external and internal stress to the 

plant. Through spectral changes here, mainly about the responses to photosynthetic pigment 

content, a number of information about the changes of biochemical and biophysical process 

would be revealed. 

Photosynthetic pigments content related strongly to the photosynthetic potential of a plant, 

therefore it could be as an indicator of plant overall physiological state. The changes in these 

pigments content were sensitive to and indicative of stress of a plant. Therefore, by monitoring 

the changes of, photosynthetic pigments, the slight response to the stress of a plant could be 

obtained. This stress involves light stress (photo-protection and other responses of plants to high 
I 

light stress). Stress conditions of plant could be detected by measuring biophysical process as well 

as content of the photosynthetic pigments. Most stress factors, even if they do not directly affect 
� 

the composition of the photosynthetic apparatus of its functions, will affect the photosynthetic 

process in long run(Lichtenthaler, 19^6).. 

In the study, spectra reflectance data, laboratory chlorophyll content were collected. With these 

two kinds of data, vegetation indices (in table 2-5) involves photosynthesis would be applied to 

be as indictors of chlorophyll content, indirectly of capability of photosynthesis, to the stresses or 

Influences. 

- 1 3 5 



Taking account of the result of consistent test of the input data, it should avoid the bands located 

in the non-normal distribution ranges (table 1) as much as possible to ensure the 

representativeness of the sample group. Many indices based on reflectance have been developed 

to retrieve and predict photosynthetic pigments content of plant at different scale. Retrieving 

pigment content based on spectral reflectance is a practical method which has been widely used 

for monitoring plant growth including vegetation stress. Compared with the studies on 

chlorophyll a and b, there were less works on carotenoids and anthocyanin content with spectral 

reflectance approaches. However, researchers developed spectral indices as indicator of these 

components. Thus, in this study, the author applied the previous achievements, spectral indices, 

as Indicators to qualitatively analyze photosynthetic pigment content of the samples. These 

indices included edges of specific features, complicated indices which could avoid external 

disturbance or combine several unique spectral features. Considering the spectral resolution of 

the equipment, the edge position had been given up though it had a very good relationship with 

chlorophyll content. 

Most of these indices listed had been assessed in the section 4-3 and proved sensitive. And for 

one foliar chemical, several indices were used to indicate its status. The redundant arrangement 

was for cross-validation to overcome flaws of individual spectral index. 

Table 5-4-2. Spectral indices developed as chlorophyll (a+b) indicators (Bannari, et al., 2007b, Gitelson, A. A., et 

al., 2003): 

ID Indices Description source 

1 Red edge(R) 

2 Red edge(area) 

3 Red absorption(R) 

4 Red absorption(area) 

5 Blue edge(R) 

6 Blue edge(area) 

7 Green peak{R) 

(Pu and Gong, 2000) 

EGFN=(Dr-Rg)/(Dr+Rg) 

Dr: max(first derivate in red edge ), Rg: max(first derivate in green 

peak) 

(Treitz, et al., 1999) 

9 Triangle Vegetation Index 

Wl=0.51 det(AB,AC) | =0.5*(120*(Rnir-R 

A=(550nm,Rgreen), B=(670nm,Rred),( 

g J - 2 0 0 * ( R r e d - R g , 

:=(750nm,Rnir) 

een)) 

(Broge, N. H. and 

Leblanc, E., 2001) 

10 R87= (RsOO—R700)/(R800+R700) 

< 

(Gitelson and Merzlyak, 

1994) 
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11 git03= (R750-80o)/(R695-74o)-1 (Gitelson, A. A., et al., 

2003) 

12 Chlorophyll Absorption in the Reflectance Index (CARI) (Kim, et al., 1994a) 

CARl =(R7oo-R67o)-0.2*(R7oo-R55o) 

13 Modified CARI (mCARI) (Daughtry, C. S. T, et 

mCARI=[(R7oo-R67o)-0.2*(R7oo-R55o)]*(R7oo/R67o) al., 2000) 

7̂50-800= Average{Sum(Reflectance(750:800))); 

RNIR=Average{Sum(Reflectance(700:750))); 

R,ed=Average(Sum(Reflectance(650:690))), the red absorption feature; 

Rgfeen=Average(Sum(Reflectance(510:560))) the green peak feature. 

So do the other abbreviations in the follow tables. 

Table 5-4-3. Spectral indices developed as carotenoids indicators (Ustin, et al., 2009): 

15 

16 

17 

18 

19 

20 

ID Indices Description 

14 Photochemical reflectance index (PRI) 

P R I = (R531-R57O)/(R531+R57O). 

Source 

�Gamon, et al., 1992) 

Chlorophyll Absorption Ration Index 

CARI2=CAR(R7OO/R67O), 

CAR= I (a*670+R67�+b) |/(aA2+l 广 O.S 

a=(R7oo-R5oo)/150, b = R 5 5 � - ( a * 5 5 0 ) 

(Broge, N. H. and Leblanc, 

2001} 

Carotenoid Reflectance Index (CRI) 

C R I 5 5 0 = R " ' s i o - R " \ 5 0 

CRI700=R' '5 IO-R"Soo 

Modified CRI (mCRI)—— 

mCRIgreen=(R'\io S20-R'̂ 6o-57o)><Rnir 

mCRIredge=(R"^5io - 520 - R ' W 7 i o ) x R 

(Gitelson, A. A., et al., 2002) 

(Gitelson, A. A., et al., 2006) 

NIR 

datt_car=0.0049*[R672/(R550xR708)] (Datt, B , 1998t 

Table 5-4-4. Spectral indices developed as anthocyanin indicators (Ustin, et al., 2009): 

ID Indices Description 

21 Modified Anthocyanin 
r 

mARI=(R 5̂30-570"R 6̂90-71o)̂ RNm 

22 RedrGreen Ratio 

RGR=Rred/Rgreen 

source 

(Gitelson, A. A., et al., 2006) 

(Gamon, J. A. and Surfus, J. S., 1999, Sims, D. A. 

and Gamon, J. A., 2002) 

137 



5.4.3.1.2 Foliar Water Content 

Vegetation water content (VWC) is an important parameter to indicate components of plant 

water status. And help to infer water stress(Penuelas, et al., 1993) and assessment of drought 

conditions(Tucker, 1980). Detecting vegetation leaf water content using reflectance in the optical 

domain, however, because most bands which the VWC indices were calculated with dropped into 

non-normal distribution area, the results of these indices just play auxiliary roles for reference 

only. 

Table 5-4-5 Spectral indices developed as water content indicators 

ID Indices Description source 

Normalized difference water index (NDWI) (Chen, et al., 2005, Zarco-Tejada, et 

23 NDWI1240=(R860-R1240)/(R860+R1240) al., 2003) 

24 NDWI1640=(NIR858-SWIR1640)/(NIR858+SWIR1640) 

25 NDWI2130=(NIR858-SWIR2130)/{NIR858+SWIR2130) 

5.4.3.2 Qualitative analysis based on parameterized features 

In this study, a baseline for reference was set. For the time series analysis within groups, the 

spectral indices calculated at -Oh were set as baseline, and were subscribed by its counterparts at 

other time slices. 

5.4.3.2.1 Dispersions of spectral indices within groups compared with -Oh'status 

The figure 5 showed the procedure of adaption of sample groups. Most of indices indicated that 

all transgenic samples had violent changes. The status at 168h also had the same situation 

including the contrast group. Because only the transgenic samples were sprayed herbicide, thus it 

could deduce that the changes after 168h were the one caused by the normal growth. It could be 

deduced by the change pattern of group P. 
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Figure 5-4-5. Dispersions of spectral indices within groups of time series (compared with -Oh' which represents 

the status before herbicide sprayed, *100%) 

X axis represents the spectral parameter, and the number relates the ID in the table 3-5, the same 

as the following figures. 

5.4.3.2.2 Dispersions of spectral indices within groups compared with the contrast samples 

In the figure 6, the contrast group was set as reference, thus the growth status compared with its 

parent could be obtained. It is helpful to assess sample growth. 
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Figure 5-4-6. Dispersions of spectral indices within groups (compared with the contrast samples, •100%) 

5.4.3. 

Figure 7 gave a comparison among transgenic samples compared with the contrast. The 

responding differences to herbicide of transgenic samples were shown. 

Figure 5-4-7. Dispersions of spectral indices among groups (compared with the contrast samples, *100%) 

In this section, the variable vector, chemical change (cc) was re-defined as 

cc=[V(parameter�i,V(parameter2)...,\/( parameter's}]. 

Where \/(parameter丨)represents the variable decided by the spectral indices in the table 3-5. 

Thus, a comprehensive index was built to describe the sample growth. Here, V (parameters) was 

the spectral indices of transgenic groups subscribed the one of the contrast group. 

In the table 6, before spraying herbicide, the growth statuses of most of transgenic groups were 

related to each other except for Tl , T2 and T7. It indicated the samples had similar growth status. 

Moreover, because the coefficients were not very high, the samples grew different slightly. T1 

and T7 were distinguished from the other groups, especially T l , totally different with the others. 

After spraying herbicide, T l , T2 and 7 began growing similar to others. Going with time passing, 

the growth statuses of the samples were more and more strongly related to each other. After 168 

hours the growth statuses were all highly related. Herbicide stress made the transgenic sample to 

grow consistently. It was an important finding. 

Table 5-4-6. The correlation coefficients among transgenic groups 
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T6 .845 .915 .905 .845 .923 1 

T7 ~ J ^ .684 ^824 V862 1 

The differences mainly concentrated at photosynthetic and water sensitive bands, the significant 

difference test was conducted to find out the details. The input data were the time series of 

relevant chemicals' indicators. Table 7 listed the significant difference test results between 

transgenic sample groups, 0 represents no significant difference existing in the groups, while 1 is 

the opposite. Because of lack of data to evaluate the anthocyanin and water content data 

expressed by mARI and NDWI, thus the results about these two chemicals were just for reference. 

The results showed that T l , with the other groups, had significant differences in chlorophyll, the 

T2, T6 and T7 were in Nitrogen, and T5, T6 and T7 were in Lignin. 

Table 5-4-7. The significant test of the difference between T4 and P (a=0.05) 

n T2 T3 T4 T5 T6 T7 

Chlorophyll 

Carotenoids 

T7 0 0 0 0 

Anthocyanin 

t T 0 

T2 1 0 

13 1 

t 4 " ‘ 1 0 ' 0 T 

t 5 i 0 0 ~ — c t 
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By comprehensive analysis of the tables and figures, especially for table 6 and 7, the time when 

the significant difference of the chemical content happened could be confirmed. 

5.4.4 Conclusion 

In this section, the samples transferred Bar gene for resisting herbicide were chosen. For 

evaluating the transgenic samples' performance to herbicide resistance, an artificial induction 

experiment was conducted. Except for the contrast group, all others were sprayed herbicide of 

0.3% Basta. Post-24h-spayed spectral reflectance data, post-48h, post-72h and post-168h data 

were acquired. When removing the outliers by band, the mean spectra were calculated to 
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represent the sample group. Two kinds of analysis were done to assess the samples, namely 

quantitative analysis based on spectral morphological characteristics and qualitative analysis 

based on parameterized features within groups and among groups. Spectral angles among 

samples showed that T7 & Tl , T7 &T3, T1 &T5, T5 & T7, T4&T1 had larger angles than others, 

while T2 showed much similarity of spectra to the parent. In the following work, T l , T4, T5 and T7 

would be focused. By investigating the continuum removal results, it could be found that 

differences mainly located in range of [420,750nm], [1400, 1600nm] and [1800, 2000nmJ. And T l 

at the five time slices had a great of positive shifts dispersions in the continuum removal figure. 

The results of the correlation analysis and significant difference test also qualitatively proved the 

previous founds. Tl , T5 and T7 had distinguished differences to the others under herbicide stress. 

When after 168 hours the growth statuses were all highly related. Herbicide stress made the 

transgenic sample to grow consistently. It was an important finding. All these results would be 

good support for professional breeding study. 
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5.5 Pre-test of difference analysis within single sample group - a case of individual 

sample screening 

Mutation is a very important event to evolutions. The positive mutation is what we want to, while 

the negative one is what we want to avoid. When gene was transferred into the receptor, if it only 

made sense to the target organism and bio-process, or if byproducts or mutations caused by this 

foreign gene existed, are what researchers are interested in. By spectral detection approaches at 

individual sample level, through the mutation or byproducts could not be found directly, however； 

it could found the spectral differences between these samples. It could be a kind of efficient 

pre-selection method for huge amount of sample screening. It is also an important 

complementarily when mean spectral was applied. Analysis of mean spectra of a sample group 

aims to the difference at a class level. It would be fulfill the assessment of the status and 

characteristics of the whole group. Analysis of individual spectra of a sample aims to single 

spectrum of sample. It is an assessment feature of individual sample. Both a sample class with 

stable characteristics and a single sample with unique individual superior features are wanted for 

study and breeding. 

Therefore, in this section, analysis based on original individual spectra in one sample group was 

conducted. It was hoped to answer two questions if any differences existed only in a specific 

individual sample and if taking mean spectrum as representative of the whole group was 

reasonable. 

5.5.1 Outlier detection based on Grubbs Test 

Outlier is defined as an observation that deviates too much from other observations that it 

arouses suspicions that it was generated by a different mechanism from other 

observations(Hautamaki, et al., 2004, Hawkins, 1980). 

In this study, Grubbs Test{Baksalary, et al., 1990, Zhang, et al., 2010) was applied. The theory of 

Grubbs Test: 

Supposing a set residue of repeated observations, which were sorted by its values: V(1)^V(2)^ 

• … . . n ) . Grubbs statistic could be calculated according to equation (1): 



1/ -— 1/ I ' - y 

_ ‘ (n) 务 _ ‘ * (1) 
S n 一 ,1 — 

口 (5-5-1). 

In the formula, '=' o is standard deviation is a key value to judge if the 

jrr ‘ e ' 
maxima was outlier, while to judge whether the minima is o u t l i e r . � a n d � ' have 

same probability distribution. shows the Critical value under the significant “ which 

could be obtained from look-up table. 

When > "̂ �（"’《), ^ e counterpart of the residue is error, and regards 

the maxima (or minima) is outlier. The significant ^ is 0.005 or 0.01 general. 

The input data of Grubbs Test need to be normal distribution, thus a pre-test were data first by 

Lilliefors' composite goodness-of-fit test. Then the Grubbs Test was conducted by bands for 

outlier detection. Defined the band vector Input as (2): 

Inpu/, = [A77et.,(l)’A7?ec,(2)”..‘Y/x,c>,(/)j (5-5-2) 

Where Input, represents the vector at the band i, spec, {k) is the spectral reflectance at the 

band i of the k̂ ^ measurements, k ranges from 1 to j. 

Normality test were done by Lilliefors' composite goodness-of-fit test, while outlier were 

detected by "deleteoutliers.m" developed by Jaco de Groot. These tests were all taken under 

Matlab software environment. 

The Input data were the ones of T4 at 48h in section 5.3. They were found with lots of outliers. 

The results of Lilliefors' composite goodness-of-fit test showed most band vectors were fitted to 

normal distribution (section 5.3 table 1). The results of Grubbs Test by band showed that there 

were 1139 outliers among the 8 samples, and the outliers concentrated in the spectrum 4, 5 and 

6. The outliers were located in the wavelength of 350-450nm, 660-730nm and 1360-2450nm. 

Since 350-420nm and 2400-2500nm are noise sensitive bands of the spectrometers. Thus, it was 

hard to confirm whether outliers in these two ranges were the one caused by the equipment or 

samples. Thus, the two ranges were excluded when the data applied. Therefore, spectrum 4 

could be treated as normal one. The range of 660-730 nm is photosynthetic responding bands 

while 1360-2450nm is sensitive bands to water and nutritional material. 

Table 5-5-1. The outliers in the samples 

Number Number Outlier 
Sample Outliers 

of samples of outliers samples 

5.3-48h-T4 8 1139 
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433-441 

5(164} "35'0~351,353-361,364-497,560"678 

6(955) 368,716-726,1369-2451 

When spectrum 5 and 6 were excluded, this sample group could be expressed by its mean 

spectrum. However, the test was conducted by individual band, the whole curve of the spectra 

also needed to check广 thus, the approaches of spectral angle and continuum removal were 

applied to describe the shape of the spectra. 

5.5.2 Analysis based on morphological features 

For spectral reflectance vectors t and r sorted by band, thus the spectral angle 9 of t and r could 

be defined by equaiton(3)(Sohn and Rebello, 2002). 

6, r 二 COS e e 0, 
n 

~2 

(5-5-3) 

Table The spectral angles of sample spectra (in degree) 

51 S2 S3 S4 S5 S6 S7 S8 

51 

52 
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54 
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56 

"S7 
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0.00 

3:63 

2.22 

2.34 

2.91 

1.92 

2.09 

0.00 

3:62 

6.14 

5.64 

1.85 

4.68 

5:02 

0.00 

2.91 

2.95 

2.95 

2.03 

.26 

0.00 

1.41 

5.36 

1,69 

138 

0.00 

4.76 

.33 

0.00 

4.04 0.00 

.01 4.32 0.38 0.00 

The largest spectral angle was the one between S2and S4, up to 6.14° in table 2. S2 and S5 also 

had a relative bigger angle. The angel between S4 and S6 was the third biggest, up to 5.36° . The 

table showed an Interesting result, that spectrum 2 the one more distinguished to the other 

spectra rather than spectrum 4, 5 and 6 which had outliers. Therefore, spectrum 2 should be 

checked too. However, though the largest spectral angle was up to 6.14° , it was still a very small 

value which indicated that only slight differences between the two samples. 

Continuum removal is a useful transform to amplify the slight features of spectrum, and isolate 

features of Interest {Clark and Roush, 1984). By this transform, the data were projected to a space 

where they could be compared each other directly associated with wavelength in an intuitive 

way. 
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Continuum removal of spectra 
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Figure 5-5-1. The spectral continuum removal image 

By the transform of continuum removal, the values of reflectance data have been projected to [0, 

1]. Thus the differences between groups could be shown by the shifts of color (shifts of 

absorption or reflectance peak) and the changes of color (intensity of absorption or reflectance) 

at certain band. The figure revealed that the shifts located around 600nm, 1400nm and 2000nm. 

Furthermore, at these shift ranges, the Intensity of absorption or reflectance was also of 

significant difference. The first shift bands were sensitive to photosynthetic pigments; the left 

ones were water sensitive bands. Because of heat effects caused by the light of the contact probe, 

the water content in leaf would change slightly. However it caused shift at water sensitive bands. 

In table 1, S I an S2 had same features, S3 and S4 were more the same, S5-S8 were similar in 

general S2 and S6 were much distinguished than the others. The two spectra had obvious shifts 

of color and changes of color compared with the others. S3 and S4 also were discriminated in 

420- 800nm. After 800nm they were more similar with the others. Spectrum 2, 3 and 6 were 

more different than the others after 1400nm. The shifts around 1400nm and 2000nm were 

possible caused by heat effect of the probe light. In general, the shifts at the mentioned bands 

were not significant. 

However, S2, S3, S4, S5 and S6 still should be checked in the quantitative analysis. 

5.5.3 Growth status analysis based on statistic methods 

Here, the description vector cc (section 5.3) was applied to indicate individual sample growth (the 

chemicals in leaf). The correlation coefficients of the cc within samples were highly consistent to 

the results of spectral angle. Therefore, it could check significant difference of the cc within 

sample to indicate the samples' growth status. Two independent sample t-test was applied. This 

test performs a T-test of the hypothesis that two independent samples, in the vectors Sland S2, 

come from distributions with equal means, namely to test if significant difference existing within 

samples. All sig. values were much higher than 0.01, namely there was no significant difference 



existing within the spectra of the samples (table 3). 

Table 5-5-3. The significant test (sig.) of the difference (a=0.01) 

S I S2 S3 S4 S5 S6 S7 S8 

S I 0.00 

52 

53 

0.97 

O782 

0.00 

0.86 0.00 

S4 0.86 0.90 0.96 0.00 

S5 0.96 0.99 0.86 一 ~a90 " 0.00 

S 6 " 0 ] 2 0.95 0.92 0:96 0.96 — 0.00 

S7 0.92 0.95 0.90 0.94 0.96 0.99 0.00 

S8 0.93 0.96 0.90 0.93 0.97 0.99 0.99 0.00 

The correlation analysis among spectra were done (table 3). All sample spectra were highly 

related to each other. However, Spectrum 6 was only slightly different (in bold in table 3). All 

spectra were consistent. No distinguished outlier (mutation) existed in this sample group. 

Table 5-5-4. The correlation coefficients among spectra 

S I S2 S3 S4 S5 S6 S7 S8 

S I 

.838 

.997 .875 

.998 1.000 

5.5.4 Conclusion 

In this section the original individual spectra of samples, instead of the mean spectrum of a group, 

were checked and analyzed. By outlier detection test, outlier was found. Based on spectral 

morphological features, the angles and the continuum removal of spectra were calculated and 

compared. The angles were small which revealed that the samples were close to each other in 
T. 

spectrum. The continuum removal showed the factors mainly trivial changes of the water 

content causing slight angles. The water content change may caused by the light of contact probe 

which heated the leaf. Statistic analysis found no significant difference among samples. All these 

results proved that (1) no significant differences existed in this sample group a n d � 2 ) applying 

mean spectrum to represent this sample group was reasonable. 
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Chapter 6 Data process and analysis system 

In chapter 5, the exploratory research works demonstrated that the proposed approach was able 

to monitor growth of the transgenic samples and helping to screen samples from a macro view 

scope. By the approach, the samples were assessed successfully both from spectral 

morphological features and parameterized characteristics (foliar chemicals), and long time 

growth tracks also were extracted. All these were important to assist the cultivation (e.g. 

breeding) to know the growth status of the samples clearly. 

In this chapter, based on the achievements of the previous content, a system of data process and 

analysis is developed. 

6.1 Development environment 

MATLAB is a numerical computing environment developed by MathWorks. It is a fourth 

generation programming language. It allows "matrix manipulations, plotting of functions and 

data, implementation of algorithms, creation of user interfaces, and interfacing with programs 

written in other languages. It is widely used in academic and research institutions as well as 

industrial enterprises"'^. It has simple syntax and is user friendly. It has graphic user interface 

programming design. GUIDE (figurel), the MATLAB graphical user interface development 

environment, provides a set of tools for creating graphical user interfaces (GUIs). These tools 

23 http://en.wikipedia.org/wiki/Matlab 
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greatly simplify the process of designing and building GUIs): Therefore, under GUIDE of MATLAB 

environment of Version 7.0.1 (R14) Service Packl, the coding was designed, compiled and 

implemented. 

G U I D E Q u i c k S t a r t 

Create New GUI Open Existing GUI 

GUIDE templates 
Blank GUI (Default) 

^ GUI with Uicontrols 
承 GUI with Axes and Menu 
^ Modal Question Dialog 

Preview 

BLANJK 

• Save on startup as: 

OK Cancel Help 

Figure 6-1. GUIDE: the MATLAB graphical user interface development environment 

6.2 system structure design 

The system should have mainly two modules, data process and results analysis. For providing a 

simple and handy window interface, the first kind of modules is designed to implement from 

menu while the second module were implemented on the window interface directly. 

6.2.1 Data process modules 

Data process module should contain basic data process functions, including: 

1) To pre-process raw DN spectral data; 

2} To convert original spectral data from raw binary to text file including raw DN data and 

raw reflectance data; 

3) To calculate Reflectance data (for spectral DN data); 

4) To draw Spectral curve (for single spectrum); 

5) To filter the noise in spectrum (spectra); 

6) To calculate the first-order derivative of spectrum (spectra); 

MATLAB help: What Is GUIDE? 
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7) To calculate the second-order derivative of spectrum (spectra); 

8) To implement the continuum removal of spectrum (spectra); 

9) To calculate the spectral angles; 

10) To calculate the parameterized spectral features (spectral indices as indicators of foliar 

chemicals); 

11) To check spectrum containing outliers detected by outlier detect modules; 

In these kinds of modules, except for spectral-curve-drawing and check-spectrum-with-outliers, 

the others could solve both single spectrum and hands of spectra. By running these modules, the 

functions of data process could be implemented separately. It is facilitated to general data 

process and analysis rather than the process for the proposed approach. 

Moreover, in these modules, an important function would be implemented, that is pre-process 

raw DN spectral data. The so-called "pre-process raw DN spectral data" represents to remove the 

individual spectrum which is obviously different from the others and calculate the mean of the 

rest as the spectrum of a measurement. For ASD spectrometer, to suppress noises； a 

measurement more than 1 spectrum would be acquired. User could decide how many spectra to 

be collected. The more the number is, the longer the measurement needs. Thus, for application 

of spectra, the first step is to pre-process data by manual evaluation to get the spectra of 

measurements. 

Generally, for a measurement, ten spectra will be obtained, and for an experiment, hundreds of 

measurements would be conducted (figure 2). With tandem mass spectra, manpower to 

complete data pre-process is time-consuming, laborious. For spectra in a measurement, they are, 

very similar to each other. In an ideal case, they should be the same. However because of 

external Influences, such as changes of illumination condition and leaf water content, they are 

just close to each other rather than the same. When these differences detected by bands are not 

bigger than the threshold, they could be treated as the same and the mean spectrum could be 

calculated. In the data process system, an integrated approach for data pre-process based on 

Inner-clustering Coefficient (coefficient of variation, cv) would be applied to fulfill this task. When 

cv of at a wavelength was bigger than the threshold, the data at this band (e.g. band) would be 

conducted to outlier detect. 

Define R(j) as the reflectance of the 广 sample at band, avR(j)=mean(R{l),..,R(j)). When 

abnormal data are found at band, for 广 sample, if | avR(k)-avR(j) | >avR(j)*cv (k ranged from 1 

to sample number), then set the (k,j) was abnormal. When the number of abnormal data for the 

fh sample is more than the normal, then set the reflectance of the 广 sample is abnormal. When 

all reflectance had been checked follow this method, if the numbers of the abnormal is bigger 

than half of total samples, convert the abnormal and normal flag. If abnormal reflectance of a 

spectrum is more then 100, this spectrum was treated as abnormal and removed when mean 
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spectrum i calculated. 

By this algorithm, most problems would be solved, except for the case in figure 3. In practice, to 

solve the problem showed in figure 3, it was to choose relatively similar spectra to calculate the 

mean and there was no ideal method. Thus, the solution of the algorithm is acceptable. 

When this module run, the user selects the directory of raw 

spectra for one time measurement and the threshold of cv, 

pre-process automatically. 

M址（fi) d«t«\20100103 
_ 

data saved, inputs the number of 

the module could fulfill the data 

233 
234 
235 
236 
237 
238 
239 

^
 ̂

 ̂

 ̂

 

34.7 MB i棚电胞 

Figure 6-2. Input data for data pre-process: mass raw spectral data for data pre-process 

a 附 J 
252 
253 
254 
255 
256 
257 
258 
259 
26 

260 

261 

282 

263 
264 
265 
266 

267 
268 

269 
27 

270 

Figure 6-3. A special case for calculating the spectrum 

6.2.2 Data analysis modules 

In section 6.2.1 the modules were Introduced for implementation functions separately. These 

modules could be applied for common spectral analysis and parameter calculation. In this section, 

an integrated data process and analysis modules were designed to support the approach 

proposed. Mainly it was consist of integrated data process module, outlier detection module, 

analysis of features among groups and analysis of sample growth trends. 
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6.2.2.1 Integrated data process module 

The input data for this module would be a directory containing spectral files in the format of 

'*.txt'. These spectral files should be organized. The same spectra of the same group should be 

put into a folder. The module could process a folder representing the data of a group or of one 

experiment. It also could solve a folder containing sub-folders. In this case, the previous folder 

represents an experiment and the sub folders means different samples groups. In figure 4 9311 

represents sample group 9311； while 20100305txt represents an experiment, it contains lots of 

samples groups, such as 730-1, 730-2. Both 9311 and 20100305txt could be accepted. 

文件 d ) 编辑(g) 査看 d ) 收截⑷ 

帮助QJ) 

工 江 ） 夹 曰 

r: 

t e 
3••一 ？一」 

1100. mn. txl llOS.mn. txl 1110. mn. txt 1115. mn tx 

iT-

1120. mn. Ixl 1125. 

� -
i t 

ixt 1130. mn. txt 1135 mn. tx 

730-2 

i J 
735-1 

733-1 733-2 

735-2 736-1 

Figure 6-4. Input directory for data pre-process 

When the process ended, a log (figure 5a) would be generated to record all data processed. 

Spectra of the same group would be put together in an Excel file named as group+'.xis', and the 

information of mean spectra of groups would given, named as group+ '_mean.xls' {figure 5b). All 

of mean spectra should be gathered in a file, named as experiment+'_total.xls', and the spectral 

parameters obtained based on mean spectra of group should be calculated and put in a file, 

named as experiment+'_para.xls'. '_total.xls' and '_para.xls' are also important labels for data 

reading in following modules. In case of a group, the spectral parameters would be calculated 

based on original spectrum. 
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Figure 6-5. The log file (a) and the results (b) of integrated data process module 

6.2.2.2 Outlier within group detection module 

In this module, the features of individual spectrum of single sample rather than mean spectra on 

groups' level are focused. Outliers of reflectance will be detected by bands based on Grubbs' test 

(details in section 5.5). The results indicate the total numbers of outliers of the sample group, the 

sign of the spectrum containing outliers, the numbers of outliers this spectrum and the 

wavelength of the outliers locating. After detection, the spectra with outliers will be copied to 

specific folder for check. And the message of outliers should also be sent to 6.1.1-11) module for 

user checking. Moreover, a report of outliers will be made. The records In the report would be 

formatted as follow: 

**&&@@##Total of outliers%$* Specific spectrum with outliers& numbers of the outliers in the 

spectrum@ specific wavelength of the outliers 

This module was designed based on section 5.5. 

6.2.2.3 Analysis of features among groups 

This module aims to single experiment. The input data is the results of integrated data process 

module, mainly spectral parameters and mean spectra. Based on the two kinds of input data, the 

spectral edges (e.g. red edge), spectral angles among samples, continuum removal of spectra, 

Information of 8 selected foliar chemicals were compared. Moreover, statistic test also would be 

conducted to find if any significant difference among samples. 

These analyses are based on section 5.1, 5.2 and 5.4. When the process ended, the figures about 

the edges, 8 selected foliar chemicals, continuum removal of spectrum, spectral angles would be 

obtained and saved. Meanwhile, the figures about the changes of the parameters mentioned 
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above compared with the contrast were also obtained. Finally two sample significant difference 

tests were conducted and the results showed as figures. 

6.2.2.4 Analysis of sample growth trends 

If time series data of the sample is available, this module will be implemented. The input data 

would be the same 6.2.2.3's for a time point. The time series should at least contain 3 

experiments' data, and '*_para.xls' and '*_total.xl5' files should be matched strictly. 

This module would be implemented based on 5.1, 5.2, 5.3 and 5.4. The figures of change trends 

of the edges in time series, chemicals and the figure of continuum removal of spectra and 

spectral angle among samples were obtained. Then the figures of change trends of parameters 

mentioned above compared with the data of the first time points (within groups) and with the 

contrast group (among groups) were obtained. At last the statistic results within and among 

groups of the parameters changes were obtained. 

6.2.3 The interface of the system 

6. .1 Menu 

Totally there 

(figure 6). 

7 first level menu items containing the sub-menu to fulfill the functions in 6.2. 

b! 原始光谱数据预处理 

！ M DM谊数据 

j M反肘率数据 

I h计其反射率 

I @二进制数据转換 

1 —査看异某光道文件 

1]数据读入 

E]基本数据处理 

！ @光道曲线绘制 

：@光谐数据滤波 

I «计茸一阶导数光I昔 

！ M计箄二阶导数光道 

‘M参数图形化 

Figure 6-6. Menu of the system 

B曲线形态特征参数i十宜 

i h计其去包络线光道 

、十宜光道角度 

6曲线参量化特征计笪 

‘^^^计宜光谱参数 

t]数据分析 

E 帮助 

6.2.3.2 Windows buttons 

The modules of 6.2.2 fulfills the data process and analysis function of proposed approach, thus 

they will put on the main window (figure 7). Figure 8 and 9 showed the results (figure generated 

and saved automatically) of the 6.2.2.4 and 6.2.2.3. 
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Figure 6-7. User interface window 
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Figure 6-8. The results of "Analysis of features among groups' 
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Figure 6-9. The results of "Analysis of sample growth trends" 

Chapter 7 Summary 

Due to the stochasticity, diversity and variability of gene expression, transgenic crop (e.g. 

breeding) is confronted with some uncertainties, such as what kinds of the influence from foreign 

gene on the transgenic crop will be, and how to monitor the growth of transgenic crop in time 

efficiently. Some professional approaches were developed (e.g. PCR) are at a micro view to 

confirm some problems. However, prior knowledge is needed in some cases, and if mass samples 

are to process, these approaches will be helpless to monitor all samples real-/ near real-time 

because of high cost and some uncontrolled problems. It is very important to monitor and assess 

the growth of samples, especially for the experiment lasting for a long time, such as plant 

breeding. 

In this study, we proposed to employ hyperspectral remote sensing technique, a kind of practical 

and field spectroscopy technique, to obtain field fine spectra of transgenic paddy rice and 

monitor the its growth by its biophysical traits to fulfill screening of cultivars in contrast 
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controlled experiments. The biophysical traits or bio-process were concentrated on rather than 

micro-structure or components of proteins. This approach compares the differences between 

transgenic samples and their contrast which are cultivated in the controlled contrast environment. 

By monitoring the real-/ near real-time growth of sample, the techniques were applied to fulfill 

early indication of possible the differences between transgenic crops and their contrast in the 

controlled contrast experiment. It will be implemented to monitor the growth of the samples 

real-/ near real-time, will assist to screen samples and help researchers clearly know their 

samples. 

In the monitoring process, hyperspectral remote sensing techniques play a role of indicating and 

monitoring of the influences from foreign gene by an indirect way from a macro-view. The 

influences of foreign gene could be treated as a special source of stress to vegetation. Therefore, 

it is possible to detect the difference between transgenic and contrast group and monitor the 

growth of sample to assist to fulfill sample screening work, focusing on the plant biophysical traits 

or responses to stress. In the study, more than 6 times experiments in different fields were 

conducted, involving three kinds of genomes and their transgenic samples. The experiments were 

designed as the experiment-repeat experiments and the gene-repeat experiments. Moreover； an 

experiment tasting for three months was also conducted for evaluating the capability of the 

approach to monitor the sample growth. Spectral analysis and statistic approaches were applied 

to assess the samples and their growth. 

7.1 Conclusion 

Both morphologic and parameterized features of foliar spectra of samples were applied to 

indicate the growth of the samples: (1) These responses revealed the difference of growth status 

between transgenic samples and the contrast group. (2) These features had been proved related 

to the bio-process of vegetation. (3) The spectral angle and continuum removal of spectrum were 

used as spectral morphologic features to indicate the differences among samples qualitatively. (4) 

Meanwhile, the status of the eight important foliar chemicals was applied as indicators of sample 

growth. They were chlorophyll a, chlorophyll b, chlorophyll a+b, carotenoids, anthocyanin, water, 

nitrogen and lignin. (5) For estimating their contents accurately, current spectral indices were 

evaluated systemically. (6) And to paddy rice, new spectral indices, for estimation of the contents 

of photosynthetic pigments, were also designed to overcome the flaws of the current ones, such 

as noise resistance. (7) Sensitive bands for retrieval of foliar nitrogen and lignin concentration 

were assessed and new regression models were developed. 

These indices are sensitive indicators of sample growth in the approach. And the results proved 

the new spectral indices or regression models developed in this study for paddy rice were 

efficient, sensitive and reliable in estimation of foliar chemicals. 



By applying these Indicators (achievements) and analyzing the kinds of features in different types 

of experiments, the conclusions could be obtained: 
i 

(1) In section 5.1, mainly the spectral indices of the edges were used to assess the ability of 

photosynthesis of transgenic samples. The results proved the approach was efficient to assess 

samples. Both the results of the two experiments showed that: (a) the differences at all edges and 

absorption chosen in certain band range. The results indicated that there were some matters 

bringing changes to the transgenic samples stably. These parameters had high relationship with 

kinds of photosynthetic pigments, thus it could be deduced the differences of pigments content 

in samples. This information could be used to assess the photosynthetic ability of samples, (b) 

The discovered differences between samples compared with their parents, some were positive 

and the other were negative to photosynthesis, (c) Because the whole growth processes of 

samples were cultivated under a strict controlled contrast condition and external and random 

noise had been weaken by mean spectra, a conclusion based on spectral analysis could be 

obtained. 

(2) In section 5.2, the gene-repeat experiment was conducted and the data were analyzed to 

assist transgenic crop screening and breeding, based on parameterized features (foliar chemicals) 

and spectral shape. The Results, the similarities of samples by spectral angles, the position of 

spectral differences by continuum removal, and the spectral differences by spectral indices high 

related to photosynthetic pigments contents had been compared, analyzed and assessed 

qualitatively and quantitatively. It showed that under contrast conditions, the differences 

between transgenic groups and the contrast could be observed and assessed by hyperspectral 

remote sensing approach both on spectral morphology and specific indices. Applying our 

proposed approach, the differences in transgenic groups also could be observed and assessed. 

Both the analyses in section 5.1 and 5.2, the target bands were just photosynthetic sensitive 

ranges since the genes transferred were directly related to photosynthesis. ,, 

(3) In the section 5.3, the long time series data of transgenic groups and the contrast were 

analyzed. The samples growth pattern and status were analyzed within individual sample, within 

sample groups, and among transgenic group and contrast group, respectively. A potential 

temperature stress had been found. The Chi change pattern was stable highly related to the track 

of carotenoids, water content； and lignin conterrt. A new description variable (vector) cc was 

defined to as indicators of paddy rice growth monitoring. It is a comprehensive biochemical 

status of a sample at a certain time. By censoring the correlation results of samples cc, it was 

found that the status of some samples at a certain time were not consistent. After a statistic test, 

the change of carotenoids and their water contents were significantly different. All these results 

are useful to assist professional biologists to fulfill crop screening and breeding. It helps them 

know their samples clearly and make their experiments under control. 
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(4) In section 5.4, the samples transferred Bar gene for resisting herbicide were chosen. In order 

to evaluate the transgenic samples' performance to herbicide resistance, an artificial induction 

experiment and a controlled stress environment were conducted. Except for the contrast group, 

all others were sprayed herbicide. Two kinds of analysis were done to assess the samples, namely 

quantitative analysis based on spectral morphological characteristics and qualitative analysis 

based on parameterized features within groups and among groups. Spectral angles among 

samples showed that the samples had different response to the stress of herbicide. Bigger angles 

were found among some samples while than others showed much similarity of spectra to the 

parent. By investigating the continuum removal results, It could be found that differences mainly 

located in range of (420,750nm], [1400, 1600nm� and [1800, 2000nm). And a sample at the five 

time points had a great of positive shift dispersions in the continuum removal figure. The results 

of the correlation analysis and significant difference test also qualitatively proved the previous 

finding. And some samples were found distinguished differences from the others under herbicide 

stress. These results revealed the different capabilities of the sample responding to herbicide 

stress which may relate to Bar gene between them directly. It screened some samples should be 

paid more attention in the following work. When after 168 hours the growth statuses were all 

highly related. Herbicide stress made the transgenic sample to grow consistently. All these results 

will be of good support for professional breeding study. 

(5) in section 5,1-5.4, the analyses were based on mean spectra at group level, in section 5.5, an 

study for detecting outliers of single spectral of an individual sample were conducted. These 

analyses were mainly concentrated on outlier detection, and growth analysis based on spectral 

morphologic features and statistic test. The study is expected to answer two questions if any 

differences exist only in a specific individual sample and if it is reasonable to take mean spectrum 

as representative of the whole group. It is an Important complement for the study focusing on 

group level. 
I 

In general, by analyses in the gene-repeat experiments and experiment-repeat experiment, all 

the results proved that the proposed approach was useful. It could be an important, helpful and 

efficient complement to make the study under control and efficient. 

7.2 Prospective 

Cross-application of techniques in different disciplines would bring a creative surprise. In this 

study, hyperspectral remote sensing techniques were applied in indicating and monitoring the 

cultivated paddy rice growth to assist professional biologists to fulfill crop screening and breeding. 

The gene-repeat experiments, the experiment-repeat experiment, stress-Induced experiment 

were conducted to validate and improve on the proposed approach. The results were satisfactory. 

However, if the following problems were considered, the results would be improved much: 
162 



(1) Much more effective communication with biological researchers 

This is a common problem faced by cross-application. By full communication, the demand of 

biological researchers in transgenic crop breeding and screening will be understood clearly, and 

more efficient approach based on hyperspectral remote sensing techniques can be design and 

implement, namely, application-orientated study. 

(2) Diversity of the research methods 

For an efficient communication, more visual results should be obtained and provide to biological 

researchers. Thus the research methods should be developed. In the study, mainly three kinds of 

methods were applied to assess the samples, morphologic features of spectrum, parameterized 

features of spectrum and statistic test. The reliable relationship between the results from the 

hyperspectral techniques should be built. All these need more research methods to be applied. 

(3) Extension of study scope 

Current study concentrated on the fine spectrum of leaf-level, totally neglecting the canopy 

features of sample. Some properties at canopy level are also important for crop breeding, such as 

LAI which is related to yields. And morphologic characteristics of sample are indices of evaluation 

in crop cultivation. 

(4) More foliar chemicals 

In this study, total eight kinds of important foliar chemicals were chosen as indicators of sample 

growth. Most of these chemicals were photosynthetic pigments. In some sense, they could not 

reflect all responses of sample to all kinds of stress. Thus, more foliar chemicals should be studied, 

such as cellulose, pertain. And more sensitive parameters should be introduced, such as 

fluorescence of photosynthesis. 
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