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Abstract of thesis entitled: 

Development of a Cantonese-English Code-mixing 

Speech Recognition System 

submitted by CAO, Houwei 

for the degree of Doctor of Philosophy 

in Electronic Engineering 

at The Chinese University of Hong Kong in 

April 2011. 

Code-mixing is a common phenomenon in bilinguai societies. It refers to the 

intra-sentential switching of two languages in a spoken utterance. This thesis 

addresses the problem of the automatic recognition of Cantonese-English code-

mixing speech, which is widely used in Hong Kong. 

While automatic speech recognition (ASR) of either Cantonese or English 

alone has achieved a great degree of success, recognition of Cantonese-English 

code-mixing speech is not as trivial. Unknown language boundary, accents in 

code-switched English words, phonetic and phonological differences between 

Cantonese and English, no regulated grammatical structure, and lack of speech 

and text data make the ASR of code-mixing utterances much more than a simple 

integration of two monolingual speech recognition systems. On the other hand, 

we have little understanding of this highly dynamic language phenomenon. Un-

like in monolingual speech recognition research, there are very few linguistic 

studies that can be referred to. 

This study starts with the investigation of the linguistic properties of 

Cantonese-English code-mixing, which is based on a large number of real code-

mixing text corpora collected from the internet and other sources. The effects 

of language mixing for the automatic recognition of Cantonese-English code-

mixing utterances are analyzed in a systematic way. The problem of pronun-

ciation dictionary, acoustic modeling and language modeling are investigated. 
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Subsequently, a large-vocabulary code-mixing speech, recognition system is de-

veloped and implemented. 

A data-driven computational approach is adopted to reveal significant pro-

nunciation variations in Cantonese-English code-mixing speech. The findings 

are successfully applied to constructing a more relevant bilingual pronunciation 

dictionary and for selecting effective training materials for code-mixing ASR. 

For acoustic modeling, it is shown that cross-lingual acoustic models are more 

appropriate than language-dependent models. Various cross-lingual inventories 

are derived based on different combination schemes and similarity measure-

ments. We have shown that the proposed data-driven approach based on K-L 

divergence and phonetic confusion matrix outperforms the IPA-based approach 

using merely phonetic knowledge. It is also found that initials and finals are 

more appropriate to be used as the basic Cantonese units than phonemes in 

code-mixing speech recognition applications. A text database with more than 9 

million characters is compiled for language modeling of code-mixing ASR. Class-

based language models with automatic clustering classes have been proven inef-

ficient for code-mixing speech recognition. A semantics-based n-gram mapping 

approach is proposed to increase the counts of code-mixing n-gram at language 

boundaries. The language model perplexity and recognition performance has 

been significantly improved with the proposed semantics-based language mod-

els. The proposed code-mixing speech recognition system achieves 75.0% overall 

accuracy for Cantonese-English code-mixing speech, while the accuracy for Can-

tonese characters is 76.1% and accuracy for English lexicons is 65.5%. It also 

attains a reasonable character accuracy of 75.3% for monolingual Cantonese 

speech. 

Cross-lingual speaker adaptation has also been investigated in the thesis. 

Speaker independent (SI) model mapping between Cantonese and English is 

established at different levels of acoustic units, viz phones, states, and Gaussian 

mixture components. A novel approach for cross-lingual speaker adaptation via 

Gaussian component mapping is proposed and has been proved to be effective 

in most speech recognition tasks. 
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裔 女 

語碼混合（code-mixing)現象指的是説話者在一句話中使用兩种語言或語言變 

體的現象。該現象在雙語社會中非常普遍。在香港，廣東話及英語的語碼混合 

(Cantonese-English code-mixing)在人們的日常對話中極爲常見’其主要形式是在 

廣東話口語中I講入英語單詞或詞組。本文主要針對廣東話及英語語碼混合的語音識別 

方法進行了深入的硏究。 

語碼混合是一種多變而複雜的語言現象。廣東話及英語語碼混合語音的自動識別 

是一項艱巨的任務。未知的語言邊界，帶口音的英語發音，廣東話和英語在語音學和 

音韻學上的差別，不規則的語法結構，以及缺少訓練數據都使語碼混合語音識別與廣 

東話或英語的單語種語音識別相比更爲困難。 

本文首先由語言學特性的角度出發，對大量的廣東話及英語語碼混合數據進行了 

統計分析。並且，我們還針對這種語碼混合現象對語音識別性能所造成的影響進行了 

系統的分析和討論。 

針對口音問題，我們探討了廣東話及英語語碼混合語音中可能出現的發音變異， 

並以此爲依據修改了發聲字典0在聲學模型方面’跨語種 ( cross - l ingual )模型比單 

語種（monolingual)模型更適合識別語碼混合的語音。我們採用了不同測量相似度的 

方法估計廣東話和英語的不同發聲單元之間的聲學距離(acoustic distance)和發音 

距離（phonetic distance)，並以此爲依據集群了針對廣東話及英語語碼混合的跨語 
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種音素系統（phoneme inventory)。缺少足夠的廣東話及英語語碼混合的文本數據使 

我們難以建立有效語言學模型。我們發現基於自動分類的分類語言學模型（c lass -

based LM)並不能改善由於訓練文本的數據稀疏所造成的在語音識別上的缺陷。本文 

提出了一種基於語義的n元組（n-gram)映射方法，以期有效增加廣東話及英語語碼 

混合的n元組的出現頻率。實驗結果表明該方法可以有效的改善語言學模型混淆度並 

提高語音識別正確率。 

本文所提出的語音識別系統，對廣東話及英語語碼混合語音的識別正確率爲 

75.0%，其中廣東話單字的正確率爲76.1%，而英語單詞的正確率則爲65.5%。實驗条 

果進一步表明該系統也可以成功的識別單語種廣東話口語的語句，其識別正確率爲 

75.3%° 

本文還對跨語種之間的説話人自適應問題（speaker adaptation)進行了硏究。 

我們提出了一種新穎的基於高斯混合分量映射的跨語種自適應方法。實驗結果表明利 

用該方法，我們可以成功的利用少量的特定人的廣東話數據對該説話人進行英語的説 

話人自適應。 
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Chapter 

Introduction 

Summary 

This chapter provides the background and motivation for this the-

sis. We start by describing a brief history of the development of 

automatic speech recognition (ASR), followed by review of code-

mixing speech recognition. Then we focus on Cantonese-English 

code-mixing ASR. Challenges in code-mixing ASR are highlighted 

and various Cantonese and code-mixing speech recognition systems 

are compared. Significant degradation from Cantonese ASR to 

code-mixing ASR helps us to establish the motivation of our re-

search, which is to improve the performance of Cantonese-English 

code-mixing LVCSR. After that, we highlight the major research di-

rections of this thesis. The chapter concludes with the organization 

of the thesis. 



Chapter 1. Introduction 

1.1 A Brief History of Automatic Speech 

Recognition 

speech is the most effective and decisive method of communication between 

humans. In addition to human-human communication, speech communication 

is also preferred in human-machine interaction with the advances of computer 

technology. Automatic speech recognition (ASH) is one of the key technologies 

in speech communications. The goal of ASR is to convert an input speech 

waveform into its written form. ASR has many applications, such as information 

query or retrieval systems [Ijp], booking or telephone routing systems [3] [4], 

voice dictation or broadcast news transcription systems[5] [6], speech-to-speech 

translation systems [7], etc. 

In the last six decades, automatic speech recognition has witnessed the re-

markable development from isolated speech recognition (ISR) to continuous 

speech recognition (CSR), from keyword spotting to large vocabulary continu-

ous speech recognition (LVCSR), from a speaker-dependent system to speaker-

independent system, and from one language to several languages. The first 

attempts to develop ASR systems were made in the early 1950s. Bell Labo-

ratories built the first isolated digit recognizer for a single speaker in 1952 [8]. 

This system was mainly dependent on measuring spectral resonance during the 

vowel segment of each digit. In the 1960s and 1970s, isolated word recognition 

was a key focus of research. Many pattern recognition ideas and signal pro-

cessing techniques were successfully applied in ASR. These techniques include 

dynamic programming [9], linear predictive coding (LPC) [10], etc. Dynamic 

time wrapping (DTW) was used as the state-of-the-art approach for ISR. In the 

mean time, researchers in AT&T Bell Labs began a series of experiments aimed 

at creating speaker-independent recognition systems. 

In the 1980s, the research focus shifted from ISR to connected word recog-

nition. More successful statistical modeling methods displaced template-based 

approaches in recognizing continuous speech [11] [12]. Hidden Markov modeling 

became widely applied in virtually every speech recognition research laboratory 
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from the mid-1980s. On the other hand, neural networks were commonly used 

in implementing speech recognition systems as well [13] [14 . 

From the 1980s to 1990s, the major research impetus was given to large vo-

cabulary continuous speech recognition. The Defense Advance Research Project 

Agency (DARPA) supported a large research programme aimed at the develop-

ment of high-accuracy continuous speech recognition systems with 1,000 words. 

The first speaker-independent LVCSR system SPHINX was built by CMU [15], 

and researchers in AT&T [16], BBN [17], IBM [18], Lincoln labs [19] and MIT 

[20] made major contributions to this DARPT project as well. 

From the 1990s to 2000s, with the acceleration of globalization, the re-

search interest in speech recognition which was developed originally for one 

language has been exported to several languages. Several multi-lingual/cross-

lingual speech recognizers were successfully built [21] [22] [23 . 

Various languages may have different linguistic characteristics in terms of 

the sound system, prosodic and phonological features, the written form, the 

relation between letters and sounds, the presence or absence of a segmentation 

of the written text into useful units, the morphology of the languages, etc. 

All these factors have had a significant impact on the task of developing a 

recognition system for a given language. For example, in tonal languages such 

as Mandarin Chinese and Thai, the pitch contour or pitch level on a single 

syllable plays a significant role in its contrastive lexical functions. In such 

case, integration of tone information in speech recognition can be effective in 

improving recognition performance. On the other hand, some languages such as 

English and French have a natural segmentation of the written form into word 

units that can be properly used as lexical items in pronunciation dictionaries 

and language modeling. However, many languages like Chinese and Japanese 

lack a natural segmentation, which are written out without any spacing between 

adjacent words. Word segmentation is required in language modeling for these 

languages. In addition, language modeling for languages with very divergent 

written and spoken forms such as Chinese and Arabic are more difficult than 

that of languages with standard written forms such as English. 
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1.2 Previous Works on Code-mixing Speech 

Recognition 

Code-mixing refers to the intra-sentential switching of two different languages 

in a spoken utterance. It is a common phenomenon in many bilingual soci-

eties, such as Spanish-English in United State, French-Italian in Switzerland, 

Mandarin-English in Taiwan, etc. Research activities on the automatic speech 

recognition of code-mixing speech have a relatively short history. Since mid 

2000s, several speech recognition systems have been developed in Hong Kong, 

Taiwan, Singapore, and Mainland China. All of them focus on Mandarin-

Taiwanese, Mandarin-English, and Cantonese-English code-mixing speech. Lit-

tle work has been done on other combinations of languages found in code-

mixing. In the following, we shall describe some representative work related to 

code-mixing speech recognition. 

Speech Corpora 

The research into code-mixing speech processing needs a large number of speech 

data. The development of speech corpora is therefore an important part of 

works. Several code-mixing speech corpora have been built for language iden-

tification (LID), language boundary detection (LBD), and automatic speech 

recognition (ASH) tasks. 

To the author's knowledge, there are only two phonetically rich code-mixing 

speech corpora which were created for the development of speaker-independent 

LVCSR systems. [24] took special interest in Mandarin-English code-mixing 

speech from the South-East Asia region. This corpus (codenamed SEAME) 

is a 30 hours real spontaneous Mandarin-English code-mixing speech corpus 

recorded from Singapore and Malaysia speakers. All code-mixing utterances 

were recorded under interview and conversational settings. CUMIX [25] is a 

Cantonese-English code-mixing speech database designed for the training of 

Cantonese-English code-mixing acoustic models, and to evaluate the perfor-

mance of the code-mixing speech recognition system. The data can also be 
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used to make a thorough study on LBD within code-mixing utterances. Be-

sides, some mix-language speech data was collected for evaluation purpose. In 

[26], a read-style speech corpus with mixed-language was developed to evaluate 

the performance of the proposed LBD approaches. It contains both Mandarin-

Taiwanese and Mandarin-English mixed utterances. In [27], hundreds of noisy 

Mandarin-English code-mixing utterances were collected under realistic condi-

tions such as in restaurants, streets and other noisy places, which were used to 

evaluate the retrieval system. 

Language Boundary Detection 

Code-mixing speech recognition can be tackled as two monolingual recognition 

tasks if the input mixed-language utterance can be separated into language-

homogeneous segments correctly. Language-specific phonological and acoustic 

properties were used as the primary cues to identify the languages. In [26], delta 

Bayesian information criteria (A BIC) was applied to detect the changing point 

between two languages at first. After that a statistical language ID framework, 

incorporating both LSA-based GMMs and VQ-based bi-gram LM, was used to 

determine the optimal number of language boundaries. Two different meth-

ods of LBD was evaluated on Cantonese-English code-mixing speech in [28]. 

LBD based on syllable bigram exploited the phonological and lexical differences 

between Cantonese and English. LBD based on syllable lattice made use of 

the intermediate result of speech recognition, which was more informative than 

the prior linguistic knowledge. [29] proposed a language identification method 

integrated multiple levels of linguistic cues. Acoustic, prosodic and phonetic 

features were used to distinguish Mandarin and Taiwanese. These previous 

studies showed the performance level of LBD was around 70%-80%. 

Large-scale Speech Recognition Systems 

Code-mixing speech recognition is still in its infancy. Only several LVCSR 

systems have been developed. In [30], automatic recognition of Mandarin-

Taiwanese code-switching speech was investigated. It was found that Mandarin 
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and Taiwanese, both of which are Chinese dialects, share a large percentage 

of lexicon items. Their grammar was also assumed to be similar. A one-pass 

recognition algorithm was developed using a character-based search net. It 

was shown that the one-pass approach outperforms LBD-based multi-pass ap-

proaches. [31] was the first study on automatic recognition of Cantonese-English 

code-mixing speech. A two-pass cross-lingual recognition system was developed. 

The cross-lingual phoneme set was designed based on phonetic knowledge. For 

language modeling, the class-based language models were considered. The two 

pass search algorithm enabled flexible integration of language boundary infor-

mation as one of the confidence scores, in addition to the acoustic and language 

model scores, for decoding the hypothesis mixed-language word string. 

Other Applications 

In addition to LVCSR task, code-mixing speech recognition has many other 

applications. In [64], a mixed-lingual keyword spotting system was developed 

for auto-attendant applications. The keywords to be detected could be in either 

English or Chinese. Code-mixing speech recognition can also be regarded as a 

translation problem. In such system, the embedded words are translated to 

the matrix language of the utterance. An appropriate lexicon is selected in 

the matrix language in order to maximize the language model likelihood [65 . 

In [27], a grammar constrained, Mandarin-English bilingual speech recognition 

system was developed for real world music retrieval. It enabled users to find a 

song by simply saying the name or title of the singer or song, which are allowed 

to be either monolingual or bilingual. 

1.3 Motivation of our Research 

Hong Kong is an international city where many people, especially the young 

generation, are Cantonese and English bilinguals. There has also been a trend 

that people tend to frequently embed English words into spoken Cantonese 

utterances, e.g. “我今個星期要趕三個deadline啊”，“能夠同你work together 
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我覺得好 exciting". Therefore, it would be highly desirable if we can develop 

an ASR system which is able to handle Cantonese-English code-mixing speech 

in addition to monolingual Cantonese utterances. 

However, Cantonese and English are quite different languages. Cantonese is 

a tonal and mono-syllabic spoken dialect in the Sino-Tibetan family, while En-

glish is a stress-time language in the Indo-European family. They have different 

sound structures in terms of phonetics, phonology and prosody properties. On 

the other hand, Cantonese and English differ markedly in syntax and morphol-

ogy as well. As a result, language-specific characteristics must be taken into 

account in developing recognition systems for Cantonese and English. 

Moreover, automatic speech recognition of mixed-language utterances is 

much more than a simple integration of two monolingual speech recognition 

systems. First, there is no prior knowledge about when there is a switch of lan-

guage so that we cannot determine which of the two recognizers should be used 

for a particular speech segment. While some automatic language identifica-

tion techniques have been proposed, they are less successful for the code-mixing 

scenarios because the switching is at word level, and thus the language seg-

ments are of relatively short duration [26] [32]. Second, it is very often that 

the English words embedded into a Cantonese utterance are spoken with strong 

Cantonese accents, which a monolingual ASR system for standard English is 

unable to handle. Third, mixed-language speech adopts special grammar that 

cannot be inferred from monolingual speech. Language models need to re-built 

from mixed-language data. 

Figure 1.1 compares the recognition performance of various Cantonese and 

code-mixing systems. It is noted that there is significant degradation from 

monolingual Cantonese ASR to code-mixing ASR. The best character accuracy 

attained for read-style standard Cantonese is 86.1%, which was reported in [33]. 

An algorithm of explicit tone recognition was integrated into this Cantonese 

LVCSR system [34]. On the other hand, as reported in [35], a recognition accu-

racy of 80.3% can be achieved without tonal information. Moreover, Cantonese 

is a spoken Chinese dialect in which the formal or standard form is significantly 
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90 00% 

85 00% 

80 00% 

75 00% 

70 00% 

65 00% 

60 00% 

55 00% 

50 00% 

86 10% Read-style standard Cantonese; 
segmental and tonal information were applied in recognition 

80 30% 
Read-style standard Cantonese, 
only segmental information was used 

75 80% 
Colloquial Cantonese 

55 30 
Cantonese-English code-mixing 

Figure 1.1' Recognition performance of different Cantonese and code-mixing 

speech recognition systems 

different from the spoken or colloquial form. In [36], automatic recognition of 

spoken Cantonese was investigated. The proposed recognition system achieved 

the character accuracies of 75.8% for spoken Cantonese. Cantonese-English 

code-mixing usually occurs in casual conversational speech In other words, 

English words are frequently embedded into spoken Cantonese. Recognition of 

Cantonese-English code-mixing speech was first studied by Chan et al [31]. 

The recognizer attained the overall accuracy of 55.3%, while the accuracy was 

56.4% and 53% for the Cantonese characters and embedded English words re-

spectively. Compared with the monolingual results for colloquial Cantonese, 

more than 20% degradation can be observed. Accordingly, in this research, an 

LVCSR system is built aimed at achieving promising recognition accuracy for 

Cantonese-English code-mixing speech. 

1.4 Thesis Goals and Research Focuses 

The general goal of this research is to improve the performance of Cantonese-

English code-mixing LVCSR. Towards this goal, our research focus is twofold. 

Firstly, code-mixing is a highly dynamic language phenomenon. To better 
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understand its unique feature, the characteristics of Cantonese-English code-

mixing are investigated from a linguistic point of view in this thesis. Secondly, 

we plan to develop a high-performance LVCSR system which is capable to han-

dle Cantonese-English code-mixing speech in addition to monolingual Cantonese 

speech. Our study covers all components of an ASR system, including acous-

tic models, language models and pronunciation dictionary. Subsequently, a 

large-vocabulary code-mixing speech recognition system is developed based on 

a two-pass decoding algorithm. Specifically, the following issues are considered 

and addressed. 

Linguistic properties of Cantonese-English code-mixing 

As the very beginning, we have little understanding of Cantonese-English code-

mixing speech. This language phenomenon is not a simple insertion of one 

language into another. However, compared with many monolingual languages, 

there are very few linguistic studies that can be referred to. We have to un-

derstand the problems by actually working on them. In this thesis, we collect 

about 65,000 Cantonese-English code-mixing sentences from newspapers, maga-

zines and online diaries at first. Linguistic study is carried out using the in-house 

collected data. 

Effects of language mixing for code-mixing ASR 

As we mentioned before, there is significant degradation from monolingual ASR 

to code-mixing ASR. Before making efforts to improve recognition performance, 

we first attempt to study how and why such degradation is caused when English 

is embedded in matrix Cantonese. In this research, the effects of language 

mixing for code-mixing ASR are investigated in a systematic way. 

Pronunciation variations in code-mixing speech 

It is observed that there exists many pronunciation variations in Cantonese-

English code-mixing speech. Due to inconsistent pronunciation, we often get 

lower speech recognition accuracy on code-mixing speech than monolingual Can-
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tonese/English utterances spoken by native speakers. Understanding how native 

Cantonese/English and Cantonese-English code-mixing speech differs in terms 

of pronunciations is an important first step to tackle the problem of code-mixing 

speech recognition. To improve the design of acoustic models and construct a 

more accurate bilingual pronunciation dictionary, in-depth studies on pronun-

ciation variation in code-mixing speech are conducted in this thesis. 

Cross-lingual acoustic modeling 

Cantonese and English come from two different language families. They have 

different phonetics and phonological structures. Different phonetic units can be 

applied to represent Cantonese and English due to their phonological difference. 

It is also expected that some of the phonetic models are language-specific and the 

others are shared between Cantonese and English. This part of the research aims 

at designing an appropriate sound inventory for acoustic modeling of Cantonese-

English code-mixing speech. 

Language modeling for code-mixing ASR 

In practice, we need to collect a large amount of Cantonese-English code-mixing 

text data to train statistical n-gram language models. However, because of the 

colloquial speaking-style and domain-specific property of code-mixing, there are 

practical difficulties in data collection. In this thesis, we attempt to make use of 

the limited amount of monolingual Cantonese and code-mixing text resources 

available to improve the recognition of Cantonese-English code-mixing speech. 

Cross-lingual adaptation 

Although both Cantonese and English are official spoken languages in Hong 

Kong, the usage of English is much less than Cantonese in daily communica-

tion, therefore it is much easier to collect small quantity of Cantonese speech 

data from a specific group of Cantonese speakers. Speaker adaptation tech-

niques can be used to improve speech recognition performance when a small 

set of adaptation data from the target speaker is available. However, it is not 

10 
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easy to do it across different languages, especially when the two languages are 

phonetically distant apart. This section of the research is focused on the use of 

acoustic information from an existing source language (Cantonese) to implement 

speaker adaptation for a new target language (English). 

1.5 Thesis Outline 

In the next chapter, the fundamentals of LVCSR systems are briefly re-

viewed. Different approaches for monolingual, multilingual/crosslingual, and 

code-mixing ASR are discussed. 

Chapter 3 focuses on Cantonese-English code-mixing in Hong Kong. The 

nature of Cantonese-English code-mixing is investigated from a linguistic point 

of view. The difficulties and effects of language mixing for code-mixing ASR 

are analyzed and discussed. 

Chapter 4 discusses the cross-lingual use of acoustic information for Can-

tonese and English. Pronunciation variation in code-mixing speech is studied 

and cross-lingual acoustic models are developed. In addition, a novel approach 

for cross-lingual adaptation via model mapping is described. 

Language modeling for Cantonese-English code-mixing speech recognition is 

investigated in Chapter 5. In the absence of a sufficient amount of code-mixing 

text data, different language modeling techniques are investigated. 

In Chapter 6, an LVCSR system for Cantonese-English code-mixing speech 

is developed and implemented. The recognition results and analysis are elabo-

rated. 

Finally, Chapter 7 summarizes the major contributions of this thesis, fol-

lowed by some suggestions for future work. 

• End of chapter. 
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Chapter 2 

LVCSR for Multilingual and 

Code-mixing Speech 

Summary 

With the globalization of today's world, one of the most impor-

tant trends in present-day speech technology is the need to sup-

port multiple input languages. Research related to multilingual and 

cross-lingual speech has attracted much attention over the past few 

years. In this chapter, we introduce the state-of-the-art of mul-

tilingual and code-mixing speech recognition. The chapter starts 

with an overview of large vocabulary continuous speech recogni-

tion (LVCSR) systems. Feature extraction of speech signal, acous-

tic modeling, language modeling and decoding algorithms are de-

scribed. Then the speech recognition of monolingual and multi-

lingual speech are compared. After that we focus on code-mixing 

speech recognition. Two different approaches to code-mixing speech 

recognition are discussed. Previous studies on code-mixing speech 

recognition of different language combinations are reviewed. Fi-

nally, an information-theoretic similarity measurement Kullback-

Leibler divergence (KLD) is introduced. 

12 
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2.1 Fundamentals o f LVCSR 

Large vocabulary continuous speech recognition (LVCSR) systems deal with flu-

ently spoken speech with a vocabulary of thousands of words or more [37]. The 

state-of-the-art approach to LVCSR is to treat the speech signal as a stochastic 

pattern based on statistical pattern recognition algorithm. The source-channel 

model of speech generation and speech recognition, shown in Figure 2.1, is in-

troduced in this approach [38]. 

Noisy channel Decoder 
Source \ 

sentence 
Noisy 

sentence 
V ^ 

r � 
Guess at 

original sentence 
V ^ 

掩時 mid-term 呀？ 幾時 mid-term 呀 

i i l f fe^ 

Figure 2.1: Source-channel model of speech, generation and speech recognition 

W denotes word sequences of the source sentence. The conversion from W 

to an observed speech signal S is modeled as a noisy channel on account of 

uncertainty in conversion. Instead of dealing with the speech signal S directly, 

S is firstly transformed into a sequence of acoustic feature vectors A. As a 

result, the problem of speech recognition is to find out the most probable word 

sequence W given A. This problem can be formulated as a maximum a posterior 

(MAP) decoding problem. 

W 二 argnj^xi^(WnA) (2.1) 

By using the Bayes rule, the problem can be reformulated as; 

W = arg umx P(A\W)P(W) (2.2) 

where P{A\W) represents the conditional probability that A is produced when a 

particular word sequence W is being spoken. It is often referred to as an acoustic 

model. In typical LVCSR system, acoustic models are usually built at sub-word 

level. A pronunciation dictionary is used to define the ways in which the sub-

word units such as phonemes can be concatenated to form words. The second 

13 
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term P{W) is the a prior probability of generating the sequences of word W, 

which is independent of acoustics and referred to as a language model. Language 

models are used to capture the regularities of the language and constrain the 

ways for the generation of meaningful sentences [39]. The key components in 

an LVCSR system based on this statistical approach are shown in Figure 2.2. 

幾時 mid-term 呀 

— 〉 

Speech 
Waveform 

Feature 
Extraction Decoder 

Acoustic 
Vectors 

Word 
Sequence 

Acoustic Pronunciation Language 
Models Dictionary Models 

Figure 2.2: The flow diagram of a typical LVCSR system 

2. Feature Extraction 

To perform statistical pattern-matching, the input speech waveform needs to 

be converted to a sequence of acoustic feature vectors representing a short-time 

speech spectrum covering a period of typically 10 ms. 

The Mel frequency cepstral coefficient (MFCC), linear predictive coding 

(LPC) [40] and perceptual linear predictive (PLP) [41] are the three most popu-

lar features used in speech recognition systems. By taking advantage of percep-

tional mel-scale filterbanks, MFCC outperform other acoustic features in speech 

recognition tasks [42]. Figure 2.3 shows the flow-diagram of the extraction of 

MFCC features. 

Mel(f) = 2595 logio (1+/7 700) 
digitized speech signal windowing and k Faster Fourier L Mel-scale filter 

pre-emphasis w Transform (FFT) P bank analysis 

MFCC feature vectors derivatives d cep strum Discrete Cosine 1 
calculation liftering Transform (DCT) f 

Figure 2.3: Flow-diagram of the extraction of MFCC features 

14 



Chapter 2. LVCSR for Multilingual and Code-mixing Speech 

2.1.2 Acoustic Model (AM) 

Acoustic models are used to characterize the statistical variation of the acoustic 

features of a specified linguistic unit. AMs include the representation of knowl-

edge of acoustics, phonetics, environment variability and speaker variation. Hid-

den markov models (HMMs) is the dominant technique in most state-of-the-art 

LVCSR systems for acoustic modeling [12]. An HMM is a finite state machine 

to generate a sequence of feature vectors, in which the actual state sequence is 

unknown. In acoustic models, acoustic feature vectors of a linguistic unit are 

observed as the output generated by an HMM and the HMM can be referred 

to as the template of that specific linguistic unit. 

Word-level HMMs are impractical for LVCSR system and, instead, words are 

decomposed into sub-word units such as phones. Phone-level HMMs typically 

have three emitting states and a simple left-to-right topology as shown in Figure 

2.4. The entry and exit states are included to concatenate models together. In 

addition, in view of the acoustic variations caused by contextual effect, different 

HMMs have to be trained for different contexts to achieve good phonetic dis-

criminations. Triphone models are the most common context-dependent models 

used in LVCSR, where every phone has a distinct HMM for every unique pair 

of preceding and succeeding phones. 

Figure 2.4: A Simple five-state left-to-right HMM 

In practice, an LVCSR system typically involves hundreds of thousands of 

triphones. Huge amounts of parameters are needed to train when triphones 

are considered. It is definitely a crucial problem that too many parameters 
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are estimated with too little training data. To deal with this data sparseness 

problem, similar HMMs can be tied together. After tying, several states will 

share the same distributions. Hence more data are available to train a tied state 

and therefore give more robust estimation for the parameters of that tied state. 

Decision tree clustering is the most common approach for state tying, which 

has led to substantial improvements in recognition performance [43]. Other 

data-driven tying approaches have been studied in [44] [45 . 

2.1.3 Language Model (LM) 

Language models have been widely used in various natural language processing 

applications during the past three decades, and attempt to capture the regular-

ities and properties of languages. In an LVCSR system, the purpose of language 

modeling is to improve recognition performance by making use of syntactic and 

lexicon information. A statistical language model assigns a probability P{W) to 

a word sequence W. We suppose that the word sequence consists of M words, 

W = Wi,W2^ SO the probability P{W) of observing the word sequence 

W can be computed: 
M 

P{W) = P{WI,W2,...,U)M) = Wp{wi\wi,w2, (2.3) 
i=l 

However, it is impractical to predict the t̂h word Wi in the context of the entire 

history of preceding i — 1 words. A simple but effective way is to use N-grams, 

in which it is assumed that Wi only depends on the preceding N — 1 words. As 

a result, equation 2.3 can be approximated as; 
M 

P(W) « (2.4) 

The conditional probability in the N-gram language model can be calculated by 

a simple frequency count: 

count{wi^N+i, • •., ^i- i , uJi) f̂ � 
^ 厂 (2.5) 

Trigram (iV=3) and bigram {N=2) language models dominate conventional 

speech recognition systems. The trigram LM is a common choice with large 
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training corpora with millions of words, whereas the bigram LM is often used 

with smaller ones. 

The data sparsity problem is the major issue in language modeling. With 

limited training data, many trigrams will appear only once or twice, or even not 

appear. However, this does not mean that these low-count or unseen trigrams 

will never appear in natural speech. Various smoothing approaches have been 

proposed to tackle the data sparsity. Back-off is usually applied on unseen or 

low-count events, in which the N-gram probability is replaced by a scaled (N-

l)-gram probability [46]. Another solution is to reduce counts of more frequent 

word sequences and therefore the resulting excess probability mass can be re-

distributed amongst the less frequent word sequences [47], This is referred to 

as discounting. 

Perplexity can be utilized to evaluate the language models. In general, a re-

duction in perplexity results in improvement on speech recognition performance. 

The perplexity of a discrete probability distribution p is defined as: 

Perplexity = 2 丑⑷=2一 ^ � ” � l o g � � (2.6) 

where H[p) is the entropy of the distribution. For a given N-gram language 

model, equation 2.6 can be expressed as: 
M 

Perplexity = P{w\, =上 (2.7) 

1=1 

2.1.4 Decoding 

The purpose of decoding is to determine the optimal word sequence given a 

sequence of acoustic feature vectors. In LVCSR, words are usually decomposed 

into sub-word units such as phones, and each phone is typically modeled by 

HMM state sequence. As a result, the decoding is performed in a hierarchical 

way with three levels: state level, phone level and word level. Acoustic models, 

pronunciation dictionary, and language models are used to provide constraints 

during the decoding process. 

Viterbi algorithm, as a token passing algorithm [48], is applied to search for 

the optimum word sequence. A token is referred to as a partial path from the 
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start to the current time instant through the decoding network. As the tokens 

propagate through the state-level network, a phone-level network is generated 

at first. The log-probability of the tokens is cumulated by the intra-transition 

probability inside the phone-level HMMs and the emission probability density 

of the observations given by the HMM. The pronunciation dictionary provides 

the transition probability from one phone to another phone, and consequently 

the word-level network can be generated. Finally, the optimal word sequence 

can be decoded by making use of the word-level transition probability given by 

language models. 

In theory, the token-pass algorithm is guaranteed to decode the best possible 

pass. However, it would take too much time and space to decode. Therefore, 

various approaches are proposed to speed up the decoding process and reduce 

the search space. A tree-structured lexicon can reduce the potential search 

space significantly by merging the common prefixes of the words [49]. Beam 

search can be employed to further speed up the decoding process [50]. The pre-

defined parameter beam-width, can be adjusted as a trade-off between speed 

and accuracy. Only the active tokens lying within the beam will be kept in 

memory during the decoding. 

A multiple-pass decoding strategy is commonly used in Viterbi-based 

LVCSR systems. In the first pass, simple acoustic models and language models 

are employed to generate a reduced search space of the most likely hypothe-

sis such as word-graph or N-best list. In the second pass, more accurate and 

complicated models can be used for re-scoring in the reduced-search space. The 

multiple-pass approach is useful for reducing computational effort. In addition, 

more complex language models or other high-level knowledge such as super-

segmental information can be applied in the second-pass to improve recognition 

performance. 
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2.2 Multilingual Speech Recognition 

A monolingual speech recognizer refers to a system that is designed to recognize 

speech from one particular language at a time. The acoustic model in this case is 

trained solely on data from one specific language; the pronunciation dictionary 

includes the phone sequence of that language only and also for the language 

model. The state-of-the-art in LVCSR has achieved great success over the last 

years for quite a number of languages. 

With the globalization of today's world, more and more multilingual appli-

cations are needed. For example, an enquiry system in an international airport 

may have users from various countries who will speak different languages. Such 

system has to be able to recognize several languages. Research related to mul-

tilingual speech recognition has attracted much attention over the last decade. 

Many approaches are proposed, which can be summarized into three groups, i.e. 

simultaneous multilingual speech recognition, cross-lingual speech recognition 

and rapid language adaptation. 

Simultaneous multilingual speech recognition systems usually have a mul-

tilingual acoustic model which consists of a collection of coexisting subsets of 

language dependent acoustic models. Two main strategies have been devel-

oped. The first strategy applies language identification beforehand, and then 

the speech recognizer of the identified language is activated to recognize the 

input speech utterances [21] [22]. The recognition performance in this case will 

be exactly the same as the monolingual system if a perfect language identifier 

is performed. The second strategy runs parallel recognizers simultaneously [51 

52] [53]. Such system performs an implicit language identification because the 

language identity can be determined according to the recognized words. 

A cross-lingual speech recognizer applies a language-independent universal 

phone set for all languages. The crucial problem in cross-lingual speech recog-

nition is to exploit acoustic-phonetic similarities across languages and design 

an appropriate phoneme inventory. Knowledge-based and data-driven methods 

are the two main approaches for phoneme merging. Various linguistic informa-

tion can be used to assign phonemes into classes. The International Phonetic 
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Alphabet (IPA) and Speech Assessment Methods Phonetic Alphabet (SAMPA) 

are widely used as reference schemes in most knowledge-based systems [54] [23]. 

Data-driven approaches require a combination scheme and a similarity mea-

sure to decide which phonemes can be merged. Many systems make use of the 

phoneme confusion matrix and merge the most confusing phonemes into classes 

55]. On the other hand, various distance measures are employed to calculate 

the acoustic similarity between phonemes [56]. 

Language adaptation and cross-lingual transfer are usually applied to port 

an existing recognizer to the new target language with very limited or even 

no training data available. The term cross-lingual transfer is usually preferred 

if no training data can be used for the target language. In this case, many-

studies show that multilingual transfer models outperform monolingual ones 

[57]. Language adaptation technique can be applied to adapt the pre-existing 

language-independent system toward a new target language, using only limited 

speech data from the target language [58]. It is found that language adaptation 

performance is highly correlated to the amount of data available for language 

adaptation. On the other hand, cross-lingual systems have proven to be more 

effective than monolingual ones [59]. 

2.3 Code-mixing Speech Recognition 

Code-mixing refers to intra-sentential switching between two different languages 

or language varieties in spoken utterances. It is a common phenomenon in bilin-

gual societies. In code-mixing, the major language is referred to as the primary 

language, or the matrix language, and the other language is the secondary lan-

guage, or embedded language. Different combinations of languages are found 

in code-mixing, for example, Spanish-English in United States, German-Italian 

and French-Italian in Switzerland, and Hebrew-English in Israel [60]. In Tai-

wan, code-mixing between Chinese dialects, namely Mandarin and Taiwanese, 

has become common in recent years [61]. Hong Kong is an international city 

where many people, especially the younger generation, are Cantonese and En-
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glish bilinguals. English words are frequently embedded into spoken Cantonese. 

In this case, Cantonese is the primary language, and English is the embedded 

language [62]. Table 2.1 lists some examples of code-mixing in several languages. 

Table 2.1: Examples of code-mixing in several languages (the embedded lan-

guage is emphasized in boldface) 
Involved languages Examples 

Spanish-English Siempre esta promising cosas. (He is always 

promising things.) 

French-Italian No, parce que hanno donne des cours. (No, be-

cause they have taught courses.) 

Arabic-French tlabt wahdi 1’ immigration. (I asked alone for 

the immigration.) 

Mandarin-Taiwanese 我們計劃去夜市吃軻仔煎 ° (We plan to eat 
oyster omelet in the night market.) 

Cantonese-English 份ass ignment今日下晝之前要交。（We need 

to submit the assignment before this afternoon.) 

Compared with monolingual and conventional multilingual speech recogni-

tion, code-mixing speech recognition is more challenging because of the un-

known language boundaries. From the results reported in [28], there is sig-

nificant degradation from monolingual ASR to code-mixing ASR. There have 

been two main approaches to code-mixing speech recognition [30] [28]. The 

first approach is similar to simultaneous multilingual speech recognition, which 

involves a language boundary detection (LBD) algorithm that divides the in-

put utterance into language-homogeneous segments. The language identity of 

each segment is determined, and the respective monolingual speech recognizer 

is applied. In this approach, the performance of second-step recognition will 

be restricted to the performance of first-step LBD. If the performance of LBD 

can not be achieved 100% then it will directly degrade the ultimate recogni-

tion results for code-mixing speech. However, compared with the conventional 

language identification task, LBD in code-mixing is more difficult since the du-
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ration of individual language segments is relatively shorter [26] [32]. The second 

approach aims to develop a cross-lingual speech recognition system, which can 

handle multiple languages in a single utterance. The acoustic models, language 

models, and pronunciation dictionary are designed to be multilingual and cover 

all languages concerned. Many previous studies showed that the latter one is 

more appropriate than the former due to the performance limitation of LBD. 

2.4 Kullback-Leibler Divergence 

Kullback-Leibler divergence (KLD) is an information-theoretic measure of 

(dis)similarity between two probability distributions [66]. It has been widely 

used in various applications. The KLD between two given distributions Q and 

R is defined as: 

D K L i Q m = / 咖 ) l o g 彻 (2.8) 
J r[x) 

where q and r denote the densities of Q and R. Then, the symmetric form of 

KLD between Q and R is: 

Dkl{Q,R) = DKL{Q\\R) + Dj,^{R\\Q) 

=/ q{x)log^dx+ / r{x) log -^dx 
J r[x) J q[x) 

For two multivariate Gaussian distributions, equation 2.9 has a closed form: 

DkiXQ, R) + —〜—〜广 
2 (2.10) 

+ + — 21} 

where fi and E are corresponding mean vectors and covariance matrices, respec-

tively. 

In speech processing such as speech recognition and speech synthesis, a re-

curring problem is measuring the similarity of two given speech units, e.g. states, 

phones. Use of KLD has been discovered to be a useful measurement between 

hidden Markov models (HMMs) of acoustic models when the temporal structure 

of HMMs is aligned by dynamic programming [67] [68]. In this thesis, KLD will 
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be applied to investigate the acoustic similarity between Cantonese and English 

in different levels of acoustic units, viz phones, states and Gaussian mixture 

components. 

• End of chapter. 
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Chapter 3 

Cantonese-English Code-mixing 

Speech Recognition 

Summary 

Hong Kong is a bilingual society, where Chinese and English are 

both official spoken languages. As a result of this bilingualism, mix-

ing of Cantonese and English is very common in Hong Kong. This 

chapter begins with an introduction of the language situation in 

Hong Kong. Characteristics of Cantonese and English are described 

respectively. We shall then introduce the essence of Cantonese-

English code-mixing. The nature of Cantonese-English code-mixing 

is investigated from a linguistic point of view first. After that major 

challenges in Cantonese-English code-mixing LVCSR are discussed. 

Finally, a series of experiments are performed to analyze the effect 

of language mixing on the recognition performance of Cantonese-

English code-mixing utterances. 
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3.1 Speaking Habit in Hong Kong 

Hong Kong is an officially bilingual territory. Historically, Hong Kong was a 

British colony from 1840 to 1997, and English was the sole official language of 

Hong Kong between 1883 and 1974. Nowadays, both English and Chinese are 

the official languages as defined in the Basic Law of Hong Kong. Unlike other 

racially homogeneous cities in Britain and other Western countries, more than 

95% of the population in Hong Kong is Chinese [69]. Cantonese, as the mother 

tongue of most Hong Kong residents, is widely used in daily communications. 

Although English is the usual language of only 1% of people, it is still taught 

in schools and spoken by over 30% of the population [70]. As a major working 

language in Hong Kong, English is commonly used in education, commercial 

activities and legal matters. 

As a result of the bilingualism, code-mixing between Cantonese and English 

is very common in Hong Kong. In this particular situation, Cantonese is the pri-

mary language, also known as the matrix language, and English is the secondary 

language, usually referred to as the embedded language [62]. Cantonese-English 

code-mixing speech normally follows the Chinese grammar and syntax, and the 

English word is usually used as a substitute for its Chinese equivalent, although 

word order sometimes may change due to the parts-of-speech (POS) of the 

code-switched words. 

3.1.1 Characteristics of Cantonese 

Cantonese is one of the major Chinese dialects spoken by tens of millions of 

people in southern China, Hong Kong, Macau and many overseas Chinese com-

munities [71]. 

Cantonese Phonology and Phonetics 

Similar to Mandarin (Putonghua), Cantonese is a tonal and monosyllabic lan-

guage of the Sino-Tibetan language family. The basic unit of written Cantonese 

and Mandarin is the character. Each character in written Cantonese is pro-
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nounced as a single syllable carrying a specific lexical tone. If the tone changes, 

the lexeme has a different meaning. On the other hand, Cantonese is homo-

phonic and homographic. A character may have multiple pronunciations and 

different characters may share the same pronunciation as well. Table 3.1 shows 

some examples of homographs and homophones in Cantonese. 

The general syllable structure of Cantonese is C1-V-C2, where CI and C2 

are consonants, and V is either a vowel or a diphthong. Since CI and C2 are 

optional, all Cantonese syllables take the forms V，C-V, C-V-C or V-C [72], As 

shown in Table 3.2, each syllable can be divided into an Initial (C) and a Final 

(V-C). There are more than 600 legitimate Initial-Final combinations, i.e., base 

syllables. There are six tones in Cantonese. If tonal difference is considered, 

the total number of distinct syllables is about 1,800. 

Table 3.1: Examples o homographs and homophones in Cantonese 
Homographs 樂 /ngaau6/, /lok6/j /ngok6/ 
Homophones / j i l / 衣，依，醫，伊，漪，椅 

Table 3.2: Composition of Cantonese syllables 
Tonal syllable (1761) 

Base syllable (625) 
6 Tones Initial (19) Final (53) 6 Tones 

Onset (19) Nucleus (20) Coda (6) 
6 Tones 

Cantonese initials can be classified into five classes according to the manner 

of articulation. They are plosives, affricates, fricatives, nasals and approximates, 

while the former three classes are unvoiced and the other two classes are voiced. 

Cantonese finals can be divided into five categories: vowels, diphthongs, vowels 

with a stop coda, vowels with a nasal coda, and syllabic nasals [73]. Each 

final contains at least one vowel element except for the syllabic nasals /m/ and 

/ng/. Eleven different vowels are found in Cantonese. Seven of them can appear 

independently and the other four are usually followed by consonant codas or 

other vowels. Ten different diphthongs are found in Cantonese and all of them 

end with / i / or /u/. There are six different codas in Cantonese. Three of them 
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Cantonese Initials 

Plosive 

b P LP a]“澄} 

d r [t a：(打） 

g k Ikaj UJIU 

gw k、Y y a：(瓜） 

P 

r f [t'' n] 1、他） 

k kh [k̂  a] < 丨：） 
kw k站 a](;丨夸） 

Fricative 

& 
[s a](沙） 

& 

f f [fa](仆.） 

h li > nj m 

Affiicate 

z ts. tj' 
> 1 ] 

z ts. tj' 
Itfy](朱） 

c ts^. t f 
[ts^i] "r丨 

c ts^. t f 
y] 

Aijproximate 

I 1 D a：(啦） 

w aj (tt) 

J i cu] 

Na^al 

m ill :m a](媽） 

11 11 Jl cl] {%) 

iig I) -p̂ ' a 1)] C7J 

Cantonese Finals 

Vowd Vowel-Nasal 
1 i [si](絲！ im im [T im] ‘ 

yu y [Jyl、力 m ill Lp III. 
u 1� [fv]丨人） mg iy [p iij： (I<) 
e £ > ''(lU >1111 yii [t yn； 
oe ce :!i ce] <•斩b im mi ：!> iin：(搬） 
o 0 >o] (fe) ong mj 二 S Ulj] 

aa a ；̂  a] “少} eng t :il £ Ij]、幹、 

eon en [r en：(怖 

oenff ceij 1 ceij] ！ I'i 1 
�>n oil >1:'、‘k� 

SvJIabic Nasal ong :p 01)] (w SvJIabic Nasal 
am em Imi] 

m ill [m] im) £11 tni [ftm: <m) 

iig y (吳） a;ig LUj] Olf]) 

a<?BJ mn [=;aiiL s 子乡 J 
aan an ；s an； Ulp 

aang mj > aiL (牛:、 

Diphthong Vowel-Stoi) 
111 :fui: rk'> ip ip :jip: 
ei li ei](稀） it it [J It] 
eoi h ©yi {疲、 ik ik Ijik] (full 
oi [ ” i ] (mj VUT yr J'̂  yr： i 脫、 

ai > of i西） lit lit Ifiit] (�fl) 
aai Iw ai](威) nk uk :f’ak: î fc) 
111 h m](燒} ek fck [p t k] lAlu 
oil > oil：(银 i eot et :s ef: (ifî  
ail IS unj dft} oek cek :i cek](略！ 

a ail > au] i^} ot or [li oh (喝） 

ok 3k Lh ok] 
ap 叩 lip] 
at Vt [set]"尺） 

ak uk > ck：(露‘ 

aap 叩 :sq)](圾； 

aat ar > at](撒、 

aak ak ak](索‘ 

Figure 3.1: List of Cantonese initials and finals. Jyut Ping symbols, IPA sym-

bols and examples are listed on the left, middle, and right respectively. 
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are nasal codas /m/ , /n/ , and /ng/，while the other three are stop codas /p/ , 

/ t / , and /k/ , and they are are unreleased. Figure 3.1 lists 19 Cantonese initials 

and 53 finals. They are labelled with both Jyut Ping [74] and IPA symbols for 

ease of comparison. Examples are also provided for each phoneme. 

Written Cantonese vs. Spoken Cantonese 

Cantonese is a spoken Chinese dialect that the formal or written (standard) form 

is significantly different from the spoken or colloquial form. Standard Chinese 

is the official written language in mainland China, Taiwan and Hong Kong. 

Cantonese speech, when being written down, shows substantial differences from 

standard Chinese. The lexicons of standard Chinese and spoken Cantonese are 

quite different. Different words may be chosen to represent the same meaning. 

For example, “差人” in spoken Cantonese and “警察” in standard Chinese. 

Moreover, written Cantonese is neither taught in schools nor recommended for 

official and documentary usage, such that some of the spoken Cantonese words 

do not have a standard written form. For example, the lexicon which means 

"yesterday"can be written in four different forms —尋日，口尋日，琴日，擒日. 

On the other hand, there is a consensus that many daily used colloquial func-

tion words, which are not found in standard Chinese, are not allowed in standard 

Chinese writing. Figure 3.2 shows some of these examples. Cantonese speech, 

with several colloquial function words and spoken lexical items, are referred to 

as colloquial Cantonese, and are usually used in casual situations. When such 

Cantonese speech is written down, it may be unintelligible to Mandarin speakers 

[75]. Figure 3.3 shows examples of standard Chinese, and colloquial Cantonese. 

In addition, an example of Cantonese-English code-mixing is also given in the 

figure for comparison purposes. The three sentences have the same meaning. 

Examples of colloquial Cantonese terms 

佢,概，嗰，嗨,哋，啲，fl,哮，哂，嚟，蹄，咐 

Figure 3.2: Examples of colloquial Cantonese terms 
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(Standard Chinese:我做完了三份功课’终于可以睡觉。 

Colloquial Cantonese:我做晒三份功課，終於可以瞓喇。 

Cod^mixing:我finish腔三份功課’終於可以瞓喇。 

English: I finished three assignments, and can finally sleep. 

Figure 3.3: The differences between standard Chinese, colloquial Cantonese and 

Cantonese-English code-mixing, for the same meaning. 

3.1.2 Characteristics of English 

English is the leading language in international communications. It is the third 

most natively spoken language in the world after Mandarin Chinese and Spanish 

and is spoken by about 400 million people. It is also widely learned as a second 

language by more than 1,000 million people and is used as an official language 

in many world organizations [76]. 

Different from Mandarin and Cantonese, English is a stress-timed language 

in the Indo-European family. Stressed syllables in English usually appear at 

a roughly steady tempo, as well as being longer and having a higher intensity 

and pitch, while non-stressed syllables are shortened and accommodate stressed 

syllables. Two English words can be distinguished by stress for example, the 

words desert and dessert, and the noun/verb pairs record and record. 

The composition of syllables in English has more variations than Cantonese. 

Although about 80% of the syllables in English also take the C1-V-C2 structure, 

the remaining 20% could be C，CC, CCV, VCC, CCCV, CCCVCC, etc. [77] 

There are 24 consonants, 11 monophthongs and 3 diphthongs in general 

American English. Figures 3.4 and 3.5 list the IPA symbols of these consonants 

and vowels, respectively. 

3.1.3 Lazy Tongue and Phone Change 

There exist many pronunciation variations in colloquial Cantonese speech, es-

pecially when the speaking rate is fast. Speakers may not follow strictly the 
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Bilabial Labiodental Demal Alveolai PObt-

ah do! 

PaLitai \elai Labia 1-
\elai 

Liloitai 

Plosbive p b t d k g 
Affricate tJ cl5 

Nasal 112 11 
FncjitiTe f Y e d S Z I 5 l l 

Appioxmiant J J w 

Lateial 
Appioxmiant 

1 

Figure 3.4： IPA table, English consonant (General American) 

Monophlhongs Diphthongs 

Figure 3.5: IPA table, English vowels and diphthongs (General American) 

pronunciations as specified in a standard dictionary. Firstly, some sounds are 

difficult to pronounce and they are replaced by similar sounds which take less 

effort to pronounce. This phenomenon is called lazy tongue (懶音).For exam-

ple, /n / initial replaced by /I/ (‘‘你，’ /nei/ becomes /lei/); /gw/ initial reduced 

to /g / ("SI" /gwo/ becomes /go/) ; /ng/ initial disappeared (“我，，/ngo/ be-

comes /o / ) . Syllable fusion is another type of pronunciation variation that 

usually occurs in fast speech, i.e., the initial consonant of the second syllable of 

a disyllabic word tends to be omitted or changed [78] [79]. For instance, “今日” 

/gam jat/ may be pronounced /gam mat/, and “即刻” /zik hak/ becomes /zik 

kak/. 

In general, English spoken by non-native speakers carries accents that are 

determined by their mother tongue. In Hong Kong, the mother tongue of the 

speaker is Cantonese. It is inevitable that their spoken English words carry a 

Cantonese accent to a certain extent. In many cases, the syllable structure of an 
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English word changes to follow the structure of legitimate Cantonese syllables 

80]. Such changes usually involve phone insertions or deletions. For example, 

the second consonant in a CCVC syllable of English may be softened, e.g., the 

word "plan" is pronounced /p ae n/ instead of /p 1 ae n/ by many Cantonese 

speakers. A monosyllabic word with the CVCC structure may become disyllabic 

by inserting a vowel at the end, e.g., /f ae n z / ("fans") becoming /f ae n s i/. 

It is also noted that the final stop consonant in an English word tends to be 

softened or dropped, e.g., /t eh s t / ("test") becoming /t eh s/. This is related to 

the fact that the stop coda of a Cantonese syllable is unreleased [73]. In addition 

to phone insertion and deletion, there also exist phone changes in Cantonese-

accented English. That is, an English phoneme that is not found in Cantonese 

is replaced by a Cantonese phoneme that people consider to sound similar. For 

example, / th r iy/ ("three") becomes / f r iy/ in C ant ones e-accent ed English. 

Furthermore, Cantonese speakers in Hong Kong sometimes create a Cantonese 

pronunciation for an English word. For example, the word "file" (/f ay 1/) is 

transliterated as /f ay 1 o / (快{老 in written form). It is not a straightforward-

decision whether such a word should be treated as English or Cantonese. This 

is known as "lexical borrowing" [81]. 

3.2 Cantonese-English Code-mixing 

According to John Gumperz [82], code-switching refers to "the juxtaposition 

within the same speech exchange of passages of speech belonging to two dif-

ferent grammatical systems or sub-system". In order to describe this phe-

nomenon more precisely by the frequency of language switching, two terms, 

(inter-sentential) code-switching and (intra-sentential) code-mixing, are utilized. 

Switching above clause level is called code-switching, and switching at word level 

is called code-mixing. In Hong Kong, code-switching mainly occurs in the word 

level and switching involving linguistic units above the clause level is rare. Hence 

the term code-mixing is usually preferred to describe this language behaviour 

of Hong Kong bilinguals. 
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As one of the major language choices besides monolingual Cantonese and En-

glish, the appearance and frequency of Cantonese-English code-mixing mainly 

depends on the speaking style, the conversation domain and the language pro-

ficiency of the speakers. Firstly, code-mixing is usually regarded as informal, 

and therefore people seldom use it in formal speech or presentations. Besides, 

many elderly people usually have lower English proficiency. As a result, people 

tend to use monolingual Cantonese when they are speaking to their parents or 

their seniors. Thirdly, code-mixing is a domain-specific phenomenon. It mainly 

happens in domains that are related to other cultures or languages, where many 

of the terms are new lexicon that may not appear in Cantonese. In such cases, 

people need to translate it or just use the English term directly [83]. In Hong 

Kong, code-mixing is wide spread in five domains as shown in Table 3.3 [80]. 

Table 3.3: Examples of code-mixing in several domains 
Domain Examples 

Computer discourse 我今朝先收到封emai l� 

Business discourse 份contract好似有少少問題。 

Food discourse 點解個menu入面有 t i ramisu啊？ 

Fashion discourse 你知唔知依家Burberry做緊discount喔� 

Showbiz discourse 方大同唱歌算係R&B定係sou l music ？ 

3.2.1 Motivations behind Code-mixing in Hong Kong 

There are some English terms which do not have Cantonese equivalents. In 

such case code-mixing is the only choice. However, in more cases, people are 

able to choose between monolingual Cantonese and Cantonese-English code-

mixing. There are many discussions on the possible motivations behind code-

mixing, especially from sociolinguistic and psycholinguistic perspectives. Many 

researchers have suggested that code-mixing is a conscious behaviour intended 

for certain sociolinguistic functions [84] [85] [86] [82]. Major reasons for code-

mixing are summarized as follow. 
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Quotation 

As reported in [82] [87] [88], quotation is one of the major functions in code-

mixing. When we report other people's words, it seems possible that it will be 

reported in the original code for convenience and to avoid misunderstanding. 

Example:有個朋友問我：“What do you think?" 

Emphasis or avoidance of repetition 

In some cases, the embedded words in code-mixing are the translations or near 

equivalents of appeared lexical items in the matrix language. This kind of cross-

language reiteration may be performed for (a) emphasis purposes [89]. It is also 

possible that the use of a translation equivalent is only for (b) avoidance of 

repetition. 

Example (a):好多同學放學都會去grammar school,補習社呀。 

Example (b):依家買iplione有職員優惠，好多中大staff都買左。 

Availability and specification 

Availability and specification are important functions in Cantonese-English 

code-mixing. Sometimes, English words and their Cantonese equivalents may 

not have exactly the same meaning, and therefore people may fail to find a 

suitable lexicon in Cantonese. As a result, English words will be applied to give 

more appropriate meaning when they want to specify or generalize something. 

For example, the English verb book means making a reservation without money 

or a deposit. Its nearest equivalent in Cantonese is 訂，which cannot specify 

whether a deposit is required or not. Therefore people usually prefer to use the 

more specific word book in some cases. 

Example:西班牙有間分子料理店好似要提前一年book� 

Principle of least effort 

Compared with Cantonese, sometimes English expressions are shorter and more 

convenient. People may use the English abbreviation instead of long Cantonese 

phrases to reduce linguistic effort. For example, people prefer ABC (美國出生白勺 
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華人，American born Chinese), FYP (畢業設計，final year project), GPA (平均 

積黑占’ grade point average), etc. On the other had, people usually prefer English 

words with less syllables instead of Cantonese terms with more syllables such 

as hall (學生宿舍)，budget (貝才政預算),etc [90]. Moreover, people sometimes 

may use the first one or two syllables of the English words instead of the whole 

words. Typical examples include reg (register,言主冊），con (contact lens,隱形目艮 

鏡)and pro (professional,專業)。 

Example:我間學校要一年級先可以住hall� 

你MCC(矇嗟喳）卩甘，有右帶con啊！ 

Euphemism 

One of the reasons for using English terms is the preference for a euphemism. 

In many situations, people may use English words if they find themselves in an 

embarrassing position of saying such terms in Cantonese. 

Example:請問邊度有toilet啊？ 

Identity marking 

Speech as one of the important markers of social identity, can be used to mark 

social characteristics such as social status, education status, occupation, as well 

as regional affiliation. Many researchers suggest that code-mixing can be used 

for in-group identification [91] [92] [93]. This is because people may have differ-

ent code choices when relationships between participants or functions changes. 

Interjection 

Finally, Gumperz introduces interjection as one of the functions of code-mixing 

82]. However, this function is not very common in Cantonese-English code-

mixing. Only a few examples can be found. 

Example: I mean,我今晚有時間！ 
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3.2.2 Nature of Code-mixing English Units 

Cantonese-English code-mixing is not a simple insertion of one language into 

another. It comes with a lot of phonological, lexical, and grammatical variations 

with respect to the monolingual speech spoken by native speakers. However, 

we have little understanding about it. To better understand this highly dy-

namic language phenomenon, characteristics of Cantonese-English code-mixing 

is investigated from a linguistic point of view in this research. 

This linguistic study is based on code-mixing text data, which are collected 

from newspapers, magazines and online diaries from the internet. The origi-

nal code-mixing text is retrieved with colloquial Cantonese terms and English 

words. If the collected sentence contains words which are only used in standard 

Chinese, they are removed. As a result, Cantonese in collected code-mixing data 

can be regarded as colloquial, rather than standard written Cantonese or formal 

Cantonese. In addition, meaningless sentences are filtered out and duplicated 

sentences are removed. The remaining sentences are expected to preserved the 

linguistic characteristics of Cantonese-English code-mixing speech. There are 

about 65,000 code-mixing sentences in total. They contain more than 1 million 

Cantonese characters and 100 thousands English words. 

We first analyze the English appearance frequency in code-mixing sentences, 

and the results are shown in Table 3.4. It can be seen that, more than 95% 

of code-mixing utterances include one to two embedded English segments. In 

addition, it is also found that most English segments contain a single English 

word only, which is consistent with the observations by Tse [94]. Table 3.5 lists 

the number of English words in each code-mixing sentence with single English 

segment. 

Ta 3le 3.4: Number of English segments per code-mixing sentence 
No. of English segments 1 2 > = 3 

No. of code-mixing sentences 53,310 10,517 1,697 

Percentage (%) 81.36% 16.05% 2.59% 
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，able 3.5: Number of English words per code-mixing segment 
No. of English words 1 2 3 >=4 

No. of sentences 45,634 6,481 833 363 

Percentage (%) 85.60% 12.16% 1.56% 0.68% 

Code-mixing English vs. Native English 

English word frequencies in Cantonese-English code-mixing and monolingual 

English are quiet different. In this study, the monolingual English statistics 

are based on the trillion-word English data from "Web IT 5-gram Version 1”, 

which is the largest English plain text corpus collected by Google [95] [96]. 

It is found that the most common 50 monolingual English words are mainly 

prepositions and pronouns. However, English function words are rarely found 

in our Cantonese-English code-mixing data. Table 3.6 shows the most common 

10 words in monolingual English and code-mixing English. It can be seen that 

all of them are different. 

Table 3.6: 

English 

The most common 10 words in monolingual English and code-mixing 

Monolingual English Code-mixing English 

the 22,914,473,646 2.24% ok 1,725 1.82% 

of 12,765,289,150 1.23% blog 1,647 1.74% 

and 12,522,922,536 1.20% sales 1,620 1.71% 

to 11,557,321,584 1.11% post 1,291 1.36% 

a 7,841,087,012 0.75% friend 1,087 1.15% 

in 7,490,628,883 0.72% cheap 945 1.00% 

for 5,357,090,483 0.51% check 865 0.91% 

is 4,551,580,934 0.44% bb 859 0.91% 

on 3,436,213,533 0.33% book 751 0.79% 

that 3,244,802,211 0.31% set 652 0.69% 

On the other hand, although there are more than 200 thousand English 

words in the Google corpus, only about 4,000 different English words can be 
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found in our Cantonese-English code-mixing text data. We also notice that 

most code-mixing English words are rare. Almost half of the words appear less 

than 4 times. However, the most 10 common words cover more than 10% of the 

English words in the code-mixing text corpus, the top 100 cover over 1/3 and 

the top 1/3 cover more than 90%. It reveals that code-mixing is focused on a 

small number of specific English words. 

Word Classes 

All English words in our code-mixing text data are labelled by 17 POS classes 

The distribution is given in Table 3.7. This finding is consonant with observa-

tions in previous studies by B.-H.-S. Chan [97] and David C.-S. Li [80] in that 

most common code-mixing English is nouns, followed by verbs and adjectives. 

Table 3.8 lists the most 10 common nouns, verbs, and adjectives. They ac-

count for 17%, 30%, and 30% among the English nouns, verbs and adjectives 

in collected code-mixing data respectively. 

Table 3.7: POS distribution of English words in Cantonese-English code-mixing 
N 58,031 59.43% Num 233 0.24% 

V 21,156 21.67% V Phrase 231 0.24% 

Adj 8,407 8.61% Clause 255 0.26% 

Adv 2,406 2.46% Adj Phrase 221 0.23% 

Int 2,310 2.37% Art 143 0.15% 

Prep 1,461 1.50% Prep Phrase 78 0.08% 

Conj 1,244 1.27% Conj Phrase 44 0.05% 

Pron 774 0.79% Int Phrase 16 0.02% 

N Phrase 628 0.64% 

Further analysis is performed on the code-mixing sentences with two English 

segments. It is found that the most common mixing type is noun-noun mixing, 

followed by verb-noun/noun-verb mixing and verb-verb mixing. We list the 

most 10 common mixing types in Table 3.9. 

As the most frequently embedded word class, more than 2,000 distinct En-
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Table 3.8: The common English nouns, verbs, and adjectives found in 

Cantonese-English code-mixing 
Nouns blog, sales, post, friend, bb, game, email, lunch, msn，printer 

Verbs check, book, set, send, test, feel, join, update, keep, cut 

Adjective cheap, high, good, full, nice, fit, free, junior, sharp, cool 

Table 3.9: Common mixing type in Cantonese-English code-mixing 
N_N mixing 2,876 39.13% Adj_N mixing 250 3.40% 

V_N mixing 1,216 16.55% N_Int mixing 139 1.89% 

N_V mixing 922 12.55% Adj_Adj mixing 130 1.77% 

V_V mixing 521 7.09% V_Adj mixing 95 1.29% 

N_Adj mixing 315 4.29% Adv_N mixing 92 1.25% 

glish nouns are found in our data. We observe that more than 20% of the nouns 

are the terminologies in computer & technology domain. Besides, names are 

also very common in Cantonese-English code-mixing. There are all kinds of 

names, such as names of people, places, films, songs, events, books, companies, 

brands and so on. Sometimes the names are cited in their original language 

because they have not been translated into Chinese. There are other cases in 

which people cite the original name although the translated Chinese name is 

available. 

Compromise Forms 

According to Clyne [86], compromise form refers to code-mixing syntactic units 

which are governed by higher-order units. It can indicate how English and 

Cantonese are intertwined in code-mixing. In our data, plenty of examples of 

compromise forms are found. They are further subdivided according to their 

internal structure. It is found that N-N, V-N and Adj-N compromise forms 

are common underlying code-mixing structures. Many examples can be found. 

Table 3.10 shows typical N-N, V-N, and Adj-N compromise forms, which appear 

dozens of times in our data. 
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Table 3,10: Typical N-N, V-N, and Adj-N compromise forms in Cantonese-

English code-mixing 
N-N V-N Adj-N 

van仔 寫 blog 紅van 

sales 姐 做 sales 女 sales 

blog 友 食lunch 舊post 

bb衫 上youtube 新 version 

mo del公司 出 trip 有 mood 

usb線 唱k 其他forum 

iq題 落 order cheap機 

sim卡 hang 機 budget有限 

cd機 book 位 

pe堂 gel頭 

Table 3.11: Code-mixing between English free morphemes and Cantonese bound 

morphemes 
Cantonese Code-mixing Cantonese Code-mixing 

aspect markers examples classifiers examples 

住 keep住，hold住 個 f 固 post,^mon(monitor) 

緊 plan緊，circulate緊 班 班friend，班fans 

定 book定，set定 隊 隊band,隊team 

過 update過，confirm過 部 部printer,咅l^pc 

埋 join埋，send埋 件 件tee,件cake 

到 feel到，dieck到 張 張form,弓長coupon 

下 search下，test下 篇blog,篇paper 

完 download完，print完 條 條thread,條banner 

好 tune好，pack好 架 架van,架piano 
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Cantonese is an isolating language in that words are not marked by mor-

phology to show their role in a sentence. Many bound morphemes in English 

can not be found in Cantonese. As a result, mixing between English free mor-

phemes and Cantonese bound morphemes is very common in Cantonese-English 

code-mixing. Table 3.11 shows the 10 most typical Cantonese aspect markers, 

which are usually mixed with English verbs to represent the tense. Besides, 

mixing between English nouns and Cantonese classifiers is also very common in 

Cantonese-English code-mixing, and typical examples are listed in Table 3.11. 

Hong Kong Style English Borrowing 

In Cantonese-English code-mixing, some English words are highly influenced 

by the Cantonese language and consequently adopt Cantonese morphology and 

its grammar system. This ungrammatical or nonsensical English in Cantonese 

contexts is called Hong Kong style English. Table 3.12 includes some examples 

of these words: 

Table 3.12: Examples of Hong Kong style English 
Code-mixing Cantonese English meaning 

cheap cheap ±也 便便地 cheaply 

check (一）check 査(一;1查 check it 

mind 唔 mind 介唔介意 mind or not? 

sup 唔 support 支唔支持 support or not? 

on 返 line 上返網 online again 

thank 一個 you 多一個謝 thank you 

so 口羊 ny 對咩唔住 why apologize? 

In addition, there are some new lexicons which do not appear in traditional 

English speech, but are unique to code-mixing. Some of these words exist in 

traditional English, but have a totally different meaning [98]. For example, 

people prefer the first one or two syllables of English words instead of the whole 

words in code-mixing, such as the word "bio" (biology), "arche" (archeology), 

"moil" (monitor), "sem" (semester), "U lib" (university library), etc. 
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The distinction between code-mixing and borrowing is discussed in a number 

of papers [99] [100] [101]. In general, most scholars agree that if the embedded 

words have been fully integrated into the phonology and morphosyntax of the 

matrix language, it is regarded as lexical borrowing. In Hong Kong, borrowing 

is commonly used by many local people. For some common borrowing lexicons, 

the English words can be written in Cantonese characters with similar sounds. 

For example, the word "order" (/ao r d er/) is transliterated as /ao r d aa/ 

(柯打 in written form). In this case, it is not easy to make a straightforward 

decision whether such a word should be treated as English or Cantonese. This 

may because some of the words are so common that people don't realize that 

they come from English. Table 3.13 lists some typical borrowing words [102 . 

Table 3.13: Example of lexical borrowing 
Borrowed term in Cantonese English words 

巴士 bus 

的士 taxi 

吉他 guitar 

爹地 daddy 

士多 store 

多士 toast 

In our study, the borrowed term will be regarded as a Cantonese lexicon if 

it can be written in Cantonese, and the written form can be further found in 

the Cantonese text database. In contrast, it will be regarded as English if this 

lexical item does not have a well-accepted Cantonese written form. 

3.2.3 Syntactic Constraints of Cantonese-English Code-

mixing Sentences 

During the past three decades, many studies have been carried out on the syn-

tactic constraints in code-mixing. The most comprehensive research is that of 

Snakoff & Poplack and Di Sciullo et al They suggested three major syntac-
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tic constrains in code-mixing, including equivalence constraint, free morpheme 

constraint and government constraint [103] [104] [105 . 

Equivalence Constraint 

According to the equivalence constraint, code-mixing will tend to take place 

when surface structures of Cantonese and English map onto each other 

104] [106]. Many studies discuss this constraint in various code-mixing scener-

ies. Different observations are found in different language combinations. Clyne 

agreed with this constraint in his research on German-Dutch code-mixing [107], 

while Bokamba claimed that the equivalence constraint may fail in code-mixing 

between English and some African languages [108'. 

In our data, it is found that most of the alternation of languages occurs 

at points where the juxtaposition of Cantonese and English elements does not 

violate the syntactic rule of either language such as: 

[ C a n t o n e s e ] : 你 有 足 夠 嘱 能 力 去 應付 

[English]: You have sufficient ability to deal with 

[ C o d e - m i x i n g ] :你有足夠卩既能力 去d e a l with 

Sometimes, Cantonese-English code-mixing may still occur when the surface 

structure is unique to only one language. In this situation, the code-mixing 

sentence will follow the syntactic structure of Cantonese. Some examples are 

found in our data. We list typical cases as follows. 

Firstly, Cantonese and English are typical languages which can follow a 

SVO (Subject Verb Objective) pattern. However, some Cantonese sentences 

may follow a SOV (Subject Objective Verb) structure which does not appear in 

English. In such case, code-mixing sentences will follow a SOV construction as 

well: 

[Cantonese]: 我 想 同 佢 ^ 起 腺行 

[English]: I would ike to go on trip with him 

[Code-mixing]:我 想 同佢一起 出 trip 
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Besides, vocabulary related to time and space usually occur before the verb 

in Cantonese sentence. However, this type of words normally appears after the 

verb in English. For example: 

接 受 之 前 

befo 义 ept 

accept之前 

[Cantonese]: • 

[English]: • 

[Code-mixing]: 

Free Morpheme Constraint 

According to Snakoff and Poplack, the principle of the free morpheme constraint 

is that language switching may not occur between a bound morpheme and a lexi-

cal form unless the latter has been phonologically integrated into the language of 

the bound morpheme. This is an arguable constraint. The effectiveness is found 

to vary from language to language. Although it was proven in Spanish-English 

code-mixing [104], Clyne and Bokamba point out that this constraint may fail 

for German-Dutch code-mixing and Kiswahiii-English code-mixing [107] [108]. 

In our study, it is found that the free morpheme constraint is not appropriate 

in Cantonese-English code-mixing. Plenty of counterexamples are found. As we 

discussed before, quite a few compromise forms that consist of an English verb 

(free morpheme) and Cantonese aspect marker (bound morpheme) are found in 

Cantonese-English code-mixing. Besides, other Cantonese bound morphemes 

such as privative marker and adverb marker are also commonly found in our 

code-mixing data for example:好enjoy,太cheap, access唔到，唔fair，etc. 

Government Constraint 

The government constraint for code-mixing was formalized by Di Sciullo et 

al in 1986 [105]. According to this constraint, the alternation of language 

is prohibited between two elements when there is a government or selection 

relation holding between them. However, in our study on Cantonese-English 

code-mixing, it is found that the government constraint fails badly for a large 
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number of cases. For instance, in most of the V-N code-mixing compromise 

forms (e.g. quit宿，做facial), there is a government relationship between the 

verb and noun, and therefore the alternation of languages should be prohibited 

in such case according to the government constraint. But in fact, the V-N 

compromise form is one of the most typical patterns in our code-mixing data. 

3.3 Difficulties in Cantonese-English Code-

mixing LVCSR 

For code-mixing speech recognition, the input utterance contains both Can-

tonese and English. They are quite different in terms of phoneme inventories 

and phonological structures. Besides, there exist many pronunciation variations 

in code-mixing speech such that the standard pronunciation dictionary will be 

inaccurate. In addition, new lexicons unique to code-mixing speech may not 

be found in monolingual dictionaries. Finally, it is practically difficult to col-

lect sufficient code-mixing data for effective acoustic modeling and language 

modeling. 

3.3.1 Phonetic Phonology Differences 

Cantonese and English have different phoneme inventories. Some phones appear 

in both languages, while the other does not. We use IPA to facilitate an intuitive 

comparison between Cantonese and English phonemes. Some of the phones in 

Cantonese and English are labelled with the same IPA symbols by phoneticians. 

These phones are expected to be phonetically very close to one another and they 

are merged into the same phone classes. Figure 3.6 shows the results. Cantonese 

phonemes are on the left and English phonemes are on the right. The phones 

that exist in both Cantonese and English are in the middle. There are 65 phones 

in total. Seventeen phones are shared between two languages. Twenty-two are 

English-specific and the remaining 26 are Cantonese-specific. 

In code-mixing speech recognition, the acoustic models are expected to cover 
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Cantonese Shared English 
它，e, 0 , y, oe, a, 

ft • • I，i, s, u, f, e, X, 0 , Q, A， 
ai, ey, ei, su, au, 31’ t , t j , n, s, J， b, V，e, 5, d, z, 
ou, m, u i , iu, ^u, 1 * 1 

b, V，e, 5, d, z, 
t f , kh，kw，ph’ th, 1, J, k, w , 

11 n m Vi J, d3，3，g 

tS, tsh’ kwh U", JJ’ 丄，丄 1 

Figure 3.6: IPA-based phoneme inventories of Cantonese and English 

all possible phones in the two languages. There are two possible approaches: 

(1) monolingual modeling with two separate sets of language-specific models; 

and (2) cross-lingual modeling with some of the phoneme models shared be-

tween the two languages. Monolingual modeling has the advantage of preserv-

ing the language-specific characteristics and is most effective for monolingual 

speech from native speakers. In code-mixing speech where the English words 

are Cantonese-accented, an English phoneme tends to resemble or even become 

identical to a Cantonese counterpart. In this case, we may treat them as the 

same phoneme and establish a cross-lingual model to represent them. As shown 

in Figure 3.6, Cantonese and English have a number of phonemes that are pho-

netically identical or similar to each other. The degree of similarity varies. In 

principle, cross-lingual modeling can be applied to highly similar phonemes, 

while language-specific models are more appropriate if the phonetic variation is 

relatively large. In the next chapter, we will compare the effectiveness of cross-

lingual and mono-lingual acoustic modeling and try to establish an optimal 

phoneme set for code-mixing speech recognition. 

Besides, there is also a great difference between Cantonese and English in 

phonological level. As we discussed before, all Cantonese syllables follow the 

CVC structure, while English has a more complicated structure. Consecutive 

consonants which are not found in Cantonese may occur in English. As a 

result, the consecutive consonants context-dependent models may be under-

trained if the amount of Cantonese training data and English training data is 

different in large proportion, and therefore the overall recognition accuracy may 

be degraded. 
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3.3.2 Accent Lexicon 

The pronunciation dictionary for code-mixing speech recognition is a mixture 

of English and Cantonese words. Each word may correspond to multiple pro-

nunciations, which are represented in the form of phoneme sequences. Due to 

the effect of the Cantonese accent, the English words in code-mixing speech 

are subject to severe pronunciation variations as compared to those in standard 

English spoken by native speakers. This may introduce degradation into speech 

recognition accuracy since the phone sequence is greatly different from those 

in the standard dictionary. As a result, it is essential to reflect such variation 

in the dictionary. On the other hand, as discussed in Section 3.1.3, the com-

mon pronunciation variations in colloquial Cantonese should also be included 

In this research, in order to build a better code-mixing dictionary, pronuncia-

tion variation in Cantonese-English code-mixing speech will be investigated in 

a systematic way. The details will be described in the next chapter. 

On the other hand，there are some new lexicons which do not appear in 

traditional English speech, but are unique to code-mixing. These new lexicons 

should be included in the code-mixing dictionary as well. 

3.3.3 Lack of Code-mixing Data 

In our application, the most common type of code-mixing is where one or more 

Cantonese words in the utterance are replaced by the English equivalent. The 

grammatical structure of code-mixing sentences is based largely on that of mono-

lingual Cantonese. Word n-gram is by far the most commonly used technique 

for language modeling in LVCSR, To train a set of good n-gram models, a large 

number of spoken materials in computer-processable text format are needed. 

This presents a great challenge to our research since it is difficult in practice to 

find such materials for code-mixing speech. For the training of acoustic models, 

we need a large amount of code-mixing speech data as well The development 

of speech and text corpora is therefore an important part of the work on code-

mixing ASR. 
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3.4 Effect of Language Mixing for Cantonese-

English Code-mixing ASR 

Whi le automatic speech recognition of either Cantonese or English alone has 

achieved a great degree of success, recognition of Cantonese-English code-mixing 

speech is not as t r iv ia l . The difficulties encountered in code-mixing speech recog-

ni t ion were discussed in the last section. Previous studies have also reported that 

there is significant degradation from monolingual ASR to code-mixing ASR [63 . 

Before making efforts to improve recognition performance, we first attempt to 

analyze the effect of language mixing on recognition performance of code-mixing 

utterances, part icular ly on how and why the degradation is caused specifically 

by code-mixing. 

The analysis is mainly based on speech recognition performance. As a re-

sult, IPA-based cross-lingual acoustic models are designed to perform baseline 

recognition experiments. The details of the phoneme inventory can be found 

in Figure 3.6. The acoustic models are tr i-phone H M M s trained by 29 hours 

of monolingual Cantonese and Cantonese-English code-mixing utterances from 

the CUSENT [109] and C U M I X [25] databases. The details for these corpora 

wi l l be introduced in the next chapter. The acoustic feature vector consists of 

12 M F C C coefficients, log energy, and their first and second-order derivatives. 

Each state in H M M has 16 Gaussian mixtures. 

3.4.1 Code-mixing vs. Monolingual 

Recognition performance on Cantonese-English code-mixing utterances is given 

in Table 3.14. Speech recognition experiments were also performed on mono-

l ingual Cantonese utterances and embedded English words for comparison pur-

poses. The recognition performance is compared w i th syllable accuracy for 

Cantonese and word accuracy for English. No language model is applied, and 

the lexicon contains both Cantonese and English entries. The embedded En-

glish words are extracted from the code-mixing utterances. I t means that the 

language boundary information is correct. The word accuracy of the extracted 
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embedded English is 76%, which is the upper bound accuracy w i th perfect lan-

guage boundary information. Compared w i th the word accuracy attained for 

code-mixing English, more than 20% degradation is found. 

The recognition accuracy attained for code-mixing Cantonese is 57.6%. 

Compared w i t h the monolingual results, more than 5% degradation is observed. 

This may be due to the effect of embedded English. Further analysis is carried 

out to investigate how embedded English exerts influence on the recognition 

accuracy of code-mixing speech. 

Table 3.14: Baseline recognition accuracy on code-mixing and monolingual 

speech data 

Code-mixing Monolingual 

Cantonese 

Embedded 

English Overall Cantonese English 

Monolingual 

Cantonese 

Embedded 

English 

57.3% 57.6% 54.1% 62.4% 76% 

3.4.2 Effect of Embedded English 

Since the accuracy of the embedded words may play an important role in code-

mixing ASR, we divide the recognition results on code-mixing utterances into 

two sets in terms of the recognition accuracy of their English segments. As a 

result, the embedded English words in Set A were recognized correctly, while 

the English words in Set B were wrongly recognized. The speech recognition 

results for these two sets are given in Table 3.15. Another experiment is per-

formed on Set B only. This is an oracle experiment. We assume that the 

embedded English words are already known before decoding. The grammar 

network designed for this experiment is shown in Figure 3.7. The recognition 

results are given in Table 3.15. 

I t is noticed that the recognition performance is quite different between 

Set A and Set B. I f the embedded English words can be recognized, the 

recognition accuracy on code-mixing Cantonese is 63.2%, which is comparable 

to the monolingual results shown in Table 3.14. This means that the embedding 

effect does not degrade the performance of code-mixing ASR if the embedded 
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SIL i Cantonese Fixed English i Cantonese i SIL SIL Syllables 9 Words Syllables r SIL Cantonese ] 
： Syllables 丨 ^ v y 

Figure 3.7: Grammar network for oracle experiment. 

segments can be recognized correctly. On the other hand, if the embedded words 

can-not be recognized, the error on embedded language wi l l lead to significant 

degradation on the matr ix language. 

The recognition accuracy attained by the oracle experiment is 59.2% and 

94.5% for code-mixing Cantonese and English, respectively. Recognition errors 

st i l l exist on code-mixing English since the oracle experiment does not specify 

the language boundaries. The assimilation caused by code-mixing makes some 

short English words very highly similar to Cantonese syllables, and therefore, 

some of the Cantonese syllables are wrongly decoded as the reference English, 

while the real English segments are recognized as Cantonese. For code-mixing 

Cantonese, the performance attained by the oracle experiment shows obvious 

improvement, although i t is st i l l lower than that of the monolingual case. This 

shows that the information about the embedded language is very useful. 

Table 3.15: Evaluation results in terms of the recognition accuracy on embed-

ded English 

Recognition Set A Set B Set B 

accuracy (Correctly rec. Eng) (Wrongly rec. Eng) (Oracle exp.) 

Overall 66.5% 46.7% 62.4% 

Cantonese syl. 63.2% 51.3% 59.2% 

English word 100% 0% 94.5% 

3.4.3 Error Propagation of Embedded English 

Further analysis is carried out to investigate the error propagation of the em-

bedded English. 
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We divide the recognition results on code-mixing utterances into three cases 

in terms of the position of the embedded English segments. For each case, the 

error propagation are observed under the following conditions: (1) when English 

is recognized correctly (Set A ) , (2) when English is wrongly recognized (Set 

B) , and (3) the oracle experiment for Set B. The error propagation graphs 

are given in Figure 3.8. Graphs (a), (b) and (c) show the error propagation 

when the embedded English words are at the beginning, middle and end of the 

code-mixing utterances, respectively. 

I t can be observed that the embedding effect does not induce error nearby 

i f the embedded segments can be recognized correctly. However, if the En-

glish words are wrongly recognized, the error propagates to the surrounding 

Cantonese syllables. In part icular, when the English words appear at the be-

ginning/end of the utterances, the error significantly propagates to the first and 

second fol lowing/preceding Cantonese syllables, respectively. When the English 

words are in the middle of the utterances, the errors sl ightly spread to the first 

preceding Cantonese syllable, but this seriously affects the first subsequent Can-

tonese syllable. In the oracle experiment, embedded English w i l l only propagate 

at most to one neighbouring Cantonese syllable. 

Another analysis is performed to reveal the degree of the embedded language 

effect w i t h different error types in English. In this study, we classify the error 

on code-mixing English into three types as follows. 

• Error type I: the whole English segment is recognized as another English 

segment. 

• Error type II: the whole English segment is recognized as Cantonese syl-

lables. 

• Error type I I I : part of the English segment is recognized as another English 

segment, while the remaining part is recognized as Cantonese syllables. 

The English error type is dependent on the accuracy of language bound-

ary information, which is impl ic i t ly detected in speech recognition because the 

language ident i ty can be determined according to the recognized words. We 
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analyze the speech recognition performance in terms of the accuracy of this im-

pl ici t language boundary detection (LBD). The results are shown in Table 3.16， 

where C M denotes the overall accuracy for code-mixing. 

Table 3.16: Recognition performance wi th accuracy of language boundary in-

ormat ion 
Inaccuracy 

on LB (ms) 

Set A Set B Set B (Oracle) Inaccuracy 

on LB (ms) Rat io Acc.(%) Ratio Acc.(%) Ratio Acc.(%) 

Inaccuracy 

on LB (ms) Rat io 

C M Can. 

Ratio 

C M Can. 

Ratio 

C M Can. 

<25 57.1 66.3 62.9 5.6 56.0 60.9 44.0 64.7 61.3 

25 - 75 31.2 67.1 63.8 4.7 56.1 61.2 29.9 62.2 58.5 

75 - 150 7.4 68.3 65.3 3.3 45.8 51.1 11.0 61.5 58.0 

>150 4.4 62.5 58.6 45.3 46.8 51.3 10.1 60.5 56.9 

No overlap 0 N A N A 40.6 44.1 48.2 5.0 52.0 56.3 

To evaluate the performance of LBD, the detected boundaries of a language 

segment are compared to the manually aligned true boundaries and the t ime 

difference is measured as the inaccuracy of LBD. In this study, we divide the 

inaccuracy of L B D into several categories as shown in Table 3.16. I f the differ-

ence between detected boundaries and true boundaries is smaller than 25ms (one 

frame), i t can be regarded as a perfect detection. I f the difference is smaller than 

75ms, which is about the t ime durat ion of one phone, i t st i l l can be marked as a 

successful detection. However, i f the inaccuracy of L B D is larger than 75ms, an 

L B D error w i l l be recorded and the error can be further classified into 3 levels: 

a) the inaccuracy of L B D is smaller than 150ms, which is the typical durat ion of 

one syllable; b) the inaccuracy of L B D is larger than 150ms; and c) no overlap 

can be found between detected boundaries and true ones. As a result, English 

error type I usually happens when the language boundary can be successfully 

detected (inaccuracy of L B D is less than 75ms), English error type I I appears 

along w i th the L B D error c, and English error type I I I relates to L B D errors a 

and b. 

I f English words can be correctly recognized (set A) , i t is not surprising 
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that almost 90% of these words are recognized w i th correct boundary infor-

mation (inaccuracy of L B D < 75ms). I t is also noticed that , i f embedded 

English words cannot be recognized (set B), only 10% of these errors in English 

are language-specific errors (English error type I). I n this case, the language 

boundary informat ion is expected to be correct, and therefore the recognition 

accuracy in Cantonese is not affected by the embedded language. On the other 

hand, 90% of the errors in English belong to English error types I I and I I I , which 

are caused by confusion between the languages (inaccuracy of L B D > 75ms). 

In this case, addit ional deletion and insertion error is introduced by imperfect 

language boundary information, and therefore, error on the embedded language 

wi l l propagate. 

3.4.4 Influencing Factors for Embedded English 

Factor analysis is carried out to determine the influencing factors for recogni-

t ion performance in code-mixing English. Studies are performed using selected 

factors as the following. 

• Position of English words 

• Phonology of English words 

• Characteristics of nearby Cantonese syllables 

The recognition performances w i th different positions are given in Table 

3.17. I t is shown that the English accuracy is relatively lower when English 

is in the middle. This may be due to the bidirectional art iculat ion from the 

preceding and following Cantonese syllables. 

Further analysis is performed to investigate the effects of English phonology. 

The study is performed in terms of syllable numbers and syllabic structure of 

English words. Table 3.18 shows the English accuracy w i t h different syllable 

numbers per word. I t indicates that the recognition accuracy increases w i th 

increase of syllables. 
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Table 3.17: Recognition results w i th different English positions 

Position Beginning Middle End 

Overall Acc. 56.7% 57.3% 57.2% 

Cantonese syl. Acc. 56.7% 57.6% 57.1% 

English word Acc. 56.3% 53.5% 57.6% 

Table 3.18: English accuracy w i t h the num. 

No. of Syllables Proport ion English word Acc. 

1 22.2% 37.4% 

2 45.6% 53.8% 

> 3 32.2% 64.2% 

of syllables per English word 

Next, analysis is performed on the syllable structure in terms of number of 

syllables per English word. We observe that if the embedded English is a mono-

syllabic word, the syllable structure indicates a significant effect on recognition 

accuracy. The English accuracy is found to be much lower when the C-V-C 

structure is retained. However, w i t h an increase in syllable numbers, the effect 

of the syllable structure decreases. I f the English word consists of three or more 

syllables, the recognition performance is not affected by its syllable structure. 

Another analysis is carried out to investigate the effect of the immediately 

preceding/following Cantonese syllables around the embedded English. The 

study is performed in terms of analysis syllable correctness and the syllabic 

structure. I t is found that there is indeed a strong correlation between English 

word accuracy and the correctness of the neighbouring Cantonese syllables. Ta-

ble 3.19 gives the details when English is embedded in the middle of utterances. 

I t shows that the recognition accuracy on English words can be over 80% when 

the surrounding Cantonese syllables can be recognized. However, the recogni-

t ion performance is degradated to less than 40% i f the surrounding Cantonese 

syllables cannot be recognized. On the other hand, no obvious observation is 

made in relation to the Cantonese syllable structure. 
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Table 3.19: English accuracy versus surrounding Cantonese correctness 

Cantonese English word Acc. Cantonese 

Correct 82.1% Correct 

Correct 41.8% Wrong 

Wrong 56.7% Correct 

Wrong 37.0% Wrong 

3.4.5 Summary 

This study mainly investigated the effect of embedded language on code-mixing 

speech recognition in Cantonese-English code-mixing ASR. I t is found that the 

recognition accuracy in code-mixing is significantly affected by the recognition 

performance of the embedded language. In part icular, the embedding effect does 

not degrade the performance of code-mixing ASR if the embedded segments can 

be recognized correctly, but significant degradation is found in the matr ix lan-

guage i f the embedded words can not be recognized. This indicates that the 

recognition performance on embedded language Is very important , and i t is be-

lieved that the improvement in the embedded language w i l l br ing improvement 

to the mat r ix language as well. Future studies to improve the performance of 

embedded English are therefore desirable. 

• End of chapter. 
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Chapter 4 

Cross-lingual Use of Acoustic 

Information for Cantonese & 

English 

Summary 

As the key components in speech recognition, the acoustic models, 

pronunciat ion dict ionary and language models need to be carefully 

designed for Cantonese-English code-mixing speech. This chapter 

discusses the cross-lingual use of acoustic sources and characteris-

tics for Cantonese and English. I t begins w i t h an int roduct ion of 

speech corpora used in this thesis. After that we present a study on 

pronunciat ion variations in Cantonese-English code-mixing speech 

spoken by native Cantonese speakers, followed by the implications 

of these observations for the design of a code-mixing speech recog-

n i t ion system Then we focus on cross-lingual acoustic modeling. 

Various combination schemes and similar i ty measurements are in-

vestigated to design different cross-lingual phoneme sets. Finally, 

cross-lingual adaption via model mapping is discussed. 
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4.1 Speech Corpora 

Three speech corpora are selected in this study. They are native English cor-

pus T I M I T [110], read style Cantonese corpus CUSENT [109] and Cantonese-

English code-mixing corpus C U M I X [25'. 

TIMIT 

T I M I T is a speech corpus of American English spoken by speakers from dif-

ferent dialectal regions in the United States. I t has been widely used for the 

development and evaluation of speaker independent phone recognition systems. 

There are 630 speakers in the corpus. Each speaker produces 10 utterances that 

are categorized as follows: 

sa: 2 common sentences for all speakers 

sx: 5 sentences selected from a pool of 450 phonetically balanced sentences 

si： 3 sentences randomly selected wi thout phonetic coverage considerations 

Only sx and si utterances are used in our work, sa utterances are excluded 

because they have fixed contents and therefore may lead to undesirable bias of 

the acoustic models towards certain phonemes. Among the 630 speakers, 462 

were designated to be the training speakers and the remaining were for testing. 

CUSENT 

CUSENT was developed by the DSP & Speech Technology Laboratory of the 

Chinese University of Hong Kong (CUHK) . I t is a large collection of read-style 

formal Cantonese sentences from local newspapers, which were designed to be 

phonetically rich. The construction of this corpus is intended for the devel-

opment of speaker independent continuous speech recognition for Cantonese. 

There are 40 male and 40 female speakers, among which 68 speakers are desig-

nated for t ra in ing (300 sentences per speaker) and 12 speakers are for testing 

(100 sentences per speaker). The tota l number of t ra in ing and testing utter-

ances are 20,400 and 1,200 respectively, where dist inct sentences are 5,100 and 

600 respectively. 
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CUMIX 

C U M I X is a database developed specifically for Cantonese-English code-mixing 

speech recognition. The spoken contents in C U M I X are mainly daily conversa-

tions or jargon by university students in Hong Kong. There are three different 

types of utterances in C U M I X : 

C M : Cantonese-English code-mixing utterances 

M C : monolingual colloquial Cantonese utterances 

M E : monolingual English words and phrases 

I t contains 16 hours of speech data from 74 speakers. The train ing data 

include utterances from 20 male and 20 female speakers. Each speaker has 200 

C M utterances and 100 M E utterances. There are 14 male and 20 female 

speakers in the test data. Each of them has 120 C M utterances and 90 M C 

utterances. The details of the C U M I X corpus are given in Table 4.1. 

Table 4.1: A summary of C U M I X 

Training data Test data 

20 males, 20 females 14 males, 20 females 

Duration: 7.5 hours 4.25 hours 

Durat ion of English segments: 1.13 hours 0.57 hours 

C M Tota l no. of utterances: 8,000 3,740 1 

No. of unique sentences: 2,087 2,256 1 

No. of unique English segments: 1,047 1,069 

Duration: 2.75 hours 

M C Total no. of utterances: 3,060 

No. of unique sentences: 1,742 

Duration: 1.5 hours 

M E Total no. of utterances: 4,000 

No. of unique sentences: 1,000 
1 
1 
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4.2 Pronunciation Variation Modeling for 

Cantonese-English Code-mixing ASR 

As we discussed in the last chapter, there exists many pronunciation varia-

tions in Cantonese-English code-mixing speech, and therefore we often get lower 

speech recognition accuracy on code-mixing speech than monolingual speech 

spoken by native speakers. Understanding how native and code-mixing speech 

differs is an important first step to tackle the problem of code-mixing speech 

recognition. In the last decade, much work has been done to study pronunciation 

variations in Western languages in monolingual speech recognition. However, 

works related to code-mixing speech, part icular ly for Cantonese-English code-

mix ing speech is rare. To improve the design of acoustic models and construct 

an accurate bi l ingual pronunciation dictionary, in-depth studies on pronuncia-

t ion variations in code-mixing speech are needed. 

4.2.1 Phone Recognition Experiments 

We are interested in how and where native and code-mixing speech differ from 

each other in terms of pronunciation variation. A data-driven computational 

approach is adopted to reveal significant pronunciation variations in Cantonese-

English code-mixing speech, in addit ion to those variations that have been well 

understood in monolingual speech recognition. We assume that frequent and 

systematic phonetic variations can be reflected by noticeable confusion patterns 

in automatic speech recognition. A series of phone recognition experiments 

using state-of-the-art acoustic modeling techniques has been carried out. 

Baseline phone recognizer 

In the first step, 20,000 utterances from CUSENT and 4,000 utterances from 

T I M I T are used to t ra in context-dependent baseline phone models for Can-

tonese and English respectively, which represent carefully art iculated speech 

from native speakers. The acoustic feature vector consists of 39 conventional 

MFCCs, and each, state m H M M has 16 Gaussian mixtures. For Cantonese, 
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73 Ini t ials and Finals are used as the basic modeling units. For English, 39 

IPA-based phone-level units are applied [111 . 

Then the baseline phone recognizers are evaluated w i t h different types of 

data as shown in Table 4.2 In the evaluation, no phone grammar was applied 

in the English phone recognizer, and the Cantonese recognizer followed the 

In i t ia l -F inal constraint. 

Table 4.2: Test data sets applied in phone recognition experiments 

Data sets Characteristics 

ENG 

T I M I T 

C U M I X - M E 

C U M D L C M E 

native English 

monolingual English words w i t h Cantonese accents 

English extracted f rom code-mixing utterances 

C A N 

CUSENT 

C U M I X _ M C 

C U M I X _ C M C 

read-style formal Cantonese 

monolingual colloquial Cantonese utterances 

Cantonese extracted from code-mixing utterances 

For the embedded language English, a phone recognition experiment is first 

carried out on T I M I T . The observed phonetic variat ion patterns are regarded 

as the references for subsequent analysis. When speech data in the C U M I X cor-

pus ( C U M I X _ M E & CUMIX_CME) are used for testing, some unseen variation 

patterns are expected By comparing these patterns w i t h the references, addi-

t ional variations can be identified- Common variations found in CUMIX_ME & 

C U M I X _ C M E are probably due to the Cantonese accents of the speakers, while 

their differences may indicate the effect of the code-mixing scenario. For the 

mat r i x language Cantonese, the recognition results on the CUSENT test utter-

ances are used as the benchmark. Phonetic variations in colloquial Cantonese 

are analyzed in the same way as for non-native English. 

Phone recognition accuracy 

The phone accuracies for different test data are given in Table 4.3. The bench-

mark accuracies (matched conditions) are 645% and 85.6% for native English 

and read-style formal Cantonese respectively, which are comparable to the state-
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of-the-art results reported in previous studies [112][113]. Compared w i th native 

English, the recognition accuracy for non-native English speech in C U M I X is 

much lower. There is no significant difference between monolingual English 

words spoken by Cantonese speakers and embedded English words in code-

mix ing utterances. For colloquial Cantonese in C U M I X , the recognition accu-

racy is about 20% lower than the benchmark. This indicates a significant effect 

of the change in speaking style. 

Table 4.3: Phone recognition results for English & Cantonese 

Data set Acc. Ins. Del. 

T I M I T (native) 64.50% 6.30% 6.50% 

ENG C U M I X _ M E (non^native) 35.90% 4.70% 20.60% 

C U M I X _ C M E (code-mixing) 33.30% 4.50% 20.70% 

CUSENT (read) 85.60% 3.60% 0.10% 

C A N C U M I X _ M C (colloquial) 66.40% 4.50% 3.50% 

C U M I X _ C M C (code-mixing) 63.70% 5.10% 3.60% 

Analysis is also done for individual phonemes. Figure 4.1 shows a global view 

of the recognition results on the 39 English phonemes. Along the horizontal 

axis, the phonemes are arranged in the order of ascending accuracy for native 

English ( T I M I T utterances). The recognition accuracy for non-native English in 

C U M I X is lower than that for native English in relation to almost all phonemes. 

The degree of degradation varies a lot among different phonemes. We list all 

English phonemes w i t h significant degradation (〜35% absolute reduction) from 

native to non-native English in Group A of Table 4.4. We expect that these 

phonemes are subject to great variation. In non-native English speech, the 

difference between monolingual English words and code-mixing English words 

applies to only a few phonemes, as shown in Group B of Table 4.4. Further 

discussion w i l l be given in Section 4.2.2. 

Figure 4.2 shows the recognition accuracies for indiv idual phonemes for read-

style and colloquial Cantonese speech. For most phonemes, colloquial Cantonese 

exhibits lower recognition accuracy than read-style formal Cantonese, but the 

61 



English phoneme 

Figure 4.1: Recognition results for individual English phonemes 

••"CUSENT ^^CUMIX_MC CUMIX_CS 

Cantonese Initial /Final 

Figure 4.2: Recognition results for individual Cantonese ini t ia l / f inals 

gap is not as great as that between non-native and native English. The degree 

of degradation varies greatly among different phonemes. I t is also seen that 

there is no noticeable difference between colloquial Cantonese in monolingual 

utterances and in code-mixing ones. 

4.2.2 Analysis of the Confusion Matrix 

A confusion matr ix shows the degree of confusion between each pair of 

phonemes. Since there exists great variation in the frequency of occurrences 

of different phonemes in different databases, the number of confusing cases is 

normalized w i th respect to the phoneme frequency count. We compute the 
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Table 4.4: Phonemes w i th significantly different recognition accuracies in dif-

ferent types of English speech 

native vs. non-

native (Group A) 

monolingual vs. code-

mixing (Group B) 

Phonemes w i th signifi-

cantly different accuracies 

/ t h / , / v / , / I / , / z / , 

/ oy/，A / , / b / , /t/， 

/ e r / , / p /， M 

/ • / , / oy / , / b / , I I I , 

/ e r / , /w/， /dh/ 

normalized confusion matr ix as: 

(4.1) 

where C{i,j) denotes the number of cases that phoneme j is mis-recognized 

phoneme i. The value of C{i,j) is between 0 and 1. 

As mentioned previously, frequent and systematic pronunciation variations 

can be reflected by noticeable confusion patterns in the normalized confusion 

matr ix C{i,j). There are many pairs of phonemes that have a non-zero value of 

C(i,j). We assume that only those exceeding a certain threshold T(0 < T < 1) 

are related to systematic pronunciation variations that we are interested in. 

Moreover, the difference between two normalized confusion matrices for the 

same language can be represented by the discrepancy matr ix defined below. 

A A B ( l , j ) = C B { i , j ) - C A { h j ) (4.2) 

The value of Aas(。） i s between -1 and 1. 

Analysis of the English Confusion Matrix 

Figure 4.3 shows part of the normalized confusion matrices between native and 

non-native English phonemes. Only major confusions (T = 0.15) are included 

for the ease of visualization. Numbers in boldface indicate highly confused 

phonemes, which are considered to be phonetic variations in non-native English. 

Similar analysis can be done also on native English. Comparison between native 

and non-native English leads to the following observations. 
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1: For nat ive English, only two significant phonetic variations are observed, 

/ z / to / s / and / z h / to / s h / . They are also seen in non-native English, to a 

much more severe extent. 

2: Most of the phonetic variations occurring in non-native monol ingual En-

glish and code-mixing English are common. The extent of these variations is 

also at the same level. 

3: I n Table 4.4，Group B lists those phonemes on which code-mixing English 

is more poor ly recognized than non-native monol ingual English. For example, 

/ e r / is frequently mis-recognized as / a a / and / w / becomes / I / in code-mixing 

English but not i n monol ingual English. For / o y / , / d h / and / u w / , no part icular 

new var iat ion pat tern can be seen. In addit ion, the deletion of / b / and / r / is 

more noticeable in code-mixing English. 

4: / u h / is found to be very badly recognized in bo th non-native and native 

English. No specific phonetic variat ion pat tern can be observed. I t may indicate 

tha t this phoneme is not effectively modeled by the H M M . 

5; Consonant phonemes / b / , / r / , / t / , / p / , / I / and / k / as l isted in Group 

A of Table 4.4, are found to have low recognition accuracy, because of the high 

deletion rate. No specific phonetic var iat ion can be observed. 

0.19/0.21 
0.1 

0.22/0.26 ‘ 
‘ 0.27/0.26 * 

0 VW •‘ 017/0 26 
‘-!{•, {! I < 

“ “ - 0.31/0.28 
0.16/0.27 

0.2/0.16 、“、 
0 54/0.51 ~ 

0.22/0.17 0 17/0 
0.44/0.44 

‘ * 0.32/ ^ 

Figure 4.3: Normalized confusion mat r i x f rom non-native English 

( C U M I X _ C M E / C U M I X _ M E ) 

Context-dependent Phonetic Variation in English 

Among the Engl ish phonetic variations discussed above, there are three context-

independent phonetic variations: / t h / to / f / , / a e / to / e h / and / i h / to / i y / . 
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The other variations typical ly occur under specific contextual conditions. Such 

context-dependent variations are identified and listed in Figure 4.4. We divide 

them into 4 different levels as follows. 

L I : Var iat ion occurring only in specific lexical entries 

L2: Variat ion depending on phoneme posit ion in the word 

L3: Variat ion depending on syntax, such as part-of-speech (POS) 

L4: Context-independent variation 

Phonetic 
variation 
patterns 

Contextual rules Example words 
Phonetic 
variation 
patterns LI L2 L3 

Example words 

/er/ to /ah/ or 
/aa/ 

when /er/ in the 
end of the word 

when /er/ in 
the noun tutor, paper 

/oy/ to /ao/ when /oy/ 
followed by /n/ point, join 

/v/ to /f/ 
when /v/ in the 
middle/end of 

the word 
five, objective 

/dh/to/f/ when /th/ in 
word 'with' with, within 

/z/ to /s/ 
when /z/ 

followed by ‘/ah/ 
/I/' 

when M in the 
end of the word 

when M in 
plural noun 

overseas, 
proposal 

/zh/ to /sh 

when /zh/ 
followed by 7ah/ 
/I/', in the suffix 
'sion' or 'sure' 

measure, fUsion, 
visual 

/ng/ to /n/ when /ng/ in the 
end of the word 

marketing, 
admin 

Figure 4.4: Major context-dependent phonetic variations in English 

Analysis of the Cantonese Confusion Matrix 

Normalized confusion matrices on Cantonese phonemes are analyzed and com-

pared among different types of speech. The major variat ion patterns in different 

test sets are shown in Table 4.5. F_ denotes Final units and I_ denotes Initials. 

For example, F_-t represents a Final ending w i th coda / t / whi le F—aa- rep-

resents a Final start ing w i th vowel /aa / . Al though the variat ion patterns of 

read-style formal Cantonese and colloquial Cantonese are mostly common, the 

extent of confusability is different. Figure 4.5 shows the number of confusing 

65 



D 35 0 2 0 25 0 2 0 15 0 1 
Threshold T 

Discrepancy matrix between CUSENT& C _ I X _ M C 
Discrepancy matrix between CUSENT& CUI\/HX_CMC 

Figure 4.5: No. of confusing pairs 

due to the colloquial nature of Can-

tonese 

CUSENT CUMIX—MC CUIVIIX_CMC 

Figure 4.6： Syllable durat ion of 

different types of Cantonese 
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Table 4.5: Confusion patterns in Cantonese 
Variat ion patterns CUSENT C U M D C M C C U M I X _ C M C 

(F_-t, F_-k w i t h F_-p) / / / / / 
(F_aa- to F_a-) / / / / / 
(F_-ng to F_-n) / / / / / 

( L n to L I ) / / / / / 
(F_ng to F_m) / / / / / 
(Lng to Lnu l l ) / / / / / 

(F_eon to F_oeng) / / / / 
(I-gw to Lg) / / / / 

pairs appearing in the discrepancy matr ix w i th different cut t ing threshold T , 

which indicate the degree of confusion due to the colloquial speaking style. I t is 

generally observed that the degree of variation is more severe in colloquial Can-

tonese than in formal Cantonese. On the other hand, the degree of colloquial is 

part ia l ly related to the speaking rate. For example, syllable fusion is one type 

of pronunciation variat ion that mainly occurs in fast speech. Figure 4.6 shows 

the average syllable durat ion of different types of Cantonese. I t can be seen 

that colloquial Cantonese in C U M I X is 25% faster than formal Cantonese in 

CUSENT. 
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4.2.3 Implications for Code-mixing ASR 

In Cantonese-English code-mixing speech, the embedded English words carry 

strong Cantonese accents, which are reflected by the phonetic variat ion patterns 

as discussed in Section 4.2.2. The context-dependent rules of phonetic variation 

in Figure 4.4 should be adopted to modify the pronunciat ion lexicon of code-

mix ing English. For example, the variation from / e r / to / aa / at the end of a 

noun is very conspicuous in English spoken by Cantonese speakers. The rele-

vant pronunciat ion variants should definitely be included in the pronunciation 

lexicon. To encounter the very l ikely deletion of English consonants, e.g., / I / 

(as in “p lan " ) , / k / (as in "book" ) , addit ional lexical entries should be added to 

represent such variants. On the other hand, some of the variations seem to be 

assured. As seen in Figure 4.3, the confusions from / t h / to / f / and from / v / to 

/ f / are about 50%. In these cases, we would suggest subst i tut ion of phonemes 

instead of adding new pronunciations. Note that these substitutions may be 

context-dependent, e.g., / z / to / s / . Based on observed variat ion patterns, we 

generate the accented dictionary in a data-driven way. The modified dictionary 

contains an average of 1.48 pronunciations for each lexical item. 

On the other hand, the difference between monolingual non-native English 

and code-mixing English is marginal. There is also no significant difference be-

tween Cantonese utterances w i th and wi thout code-mixing. This suggests that 

monolingual non-native English and monolingual colloquial Cantonese would 

be effective to t ra in the acoustic models in a code-mixing speech recognition 

system. This w i l l alleviate the problem of not having sufficient code-mixing 

data, since we believe that monolingual speech data are easier to collect than 

code-mixing one. 

Three sets of monolingual English acoustic models are trained w i th differ-

ent speech data, which are denoted by ME_I, M E J I , and M E J I I , in Table 4.6 

respectively. They are evaluated w i th both the standard C M U dictionary and 

the accented dictionary, and the recognition results are shown in Table 4.6. The 

testing data are English segments extracted from code-mixing utterances. M E J 

attains a very low accuracy on English words. This indicates that Cantonese-
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accented English is very different from the native American English found in 

T I M I T . M E J I improves greatly due to better matched training. Nevertheless, 

the recognit ion accuracy is st i l l on the low side because of the involvement 

of T I M I T data in the training phase. ME一III gives the best recognition per-

formance. I t confirms that the acoustic model trained from the best-matched 

speech data gives the best performance. Moreover, noticeable improvement is 

observed w i t h the accented dictionary. 

Table 4.6: English word accuracy w i th different AMs anc .dictionaries 

Monol ingual 

English AMs 

Training 

Data 

Pronunciat ion 

Dict ionary 

English 

Word Acc. 

M E J T I M I T 

T I M I T 

Standard C M U diet. 

Accented diet. 

49.88(%) 

51.32(%) 

M E J I T I M I T + C U M I X 

T I M I T + C U M I X 

Standard C M U diet. 

Accented diet. 

70.68(%) 

73.29(%) 

M E J I I C U M I X 

C U M I X 

Standard C M U diet. 

Accented diet. 

74.84(%) 

75.62(%) 

Similar ly experiments are performed on colloquial Cantonese. Table 4.7 

explains the three sets of monolingual Cantonese acoustic models, which are 

trained w i t h read-style speech data (CUSENT), colloquial Cantonese data 

( C U M I X ) and a pool of both, respectively. The testing data are the mono-

l ingual Cantonese (MC) utterances of C U M I X , and the modified dict ionary is 

applied in the evaluation. Table 4.7 lists the recognition accuracy in terms of 

Cantonese syllables. CUSENT is a read-speech database for formal Cantonese, 

where many colloquial Cantonese terms or lexicons cannot be found. I t is not 

surprising that poor performance is found in model MC—I due to the mismatched 

speaking style and spoken content. I t is also noticed that MC_I I and M C J I I 

shows equal performance in recognizing M C speech of C U M I X , although they 

are trained w i t h different sets of speech data. 

Further analysis is performed on the phoneme-level ( In i t ia l /F ina l ) and the 

results are given in Table 4.8. Statistical analysis of indiv idual phonemes in-
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Table 4.7: Cantonese syllable accuracy w i th different A M s 

Monolingual Cantonese AMs Training Data Cantonese Syl. Acc. 

MC_I CUSENT 58% 

M C J I CUSENT + C U M I X 67.15% 

M C J I I C U M I X 67.15% 

dicates the performance difference between MC_ I I and M C J I I . C U M I X is a 

colloquial speech corpus developed for Cantonese-English code-mixing ASR ap-

plications. The speech data in C U M I X is domain-specific due to the linguis-

t ic characteristics of code-mixing. The tri-phone coverage is more balanced 

in MC- I I . Therefore, i t is not surprising that smoother recognition results are 

found in MC_II . M C J I I shows fair ly different performance in recognizing dif-

ferent phonemes. I t attains very high accuracy for some phonemes (related to 

colloquial lexicons), while at taining relatively low accuracy for others (related to 

standard Chinese characters). Hence, i t suggests that model M C J I outperforms 

M C J I I , especially for unseen test data. 

In summary, only accented English speech data from C U M I X should be 

used in the acoustic modeling of Cantonese-English code-mixing speech. On 

the other hand, bo th colloquial Cantonese speech in C U M I X as well as read-

style Cantonese from CUSENT should be applied in acoustic modeling in the 

following studies. 

Table 4.8: Statistics analysis of dif 'erent sets of t ra in ing data and AMs 

Monol ingual 

Cantonese AMs 

Triphone coverage 

on test speech 

Cantonese 

Phone Acc. 

Mean of 

73 Phones 

Std of 

73 Phones 

MC_I 87.60% 70.97% 70.21 19.38 

M C J I 89.87% 78.08% 74.73 16.54 

M C J I I 97.36% 78.07% 66.85 24.33 
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4.3 Cross-lingual Acoustic Modeling 

This part of the research aims at the development of cross-lingual acoustic mod-

eling of Cantonese-English code-mixing speech. The crucial issue is to design 

an appropriate universal phoneme inventory, which should cover all phonemes 

of Cantonese and English. 

4.3.1 Design of Cross-lingual Phoneme Inventory 

As discussed, i t is expected that Cantonese and English have a number of 

phonemes that are acoustically or phonetically identical or similar to each other. 

The degree of s imi lar i ty varies. In principle, highly similar phonemes can be 

combined together. Various combination schemes and simi lar i ty measurements 

can be applied to decide which phonemes should be merged together. 

In this thesis, professional linguistic knowledge is first implemented to clus-

ter phonemes. We use IPA classification to facil i tate an intui t ive comparison 

between Cantonese and English phonemes, where phonemes labelled w i th the 

same IPA symbols are clustered into one class. Based on the IPA, a global unit 

set w i t h 65 phones as shown in Figure 3.6 are constructed, and a conventional 

context-dependent t ied models CL_IPA are trained based on this phoneme in-

ventory as our benchmark. This acoustic model is applied in our pilot study 

to investigate the effects of language mix ing for code-mixing ASR (see Section 

3.4) as well. 

On the other hand, various data-driven approaches are discussed to estimate 

which phonemes should be merged together. Acoustic and phonetic similari ty 

between different phonemes are studied by investigating the K - L divergence 

and calculating the phoneme confusion matr ix . Based on that , different sets of 

cross-lingual phoneme inventories are designed and they are evaluated in speech 

recognition experiments w i th context-independent acoustic models. 
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Basic Sound Units for Phoneme Clustering 

As we introduced in Chapter 3, the conventional sound inventory for English is 

phoneme-based. I t contains 39 basic English phonemes as defined in the Inter-

national Phonetic Alphabet (IPA) (see Figures 3.4 and 3.5). However, different 

from English, different sound units (e.g. In i t ia l /F inal ) can be used to represent 

Cantonese due to its specific phonology and phonetics. To investigate the per-

formance of different sound representation schemes and design an appropriate 

inventory for the acoustic modeling of Cantonese-English code-mixing speech, 

three sets of sound inventories are employed for Cantonese as shown in Table 

4.9. They are denoted by IF, CanP, and IPA, respectively. A n IF-based Jyut 

Ping system has been the most widely used in monolingual Cantonese speech 

recognition in previous research [73]. The details of Cantonese initials and fi-

nals have been introduced in Figure 3.1. However, different from the Jyut Ping 

system, the IPA only assigns vowels and consonants to describe Cantonese. 

Vowel-nasal and vowel-stop finals are divided into vowels, nasals, and stop con-

sonants separately. Sound units in CanP are mainly based on the IPA, except 

that the vowel-stop finals are kept. This is because the Cantonese-specific stop 

consonants /p/， / t / , and / k / are unreleased, and their sound mainly occurs at 

the vowel instead of the consonant. 

Table 4.9: Different sound units for Cantonese 
IF initial/final-based, 73 LSHK-based IF are involved. 

CanP mainly phone-based, 58 sound units are involved. 

IPA phone-based inventory, 43 phonemes are involved. 

Phonetic Similarity based on the Confusion Matrix 

Phonetic confusion indicates the degree of phonetic similarity. By inspecting 

language-dependent intra phonetic confusion and inter phonetic confusion be-

tween Cantonese and English phonemes in speech recognition outputs, we may-

understand which phonemes are highly similar and therefore can be merged 

together. 
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The procedure is as follows. Firstly, a set of language-dependent bi l ingual 

acoustic models are trained w i th CUSENT and C U M I X speech data. Then, 

phoneme-based speech recognition experiments are performed w i th this bil in-

gual acoustic model. C M utterances from the development set of C U M I X are 

used in recognition experiments. A confusion mat r ix is derived f rom the recog-

ni t ion results. 

As the embedded English words are Cantonese-accented, i t is observed that 

many English phonemes are recognized as Cantonese ones, but few Cantonese 

phonemes are recognized as English ones. The counts in the confusion matr ix 

determine the level of confusion between the phonemes. I f the confusion from 

one phoneme to another exceeds 50%, i t is regarded as highly similar phonet-

ically and therefore can be clustered into one phoneme class. The observed 

phoneme clusters include: 

• Cross-lingual clusters: e.g. English phoneme /E_er / w i th Cantonese final 

/F_aa/ 

• Language-dependent clusters: e.g. English phoneme / E J / w i th English 

phoneme /E—v/ 

Acoustic Similarity based on Kullback-Leibler Divegence 

Acoustic s imi lar i ty between two phonemes can be indicated by the Kullback-

Leibler divergence ( K L D ) between the corresponding HMMs. Figure 4.7 shows 

a schematic diagram of KLD-based phoneme clustering. 

Bi l ingual speech of 10 male and 10 female speakers f rom the development set 

of C U M I X are involved in this study. For each speaker, single-mixture, context-

independent acoustic models are trained for Cantonese and English phonemes 

respectively. The K - L divergence is then calculated between the H M M s of every 

possible pair of phonemes. As a result, each English phoneme has a mapped 

Cantonese phoneme, in the m in imum-KLD sense. Part icularly, for each speaker 

z, we can find a mapped Cantonese phoneme Pec, for each English phoneme 

Pe,- The corresponding K - L score is denoted as klsp^^ , which is calculated as 
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trained from 
Speaker 1 
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Speaker 2 
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KLDs between 
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Phones by 
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New 
Phone 

Inventory 

Figure 4.7: KLD-based phoneme combinat ion 

the reciprocal of their K - L divergence. In order to remove speaker-dependent 

characteristics, fusion is performed among al l speakers as: 

(4.3) 

Where KLS is the K - L score mat r ix . Figure 4.8 shows par t of the score 

mat r i x between Engl ish consonants and Cantonese ini t ials. I ts clear f rom the 

score ma t r i x tha t each Engl ish phoneme may map to one or more Cantonese 

phonemes w i t h different scores due to the speaker variabi l i ty. Therefore, for 

each Engl ish phoneme 队 ， w e need to search for i ts speaker-independent closest 

Cantonese phoneme p*^ f rom Cantonese sound inventory C w i t h the highest 

score kls~n* as: 

Pec kli S'T (4.4) 

On the other hand, we calculate the language-dependent K - L divergence 

between different Engl ish phonemes. For each Engl ish phoneme, we search for 

the closest Engl ish phoneme as well in the same way. Figure 4.9 i l lustrates the 

int ra acoustic s imi lar i ty of Engl ish and inter s imi lar i ty between Engl ish and 

Cantonese. For each Engl ish phonemes, we list the closest Engl ish phonemes 

w i t h the highest K - L score, and the closest Cantonese phonemes in IF and 

CanP-based sound inventories respectively. 
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iji 
E_b 
E_ch 
E_d 
E_dh 
E_f 

E_hh 
E_k 
E J 
E_m 
E_n 
E:ng 
E_p 

E_sh 
E_t 
E_th 
E_v 
E w 
Ely 

E zh 

2 35 
0 

0.35 
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0.52 

I 52 

16 

28 
48 

12 

12 

0 05 

02 

42 

17 

0 72 
0 16 

0 37 

15 

0 55 

Figure 4.8: Example of a K - L score mat r ix 

In this study, i f the score derived from its closest Cantonese phoneme is 

obviously larger than the score from its closest English phoneme (score difference 

> 0.2), this English phoneme is regarded as being closer to Cantonese phoneme 

than other English phonemes. As a result, less than half of English phonemes 

are found to be closer to Cantonese. Among these English phonemes, there are 

some more-to-one mapping, e.g., both /E_ey/ and /E_ ih / are found closer to 

Cantonese finals /F_ei / than other English phonemes. Therefore, the English 

phoneme and its closest Cantonese phonemes wi l l be clustered together only 

if the Cantonese phoneme is also found to be closer to this English phoneme 

than other English phonemes. On the other hand, i f the K - L score between two 

English phonemes is very high, they wi l l be merged together as well, such as 

/ E „ z / and /E_s/ . Details of merged phonemes are highlighted in Figure 4.9. 

Selection of Cross-lingual Phoneme Inventory 

Based on the acoustic and phonetic similari ty investigated before, several cross-

l ingual phoneme inventories can be designed w i th different phoneme combina-

t ion schemes described as follows: 

a) PCM: phoneme combination based on the phonetic simi lar i ty observed in 
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English Optimal English Optimal Cantonese phone & KLD 
Phone phone & KLD IF Based CanP Based 
E_b 0.92(E_p) 2.348(I_b) 2.348(CanP_b) 

E_ch 0.38(E_s) 0.903(I_c) 0.903(CanP:c) 
E_d 0.74(E_t) 0.538(I:g) 0.538(Can? g) 

E^dh 0.02(E_d) 0.033(I_d) 0.144(CanP_d) 
E f 0.92(E_v) 1.283(I_f) 1.283 (CanP—f) 
E_g 0.59(E_d) 1.478(1—g) 1.424(CanP_g) 

E_hh 0.13(E_f) 0.593(I_h) 0.594(CanP_h) 
E J h 0.37(E_sh) 0.939(I_z) 0.939(CanP_z) 
E_k L19(E_t) 0.577(I_k) 0.577(CanP~k) 
E_1 0.54(E—r) 0.255(I_null) 1.069(CanP_ng) 

E_m 1.58(E_n) 0.610(I_m) 1.968(CanP_m) 
E_n 1.14(E_n) 0.282(1—mill) 1.442(CanP:n) 

E_ng 1.01(E_n) 0.282(I_null) 0.434(CanP_ng) 
E_P 1.52(E_t) 0.648(I_b) 0.648(CanP_b) 
E_r 1.13(E_1) 0.553(1—1) 0.437(CanP ng) 
E—s 1.83(E_z) 1.423(I_s) 1.423(CanP_s) 

E_sh 0.80(E_s) 0.523(I_c) 0.523(CanP_c) 
E_t 1.42(E_p) 0.635(1—c) 0.635(CanP_c) 

E J h 0.32(E_f) 0.171(I_s) 0.171(CanP s) 
E—V 0.51(E_f) 0.472(I_f) 0.473(CanP_f) 
E w 0.26(E_r) 0.550(I_w) 0.55(CanP_w) 
E~y 0.32(E_w) 0.917(1 J ) 0.917(CanPJ) 
E_z 2.01(E_s) 0.721(I_s) 0.721 (CanP_s) 

E_zh 0.40(E_sh) 0.161(I_s) 0.161(CanP_s) 
E_aa 0.932(E_ao) 0.234(F_o) 0.921 (CanP—0) 
E_ae 1.867(E_eh) 0.318(F_aai) 0.593(CanP_e) 
E_ah 0.940(E_er) 0.598(F_o) l.l(CanP_o) 
E_ao 1.010(E_aa) 0.177(F_o) 0.721 (CanP—0) 
E_aw 0,189(E_aa) 0.274(F_aau) 0.463 (CanP—aa) 
E_ay 0.403 (E_ae) 1.276(F_aai) 1.466(CanP_aai) 
E_eh 1.810(E_ae) 0.361(F_e) 1.279(CanP_e) 
E_er 1.118(E_ah) 0.520(F_aa) 0.568(CanP_aa) 
E:ey 1.000(E_ih) 1.835(F_ei) 2.49(CanP_ei) 
E ih 0.660(E_ey) 0.871(F_ei) L157(CanP_ei) 
E : i y 0.878(E_ih) 2.229(F_i) 2.654(CanP_i) 
E_ow 0.770(E_ah) 1.277(F_ou) 2.144(CanP_ou) 
E:oy 0.081(E_ao) 0.045(F_oi) 0.097(CanP_o) 
E_uh 0.139(E_ah) 0.179(F_ou) 0.384(CanP_o) 
E uw 0.456(E er) 0.262(F ou) 0.406(CanP ou) 

Figure 4.9: K L D based acoustic s imi lar i ty 
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the phonetic confusion matr ix . 

b) K L D : phoneme combination based on the acoustic simi lar i ty investigated 

in the KLD-based approach 

c) K L D U P C M : intersection of P C M and KLD-based phoneme combination 

results 

d) K L D 门 PCM: union of P C M and KLD-based phoneme combination re-

sults 

Table 4.10 lists the details of merged phonemes in different combination 

schemes. As a result, various cross-lingual acoustic models can be trained w i th 

different sound inventories. 

Table 4.11 explains different sets of acoustic models. Model IPA is a purely 

knowledge-based acoustic model based on IPA phonetic inventories for native 

American English and Cantonese. Four sets of data-driven cross-lingual acous-

tic models are trained for IF-based ( K L D J F , P C M J F , U N J F , I N J F ) and 

CanP-based ( K L D X a n P , PCM_CanP, U N X a n P , IN_CanP) sound inventories, 

respectively. The prefix "UN_" represents union and ” IN」’ represents inter-

section of P C M and KLD-based phoneme combination. LD_IF and LD_CanP 

are language-dependent models, in which Cantonese and English phonemes are 

separated despite the fact that some of them are phonetically similar. 

To evaluate the effectiveness of different sets of acoustic models and select 

the most appropriate phoneme inventory for code-mixing speech recognition, 

syl lable/word recognition experiments are performed. A l l phoneme models are 

context-independent monophone HMMs trained w i t h CUSENT and CUMIX . 

The acoustic feature vectors have 39 components: 13 M F C C and their first and 

second-order t ime derivatives. Each phone model consists of three or five emit-

t ing states, each of which is represented by 16 Gaussian mix ture components. 

The test data are the C M test utterances of C U M I X and recognition per-

formance is measured in terms of syllable accuracy for Cantonese and word 

accuracy for English. The test results are also given in Table 4.11. The recog-

ni t ion performance of L D J F and LD_CanP, part icular ly on embedded English 

words, are on the low side because of the relatively l imi ted amount of t raining 
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T a b l e 4.10: M e r g e d p h o n e m e s i n d i f f e ren t c o m b i n a t i o n schemes 
IF-based System 

PCM KLD K L D U P C M K L D n P C M 

E_ay, F_aai E-ay, F_aai E_ay, F_aai E_ay, F_aai 
E_er, F_aa E-iy, F_i EJy, F_i E_ey, F_ei 
E_ey, F_ei E_ey, F_ei E_ey, F_ei E_ow, F_ou 
E_ow, F_ou E_ow, F_ou E_ow, F_ou E_z, Ls 
E_uw, F_m E_b, Lb E_b, Lb 
E_oy, F_oi E_ch, I_c E_ch, I_c 
E」，U E-g, I-g E-g, I-g 
E_v, Lf EJ, Lf EJ, E_v，Lf 
E_z, Ls EJZ, E_S, I_S E_z, E_s, Ls 
E_t, I_t E_hh, Lh E_hh, Lh 

E_w, I_w E_w, I_w 
E-y, I-j E-y, I-j 
E-jh, I_z E_jh, I-z 

E_uw, FJu 
E_oy, F_oi 
E_er, F_aa 
E_t, Lt 
EJ, I-l 

CanP-based System 
PCM KLD KLD U P C M KLD n PCM 

E_ay, CanP_aai E_ay, CanP_aai E_ay, CanP_aai E_ay, CanP_aai 
E_er, CanP_aa E_iy, CanP_i E_er, CanP_aa E_ey, CanP_ei 
E_ey, CanP_ei E_ey, CanP.ei E—ey, CanP_ei EJ, CanPJ 
E_ow, CanP_ou E_ow, CanP_ou E_ow, CanP_ou E.iy, CanP_i 
E_uw, CanPJu E_b，CanP.b E_uw, CanPJu E_N, CanP_n 
E_L, CanPJ E_ch, CanP_c E_l, CanPJ E_ow, CanP_ou 
E_t, CanP_t E-g, CanP_g E_t, CanP_t E_Z, CanP_s 
E_f, E_v, CanPJ E_f, CanPJ E_f, E_th, E_v, CanPJ 
E^ , CanP_s EJZ, E_S, CanP_s E^, E_s, CanP_s 
E_oy, CanP_oi E_hh, CanPJi E_oy, CanP_oi 
E_ah, CanP_a E_w, CanP_w E—ah, CanP_a 
E_iy, CanPJ E_y, CanP_j E_iy, C a j i P � 

E_d, CanP_d Egh, CanP_z E_d, CanP_d 
E_n, CanP_n E_l, CanP_ng E_n, CanP_n 
E_ng, CanP_ng E_m, CanP_m E_ng, CanP_ng 

E_n, CanP_n E_m, CanP_m 
E_b, CanP_b 
E-ch, CanP_c 
E-g, CanP_g 
EJih，CanP_h 
E_w, CanP_w 
E-y, CanPj 
E_jh, CanPjz 
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Tab e 4.11: Effectiveness of different phoneme inventories 

Monophone No. of Shared Recognition Accuracy on Code-mixing (%) 

AMs Phones Phones C M Overall Can. Syllable Eng. Word 

IPA 65 17 38.75 38.86 37.79 

L D J F 112 0 42.85 44.12 31.98 

K L D J F 98 14 44.75 44.74 44.79 

P C M J F 102 10 45.33 45.35 45.17 

U N J F 92 20 44.91 45.27 41.86 

I N J F 108 4 46.29 45.94 49.24 

LD.CanP 97 0 36.86 37.30 33.22 

KLD_CanP 80 17 38.62 37.93 44.41 

P C M X a n P 81 16 38.59 37.99 43.65 

UN_CanP 71 26 38.24 37.78 42.18 

IN_CanP 90 7 39.74 38.46 50.60 

data and the language-dependent nature of the models. The English words in 

C U M I X carry Cantonese accents, such that some of the English phoneme mod-

els are very close to certain Cantonese phoneme models. In other words, similar 

acoustic features are captured by two different models. Hence, the confusion of 

English words w i t h Cantonese syllables tends to increase. The English words 

are easily misrecognized as Cantonese syllables. A t the same t ime, some can-

tonese syllables may be recognized as English words as well. This also explains 

why the performance of LD_IF and LD_CanP in recognizing Cantonese syllables 

sl ightly declines. 

The IPA-based model shows the lowest performance in recognizing code-

mix ing speech in all cross-lingual acoustic models. A l though i t maintains a 

reasonable performance for Cantonese, i t attains a very low accuracy of 37.79% 

for English. This confirms that Cantonese-accented English phonemes are dif-

ferent f rom the native American English phonemes defined in the IPA. 

Data-driven based cross-lingual acoustic models can capture pronunciation 

var iat ion more effectively. A l l data-driven models improve greatly in recog-
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nizing English words. KLD-based and PCM-based models show comparable 

recognit ion results although almost half of the shared phonemes are different be-

tween them. UN-based models use a larger number of shared phonemes (union 

of KLD-based and PCM-based merged phonemes) between Cantonese and En-

glish. However, their recognition accuracies on embedded English are on the low 

side compared w i th either KLD-based or PCM-based models. IN-based models 

at ta in the best recognition performance for both code-mixing Cantonese and 

embedded English. Only a few shared phonemes which are found highly acous-

t ical ly and also phonetically similar are implemented in IN-based models. This 

indicates that very few Cantonese-accented English phonemes tend to really 

highly resemble or even become identical to their Cantonese counterparts. I t 

also suggests that cross-lingual models should be applied to highly acoustically 

and also phonetically similar phonemes, while language-specific models would 

be more appropriate i f either the phonetic or acoustic variat ion is relatively 

large. 

A l l IF-based cross-lingual acoustic models outperform CanP-based models 

in code-mixing speech recognition. The recognition accuracies on code-mixing 

Cantonese attained by IF-based models show above 7% consistent improvement 

compared w i t h CanP-based models. This is because the ini t ia l - f inal scheme is 

Cantonese-specific. I t can better preserve the language-specific characteristics. 

On the other hand, IF-based and CanP-based models show similar performance 

w i t h regard to recognizing code-mixing English. This suggests that initials and 

finals are more suitable as the basic Cantonese units than the phonemes in 

Cantonese-English code-mixing speech recognition applications. 

On the whole, IN_IF is the most appropriate sound inventory for acoustic 

model ing of Cantonese-English code-mixing speech. I t attains the best recog-

n i t ion accuracy of 45.94% for Cantonese, and at the same t ime, i t gives a sat-

isfactory result of 49.24% for embedded English. Therefore, context-dependent 

t r iphone models w i l l be trained w i th IN_IF in the next step. 

79 



Chapter 4- Cross-lingual Use of Acoustic Information for Cantonese & 
English 

4.3.2 Development of Context-dependent Acoustic 

Models 

To represent the different contextual effects, context-dependent tr iphone models 

are further developed based on the pre-defined cross-lingual phoneme inventory 

IN—IF. Constrained by l imi ted training data, we need to t ie (cluster) models of 

rich contexts into generalized ones for predict ing unseen contexts in test utter-

ances. A decision tree-based clustering approach is used to decide which states 

to tie. To capture the co-articulation effects in code-mixing speech, states w i th 

different contexts of different languages are allowed to be t ied together. We con-

struct questions to jo in t ly tie states mainly based on their manners and places 

of art iculation. Findings in previous studies on phonetic and acoustic simi-

lar i ty are also implemented. Different types of questions designed for decision 

tree-based clustering include: 

Mono-lingual Questions 

a) language-dependent questions: e.g. "L_E_Nasal", does the left context be-

long to an English nasal, such as /E_m/ , /E_n / or /E_ng/? 

b) language-specific questions: e.g. R_Voiced_Stop, does the r ight context be-

long to an voiced stop, such as /E_b / , /E_d / , or /E_g/? A l l the attr ibutes of 

the question only exist in English, i.e. there are no Cantonese voiced stops. 

Cross-lingual Questions 

a) general language-independent questions: e.g. R_CL_Affricate, does the right 

context belong to an affricate, such as /E_ch/ , / E _ j h / , / I _z / , or / L c / ? 

b) part icular language-independent questions: e.g. " L_CL_Phone_Class4", does 

the left context belong to phone class 4, such as /E_ f / , /E_v / , or / L f / ? A l l 

attr ibutes of the question are phonetically or acoustically similar phonemes 

observed in sound inventory U N _ I F . 
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Training of Context-dependent Models 

As a result, two cross-lingual (CL) context-dependent (CD) tie models are 

trained as shown in Table 4.12. Only mono-lingual questions are used in grow-

ing trees in model CL_A, while both mono-lingual and cross-lingual questions 

are implemented to t ra in model CL_B. IPA-based CD models are also trained 

w i th cross-lingual decision trees as the benchmark. 

Table 4.12: Number of used questions and t ied states in different CD acoustic 

models 
Model No. of used questions No. of t ied states 

C L J P A 292 40,503 

CL—A 458 63,526 

CL_B 510 71,190 

The effectiveness of C L J P A , CL_A, and CL_B are evaluated by sylla-

ble/word recognition experiments. No language model is applied. The test 

data include the C M and the M C test utterances of C U M I X . The grammar 

network used for recognizing C M utterances is i l lustrated in Figure 4.10. For 

MC utterances, the recognition network is simplified into a syllable loop. 

SIL i Cantonese i English i Cantonese J SIL SIL Syllables r Segments Syllables ？ 
SIL i Cantonese ) 

i S y l l a b l e s ^ 、 

Figure 4.10: Grammar network for syl lable/word recognition of code-mixing 

speech 

The recognition performance is measured in terms of syllable accuracy for 

Cantonese and word accuracy for English. The test results are given in Table 

4.13. I t is not surprising that poor recognition results are found in model 

C L J P A . Significant improvement can be observed in models CL_A and CL_B 

due to the better designed cross-lingual phoneme inventory. CL_B outperforms 

C L ^ in recognizing code-mixing speech. This is because CL_B applies pre-set 
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cross-lingual phonetic questions in addition. Hence, the speech context at the 

language boundaries can be used more efficiently. I n other words, more speech 

data are available to t ra in embedded English words in code-mixing. Further 

improvement can be expected for embedded English words and neighbouring 

Cantonese syllables in consequence. 

Table 4.13: Syl lable/word accuracy of the three context-dependent acoustic 

models 
Triphone 

AMs 

Cantonese-English code-mixing Monolingual Speech Triphone 

AMs C M Overall Can. Syllable Eng. Word Cantonese English 

IPA 57.3% 57.6% 54.1% 62.4% 72.6% 

CL—A 62.0% 62.0% 61.8% 65.9% 74.5% 

CL_B 62.1% 62.1% 62.6% 65.6% 75.2% 

There is a 3-5% accuracy degradation from monolingual Cantonese to code-

mix ing Cantonese. This is because the grammar network used for monolingual 

Cantonese utterances does not include an English segment, and therefore there 

should be no recognition error caused by confusion between similar Cantonese 

syllables and English words. 

In order to get the upper bound accuracy of English words, another ex-

periment is performed on the code-switch words only and the dict ionary only 

includes English words. The test data are the embedded English segments ex-

tracted f rom the code-mixing utterances which means that the language bound-

ary informat ion is correct. CL_B also attains the best recognition accuracy of 

75.2% in this recognition task. 

4.4 Towards Cross-lingual Adaptation 

The major cost factor for developing speech recognition systems for new lan-

guages or speakers is the large amount of transcribed speech data that is required 

for the t ra in ing of accurate acoustic models. However, cross-lingual adaptation 

makes i t possible to make use of speech resources available in one or more lan-
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guages for the recognition of another target language. This allows fast and 

low-cost implementat ion of speech recognizers, which is especially useful for mi-

nor i ty languages or dialects, in which data resources available are very l imited 

or even not existent [114 . 

As we discussed earlier, Hong Kong is a bi l ingual society, where Chinese and 

English are the official spoken languages. As a major working language in Hong 

Kong, English is widely used in commercial activities and legal matters. The 

usage of English, however, is much less than Cantonese in general conversational 

communication. In most cases, i t is much easier to collect a small amount of 

Cantonese speech data from a specific Cantonese speaker for speaker adapta-

t ion purposes. Of course, i t is also t ime and labour saving i f we can perform 

adaptat ion on more than one language by using only monolingual speech data 

captured f rom a desired speaker. 

This part of research aims at making use of acoustic informat ion extracted 

f rom an existing source language (Cantonese) to implement speaker adaptation 

for a new target language (English). I t is assumed that English adaption data 

is not available for the target speaker. Speaker-independent (SI) and language-

dependent acoustic models are trained for Cantonese and English respectively 

in the first step. Based on SI acoustic models, model mappings between Can-

tonese and English acoustic units can be established. For each English unit , we 

expect to find its closest Cantonese units, and vice versa. W i t h model mapping, 

speaker adaptat ion of English models can be implemented by using Cantonese 

adaptat ion data f rom the target speaker. 

4.4.1 Model Mapping between Cantonese & English 

One of the major problems in this study is the model mapping between different 

languages. The mapping can be established at different acoustic levels, such 

as words, syllables, phones and others [115]. As shown in Figure 4.11, we 

investigated the use of phones, states, and Gaussian mixture components for 

such purpose. 
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A 

Word/Syllable 

Phone 

States 

Gaussian 
Components 

Figure 4.11: Mapp ing at different levels of acoustic uni ts 

Phone Mapping 

Phones are most widely used as the basic acoustic un i t for model mapping 

116]. The phone mapping table can be manual ly generated based on l inguist ic 

knowledge or automat ical ly derived in a data-driven manner [117 . 

As an internat ional standard of representing speech sounds of any spoken 

language, the Internat ional Phonetic A lphabet ( IPA) is used to create the map-

p ing table. I t classifies phones i n terms of place and manner of art iculat ion. 

Phones of different languages labelled by the same IPA symbol are considered 

as the same phone. However, as discussed i n Section 3.3, the phone sets of Can-

tonese and Engl ish are signif icantly different. Only 17 phones can be shared 

according to their IPA symbols, 22 English-specific phones and 26 Cantonese-

specific phones remain dist inct ively different. S imi lar i ty between these remain-

ing phones can nevertheless be measured by their acoustic distr ibut ions. I n 

this study, Kul lback-Leibler Divergence ( K L D ) is used. The phone mapping for 

the language-specific phones is created by Eq.(4 5). Each phone is modelled by 

speaker-independent, context-independent H M M s w i t h single Gaussian distr i -

but ion. 

(4.5) 

where, P^ is a phone in the Cantonese phone set P^, P® is a phone in the Engl ish 
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phone set, and Dkl is the K - L divergence between two phones. 

State-level Mapping 

Since Cantonese and English are two languages highly uncorrelated phonetically, 

there might not exist much similar i ty in their phonemic counterparts. However, 

since speech product ion is constrained by l imi ted movement of articulators, i t 

might be possible to find some similar acoustic units at a refined, sub-phone 

level. Diphthongs may be rendered by several monophthongs. Furthermore, 

allophones, which are highly context dependent, provide more chances for phone 

sharing between different languages. As a result, a tied, context-dependent 

state-level mapping is investigated between Cantonese and English. First, we 

bui ld two speaker-independent, language-specific decision trees for Cantonese 

and English respectively. Each leaf node in the decision tree represents a t ied 

state, modeled by a Gaussian distr ibution. For each English t ied states, a 

corresponding Cantonese t ied state can be found, in the min imum K L D sense. 

The directional mapping from English to Cantonese can be in the form of one-

to-many mapping. Different leaf nodes in the English tree may map to the same 

leaf node in the Cantonese tree. 

In order to achieve satisfactory recognition performance, mult iple Gaussian 

mixture components are typical ly used. Similari ty among states may change 

along w i t h the mixture spli t t ing. Therefore, two model mapping schemes are 

studied, namely the State Mapping and CalState Mapping. 

In State M a p p i n g , mapping is estimated based on the t ied states w i th 

single Gaussian models, and the mapping does not change w i th the incremen-

tat ion of mixture components. In CalState M a p p i n g , the model distr ibut ion 

of each state is recalculated by Eq.(4.6) in mult iple mix ture cases: 

K 

CalSi = Y^w^kS^k (4.6) 
k=l 

where Wik is the mixture weight of the k th mixture of state S” SU is the output 

distr ibut ion of the k th mixture in state S^ and CalS^ is the recalculated distri-

but ion of state Si. Then, the mapping is established based on the distr ibut ion 
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CalSi. CalState M a p p i n g is created repeatedly w i th the increase of mixtures, 

unt i l the desired number of mixture components is reached. 

Mapping among Gaussian Mixture Components 

In mult ip le-mixture HMMs, Gaussian mixture components are the smallest ele-

ments. Furthermore, in speaker adaptation based on M L L R or M A P algorithms, 

adaptation is usually applied to individual mixture components in the model set. 

In this thesis, Gaussian component mapping, denoted by G a u M i x Mapping , 

is investigated between Cantonese and English. For each mixture component 

in English, the corresponding one in Cantonese is found by minimizing the K - L 

divergence: 

= a r g i m n M ； ) (4.7) 

where M【is a mixture component in Cantonese model set M。, M ^ is a mixture 

component in English models, and Dkl is the K - L divergence between two 

mixture components. Similar to CalState Mapping, GauMix Mapping 

needs to be re-estimated as the number of mixtures increases. 

4.4.2 Cross-lingual Adaptation via Mapping 

In the last two decades, many speaker adaptation techniques have been suc-

cessfully applied [118] [119]. HMM-based adaptation using M L L R or M A P tech-

niques can be used to improve recognition performance using a small amount 

of adaptat ion data from target speakers [119]. However, i t is not easy to do 

i t across different languages, especially when two languages are phonetically 

distant. 

I n this study, cross-lingual speaker adaptation is implemented via the model 

mapping strategy as established earlier. W i t h model mapping, speaker adap-

tat ion on English models can be implemented by using Cantonese adaptation 

data from the target speaker. Figure 4.12 gives an example of cross-lingual 

adaptation w i th G a u M i x Mapping . We want to adapt English SI models 

w i th Cantonese adaptation data from speaker A. Since the SI mapping has 

been created, H M M parameters for each mixture component of the English 
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models can be replaced by the Cantonese counterpart. When standard intra-

language adaptation is implemented on Cantonese SI models w i t h Cantonese 

adaptation speech from speaker A, we obtain the respective Cantonese speaker 

adapted (SA) models. Then, English SA models can be retrieved by Cantonese 

SA models via model mapping. 

Figure 4.12: Cross-lingual speaker adaptation v ia Gaussian mixture component 

mapping 

4.4.3 Experimental Setup 

SI Acoustic Models 

The speaker-independent, language-dependent acoustic models for model map-

ping are trained w i th the utterances from 60 speakers in the C U M I X corpus. 
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Each speaker provides 10 minutes of Cantonese and 4 minutes of English speech 

data. The acoustic feature vectors consists of 12 M F C C coefficients, log en-

ergy, and their first and second-order derivatives. The models are trained 

from context-independent monophone H M M s to context-dependent triphone 

HMMs, f rom single Gaussian to 8 mixture components. I t is expected that 

these language-dependent acoustic models can preserve the characteristics of 

Cantonese-accented English and colloquial Cantonese respectively due to the 

nature of the t ra in ing data. 

Speaker Adaptation Setup 

A cross-lingual adaptat ion experiment is performed on 14 speakers from the 

C U M I X corpus, different from the 60 speakers part ic ipat ing in SI acoustic 

modeling. For each speaker, 4 minutes of Cantonese adaptat ion speech data 

are available. We used M L L R followed by M A P adaptation techniques in this 

task. The adapted models are evaluated in speech recognition experiments. 

The test speech are English words and phrases extracted from the code-mixing 

utterances (CM). The vocabulary size is 1.2k, and no language model is applied. 

4.4.4 Results Discussions 

The performance of the proposed cross-lingual speaker adaptat ion system is 

mainly determined by two factors: model mapping performance and speaker 

adaptat ion efficacy. 

Model Mapping Effectiveness 

Model mapping performance is measured in terms of mapping effectiveness, 

which is evaluated by recognition performance w i th mapped acoustic models. 

Mapped SI models can be retrieved by Cantonese SI models via mapping. The 

recognition results of different mapped SI models are shown in Figure 4.13. 

Results f rom English SI models are also given as a reference. The performance 

degradation from English acoustic models to mapped models is defined as the 
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Figure 4.13: Recognition results from different SI models 

From the recognition results, i t is clear that model mapping effectiveness 

increases w i th the refinement of mapping units. Due to the significant phonetic 

difference between Cantonese and English, i t is not surprising that poor recog-

ni t ion results are found in the P h o n e M a p p i n g approach. State-level mapping 

systems improve greatly the recognition of English words due to better matched 

model mapping. C a l S t a t e M a p p i n g and S ta te M a p p i n g schemes show sim-

ilar performance. However, the performance variation from single mixture to 

mult iple mixture is not obvious. On the other hand, E n g l i s h S I models give 

improved performance w i th increasing number of mixtures. The mapping loss 

found in state-level mapping increases w i t h the mixture component spli t t ing, 

while model mapping effectiveness of state-level mapping is st i l l on the low 

side. The recognition performances of G a u M i x M a p p i n g models however im-

proves w i th increasing mixture number, and insignificant mapping loss is found 

between English SI model and G a u M i x M a p p i n g ones. That means the 

acoustic space represented by gaussian components from different languages is 

actually close to each other. 
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mapping loss in this study. The lower the mapping loss, the higher the mapping 

effectiveness. 
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Further analysis is done by comparing the effective Cantonese states found 

in different model mapping strategies. There are 3,248 Cantonese candidate 

states and 969 English states available in SI acoustic models for mapping cre-

ation. Table 4.14 compares the effective Cantonese states found in C a l S t a t e 

M a p p i n g and S t a t e M a p p i n g . As the number of mixtures increase, effective 

Cantonese states in CalState Mapping and State Mapping become more 

and more dissimilar. However, the to ta l number of effective Cantonese states 

is almost unchanged w i t h mixture spl i t t ing. This may be the reason why the 

recognition performance of the state-level mapped models is always the same 

even under different mixture component cases. The mapping details for G a u -

M i x M a p p i n g are given in Table 4.15. I t is clear that the number of effective 

Cantonese states increases w i th mixture spl i t t ing. The resolution of G a u M i x 

M a p p i n g is higher than state-level mapping. Even for fair ly distant states, we 

may st i l l f ind similar mixture components among them. This also explains why 

G a u M i x M a p p i n g outperforms the state-level mapping approach. 

Table 4.14: Cantonese states found in Ca lState M a p p i n g . 

1 mix 2 mix 4 mix 8 mix 

used states 566 571 590 591 

shared states w i th State M a p p i n g 566 409 356 272 

Table 4.15: Cantonese states found in G a u M i x M a p p i n g . 

1 mix 2 mix 4 mix 8 mix 

used mixtures 566 1,125 2,266 4,455 

used states 566 947 1,491 2,076 

Cross-language Speaker Adaptation Results 

The cross-lingual speaker adaptation results are summarized in Table 4.16. I f 

the mapping loss exceeds the speaker adaptation improvement, the performance 

obtained w i t h cross-lingual speaker adaptation is even worse than the monolin-

gual SI recognizer, such as the speaker adaptat ion results found w i t h State 
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M a p p i n g . Mapping between Gaussian mixture components has been proved 

effective in speech recognition task in earlier studies. V ia G a u M i x Mapp ing , 

the adaptat ion models give an average 78.70% word accuracy for English over 

all speakers. A relative 10.13% reduction in word error rate (WER) is achieved, 

compared w i t h 76.30% word accuracy obtained w i t h English SI models. Fur-

thermore, i t is found that the effectiveness of speaker adaptat ion is highly cor-

related to mapping effectiveness. I f mapping loss is ignored, the improvement 

f rom adaptat ion is very l imited in State M a p p i n g . However, the adaptation 

leads to a relative 13.67% error reduction via G a u M i x M a p p i n g , compared 

w i t h the mapped SI models. The degree of improvement f rom speaker adapta-

t ion increases w i t h improved model mapping effectiveness. 

Table 4.16: Cross-lingual adaptation results for indiv idual speakers (% word 

accuracy) ； 4 minutes of Cantonese adaptation speech are used. 
S t a t e M a p p i n g G a u M i x M a p p i n g 

Speaker SI Mapped Adapted Mapped Adapted 

spk r l 73.42 58.23 56.96 73.42 79.75 
spkr2 72.00 56.00 54.67 70.67 76.00 

spkrS 64.38 56.16 60.27 69.86 68.49 
spkr4 79.27 62.20 65.85 74.39 84.15 

spkr5 83.95 67.90 72.84 85.19 83 95 

spkr6 89.61 68.83 67.53 83.12 89.61 
spkr7 78.31 55.42 46.99 81.93 78.31 

spkrS 79.45 64.38 67.12 79.45 83.56 

spkr9 77.50 62.50 70.00 80.00 82.50 

spkrlO 80.28 63.38 69.01 77.46 81.69 
s p k r l l 67.95 55.13 53.85 60.26 65.38 
spkr l2 74.65 50.70 50.70 76.06 81.69 

spk r l 3 70.00 51.25 56.25 67.50 68.75 
spk r l4 76.62 64.94 64.94 76.62 77.92 

Ave 76.30 59.81 61.20 75.46 78.70 

Speaker adaptat ion experiments have also been performed on an intra-

language basis for reference purpose. By applying the same adaptation data, 

the relative error reduction for Cantonese is 19.21% on average. The experi-
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Figure 4.14: Boxplots for cross-lingual speaker adaptation results w i th different 

amounts of adaptation data, pooling all target speakers 

• End of chapter. 
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mental results show that our approach for cross-lingual speaker adaptation is 

promising. 

Further analysis is carried out by investigating adaptation using different 

amounts of data. For each speaker, there is only 4 minutes of adaptation speech 

data. We divide i t into 3 adaptation subsets, which contain 2, 3 and 4 minutes 

of speech respectively. The adaptation results are shown in Figure 4.14. I t is 

clear that there is noticeable improvement w i t h increasing adaptation data. I t 

is believed that further improvement can be achieved if there is more adaptat ion 

data available. In addition, i f a speaker-dependent Cantonese recognizer exists 

for a part icular speaker, the corresponding speaker-dependent English recog-

nizer can be implemented via the proposed G a u M i x M a p p i n g in a fast and 

low cost way. 
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Chapter 5 

Language Modeling for 

Cantonese-English Code-mixing 

S u m m a r y 

This chapter addresses the problem of language modeling for 

LVCSR of Cantonese-English code-mixing utterances spoken in 

daily communications. We start by collecting t ra in ing text from 

the internet. Bo th monolingual colloquial Cantonese text and code-

mix ing text are collected for code-mixing language modeling. In the 

absence of sufficient amounts of code-mixing text data, different 

language modeling techniques are investigated. Class-based lan-

guage models are developed w i t h automatical ly generated classes. 

A semantics-based n-gram mapping scheme is developed to increase 

the counts of code-mixing n-grams at language boundaries. The 

Cantonese-to-English translation dict ionary and semantics-based 

classes are developed as the reference for n-gram mapping. As 

a result, various semantics-based language models are trained. A l l 

models are evaluated in terms of perplexity. 
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5.1 Text Data for Cantonese-English Code-

mixing Language Modeling 

5.1.1 Data Collection 

In general, language modeling requires a large amount of t ra in ing text data. 

There are practical difficulties in collecting a large amount of text materials 

to facil i tate stat ist ical language modeling for Cantonese-English code-mixing 

speech. Cantonese is a spoken dialect, while the published media are dominated 

by standard Chinese text. On the other hand, colloquial Cantonese is neither 

taught in schools nor recommended for official and documentation usage. Only 

a l imi ted amount of colloquial Cantonese text data can be found in certain 

columns of local newspapers and magazines, advertisements, and online articles 

120]. 

In our study, the t ra in ing text data for code-mixing language models are 

mainly collected f rom three major sources, namely newspapers, magazines and 

online diaries. Prel iminary manual inspection is performed to identi fy the sec-

tions or columns that axe highly likely to contain code-mixing text. Some Can-

tonese funct ion characters that are frequently used in spoken Cantonese but 

rarely used in standard Chinese are used to query colloquial Cantonese data. 

We list these characters in Figure 5.1. In addit ion, some English words which 

frequently appear in Cantonese-English code-mixing are selected as the key-

words to gather code-mixing data. 

Colloquial Cantonese Function Words 

啦，喇，啊，呢，柑，佐，嗰，仲,係，概，佢,呃，黎,冇,埋，哮，吓,呀， 

唔,囉,係，m,晒，黎，嚟，俾，野，•，崎,吓，地，咪,_，緊，攪,据 

Figure 5.1: Keywords for collecting colloquial Cantonese data 

Dur ing the data collection process, i t is observed that the colloquial Can-

tonese terms and standard Chinese terms may mix together in wr i t ten text, and 

these types of text are not suitable for code-mixing language modeling. As a 

94 



Chapter 5. Language Modeling for Cantonese-English Code-mixing 

result, post-f i l ter ing is needed to remove these types of sentences. Figure 5.2 

shows a list of colloquial Cantonese terms and standard Chinese terms selected 

for post-f i l tering. Collected sentences are filtered by colloquial Cantonese at 

first. A sentence is retained i f i t contains any two of the colloquial terms in 

Figure 5.2. Af ter that , the remaining sentences are fi l tered by standard Chinese 

terms, in which sentences containing any one of the standard Chinese terms are 

further removed. 

Colloquial 
Cantonese 

Terms 

啦，喇，啊，呢，nt,勁，架,左，卩左，個，嗰，n,仲，係，既，槪，佢， 

呃，黎，有，有，無,埋，哮，吓，邊，呀,唔，囉，係,_，哂，晒，黎， 

懷來，比，俾，蹄，得，返，搵，野，m,未，_，好,至,吓，下，先， 

話,依，住,幾，哋，±也，到,度，阿,再，番，咪，而，誌,夠，意,攞， 

多，少，又，同，啲,過，緊，丫，岩，攪，据，我，你，果，都，丨喔，翅 

Standard 
Chinese 
Terms 

的，們，那，這，哪，在，不，是，了，些，他，她 

Figure 5.2: Selected colloquial Cantonese terms and standard Chinese terms for 

text f i l ter ing 

In this thesis, a text corpus containing about 9 mi l l ion Chinese characters 

and 300k English words is collected. I t can be divided into two subsets The 

first set is considered as monolingual colloquial Cantonese text. I t contains 6 

mi l l ion Chinese characters. The second set of text data is real Cantonese-English 

code-mixing data, which contains 3 mi l l ion Chinese characters and 300k English 

words. A l l text data in the corpus are segmented w i t h a bi l ingual lexicon by 

the max imum matching method. The lexicon contains 16k words, comprising 

12k Cantonese items and 4k English items. Af ter segmentation, this corpus is 

ready for code-mixing language modeling. 

5.1.2 Data Sparsity Problem 

As we described above, due to the diff iculty of data collection, only a small 

amount of colloquial Cantonese and code-mixing text data (~10 mill ions) are 

collected for code-mixing language modeling in this study. Compared w i th other 
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conventional monolingual text corpora such as WSJ corpus, Google Web I T 5-

gram corpus and CUSENT text corpus, the size of collected code-mixing text 

corpus is quite small [121] [96] [34]. Furthermore, the domain-specific property 

in code-mixing makes the data sparsity problem more serious. 

Lack of sufficient amounts of text data lead to some problems for code-

mixing language modeling. Not all the embedded English word in the speech 

data are found in the t ra in ing text, creating Out-of-Vocabulary (OOV) words. 

Due to the data sparsity, many word sequences appearing in test speech may 

not be observed in t ra in ing text data, especially in the language boundary 

(LB) context. Table 5.1 shows the n-gram coverage of the t ra in ing corpus. 

I t is clear that the data unseen problem is serious in the context of language 

boundary, part icular ly in the high order n-gram case. To deal w i t h the problem 

of inadequate code-mixing t ra in ing data, different language modeling techniques 

including class-based L M and semantics-based L M are investigated in this thesis. 

The English words are handled differently in these language models, and the 

details are discussed in the following sections. 

Table 5.1: N-gram coverage of the Cantonese-English cod 

1-gram 2-gram 3-gram 

Cantonese context 99.77% 89.61% 57.90% 

English or L B context 86.80% 34.81% 8.64% 

e-mixing t ra in ing text 

5.2 Class-based Language Models 

Class-based language modeling is one of the state-of-the-art approaches to han-

dle the data sparsity problem. Word entries w i th similar meaning or syntactic 

funct ion can be clustered into the same classes, either manually or by data-

driven methods [122] [123], such that the probabilit ies of class sequences are 

estimated instead of probabilit ies of word sequences in class-based LMs. In 

general, the number of classes is much lower than the number of words; there-

fore fewer parameters can be estimated more precisely f rom l imi ted training 

data. 
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5.2.1 Automatic Clustering of Cantonese and English 

Words 

Automat ic clustering is the most widely used approach to construct a class 

map which defines which words are in each class. Different algorithms have 

been proposed to derive a class map in the last two decades [123] [124]. In this 

study, an incremental greedy merging algorithm is used [123]. I t starts wi th one 

class each for the C most frequent words and then adds one word at a time, 

where C denotes the target number of classes. Classes are optimized in terms 

of perplexity based on bi-gram statistics. 

In class-based code-mixing language models, Cantonese and English words 

are not distinguished in the clustering process. A class can contain both Chinese 

and English words. As a result, three types of word classes can be found in 

class-based models. Two of them are monolingual classes which contain either 

Cantonese terms or English words. The th i rd type of class is mixed-language 

class, which contains both Cantonese and English words in the same class. 

Figure 5.3 shows some examples of classes that we found particularly interesting. 

Some classes group together words having similar meaning, such as 每天，每日. 

Other classes contain words that are syntactically similar, such as 反而,thus. I t 

is believed that these "meaningful classes" may help the data sparsity problem 

by estimating the unseen code-mixing N-gram w i th the seen monolingual N-

grams. 

Categories Eamples 
Toponym 大喚山/曼谷/馬尼拉/東京/上水/馬鞍ll丨/廣州/海洋公園 
Everyday 每天/每日 
Sequence 較早前/日前 
Activity 若/酒會/講座/歡送會/典禮/研討會/埶/儀式 

Action restore/download/divert/debug/quote/refund/apply/capt 
ure/save/minor/repair/upload/copy 

IT devices 等離子宙視 / mac/palm/cassette/mailing/walkman/comp 
ute/thinkpad/wii/iphone/inkjet/desktop/dc/pda 

Adversative conjunction 皮而/thus 
Understanding understand/了角 #/尊重 / 信.任/appreciate/respect 
Place 餐廳/露天/rooms/dream house/藥房 

Occupation 大學生/廠商/運動員/captain/侍應 

Figure 5.3: Some examples of word classes 
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5.2.2 Training of Class-based Code-mixing LMs 

Class-based code-mixing language models are trained according to the class 

map from the automatic clustering process. Table 5.2 explains different sets of 

class-based 3-gram language models. The difference among them is that they 

are trained w i t h different numbers of classes. I t can be observed that there 

are very few monolingual English classes and most English words are clustered 

w i t h Cantonese lexical items. W i t h an increase of the target number of classes 

C predefined in clustering, the increment of monolingual Cantonese classes is 

higher than that of mixed-language classes. Hence, the percentage of mixed-

language classes decreases w i th an increase in the to ta l number of classes. 

r M)le 5.2: Different class-based language moc els 

Class L M no. of 

class 

% of mixed-

language class 

% of mono. 

Can. class 

% of mono 

Eng. class 

C-250 L M 250 86.4 13.6 0 

C-500 L M 500 74.6 25.4 0 

C-1000 L M 1,000 60.9 39.1 0 

C-1500 L M 1,500 49.3 50.3 0.4 

C-2000 L M 2,000 43.7 56.4 0.9 

C-2500 L M 2,500 37.8 60.8 1.4 

C-3000 L M 3,000 33.2 64.5 2.3 

I t is inappropriate to assume that an utterance must contain English words. 

The performance of class-based LMs is evaluated for bo th monolingual Can-

tonese and code-mixing speech. The test data include the M C and C M test 

utterances of C U M I X . Character perplexity is used as a performance index for 

monolingual Cantonese. For code-mixing speech, the perplexity is measured in 

terms of Character for Cantonese and word for English. Perplexity of different 

class-based LMs for monolingual Cantonese and code-mixing data are shown 

in Figure 5.4. The results of word-based 3-gram L M are also included as a 

reference. 
The results in Figure 5.4 support that class-based language models can help 
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Perplexities of different 3-gram LMs 
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Figure 5.4: Perplexities of different language models for monol ingual Cantonese 

and code-mixing data 

to improve the perplexity, especially when the number of classes is large enough 

(more than 1000). However, i f the number of classes is relat ively small, such as 

250 classes, the perplexities of class-based C - 2 5 0 L M even increase for bo th 

monol ingual Cantonese and code-mixing data, when compared w i t h tha t of 

conventional word-based 3 - g r a m L M . 

For different class-based language models, the perplexi ty reduces w i t h an 

increase in the number of classes, and the perplexi ty reduct ion becomes smaller 

and smaller w i t h increasing classes. When the number of classes is larger than 

1,500, only slight improvement can be achieved when the number of classes is 

increased. The trends of perplexi ty reduct ion of different class-based LMs are 

the same for monol ingual Cantonese and code-mixing data, al though the class-

based LMs show more significant perplexi ty improvement on code-mixing data 

than monol ingual Cantonese data. 

As Cantonese terms are dominant in code-mixing utterances, the perplexi ty 

measurement may be overwhelmed by Cantonese. Hence, perplexi ty only gives 

l imi ted in format ion on the performance of language models on code-mixing 

utterances. The performance of language models w i l l also be evaluated in the 

LVCSR task in the next chapter. 
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5.3 Semantics-based Language Models 

As we introduced in Section 2.1.3, statistical language models are widely used 

to capture the regularities of the language and provide linguistic constraints 

on the speech recognition outputs. For example, we can easily observe that 

P(你，好，tli) > P(MMM) in most conventional Chinese 3-gram LMs because 

word sequence〈你好嗎 ) i s more reasonable than ( t尼郝 M ) m Chinese. 

In the absence of sufficient amounts of code-mixing text data, i t would be 

very helpful if we can reliably estimate the unseen code-mixing n-grams wi th 

the seen monolingual or code-mixing ones. As can be seen in Figure 5 . 5 ,下午 

茶 is the Cantonese translation of afternoon tea, such that the word sequence 

食 下 午 茶 j and「食 afternoon tea) may capture similar linguistic properties. 

Hence, i t is feasible to predict a code-mixing bi-gram (食 afternoon tea) w i th a 

monolingual b i - g r a m〈食下午茶 / On the other hand, a reasonable estimation 

of P(係，CC) can be obtained w i th (係，NA) because words N A and CC are 

syntactically similar in these utterances (NA and CC are the two colleges of the 

Chinese university of Hong Kong). 

In this thesis, an n-gram mapping approach is developed. Translation-based 

and semantics-based mapping are applied to increase the counts of code-mixing 

n-grams at language boundaries, such that i t can better estimate the probabil i ty 

of low-frequency and unseen mixed-language n-gram events. In translation-

based mapping schemes, the Cantonese-to-English translation dictionary is 

adopted to transcribe monolingual Cantonese n-grams to mixed-language n-

grams. In semantics-based mapping schemes, n-gram mapping is based on the 

meaning and syntactic function of the English words in the lexicon. 

Training:我今日係NA食卜午条 

Testing:我今日係 CC 食 afternoon tea 

Count (#, afternoon tea )=0 
Count (食，卜‘丨；!'>)>0 "v" 

(^,5tternoontea)=0 淋。。1=0 (係,CC)=0 
can be backed off to ^ount c c y o |_nJ can be backed off to 
P (食，卜幻>0 , c _ t (係，NA)>O〜.p(係, 

Figure 5.5: A n example of a reasonable estimation of code-mixing unseen n-

grams wi th seen n-grams 
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The details of the n-gram mapping approach is shown in Figure 5.6. First ly, 

word n-grams are generated based on the tex t data in the t ra in ing corpus. 

The Cantonese-to-English t ranslat ion d ic t ionary or semantics-based classes are 

applied as the reference for n-gram mapping. For example, i f a Cantonese-

to-Engl ish t ranslat ion dict ionary is used, the original monol ingual Cantonese 

n-grams can be transcribed to mixed-language n-grams. Af ter tha t , the original 

n-grams and the mapped n-grams are merged together and stat ist ical N-g ram 

language models w i l l be t ra ined w i t h merged n-grams. In semantics-based map-

ping schemes, addi t ional mixed-language n-grams can be estimated w i t h the 

seed n-grams at language boundaries, i f embedded English words in new n-

grams and seed n-grams belong to the same semantics-classes. As a result, 

more mixed-language n-grams can be used for model t ra in ing after mapping, 

and therefore the proposed language models are expected to better estimate the 

probabi l i ty of low frequency and unseen mixed-language n-gram events. 

Training N-gram J text 
、 z “ ^ 

Counting / 
Original 
n-grams 

Translation diet, 
or 

Semantic classes 

N-gram Mapping 

Mapped 
n-grams 

Language 
models 

Figure 5.6: Block diagram for semantics-based L M via n-gram mapping 

5.3.1 Translation-based Mapping 

The effectiveness of translation-based mapping is main ly based on the 

Cantonese-to-English dictionary. As we mentioned before, there are obvious 

lexicon differences between Cantonese lexical i tems and standard Chinese lex-

icon entries. The exist ing Chinese-to-English dict ionary is based on standard 

Chinese, which is not applicable in this task. Therefore, a Cantonese-to-English 

d ic t ionary is developed for this study. Each Engl ish word may map to one or 
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more colloquial Cantonese terms. The established dict ionary covers about 95% 

of the embedded Engl ish words in the lexicon, since not all embedded English 

words have Cantonese equivalents. 

5.3.2 Semantics-based Mapping 

There is consensus tha t some words are similar to other words in terms of 

thei r meaning and syntactic funct ion. I f we can successfully assign words to 

meaningful classes, i t may be possible to make more reasonable predict ions for 

unseen or low frequency n-grams by assuming that they are similar to other 

n-grams that we have seen. 

I n this study, the embedded English words in the lexicon are clustered into 

smal l semantic classes as shown in Figure 5.7. The clustering main ly accords 

w i t h to the meaning of the words. The part-of-speech (POS) and syntactic 

funct ion of the words are also considered. WordNet , a lexical database for 

English, is used as the main reference to determine the meaning of English 

words [125]. Five major rules used i n clustering are shown in Figure 5.7. As a 

result, about 200 semantic classes are derived. 

English nouns 

English words POS-based English adjs Semantics-based 
classification ... classification 

English verbs 

Semantic class 1 

Semantic class 2 

Semantic class n 

grouped together. 
Major Semantics Classification Rules: 
(1) Synonym rule: English words with identical or very similar meanings 

Example: frustrated, disappointed 
(2) Antonym rule: English words with opposite meaning are assigned to the same semantic class. 

Example: upload’ download 
(3) Coordinate rule: English words sharing the same hypernym may be clustered together. 

Example: breakfast, lunch, dinner, buffet, tea, afternoon tea 
(4) Function rule: English words with similar syntactic or linguistic function may be considered 

the same classes (name of peoples, brand names, etc). 
(5) Morphology rule: We group together words having the same morphological stem. 

Example: understand, understood, understanding 

Figure 5.7: Five major rules for semantics-based clustering 
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5.3.3 Result Analysis Kl Discussion 

Table 5.3 explains the four sets of 3-gram language models. A conventional word 

tr i -gram language model, denoted by 3-gram LM, is trained as the bench-

mark. Translation-based mapping and semantics-based mapping are applied to 

t rain models T L _ L M and S M _ L M respectively. In addition, semantics-based 

n-gram mapping is performed after translation-based mapping for further im-

provement. The resulting language model is referred to as T L S M _ L M . As can 

be seen in the table, the percentage of code-mixing 3-grams is significantly in-

creased in various kinds of semantic-based language models. This is because the 

proposed mapping scheme is designed to increase the number of mixed-language 

n-grams only, while the number of monolingual Cantonese n-grams is kept the 

same before and after the mapping. 

Table 5.3: Four language models developed for Cantonese-English code-mixing 

LVCSR 
Language models % of Cantonese 3-grams % of code-mixing 3-grams 

3-gram L M 92.77% 7.23% 

T L丄M 84.23% 15.77% 

SM_LM 84.72% 15.28% 

T L S M 丄 M 72.82% 27.18% 

Perplexity is uti l ized to evaluate the language models. Similar to the evalu-

ation of class-based LM, the test data include the monolingual Cantonese (MC) 

utterances and Cantonese-English code-mixing (CM) utterances of CUMIX. Ta-

ble 5.4 gives a summary of the perplexities of four language models described 

above. The perplexity is measured in terms of character perplexity for Can-

tonese and word perplexity for English. Tri-gram probabilities on hypothesis 

pure Cantonese word sequences and mixed-language word sequences are also 

given. 

The character perplexities of four language models on C U M I X monolin-

gual Cantonese utterances are close to each other. Conventional word-based 

3-gram L M attains the best character perplexities of 93.8. Slight increases 
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Table 5.4: Perplexities of four language models 

Language 

models 

p p l -

M C text 

PPl-

C M text 

log probabil i ty of hypothesis sequences Language 

models 

p p l -

M C text 

PPl-

C M text Pure Cantonese Mixed-language 

3-gram L M 93.8 169.8 -6.56 -13.39 

T L丄M 96.3 137.4 -6.60 -11.92 

SM_LM 96.6 154.2 -6.60 -12.42 

T L S M X M 101.2 132.5 -6.66 -11.25 

in perplexity are found in T L _ L M and SM_LM. The perplexity is further in-

creased to 101.2 when T L S M _ L M is used. The increase in the perplexity is 

expected since the percentage of monolingual Cantonese n-grams is reduced in 

various semantics-based LMs as shown in Table 5.3. The lower the percentage 

of Cantonese n-grams in language models, the higher the character perplexity in 

Cantonese data. In other words, the probabilities of Cantonese n-grams are de-

duced in three semantics-based models. This is also consistent w i th the derived 

log probabilities of hypothesis Cantonese n-grams reported in Table 5.4. 

In the code-mixing case, the results in Table 5.4 support the fact that 

the n-gram mapping scheme is a promising approach for language modeling 

of Cantonese-English code-mixing speech. Different degrees of perplexity re-

duction can be observed in various semantics-based LMs. The perplexity of 

T L _ L M is reduced by 23.6% relatively to 137.4, when compared wi th that 

of benchmark 3 -gram L M . Further perplexity reduction to 132.5 is attained 

in T L S M _ L M , when semantics-based mapping is performed after translation-

based mapping in language modeling. Figure 5.8 gives a simple example to 

represent the advantage of TL一LM and T L S M _ L M . In general, a, reduc-

t ion in perplexity results in improvement in speech recognition performance. 

T L S M _ L M is expected to attain the best performance in LVCSR task. 

I t is believed that the perplexity improvement is mainly due to the increase 

of code-mixing n-grams via the mapping process. The higher the percentage of 

mixed-language n-grams reported in Table 5.3, the higher the log probabilities 

on hypothesis mixed-language ii-grams. I t is also noticed that the increased 

104 



Chapter 5. Language Modeling for Cantonese-English Code-mixing 

T r a i n i n g ；你知陪知逷度可以下載份文件 

T e s t i n g -你知晤知邊度可以 u p l o i i d份文件 

丨3-aramLM- TL Lm" |SM-based • LM 
Count (可以，卜 Bc)>0 PP丨叩-Count (可以，t、)>0 mapping count (可以，卜他)>0 

Count i可以,download )=0 Count i可以,download )>0 Count:可以,download )>0 
Count i可以，Lip load)=0 Count f可以，ui)lodd)=0 Count i可以’ u p l o a d ) > 0 

Figure 5.8: A demonstrat ion of advantages of TL—LM and T L S M — L M 

log probabi l i ty on mixed-language word sequences signif icantly overwhelm the 

reduced probabi l i ty on pure Cantonese word sequences, in all semantics-based 

language models. This also explains why the performance i n terms of perplexi ty 

of semantics-based LMs on entire code-mixing utterance improves. 

Table 5.5 lists the mixed-language n-gram converge of different language 

models. I t reveals the association of language models and the test data. The 

higher the coverage, the better matched n-gram data for model t ra in ing. Our 

experimental results conf irm tha t the language model perplexi ty decreases w i t h 

increased coverage of mixed-language context. The language model t ra ined f rom 

the best-matched n-grams gives the best perplexity. 

Further discussion is carried out to analyze the effectiveness of different 

mapp ing schemes. The proposed mapping approach is designed to increase the 

counts of mixed-language n-grams. However, not al l of the increased mixed-

language n-grams w i l l appear in the test data. I f the increased n-grams do not 

capture the l inguist ic properties of Cantonese-English code-mixing, the increase 

in mixed-language n-grams does not improve the n-gram converge. I f the pro-

posed n-gram mapping can successfully generate unseen n-grams, increased n-

gram coverage can be observed in the code-mixing context. The results reported 

i n Table 5.5 support the fact tha t the proposed n -g ram mapping is a l ikely ap-

proach for increasing meaningful code-mixing n-grams. The code-mixing n-gram 

converge is signif icantly improved in various semantics-based LMs. In addi t ion, 

the comparison between the percentage of code-mixing n-grams shown in Ta-

ble 5.3 and the n-gram word coverage reported i n Table 5.5 can indicate the 

efficiency of increasing reasonable mixed-language n-grams of different mapping 
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schemes. The comparison suggests that translation-based mapping is more ef-

ficient than others. In T L _ L M , 8.54% increased code-mixing 3-grams make 

5.74% coverage improvement. Besides the observed converge improvement of 

unseen code-mixing n-grams, the increased n-grams may also increase the counts 

of some seen code-mixing n-grams. 

Table 5.5: N-gram word sequence coverage of the code-mixing context 

3-gram L M T L丄M SM_LM T L S M 丄 M 

1-gram 86.80% 95.51% 92.23% 97.47% 

2-grams 34.81% 50.00% 44.82% 59.43% 

3-grams 8.64% 14.38% 12.04% 18.83% 

Another detailed analysis focuses on translation-based mapping schemes. 

Table 5.6 explains the three sets of language models developed wi th differ-

ent subsets of our Cantonese-to-English translation dictionary. Different from 

model T L _ L M , which uses all possible translation pairs in the dictionary, only 

parts of entries in the translation dictionary related to English OOVs or low 

count English terms are selected in the development of these three sets of LMs. 

Perplexities of different LMs for code-mixing data are also given in Table 5.6. 

Table 5.6: Three sets of translation-based LMs developed wi th different parts 

of the Cantonese-to-English dictionary 

LMs Selected English 

terms 

% of selected English 

terms in the whole diet 

ppl 

T L _ L M ^ 1 English OOVs 〜10% 163.2 

TL_LM_s2 word occurrence < 3 - 2 0 % 157.0 

TL_LM_s3 word occurrence < 1 0 〜40% 152.3 

The performance of different translation-based LMs for code-mixing data 

improves w i th increasing size of translation dictionary, as we expect. I t is 

clear that there is an obvious perplexity reduction from 169.8 to 163.2, even 

if translation-based mapping is only considered for English OOVs. In addition, 

more than 20% of English words appear less than 3 times in the training text. 
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The perplexity is further reduced to 157.0 where these lexical items are also 

considered. Besides, i t is observed that almost 40% of English words occur less 

than 10 times in the training text, and these words are usually considered as 

low count terms for statistical language models. The perplexity is sequentially 

reduced to 152.3 i f all of these low count English terms are tackled. 

In summary, the proposed n-gram mapping approach is proven to be effective 

to increase the mixed-language n-grams and reduce the language model perplex-

ity. The performance of different language models w i l l be further evaluated in 

the real LVCSR tasks in next chapter. 

• End of chapter. 
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Chapter 6 

Cantonese-English Code-mixing 

Recognition Performance 

Evaluation 

S u m m a r y 

The implementat ion of a large vocabulary continuous speech recog-

ni t ion system for Cantonese-English code-mixing speech is de-

scribed in this chapter. The three acoustic models and four 

language models discussed before are evaluated in the LVCSR 

tasks. The recognition system w i th cross-lingual A M C L _ B and 

semantics-based L M T L S M _ L M attains the best recognition per-

formance. I t achieves the best overall accuracy of 75% for code-

mix ing speech. The corresponding character accuracy for Can-

tonese and word accuracy for English are 76.1% and 65.5%, re-

spectively. This system also achieves similar character accuracy of 

75.3% for monolingual colloquial Cantonese utterances. The re-

sults confirm that our proposed LVCSR system can successfully 

recognize Cantonese-English code-mixing utterances in addit ion to 

monolingual Cantonese speech. 
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6.1 Large Vocabulary Code-mixing Speech 

Recognition System 

A large vocabulary code-mixing speech recognition system is developed as shown 

in Figure 6.1. I t consists several core components such as cross-lingual acoustic 

models, bi l ingual pronunciation dictionary, and statistical language models as 

described in previous chapters. The input utterance could be either code-mixing 

speech w i th one or more English words, or monolingual Cantonese speech. The 

decoding algori thm is implemented w i th the H T K Toolkits [126]. I t consists of 

two passes as described below. 

Cross-lingual Bilingual 
Acoustic Pronunciation 
Models Dictionary 

Bi-gram 
Language 

Models 

Tri-gram 
Language 

Models 

Figure 6.1: Flow diagram of the LVCSR system used in experiments 

In the first pass, the cross-lingual acoustic models, bi l ingual pronunciation 

dict ionary and bi-gram language models are used to generate word lattices. The 

first-pass decoding is based on the token-passing algorithm. Each token refers 

to the part ial hypothesis start ing f rom the first frame of the utterance. A t each 

t ime step, a feature vector is taken up and the existing tokens are extended 

through the H M M states in the recognition network. I f there are many compet-

ing tokens at a network node, only the best 4 tokens wi l l be kept and the others 

discarded. In this way, a mixed-language character/word graph is generated 

as a compact representation of mult ip le hypotheses. The basic elements of the 
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lattice are nodes and arcs. Each of this wi l l represent a hypothesized Cantonese 

lexical i tem or a hypothesized English word/phrase. I t also records the acoustic 

l ikelihood, the language likelihood, the start t ime and the end t ime of hypothe-

sized words. In the second pass, the character/word lattices are re-scored wi th 

t r i -gram language models to produce the most probable output word sequence. 

6.2 LVCSR Results 

The performance of the code-mixing large vocabulary speech recognition system 

in Figure 6.1 is evaluated using the C M test utterances of C U M I X . The per-

formance is measured by character accuracy for the Cantonese part and word 

accuracy for the embedded English segments. The LVCSR results are listed in 

Table 6.1. The accented dict ionary generated in Section 4.2 is applied in all 

recognition experiments. Three cross-lingual acoustic models and four language 

models discussed before are evaluated in this LVCSR task. 

For the acoustic models, i t is clear that C L _ B outperforms models C L _ A 

and C L J P A in all LVCSR tasks, when different language models are involved. 

This is in line w i t h the syl lable/word recognition results reported in Table 4.13. 

By comparing Table 5.4 and Table 6.1, i t is shown that the language models 

w i th lower perplexity achieve better recognition performance, except for the 

class-based model C - 3 0 0 0 L M . T L S M _ L M has the lowest perplexity and 

achieves the best recognition accuracies in all recognition experiments. However, 

the recognition performance of C -3000 L M is disappointing. A l though the 

perplexity of C - 3 0 0 0 L M as shown in Figure 5.4 is significantly lower than 

that of conventional 3 - g r a m L M , i t can not achieve better recognition accuracy 

than the baseline 3 - g r a m L M . 

Acoustic model C L J P A and language model 3 - g r a m L M are implemented 

as benchmarks in our study. The LVCSR system w i t h C L J P A and 3 - g r a m 

L M is regarded as the baseline recognizer. Recognition improvements are ex-

pected i f better acoustic models or language models are applied. We list the 

improvement of best acoustic models and language models compared w i th the 
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benchmark C L _ I P A and 3 -gram L M at the end of each column and row 

of Table 6.1, respectively. The element in the bot tom right corner indicates 

the improvement from the best LVCSR recognizer compared w i t h the baseline. 

I t is found that accuracy improvements attained from AMs vary from 0.5% 

to 1.3%, when different language models are applied in LVCSR experiments. 

I t can be observed that higher improvement is attained w i th better language 

models. The highest accuracy improvement of 1.3% is achieved w i th the best 

language models T L S M _ L M . The same trend is also found in language mod-

els. Accuracy improvements attained by LMs vary from 3.2% to 4.0%, the best 

accuracy improvement of 4.0% being achieved when the best acoustic model 

CL—B is employed. I t is also noticed that the improvement attended by lan-

guage models are always more obvious than that of acoustic models. Figure 6.2 

lists some examples of the recognition outputs. I t is clear that some English 

words and Cantonese characters can be corrected by better acoustic models. 

Further improvement can be achieved w i th better language models. 

Table 6.1: Overall accuracies of Cantonese-English Code-mixing LVCSR 

3-gram L M c-3000 L M T L丄M T L S M 丄 M 

C L J P A 70.5% 70.0% 73.3% 73.7% (+3.2%) 

CL_A 70.5% 70.5% 73.6% 74.3% (+3.8%) 

CL_B 71.0% 71.0% 74.4% 75.0% (+4.0%) 

(+0.5%) (+0.5%) (+1.1%) (+1.3%) ( 礼 5 % ) 

In addit ion to the overall performance for code-mixing speech, the charac-

ter accuracies for Cantonese parts and word accuracies for embedded English 

segments are given in Table 6.2 and Table 6.3, respectively. Results without 

language models of syl lable/word recognition experiments given in Table 4.13 

are also reported here for further discussion. The results show that the over-

all recognition accuracy of code-mixing speech is dominated by the recognition 

accuracy of Cantonese terms. 
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Sent. 1 
CLJPA+ 3-gram LM: — 定有得梯大漠 

CLJB + 3-gram LM: 一定有得梯 demo 

CL_B + TLSM_LM: 一定有得蹄 demo 

Reference: —陣有得聪 demo 

Sent. 2 
CLJPA + 3-gram L M : 雖 然 明 知 做 阿 四 但 我 都 會 成 怒 

CL_B + 3-gram LM:雖然明知做阿四但我都卩丨'丨會say no 

CL_B + TLSM_LM:雖然明知做阿四但我都卩/',會say no 

Reference: 雖然明知做阿四但我都唔會 s a y no 

Sent. 3 
CLJPA + 3-gram L M : 每個人都會遊客 t i m e 
CL_B + 3-gram L M : 每個人都會遊客 t i m e 
CL_B + T L S M _ L M :每個人都會有 hard time 
Reference: 每個人都會有 h a r d time 

Figure 6.2: Examples of recognition results 

In general, statist ical n-gram language models usually improve recognition 

performance by incorporat ing l inguistic knowledge. I t is clear f rom Table 6.2 

tha t the Cantonese character accuracies are evidently higher than syllable accu-

racies wi thout integrat ing language models. This confirms that the developed 

language models are effective in recognizing Cantonese, in which more than 

10% of wrongly recognized Cantonese syllables can be corrected w i t h language 

models to provide correct character outputs. 

Table 6.2: LVCSR accuracies for code-mixing Cantonese characters 

wi thout L M 3-grain L M c-3000 L M T L _ L M T L S M _ L M 

C L J P A 57.6% 73.1% 72.5% 74.7% 74.9% 

CL_A 62.0% 73.1% 73.1% 74.9% 75.5% 

CL_B 62.1% 73.5% 73.6% 75.7% 76.1% 

Table 6.3： LVCSR accuracies : :or embeddec .Engl ish words 

wi thout L M 3-gram L M c-3000 L M T L _ L M T L S M _ L M 

C L J P A 54.1% 48.6% 49.2% 61.7% 63.9% 

CL_A 61.8% 48.6% 48.4% 62.5% 64.4% 

CL_B 62.6% 50.5% 49.2% 63.4% 65.5% 
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I t is also noticed that the character accuracies of four language models for 

code-mixing Cantonese are comparable to each other. Around a 2% improve-

ment can be observed in T L _ L M compared w i t h baseline 3 - g r a m L M and 

class-based c -3000 L M in terms of character accuracy. T L S M _ L M slightly 

outperforms T L _ L M and attains the best recognition accuracy. This is be-

cause the proposed semantics-based language models a im at providing better 

estimation of mixed-language n-grams for code-mixing speech recognition, and 

therefore the improvement is only shown for Cantonese characters at language 

boundaries, which account for a small part of entire Cantonese speech in code-

mixing utterances. 

In contrast to the observations made for Cantonese characters, English word 

accuracies are not at the same level when different language models are used. 

Firstly, 3 - g r a m L M is found to be inefficient in recognizing embedded En-

glish words in code-mixing speech recognition. Compared w i th purely acoustic 

decoding results wi thout a language model, the word accuracy of English in 

code-mixing speech, however, is decreased obviously. This is because the train-

ing data for language modeling contain much more Cantonese characters than 

English words, and therefore the 3 -g ram L M is overtrained for Cantonese. 

Many English words which can be correctly decoded by acoustic models wi l l 

be wrongly recognized as Cantonese characters after involving langauge mod-

els. Class-based model C -3000 L M shows a similar performance to that of 

3 -gram L M . I t means that the automatic classification of Cantonese terms 

and English words is unprofitable for code-mixing ASR. 

T L _ L M improves greatly in recognizing English words due to better 

matched mixed-language n-gram data available for language modeling. Fur-

ther improvement is achieved by combining the semantics-based mapping. 

T L S M — L M attains the best recognition accuracy for the embedded English 

words. I t is noted that many wrongly recognized English words can be cor-

rected by semantics-based language models. This proved that our proposed 

semantics-based n-gram mapping approach is promising for language modeling 

of Cantonese-English code-mixing speech. 
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On the whole, an LVCSR system wi th acoustic model CL_B and language 

model T L S M _ L M attains the best overall accuracy of 75%, as expected. Com-

pared w i t h the baseline recognizer, the recognition accuracy is improved by 

4.5%. I t also attains the best performance in recognizing Cantonese terms as 

well as English words. The best character accuracy and word accuracy are 

76.1% and 65.5% respectively. Compared w i th the benchmark results, 3% and 

16.9% accuracy improvement are achieved for Cantonese characters and English 

words, respectively. The experimental results confirm that the proposed LVCSR 

system can recognize Cantonese-English code-mixing utterances satisfactorily. 

6.3 Analysis & Discussion 

6.3.1 Lattice Error Rate 

The recognition performance in terms of the latt ice error rate (LER) is also 

analyzed in this study. The LER is the oracle word error rate of the most 

correct path through the lattice. I t is computed by aligning the referenced 

word sequence w i th the word graph to find the path w i th the least number of 

word errors. I f the correct path exists in the word graph, the lattice error rate 

for that utterance is 0%. 

Table 6.4 lists the details of the LERs by using different acoustic and lan-

guage models during the first-pass search. Similar as 1-best results reported in 

Table 6.1, the improvements in terms of LER of best acoustic models and lan-

guage models compared w i th the benchmark models are listed at the end of each 

column and row, respectively. By comparing Table 6.1 and Table 6.4, i t is shown 

that the developed data-driven acoustic models and semantics-based language 

models not only result in better 1-best recognition outputs, but also produce 

lattices w i t h lower oracle word error rates. The error reductions in LERs are 

less significant than that of 1-best WREs. Using CL_B + T L S M _ L M during 

decoding produces the best lattice w i th a 1.2% (absolute) lower oracle W E R 

compared to the baseline lattice produced by benchmark CL—IPA + 3 -gram 

LM. 
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Table 6.4: Latt ice error rates by using different acoustic and language models 

during decoding 

3-gram L M c-3000 L M T L丄M TLSM_LM 

C L J P A 6.1% 6.5% 5.4% 5.2% (-0,9%) 

C L A 6.0% 6.6% 5.3% 5.2% (-0.8%) 

CL_B 5.7% 6.3% 5.0% 4.9% (-0.8%) 

(-0.4%) (-0.2%) (-0.4%) (-0.3%) ( " J .2%) 

On the other hand, L E R indicates the lower bound of the word error rate 

that is attainable by 2-pass word-graph re-scoring. I t is clear that there is a 

significant gap between the lattice oracle WERs and the 1-best WERs. This 

indicates that a lower W E R is obtainable if a better language model can be ap-

plied in the second pass re-scoring. In addition, lattice re-scoring can integrate 

high-level sources (e.g. durat ion and FO information) which may not be easily-

incorporated in the first decoding pass to further improve the recognition accu-

racy. Therefore, we suggest future works to explore offline second pass lattice 

re-scoring. 

6.3.2 Error Composition of Embedded English 

Further analysis of recognition performance is done by analyzing the error com-

position of embedded English words, as shown in Figure 6.3. Besides the overall 

word error rate (WER) , i t also shows the details of insertion (INS), deletion 

(DEL) and substi tut ion (SUB) rate of wrongly recognized English words when 

different language models are applied. CL_B is used as the acoustic model in 

this study. 

Firstly, i t is found that the insertion error is very low. This means that 

very few Cantonese characters are misrecognized as English words. On the 

other hand, a small amount of English words are recognized as other English 

terms. This type of substi tut ion error is mainly caused by incorrect language 

boundaries; thus the hypothesis English word and the reference English word 

have no or just very l i t t le overlap in t ime duration. For example, the word arrive 
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is mistakenly recognized as wife, and resolution becomes solution. Finally, i t is 

clear tha t recognit ion errors on English words are largely due to the deletion 

errors. I n such cases, English words are recognized as Cantonese characters. 
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Figure 6.3: Error d is t r ibut ion for embedded Engl ish words 

I t is also noted tha t the gap between word error rate and deletion rate is 

about the same for different language models. I t seems that the improvement 

of recognit ion performance for Engl ish words is main ly due to the reduct ion of 

deletion. Nevertheless, the lowest word deletion rate of 26.0% is st i l l on the high 

side. I t indicates tha t the improved code-mixing language model T L S M _ L M 

st i l l has bias for Cantonese. Further improvement for Engl ish is expected i f 

there is more mixed-language n-grams available for model t ra in ing. 

6.3.3 Scale Factors of Language Models 

As we introduced at the beginning of this chapter, t r i -g ram language is used in 

the lat t ice re-scoring in the second pass. Different scale factors can be selected 

to integrate language models. Figure 6.4 shows the recognit ion performance on 

code-mixing speech as a funct ion of various scale factors s of different language 

models. The best acoustic model C L _ B is used in th is study. Graphs (a), 

(b), and (c) show the overall accuracy, Cantonese character accuracy and En-
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glish word accuracy, respectively. I t is clear that performance differences among 

different language models enlarge w i th the increased scale factor s. The appro-

priate value of s for code-mixing speech recognition is in the range of 12-15, 

which is consistent w i th the common setting in monolingual LVCSR systems. 

6.3.4 System Performance for Monolingual Cantonese 

According to previous discussions, a better LVCSR system for Cantonese-

English code-mixing speech can be bui l t w i th acoustic model C L _ B and lan-

guage model T L S M J L M . Monolingual colloquial Cantonese utterances (MC) 

of C U M I X are also used to evaluate this LVCSR system. 

Two recognition experiments are carried out w i t h different lexicons in this 

evaluation. In the first experiment, the same bi l ingual pronunciation dictionary 

used in code-mixing speech recognition is employed. In such case, no constraint 

is applied and the recognition output can be either code-mixing or monolingual 

Cantonese text sequences. In the second experiment, a monolingual Cantonese 

pronunciat ion dict ionary is applied. This assumes that the input speech must be 

monolingual Cantonese utterances and therefore there should be no recognition 

error caused by the confusion between similar Cantonese and English lexical 

items. We list the recognition results in terms of Cantonese character accuracy 

in Table 6.5. 

Table 6.5: Recogni tion accuracy on M C test utterances 

w i th bi l ingual diet. w i th Cantonese diet. 

Cantonese character Acc. 75.3% 75.4% 

The table shows that our proposed code-mixing LVCSR system attains the 

character accuracy of 75.3% for monolingual Cantonese speech. I f the mono-

l ingual property is known before decoding, the recognition accuracy can be 

increased from 75.3% to 75.4%. This means that only 0.1% of Cantonese char-

acters are mistakenly recognized as English words in the first experiment. I t is 

also noticed that the proposed recognition system attains a similar performance 

for M C and C M utterances. The results suggest that we can bui ld a univer-
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sal recognition system which is able to handle code-mixing and monolingual 

Cantonese speech together. 

6.3.5 Discussion of Code-mixing Recognition Errors 

In this section, we at tempt to analyze the code-mixing recognition results at sen-

tence level. I t is found that the proposed LVCSR system can properly recognize 

21.8% of code-mixing utterances. In other words, nearly 78% of code-mixing 

utterances are mistakenly recognized w i th either incorrect English words or 

Cantonese characters. We are interested in further examining utterances wi th 

wrongly recognized English words or Cantonese characters in language bound-

aries. The recognition outputs of these utterances are observed and examples 

of typical errors are given in Figure 6.5. 

Error (a) usually appears along w i th imperfect acoustic models. As can be 

seen in example sentences 1 and 2, the embedded English words are recognized 

as other English words w i th similar pronunciation. Nevertheless, the recognition 

outputs are st i l l meaningful code-mixing sentences. This type of errors can be 

corrected w i th better acoustic models. 

Errors (b) and (c) represent errors on English words and Cantonese charac-

ters at language boundaries because of insufficient code-mixing language models, 

respectively. This type of error can be tackled if language models can be trained 

w i th more code-mixing text data. 

The occurrence of error (d) has nothing to do w i t h code-mixing. I t wi l l 

be appeared in monolingual speech recognition of Cantonese accented English 

as well. This error may not be recovered by improved acoustic models and 

tr i -gram language models trained w i th more code-mixing data. For example, 

the pronunciation of offer and author are fairly similar in Cantonese-accented 

English. On the other hand, both of the references and recognition outputs 

of sentence 9 are in line w i th t r i -gram language models. However, i t is found 

that the recognition results are unreasonable at sentence level. As a matter of 

fact, this type of errors may be handled by high-order n-gram or skip/distance 

language models. Integrat ion of l inguistic constraint may be also helpful. 
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Error (a) 
Sent 1 Rec 

Ref 
我重有其他 c h a n c e 呢 

我重有其他 c h o i c e 咩 
Error (a) 

Sent 2 
Rec 
Ref 

s l e v e n 同 但 分 析 腔 好 多 但 最 後 都 係 唔 明 白 

e v e n 同 柜 分 析 腔 好 多 但 最 後 都 係 唔 明 白 

Error (b) 

Sent 3 Rec 
Ref 

我 畫 完 幅 所 謂 槪 咩 就 收 工 

我 畫 完 幅 所 謂 概 m a p 就 收 工 

Error (b) Sent 4 
Rec 
Ref 

扶 助 米 埔 過 第 二 個 囉 

f u l l 佐 咪 報 過 第 二 班 囉 
Error (b) 

Sent 5 Rec 
Ref 

跟 住 落 P 左 中 環 比 錢 c o n f i r m 機 票 同 酒 店 

跟 住 落 腔 中 環 比 錢 广 匕 奮 機 票 同 酒 店 

Error (c) 

Sent 6 
Rec 
Ref 

in g e n e r a l 來 港 大 學 生 係 應 該 醒 目 啲 

in g e n e r a l 黎 講 大 學 生 係 應 該 醒 目 啲 

Error (c) Sent 7 
Rec 
Ref 

會唔會令個 p r o f e s s o r 劉丨忠華印象架 

會 唔 會 令 個 p r o f e s s o r 留 低 壞 印 象 架 
Error (c) 

Sent 8 
Rec 
Ref 

我 地 主 要 受 l o c a l 學 生 

我 地 主 要 收 l o c a l 學 生 

Error (d) Sent 9 
Rec 
Ref 

個 o l Y e : 好 好 人 重 幫 我 簽 佐 個 明 天 

個 a u t h o r 好 好 人 重 幫 我 簽 腔 個 名 添 

Error(e) 

Sent 10 Rec 
Ref 

比 人 一 個 好 旺 概 感 覺 

比 人 一 個 好 w a r m 概 感 覺 
Error(e) 

Sent 11 
Rec 
Ref 

每 個 地 區 都 有 自 己 獨 特 嘅 球 場 

每 個 地 區 都 有 自 己 獨 特 概 c u l t u r e 

Error � 

Sent 12 Rec 
Ref 

張 b a n n e r 又有跟大細 

張 b a n n e r 节有限大細 
Error � 

Sent 13 
Rec 
Ref 

如 果 有 另 一 個 a n g l e 睬 呢 

如 果 山 另 一 個 a n g l e 蹄 呢 

Error (g) 

Sent 14 
Rec 
Ref 

呢 件 衫 係 我 自 己 d e d d e 喇 

呢件衫係我自己 c f e s i g n 架 
Error (g) 

Sent 15 
Rec 
Ref 

你 好 快 柑 商 呼 一 次 喇 

你好快卩甘go through 一 次 喇 

Error (h) 
Sent 16 

Rec 
Ref 

guesthouse會唔會好似酒店U甘貴丨货 

g u e s t h o u s e 會唔會好似酒店附貴架 
Error (h) 

Sent 17 Rec 
Ref 

呢D的嘅understood架喇 

：依 _嘢u n d e r s t o o d架喇 

Figure 6.5: Examples of different code-mixing recognition errors 
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Similar to error (d), conventional acoustic models and statistical language 

models may not help to reduce errors (e) and (f). However, as indicated in 

example sentences 10-13, i t is believed that suprasegmental information should 

be useful to amend mistakenly recognized English words and Cantonese charac-

ters. Integrat ion of FO and durat ion informat ion in recognit ion system is highly 

desirable in future works. 

I t would be very dif f icult to deal w i th error (g). I t is clear that the semantics 

of recognit ion outputs of example sentences 14 and 15 are reasonable Moreover, 

wrongly recognized words and the references capture very similar phonetic and 

suprasegmental informat ion (e.g. decide and design,局口乎 and go through). 

Error (h) can be neglected. As shown in example sentences 16 and 17，the 

mistakenly recognized Cantonese characters would not affect the meaning of the 

sentences. 

• End of chapter. 
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Chapter 7 

Conclusions and Suggestions for 

Future Work 

7.1 Conclusions 

Cantonese-English code-mixing is a common speaking phenomenon of people 

residing in Hong Kong. For most local residents, Cantonese is their pr imary 

language, also known as the mat r ix language, while English is the secondary 

language, also known as the embedded language. 

In this thesis, we focus on the development of a high-performance Cantonese-

English LVCSR system. We begin w i t h some prel iminary studies to investigate 

the l inguistic properties of Cantonese-English code-mixing and to analyze the 

effect of language mix ing for ASR performance. After that we have investigated 

how to improve the performance of Cantonese-English code-mixing LVCSR. 

The study covers all components of the ASR system, including acoustic models, 

language models and pronunciation dictionary. The major conclusions are given 

below. 

Linguistic Properties of Code-mixing 

I n order to better understand this highly dynamic language phenomenon, we 

first at tempt to investigate the linguistic properties of code-mixing. The study 

is based on a large number of real code-mixing text corpora collected from 
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the internet and other sources. Our study reveals clearly that code-mixing is 

not a simple insertion of one language into another. I t comes w i th a lot of 

phonological, lexical and grammatical variations w i th respect to monolingual 

speech spoken by native speakers. 

Effects of Language Mixing for Code-mixing ASR 

Al though automatic speech recognition of either Cantonese or English alone 

has achieved a great degree of success, significant degradation in recognition 

accuracy is noted for Cantonese-English code-mixing ASR. By examining the 

recognition results of Cantonese-English code-mixing speech, we notice that the 

recognition accuracy of the embedded language plays a significant role in relation 

to the overall performance. In part icular, significant performance degradation 

is found in the matr ix language if the embedded words cannot be recognized 

correctly. We also study the error propagation effect of the embedded English. 

The results show that the error found in a part icular embedded English word 

may propagate to two neighbouring Cantonese syllables. This indicates that 

the recognition performance on embedded language is very important , and i t 

is believed that the enhancement in the recognition of embedded language wi l l 

br ing improvement to the matr ix language as well. 

Pronunciation variations 

Pronunciat ion variations in Cantonese-English code-mixing speech are investi-

gated. The analysis is performed by comparing the confusion matrices obtained 

from speech recognition experiments w i th different types of monolingual and 

code-mixing speech data. I t is found that English words spoken by Cantonese 

speakers, whether or not in a code-mixing utterance, carry strong Cantonese ac-

cents. There is also no significant difference between Cantonese utterances w i th 

and wi thout code-mixing. Based on the analysis of the confusion matrices, a 

number of context-independent and context-dependent phonetic variation pat-

terns are established and we modify the pronunciat ion dict ionary according to 

the observed variations. The experimental results show that noticeable recog-
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ni t ion improvement is attained w i th the modified pronunciation dictionary. On 

the other hand, in order to select effective t ra in ing materials, various sets of 

acoustic models are trained w i t h different speech data. The recognition re-

sults confirm that by using accented English words extracted from C U M I X in 

the acoustic modeling of Cantonese-English code-mixing speech w i l l lead to a 

satisfactory outcome. Bo th colloquial Cantonese speech in C U M I X as well as 

read-style Cantonese from CUSENT could however be applied in the acoustic 

modeling for code-mixing ASR. 

Acoustic Modeling 

We have shown that cross-lingual acoustic models are more appropriate than 

language-dependent models. To design a cross-lingual phoneme set, we need 

to measure the s imi lar i ty between phonemes of the two languages. Various 

cross-lingual inventories are derived based on different combination schemes 

and simi lar i ty measurements. I t is shown that the proposed data-driven based 

approach outperforms the IPA-based approach using merely phonetic knowl-

edge. I t is also found that init ials and finals are more appropriate as the basic 

Cantonese units than phonemes in code-mixing speech recognition applications. 

The IF-based cross-lingual AMs show consistent recognition improvement com-

pared w i t h phoneme-based models. The proposed cross-lingual models attains 

the best overall syl lable/word accuracy of 62.1%. The overall recognition per-

formance is improved by nearly 5% as compared w i t h the IPA-based models. In 

particular, the accuracy of recognizing embedded English words increases from 

54.1% to 62.6%. 

Language Modeling 

To deal w i t h the problem of inadequate code-mixing t ra in ing data, different 

language modeling techniques are investigated. Class-based language models 

trained w i th automatic clustering classes show significant reduction in perplex-

ity. However, the recognition performance of developed class-based models is 

disappointing as the models cannot improve the recognition accuracy in real 
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LVCSR tasks. The proposed semantics-based n-gram mapping approach is 

proved to be very effective for language modeling of code-mixing ASR. The 

percentage of code-mixing 3-grams increases f rom 7.2% to 27.2% via translation-

based and semantics-based mapping. I t is also noticed that 10.7% of English 

OOVs, 24.6% and 10.2% of unseen code-mixing 2-grams and 3-grams can be 

observed after mapping. The advantage of the n-gram mapping method can be 

further confirmed in LVCSR tasks. W i t h proposed semantics-based language 

models, the recognition accuracy on embedded English words of code-mixing 

speech can be increased by more than 15%, compared w i th the conventional 

statistical t r i -gram L M . A 2% improvement on Cantonese characters can be ob-

served as well, and the improvement is mainly presented on boundary Cantonese 

characters nearby English words. The success of semantics-based language mod-

els suggest that well-founded mapping is an effective approach to deal w i th data 

sparseness. I t is wor th to further investigate how English and Cantonese are 

intertwined in code-mixing and apply them in mapping. 

Speaker adaptation 

Speaker adaptat ion techniques can be used to improve speech recognition perfor-

mance if a small amount of adaptation data f rom the target speaker is available. 

However, i t is not easy to do so when two or more languages are involved, es-

pecially when the two languages are phonetically distant. Cross-lingual speaker 

adaptat ion via model mapping is investigated in this study. I t focuses on the 

use of acoustic informat ion from an existing source language (Cantonese) to im-

plement speaker adaptation for a new target language (English). SI model map-

ping between Cantonese and English is established for different acoustic units. 

Phones, states and Gaussian mixture components are used as the mapping units 

respectively. W i t h model mapping, cross-lingual speaker adaptation can be 

performed. The performance of the proposed cross-lingual speaker adaptation 

system is determined by the effectiveness of both model mapping and speaker 

adaptation. Experimental results show that model mapping effectiveness in-

creases w i th refinement of mapping units, and the better the model mapping, 
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the more effective the speaker adaptation. Mapping between Gaussian mixture 

components is proved to be successful for various speech recognition tasks. A 

relative error reduction of 10.12% for English words is achieved by using a small 

amount of (4 minutes) Cantonese adaptation data, compared w i th the SI English 

recognizer. The experimental results show that our approach for cross-lingual 

speaker adaptat ion is promising. In addition, i f a speaker-dependent Cantonese 

recognizer exists for a part icular speaker, the corresponding speaker-dependent 

English recognizer can be implemented via the proposed GauMix Mapping in a 

fast and low cost way. 

LVCSR System 

A complete large vocabulary continuous speech recognition system for 

Cantonese-English code-mixing speech has been developed and implemented. 

The best overall recognition accuracy for code-mixing test utterances of C U M I X 

is about 75%. In part icular, i t achieves an accuracy of 76.1% and 65.5% for Can-

tonese characters and English words respectively. The proposed code-mixing 

LVCSR system yields significant improvement as compared w i t h the baseline 

system. We also find that this performance level is noticeably higher than the 

previously reported methods, which attained an overall accuracy of 55.3% for 

the same sets of Cantonese-English code-mixing test utterances. In addit ion, 

the proposed code-mixing LVCSR system can successfully recognize monolin-

gual Cantonese speech as well. The recognition accuracy for Cantonese charac-

ters in monolingual utterances is 75.3%, which is comparable to the results of 

previous studies (character accuracy of 75.8%) on colloquial Cantonese LVCSR 

(for the same database). 

7.2 Summary of Contributions 

The major contributions of this thesis are summarized hereunder: 

• A text corpus of 65,000 real code-mixing sentences is collected from con-

tents obtained via the internet. Domains of code-mixing sentences and 
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P〇S of embedded English words are manually labelled. The character-

istics of Cantonese-English code-mixing are investigated from a corpus 

l inguistic point of view. 

• The effects of language mixing for automatic recognition of Cantonese-

English code-mixing utterances are analyzed in a systematic way. 

• A data-driven computational approach is adopted to reveal significant 

pronunciation variation in Cantonese-English code-mixing speech, in ad-

di t ion to those variations that have been well understood in monolingual 

speech recognition. The findings are successfully implemented to con-

struct a more appropriate bi l ingual pronunciation dict ionary and select 

effective t ra in ing materials for code-mixing ASR. 

• Various simi lar i ty measurements are applied to investigate the acoustic 

and phonetic simi lar i ty between different phonemes of Cantonese and En-

glish. Based on that , different sets of cross-lingual phoneme inventories 

are designed and evaluated in speech recognition experiments. 

• A text database w i th more than 9 mi l l ion characters are compiled for lan-

guage modeling of code-mixing ASR. Class-based language models w i th 

automatic clustering classes have been proven inefficient for code-mixing 

speech recognition. A semantics-based n-gram mapping approach is pro-

posed to increase the counts of code-mixing n-gram at language bound-

aries. The language model perplexity and recognition performance is sig-

nif icantly improved by the proposed semantics-based language models. 

• Speaker independent model mapping between Cantonese and English is 

established at different levels of acoustic units, viz phones, states and 

Gaussian mixture components. A novel approach for cross-lingual speaker 

adaptat ion v ia Gaussian component mapping is proposed and is proven 

effective in speech recognition tasks. 

• A large vocabulary continuous code-mixing speech recognition system is 

bui l t . This system can successfully recognize Cantonese-English code-
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mix ing and monolingual Cantonese speech spoken in dai ly conversations. 

The overall recognition accuracy for code-mixing speech increases from 

(previously reported) 55.3% to 75.0%. 

7.3 Suggestions for Future Work 

Al though our proposed code-mixing LVCSR system significantly outperforms 

previously reported code-mixing recognizers and the baseline system trained 

w i t h conventional methods, the accuracy on embedded English words is st i l l 

much lower than that of Cantonese characters. We should continue to improve 

the performance of code-mixing LVCSR, particular for English words. 

In this study, less than 3 hours of English speech data are available for 

code-mixing acoustic modeling. To improve recognition performance, more 

Cantonese-accented English speech should be collected and developed in future 

research. In this project, we have collected over 15 hours of real spontaneous 

speech, which has not been ful ly used yet. This set of spontaneous speech should 

be exploited in future work. 

We find that more than 20% of English words are mistakenly recognized 

as Cantonese characters in our code-mixing recognition experiments. However, 

less than 1% of Cantonese characters are recognized as English words. This 

means that our proposed semantics-based language models are st i l l biased to-

wards Cantonese. Therefore, we need to collect more code-mixing text data 

for language modeling. Moreover, advanced language model techniques such as 

skip or long-distance language modeling may be considered for further research. 

From the analysis of code-mixing LVCSR results, we find that high-level 

knowledge such as suprasegmental information may be helpful to correct the 

wrongly recognized English words and Cantonese characters. I t is wor th to 

integrate such information into the code-mixing LVCSR and see whether even 

better performance could be achieved. 

• End of chapter. 
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