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Abstract of thesis entitled: 

Structural Shape and Topology Optimization with Implicit and 

Parametric Representations 

Submitted by ZHANG, Jiwei 

for the degree of Doctor of Philosophy 

at The Chinese University of Hong Koug in December 2010 

Engineers have utilized CAE technique as an analysis tool to rofino the 

engineering design over decades. However, CAE alone is not the key 

to open the door for the final goal. In order to achieve the practical 

solution to the real-time engineering problem, we need to integrate 

CAD, CAE and optimization techniques into a single framework. 

In the problem of the structural optimizations, three categories of 

the approaches can be identified: size, shape and topology optimiza-

tions. For size optimization, explicit dimensions are usually chosen as 

the design variables, for example, the thickness of a beam or the diame-

ter of a cylinder. For shape optimization, the shape related parameters 

of the geometrical boundary are always considered to be the design 

variables, like the positions of the control points for a Bezier curve. 

However, these two methods are lack of the capability to handle the 

topological changes of the geometry. On the contrary, topology opti-

mization is the generalization of size and shape optimizations, which 

offers a more flexible and powerful tool to determine the best layout 



of the materials and the topology to the design problem, and it is be-

coming increasingly important in the conceptual design phase. In other 

words, topology optimization gives one the inspiration for the locations 

where we put holes to reach the best design. 

The material density method and the boundary-vai'iation method 

are the popular methods adopted in both academia and industrial com-

munity. Even though the former method is dominant in industry, the 

latter met,hod is more preferable these years owing to its boundary de-

scription nature. Undoubtedly, the level set based method is the most 

promising technique of the boundary-variation type. Scientists suc-

cessfully developed the optimization algorithms based on the level set 

method (LSM) in the past few years. With the implicit represent,alion 

of the LSM, topological changes of the design can be handled easily 

and the geometrical complexity is then reserved. 

In this thesis, we put forward the algebraic level set (ALS) model 

with the consideration of the constructive solid geometry (CSG) model 

so that it is consistent with half-space primitive concept in CSG. Based 

on general shape derivative, we propose the general shape design sen-

sitivity analysis (SDSA) formulations for general geometric primitives 

that are represented implicitly, such as line and circle primitives in 

two-dimensional space and plane primitive in three-dimensional space. 

We then extend the relevant formulations into corresponding paramet-

rically represented primitives as they are widely used in today's main-

stream CAD systems. 

In the optimization algorithm part, apart from the general para-

metric steepest descent (ST) algorithm, we also study the least square 

(LSQ) based optimization algorithm. As a result, we can solve the 



problem arisen from the variant diinensional sizes of the different de-

sign variables by using the weighted sensitivity information. 

The opUmal result given by conventional topology optimization usu-

ally involves tedious post-processing to form CAD geometry. Using our 

parameterizations with basic primitives and the proposed optimization 

algorithms, we can deliver comparatively complicated shapes with rich 

topological information. Therefore, the detail design could be con-

ducted directly later. 

The numerical examples for the design optimization problem are 

successfully impleiiiented with both the implicit geometric represen-

tation (2D cases) and the parametric geometric representation (3D 

cases), which proves the feasibility of the proposed framework. The 

results show that both shape and topology optimizations of a design 

could be accomplished in a natural way. 



摘要 

雖然工程師利用CAE分析技術來提高產品設計品質已有多年的歷史，但CAE分析技術本身並 

不是赏現最優設計的根本解決方案。爲了在工程寊踐中獲得設計厳優可行解，我們需要將CAD、 

CAE及優化技術集成到一個統一的框架下。 

在結構傻化領域中有三類越本的優化分支，即尺寸傻化、形狀優化以及拓撲優化。對於尺寸優 

化而言，顯式表達的尺寸等參數可以作爲設計變數，例如梁的厚度或者是圖柱體的直徑等。對 

於形狀優化而言，幾何邊界所關聯的幾何參數可以作爲設計變數，例如貝赛爾曲線的控制點的 

位匮等。但上述兩類方法的局限性在於無法有效賁現幾何形狀的拓撲變化。與此相反I結_招 

撲優化提供了一種決定結構設計中材料分佈及拓撲形狀定義的趟活而強大的工具，它是尺寸優 

化和形狀優化基礎上的•般性的優化方法並已經在產品槪念設計中變得越來越爲重耍。換而言 

之，結構拓撲優化爲我們如何在結構中開洞從而達到最優性能設計提供了靈感。 

材料密度法以及變邊界法是學術界及工業界所廣泛採用的方法。儘管前者在工業界中處於主缚 

地位，但後者由於其直接的邊界描述特性而越來越廣爲大家所接受。毫無疑問，在變邊界法當 

中，基於水平染方法的結構優化是最有前途的一種方法。在過去數年裡，科學家已經成功開發 

出了基於水平集方法的拓撲結構優化方法。由於水平集方法的隱式邊界描述特性,結構邊界的 

拓撲變化可以輕易的赏現從而使得傻化結果可以保留複雜的幾何特徵。 

在本文中，在參考構造搜體幾何模型(CSG)的基礎上我們提出--•種代數水平集_，其特點 

是與CSG中的半平面模型.一脈相承。基於一般的形狀敏度的推導之上，我們提出了針對於-

般性的基本賺式表達的幾何體素的形狀設計敏度分析列式。道些隠式表達體索包括•二維空間中 

的直線體索和園體素以及三維空間中的平面體素等。此外，我們還將形狀趣敏度分析推導推廣 

到在當今CAD系統中所廣泛徒用的相應的參數化表達的幾何體素中。 

在優化算法部分，除一般性的參數化最速下降法之外，我們還硏究了基於最小二乘法的優化算 

法《•其結果是利用了加權的敏度信息來解決了優化中不同類型的優化變數所產生的iS」綱不同的 

問題。 

採用傅統的拓撲優化方法所帶來的問題之一就是結果需要繁璃後處理以形成CAD幾何模型。 

採角我們所提出的參數化方法以及我們的優化箨法，我們可以獲得具有豐富拓撲結構信思的複 

雜的結構形狀’而詳細設計可以在此之後直接進行。 

對於結構優化設計問題，在本文中我們實現了採用隱式幾何表達的二維結構優化問題的窝例及 

採用參數化幾何表達的三維結構優化算例。算例證明了所提出方法的可行性，同時也展示了結 

構設計中的形狀和拓撲變化可以自然的方式同時贲現。 
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Chapter 

Introduction 

From the industrial point of view, it is important for the developing 

new products using best material layout for any given objectives while 

satisfying various constraints at an early stage of a design proccss. 

This requirement actually urged the blossom of structural optimization 

methods during the last three dccades. Structural optimizarton now is 

becoming a powerful tool in both acadcmia and industrial community. 

Efficient procedures even commercial softwares for different types of 

engineering problems had been put forward consistently. 

Three types of structural optimizations can be identified, which arc 

size, shape and topology optimizations. As for size optimization, it is to 

find out the optimal design by changing the size feature variables such 

as the diameter of a circular hole or cross-sectional thickness of beam. 

Shape optimization, which could be considered as the generalization 

of size optimization, is mainly performed on continuum structures by 

modifying the prodetormined boundaries with fixed topology to achicvc 

the optimal designs. Topology optimization is to search for the optimal 

designs by determining the best locations and geometries of cavities in 



the design domains, and it is a generalization of both size and shape 

optimizations. 

1.1 Background 

Tlie emergence of coiriputer-aided design (CAD) and the finit e element 

method (FEM) has greatly cnhancod engineer's ability to evaluate po-

tential designs and prcdict the performancc before actual fabric ation 

(Figure (1.1)). Researchers and engineers have been devoted to the 

integration of the shape and topology optimization methods fully into 

the existing CAD and CAE environments for dccades. The key rea-

son for doing this is to take full advantages of existing CAD aiid CAE 

environments to realize genuine design automation. However, till to-

day, no single software con fully achicvc this ultimate goal. To achicve 

the optimal design in a structural optimization problem, it usually 

depends on the modification of the boundaries of a siruclurc, or t ho 

material distribution of the model. To date, three of the most in-

fluential structural shape and topology approaches are: conventional 

parametric shape optimization, material based topology optimization 

and boundary-variation based shape and topology optimization. 

1.1.1 Conventional Parametric Shape Optimization 

In the conventional CAD-based shape optimization, due to the history-

based mechanism of CAD system (one feature built on another), it is 

not caijy to handle topological changcs during the optimization, there-

Tore the topology of a design mostly rnmains the same as defined at the 

beginning. 
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Figure 1.1: Performance evaluation methodologies during different phases 

Originally, the shape design parameters were associated directly 

with the finite element nodal coordinates, however, the mesh irregular-

ities and massive number of shape design parameters causcd the dcca-

dencc of this approach followed by the rising of three more sophisticated 

methods, namely, the mosh parameterization method [1-3], the natural 

design variable method [2,4], and the solid modeling method |5-7 . 

In the mesh parameterization method, the shape design variables 

arc roducofi to a sot of parameters that define the positions of master 

points, which arc then used to define geometric entities of tho mesh. 

However, it suffers two major drawbacks. Firstly, designer must define 

the model with master points, which turns out to^ be a very tedious 

job with complicated geometric models. Secondly, mesh degradation 

might occur since tho topology of finite oloment mesh is usually prede-

termined. 

The natural design variable method requires defining the fictitious 



boundary conditions which will be coinputationally expensive. More-

over, the optimal shape is defined by (iefonimlioti mode shapes and 

therefore not; compatible with CAD data structures. 

The solid modeling method，which is built upon CAD systems, is 

afJvantagoous compared with the previous two iiiothods. It is a nat-

ural integral pari of CAD system. Therefore, it could be intuitively 

interprotocl by designers. In [5,6], the shape design sciisitivily is dis-

cussod with both discrete method and continuum method, but only 

two-dimensional eases arc studied. Notably,' in [7], more gc îioral three-

dinicnsional eases arc given using the proposed design sensitivity cal-

culation with rcspoct to diincnsioiial constraints under the assumption 

tliat 0110 can calculate the dimensional variation through variational 

geometry equations [8-15]. This approach, however, still doiriands re-

lating FE nodes to geoinctric boundaries. Moreover, the fcaturc-ba^icd 

model construction process sots the limitations on topological cliangcs 

during shapo optimization ĵ rocoss. 

1.1.2 Material Based Topology Optimizat ion 

Due to the difficulty of liandling topological cliangtis during structural 

optimization process, topology optimization is regarded as one of the 

most challenging tasks in conccptual design and only a few methods 

have been successfully implemented for industrial use. The birth of 

the finite clement based structural topology optimization in the late 

1980s opened a new era in structural optimization field, and various 

approaches have been developed since then. 

The homogcnization method is introduced in [16] (also see (17, 

18]), it is one of the main approach which employs rnicropcrforatcd 



compositcs as permissible designs to relax the originally ill-posod 0/1 

(void/solid) optiiiiization problem |19]. A rolationship between mi-

crostructuro parameters and eficctivc material properties is cstablishod 

by the homogcnization theory. Tlie optimal material distribution may 

be obtained by determining the size parameters of the microstructiirc 

using an optimality criteria procedure. Even though homogcnization 

method h'ds a strong mathematical background, the results given by 

this theory have little practical value sincc the shape of the optimal 

structures arc too complicated that thoy can not be fabricated at all. 

Furthermore, numerical instabilities may introduce "non-physical" ar-

tifacts in the results and make the designs sensitive to variations in the 

loading. Nevertheless, the homogcnization approach can be consicicTcd 

a.s a milestone in topology optimization bccausc the solution provides 

mathematical bounds to the thcorotical performance of a structure. 

Ba.scd on the homogcnization method, further r(，seardi works have 

nurtured more fruitful results. One of the most famous and woll ac-

coptod methodology is the "solid isotropic material with penalization" 

(SIMP) approach for its coiiccptual simplicity [19,20]. It is ba^cd on 

the assumption that cach element contains an isotropic material (den-

sity assumed to be constant within cach element). The dements arc 

used to discrctize the design domain with element densities consid-

ered as the design variables. The material properties arc modeled to 

be proportional to the relative material density raised to some power. 

The power law-based approach has boon widely applied to topology 

optimization problems with multiple constraints, multiple physics, and 

multiple materials. However, the adoption of finite element grids to rep-

resent the shape of siructuros causes stop-like boundary which needs 



tedious post-procossing works if one wants to use the optimal results 

(lircctly in existing CAD systems. 

Another well-known iriolhod callcd the "evolutionary structural ojv 

tirnizatioii" (ESQ) liaii been proposed l)y Xio and Steven [21,22], whicli 

is based on tho conrcpi of gradually removing inefficient nuitorial from 

.structure lo acliicvo an optimal design. The inoUiod wa.s dcvelopod 

for various problems of structural optimization including stress consid-

erations, frequency optimization, and stiffness constraints. Th(、ESQ 

method uses a fbced model with stariclard finite elements to represent 

the initial design domain while tlio socallod optimum design is found 

as a subset of the initial set of finite elements. A key proccss of this 

method is to use an appropriate criterion to eussô s the contribution 

of each clenieiit to the specified behavior (response) of the structure 

and subsoqucntly to remove sonio demerits with the least contribu-

tion (usually known an hard kill). A similar approach callcd "reverses 

ariaptivity" was proposed by Reynolds ot al. [23], in which a fixed 

percentage of relatively unclcr-strcssod material is removed to find ap-

proximately fully stressed structures. Essentially, both tho ESQ aiid 

tho reverse adaptivity arc hoinotopy methods ba.scd on material hard 

kills. Rocontly, a modified version of the ESQ callcd tlir; "bi-dirocUoiial 

evolutionary structural optimization method” (BESO) has been well 

studied by Huang and Xio [24]. This approach allows material to Ix， 

removed and added simultaneously (usually known as soft kill), and is 

similar to the SIMP method to some extent. However, one important 

difforonco is that tho soft-kill BESO uses discrete design variables while 

the SIMP allows for continuous material densities. Both tlic ESQ and 
A 

the BESO arc essentially based on an evolutionary strategy focusing 



on local conscquonccs hut not on the global optiiriurri, and they arc 

typically computationally expensive. 

The "bubble method" is proposed by Esclioiiaucr and co-workers 

25, 26]. In this method, the so-called characteristic functions of the 

stresses, strains and displacements arc ornployod to doicrrnino the place-

ments or insertion of holes in known shape at optimal positions in th() 
\ 

.structure, nainely, it inodifios the structiiral topology in a proscribed 

irianncr. In such cfisc, the design for a given topology is sottlod before 

its further changcs. 

A common characteristic of abovomcntioncd methods is the focus 

on material properties and the adoption of finite clement mesh to repre-

sent goomotry, the performances of these methods arc greatly limited 

by the weak capability of boundary representation.. These elcincnt-

basod methods cannot represent an exact boundary of a design. Heal 

geometry information of the design boundary of a structure during tlio 

optimization cannot be obtained dircctly, and "step effect'' is always 

an issue with the optimal results which makes it hard to bccoiiic a true 

integral part of CAD systems. 

1.1.3 Boundary Variation Based Shape and Topology Opti-

mization , 

Instead of using material density as design variables dircctly, boimdriiy 

variation methods, typically, the "level set method" (LSM) is another 

popular type of approach in structural optimization community, which 

has been widely used in various fields because of its strong geometry 

handling capabilities. In this method, the design variable is actually 

the boundaries of a given structure. Instead of using explicit bound-



ary representation under Lagrangiaii perspective, in the level set l)a«(，f_l 

struoiural topology optimization, houndarios arc represented by the 

implicit level sot function and arc propagat,od by the level sot equa-

tion under the Euloriaii framework. Siricc the LSM can handle the 

topological cliangcs of moving intcrfacos naturally (splitting or merg-

ing) and floxibly, it oflers a tool for simultaneous shape and l,o{wlogy 

optimization. 

Sothian and Wiogmaiin [27] arc the pioneers who extend the level 

set inothod developed by Oshor and Sot hi an [28-30] into tho .structural 

optimization fiold. In their works, tho boundaries arc raptured on a 

fixed Eulerian mesh and the Von Mises equivalent stress is used to 

improve tlic stnicUiral rigidity. The LSM is employed for tracking 

the moliori of the structural boundaries under a speed function and 

handling the prcscncf； of potential topological changcs. An explicit 

jump immersed interface method is used for computing the solution 

of the elliptic problem (the Larne equations) in coiiiplcx geomctrios 

with a regular mesh. Oslior and Santosa [31j propose a level soi based 

computational framework for frcqucncics optimization problems. They 

use functional gradients to calciilatc the volocity of the lovol set funct ion 

and (leal with optimization problems with goomotrical coiLstraints. 

In the series of papers [32 -351, the level set based structural op-

timization method with shape gradient arc developed, and these sig-

nificant works laid solid foundation for more general structural prob-

lems. Even though the shape sensitivity theory itself docs not ofler 

the mnchanism of topological changos, the LSM fills the gap between 

conventional shape optimization arid topology optimization and gives 

a solution to unify these two different categories. As stated in (34 



H boundary-basccl inothocl with the capability of handling topological 

changcs has the most promising potential. It is a inoro dirnct approach 

than rnatcrial-basod methods. For cxarnpio, in general it allows more 

explicit representation of any features to be incorporated in the design. 

Although level sot based structural optimization is quite promising, 

till now only steepest dcscont optimization algorithm could be used 

as the optimization strategy, conventional mathematical programming 

methods arc not quite useful within this framework. Due to this lim-

itation, some variants of tho lovol sot ba^ed optimization mctliod arc： 

developed, which usually focus on tho paraiiiotorizatioii of I IK? level sot 

equation. 

In [30,37], the radial basis functions (RBFs) arc used to parameter-

ize the level set function. By assuming the artificial time only depen-

dent on coefficients, the level set function is converted from the partial 

(iifforontial oquation (PDE) into a system of ordinary differential equa-

tions (ODEs), In later works [38 41] RBFs based level set is employed 

in a different manner. Instead of solving the level set equation, this vari-

ant parameterizes the level set function with RBFs interpolations. The 

interpolated level set equation is then substituted into the conventional 

shape derivative formulation, which makes it possible to calculate the 

sensitivity regarding design parameters. This parameterization enables 

the adoption of a lot of mature optimization algorithms like Optimality 

Criteria (OC) and Method of Moving Asymptote (MMA)/ Using tho 

chain rule, design sensitivities with respect to parameters arc obtained, 

and the level set function can be updated by varying parameters ac-

cording to sensitivity analysis and tho optimization algorithms. This 

method differs from the conventional discrete LSM because it needs 



boundary velocity only and requires boundary iiitograUon. The lat-

est variant regarding RBRs level set based structural optiniizatioii is 

found in [42, 43), by dividing the design domain into multiple over-

lapped aub-doniaiiis, tho large scalo linear sysiorn solving procedure 

could be rcplaccd by the solving process of a set of small scalc linear 

equations at cach optimization step. 

A pioccwis(i coiistanii level sol, (PCLS) method is iinpicinontcd to 

solve tho struct ural optimization probloriis in [40, 44, 45]. In this ap-

proach, a piece wise density function is defined over t,h() design flornain. 

This function is rogardod a.s tlic link botwoon the level sot function arid 

the objcctivc function. Tho PCLS method retains advantages of the 

conventional level sot method and it is free of the Coiirant-PYicdrichs-

Lcwy (CFL) condition and reinitialization. More importantly, this 

method allows new holes to nucleate so it is useful in two-dimensional 

topology optimization. 

A finite element based level set method (FELSM) is proposed in [4G, 

47] which uses FEM other than finite difference method (FDM) t o solve 

the PDE. The merit is that mesh grids could be much more flexible 

compared with the uniform grid requirement in FDM based level set 

method, and this set. of mosh could be used for both front evolution 

and structural analysis purpose. Therefore it enables arbitrary initial 

domain with any kind of predefined fixed obstacles (like a circle). The 

drawback of tliis method is obvious, too. In this method, only first 
T • 

order ac!curato solving schcmc hai? been found, higher ordered solving 

schcmcs arc not availablo. In terms qf accuracy, traditional FDM baacci 

solving schenic is far superior to the proposed FELSM. 

In [48,49], B-spliuc functions arc used to parameterize the level set 



function. Also, the shape sensitivities with rospoct to sliapc parameters 

as well as to B-spline coefficients are obtained. This makes it (•apal)le 

of handling free form shapes with topological changos, meanwhile, fits 

the shape riiaintonancc and layout problem into t.ho same framework. 
» 

Bcsi(iT^;hc LSM, soino rcsc arc hers arc concontrating on using other 

boundary variation approaches such as utilizing the CAD geometry to 

perform shape and topology optiniizalion ilirectiy. One of the most, 

notable approach is Armstrong's work [50]. In this work, sensitivity 

ba.scd formulations regarding dimensional parameters arc derived with 

tho ari joint method. Furthermore, both shape and sin all topological 

ehaiigqs arc observed in the numerical examples. However, no dramatic 

topological chaiigcs arc achievable in this work bccmisi! the topology 

changing capability relics heavily on the commercial CAD system. 

1.2 Research Objectives 

Modern pcrfonnanco-drivcn product development circle can be bro-

ken down into three chains: specifications, conceptual design and de-

tailed design. The coiiccptual design phaac and detailed design phase 

could actually bo considered to correspond to topology optimization 

and CAD based shape optimization problems rcspcctivoly. However、 

these two approaches seem incompatible in some scnso mainly bccausc 

the most popular topology optimization approaches currently adopted 

by industry aro material density based which aro unable to offer CAD 

ready geometry in a dircct inanrter. Even though boundary variation ‘ * 

based shape and topology methods arc now gaining popularity, the 

boundary rcprcsoiitations of the optimal models delivered with these 



methods aro still not CAD based geometry. 

Instead of using complex jgcomctric entities to represent a model, 

engineers tend to choose more simple primitives to construct, a solid 

prototype at conceptual design phase. Unfortunately, current main-

stream history-based systems arc mostly dctail-oriontcd. CAD based 

shape optimization process can not be conducted until after the com-

plex CAD models are conceived. This actually constrains design ed-

its and limits model configuration. Size and shape optiinizatioiis p<、r-

fornicd thereafter can not chaiigc the performance based on the curroiit, 

design, and prediction of even better designs cannot be explored within 

the same scope. Due to these limitations, the current methodology of-

ten delays discovery of configuration issues hi new designs uiitil much 

later in the design proccss; consequently, expensive engineering work-

arounds and costly redesign arc required to correct such issues in SOUK; 
• 

critical designs. 

The emerging dircct modeling tools foster ̂ ;rcativit.y and substantive 

engineering early in the design process by offering more flexible geom-

etry manipulations compared with the feature-ba.sed CAD systems iii 

which the "top-down" design feature troe of the CAD model is a neces-

sity. This kind of direct editing capabilities help engineers evaluate the 

best approaches before detailed design commences, which provides us 

a new solution to unify shape and topology optimizations within CAD 

environment. The improved design methodology presented in this work 

attempts to bridge the methodological gap between conceptual and de-

tailed design, or we can say the gap between current topology opt imiza-

tion and shape optimization. By restricting shape represent at i cms to a 

few types of simple geometric entities, the shape design sensitivity anal-



ysis (SDSA) using gradient information could be obtained accordingly. 

Topological changes as a critical issue in traditional shape optimiza-

tion in feature-based CAD environment now could be greatly relaxed. 

This proposed CAD geometry based shape and topology optimization 

approach allows an optimal solid to be delivered at conccptual design 

phase using simple primitives and leaves all detailed design behind. 

In CAD systems, the two popular approaches for representing a solid 

are: the constructive solid geometry (CSG) approach that was first 

introduced by Rcquicha and Voclcker at the University of Rochester 

51]; and the boundary representation (B-Rep) approach by Braid in 

Cambridge [52). Comparing to CSG representation, B-Rep is inure 

flexible and has a much richer operation yet, this makes B-Rep a more 

favorable choice far modern CAD systems. 

To conduct shape and topology optimization within CAD context, 

wc need to solve two issues: the sclcction of appropriate primitives 

to represent a solid and the shape design sensitivity analysis (SDSA) 

calculation with rcspect to individual primitive's parameters. 

One distinction between mesh model and CAD model is that, CAD 

model is comprised of multiple regular geometric entities, such as pla-

nar surfaces and circular surfaces which arc preferable to designers for 

representing complcx solid. Due to this rc^uson, the primitives chosen in 

this dissertation arc simple analytical primitives, which arc implicitly 

represented with CSG or pararnetrically represented with B-Rcp. The 

critical issue in hindering the conventional shape optimization from the 

topological changes is solved. 

The shape optimization within continuum structure framework us-

ing the SDSA is widely acceptcd. It normally involves the derivative 



of a real-valued objective function regarding a set of selected paraino-

ters used to define a design. The SDSA calculation provides a rigorous 

basis for most deterministic optimization algorithms. One should note 

that the dependence of objective functions on design is not always 

explicit except for a small set of geometrical objectives, for example, 

the cross-scctional area of a circular beam that can be explicitly ex-

pressed as 5 = 7rr̂  with r indicating the radius of the beam. The 

sensitivity analysis of S with rcspoct to r is quite straightforward and 

it can be explicitly derived as dS/dr — 'Inr. For most of the structural 

problems such a.s stiffness and stress optimization, or other physical 

objectives, the dcpendencc is usually expressed implicitly. Supposedly, 

wc are given with a general objective function J , the SDSA regarding 

the design could be obtained by the FEM based structural analysis, as 

shown in [53-55]. This is the most time-consuming chain in the op-

timization algorithm, and the SDSA computation with respect to our 

chosen parameterizations will be elaborated in later context. 

1.3 Contributions and Outline 

For the boundary-variation based shape and topology optimization, the 

parameterization method adopted is critical to the SDSA computation. 

If the discrete LSM is chosen as the geometric representation and the 

evolution impulsion, then the free boundary T is the design parameter 

itself. If the parametric LSM is used, such as RBF LSM, then the coef-

ficients or the knot positions as internal parameters could be considered 

as the design variables and the SDSA can be carried out accordingly. 

Notably, the SDSA for very simple constructively represented shapes 



can be referred to in [48,49,56-59] but no further discussions about the 

extension and generalization of more flexible shape and topology opti-

mizations are available with implicitly represented geometries, not to 

mention the unified shape and topology optimization framework with 

parametric representation. Thus, it motivates us to establish a theorct-
t 

ical and computational frameworks for both gcomctric representations 

that arc suitable for shape and topology optimization. 

In this dissertation, wc proposed a more general algcbraic level set 

framework, in which the geometry is constructively and dynamically 

represented. Also, with the proposed gcomctric representation and the 

shape derivative theory, wc derived the corresponding SDSA formula-

tions with respect to the chosen internal design parameters. "Internal" 

means the variables arc governing the analytic equation, in contrast 

with the "external" parameters which arc commonly dimensional con-

straints. Wc also show that the SDSA formulations are always com-

putable no matter how the solid is represented (implicitly or paramet-

rically), as long as the normal design velocity field regarding design 

parameters is available. These proposed SDSA formulations for our 

paramcterizations could naturally be extended to CAD-bascd para-

metric primitives with B-rep data structure under the condition of a 

proper geometry updating schcmc. 

Since the structural optimization problems arc always couplcd with 

constraints (volume, local stress, etc.), an augmented Lagragiari multi-

plier method (ALM) is used to manage the extra constraints in the 

optimization procedure. Based on the SDSA formulations, we de-

veloped the problem-specific steepest decent (ST) optimization algo-

rithms. Due to the problem of the variant dimensions in the design 



parameters, a least square (LSQ) gradicnt-bguscd optimization method 

is studied. The efficiencies of both proposed algorithms are compared 

and we prove that LSQ based algorithm is efficient. Comparisons arc 

made between the results (21) cai>cs) and the bonchinarks delivered with 

discrete level sot. The insults prove tho correctness and efficicncy of our 

proposed framework. With our methods, one can avoid the reinitial-

ization process and velocity extension proccss in the traditional level 
1 

set method. 

This dissertation is organized as follows. In Chapter 2，the shape 

derivative and the structural optimization problems are discussed with 

the review of the level set based structural optimization framework. 

Ill Chapter 3，we present a parameterization method for solving tho 

level set equation, i.e., the algebraic level set model. Formulations are 

studied in details and the corresponding SDSA arc given. The exten-

sion of the sensitivity calculation for the parametric primitives is also 

elaborated in this chapter. In Chapter 4，the ALM is first studied to im-

pose constraints, followed by the study of the parainctric ST algorithm. 

Since the internal parameters cither embedded with the traiislatiorial 

or the rotational characteristic, wc further propose a LSQ based op-

timization algorithm to rcsolvo the dimensional problems with fixed 

time step size. The numerical examples arc given in Chapter 5, both 

2D (implicitly represented) and 3D (parametrically represented) exam-

ples with hybrid primitives arc investigated with the structured finite 

element mesh. Efficiencies of the parametric ST based algorithm and 

the LSQ based algorithm are compared. Tho performance clifForoncc 

between the proposed ALS framework and discrete level set framework 

is discussed. Conclusions and future work arc given in the last chaptcr. 



• End of chapter. 



Chapter 2 

Structural Optimization 

Problem and Level Set 

Method 

III this chapter, we first review the definition of the optimization prob-

lem for continuum structures, and the ba.sic ideas of shape derivatives 

derived from material derivatives. Our concentration in this chaptor is 

the introduction of shape-vm'iation based shape derivative formulation 

using material derivatives, which is the foundation of shape design sen-

sitivity analysis. Also, the level set method (LSM) will bo discusscd. 

The shape and topology optimization framework using LSM will bo 

reviewed in the last section of this chaptcr. 



2.1 Structural Optimization Problems for Contin-

uum Structure 

There is an important class of structural optimization problem needed 

to determine the shape and material layout of a specific structure. 

Several kinds of structural objective fiinctionals, such the minirnuin 

mean compliance problem, the maxim urn natural frcqucncy problem, 

and the ininirnurn stress problem, subjcct to cortain constraints like 

volume constraint or stress constraint, have practical and strong en-

gineering backgrounds and arc always the favorite subjects in both 

acadcmia and industry. 

As mentioned in last chapter, these kinds of problems cannot always 

be rcduccd to a formulation that can express the structural shape as a 

design function iii an explicit way. In this ca»sc, the design variable is not 

a function but the geometry of the physical domain of interest [53-55 • 

2.1.1 Structural Optimization Problem 

The shape design sensitivity analysis (SDSA) discusscd in this disscr-

tatioii only conccrns linear structural systems. For nonlinear structural 

systems one can refer to [60). Generally speaking, the general structural 

optimization problem is defined as: 

minimize .7(iA’n)= , F(u) dfl (2.1) 

Jii 

The goal of structural optimization is to minimize the objcctivo func-

tional J{u) for a specific physical or geometric type described by F{u), 

where Q C R^ (n = 2 or 3) is the domain occupicd by isotropic clas-

tic material, u is the state variable which may be the kincinatically 



admissible displacement field or its higher order derivatives like strain 

field or stress field, arid this is a standard notion ol' structural opti-

mization [54], Hero, wo only present the opiimization foririulatioii for 

ininiinutn mean coinplianco objcciive, hiil tho approach would apply 

l;o other general problems. 

For mean compliance problem, F{u) could Ijc 0x})rcsK0(i fus: 

nu) = ~£{ufDe{u). (2.2) 

whore u is th(i displacement field of the structuro under certain loads 

and boundary conditions, £ — ~(Vu + Vu'^) is the strain field, and 

D is the elasticity matrix. The integrand F{u) is actually tho strain 

energy density. 、 

The design variable is the shape of the structure, ami t,ho ob-

jective function J depends on Q in two ways: the explicit deporidcnce 

since the integral is defined on H and the implicit dependence through 

u which is tlic solution of the following state equal ions defined on ”： 

一 div/T(ii) — f ill 12, 

u - O on Vo, (2.3) 

a 
cr{u) , n 二 g on Fyv. 

where a is Uic stress field, f the body forcc, g the traction forcc acting 

on Neumann (or forcc) boundary Fyv- The boundary of structure is 

denoted by F which could he subcategorized into three different char-

acteristic parts and following relationships are satisfied: 



r = r y ^ u r / v u r； , . 

T o 门 二 0， 

ryvnr； 

Vu n r , = 0, 

I d 0. 

/ 

where F/) is the Diriclilet (or displacement) boundary and 厂/ moans 

the traction free boundary. The general boundary and forcc condition 

can bo illustrated juj shown in Figure (2.1). 

Figure 2.1: A general setting of boundary and forcc condition 

Eq. (2.3) call be expressed in the energy bilinear and the load linear 

form of It € " such that 

a(u, v) = /(v)、 Vv e V. (2.4) 

with 

a{u,v) = / c(u,v)dn = / e(uyD£(v)dn (2.5) 
Ju Jn 

l{v) = f . V dn + g-vdV, 
Jn J\、N 

(2.6) 
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where U is the spticc of kincinatically admissible, displacements and can 

be (Jeliiied aus: 

U = [u : - Oon Tp] (2.7) 

2.1.2 Material Derivatives of State Variable 

To carry out boundary-variation based shapo and topology optimiza-

tion, the shape design sensitivity analysis (SDSA) framework should 

be developed in the first place to build the relationship between 

variation in shape and the resulting variations in functionals. Under 

this context, the shape of the domain Q is considered as a continuous 

medium and also the design variable for any type of structural pr()b-

Icms. Using the material derivative idea of continvium niochanicH and 

the adjoint, variable motliod, shape derivative a.s the conscqucncc can 

be derived. 

By introducing the scalar variable L、the initial structural shape Vt 

is changcd to the deformed shape Qt with i denoting the amount of 

shape change in the design variable direction. This shape perturbation 

can be construed as a mapping from Q to with the mapping denoted 

as 7\ aii shown in Figure (2.2). The mapping 7，is expressed a.s: 

‘ xt = T{x,t), 
(2.8) 

nt = T{iii). 

The deforming process of the doiiiaiii from 12 t,o ilt may be viewed as 

a dynamic proccss of deforming a continuum, with t playing the role 
, i 

of artificial time. The time design velocity can be defined as: 

dx, dr(x.t) _dT{xJ.) 

V(況’ • 一 dt - dt ~ di ' (丄⑴ 



Figure 2.2: Doniain perturbation induccd by mapping T 

where the last equality is bocaiisc of the fact that the initial point x 

(iocs not depend on t. Under sufficiont; regularity conditions, s\K;h fus 

that T_i exists, then the design velocity is given as: 

VOM) 二芸(r-】(cE,’/,)，/,). (2.10) 
at 

Therefore, the shape deformation can be described by the initial-value 

problem 
f i x 4 

= â o - cc. (2.11) 
at 

When dxt/dt = 0 is roachcd, the optimal result is obtained. 
t 

Suppose z is a smooth solution to Eq. (2.3) defined in Q. Then the 

material derivative of z is defined as: 

z = z' + Vz'V, (2.12) 

where z' is the partial derivative of z with rospcct to t. and V is the 
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velocity vector: 
dx 

V = 
(it 

or ill throe-dirnoiivsional form, 

•dx dy dz 
V 

(it dt (it 

One attractive feature of the partial derivative with rcspcct U) t 

is that, with an assumption of smoothness, the differentiation order 

between it and the spatial derivative arc interchangeable, i.e., 

2.1.3 Shape Derivative of Objective Functionals 

111 order to find the shape derivative of an objective functional, two 

Lciiiinai) regarding the computation of the material derivative of both 

domain functional and boundary functional arc to bo given. Both func-

tionals arc integrals and depend on the parameter t. 

Lemma 1 Let. tpi be a domain integral over Q. 

t/^i = / I{u)dn 
Jn 

where f is a regular function defined on il. The material derivative of 

功1 is 

必I 二 f f'{u)dn -f f f ( u ) V r , d r 
Jn Jr 

where Ki is the normal velocity on boundary F. 

Noto that the coiicliusion given in the above Lemma only requires the 

design velocity information on the boundary which provides a simple 

and easy way for the computation of sensitivity information. Further, 



for the design velocity V，only the normal velocity K‘ is ncodod, which 

accounts for the shape deformation and is the bridge between shape-

optimization theory and level set model to bo discusscd later. The 

tangential part of V , however, has no effect on tho variation effect of 

a domain. 

Lemma 2 Consider a boundary intagral vver F, 、 

二 J g{u)(ir 
t 

where y is a regular function defined on V. The material derivative of 

ll)2 is 

4)2 二 义 9{u)dV -I J ^ { V ( j { u ) • n + K(j{u))Vndr. 

where n is the unit norinal in F and n ike mean curvature of T. 

According to Lemma 1, wc take the material dcrivaiivo of the ol> 

jective functional J: 

, J 二 f F\u)dn -f [ F{u)Vndr, (2.14) 
Jn Jr 

I 

whore ‘ 
• ‘ dF 

= — . Tx'. (2.15) 

Computing u' is generally nontrivial but fortunately this term can be 

climinate<3lf wo resort to the material derivative of state equations and 
* 

•tho adjoint method. 



Firstly, we take the material derivative of both sides of the varia-

tional equation Eq. (2.4) by applying Lemma 1 and Lemma 2, 

d(it, v] c'(u, v)dn 十 / c(ix,t;)V;(ir， 

l{v) = f . v'dVt -f 
Jn 

vV^rir • / g . v'dY 
Jvs 

(•(沒.V) • n + K沒.V) KiriT 

(2.16) 

(2.17) 

It should be noted that / ' 二 0 and g' — ̂  are used in the derivation 

becausc we assume that both f and g arc independent on the design. 

Consider the inlograiid of the (irst integral on the right hand side 

of Eq. (2.16): 

{e(ufDe(v)y 

= { O i j k i e i j { u ) £ k i { v ) y 
(2.18) 

According to Eq. 

as follows: 

(2.13), the shape derivative of £ can bo transformed 

_ 1 / / dui \ ‘ /dujy\ 

= 2 V V ^ / + V ^ j 

\ oxj / \ dxi J ) 

(2.19) 

= 

and similarly 

(2.20) 

Substituting Eq. (2.19) and (2.20) into Eq. (2.18) produces 

C ' { U , V ) = D , j k l { e i j { u ' ) £ k l ( v ) £ r j i u ) £ k l i v ' ) ) 

—c{u\ V) + c(tx, v'), 

(2.21) 



so the material derivative of the bilinear form bccomcs 

a(u%) = I c{u\v)dQ 1- f c(u, v')dn 4- [ c(u,v)VndV. (2.22) 
./n Jn Jv 

From Eq. (2.22) and Eq. (2.17), wc have 

I c{u\v)dn -f f c{u,v')dn [ c{u,v)VndT 
Jn Jn Jv 

/ f . v'dn + / / • vVncir 
.Jn Jv 

+ / g v'dT + / [V(g • v) - n k q • v) 
J^N Jvn 

(2.23) 

Note that 

/ c(u, v')di1 = f- v'dn + / g-v'dT, 
Jn Jtn 

(2.2.4) 

which is the variational identity. Hcncc these terms can be canceled 

out from Eq. (2.23) and the following equation is obtained: 

a(u\ v) = / c(ii', v)dU 
Jn 

= - v - c{u,v))Vr,dr (2.25) 

+ I {Vig • v) - n + ng • v)Vr,dT . 
JVn 

Next, we construct the adjoint equation: 

f OF 
= T VadQ, € U, (2.26) 

Jn加 

where a(.，.）is the bilinear form defined in Eq. (2.5) and the subscript 

a means "adjoint" variables. Sincc the test function Va can be selected 

arbitrarily as long as it belongs to U、we can replace it with u' (u 在 U) 

一 

and changc Eq. (2.26) into : 

f d F 
二 / — • u'dn . (2.27) 

J n 加 



Similarly, we can replace v in Eq. (2.25) with Ua： 

a(u\ua) = {f Ua- c(u,Ua))Vndr 

J： (2.28) 

+ / ( • ( " •Ua)'n-\- Kg- ^la)Vndr . 

JTn 

Comparing Eq. (2.28), (2.27)，and (2.14) and noting that the bilin-

ear functional is symmetric, we can eliminate all the terms related to 

u' from Eq. (2.14): 

卞 . (2.29) 
+ / [SI{g Ua) 71 + Kg ‘ Ua) VndV • 

It is worthwhile to note that in the derivation we assume the Dirich-

let boundary Fĵ  cannot move in its normal direction. This means that 

Vn ivS zero on Vo and the shape derivative should be 

J 广 (2.30) 

+ / ( • ( " 'Ua)-n + ng . Ua) V^rir. 
Jvs 

Substituting Eq. (2.2) into the adjoint equation Eq. (2.26), wc ob-

tain 

a(Ua, Va) = cl{u, V„), V Vq G U、 (2.31) 

which means that the adjoint variable Ua is same as the state variable 

u. Therefore, the minimum mean compliaiicc problem is a sclf-adjoiiit. 

problem and the shape derivative can be derived as: 

J 二 {f-u--e{ufDe{u))Vr.d\ 

(2.32) 

+ / -u) 'Ti + Kg -u) V„cIV . 

It has been assumed that Fyv is fixed while Eq. (2.32) is being de-

rived, so the integral over Fyy vanishes. This assumption will be used 



in this study, unless otherwise specified. From now on, \vc will use the 

symbol r to replace Fjm for simplification reaiion, thus Eq. (2.32) will 

be rewritten as: • 

j = J^ GVudr (2.33) 

where G is known as the shape gradient density [53] and its expression 

is 

G = f u — ^-eitifDeiu). (2.34) 

2.2 Discrete Level Set Method for Free-Form Shape 

Evolution 

The level set method (LSM) is a numerical technique developed for cap-

turing front propagation. It was first introduced in j28j’ and further 

developed in [29,30,61]. One of the notable merits of the LSM is the 

employment of Hamiltoii-Jacobi approach that enables numerical coni-
‘ . / . 

putatioiis of a tiinc-dcpcndent equation for involving frfic-f'orm shapes 

(curves for 2D and surfar:e for 3D) on a fixed Cartesian grid by om-

bcddirig the shapes into a higher dimensional geometry. Known as the 

Eulerian formulation, the LSM ovcrcomcs the conventional Lagrangian 

formulation of boundary propagation which evolves boundary in an 

explicit way and is iricapablc of handling topological changes of shapes 

(splitting or merging). The advantages of the LSM make it widely ap-

plied in different fields, from image processing to fluid mechanics, from 

cornputcT animation to combustion [30]. The fundamental concept of 

the LSM is described here to provide necessary background. Later in 

Chapter 3，the basic formulations will be obtained starting from the 

basics of the level set equation. 



2.2.1 Level Set Method for Boundary Representation 

In the level set framework, the boundary of a shape is oiiiboddccl as 

the zero contour of a one-higer dimensional function which is 

usually slated as the level set function, and the boundary itself is the 

zero isocontour or the zero level set of the level s(;i function. Using this 

model, mathematically, three ciifTerenl parts can l)e defined: 

(2.35) 

where D is the design domain, 二 Q U「is the union of the bound-

ary and its inner part. Figure (2.3) shows the implicit representation 

of a level set function. Throughout this dissertation, wc include the 

boundary with the interior region Q wliere <I>(a:) > 0, iiiilcss otherwise 

specified. 

^ x ) > 0 X e 

^ x ) = 0 X e 

< 0 X € 

Level set function D.: X with 

厂 IS represented ) : 

Figure 2.3: Level sot function definitions 

If above definition is adopted, thou the gradient of can be ex-

pressed as: 

- - ( dx ‘ dy ‘ dz 

30 

(2.36) 



One should note that for any point on the front, the vector V^^ points 

to the same direction as the unit outward normal docs on the same 

point. Therefore the unit normal vcctor of any point on the front can 

be stated as: 

… 爾 （2.37) 

For our definition of the lovol sot equation roqiiiros 巾 > ()representing 

the inside of shape, thus the rniims is a necessity, but this actually 

depends on liow one chooses to define the inside and outside of I ho 

geometry. 

The mean curvature of the interface is defined as the divergence of 

the normal n: 
/ V<|J \ 

- • . ( - _ ) • (2.38) 

Actually, since the level set function defines the interface in a domain 

of one higher-dimension, instead of defining n and « on the interface 

only, we can use Eq. (2.37) and (2.38) to define them everywhere on 

the domain. 

2.2.2 Hamilton-Jacobin Equation 

To drive the one-diniensioiial higher function 4) to move over the Eu-

clidean grids, we need to add dynamics. To do this, wc need to in-

troduce the velocity to excite this evolution, which is the chain that 

bonds the structural optimization and level set framework together. 

During the entire propagating proccss of the implicit surfaco, the zero 

isocontour will always bo the boundary of the shape, which means any 

point X on the intorfacc can be identified from 

^x{t),t) = 0, V x G r (2.39) 



The time differentiation of Eq. (2.39) with inspect to I. gives the so-

callod level set equation: 

洲） 
4 - V - V ^ - 0 , (2.40) 

which is Hamilton-Jacobin type partial rlifiorrnt isil equation and is 

also rofcrrccl to as convcction equation. In structural opliiriization 

problems, only Uio inotioii in the normal direction has influence on 

the changc of geometry, wc can rewrite the V • â ; KilV<I>|, then 

Eq. (2.40) bocorncs: 

vgv<i)i 二 0. (2.41) 

This partial differential equation defines tho inotion of the iiiterfaco 

where <I>(x) = 0 under the velocity Ki. It is an Eulcriaii forniulatioii of 

the intprfacc evolution, siiicc tho interfaces is capturcd by the implicit 

function as opposed to being tracked in the Lcigrangiaii fbnnulaUon. 

The greatest advantage of implicit representation lies in tlic fact that 

it is able to deal with topological changes, such a.s splitting and merg-

ing of the boundary, in a natural maimer. In addition, with implicit 

representation, boolean operations can be carried out quite CrUiily. 

2.2.3 Discrete Computational Schemes 

In Eq. (2.40), the level set equation only contains the first order deriva-

tive of 巾，which leads to a lot of numerical schemes wero devised to solve 

this type of hypcrbolic PDE. Lax-Fricdrichs schciiic, RooFix schcmc, 

Goduiiov schcinc and upwind diirercncing sctionu! |29,30] arc; the most 

famous ones, and the last two schcmcs aro identical. Horo, wc only 
» 

introduce the upwind diffcrcricing scheme. The underlying idea of this 

schcmc is that the information always spreads from the known area to 



the unknown area, and what the schcinc docs is to use the information 

to propagate the implicit surfacc. 

A simple first-order upwind scheme for two-dimensional problems 

is given by • 

二 - A/,(ma:r((\4)”’0>V + mm((Ki),,’0)V 

where 

V ’ = {ma:f(D,7M)尸 + mm(D广/，())_' 

(2.42) 

(2.43) 

(2.4‘1) 
• - = + min(D;广 0)2 

+r/m:r(^7^0)‘2 + jnaxiD'/J))''}^^^, 

At is the time step, and it should satisfy the Co u r an I - Fr i (k 1 r i chs- Lc w y 

(CFL) conditions [30]: 

m/n(Arr, Ay) 
At < (2.45) 

"隱|(\/„)tj| ’ 

Ax and Ay arc grid spaces in horizontal and vortical (iircctioiis, D^^ , 

DJj are forward (-卜）and backward {-) (iiiile cliHereiice operators delined 

as follows: 

二（4>”一 4>,_,,j)/A./.， 4(>) 

This is a first-order accurate discretization of the spatial opera-

tor. To improve the accuracy, the idea of essentially iioii-oscillatory 

(ENO) introduced in [62] has been used |63-G5]. In ENO, the velocity 

is still used to decidc the upwind direction but the accuracy can be im-

proved .significantly. In [66], Liu et al. pointed that the 剛 O is overkill 



in smooth regions where the data arc well behaved and proposed a 

weighted ENO (WENO) method that takes a corivox combination of 

three ENO approximations. Later, Jiang and Shu [67] improved the 

WENO method to obtain tlu? optimal fifth-order accuracy in sinootli 

rof̂ ians of t.hn flow. In [68], .Iian|2； and P(、iig (^xtondnd Wl'NO t o Uir 

Haniilton-Jacohi franiowork. 

2.2.4 Reinitialization 

It: is obvious io noticc that a given boundary can bo rcprescrilxHl by 

infinite imnibor of level set functions, long as the smoothness dI" 

these I'uiictioiib arc good enough. Tlicrofon^, theoretically, oiu? can 

clloose any kind that satisfies the stability aiul accuracy rriicria. But 

in prac:t,i(x\ if we intend to get highly accurato nuirierical results, tlio 

solcction of level set function niiist bo very careful, namely, it should 

be neither too steep nor too flat, especially near t;ho interface [28,30 . 

According to those, iho so-callod signed distance function (SDF) is tho 

best, option. 

A signed distance function is an implicit function (i) willi 

d re e ( t 

= (1 X G r, (2.47) 

-d X e D\(}, 

whore 

d = \x- (2.48) 

with Xc indicating the closost point on the boundary to x. Tlic notico-

able characteristic of SDF is that |(l>(a;)| — 1. 



As the boundary evolves, the shape of the level set function will 

generally driff away from the feature as a signed distance function. In 

other words, it might- caiisc numerical instability, thus rise the question 

on how to maintain the SDF characteristic. "Reinitialization" is the 

key to this question. 

There arc various tcchniqucs for reinitialization [29,30]. In this sec-

tion, the method of solving the reinitialization equation is introduced. 

The roinitializatron equation |G5] is 

— ( 2 . 4 9 ) 

where S is the sign function. It is evident that when this equation is 

solved to a steady state, which iiicaris 

二 ()’ （ 2刷 

the signed distance function is rebuilt since 

|V(1>| = 1. (2.51) 

Equation (2.49) can bo written in the following form 

+ •《）二 ‘S，((I>u)， (2.52) 

V 

where 

ty = S(4>o)(V<l>/IV^I). (2.53) 

For iiiiniorical purposes it is useful to smooth the sign function. 

In [f35], S is smoothed as: 

••啊)二 " 7 ^ = ^ ， (2-54) 
V4>o + 
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where a is a small constant, which can he spec:ifiod as the nioah size. 

Peng ot ai. [61] suggest: that 

= (2.55) 

is a bcttnr clioicc, ()si)(、(.ially whon t he initial (I>o is too flat or s“、q)，i.(、.， 

when |V(I>o| is far from 1. 

2.3 Structural Optimization with Discrete Level 

Set Method 

In boundary-variation hascnl striicl\iral shape and topology optimiza-

tion such as riiiriiiniim mean compliance optimization, tlio houiidary 

is often Uic most crucial part. Actually, tlie interior region and oxto 

rior region of the design domain arc of no value and the velocity field 

does not impose any physical meaning. Wc only need to ovahiaio the 

boundary integral with design velocity information when wo coiiiputc 

the shape derivative. Nevertheless, within level set framework, if wc 

want to add dynamics to the level sot equation, t,h(» design velocity field 

ha« to be defined across the entire domain or at least within a narrow 

bound along the shape's intorfacc. To conqucr this obstacle, it is often 

more convenient to introduce the onc-dirncnsioiial Jleaviside function 

with the one-dimensional variable 巾.The Heaviside function defined 

here has the form of 

f 1 if 巾 ⑷ > 0 

I i m x ) ) = ^ - (2.56) 
[ 0 if < 0 

The first-order directional derivative of the Heaviside function in the 

normal direction n is definod as the Dirac d(dta function, which can be 



stated as: 

5(<1>(®)) = V//(<I>(x)) • n. (2.57) 

Note that this delta function is nonzero only on the boundary F, thus 

wc have 

^(tl>(x)) //'(a>(x))|V<I>(x)|. (2.58) 

III one spatial cliiiienaioii, the delta function is ciciiiied as the derivative 

of the one dimensional Hcaviside function: 

(5(<I)) 二 //'(4>). (2.59) 

This allows us to rewrite Eq. (2.58) as: 

S(^(x)) = (2.GO) 

Therefore, the shape derivative in Eq. (2.33) which involves the bound-

ary integral can bo reformulated a« 

J = I (2.61) 
Jd 

where G can also be considered as a function of <P. If steepest de-

scent schcincs is employed, wc can get the steepest dosccnt direction 

by setting 

K. = - G W , (2.62) 

this would yield 

J = - [ < 0. (2.63) 
Jd 

This is actually a natural extension of design velocity Held, a.s illus-

trated in Figure. (2.4) 

Oncc the finite element structural analysis has been performed and 

the velocity ha« been calculated based on stresses and strains, ono 



Figure 2.4: Natural design velocity extension 

can evolve the boundary by solving the level set equation, and a new 

boundary of the structure is obtained. If this new structure is not sat-

isfying, a now analysis stop begins; otlicrwisn, the optimization procoss 

tcnninatos. For details, readers are referred to (32-35 . 

Two observations arc worth to bo iioticcd. First of all, for didcr-

cnt structural problems, the only thing that is different in the sliapo 

derivative is the form of shape gradient density in Eq. (2.34). Secondly, 

it is worth to noticc that the shape derivative wc derived earlier docs 

not give any capability or information to cliangc tlic topology of struc-

tural geometry, it, is the dissipation niechiuiisni offered by t.ho Icvol sol 

method gives the firxibility of strong topology changing capacity. 

• End of chapter. 



Chapter 3 

Sensitivity Analysis for 

Implicit and Parametric 

Representations 

The cla îsical discrete level sot based shape and topology optimization 
I 

framework ofi'ors a versatile approach to change structural shape and 
r 

• 、 

topology simultaneously. Sincc the entire design domain must ho clis-

crctizcd with Eiilcr grids for level sot evolution, the Couraiit-Fricdrichs-

Lewy (CFL) condition [69] must bo satisfied to ensure iho stability of 

the numerical schcrnc. In applying the classical level set method for 

structural topology optimization, the implementation also requires a 

careful choicc of upwind schomc, natural, extension of design velocity 
I 

and reinitialization algorithm [28,30). Hence; the numerical consid-

erations of discrete computation have scvcrqly lostrictod the primary 

advantages of the LSM in structural optimization. 

From the engineering point of view, even though the level sot based 

* - Z ， 、 
optimization produces optimal solutions with dear boundary informa-



tion i\s opposed to the density based results given by the SIMF method, 

there is still no CAD-ready geometric information available but dis-

cretized mesh. On the one hand, one of the key obsorvations shows 

that，for most parts of the optimal solutions given by discrete level 

vsct based optimization, their shapes can be approximated by ba.sic ge-

ometries such as linear and circular primitives in 2D, or planar and 

cylindrical primitives in 3D, aii shown in Figure (3.1). Therefore, it is 

naturaJ to think about making full use of basic geometric primitives 

and their combinations to perform shape optimizations while keeping 

the topology changing capability. The rest of this chapter will concon-

trate on the derivation of the shape design sensitivity analysis (SDSA) 

fonnulalions for dilt'erent geometric representations. 

?.、 • < — \ __ 、、 

、 � �r 、 W \ > < ( 

z • 一 y ' z , 乂 

Figure 3.1: Beam-like optimal structure 

3.1 Introduction to Solid Modeling 

Solid modeling tcchniqucs adopted by contemporary CAD coiiirininity 

started in 1970s. With the constructive solid geometry (CSG) ropre-

sentation, a solid is represented as a set of theoretic regularized boolean 

expressions of bounded primitive solid objects [70 -72] such a.s block, 

sphere or cylinder. The boundary representation (B-rep), on the other 



hand, describes only the oriented surfacc of a solid as a data structure 

that is composed of vertices, edges, and faces. 

Ill later sections of this chapter, wo will introduce the computational 

framework for the sensitivity analysis formulations with implicitly roi> 

resented geometric primitives under the CSG framework. By adding 

"dynamics", wc come up with the algebraic level set (ALS) model. 

Moreover, wc will extend the sensitivity analysis formulations to para-

mctrically represented primitives under the B-Rep framework. 

3.2 Shape Design Sensitivity Analysis for Implicit 

Geometric Representation 

3.2.1 Algebraic Level Set Parameterization 

For any intricate solids, I hey are actually defined as boolean combina-

tions of a set of half-spacc primitives governed by implicit equations. 

The half-space model itself offers a mathematically rigorous, ca«y-to-

il nderstaiid approach to solid modeling [72]. 

A half-space primitive in R"̂  or R^ is such one that divides the spa-

tial space into two semi-infinite regions. For instance, an unbounded 

straight line in 2D space divides into two parts. Such a straight line 

half-space model can be expressed as h{x) ~ ax + by c [71,73]. This 

definition is consistent with the level set definition by considering the 

parameters in the half-space model as artificial time dependent vari-

ables to introduce dynamics, therefore, wc comc up with the coiiccpt 

of the ALS model. Based on typical 2D and 3D half-space primitives, 

wo can have a set of basic ALS primitives that could represent various 



kinds of planar and spatial shapes needed in most mcchaiiical design 

applications. 

Suppose wc have two independent ALS functions ^i(x) and •^'ii'^)-. 

the intersection of the interior regions of them (:ari b(，expressed as; 

n = {cc 6 /)|巾(CP) > 0}, whoro Î>(cc) = ^2)- Also, the 

union of the interior regions of the said functions could hn written 

•cxa Q = {x E > 0}, where 4)(£c) 二 max{ipi, -̂2). With t he 

above boolean description, complcx geometries could be ca.sily con-

blmeted. Figure (3.2) shows a rcctangular shape witli a ccntcrccl hole 

delivered with the boolean operators given at the bottom part of the 

figure, where【}” i = 1, . . . , 5 arc primitive shapes represented iiii-

f 

Figure 3.2: Complex shape defined by multiple ALS primitives 

plicitly by the corresponding ALS function (primitive). Here, in terms 

of algebraic, wc mean the corresponding implicit primitive could be 

represented algebraically. 

Generally speaking, an ALS primitive could bo expressed as t^ = 

^{x, 5), where x is the spatial coordinate vector and s = {s^, ..., s" 

is the vector containing all its relevant parameters with M as the iiuni-

ber of all parameters. 

Similar to the SDF in the conventional level set framework, licrc wc 



choosc the normalized ALS with the SDF property to make it consis-

tent with the level set concept. The extra benefit for |(/7(cc)| = 1 is that 

we could rcducc the computational errors when conducting boolean 

operations between different ALS primitives during the geometry con-

struction proccss. 

The basic ALS primitives chosen here arc line and circic primitives 

in 2D, and plane, cylinder and sphere primitives in 3D. A set of the 

possible ALS expressions for the selected primitives arc 

Line primitive, 

^(a^i s) = I , ) . 似 + 〜 + 
va + h 

(3.1) 

Circle shape primitive, 

^ ( x , s) = + (y — yo)' 

Plane primitive, 

w怎’ s) = / 0 ,9 + by + + d)] 
Va^ + + ĉ  

(3.2) 

(3.3) 

Sphere primitive, 

(^(cc’ s) = - .to)2 +{y - + - ZoV — r 

Cylinder primitive, 

^{x, s) = 一 xo)2 + ({/ - - rj; 

(3.4) 

(3.5) 

The cylinder primitive shown in Eq. (3.5) is just a particular situa-

tion with axis parallel to z axis, and he general configurations are not 

discussed here. Primitives with coordinate transformation will not be 

discussed here for simplicity. 



III above oquaiioiLS, Q 1 indicates the inside of the primitive is 

void, whoroELS o 二 — 1 indicates the inside of tlic primitive is solid. 

Therefore, for any given compk^x shape f) = U n n, , it could be sim-

ply expressed implicitly via a single piecewise defined level set func-

tion 巾 constructed from t hr corresponding group of ALS primitives 

{！ t̂, i -- 1, • • • , N} with the sarrio sot of boolean operators for build-

ing i).. Moreover, every primitive only gets involved once (Juring the 

construction process. This (I>, however, is only j)iecowiso differcntiabk;. 

Suppose there is such a group of clifFcreiitiable boolean operators tliat 

all ALS primitives could be shown in a single const,ructcd equation, 

then 少 could be expressed as ^ ( x , S) = ^ ( ( ^ i , . • • , .+n)、ami il 

could be expmssod -dn i} = {x G S) > 0}. Here — <~Pt(x, 

5t), Si = {s《，j — 1’ … , A f t } , and S — {.si. • • • , } is the parameter 

vector with Ns indicating the number of all the parameters colloctcd 

from all indiviriiial ALS primitives. In later context, all [)iirriilives 

will bo considered as independent of other primitives unless otherwise 

mentioned, which means no geometric constraints ar(、imposed boiwccii 

primitives and the design parameters af cach primitive arc independent . 
* " ？ 

Mathematically, this can be expressed as: 

where i =• I , N , k 

>2 U • • ‘ • U SYV._ 1 u S,v 

、n Sk 1 f- k. 

丨 1 n SA ： — i — k, 

A: 
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3.2.2 Sensitivity Analysis Formulations 

Sincc IIainilton-Ja€obiii PDE equation is tiino dependent, wc could 

assume that the constructed is dependent on t only via S, so tlial, wc 

can separate the spatial coordinates from the time dopcndont variables. 

With this assumption, the resulting constructed level sot function <I>(cc) 

can be rewritten as: 

G) 

For the assumption of the difTcrentiability of (1> that we made (jarli(、r is 

certifiable, by substituting Eq. (3.6) into Rq. (2.4】），we could gel 

V； = 
I•中丨dt 

1 / 抛 

j W i ( 涵 ) . ^ 

(3. 

Therefore, Eq. (2.33) becoincs 

Ns 

X • 广 、 
'|Vci>| ^ \dsiJ 

sjcir (3.8) 

Note that, the differentiability of <b on t he entire domain now is relaxed 

lo the (iiffereiitiability on the boundary. Sincc J is dopeiiclciit on t via 

S、using the chain rule, one could get 

3.9 s 
f
j
 j
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By comparing Eq. (3.8) with Eq. (3.9), wc have 

化一 f r 1 帅 , 

& —./r 

Now let us introduce a Leirima obtained in [48,49 

(3.10) 

Lemma 3 Suppose (I> 二 <I)((/?i’-.-，(/?/v) is a R-Junciion of a set of 

implicit primitives (^i,. •.、仰，if — 0 and v ĵ(.to) 0 for Vy / 

h j=^l’...，/V’ then ^ 

Using this Loinina, if si is related to ipt and Xo is a point on the 

corresponding of the primitive, wc liavc 瓷It。二 势lxo. Tlier-cforo, by 

donoting F, as the portion of boundary F correspondiiig to a primitive 

shapo r̂ i and by assuming that tho construction of 4) preserves the 

gradient of cach ALS primitive on tho boundary, i.e., V<D|r, ~ •v^Jr,’ 

Eq. (3.10) can be written as 

with r, 二 Hero wn refer to those .s/-related boundary sogmciits 

as activc boundary segments for paramotor sj and refer to t.hc 

implicit representations of the corrospoiiding boundary segments a.s 

active, primitives for sj. Fuithcr，by dcnoUiig an arbitrary si G S 

as 6, the SDSA fonnulatiou with rospcct to UiLs paramotor could he 

rofonnulalod tLs 

字 二 f / (3.12) 

where (pi is the ALS primitive that contains .s, and T is the total 

number of boundary segments that belong to 

This localized SDSA formulation with rcspoct to parameter s in 

Eq. (3.12) requires that the activc boundary point is only related to 



one priniitivo cxccpt for a set of riicaaurc zero, but, it, is not a iicccs-

sary condition for the validity of the SDSA computation regarding a 

parameter. 

In later sections, wc will soc this conclusion not only applies to tlie 

proposed ALS model but applies to the B-Rcp model with boundary 

primitives represented pararnotrically as well. 

3.2.3 Sensitivity for Basic 2D Algebraic Level Set Primitives 

III the previous soction, wc have come up with a set of ALS functions. 

Wc hope that, by combining the ALS functions through boolean oper-

ators and by introducing artificial time t to add dynamics, tlic shape 

and topology of a structure could cvolute over time simultaneously. 

The ALS line primitive in Eq. (3.1) has three independent param-

eters. Obviously there exists a dopondoncy V)otwecn the three parame-

ters, wc should eliminate the extra degree of freedom (DOF) to coinpulo 

the SDSA, as wc have done with the set of implicit ALS pri mi lives in 

the following subsections. 

Algebraic Level Set Line Primitive 

If wc only consider the two 1)0Fs of the ALS line primitive, according 

to Figure (3.3)，wc can rcforinulato Eq. (3.1) as: 

'^{x, s) = J； sin Q + y cos a + c, (3.13) 

the corresponding parameters arc a and c. 

Tho derivatives oi tf with rcspcct to the design parameters and tlu; 



For any obj(^ctivc function 

G , we liavc the SDSA for 

J wiUi corresponding shape gradient (Iciisity 

mill at ions with rospoct to all iniraniolors 

/ C{x cos a — ？/sin Ck)dV, 
Ji � 

[ C d W (3.15) 

norm of •</? arc: 

.7： COS a - y sin n 
dip 
— 二 

do 

石 = 1 ’ 

1. (3.14) 

a 

•Id 

Figure 3.3: Two DOFs of ALS line priniitivo 

Algebraic Level Set Circle Primitive 

Tl)c ALS circlo (inside is void) function is 

<p{x, s) = -7, + 工-Xo)^ + (y 

the corrcspoiidiiig paraiiiot(MS arc Xo, yo and 

J
 a
 

7
 

^
 ̂

 

Or 



The derivatives of with rovspoct to the design parameters and the 

norm of Vv? arc: 

dif 

dip 

dm、 

dip 
^ 

IW I 

工0 - X 

yj(x - xo)2 + (y - yo)' 

I/O - y 

y/{x - rro)2 + (y - ijq)'' 

= - 1 , 

( : U 7 ) 

For 

a, 

any objnctivc I'uiictior 

wt; liav( 

d,J 

./ with concsponding slmi)(、gradient donsil.y 

the SDSA foimulations with rcspcc 

“ .T() — X " 

/义7:0 

dm、 

Jh 

a 

a 

V — ‘ToP + (y — ?/()尸 

[yo - y) 

\/(.T - ‘To)'2 + {y - 2/0)2 

-f a dr. 

dr 

(ir 

to all parainotcrs 

f c{xo - x)dr^ 

civi) - :(/)"r， 

(3.18) 

3.2.4 Sensitivity for Basic 3D Algcbraic Level Set Primitives 

Algebraic Level Set Piano Primitive 

The ALS plane function is 

(/?(a3, s) == (.7： cos a + y sin rv) cos fi + z sin 0 + c, (3.19) 

the corresponding design paiainctors arc Q，(J and c. 

The derivatives of with rcspoct to the design parairu^tcrs and the 



•X sin rv cos p y cos cy COS p, 

-{.T COS a y sin a) sin (i + 2 cos p, 

1. (3.20) 

•，or any objoctivo luiictioii J with corrî spoiicliiig shape gradient, density 

t , wo have ihv. SDSA form illations with rcspocl to all i)araiiict(ns 

dJ 

da 

dJ 

G{y cos a cos p — x sin rv cos 0)(l\\ 

C[z cos p ~ (x cos (y + y sin a) sin P]dr, 

^ - / CdV. (3.21) 
r". Jv 

Algebraic Level Set Cylinder Primitive 

The ALS cylinder (inside of the cylinder is void, and wo only consider 

tlio typo with rotation tucis z fixed for simplicity) function is 

s) - -7' + - .7:0)2 + {y — "0)2， (3.22) 

t he corresponding design parameters arc 丄•()，yo and ?•. 

The ficrivativos of ip with rospoct to the design paraiiiolcrs and t.h(、 

norm of V(f arc: 

d^ Xq - X 

咖 yo-y 

- 2o)2 + (7/ - ？/o)2 

dr 一 

I W j 二 (3.23) 

Chai)tcr 3. Sensitivity Analysis for Implicit fc Parainotric R,opro.s('ntations 

norm of arc: 
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For any objcctivc function J with corresponding shape gradient density 

G , wc have the SDSA formulations with rospcct to all parameters 

()xo 

(^yo 

()r 

G 
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XQ - X 

\
~
/
 

\
—
-
,
 

I

 I
 

y
 

)
 

y
 

+
 

r
 +
 

2
 2
 

\
—
/
 

o
 \
)
/
 

I

 I
 

丨
 

y
 

I
 

I 

-dr 

G{xo — ‘T)孔’ 

(八 w — y)(n’、 

(3.24) 

Algebraic Level Set Sphere Primitive 

The ALS sphere (inside is void) function is 

'^{x, S) 二 - r + y/(x - + (y — yo)'^ + (z - zoP, (3.25) 

the corresponding design parameters arc xq, t/o, zo and r. 

The derivatives of (p with rcspcci to the design parameters and the 

norm of Vip are: 

Xo — X' dip 

加 0 -工0)2 H 10)2 + (y --J/0 尸 

dip ？yo -- y 

(hh -.Co 尸 -卜（?" -VoV + (// --"0)2 

dif - - z 

dip 

dr 

(3.26) 

For any objcctivc function ,I with corresponding shape gradient density 

(i，wo have the SDSA fonniilations with rcspoct, to all parainotors 
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(jTo - a-) 

- j-o)̂  + (y — + — ^o)' 

(•Vo - y) 

\/(.T — 2.0)2 + (y - yo)2 + (2 — z^Y 

(-0 一 z) 

•r/r : - 6'(.7：0 一 ；r)r/r 

1’ \/(.r - .To)^ + {y — yoY + 
： -— — c / 1 

二 0)2 

fir - — 

r 

1 

GdV 

O(zo - z}dW 

(3.27) 

Till ii(3W, all the SDSA foiiiuilations for t,he biusic ALS primitives arc 

listed, and the preparation work for shape and topology optimization 

with ALS framework is accomplished. 

3.3 Shape Design Sensitivity Analysis for Para-

metric Geometric Representation 

Of tlic implicit and parainctrir goonictric roprcsciitatioiis, it is difficult, 

to dcclarc that one is always more appropriate than the other. Modern 

CAD systems iiso B-Rop data structure and parametric roprosoutation 

to represent models instead of utilizing implicit roproscnlatioii. The 

rofusoiis for this are that implicit primitives arc iiiiablo to rcprosont 

boiiiuiod ciirvos and surfaces (like line sogiiioiit) and they do not câ sily 

iraiisforin botwoon coordinate systems. Also, soino free-form curves 

and surfaces sucli â j B-splinc or NURBs type arc easily to he roprc-

sciitod in parainctric forms. 

Wc choose the basic ptuainoiric priniitivns instead of free-form prim-

itives like NURBs siirfacc to represent a solid, including 2D parainctric 

primitives (straight lino, line segment, circlc), and 3D parametric prim-

itives (plane patch, cylinder and sphere). For 2D primitives, tlicy ran 



bo expressed in the general parainctric form of cc = g), whoro u 

is tho parametric coordinate, g = {y\j = I , . . ., A^} is tlie gcoriict-

ric vcctor. For 3D primitives, their general parainctric expression is 

X = Xa{u, V, g)^ where u, v arc the parainctric coordinates. One will 

note that a primitive could bo paramotorizod in many difteront ways, 

so tho mothod chosen here is not the only one. With the selected sot 

of basic paramotric primitives and the topology changing capability of 

the geometry kernels, wc oxpoct tho shape and topology optimization 

within genuine CAD environments could be conducted. 

3.3.1 Sensitivity Analysis Formulat ions 

If wo COILS id or g as a function of l.、for a given parainctric primitive, ity 

design velocity can bo ox|)rcsscd in a direct way as: 

A'/ 

J—1 

While its normal component Vŷ  can be expressed ?us: 
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 (3.29) 

The next step wc consider an arbitrary point x on tlio boundary of 

a solid that is composctl of N parts of boundary paraiiiot iic primitives. 

Here wo also have tho similar assumption that all parainctric primitives 

arc independent,，then any point on this boundary could be considered 

as X = a:(g), where g = {y i , , . . , ŷy } = , . . . , c/̂Vp} is the parameter 

vector containing all independent paraiiietors col looted from related 

boundary primitives. Consider g the function of t, the time design 



velocity can bo written as: , 

dx /dg \ ^ dx 

- 7 广 七 7 ) 吃 dt V<9g/ \ di J dg, 

OX 

(3.30) 

(3.31) 

In fact, Eq. (3.30) and Eq. (3.31) toll us that time、dcyign volocity V and 

its normal component Vn are determined by the number of parai"(,txTs 

choscii to parameterize a primitive. 

Tho shape derivative in Eq. (2.33) coulrl bo obtained a.s: 

./ = J G{x,u)Vr,dr 

Np ) 

二 (3-32) 

t — 1 

If we consider the objective function J aus a function of / through g, 

using the chain rule, a dircct calculation is 

‘V" 9 / 

j 二 j (3.33) 

By comparison, we have the sensitivity for cach parameter g” that is 

f G C ^ ' n ) d r . (3.34) 

If we denote Vg^ ；赛 an the design volocity with rospoct to a given 

parameter (7，, t hen VJ' — Vĝ  • n 

監 令 , 二 幻 “ G V ， 、 - (3.35) 
» • 

whorc is the boundary segment tliat is related to parameter and 

T is the total number of such boundary segments.‘ 、 



Figure 3.4: Global coordinate setup for the lino primitive 

tho representation can be rewritten fus: 

X 

where g = {c,0], n = [sin/̂， 

Consequently, wc have 

J 

dx 

dc 

飞 些 — 
• ‘ M = 

X csin 6 
7/ 

COS 0 

"(coaO 
丁 (1 

sin a 

c o s列X o 二 cn = [csin 0, —i 

sin 9 

—cos 6 

ccQS 0 — usmO 

csin 0 + u cos 9 

3.3.2 Sensitivity for Basic 2D Parametric Primitives 

Parametric Line Primitive 

For the parametric line primitive, its general representation is 

X = x^,(u,g) = Xo + uei. (3.36) 

If wc use tho global coordinate system sctuj) as shown in Figure (3.4), 
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’ d 二 1x2 - Xil, X X2 - Xx.y where g — {xj, X2}, n 

2/2 - yi. 

y • 

Figure 3.5: Configuration for the parainotric line sĉ Kiiicnl primitive 

Consequently, wc have 
N 

dx 

dx\ 

fix 

. dxo 

(]-？/)/2X2, 

“/•2x2， (3.42) 

Therefore, for any cost function J, wc can obtain 

dJ 
JV ./I'u 

^ ./r ‘,,,.‘ 
J^ CVyr 二 - j、GiL\r,,\du. 

where = 

(3.40) 

Parametric Line Segment, Primitive 

For the bouiidod parainctric line segment primitive tis shown in Fig-

ure (3.5), its general roproscntation is 

X =• xJu^ g) — Xc{u, xi, X2) — (1 — u)X[ + 11x2- (3.41) 

T l
l
l
d
 



Therefore, for any cost function 7, 

dJ 
dx\ 

Oy\ 
dJ 
8x2 

dy'i 

j 严 y r = 

f GV,2dr = 

we can obtain 

^ ./ F U 

-y f G(l - u)\r,,\du, 
• ' Fu 

I f Cu\ru\dii, 

X f 
(3/M) 

where 丝(2M]r 
yti' Ou\ • 

Parametric Circle Primitive 

For the paramctric circlc primitive as shown in Figure (3.6), its general 

representation is 

X — a3e(u, g) — R[e] cos u + 62 sin u] + Xo (3.45) 

where g 

1̂ 11,612 

{/r!, X(j}, n = 6] cosn + e^sinu, xo =丨工.0’！/0厂，e 

62 = 1<521, fi22 

dx 
斤

H

i
 ̂

 

Consequently, wc have 

—e\ cos u + 6-2 sin u, 

= I ' i 乂'么、 (3.4G) 
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Figure 3.6: Configuration for tho parametric circio primitive 

and 

VH --- 1. 

VJy — r-n cos u + C21 si n u, 

6i2 ('OH u + e22 sin u. (3.47) 

Thcroforr, for any cost, function .J’ wo can obtain 

dJ 

OR 
dJ 
dx^ 

dyo 

/ CVlldV •二 / a\ru\(ln. 
./r 

/ CV^^dr — I C(Pii cosII + (:2i sifi 7i)|r,Jr/7/. 

J^ GV^dT 二 义 r;(ei2Cos w + e'22 sin u)|r Jc/", 

where = 1 監，煞 

3.3.3 Sensitivity for Basic 3D Parametric Primitives 

Parametric Plane Primitive 

For the parainotric plane primitive, its general representation is 

X 二 a;‘,(w’ V, g) - Xo -f- uei + ve2, (3.48) 



5%> 
Figure 3.7: Configiiration for the parainotrk: plane primitive 

If wc \iso the paranictcrization a.s shown in Figure (3.7), then Uic 

roprosontation can be rewritten as: 

33 ~ 

X cCOSPCOS a -sin a -cos a sin P 

y — ccos /?sin a + u cos a —sin a sin 0 ,(3.49) 

z csin/3 0 cos f j 

where g = {c, a, /i}, n — e^ = |cos p cos a, cos P sin a, sin [3] , Xd 

an — [ccos (3 cos rv, c cos f j H\n a, csin , e\ — [— vsin cv, cos a, 0]'̂ , e � 

—cos a sin (5�— sin a sin (3、cos (5Y. Consequently’ wc have 

(ix 

dx 

dO 

dx 

dp 

cos 0 cos a 

cos (3 sin a 

sin 0 

—c cos f j sin a — u cos a + v sin a sin fi 

(• cos [i cos (Jt - 一 u sin rv — v cos a sin [3 

0 

-c. cos Q sin [i - V cos a cos fj 

—csill a sin fj — t;sin Q COS /I 

ccos fJ - vsin (3 

(3.50) 



ami 

； ( 虹 1 
V̂- = — • n ^ 1 

n 二 - u COM iJ, 

n — —V. (3.51) 

Thcroforo, for any cost function J、wv. can obtain 

f CV;;(ir - [ 6'|r„ X r^\dudv, 

[GX?dV 二 - f r;ue-os/'i|r„ x r„\dudv, 
力、 “一） 

[r;\/ff/r = - f C;v\r,, X r,\dudv, 

J
 

/
,
 

a
 J
 

wl.oro r - ^ 也I'r r —丨丝处 wiicro r , . - 彻 ’ 加 ’ , ry - 彻 , 加 ’ 加 

Paramotric Cylinder Primitive 

For tho paramotric cylinder priiniiivo, ils general roprcstMitatioii is 

.52) 

X — V, g) — Xi) + fl[ei cos u 十 62 sin u) -f ve：} (3.53) 

If wc use Uic parairiotcrizalion ILS shown iti Figure (3.8), t,h(、ri th(、rop-

rosonlatioii can bo rewritten a.s: 

Figure 3.8: Configuration for the paramotric cyliiuior primitive 



X 

X - c \ sin “(：2 COS rv sin f i 

= y — r：丨 cos a + -6*2 sill ttSill /子 

z 0 C'2 cos 0 

/ 
—sin Q 

H cos Q COS u + 

\ 
0 

—cos a sill /J 

- s i l l rv sin /i 

cos 

sin u 

+ V 

cosPCOS a 

c.as/3 sill (V 

sin 

(3.rj4) 

whore g = {< 

(：2 cos a sill /i 

-(•] sin r> 

dx 

2, rv, /'i}, n = C] cosn-\-e2^'inn,Xu ^ r - j e i -

c\ cos cv—(：；2 sill a sin P, (：2 cos /i]^，ei — |— sin a , cos n , 0 

cos (V sill /?，— sin a sin 13、cos ^. Consequent ly , we lmv(、 

ilR 

dx 

dc] 

dx 

dc'2 

dx 

da 

dx 

n. 

- s i n ft 

cos fV 

0 

- c o s (V sill p 

- s i n a sin 0 

cos P 

-R cos u cos fv + li sin u sin a 

-li cos u sin <y - fi sin 1/ cos rv 

sin 

sin 

0 

,1 cos Q + (.2 sill fv sin 0 

sill (V - Co cos fv sill /i 

H s i l l c o s a cos “ - v cos rv sin (i 

•Ham XL sin a cos [3 — v si 11 (v sin P 

(•'2 cos a cos fi 

(：2 sill a cos fi 

R sill U vsin [3 + d COS (3 — C2 sin l3 

G1 

(3.55) 



and 

V„ — ~r:z • Tl — 
dR 
dx 

dci 

dx 

dc2 

dx 

da 
dx 

Hi 

n — oosu, 

71 — smw, 

n -- sin /J(ci sin u — C2 cos u) — v cos u cos fi, 

n — 7； sin u. (3.56) 

Therefore, for any cost function J, wo can obtain 

dJ 

dR "] 

dJ_ 二 

d(i\ 

么 — 

dc2 

£ = I 严 

C\ru X rv\dudv 

dr 二 / X r„| cos ududv 

孔二 L C;|r„ X r,,\ti\nududv 
J「『..1 

sin 0{c] sin u — C2 cos u) — v cos u c:os p]\ru x ru\(ludv, 
i，(“,v) 

--二 [ CV》、- f Cvsm ulr,, x r^\dudv, (3.57) 
郎 Jv Ji、“‘ •,、 

Ihi' du^ dn\ where T^ = 丨胜处也 ^ On ih. 
Ov ‘ dt>，Ov 

Paramotric Sphere Primitive 

For the paramotric sphere primitive as shown in Figure (3.9), its general 

roprcsontatioii is 

X — Xi,(u, •{), f/) 二 Xo + R\e\ cos u + e-z sin u] + Re,i sin v, (3.58) 

wluno g ~ {/i!，£Co}’ Tl == e】cosu-Ve ĵ sinu + e.Jsin v,e] — [en, f:i2’ci 

62 二（;'21，（'‘22，C'-2;i , e：, = dVA ，Xo = :t.o，</0, 



Figure 3.9: Configuration lor sphere priiiiitivo 

Consequently, wo have 

dx 

Jr 
dx 

dxn 

= n . 

ax； 

and 

Vu = 

Vu 

Thoioforo, 

Wr : 

dJ 

fill cos iL + ('21 Sinu + �wSin v, 

e\2 cos u -f ̂ 22 sin u + e^z sin v, 

= ei3Cosu + e23sinu + 

for any cost function ./，wc can obtain 

•u X T„ dudv、 

(3.59) 

(3.60) 

dxo 

办0 

dzt) 

(j{e\ \ cos 11 + e-)! sin w -f k:" sin ？;)|r„ x ry\dndv 

G(e]2 cos u + €.22 sin u + sin 't，)|r„ x 7\’lrh/.dv 

G(e] j cos u + 6-23 sill u + e：)：} sin x ri.jdudv 

(3.61) 

where {Ox Oz]T r =z dz] 
du、 ̂ ， 



3.4 Consistency of Shape Design Sensitivity Anal-

ysis under Both Frameworks 

The implicit function 中 under the ALS framework can be expressed as 

(I) 二 (I>(®，5), whcro S — a I, I 二 1 • •. , A^. If wc coiusiclcr x JUS a fuiic-

iising the chain riilo, tlio following formulat ion 

on its boundary F, 

tion of S、for V.s € S、 

should l)(i always valid 

r'M) ^ , dx 
+ •(!,• =()， 

as (is 
(3.()2) 

which implies 

Ih 

„, dx 
—W) • ~~ 

as 

With n ~ - j ^ , w(、have 

dx d(t> 
(3.64) 

with rospcK l to the pa-

in . n = |V¥| ‘ ^ 

Here wo (Icnoto 棠 a.s the design velocity 

rainctor s of a given ALS primitive, t,hcii 二尝• n 二 丨知•瓷.This 

notation is the sanio as the definition we used in paramet ric roprcsoii-

tation part. 

Therefore, for any given basic gcomotric primitive, if the parameters 

of its implicit. ALS representation arc the same a»s t,ho sot of parmuctors 

in its corresponding paramotric roprosciitation, the result of the SDSA 

formulations regarding these parainciens under both frameworks arc 

identical. The ciifForcncc between the two frameworks lies iti the global 

gooinctry updating sclicnio, which will be discussod in Cliaptor 4. 

• End of chapter. 



Chapter 4 

Optimization Schemes 

The wcll-cstablishcd discrete level set based structural shape and topol-

ogy optimization framework involves the process of solving the PDE. 

Therefore only the steepest dcsccnt method is found to be applicable 

to evolve the structural intcrfacc so far. With our proposed paraiiic-

torizations, one can convort, the infinito-dimoiisional shape and topol-

ogy optimization problem into a paramctric optimization problem and 

hcncc many mature optimization algorithms can be used. Readers arc 

referred to [39,40,42,43] for nioro details. The optimization algorithms 

will be developed in this chapter and the difference between the ge-

ometry updating schcincs for the ALS model and the paraiiictrically 

roprcsciitod B-Rop niodol will be ticidrcssed. 

4.1 Augmented Lagrangian Method for Applying 

Constraints 

There arc inany difTerenl kinds of practical engineering constraints in 

real engineering problems, such as local stress constraint or rnaxirimui 



displacement constraint. For moan coiiiplianco problem, a volume con-

straint is always applied. Although in prfictico, ininimization of volume 

as the objccUvG function subject to compliance constraint is more fa-

vorable, wo still choose volumo aa the coiLstraiiit with mean coiiipliaiicc 

fus the cost; function bocauso tlio volume constraint; is easy to impose. 

As has been proved in [76], the abovcinoiitioiiecl two probleins arc dual 

problems, which moans if one can b(，solved, vise versa. Th(、volumo 

constraint can be stated 朋： 

[(in < vol, (4.1) 

Jn 

which doscribos an upper limit on the amount of material in terms of 

the inaximuin admissible volume vol of the structure. Siiico an equality 

coiistrainl is goiicrally not oiLsy to be imposed during the optiiiiizat.ion, 

wc can combino it with the objective furiciioii using the augiiKMitod La-

graiigifui method [77] by imposing the volumo constraint a»s a poiialty 

term in tlio objective function io construct an augiiiciitcd objective 

function: 

= J + A( ( i n-卯 / ) + • (义们- ” 。 / ) 2 ’ (4.2) 

<r 

when) A > 0 is the Lagrjmgc multiplier and r > 1 is tli(、penalty 

parameter. 

Similar to what, wc liavc done in scction 2.1.3, the shape dcrivativo 

of L is 

“ j 人 f . u - + A) dW (4.3) 

where 

A 二 iiuLxjo, X + 1人J、cin - vol^y (4.4) 



and Vn can be formulated as shown in Eq. (3.7) for implicit represen-

tation or in Eq. (3.29) for i^aramctric representation. 

It is proved in [78) that, along with the design varinblos converging 

to a local optimal solution, the Lagrange multiplier A converges to the 

corrcct value A*. In theory, the penalty parameter r should be large 

enough to speed up the coiivcrgcncc of A. However, in structural opti-

mization problems, if r is too largo, the volume changes too dr朋Ucally 

and sonic useful intermediate shapes will be iriissod. Coiiseqiiciitly, f 

should be sclcctcd properly. 

Wo can rewrite Eq. (4.3) in a more compact, form as: 

L 二 j CVndT, ( 4 . 5 ) 

where (j call be denoted as: 

C^ f 'U- -e(ufD£(u) + A. 
Zt 

(4.6) 

Prom MOW on, in the rest part of this dissertation, the symbol G 

will bo used to rcplacc G for simplicity, unless otherwise specified. 

One can picturc that every time when the structural geometry is 

updated, the now (iisplaxunnont field u can be recalculated by solv-

ing the (equilibrium equation with boundary conditions, and hciicc the 

cciuilibriuin ociuaiion is satisfied automatic ally. Further, by utilizing 

augmented Lagraiigiaii multiplier method to impose the volume con-

straint, the original constrained optimization problem is turned into an 

unconstrained optimization problem. 

A 



•Jf 

4.2 Parametric Steepest Descent Method for Struc-

tural Optimization 

T 

4.2.1 Formulations 

In tho infinite dimensional optimization, to guarantoo the reduction of 

L, wc require the boundary to move with the normal design volocity 

field Vn that satisfies the descent property: 

L < 0. (4.7) 

A simple descent method is the steepest dcscont (ST) mothod in which 

‘ V； = -C. (4.8) 

Substituting Eq. (4.8) into Eq. (4.3), we can sec that the dcsccnt prop-

erty is satisfied. 

Since we parameterize the structural shape with btusic gconictric 
f 

primitives, all the internal parameters could be considered ajs the de-

sign variables. Again, we liavo to find a dciscent direction with the 

SDSA information derived in Chapter 3 to make .sure that the objec-

tive function dccreasos. Therefore, with the implicit ALS model, if wc 

choose the ST method to conduct optimization, wc can just set ；/ in 

Eq. (3.9) as: 

dL 
.5/ , - - E l G • ^ 华 d r . (4.9) 

This guaiantccs the time derivatives for the global Ng parameters sat-

isfy the dcsccnt property, namely, 
- , , 

“ 一 f : g ) 2 < a 

/=1 
F , 

/ 



Wc can obtain the similar result for paramctric representation with 

B-Rop model by sotting gi in Eq. (3.33) as: 

T 

We also can verify that the descent property is satisfied 

( 4 . 1 1 ) 

Nr, 

' = < 0 . ( 4 . 1 2 ) 

FOE an arbitrary parameter with either implicit ALS primitives 

parametric primitives, the updating schemos arc: 

+ ( 4 . 1 3 ) 

or 

广 = ,9" + R^)， ( 4 . 1 4 ) 

where and p" arc the parameters at previous step for implicit ALS 

primitives and parametric primitives respectively, whcrca ĵ and 

arc the updated parameters at current step for the corresponding 

primitives. Here r is the time step size that one should carefully choosc. 

It is well 如own that if wc utilize the line search method to de-

termine the optimal time step size r for cach optimization step, the 

convcrgcnco speed will be much faster [79], however, this method re-

quires mtiltiple function evaluations, which could be very expensive in 

time since for cach iteration the FE analysis process is involved. There-

fore, we choose to adopt the fixed time step size in stead of trying to 

dctcrininc the optimal time step size even though this may result in a 

comparatively slower convcrgcnco speed. ' 

When the parameters arc updated, wc can update the geometry 

accordingly. For thq ALS model,'wc can update the new geometry of 

G9 < 



the structure a.s: 

巾^>(v:r i’...，v^;" i，...，A+i), (4.15) 

whore (/？；̂+！ = vPi(x, 

For the B-Rcp model with the paramctric representation, the up-

dating scheme is a little bit different. In traditional history-based solid 

modelers, thoy use a construction approach tliat is highly dependent, on 

tlic scquonce of iiLstructioiis. Therefore, clmngcs to early instructions 

can cause later instructions to fail, which is known a.s rebuilding or re-

generation failure [7j. DifTerotil from the traditioria] history-bas(id mod-

elers, the cmcrgcnco of direct modeling tcchniquc uses local-operations 

like ‘tweak’ of the coinincrcial geometry kernels such as ACIS [74] to 

modify the goomotrios without the need of understanding the design 

intent history. These types of functions alter the boundary geometries 

and then automatically update the topology of the solid (i.e. adjaccncy 

relationships) to accorninodate the new geometries. This is exactly tiio 

way wc update the geometries with the ACIS kernel to realize topolog-

ical chaiigcs. 

4.2.2 Algorithm 

The following algorithm is established to solve the structural optimiza-

tion problem, which consists of the following steps: 

/ » 

Step 1: Initialize the geometry representation of a given solid at / - 0 

corresponding to an initial design Q in terms of its boundary F. 

For the ALS model, the initialization includes the definition of 
’ \ , • 

I 

.the ALS primitives if、and the corresponding boolean operators 



acting on thom; for B-Î cp niodcl with the paramotric roprcsoiita-

tion, the initialization includes the currcnt B-rcp data structure 

definition and its related parametric primitives Xi. Also, deter-

mine the design variables s； for the ALS primitives or gi for th(; 

pararrictrically represented primitives, the time step size r, the 

Lagrangiaii multiplier A and the penalty parameter r. 

Step 2: Solve the augmented Lagrangiaii multiplier problem L lor any 

given cost function and constraint 

(2.1) Solve the equilibrium equation with tho FEM to get the dis-

placomont field it, the strain field e ami thn stross field a. 

(2.2) Calculate the sensitivity of augmented functional L regarding 

all sclcctcd design variables, namely,载 for tho ALS rnodol or 

錄 for the B-Rcp model with tho paranictric representation. 

(2.3) Update the parameters as s'广、=s^ - or “广]=“；'— 

T鸯、' 

(2.4) Update tho geometry either according to a set of prodcsig-

natcd boolean operators acting on the corresponding sot of 

implicit ALS primitives, or using local operations to update 

tho B-rcp data structure with the given set of paranictric 

primitives. 

Stop 3: Update the Lagrangiaii multiplier A = max< 0, A + r(J'^^ dil -

Step 4: Check if a termination condition is satisfied. If the condition 

is met, an optimal solution is found. Otherwise, repeat steps 

2-3 until convergence. The termination condition is defined 貼 



I I < f, when; c is a specified error limil, here wc chose it, 

as 10-4. 

With this algoritliiri, one can perform shape and topology optirni/a-

tion simultaneously under the CAD-bausod framework. 

4.3 Least Squares Curve Fitting Method for Struc-

tural Optimization 

4.3.1 Formulations 

The loa«t squaros (LSQ) curvo fitting method is a rnathornatical ap-

proacli mainly used to find the best-fitting curve to a given sot of pointH 

by ininimiziiig the sum of the squares of the the residuals of the points 

from Uic curvo. The sum of the squares of the residuals is iLscd instead 

of the absolutx) values of tho residuals bccauso this allows t lio residuals 

to be trnatofl JUS a contiinioiis difiorontiablo quantity. 

In tho typical LSQ problem, tho objoctivc Q has the following spe-

cial form: 

Q = X ^ b i - /(工” ai，.. . . . ,a„)l2 = ^r’?， （4.16) 

where r̂  is the residual. By minimizing this function, one could sclcc t 

values for the parameters Uj、j — 1, • • •，n, that bOvSt inatc}i tho model 

to the data. 

From Eq. (4.8) wo know that, in tho infinite dimensional optimiza-

tion, the spccial desccnt direction Vn — —G can guarantee every point 

on the boundary V moves towards the sM6epc3st descent direction which 

can rcdijcc the objcctivc function tlic most, at curronl step, and this 



spccial Vri can be considered ai> the criterion for developing our opU-

rnization algorithms. 

liLspircd by the abovcrncntioncd LSQ method, here wc waiit to take 

the residual along the design boundary bctwoon the normal compo 

nnnt of t.iino design volocity in infinite dirnonsional rloinain ami norirmi 

component of time design volocity in the paramotcrizod domain (oi-

thor implicit representation or parainctric rci)roHcritation), and (it this 

residual into the LSQ curvc fitting model to obtain a different, dosccnit 

diroction for either .s； or t/, at cadi iteration. Wc denote the normal 

(•oinj)oiicnt of time ciosign velocity in infinite diinonsional domain a»s 

Vn,„j atid denote the normal component of time design volocity under 

ALS or paramctric framework as Then this initial idea could be 

illustrated in Figure (4.1) 

命 Infinite dinensional normddesign velocity V„j„r 

〉 Paraaotrie donain normal design velocity 

Infinite dimensional design velocity profile 

— — _ ParaiDotrlc domain design velocity profile 

iy 

< 

r 

-

.I 

； 1 

n i V 

Figure 4.1: Wu the msidiial for the LSQ bfwcd optimization 

For any shape represented by ALS primitives, the abovcinoiitionccJ 



intormcdiatc subproblcm could be formulated as: 

Find Si 

rninhnizc Q =嘉义(^^n,心—Vn,?(l\\ (4.17) 

Suppos(^ the boundary f is categorized into M parts Fi , . . ., F , , . . . , 

JT/v, cath r, boloiigH to only ()no specific ALS priniilivc t,h(、ii Q in 

Eq. (4.18) can be; written lus: 

yv I N 

Q 二 / (、’" 一 ‘ ( 4 1 8 ) 

1=1 丨力、* 

All 八LS priinitivoH w(、cfioso arc normalized, namely, |•巾| — 1, 

thoroforc, along Ihc entire boundary, Kip in Eq. (3.7) can bo rowritten 

a.s: 

A /抛、 

‘二 !：(‘)•" ⑷9) 
I—I 

For arbitrary x on tho specific boundary「ridinod by by applying 

Jjcrnina 3 in Chapter 3, its normal component of tiino design volocity 

raii 1)0 furUior siinplifiod as： 

j 1 ^ ' 

where .vj, j — 1，...，A /,, arc the internal param()t,(、rs (hat define p̂̂  in 

llio sariio way as in Chapter 3. Therefore, Eq. (4.18) can be written a.s: 

N 、 N M. .J 

“1 1=1 

C l e a r l y , '器广货、 t h i s global LSQ prohkuii can bo turned into a 

sot of simpler local LSQ problems, namely, M 'ni{Q) — ^ Min{Q^). 

Substitute Kq. (4.10) into Qi, wc have 

f 销 ( 4 . 2 2 ) 



At cadi optimization stop, as long a« wc can identify tho iiidopoiidcnt 

parainotors that govern the ALS primitive, the partial derivatives with 

rospcct to those parameters of the corresponding ALS function should 

be linearly independent on the boundary. 

Hereby wo give another Lornina from linear algebra: 

If Qi readies its minimum,咎=()，A： 二 I, 2, • •• , M,, then wo have 

M 

心-E 
.J Oifi dip. 

jrT dsi' asf 
)•⑶，二（)’ 

namely, 
Mi „ 

u . 

^
 J..
 

(ir 

(4.23) 

(4.24) 

If written in matrix form, wc have 

= bi 

where Hp = f身"萄（W 二 - Jr.。. T^^V 二 

have to note that 6, actually 

Iho pHramctric ST algorithm pari 

OL 

(4.25) 

More wo Us•；、“ — ŷ y 

is the (ioHcont direction wc forimilatod in 

For any ALS primitive ifi’ its partial derivatives regarding all in-

ner i)ararnctcrs could be stated as a vcctor = • • • , ^ ^ }， 

where M, is the total【uimbtu. of the parameters that define the c:orre-

sponding ALS function. 

We define the inner product of two arbitrary partial derivatives 

告，為 i" as the boundary integral of these two functions over a 

finite boundary segment, that holongs (,o the sprriiic ALS primit.ivr 

4.2t) M
m
 ！
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^
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Lemma 4 a [rvi, rk2, 

tlui synntictrir matrix 

IS a vv.ctoT over FAudulvAin spacv, Icf 

D 

〈01，(VI〉(fvi,a2) 〈'>1’ a, 

rv. 

fk’,，n, rvi) (a„, a-i) •• 

，then the sxifficifM and nc.ccssary cxmdit.wn for a 1, a 

linearly indc.pcndv.nt is \1)\ / 0. 

hcnuj 

Using Ui(’ }ib()V(̂  loimna, w(、know that, tlu^orctically, //, is a full 

rank matrix, hcnicc the solution to Eq. (4.25) couhi be wi iltru diroctly 

= '6. .27) 

Further, it is not difFiciilt to prove that H , iw also a positive dofiiiite 

niatiix provickul tlial, rv,,..., arc linearly iiidci^oiidcnt. Sin(x、is 

a (Icscont, direction for the migniontocl funct ional 厂，we can prove that 

5, — //,' ‘b, is also a dcscent, (linnlion for L. I'or ol.liri, primitives ami 

the related ptiraiiicicus wc sclociod, the now time dorivativos of Ui(、 

parairiotors could bo acqiiirod in the same manner. 

Con.soquontly, wo can guarantee again that for ilio global A'.̂  im-

rainotors, their time derivatives satisfy the d(\scxMit property, naiiioly, 

Ns .W 

<{\ (4.28) 

tl加丨 

whcrn .s/ can 1)0 calcuhiUHi from .s/ 101 aloe 1 matrix H and the mn.(’-

spoiiding descent vccl;or h. 

Take the ALS lino primitive with expression '^(x) — x sin a + 

y cos a + by for example. Suppose its corrosponding boundary is F, 



the partial derivatives arc = x cos a — ysin a and = 1 at any 

position on F. Since iliese two partial clcrivativos arc independent at 

all tirnos along Uio boundary, its corresponding H-2x2 matrix is-posit ivo 

definite. 

The same rule can l)c applied to tlio B-R(;p goomctric inoiicl with 

parainctric representations to obtain the l̂ SQ biuiod algorithm. For 

any pariiinotric primitive, cach element in H matrix can bo t!xpr(?ss(、(i 

as l i k i — / 「 ( 载 ’ • and eacli oleiuent in b vector can 1)(、 

ox pressed as bf̂  二 一 . n)dr. 

The parniricter updating schcino is the same as wliat wo have done 

ill the parainctric ST inothod, i.e. for the implicit ALS priniitivos 

= .s" + r.s, (4.29) 

or for the parametric primitives 

‘(/…二 •(广 + rg. {4.：̂()) 

The gooiiK t̂ry updating schciiK ŝ adopted here arc tlic saiuv ius the 

sc'lunncs wc usoil in the parametric ST iii(、t.lio(i part in tlic piTvioiis 

soctioiis. 

4.3.2 Algorithm 

Similar to the parametric ST algorithm in the previous section，IKM C WO 

^ive the gnnrric algorithm for the LSQ rurvo litt.ing based optiiiiizatioii 

algorithm a«: 

Step 1: Initialize the geometry rcprosciitation of a given solid at t — • 

corresponding to an initial design U in tmiis of its boundary 厂. 

For the ALS nioclol, the initialization includes the definition of 



t.ho ALS primitives ifi and the corresponding boolean operators 

acting on thcin; for B-Rq) model with t he paramotric rcproscMita-

tiori, the initialization includos tlio currrnt B-rop data sti.mlurr 

definition and its related paramotric priiiiitivos av Also, dctcr-

111 ino the design variables .、’/ for the ALS priniil ives or for t;h(、 

paraniotrirally roprcsonl.od priiiiitivos, tli(: tiiiio step size r, th(、 

Lagraiigimi multiplier A and the poiialty parameter r. 

Slop 2: Solve the aiigiiicniocl Lagraiigiaii inultiplior probloin L for any 

given cost function and constraint 

(2.1) Solve the equilibrium equation with the FEM to g(，t tlu、dis-

])laceiiKnit field it, the strain fidd £ and the stress field a. 

(2.2) LSQ suhprobloiii to dotcrniiiic S 

(2.2.1) Calculate the sensitivity of avigmcnted fuiictioiial L n、-

garcling all solcctod design variables, namely,浩 for 

ALS model or 錄 for the B-Rcp inoclrl with para-

metric n^proscnlation. 

(2.2.2) Update imrainctcrs as s「+i = s[‘ - Ti/「ii), or g’广 二 

gj — rHj^b j , where s, is the parauictd- vortor of tlu、 

ALS priniiiivc (pi and g】is the parmnotcr vector of the 

l)arainotric primitive； Xj. 

(2.3) Update the geometry either according t.o a sot of prcdcsig-

nat;(Hi booloau operators acting on the rorrcsponcliiig set of 

implicit A I j S primitives, or using local operations to update 

the B-rcp data stnict\uc with the giv(Mi sot of paramotric 

primitives. 



Stop 3: Update tlie Lagraiigian iiniltiplier A = iiiax< 0, A + / (Jj, dil 

Step Chock if a tmiiiimtion comliUon is saUslk、(l. U. tlu、coiKlition 

is mot, an optimal solution is fouiul. Otherwise, loj^cat st,(、ps 

2-3 until convergence. The termination condition is defined as 

I"':’:;-/, I < (，wlK、r(、( is a sporiliod error limit, horr wo chose it 

tus 10"^ 

As to be soon ill Chaptin- 5，with tlie (ixoii tiiiu? stop size, tlu» LSQ 

based optimization algorithm is iruich more eliicient compared with the 

pan\niotrir ST housed optimization algorithm. 

n End of chapter. 



Chapter 5 

Numerical Examples 

111 this cliaptor, th(、sensitivity analysis foriimlations for two (liflcront 

rcprcHciiiat ioiis lus wo 11 tus tlio Dpt imizatiou algorit hms arc impkMiiontod 

to solvo s()m(、coiiipliaiico optimization problems in both two (limon-

sions (the ALS model with implicit primitives) and in tliroo diinoiisions 

(the B-Hcp model with parainctric primitives). In practicc, wc found 

that the coiivcrgoiico critorion is l,oo strict for most reuses. Thoioforc, 

a inaxiiiiuiii muiiber of stopy is specifiotl. If this niiiiilx'i is n、iu、lKuJ, 

t he optimization slops. In t.liis cluiptor, this number is specified (ase 

by ctuso. For all Uic miniorical ox am pies lostod in this study，a iiuinl>(、i 

around a few hiindrods is enough and no obvious cliangcs in 1 ho designs 

ami the objective functions arc found cvon if inoro steps arc used. 

5.1 Finite Element Approximation 

A challciigo to structural optimization is that tlio roiivontional FKM 

is normally used for I ho stress analysis, and tho finite cUniuMU incsh 

will distort, after the shape and topology cluuigc |7]. Undor t.hcst、cir-



cunistancos, the domain must bo rc-inoshod. However, re-inesliing is 

a coinplicatod and time consuming taak, and will bring down the cHi-

ciency of optimization. To perform tlic finite olcmoni analysis, IRTC WC 

choose a fixed structurod mosh, as it is often seen in hoinogonizaiton-

basccl topology optimization |16, 19, 20). Also, the so^callcd "ersatz 

iTiatorial" approach (33) which luus boon widcily used in stress analysis 

of the complianco optimization problem will be adopted in some of the 

following luiniorical examples. In this approach, the state equations 

(2.3) are extended from the stnicture doniain U to the whole dosigii 

domain D. The void domain l)\Q is jussmiiod to ho ropUicod by a tyj)n 

of "weak" iiuitcrial, whose Young's modulus is very low. For cxainplo, 

Young's modulus of the weak material is often (.IOHIHHI a^: 

E() — c . E, (5.1) 

whcro H is the Young's luodulus of tho solici iiiatorial of t,ho structure 

and c is a small coefficient, in this study, c is scloctcd as O.OOl. Note 

that c can not be loo small, otherwise tho stifFnoss matrix will bo 

singular. 

For cloinonis cut by structural IxMindary, Yoimg's modulus is cal-

culated according to the fraction of solid material. For example, if the 

volume of soli(i takes one half of tho volume of an element, Young's 

iiiotiulus of this clcnioiit is sot to bo 0.5/?. 

With tho at«iiinption of ersatz material, state (equations art、ex-

tended to the whole design domain: 

-ciiv(T(n) = f in D、 

u = 0 on r,), (5.2) 

cr(tx) n = g on T/v. 



Because the design domain is fixed, no rcmeshing is roquirod during 

the structure evolution process. 

This method is simple and can give satisfactory results for conipli-

. . . • , 

arice optimization. Also, the extended finite element method (XFEM) 

with abovcmcntioned “weak” material is also employed in later exam-

ples to calculate more accurate strosses. Regarding tho implementation 

of XFEM in topology optimization, the reader is referred to [59,82) and 

references herein. 

Unlcss stated otherwise, in all the following examples, the units are 

consistent and the following parameters arc assumed â s: the Young's 

modulus E = 1 for tho solid material, E = 0.001 for tho weak material. 
and Poisson's ratio “ = 0.3. 

， 

5.2 2D Examples with Constructively ALS Model 
* * 

In this scction, several 2D examples with the ALS model will be shown 

here, and both linear ALS line primitive and second order circle prim-

itive will be involved. The results will be compared with the optimal 

designs obtained with discrete level set based optimization framework. 

Also, the efficiency will be compared between the parametric ST based 

algorithm and the LSQ based algorithm. The influence of the mesh 

density and the time step size will not be detailed in this chaptcr. 

Since the current approach does not include the topological derivative 

for the nucleation of solid material, the initial design (especially tho 

holes) we construct will take the benchmark results a»s the references. 



5.2.1 Mult ip le Local M in ima of A Structural Opt imizat ion 

Problem 

Unlike discrete level set based optimization approach that is close to 

the infinite-dimensional optimization, with proper incorporation with 

topological derivatives, local minima can be cscapcd for many cases 

80,81). Using our parametcrizations without topological derivatives, 

sincc wc only have very limited set of selective primitives defined by 

their internal parameters, wc will show that optimal results might get 

stuck at local miiiiiiia with diflcrent initial shape layouts. 

The minimum compliance design of a long cantilever beam as shown 

in Figure (5.1) is used to demonstrate the local minimum problem. 

The design domain is a rcctangle with L = 2 and // = 1. A vertical 

conccntrated load F = 1 acts on the middle of the right edge and the 

left edge of the cantilever beam is fixed. As in the current problem, 

the objective function is a linear function of the Young's modulus and 

the load, their values would not change the final design. With difFerent 

values of the load and Young's modulus, the miniinuin point will not 

change although the value of the objective function at this point will 

be (lifi'orent. 

Figure 5.1: Problem setting for a long cantilcvcr beam problem 

The ALS circle primitive with the same radius as the initial gcom-



etry is pre-collocatod within the design domain for four different eases. 

The position of the circlc Xo, yo arc choscn t he design variables, and 

no volume constraint is imposed. The only difference between the four 

eases is the initial position of the circlc within the domain is clifFereiit. 

The mesh density we choose to perform FE analysis is 80 x 40 with 

density-based FEM scheinc, and the paramctric ST algorithm is choson 

as the opiiniization algorithm with time step size as 1 x 10一The four 

different initial designs arc shown in Figure (5.2). 

(a) (h) case 2 

IF" 

(c) case 3 ⑷ 

Figure 5.2: Different initial designs for local mininmin problem 

J 

Clearly, for the mean compliancc problem without volume constraint, 

the more material we employ in the domain the bettor the stiffness 

is. The final designs after a hundred steps are shown in Figure (5.3). 

As it can be seen that the final results are different with the ditfer-

ent initial designs. In Figure (5.3(a)) and Figure (5.3(d)), dearly, the 

geometries are stuck at the local minima in the middle area, whereas 

in Figure (5.3(b)) and Figure (5.3(c)), the circles arc 'escaping' from 

the local minima becausc the initial solutions wo give arc close to the 



(c) case 3 (d) case 

Figure 5.3: Final designs for local rniniinuin problem 

、 

⑷ (b) case 2 

(c) case 3 (d) 

Figure 5.4: Convcrgcncc history for the local minimum problems 

global minimum. Figure (5.4) shows the convcrgcncc proccss of the 

compliance objective for all four eases and Tabic (5.1) shows the final 

mean coinpliaiicc of all four eases, clearly ease 3 has the best mean 

compliance as expcctcd. 
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Tabic 5.1: M can coirip iancc of all four eases 

Mean Compliance 
Case 1 Caiie 2 

！ 

Case 3 j Ctusc 4 
Mean Compliance 

41.2351 39.7445 39.7425 j 41.7144 

5.2.2 A Long Cantilever Beam Design Problem 

Here, all the gcomctric settings (length and width of the domain) a.s 
I 

well as the loading settings remain the same as the settings of the 

previous example, and the maximum allowable volume fraction is set 

to be 0.5. Different initial designs will be tested with botli the density-

based FEM and the XFEM schemes, also, two different optimization 

algorithms will be tested separately to show their effeciivoncss. The 

optimal result obtained with the discrotc LSM is shown in Figure (5.5) 

with the final iiioaii coinpliaiico of 59.7050 [83]. All tlie other results 

should consider this as the Ixnichinark. 

0,7 

oe i 

、、 

C 

产 V 

7.. 

Figure 5.5: Opt imal result with cliscrcto level set method [83) 

Case 1-1 with The Density Based FEM and the Paramctric ST 

Algorithm 

In this example, a complcx initial design is constructed using 52 ALS 

line primitives (7 holes in the middle area) with predefined boolean 



operations, as shown in Figure (5.6). Here wc expect to use simple 

primitives to deliver the final complex shape. The time step size 丁 

choscn here is 2 x 10"'* and the maximum allowable iterations is set io 

be 1600. 

Figure 5.6; Initial design for ease 1-1 of a long cantilcvcr beam problem 

After 1000 iterations, the design readies its optimum, and both 

the topology and the shape arc changed. It seems that with the big 

enough step size, the convergent speed with paramctric ST method 

is not fast enough. The reason for this will be clarified later in this 

scction, and wc will realize the LSQ based optimization algorithm a 

better choicc for our optimization problem. Figure (5.7) shows some of 

the intermediate results arid the final result of case 1-1. The converged 

design has a mean compliancc of 59.9330 and is not as good as the value 

obtained with discrete LSM. Considering our limited parameterization 

of the design, this result is desirable bccausc wc obtained an optimal 

shape that is represented by a few basic geometric primitives without 

losing too much performance, and this trade-off is quite favorable. 

The convergence history of the objcctivc function and the volume 

ratio arc shown in Fig (5.8). 



(a) step 10 (b) stop 80 

(c) stop 250 (d) stop 400 

(e) step 550 (f) step ()5() 

(g) step 750 (h) step 850 

(i) step 1000 (j) step 1 _ 

Figure 5.7: liitermcdiato results of case 1-1 

88 



(a) moan coinplianco (b) volume ratio 

Figure 5.8: Convcrgciicc history of ease 1-1 

Case 1-2 with The Density Based FEM and The LSQ Algorithm 

In this example, the initial domain is constructed using the same set 

of ALS primitives, the optimization algorithm chosen here is the LSQ 

based algorithm, the FEM schoinc is the dcnsity-ba.scd with the 

rncsh density of 80 x 40, the time stop size 丁 clioscn here is 2 x 10"^ 

and the maximum allowable iterations is 300. 

After about 150 iterations, the final design converges to the similar 

geometry ELS shown in ease 1-1. Obviously, with a smaller time slop 

size and the same initial design, the LSQ based algorithm is more 

efficient than the parametric ST algorithm. We can easily explain this 

by considering the, lino priinitiv(! with infinitn length as a rigid body, 

then the translation and rotation of this primitive will clctcnninc the 

overall gesture of this line, which procisoly correspond to the two design 

variables in Eq. (3.33). Therefore, there exists a dimensional problem 

for different design variables if we use the fixed time step size with the 

paramotric ST algorithm bccausc wc cannot determine automatically 

the step size for design variables with different dimensions. However, 

with the fixed time step, if we choose the LSQ based optimization 



algorithm, the H matrix in Eq. (4.25) adds weights bolwccn different, 

design variables, and this accounts for the "harmonic" optimi'/atiori 

process wc observed. The intermediate results of ease 1-2 arc shown in 

Figure (5.9), and tho final mean compliance is 59.9196. 

(h) Htnp 

；).step 9 (d) stop 

(c) stop 70 (f) step 100 

(g) step 150 (h) stop 300 

Figure 5.9: Intermediate results of case 】-2 

By considering tlic residual botwoen the infinito-diiiiensional time 



velocity and the parairictric time velocity, wc can resolve the issuo of 

diiriensional problem for diifereiit design variables, and this will lead to 

a much smoother convcrgcncc procoss, a« shown in Figure (5.10). 

(ii) mean compliance (b) volume ratio 

Figure 5.10: Convorgcncc history of ease 1-2 

Case 1-3 with The XFEM and The LSQ Algorithm 

In this example, wc have a domain resembling ease 1-1 and 1-2, Uio 

difference is that we add eight more circle primitives into the initial 

design as shown in Figure (5.11). To acquirc more accurate strain en-

ergy density along the structural boundary, wo use tlic XFEM schcme 

instead with the mcsli density of 80 x 40. The LSQ algorithm is usod 

bccausc its coiivcrgcrico speed is far better than the parametric ST al-

gorithm. The time step size r choscn hero is 2 x 10"'̂  and the nuixirriuiii 

allowable iterations is 300. 

After about 300 iterations, the final design converges to tlio similar 

shape as shown in caso 1 series. With the XFEM scheme, the final 

shape is more accuratc than those delivered by the density-based FEM. 

It is evident that the first order lino primitives and socond order circlcs 

arc able to mingle naturally together to deliver the optimal shape. 

The intermediate results of case 1-3 arc shown in Figure (5.12) and 
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Figure 5.11: Initial design for Cruso 1-3 of a long, cantilever beam pr()l)Ioni 

final mean c()rii[)Iiaiico i‘s 60.1J97. Tiic convergence liistory is sliowti in 

Figure (5.13). 

(a) step f) (b) step 8 

(c) step 20 (fj) step 50 

s) slop 100 (f) step ;i(X) 



(a) mean cornpliaiico (b) volume ratio 

Figure 5.13: Coiivcrgciicc history of case 1-3 

Case 2-1 with The Density Based FEM and The Paramctric ST 

Algorithm 

In this sot of examples, the initial design in shown in Figure (5.14), 

the FEM schomc is the dcnsity-basod FEM with the mosh density of 

80 X 40, the time step size r chosori here is 2 x 10一4 and the inaxiinurii 

allowable iterations is 1000. The optimization algorithm adoptod is the 

paramctric ST algorithm. 

04 
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- 0 1 

-0.4 

Figure 5.14: Initial design for ease 2-1 of a long cantilever beam problem 

The intonncdiato results of caso 2-1 arc shown in Figure (5.15). The 

coiivcrgcnco history is shown in Figure (5.16). Wc can soc that since 

the paramctric ST algorithm with fixed time step size caiinoi resolve 

the dimensional issue between different design variables, the optimal 
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shape is quite different from tho results in ease 1 series, and a lot of 

details are missing. The high mean coiripliance value of GG.1764 in this 

caac is over 10% higher than the value in the benchmark owing lo tho 

abovcrncntioncd dimensional issue. 

(a) mean compliance (b) volume ratio 

Figure 5.16: Convergence history of ctuso 2-

Caso 2-2 with The Density FEM and The LSQ Algorithm 

In ease 2-2，wc roplacc the paramctric ST algorithm with the LSQ al-

gorithm for a bettor convorgciicc process, other settings arc tho same 

as case 2-1 cxccpt that tlio time step size is set to be 2 x 10"^ and 
> 

the maximum allowable iterations is set to bo 300. Tho intermediate 

results of case 2-2 arc shown in Figure (5.17). Wc can observe from tho 

final design that, the optimal result might be quite different with vari-

ous initial settings. Sincc wc only use a few ALS primitives to represent 

the shape of the design, the representation is not a^ sophisticated aa 

the discrete LSM, and the finial design is dependent on the initial de-

sign. We can consider this phenomenon as the iiiitial-dcsign-dcpondent 

problem. The corivorgcncc history is shown in Figure (5.18) with the 

final mean compliance of 60.1197, which is higher than both the op-
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timal results delivered by the discrete LSM and the results we get in 

case 1-1 or case 1-2. While compared with case 2-1, the final result 

preserves more geometric details during the evolution and the rotation 

and translation of each ALS line primitive is in harmony during the 

optimization. The final design is quite similar to the benchmark result 

in shape and the final mean compliance value is quite reasonable com-

pared with case 2-1 which employs the the parametric ST algorithm. 

r\ 
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(a) mean compliance (b) volume ratio 

Figure 5.18: Convcrgcncc history of ease 2-2 

Case 2-3 with The XFEM and The LSQ Algorithm 

In this example, we have the same initial design as case 2-1, all relevant 

parameters arc remained unchanged except that the XFEM scheme is 

used instead of the density-based FEM to expect higher accuracy of 

the stress and strain fields. The intermediate results of case 2-3 are 

shown in Figure (5.19). As it can be seen, wc have a more accurate 

computatio^'of strain energy density distribution on the boundary with 

the XFEM schcme, which accounts for the more accurate optimal result 

as shown in Figure (5.19). ‘ 
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The convergence history is shown in Figure (5.20) with the final 

mean compliance of 61.6781. 

(a) mean compliance (b) volume ratio 

Figure 5.20: Convergence history of ease 2-3 

Case 3-1 with The XFEM and The LSQ Algorithm 

In case 3-1, the number of ALS line primitives in the domain is differ-

ent from the previous examples. The different initial design is shown in 

Figure (5.21)，where 68 ALS line primitives are used and 10 quadrilat-

eral shapes are distributed inside the design domain. The FEM schcme 

chosen is the XFEM with the mesh density of 80 x 40, the time step 

size r chosen here is 2 x 10"^ and the maximum allowable iterations is 

400. The optimization algorithm adopted is the LSQ algorithm. 
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Figure 5.21: Initial design for ease 3-1 of a long cantilever beam problem 

The final results of case 3-1 is shown in Figure (5.22) and the con-



Figiu'e 5.22: Final design for ca«c 3-1 

vcrgcnce history is shown in Figure (5.23). As it can be seen, the 

•final optimal design has a different shape, more topological details arc 

kept. Tho final mean compliance value is 59.9438, and it, has very tiny 

difference compared to case 1-1 and case 1-2. For our optimization is 

based on the boundary variation, it is quite a initial-soliitioii-dcpeiidcnt 

problem, and this explains the difference in shape of the final design 

for different cases. In this specific case, there might exist many local 

minima, and the extra details arc actually local minima. 

V 
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(a) mean compliancc (b) volume ratio 

Figure 5.23: Convcrgcncc history of ease 3-



Case 3-2 with The XFEM and The LSQ Algorithm 

In case 3-2, wc use hybrid ALS primitives to construct the initial design. 

The initial design is slightly different from case 3-1. Here 48 ALS line 

primitives and 3 ALS circle primitives arc used and the number of 

holes in the initial design domain remains unchanged, cxccpt that the 
J 

ceiitcr holes are ALS circlc primitives rather than quadrilateral shapes 

as shown in Figure (5.24). The FEM scheme is the XFEM with the 

mesh density of 80 x 40, the time step size r choscn is 2 x 10"'̂  and 

the maximum allowable iterations is 300. The optimization algorithm 

adopted is the LSQ algorithm. 

0.41 

Figure 5.24: Initial design for case 3-2 of a long cantilcvcr beam problem 

The final design of case 3-2 is shown in Figure (5.25) and the con-

vergence history is shown in Figure (5.26). The final optimal design 

has the similar internal details except that some of the holes arc circlcs. 

The final moan compliance value is 61.7374, which is higher than ease 

3-1. This is another proof for the statement that the initial design and 

the local miiiimurns will determine the final shape and topology of a 

design in a combined manner. The convergence history is shown in 

Figure (5.26). 
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Figure 5.25: Final design for ease 3-2 
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(a) mean compliance (b) volume ratio 

Figure 5.26: Convergence history of câ c 3-2 

Observations 

From the results given in the series of numerical examples for the long 

cantilever beam, we have several observations. 

1. With the proposed SDSA formulations and the ALS modol, the 

original FDE solving procedure for the level set equation is converted to 

the sensitivity calculations regarding design parameters, which makes 

our problem quite a simple one. Compared with other free-form pa-

rameterization methods for implicit representation, such a.s the RFBs 

level set that usually involves a very large amount of design variables, 

our initial design domain is constructed with only a small number of 

primitives with their internal parameters as design variables, and this 

makes the SDSA computations very efficient. 



2. The final optimal design usually includes a subset of primitives 

of the initial design and has relatively high practical ongiiieoring value. 

3. The LSQ optimization algorithm is quite efficient if we use the 

fixed time step size for all design variables as has been proved numeri-

cally in related examples. 

4. The final optimal design is initial-solution-dependent, and clifFer-

oiit initial designs may produce di He rent final optimum. 

5. Even though the initial design is coinplcx enough to producc 

complex shape, the final design might look different when c:()iripajT(i 

with the corresponding benchmark results. This can be explained as: 

with our parameterization, cach primitive only ha« very limited rlosign 

freedoms, and it is easy to be stuck at many of the local minima. 

6. For all examples given above, the final mean compliance values 

are higher than the value in the benchmark. Take the final optimal 

result ill ease 1-3 for example, with this design, tlicro still exists shape 

gradient residuals on some parts the boundary ai； shown in the enlarged 

portions in Figure (5.27), that means if wc want to achicvo tho optimum 

from infinite-dimensional optimization point of view, more geometric 

details arc needed. • 

5.2.3 A Short Cantilever Beam Design Problem 

The minimum compliance design of a short cantilever beam is given 

in this section. The settings arc shown in Figure (5.28). The design 

domain is a rectaiiglc with L = 1.5 and H — 1. A vertical conceiitratcd 

load F = 1 acts on the bottom right Conner of the short cantilever 

beam. The maximum allowable volume fraction here is set to 0.35. The 

optimal design obtained with the discrete LSM is shown in Figure (5.29) 



1•，igur(’ 5.27: Shapo gradient residuals for the final drsi^n of ease 1-3 

with the final mean compliance of 51.5395 [35], which cari bo considered 

as the bcndimark for this problem. 

Figure 5.28: Problem setting for a short cantilcvcr beam problem 

Only one initial design is used here to show the corroctncsK of the 

SDSA formulations and the effectiveness of the LSQ algorithm. The 

initial domain is constnictcd using 46 ALS line primitives, as illus-

trated in Figure (5.30). The FEM schcinc clioscn is t;ho XFEM with 

the mesh density of 60 x 40，the time step size r choscn here is 2 x 10"^ 

and the maximum allowable iterations is 500. Again, the optimization 

algorithm adopted is the LSQ algorithm. The intermediate results of 

this example arc shown in Figure (5.31). Similar observations can be 

made that both shape and topology of this design can be changcd si-



Figure 5.29: Benchmark msiilt for the short cantilcvcr beam problem [35) 

Figure 5.30: Initial design of a short cantilcvcr beam problem 

miiltancously. The convcrgcncc history of this short cantilcvcr boain 

example is shown in Figure (5.32) with the final mean coiiiplianco of 

54.3272. 

5.2. Short Cantilever Beam with a Fixed Hole 

All optiniizatioii problem with a fixed hole obstacle is considered in 

this example. This problem has been studies in [47,84,85]. As shown 

in Figure (5.33), the dimensions of the cantilcvcr beam arc: L = 1.5 

and // = 1. The radius of tho hole is 1/3 and its cciitcr is determined 

by W = 0.5 arid D = 0.5. A vertical conccntratcd load F = 1 is 

applied at tho bottom right corncr. The rnaxiirium allowed voluirio is 
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Figure 5.31: Intermediate results of the short cantilcvcr beam problem 
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(a) mean compliance (b) volume ratio 

Figure 5.32: Convcrgciicc history of the short cantilcvcr beam problem 



half of the volume of the design domain which is 1.5 — 7r/9. With the 

traditional discrete level set bailed optimization, we need the regular 

mesh to carry out upwind scheme, and shapes as obstacles arc not easy 

to be included in a natural way. Therefore, wo use the result in [47 

the benchmark result, an illustrated in Figure (5.34). 

as 

Figure 5.33: Problem setting for a cantilcvcr beam problem with hole 

8 9 

Figure 5.34: Benchmark for the short cantilcvcr beam problem with hole [47] 

With our shape parameterization and the SDSA formulations for 

different geometric primitives, it is easy to seloct different subset of 

H 

F 
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primitives a»s the design primitives, while the rest uiisclocled could be 

considered as obstacles and the design parfiniciors will not be updated. 

Here wo use one initial design to show the shapo and topology changing 

capabilities. The initial design domain constructed using 42 ALS line 

primitives and 4 ALS circlc primitives, a« shown in Figure (5.35). The 

circle primitive of the biggest radius is considcrod a« l;ho obstacle. In 

other words, this circlc will not be considered â i the design primitive 

aiicl wo do not calculatc tho design sensitivity regarding its internal 

parameters and do not update its position and radius. 

Figure 5.35: Initial design for the short cantilever boani probloni with hole 

— 

The FEM schemo in this example is the XFEM with the iiicsh den-

sity of 60 X 40, the time step size r choscn here is 2 x 10"^ and the 

maximum allowable iterations is 300. Again, the optimization algo-

rithm adopted is the LSQ algorithm. The intermediate results of this 

example arc shown in Figure (5.36). 

Note that the final design has a similar shape and the same topolog>' 

as the benchmark result, with only a few different details. Figure (5.37) 

shows the convergence history of this example. Figure (5.38) shows the 

shape gradient residual on the boundary of the final design. Almost 

everywhere on the boundary rcaches optimum cxccpt for the enlarged 



(a) Hteyj 10 (b) step 24 

(c) step 30 (d) stop 50 

(e) step 80 (f) step 100 

(g) stop 200 (h) step 300 

Figure 5.36: Intermediate results of the short cantilevcr beam problem with 

hole 



(a) mean compliance (b) volume ratio 

Figure 5.37: Convergence history of the short cantilcvcr beam problem with 

hole 、 

area. This means primitives in that area could not fully approximate 

the benchmark design. The enlarged portion actually is a circular curvc 

in the benchmark design. However, it is a segment of a circlc primitive - ‘ ‘ • 

with large radius value under our parameterization framework, and 

this is the best approximation to the benchmark design. If wc want 

to reduce the residual, more details are needed there to fully approxi-
* V . 
mate the benchmark design. For example, we could have more linear 

• * 

segments in that region. 、 

Figure 5.38: Shape gradient residuals for the short cantilevcr beam 



5.3 Extension to Simple 3D Examples 

In fact, we do not need to know the exact boolean operators that define 

a shape. As long as we can use the local operations to update the B-Rcp 

data structure to form the new solid model, the optimization proccss 

could procccd till it reaches the optimum. In this section, our proposed 

SDSA formulations for a set of 3D parametric plane primitives are 

implemented with the ACIS kernel. Two simple examples are shown 

here, both of them are beam design problems as shown in Figure (5.39). 

One need to note that the examples given in this section only involves 
I 

planar primitives and they axe not genuine 3D examples. Wc only 

want to these simple examples to show the capability of the proposed 

formulations and the computational framework. 

Figure 5.39: Problem definition for 3D beam 



5.3.1 A Short Beam 

For the mean compliancc problem of a 3D short beam, we set L — 100, 

H = 100 and W == 40. The FEM scheme is density-based FEM and the 

mesh density is 20 x 20 x 8. Figure (5.40) shows several intermediate 

results. The optimal result is just a two-bar structure. 

1
 

M
m
 

....
 w

 

...•
 

-辑 储: 

(a) initial design (b) step 20 

(c) step 40 (d) step 80 

(e) step 150 (f) step 300 (final) 

Figure 5.40: Intermediate results of the 3D short beam design 



5.3.2 A High Beam 

For the mean compliance problem of a'3D high beam, wc set L = 100, 

// = 200 and W = 40. The FEM schemc is density-based FEM with 

the mesh density of 40 x 20 x 8. The intermediate results are shown in 

Figure (5.41). 

(a) initial de-

sign 

(b) step 50 (c) step 

(d) step 120 (e) step 180 (f) step 500 (final) 

Figure 5.41: Intermediate results of the 3D high beam design 

• End of chapter. 



Chapter 6 

Conclusions and Future 

Work 

6.1 Conclusions 

With the conventional discrete level set based structural optimization, 

postprocessing work is always a tedious job to turn the optimal design 

into a CAD model. In this thesis, the SDSA computation framework for 

both ALS model with implicit primitives and the the B-Rep model with 

parametric primitives are proposed for structural shape and topology 

optimization. The results delivered within our proposed frameworks 

have direct and intuitive gcomctric meanings. 

Starting from Halmilton-Jacobi equation of the LSM, wo come up 

with the concept of ALS, which is a natural extension of the LSM. The 

ALS model uses the half-space concept from CSG by considering all 

the coefficients as time dependent. A set of 2D and 3D primitives arc 

selected to construct complex shapes with boolean operators, and the 

selected primitives will evolve over time. With the sclcctive set of basic 



primitives, wc get the SDSA formulations for the all design parameters 

assuming that no geometric constraints arc imposed on these primi-

tives. Since the shape derivative formulation wc utilize only involves 

boundary integration, we only need the differentiable property along 

the boundary. Therefore, as long as wc can identify all independent 

design parameters in each independent primitive and calculate their 

normal design velocity, we can computc the corresponding design sen-

sitivity. In the similar manner, the corresponding SDSA formulations 

arc extended to paramctrically represented primitives. We only need 

a small number of primitives to construct a solid, so the number of 

the design variables is quite small compared with other parameteriza-

tion methods such as the RBFs level set, and this will make the SDSA 

computation very efficient. 

For the ALS model with implicitly represented primitives, the gc-

omot.ry updating scheme is to re-perform the j)rodofinc(i booloan oper-

ations acting on all relevant primitives after the design parameters arc 

updated. In fact, wc do not need to know in advance about the the 

specific boolean operators that define a solid. As long as we know such 

a constructive expression exists, we can calculatc the relevant SDSA. 

For the B-Rep model with parametric primitives in CAD system, ？us 

long as we can update the geometry with rules offered by local oper-

ations, wc can update the geometry each step in a similar way with 

simultaneous shape aiid topological changes. 

The SDSA formulations arc the basis for the gradient-baaed opti-

mization algorithms. Since line search method for best time step size 

is too costly in practice, we choose the fixed time step size for our 

proposed optimization algorithms. The parametric ST algorithm is 



adopted aa the first algorithm in current research. The dimensional 

problem is then discussed with the same fixed time sloj) siz(3 for dif-

ferent dimensional variables. Wc thereafter proposed the LSQ bas(id 

optimization algorithm which can guarantee the objective L moves to-

wards the descent dircciion, meanwhile, can rcconcilo the existing di-

mensional issues using the H matrix. Sincc the scalc of H is always 

very small, it will not allect the overall optimization eflicienry. 

Both 2D and 3D numerical examples arc given in this thesis, sev-

eral benchmark examples arc used for comparison purposn. It is shown 

that with the pararnctric ST algorithm, the convcrgcncc proccss is quite 

slow duo to the dimensional problems mentioned above, whoreas the 

proposed LSQ based algorithm is quite efficient. As we have observed, 

no matter how a solid is represented (implicitly or parainctrically), 

this limited parameterization of basic primitives might get tlicinsclvcs 

trapped at a local minimum. Also the initial design has critical in-

fluence on the production of the final design. By observing the shape 

gradient residuals on the boundary of several optimal designs, wc know 

that more gcomctric details arc needed for many caacs. 

With our computational framework, the final design is compatible 

with CAD data structure and detail design can bo conductcd diroctly 

thereafter. 

’ 

There arc several limitations of the currcnt research. Firstly, since 

wc only derived the SDSA formulations for basic primitives, they arc 

easy to be stuck at many of the local minima during optimization. 

Secondly, in the 2D ALS framework, the blending of the individual 

primitives using boolean operators arc conducted in a sequential way 

for simplicity. However, to make the approach more practical, in the 



future, wc should blcrid the primitives in a trco structure. In Ihc 3D B-

Rop ba«0(i framework, the examples arc limited by the topology chang-

ing capability of geometry kernel and further improvements nood to be 

explored for more sophisticated results. Thirdly, the convcrgcncc cri-

teria in current rcscarch is clctcnniiicd either by the maximum number 

of optimization steps or by a pre-defined small numerical value, and 

the maximum number of optimization steps is usually determined on a 

case by case basic. Therefore a more mat ure and unified criteria should 

be further studied. 

6.2 Future Work 

There arc a lot of possibilities for future work of the presented op-

timization framework. The numerical examples dearly demonstrate 

the feasibility of the proposed methods in solving the minimum nicaii 

coinplianco problems. However, tho performance of these methods in 

frcqucncy optimization and stress optimization problems still need to 

be investigated. 

The current research includes a set of basic primitives and treats 

all primitives independently. However, as wc can observe, even though 

the different type of primitives can blend wel】 (such as line primitive 

and circio primitive), some of the critical features (such as fillet) may 

not bo properly preserved during the evolution process. Wc cxpoct to 

use a unique roprosontation to rcprosont first,-or(ior and soconcl-ordor 

primitives while preserving the important features during optimization 

in the future study. 

Even though some 3D examples arc given, only tho planar primi-



tivos ar(j involved. The presented methods ‘should be cxtciiclod to inor(、 

general throe diniciisional probloriis with multiple typos of primitives. 

Although there is no theoretical difficulty, some numerical issues need 

to be considered. 

In this study, only the parametric ST and the LSQ ba«od optimiza-

tion algorithms are proposed and verified, while other optimization 

algoritlinis arc not yet tested. Wc liopc to get a hotter convcrgcricc 

speed with other advancod riiathcniatical programming tccluiiqiies in 

the iioar future. 

For the initial-dcsign-dopcndciit issue, if the initial design is poor, 

the shape may corivcrgo to a unsatisfactory design, and the rcparam-

ctorizations based on Iho analysis of shape gradient density residuals 

should be discussod iti the future. An expectation for the rcpararnc-

tcrizatioris is to make the result claser to the optimal designs in the 

benchmark results. 

• End of chapter. 
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