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Abstract 

This thesis gives a procedure to carry out SYZ construction of mirrors with 

quantum corrections by Fourier transform of open Gromov-Witten invariants. 

Applying to toric Calabi-Yau manifolds, one obtains the Hori-Iqbcl-Vafa mirror 

together with a map from the Kahler moduli to the complex moduli of the mirror, 

called the SYZ map. 

It is conjectured that the SYZ map equals to the inverse mirror map. In 

dimension two this conjecture is proved, and in dimension three supporting ev-

idences of the equality are studied in various examples. Sincc the SYZ map is 

expressed in terms of open Gromov-Witten invariants, this conjectural equality 

established an enumerative meaning of the inverse mirror map. 

Moreover a computational method of open Gromov-Witten invariants for toric 

Calabi-Yau manifolds is invented. As an application, the Landau-Ginzburg mir-

rors of compact semi-Fano toric surfaces are computed explicitly. 
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商要 

本論文通過open GW不變量（open Gromov-Witten invariant)的傅里葉變 

換，得出SYZ鏡構造的量子校正(quantmn correction)。應用到環狀卡拉比丘 

空間(toric Calabi-Yau manifold)上，即可得出其 Hori-Iqbel-Vafa 鏡流形，以及 

一個由其Keller模空間到複結構鏡模空間(mirror moduli)的映射，稱為SYZ 

映射。 

本文提出以下猜想，並證明其在二維情形下成立： S Y Z映射與鏡映 

射(mirror map)的逆相等。在三維情況下，本文列舉了一些支持這個猜想的經 

典例子。因為SYZ映射是通過open GW不變量給出的，由此猜想可得出逆鏡 

映射的幾何計數意義。 

另外，本文提出計算環狀卡拉比丘空間open GW不變量的新方法。此計 

算還可應用到半Fano (semi-Fano)的環狀流形(toric manifold)上，得出其超勢 

育旨(siiperpotential)的具體表達式° 
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Chapter 

An overview 

Mirror symmetry states that for a Calabi-Yau manifold X, there exists another 

Calabi-Yau manifold X (which is called the mirror of X) , such that the complex 

geometry of X reflects the symplectic geometry of X , and vice versa. Since its 

discovery by the physicists [7], it astonished many mathematicians again and 

again by its powerful predictions, especially on enumerative geometry. 

A lot of efforts have been put to lay a rigorous mathematical foundation for 

mirror symmetry (for example, [33, 34]), and its developments have opened a 

new era of geometry and physics. Important concepts such as Gromov-Witten 

invariants [5, 15, 41] and Fukaya category [20, 21] were developed, and they help 

mathematicians and physicists to obtain a deeper understanding of the subject. 

Moreover, mirror symmetry beyond the Calabi-Yau setting has also been exten-

sively studied (for instance, [12, 22，18, 10, 14, 47, 13, 31]). 

Yet mirror symmetry is far from being fully understood. While new com-

putational techniques of Gromov-Witten invariants were developed to verify the 

predictions from mirror symmetry, these computations reveal little on how and 

why they work. This thesis attempt to answer this question in the context of 

toric Calabi-Yau manifolds from the Strominger-Yau-Zaslow perspective [48]. 
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1.1 SYZ mirror symmetry 

Foi a pair of mirror Calabi-Yau manifolds X and X, the Strominger-Yau-Zaslow 

(SYZ) conjecture [48] asserts that there exist special Lagrangian torus fibrations 

JI X ^ B and FI X ^ B which are fiber wise-dual to each other In particular, 

this suggests an intrinsic construction of the mirror X by fiberwise dualizing a 

bpccidl Ldgiaiigiaii toius fibi ation on X This process is called T-duality 

The SYZ program has been carried out successfully in the serni-fiat case 

[35, 39 38], wheie the discriminant loci of Lagiangian torus fibrations are empty 

(thdt lb, all fibeis aie regular) On the othei hand, miiror symmetiy has been 

extended to non-Calabi-Yau settings, and the SYZ construction has been shown 

to work in the tone case [10, 14], where the discriminant locus appears as the 

boundary of the base B 

In geneial, by fiberwise dualizing a Lagrangian torus fibration /i X B 

away from the discriminant locus, one obtains a manifold Xq equipped with a 

complex structure Jq, the so-called semi-flat complex structure In both semi-flat 

and compact tone cases, {Xq, Jq) already serves as the mirror manifold oi X ̂  

However, when the discriminant locus P appears in the mteiioi of B, {Xq, Jq) 

docs not give the mirror that physicists suggest, and it loses the gcomctiic m-

foimation of the discriminant locus It is expected that the complcx structure J 

on X can be obtained from Jq by quantum corrections, which capturc symplec-

tic enumerativc information on X (see Fukaya [16], Kontsevich-Soibelman [36], 

Gross-Siebert [27]) This is one manifestation of the mirror principle that the 

complex geometry of the mirror X encodes symplectic enumerahve data of X 

The SYZ mirror construction with quantum corrections for general compact 

Calabi-Yau manifolds is still unclear to mathematicians A good starting point 

IS to woik with local models of Lagrangian torus fibrations on Calabi-Yau mam-

^In the tone case there is an additional data in the mirror called the superpotential which 

IS a holomorphic function on J^o 
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folds, which are realized by non-toric Lagrangian fibrations ^ on toric Calabi-Yau 

manifolds constructed by Gross [26] and Goldstein [24] independently. Interior 

discrirniriaiit loci are present in these fibrations, leading to the wall-crossing phe-

nomenon of open GW invariants (which is roughly speaking the counting of 

holomorphic disks) and nontrivial quantum corrections of the mirror complex 

structure. Understanding SYZ mirror symmetry with corrections for such local 

models would be an essential first step to study mirror symmetry for compact 

Calabi-Yau manifolds. 

1.2 The main results 

In this thesis we study SYZ mirror symmetry with corrections for toric Calabi-

Yau manifolds. The first three chapters aim at building up terminologies and 

notations. Section 4.3 gives the procedures to construct the SYZ mirror, and 

the main results are contained in Chapter 5, 6 and 7. What follows is a brief 

introduction to these results. 

1.2.1 SYZ mirror construction for toric Calabi-Yaus 

An essential step of the SYZ construction discussed in the last section is quantum 

correction, which is still unclcar to mathematicians. In Scction 4.3 we propose 

a way to handle quantum correction using Fourier transform of open Gromov-

Witten invariants, and in Chapter 5 we show that it works for all toric Calabi-Yau 

manifolds. The following is a simplified version of Theorem 5.5.1: 

Theorem 1.2.1 (Restatement of Theorem 5.5.1). Let {X, cj) be a toric Calabi-

Yau n-fold equipped with a toric Kdhler form. The SYZ mirror is 

2Here, "non-toric" means the fibrations are not those provided by moment maps of Hamil-

tonian torus actions on toric varieties. 



SYZ mirror symmetry for toric Calabi-Yau manifolds 11 

(X, n)； where 

X = {(n, V, X (CX)"—1 : uv = g{z)} 

is a complex manifold defined by an explicit Laurent polynomial g, and tl is a 

holomorphic volume form on X transformed from uj. 

While this result agrees with Hori-Iqbal-Vafa's physical prediction [28], the 

SYZ approach gives more than the Hori-Iqbal- Vafa recipe: The Laurent polyno-

mial g in the above theorem is expressed explicitly in terms of Kabler parameters 

and open Gromov-Witten invariants. Thus Theorem. 1.2.1 gives the complex man-

ifold mirror to rather than a mirror family given by the Hori-Iqbal-Vafa 

recipc. This construction produces the SYZ map Jsyz from the Kahler moduli 

of X to the complcx moduli of its mirror. 

There are two main ingredients in the construction. First, to carry out torus 

duality, one needs a Lagrangian fibration on X，which is written down by M. 

Gross [26] and E. Goldstein independently. We give a review on such Lagrangian 

fibrations in Section 5.1. Figure 1.1 depicts liow this fibration looks like in the 

two-dimensional case. 

X • » • X X 

Figure 1.1: Gross' Lagrangian fibrations on toric Calabi-Yau manifolds. 

The second ingredient has to do with quantum corrections, which encode the 

one-pointed genus-zero open Gromov-Witten invariants of a fiber of the above 

fibration. It is observed by D. Auroux [3, 4] that open GW invariants admit wall-

crossing in various examples such as P^ and the Hirzebruch surface F2. In Section 

5.4 wc study wall-crossing phenomenon for all toric Calabi-Yau manifolds in a 
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uniform way (see Figure 1.2 for an example). Then by taking Fourier transform 

of these open invariants, one obtains the corrected mirror complex coordinates 

(Section 5.5). 

Wall 

Figure 1.2: Wall-crossing phenomenon for X = K^i. There is only one class of 

holomorphic disks bounded by fibers below the wall. Crossing the wall, other 

classes of holomorphic disks come up, such as the one drawn in the left of this 

figure. 

1.2.2 Mirror map = SYZ map 

The (inverse) mirror map Ŝ mhror : —)• M c { X ) provides a canonical local 

isomorphism between the Kahler moduli Mk{X) and the mirror complcx moduli 

near the large complcx structure limit, and it plays a key role in the study 

of mirror symmetry. For instance, the success of mirror symmetry on counting 

of rational curves in the quintic threefold relies in an essential way on identifying 

the mirror map. 

Yet geometric meanings of iJmirror remain unclear to mathematicians. Integral-

ity of coefficients of certain series expansion of the mirror map has been observed 

and studied [45, 50, 37], and it is expected that these coefficients contain enu-

mcrative meanings. 

Since Jsyz is also defined in a canonical way, it is natural to expect that the 

two maps mirror and are equal. The precisc formulation of this conjecture 
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IS contained m Section 6 2 Moreover observe that STgyz is defined m terms of 

enumerative invariants of X Establishing this conjectural equality will give an 

enumerative meaning to the mirror map 

In Section 7 3, it is shown to be true for all tone Calabi-Yau manifolds in 

dimension two 

Theorem 1.2.2 (Restatement of Theorem 7 3 6). 

mirror = ŜYZ 

for every tone Calabi- Yau surface 

In dimension three, various typical examples such as X = Kpi xpi and 

Opi (—1) © (Dpi (—1) are studied, and strong evidences of the conjccture have been 

found See Scction 7 3 2 for the details 

Remark 1.2.3. We follow the existing literatures to call ifmirror 

the inverse mirror map In Chapter 6 and 7 we will denote the mirror 

map by 0 Mci^) — 

1.2.3 Computation of open GW invariants 

A key step to prove ^mirror = 3~syz is a computation of one-pointed open Gromov-

Witten mvaiiants of Lagrangian tone fibers in tone Calabi-Yau manifolds Clio-

Oh [12] gave the answer when the tone manifold is Fano, in which case the 

corresponding moduli problem has no obstruction Little is known about these 

mvaiiants beyond the Fano case due to the presence of obstructions When X is 

scmi-Fano (meaning that its anti-canonical line bundle is ample), the only previ-

ous known result is the Hirzebruch surfacc F2，which is computed by Auroux [4] 

using wall-crossmg, and independently by FOOO [19] using their big machinery 

(Using wall-crossing Auroux also computed the invariants for F3 ) 



SYZ mirror symmetry for toric Calabi-Yau manifolds 14 

In Section 7 2, the open Gromov-Witten invariants of Lagrangian tone fibeis 

m tone Calabi-Yau manifolds are computed, where the obstructions in the cor 

lesponding moduli pioblems aie non-tiivial The stiategy is to fiist equate thorn 

with some closed Gromov-Witten invariants, whose computational techniques are 

better developed Such relation was proven by Chan [9] when the tone Calabi-

Yau IS the total space of the canonical line bundle Ks of a tone manifold S It 

can be generalized to other tone Calabi-Yau manifolds as well 

Figure 1 3 gives an illustration to this strategy The statement is as follows 

(Tlie readers are referred to Section 7 2 for more detailed explanations of the 

terminologies involved ) 

Theorem 1.2.4 (Restatement of Theorem 7 2 4). Let X he a tone Galahi Yau 

manifold, T C X be a regular tone fiber and j3 6 兀2(1，T) he a disk class hounded 

by T Then the one pointed genus zero open Gromov-Witten invariant np ^ 0 

only when (3 is a basic disk class, m which case n曰=1, or P = b + a where b is a 

basic disk class whose corresponding tone divisor is compact, and a G H2{X, Z) 

IS represented by a rational curve 

Let X be the compactification of X along the direction of h, and h G 丑2(叉) 

denote the fiber class Then 

^b+a = � [ P t ] � i h + a 

provided that every complex curve in X representing a G H2{X) C Ihi^) is 

contained in X c X Here denotes the one-pointed genus zero closed 

GW invariant of the class h + a 

1.2.4 Open invariants of semi-Fano toric manifolds 

This method of relating open Gromov-Witten invariants with closed invariants 

can be applied to other tone manifolds as well Then one obtains an cxplicit 
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Figure 1.3: Equating open invariants with some closed invariants. Counting disks 

shown in the left hand side equals to counting rational curves shown in the right 

hand side. 

expression of their Landau-Ginzburg mirrors, which are written in terms of the 

open GW invariants. This application will be discussed in Section 7.4. 

Three dimensional examples include fiberwise compactifications of iCpa and 

K-pi xpi. Restricting to the surface case, one has the following result (which is a 

simplified version of Theorem 7.4.5: 

Theorem 1.2.5 (Restatement of Theorem. 7.4.5). Let X he a compact semi-Fano 

toric surface，and j3 G 7r2(X, T) he a disk class bounded by a Lagrangian torus 

fiber T C X. Then np = \ if ^ is an admissible disk class, and np = Q otherwise. 

Thus its Landau-Ginzburg mirror superpotential 

is written as 

/3 admissible 

where Z曰 are monomials whose coefficients are explicitly in terms of Kdhler pa-

rameters of X • 

See Theorem 7.4.5 for the meaning of admissibility. Figure 1.4 shows an 

example for illustration. 

Remark 1.2,6. The (semi-Fano，condition is needed to ensure that the open 

GW invariants are well-defined (that is, independent of auxiliary choices such as 
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Figure 1.4: An example of a semi-Fano toric surface. The class b + 2Di + 1)2 + 1)3 

is admissible, while b + 2Di + D2 is not. 

complex structures). Moreover in the surface case, it implies the self-intersection 

number of every curve is at least ( — 2 ) , so that the related closed GW invariants 

can be computed using the result of Bryan-Leung [6]. 

A recent result of FOOO [17] showed that 

QH*{X)兰 Jac(M/) 

for all compact toric manifolds X. Now since we give an explicit expression to 

the right-hand-side, one obtains the following corollary: 

Corollary 1.2.7. When X is a semi-Fano toric surface, the quantum cohomology 

ring QH*{X) has an explicit presentation. 

1.3 Key examples 

Let's illustrate the main ideas in this thesis by examples and figures. First we 

start with the simplest example T^ to explain T-duality. Then wc consider P^ 

and its Landau-Ginzburg mirror. Wall-crossing phenomenon appears when one 

consider the Gross fibration on C^, which was studied by Auroux [3, 4]. Counting 

disks becomes more complicated when one considers Kpi, in which a bubbled 

disk occurs. It becomes even more complicated for /Cpa, in which infinitely many 

Glasses of bubbled disks appear. Finally, we illustrate an application to semi-Fano 
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toric manifold by considering the example K]p2. The description in this section 

is expository, and the readers are referred to the later chapters for the precise 

definitions and statements. 

1.3.1 Two-tori 

Given a vector spacc V, one may take its dual V* by collecting all the linear 

functionals on V. A family version of this duality is the duality between the 

tangent bundle TB and the cotangent bundle T*B of a base manifold B. 

Yet the total space TB is non-compact. To make it compact, one consider a 

lattice bundle A C TB over B. Then one obtains a torus bundle TB/A. In the 

dual side one has T*B/A*, the dual torus bundle. 

This is callcd T-duality. It works perfectly to explain mirror symmetry, with-

out any corrections, when the base 5 is a torus. Without losing much, we may 

simply take B = S^ We refer to [39, 38] for the details. 

X = T*BIk* has a canonical symplectic structure dr A d9, where r is the 

base coordinate and 9 is the fiber coordinate. On the other side, X = TB/A 

has a canonical complex coordinate 2； = exp(—r+ This gives an illustration 

that symplectic structure is 'mirror' to complex structure. Moreover, homological 

mirror symmetry has been verified in this case [46], in which line bundles on X 

corresponds to Lagrangian section of X B. 

1.3.2 The complex projective line 

However, compact torus bundles are certainly too restrictive. Most proper La-

grangian fibrations have singularities. Consider the sphere X in with radius R 

centered at 0. It has a symplectic structure u, which is simply its volume form. 

Then the projection to the x-ojds gives a Lagrangian fibration X ^ B where 



SYZ mirror symmetry for toric Calabi-Yau manifolds 18 

R B R 

Figure 1.5: The moment map fibration on P^. The endpoints of the interval 

B = [ — R \ are critical values, whose fibers degenerate as points. 

B = [-R, R] C E. The discriminant locus is dB = {—R, R}. See Figure 1.5. 

Away from the singular fibers, one may take the dual torus bundle and obtain 

B X S^, which has a complex coordinate z — exp(—r + i句，where r is the 

coordinate on B = [—R,丑]and 0 is the coordinate on S^. z embeds B x S^ into 

C^ as an open subset. The physicist takes 二 C � a s the mirror manifold, which 

equals to B at the large volume limit R = +oo. 

The above duality does not capturc the geometry of discriminant locus. To 

do this, one lias to consider the Landau-Ginzburg mirror W^)，where M̂  is a 

holomorphic function on C^ given by 

-i? 

The two monomials in the above expression correspond to the two disks bounded 

by a fiber of X ^ B (see Figure 1.6). Moreover, their coefficients are e"^, 

the Kahlcr parameter of X recording the area of the sphere. In general for 

compact toric manifolds, W is always written in terms of disk counting and 

3ln this thesis it is more convenient to take this convention, instead of setting z 二 exp(r+i0) . 
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Kabler parameters, and the behavior of its critical points reflects the symplectic 

enumerative geometry of X [17]. 

Figure 1.6: The two disks bounded by a toric fiber. One corresponds to the term 

z, and the other corresponds to 1/z in the expression of the superpotential. 

For T-duality for compact toric manifolds, the readers are referred to [10]. 

1.3.3 The complex plane 

For X = C^, the situation looks similar and it is tempting to write its mirror as 

((C^)^, W — Zi + Z2) (see Figure 1.7). However, such W does not possess any 

critical point, and it is not helpful to understand the symplectic geometry of X. 

Figure 1.7: The two disks bounded by a toric fiber in C^, which should contribute 

to two terms in the superpotential. 



and it is interesting to see how this comes up from the SYZ perspective. We 

will give the answer to this in Chapter 5. One needs to consider the fibration 

FI : X ^ B, Z2) = (I约P — I - 1| — 1) where B is the upper half 

plane. Figure 1.8 depicts the fibers of this fibration. 

© 

‘ ^ 0 
- 1 

Figure 1.8: The fibers of /i on C^. Generic fibers are tori. The dotted line is the 

(wall'. 

The key ingredient is the wall-crossing phenomenon of disk counting studied 

extensively by Auroux [3，4]. Roughly speaking, the base B is divided into cham-

bers by 'walls', so that disk counting changes drastically as one moves from one 

chamber to another chamber. In this example, the wall is R x {0}. Below the 

wall, torus fibers only bound one disk; Above the wall, torus fibers bound two (see 

Figure 1.9). Such wall-crossing phenomenon forces one to correct the complcx 

structure coming from T-duality. In Section 4.3 we introduce such a correction 

procedure, such that after correction one obtains the mirror (1.3.1). 

Notice that there are two disks bounded by toric fiber, and there are two 

terms (1 and z) in the right hand side of (1.3.1). We will see in Chapter 5 that 

this is not a coincidcnce. 

SYZ mirror symmetry for toric Calabi-Yau manifolds 20 

Instead, the physicists [28] wrote down the mirror of X as 

3 + 4 G C^ X C 
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Figure 

bound 

disk. 

1.9: Wall-crossing phenomenon in C^. Fibers at a point below the wall 

one holomorphic disk, while those above the wall bound two holomorphic 

1.3.4 Canonical line bundle of the projective line 

Disk counting in the toric Calabi-Yau manifold Kpi is more complicated than 

in C^, sincc there is a holomorphic sphere in K^i, leading to sphere bubbling 

of holomorphic disks (see Figure 1.10). In the presence of sphere bubbling, the 

moduli problem involves obstructions and one needs to consider the theory of 

virtual fundamental class, and so the task of disk counting becomes highly non-

trivial. 

Figure 1.10: Sphere bubbling of holomorphic disks in K]p>i. The moduli space of 

disks contains a holomorphic disk union with a sphere as shown in the figure. 

In Chapter 7, wc will count the disks in the presence of such obstruction. For 

this example, the result is that a toric fiber bounds four disks, which are in the 
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classes /3i, Po and Pq + a respectively (see Figure 1.10). The mirror of K^i is 

then 

{(u, V, z) e C^ X : uv = 1 ^ e'^ ^ z ^ e-'^z-

where A is the symplectic area of the zero-section pi C K^i 

terms corresponds to the four disks bounded by toric libers. 

Again the four 

1.3.5 Canonical line bundle of the projective plane 

Figure 1.11: Sphere bubbling of holomorphic disks in Kf>2. There are infinitely 

many classes of bubbled disks. 

Similarly, sphere bubbling occurs in /<p2, and here the situation is even more 

complicated since a toric fiber bounds infinitely many disks. The mirror of Kp2 

is The mirror of /(p2 is then 

oo 
{(仏 V�Zi, Z2) e C2 X ( c x f : uv = 1 + E nfce-u + zi + + e—�i—i^s—i} 

where A is the symplectic area of the line class I e HaiX) of P^, and for each k, 

riĵ  IS the number of disks in the class b + kl, b is the basic disk class corresponding 

to the zero scction P^ C Kf>2 (see Figure 1.11). In Chapter 7.3, wc will see that n^ 

equal to the local invariants of the Hirzebruch surface Fi, which can be computed 
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via local mirror symmetry [11], The first few terms are 

ni = —2, 

712 = 5, 

ns = —32, 

Hi = 286, 

ns = -3038, 

1.3.6 The fiberwise compactification 

The same computational method can be used to count the disks in the fiberwise 

compactification X = of Kf>2. This application is discussed in Section 7.4. 

The Landau-Ginzburg mirror oi X is W : (C^)^ C, 

W + 秘—kA 之 3 + 么 + + + Z^^ 
k--

where A is the symplectic area of the line class I G H2{X) of and Uk is the 

same number for each k as that in the last example. 



Chapter 2 

Symplectic aspects of toric 

manifolds 

This chapter aims at quickly building up basic terminologies and notations in 

symplectic geometry and toric geometry we need throughout the thesis. 

2.1 Basic notions in symplectic geometry 

This section introduces some very basic notions in symplectic geometry, aiming at 

setting up the necessary notations. We refer to the excellent book [8] by Cannas 

da Silva for more details. X is a smooth manifold throughout this section. 

Defini t ion 2.1.1. A symplectic structure on a smooth manifold X is a closed 

non-degenerate two-form to on X) that is, do; = 0 and lo{v, •) ; TpX T*X is an 

isomorphism for all v G TpX. The pair (X,lj) is called a symplectic manifold. 

By the non-degeneracy condition on to, d i m X = 2n for some n ^ N. The 

following Darboux theorem tells us that {X, uj) is locally trivial, and so there is 

no local symplectic invariant (in contrast to Riemannian structures): 

T h e o r e m 2.1.2 (Darboux). Let (X, u) be a symplectic manifold. For each p G 

X, there exists a coordinate chart {U, p)，where U C X is an open set containing 

24 
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p and p \ U ^ V dC^ IS a diffeomorphism, such that /9*(a;o|y) = uj\u- Here luq 

IS the standard symplechc form on C^, which is written as ujq = d^i A dyi A .,,八 

dxn 八 m terms of the standard coordinates = Xi + iy^ on C". 

The objects of interest are Lagrangian submanifolds L C X: 

Definition 2.1.3, Let (X^co) be a symplechc manifold. 

1. A submamfold L C X is said to he Lagrangian if L is of dimension n and 

4 = 0. 

2. A pair (L, V) is called a Lagrangian brane if L is a Lagrangian submamfold 

of X and V is a fiat U{1) connection on L. 

Remark 2.1.4. From the perspective of mirror symmetry, a reason to study 

Lagrangian branes (instead of merely Lagrangian submanifolds) is the following. 

For a complex n-fold Y, a point p ^ Y has real 2n-dimensional freedom of 

deformation. By mirror symmetry, in the symplechc side we should study objects 

which also has 2n'dimensional freedom of movement. For a Lagrangian torus L 

in a symplechc 2n-fold, the space of infimtesimal deformation of L is given hy 

which IS of n-dimension only. To 'complexify' its deformation space one 

equips L with a flat U{1) connection V, which adds n-dimension of freedom to 

the deformation since the space of flat [/(I) connections on L is also given hy 

嘲 . 

One of the key notions in SYZ mirror symmetry is a Lagrangian fibration on 

X defined as follows: 

Definition 2.1.5. Let (X, u) be a symplechc manifold and B he a smooth man-

ifold A surjechve map ii \ X ^ B is called a Lagrangian fihration if for every 

regular point p € X of fi, Ker(d/i(p)) c T^X is a Lagrangian sub space. 

In this thesis we always assume that fi is proper (that is, inverse images of 

every compact set is compact) and all its fibers are connected In such a setting 
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Arnold-Liouville theorem can be applied to infer that every regular fiber of jj, is 

an n-torus' 

Theorem 2.1.6 (Arnold-Liouvillc [2]). Let fi : X B be a proper Lagrangian 

fibratwn with connected fibers. For every regular value tq ^ B of ji, there 

exists an open set U C B containing r�such that one has a diffeomorphisrn 

/i) = {T*U/IT'where W acts freely on each cotangent fiber 

T*U by translations, ujq is the canonical symplectic form on T*U and it descends 

to T* UjT^, and it : T*U U is the canonical bundle map. In particular, every 

regular fiber is diffeomorphic to a torus T*U/Z". 

As a consequence, if /i is a submersion (that is, all its values are regular), then 

/X is a Lagrangian torus bundle defined as follows: 

Definition 2.1.7. Let (X, u) be a symplectic manifold and B he a smooth man-

ifold A fiber bundle jj, : X ^ B is called a Lagrangian torus bundle if each of its 

fibers IS dtffeomorphic to a torus and is a Lagrangian submamfold in {X, cu). 

2.2 Toric geometry 

An important class of Lagrangian fibrations consists of moment maps on tone 

Kahler manifolds. Let / / = Z"' be a lattice, and for simplicity we shall always 

use the notation Nr N 0 Rioi a, Z-module R. In this thesis S always denotes 

a simplicial convex fan supported in A r̂, and is the associated toric manifold 

admitting an action from the complex torus N c / N = (C^)", which accounts for 

its name (toric manifold'. X is compact if E is complete. 

We now give a short explanation of some terminologies appearing in the pre-

vious paragraph and the construction of toric manifolds as GIT quotients. We 

begin with the definition of a fan: 

Definition 2.2.1. A fan T, is a collection of (closed) cones sitting in N^, which 

satisfies the following compatibihty conditions: 
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1. //cr G S, then its faces (which are again cones) are also elements of H. 

2. Any two cones in S intersect along thevr faces. 

The support of E is denoted hy |E| c N]^, which is the umon of all cones 

contained in E. A ray of I] is a one-dimensional cone m E. 

0) 

Figure 2.1: Fan pictures of some toric Calabi-Yau manifolds, 

(iii.) 

C2. (ii.) Kpi. 

E IS said to he convex if its support |E| is a convex subset of Ni, and it is said 

to be strongly convex if in addition |S| does not contain any whole line through 

the origin 0 e Ni. It is said to be complete i/ |E| = N-^. A convex fan E is 

said to he simphcial if every n-dimensional cone contained m S can be written as 

M>o('yi,. ., Vn) for a basts of N 丄. 

See Figure 2 1 士oi some examples Fiom now on E always denote a simplicial 

convex fan Let Uj e N ioi j = 0,. , m — 1 be all the primitive generators of 

rays oi E 

Then one defines a linear map 

IT" ^ N 

^Usually a simplicial cone is defined as a cone in Ni spanned by n independent elements m 

N For our purpose wc require m addition that those elements form a basis 



SYZ mirror symmetry for toric Calabi-Yau manifolds 28 

by sending the standard basic vectors ê  G to v^ G N, Let K C be the 

kernel. := K ^ j K acts on C " by 

[Oi，…’ flm)] • {zi, ...,Zm) = (exp(27riai)2i,...，(exp(27ri 

Xs is defined as a suitable quotient (the 'GIT' quotient) of C"^ by C^(i^). To 

do so we need to remove a 'bad subset' in C"^ defined as follows. 

A subset S = {v^^，.，.，i^j^J of generators is called a primitive collection if 

IR>o(5') is not a cone of S, but every proper subset of S generates a cone of S. 

Z^ is defined as 

^ s ：二 U { ( 釣 ， • • • ^Zm) e C ^ : z,^ = ... = z^^ = 0} 

s 

where the union is taken over primitive collections S = {〜，…，！；场}. Then Xj^ 

is defined as 

Xy, admits a residual action by Nc/N. There is an open subset in Xj： on 

which Nc/N acts freely, which is C Ĵ Ts. By abuse of notation 

we'll also denote this orbit by N c / N C X^. 

Wc denote by M the dual lattice of N. Every latticc point " G M gives a 

nowhere-zero holomorphic function exp 27ri {u, •) : N c / N — C which extends as 

a meromorphic function on Its zeroes and poles give a toric divisor which is 

linearly equivalent to 0. (A divisor D in X s is toric if D is invariant under the 

action of N c / N on X^.) 

We may further equip Xs with a Kahler form cu which is invariant under the 

torus action by T := N^/N. It induces a moment map 

Mo ： Ps ^ Mm 

whose image is a polyhedral set P C M^ defined by a system of inequalities 

Oj , •) > CJ 
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where ĉ  G E are some suitable constants /xq provides a Lagrangian fibration on 

Xe- Every interior point r of F is regular, at which the fiber is = We 

will also call Hq as a toiic fibration on Xs (to distinguish with the Gross fibiatioii 

which will be introduced in Section 5.1). 

P admits a natuial stiatification by its faces Each codimension-oiie face 

Tj C P which is normal to Vj G N corresponds to an irreducible toric divisor 

Dj — /i j i(Tj) c Xs for J = 0, , m, and all other toric divisors are generated 

by { T ) j F o r example, the anti-canonical divisor K^^ is Yl'^Jo' '^j-

In this thosis wc mainly focus on toric Calabi-Yau manifolds, whose definition 

IS given as follows: 

Definition 2.2.2. A tone mamfold X = Xs is Calabi-Yau if there exists a tone 

linear equivalence between its canonical dims or Kx and the zero divisor. In other 

words, there exists a dual lattice point u^M such that 

fe, %) 二 1 

for all I = Q, . . , m — 1. 

As an illustration Figure 2.1 gives the fan picture of some familiar toric Calabi-

Yau manifolds. An important subclass of toric Calabi-Yau manifolds is given by 

total spaces of canonical line bundles of compact toric manifolds: 

Example 2.2.3. Let N' be a lattice of rank n — 1, and Y = be a tone 

(ri — V) -fold associated to a smvphcial convex fan S ' supported m N^, whose rays 

are generated by primitive generators ..., '^'m-i ^ N'. 

Define N •= N' x Z , i；。：= ( 0 , 1 ) G N, and v, (<;；,!) e N for all l = 

1,. . . , /7i _ 1. Every cone ..., v'�—) of induces a cone 

. . .， i ^ n � C Ni. 

E IS defined as the collection of all such cones together with the trivial cone 
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{0} C N]^, and this gives a simplicial convex fan supported in iY®. Define 

u (0,1) G M - X Z 

and by definition 

fe，均）二 1 

for all i = 0,. .. ,m — l. Thus the corresponding toric manifold X — Xy, is a toric 

Calahi- Yau manifold. Indeed X is the total space of the canonical line bundle of 

Y. 

2.3 Holomorphic disks bounded by toric fibers 

Lagrangian fibrations are essential in SYZ mirror symmetry, since by taking their 

duals one obtains an approximation of the mirror, which is the so-called semi-

flat mirror (see Section 4.3). Another key ingredient of SYZ is the counting of 

holomorphic (or more rigorously, stable) disks bounded by Lagrangian fibers, 

which is the data to correct the semi-flat mirror. More precisely: 

Definition 2.3.1. Let (X, cu) be a symplectic manifold and L C X he a La-

grangian submanifold. Equip X with an almost complex structure J compatible 

with cj. 

A pseudoholomorphic disk hounded by L is a smooth map u : (A, DA)—> 

(X, L),where A c C zs the closed unit disk (and the notation means that u is a 

map from A to X and u(pA) c L), such that u is holomorphic with respect to 

the almost complex structure J, that is, 

du o j = J�du, 

where j is the standard complex structure on the disk A C C. For simplicity we'll 

abbreviate 'pseudoholomorphic disk' to 'holomorphic disk，. 
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In this thesis, L is taken to be a regular fiber of a Lagrangian fibration. The 

moduli of holomorphic disks and the definition of their counting will be discussed 

in Chapter 3. 

For toric fibers in toric manifolds Xs = ( C 讯 — ( S e c t i o n 2.2), 

holomorphic disks are easy to describe: Every holomorphic disk can be lifted to 

(C", L) where L 二 {|；̂《| = ri for i = 1) •..，m} C for some u > 0，and these 
can be written down explicitly. This is the work of Cho-Oh [12] who classified 

holomorphic disks bounded by Lagrangian toric fibers: 

Theorem 2.3.2 (Theorem 5.3 of [12]). Let X ^ Xj： be a toric manifold and 

T c X be a Lagrangian toric fiber. A holomorphic map u : (A, dA) {X, T) 

can be lifted to 

{ i : ( A，9 A ) 4 ( C r —Zs，7r—i(T)) 

where tt : — Zj] ^ X is the natural quotient map. Moreover u = ( i^ i , . . . , w^n), 

where 
Mi (\ r r ^ - oLj^k wAz) = Cj  

八‘ J 1 ^., 7 
for Cj G C^ and (ij G Z>o for each j = 1 , . . . , m. 

The theorem will be applied to compute the open Gromov-Witten invariants 

for toric Calabi-Yau manifolds in Section 5.4 and Section 7.2. The next chapter 

gives a brief introduction to the FOOO's formulation of open Gromov-Witten 

invariants [20, 21]. 



Chapter 3 

Open Gromov-Witten invariants 

In this chapter we introduce the concept of open Gromov-Wittcn invariant, which 

is the main ingredient for the quantum correction procedure to be discussed in 

Section 4.3. The idea of open Gromov-Witten invariant is along the same line as 

its closed counterpart, in which one has to define corresponding moduli spaces 

and investigate the compactness and transversality issues. Yet it is more technical 

and complicated since the moduli spaces involved to define open GW invariants 

usually have boundaries, which make cobordism arguments fail. Nevertheless, 

under some assumptions which are satisfied in the context of this thesis, this issue 

can be avoided (Proposition 3.2.7). Wc follow the approach of FOOO [20, 21], 

and the readers are referred to there for details. 

Throughout this chapter, {X. u) is a symplectic manifold equipped with an 

almost complex structure J compatible with to (that is, g(v, w) := uj�Jv, w) gives 

a Hcrmitian metric on X with respect to J). 

3.1 Classical invariants of disks 

In this scction we introduce two classical symplectic invariants: symplectic area 

and Maslov index. These invariants are associated to homotopy classes of disks. 

32 
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Definition 3.1.1. 1. For a submanifold L C X, 7i2(X, L) is the group of ho-

motopy classes of maps 

where A {z e C : \z\ < 

natural homomorphism 

defined by (9[n] := [u|aA]-

2. For two suhmanifolds L( 

classes of maps 

1} denotes the closed unit disk in C. We have a 

d : 7r2(X, L) -^7ri(L) 

Li C X, 7r2(X, Lo, Li) is the set of homotopy 

u : ([0，1] X Si, {0} X {1} X Si) — (X，Lo, Li). 

Similarly we have the natural boundary maps : 7r2(X, Lq, Li) — 7ri(Li) 

and d— : 712(X, Lq, Li) 7ri(Lo). 

Given a disk class /3 G 712(X, L), one may measure its symplectic area 

00 ：— u*u 
Jp J A 

where u : (A, OA) (X, L) is a map representing and by Stokes' theorem 

the above integration is independent of the choice of representatives. Another 

important topological invariant for is its Maslov index: 

Definition 3.1.2. Let L he a Lagrangian submanifold and G 7T2{X, L). Let 

u : (A, (9A) — (X, L) be a representative of 13. Since A is simply connected, one 

has the trivialization 

u*TX ^AxV, 

where V is a symplectic vector space. Thus the suhhundle {duY'TL C {du)*TX\L = 

dA X V over OA induces the Gauss map 

OA — C/(n)/0(n) ；7(1)/0(1) ^ 
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where U(n)/0(n) parameterizes all Lagrangian sub spaces m V. The Maslov mdex 

li{P) e Z of P IS defined as the degree of this map which w independent of the 

choice of representative of p and tnviahzahon of TX over A. 

From the perspective of open Gromov-Witten theory, 釣 is important for 

open Gromov-Witten theory bccause it determines the expected dimension of the 

moduli space of holomorphic disks (see Equation (3.2.1)). 

In the next scction, we'll see that to make the open Gromov-Witten theory 

well-behaved (see Proposition 3.2.7), one may impose the condition that L is an 

compact oriented spin Lagrangian submanifold with minimal Maslov index at 

least two (see Definition 3.2.6 and Proposition 3.2.7). 

3.2 Moduli spaces of stable disks 

To define genus-zero open Gromov-Witten invariants of (X, L), which arc roughly 

speaking countings of pseudoholomorphic disks in X bounded by L, wc need to 

define the moduli of pseudoholomorphic disks. 

Recall that we have defined the notion of pseudoholomorphic disk in Definition 

2 3 1. Their moduli is defined as follows: 

Definition 3.2.1. Let [X, u) he a symplechc manifold equipped with a com-

patible almost complex structure J, L C X he a Lagrangian submanifold，and 

j3 G tt2{X, L) he a disk class hounded hy L. 

1. The moduli space (5) of pseudoholomorphic disks representing /? G 

71"2(义,L) with k ordered boundary marked points is defined as the quotient 

by Aut(A) of the set of all pairs {u, 二�，where 

u • (A, dA) 4 {X, L) 

l i t should be clear from the context whether /i refers to a Lagrangian fibration oi the Maslov 

index 
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ts a pseudoholomorphic disk bounded by L with homotopy class [iz] = jS， 

and G dA i — 0, ,k — 1) is a sequence of boundary points labelled 

in the counterclockwise fashion For convenience the notation (u, (p^)f^Q^) 

IS usually abbreviated as u 

2 The evaluation map ev^ (3) L for i — 0, — 1 is defined as 

e v 咖 , �t c } ] ) = 

By index theory of the elliptic operator d, one has 

Proposition 3.2.2 ([20]). M.l(L, jS) has expected dimension 

dmi^t(MUL, m = d i m L + -h k - 3 (3 2 1) 

The shorthand notation 'virt' stands for the word 'virtual', which refers to 

'viitual fundamental chain' discussed below 

To define countings of holomorphic disks, one requires an intersection theoiy 

on M l ( L , /?) This involves various issues 

1 Cornpactification of modali 

/3) IS non-compact in general, and one needs to compactify the moduli 

Analogous to closed Gromov-Witten theory, this involves the concept of stable 

disks A stable disk bounded by a Lagrangian L with k ordered boundary marked 

points 2 IS a pan (u, 二), where 

u (S, <9E) 4 (X, L) 

IS a pseudoholomorphic map whose domain E is a 'semi-stable' Riemann surface 

of genus-zero with a non-empty connected boundary 9E and (p! G i9E) is 

2]\Iore generally one considers stable disks with both boundary and interior marked points 

For oui puipose we consider boundary marked points only 

3 Roughly speaking this means S consists of disk and sphere components and each singular 

point IS a normal crossing' that is the neighborhood around every singular point is locally 

isomoiphic to {(a; 1/ e C) xy = 0} 
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a scqucncc of boundary points labelled in the counterclockwise fashion (with 

lespect to the orientation of each disk components), such that it satisfies the 

stability condition: If a sphere component C of S is contracted under u (that 

is, y\c IS constant), then C contains at least three special points of E If a disk 

component A is conti acted undei u, then A either contains at least two inteiioi 

spccial points, or three boundary spccial points, or one interior and one boundaiy 

special points A point in S is said to be special if it is a singular or marked point. 

(See Figure 3.1 for an illustration.) 

Figure 3.1: Examples of stable and unstable disks. The left one is stable while 

the right one is unstable. The components labelled by 'c' are contracted, and all 

others are not contracted The points represented by crosses are marked points, 

and those represented by dots are singular. 

A compactification of /3) is then given by the moduli space of stable 

disks: 

Defini t ion 3.2.3 (Definition 2.27 of [20]). Let L be a compact Lagmngmn sub-

mamfold in X and (3 e 兀2(义，V). Then Mk{L, is defined to be the set of iso-

morphism classes of stable disks representing jS with k ordered boundary marked 

points. Two stable disks (ii, (p^)) and ((/, {p[)) are isomorphic if the mops a and 

v! have the same domain T, and there exists (f) G Aut(S) such that u' — uo (p and 

4>{p[) =Pf 

Remark 3.2.4. In the above definition we require that the ordering of marked 

points respects the cyclic order of In the terminologies and notations of 
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[20], the above moduli is called the mam component and is denoted by 『"肌(/3) 

instead. 

2. Orientation. 

According to Chapter 9 of [21], Mk{L, /3) is canonically oriented by fixing a 

relative spin structure on L. Thus the issue of orientation can be avoided by 

assuming that the Lagrangian L is relatively spin, which we shall always do from 

now on Indeed, in this paper, L is always a torus, and so this assumption is 

satisfied. 

3. Transversahty. 

An essential difficulty in Gromov-Witten theory is that in general, the moduli 

space Mk{L, /?) is not of the expected dimension, which indicates the issue of non-

transvcrsality. To remedy the situation, one needs to do a generic perturbation 

and construct the virtual fundamental chain instead of working directly with 

Mk{L, This is done by Fukaya-Oh-Ohta-Ono [20, 21] which uses Kuramsht 

structure on We briefly recall its construction in the following See 

Appendix A1 of the book [21] for more details. 

Definition 3.2.5 (Definitions Al . l , Al,3, A1.5 in [21]). Let M be a compact 

metrizahle space. A Kuramshi structure on Ai of (real) virtual dimension d 

consists of the following data: 

(1) For each point a G M, 

(1.1) A smooth manifold Vg- (with boundary or corners) and a finite group 

Tcr acting smoothly and effectively on V^. 

(1-2) A real vector space E^ on which F^ has a linear representation and 

such that dim V^ — dim E^ — d. 

(1.3) A r^-eqmvanant smooth map s^ '-V^ E^. 
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(I.4J ^ homeomorphism Vv from s广(0)/IV onto a neighborhood of a in A4. 

(2) For each a e M and for each t e Im 礼, 

(2.1) A Vr-mvanant open subset V^t C K containing 

(2.2) A homomorphtsm /Vr : —T^. 

(2.3) An haT-equwanant embedding (pa-r '• K-r — Va and an injecUve h^T-

eqmvanant bundle map 丁 : E^- x Vg-r Eg- x Va- covering (/Vt-

Moreover, these data should satisfy the following conditions: 

M ^ar OSr = S^o 盯.5 

M A 二 VV�(/VT. 

(m) If i Q n Varl^T), then in a sufficiently small neighborhood of 

^ar O V̂ r̂  = ^a^, ^ a r � = 

The spaces E^ are called obstruction spaces (or obstruction bundles), the 

maps {sa- • Vcr Efj} are called Kuranishi maps, and (Vo-, E^j, IV, 中^) is called 

a Kuranishi neighborhood of cr G A^. 

The Kuianishi structure on can be described as follows. Let (u. (pt)^!^) 

be representing a point a G Mk[L, P). Let u*{TX)] L) be the spacc of 

sections V of u*(TX) of W^'^ class such that the restriction of v to 5E lies in 

u*{TL\ and ® A°，i) be the space of u*(TX)-valued (0, l)-forms 

of class. Then consider the linearization of the Cauchy-Riemann operator d 

D j : u*(TX); L) 4 • ’ n ^ ( T X ) � A 

‘Here and in C2 below, we regard tpr as a map from to A4 by composing with the 

quotient map Vr Vr/Tr 
^Here and after, we also regard as a section s^ ： Va ^ Ea- V -̂
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This map is not always surjectivc (i.e. u may not be regular), and this is ex-

actly why we need to introduce the notion of Kuranishi structures. Define the 

obstruction space E -̂ to be the cokernel of Dud. We also define to be the 

automorphism group of (u, (pJJlq^). 

To construct V ,̂ first let V̂丄邵’。be the space of solutions of the equation 

Dadv = 0 mod E^. 

Now, the Lie algebra Lie(Aut(S, (pi)frQ^)) of the automorphism group of ( E , � tcl) 

can naturally be embedded in 二 T a k e its complement and let VJnap̂ o- be a 

neighborhood of its origin. On the other hand, let Vdomain,er be a neighborhood of 

the origin in the space of first order deformations of the domain curve (S, ( p j二 ) . 

Now, Kt is given by ！/腿？，x Vdomain,<T-

Next, one needs to prove that there exist a IVequivariant smooth map s^-: 

V^ Ea- and a family of smooth maps Uy，《:(E^, 91；̂ ) {X, L) for {v, C) G V^ 

such that — Sa{v, (), and there is a map î a mapping onto a 

neighborhood of cr E M.k{L, (3). The proofs of these are very technical and thus 

omitted. 

After introducing Kuranishi structure on Mk{L, one perturb the moduli 

by Kuranishi multisections. Wo will not give the precise definition of multi-

sections here. See Definitions A1.19, A1.21 in [21] for details. Roughly speaking, 

a multi-scction s is a system of multi-valued perturbations : V^ E^j} 

of the Kuranishi maps {ŝ - : E^j} satisfying certain compatibility condi-

tions. For a Kuranishi space with certain extra structures (this is the ease for 

A4 = A4k{L, (3))^ there exist multi-sections 5 which are transversal to 0. Fur-

thermore, suppose that AA is oriented. Let ev : A4 Y he a, strongly smooth 

map to a smooth manifold Y (in this case Y — L^), i.e. a family of IVinvariant 

smooth maps {ev̂ r ： V^- Y} such that ev^ o cp^^ = ev^ on Var- Then, using these 

transversal multisections, one can define the virtual fundamental chain [M^^^ as 

a Q-singular chain in Y (Definition A1.28 in [21]). 
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4. Boundary strata of the moduli space. 

Aiiotliei difficulty in the tlieoiy is that in general Mk{L, /3) has codimension-

one boundary stiata, which consist of stable disks whose domain E has more 

than one disk components. Then intersection theory on Mk{L, (3) is still not 

wcll-dcfiiied (because it depends on the choice of pertuibation). A way to get 

around this problem is by imposing the condition that L has minimal Maslov 

index at least two, so that the moduli has no codimension-one boundary 

stratum: 

Definition 3.2.6. The mtmmal Maslov index of a Lagmngmn suhmamfold L is 

defined as 

min{/i(/3) . {3 and Mo{L, (3) is non-empty}. 

Proposition 3.2.7. Let L C X be a compact Lagmngmn suhmamfold which has 

mimmal Maslov index at least two, that is, L does not bound any non-constant 

stable disks of Maslov index less than two. Also let f5 G 兀2(义,L) be a class with 

li{(3) — 2. Then Mk{L, ,8) has no codimension-one boundary stratum. 

Proof. Let u £ P he a. stable disk belonging to a codimension-one boundary stra-

tum of M.k(L, (3). Then, by the results of [20, 21], a is a union of two non-constant 

stable disks iii and U2. By forgetting the marked points (and contracting the un-

stable components in the domain if necessary), for each 1 — 1,2 u^ corresponds to 

an clement St G Mo{L, and — ^{u^). By assumption > 2. Then 

2 = = /i([ui]) + fi{[u2]) > 4’ which is false. • 

When Mk{L, /3) is compact oriented without codimension-one boundary strata, 

the virtual fundamental chain is a cycle. Hcncc, we have the virtual fundamental 

cycle ev^[Mk{L. /3)] G Q), where d — dinivirt Mk{L, P). While one cannot 

do intersection theory on the moduli due to non-transversality, by introducing 

the virtual fundamental cyclcs, one may do intersection theory on L^ instead. 
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3.3 Generating functions of open G W invariants 

With the above preparations, one-pointed genus-zero open Gromov-Witten in-

variants can be defined as follows. 

Definition 3.3.1. Let L c X be a compact relatively spin Lagrangian submani-

fold which has minimal Maslov index at least two. For a class jS G 兀2(义）L) with 

= 2, we define 

ni3 - P.D.(A4i(L, p)) U P.D.([pt]) G Q, 

where [pt] G Hq{L, Q) is the point class in L, P.D. denotes the Poincare dual, 

and U is the cup product on H*{L, Q). 

The number n吕 is invariant under deformation of complex structure and under 

Lagrangian isotopy in which all Lagrangian submanifolds in the isotropy have 

minimal Maslov index at least two (see Remark 3.7 of [3]). This justifies that np 

is said to be an 'invariant'. Also, notice that the virtual dimension of M.i{L, /3) 

equals n + — 2 > n and it is equal to n = dimL only when = 2. Thus 

Proposition 3.3.2. Assume the setting as in Definition 3.3.1. Then n^ = Q if 

m ^ 2. 

As in closed Gromov-Witten theory, a good way to pack the data of open 

Gromov-Witten invariants is to form a generating function: 

Definition 3.3.3. Let L C X he a compact relatively spin Lagrangian subman-

ifold with minimal Maslov index at least two. For each A G 7ri(Z/), we have the 

generating function 

A) := ^ n/3 exp f— f uj (3.3.1) 
I3GMX,L)x \ h J 

where 

MX, L)x ：= e 兀2(义,L):d/3 = A}. (3.3.2) 
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For simplicity we'll abbreviate Tx to T when the background symplectic manifold 

X IS clear from the context. 

Intuitively A) is a weighted count of stable disks bounded by the loop A 

which passes through a generic point in L. In general, the above expression for 

A) can be an infinite series, and one has to either take care of convergence 

issues or bypass the issues by considering the Novikov ring Ao(Q), as done by 

Fukaya-Oh-Ohta-Ono in their works. 

Definition 3.3.4. The Novikov ring Ao(Q) is the set of all formal series 

oo 

E a 力 
i二 Q 

where T is a formal variable, G 0 and Aj G R>o such that limj_).oo 入i = oo. 

Then A) e Ao(Q) is defined by 

J"(L，A)= [ n 於、 
/3G7r2(X,L)A 

The evaluation T = e_i recovers Equation (3.3.1), if the corresponding series 

converges. In the rest of this paper, Equation (3.3.1) will be used, while we keep 

in mind that we can bypass the convergence issues by invoking the Novikov ring 

Ao(Q). 



Chapter 4 

T-duality and Fourier transform 

This chaptcr discusses how to use Fourier transform of Gromov-Witten invariants 

to obtain the quantum corrections in SYZ mirror symmetry. Section 4.1 is a quick 

review on Fourier series for tori, and Section 4.2 gives a family version for torus 

bundles. Section 4.3 is the main scction, in which we propose a procedure to 

carry out SYZ construction with corrections. It will be used to construct the 

mirrors of toric Calabi-Yau manifolds in Chapter 5. 

4.1 Fourier series 

Let A be a lattice (that is, a free Abelian group with finite rank), and V := A® 股 

be the corresponding real vcctor space. Then T := V/A is an n-dimensional 

torus. We use V*̂  A* and T* to denote the dual of V, A and T respectively. 

There exists a unique T-invariant volume form dVol on T such that f ? dVol = 1. 

One has the following well-known Fourier transform for complex-valued functions: 

户(A*) - L2(T) 

f ^ f 

43 
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where for cach ^ G T, 

m = (4.1.1) 
入 

and for cach A G A*, 

/(A) = J /(句e—2兀中，"')dVol(句. (4.1.2) 

The above familiar expressions have the following natural interpretation. A* = 

Hom(T, r/(l)) parametrizes all charactcrs of the Abelian group T, and conversely 

T 二 f /( l)) parametrizes all characters of A*. Consider the following 

diagram: 

A* X T 

y \ 

A* T 

A* X T admits the universal character function x : A* x T [/(I) defined by 

which has the property that x|{a}xt is cxactly the character function on T cor-

responding to A, and xIa*x例 is the character function on A* corresponding to 0. 

For a function / : A* —̂  C, we have the following natural transformation 

where (tt�)* denotes integration along fibers using the counting measure of A*. 

This gives equation (4.1.1). Conversely, given a function / : T —> C, we have the 

inverse transform 

where (7ri):t： denotes integration along fibers using the volume form dVol of T. 

This gives equation (4.1.2). 



SYZ mirror symmetry for toric Calabi-Yau manifolds 45 

We will mainly focus on the subspace C°°(T) of smooth functions on T. Then 

Fourier transform restricted on this subspace gives 

�. ( A ” ^ 

where consists of rapid-decay functions / on A*. f decays rapidly means 

that for all k G N, 

as 入“oo. Here we have choscn a linear metric on V and 

l|A|| ：= sup I (A,”）I. 

The notion of rapid decay is independent of the choice of a linear metric on V. 

4.2 Fiberwise Fourier transform 

Now consider a Lagrangian torus bundle : X ] B (see Definition 2.1.7). We 

want to introduce Fourier transform in this setting. First we need a family version 

of the notion 'dual torus'. 

In the previous section, for a torus T = V/A, the dual torus is defined as 

T* := V*/A*. Note that there is a canonical identification 

7ri(T) - A 

and so 

l /7A* = Hom(7ri(T),[/(l)) 

={(L, V) : L is a C-line bundle; V is a flat U(1) connection on L}/gauge changes 

where the last isomorphism is by recording the holomony of each, flat U (1) con-

nection (L, V). {{Li, Vi) and (L2, V2) differ by a gauge change if there is a 

bundle isomorphism ^ : Li ^ L2 and Vi = Thus we may define the 
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dual to a smooth torus T as the moduli of all flat U{1) connections (L, V) on T. 

This definition has the advantage that it is intrinsic, that is, it does not require 

choosing a diffeomorphism from the smooth torus T to (7ri(T))R/7ri(T). 

With this intrinsic definition in hand, it is natural to define the dual torus 

bundle in the following way: 

Definition 4.2.1. For a Lagrangian torus bundle /i : X ^ B, X is defined as 

the set of all (F^, V) up to gauge changes, where r E B and F^ := 

IS a fiber, L is a Hermitian line bundle over Fr and V is a flat U � connection 

on L. By forgetting (L, V) one has the map fi: X ^ B, which is called the dual 

torus bundle to fi. 

By taking local trivializations of /i it is a routine check that /i is a fiber bundle. 

Moreover since the space of flat [/(I) connections on F^ is the dual torus as we 

have explained, the fibers of /2 are tori. Notice that (1 always has the zero scction 

by taking the trivial connection on the trivial complex line bundle over each fiber 

Fj. (while /i may not possess a Lagrangian section in general), which is essential 

in the definition of Fourier transform. 

One also has a family version of the lattice A* as follows: 

Definition 4.2.2. For a torus bundle ji •• X B) define the lattice bundle 

A* ：= U ̂ l(Fr) 
reB 

whose bundle map A* B is given by taking the base point r E B. 

We are ready to introduce the fiberwise Fourier transform. Analogous to 

Section 4.1，we have the following commutative diagram 
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A* xso Xc 
TTl / \ 

A* Xr 

Bo 

Each fiber F,. parametrizes the characters of A* (which are homomorphisms 

A^ [/{!)), and vice versa. A* Xb�文o admits the universal character function 

X ： A* X v ^ o —̂  t /( l) defined as follows. For each R e Bq, A G A* and V G 

X ( A , V ) : = H o l v ( A ) 

which is the holonorny of the flat U(l)-connection V over Fr around the loop A. 

Thus wc have the corresponding Fourier transform between functions on A* and 

Xq similar to Section 4.1: 

where consists of smooth functions f on A* such that for each r E Bq， 

/|yv* is a rapid-dccay function. Explicitly, / 6 is transformed to 

f-.Xo — C, 

/ ( F ” V ) = / ( A ) H o l v ( A ) . 
aga*. 

In the next section, fiber wise Fourier transform will be used to construct the 

corrcctcd SYZ mirror. 

4.3 SYZ construction with corrections 

In this section we introduce a construction procedure of mirrors which employs 

the SYZ program. This involves two steps. First one constructs the semi-flat 

mirrors of Lagrangian fibrations, which have been studied extensively in [38, 39]. 
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Then we carry out the quantum corrcction procedure using Fourier transform 

of open Gromov-Witten invariants, with the assumption that the base of the 

Lagrangian fibration is a polytope. The result of the construction would be 

a ‘Landau-Ginzburg mirror', which consists of a complex manifold X together 

with a holomorphic function W on X. 

4.3.1 The semi-flat mirror 

Let {X, oj) be a symplectic manifold, B he a smooth manifold and fi : X ^ B he 

a proper Lagrangian fibration with connected fibers (See Section 2.1). We first 

introduce the following notations: 

Definition 4.3.1. For a Lagrangian fibration ji : X B, let 

T := {r G B : r is a critical value of ji} C B 

which is called the discriminant locus of fi. Then 

BQ:= B-T 

consists of the regular values of fi, and ji restricted to 

Xo (4.3.1) 

is a Lagrangian submersion onto Bq. 

By Arnold-Liouville Theorem (Theorem 2.1.6), 

bundle, and one may take its dual to obtain jl : Xq ^ Bq 

4.2.1. Xo consists of all flat U{1) connections on regular 

is a Lagrangian torus 

according to Definition 

torus fibers of ji. 

Moreover, Xq admits a natural complex structure defined as follows: 

Definition 4.3.2. Let FI : Xq ^ Bq be a Lagrangian torus bundle and jl : Xq ^ 

Bo be its dual torus bundle. Fix any Tq E Bq, let U C Bq be a contractible 
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neighborhood of Tq and trivialize fi : —> U as U x T —̂  [/. Let {A^}"̂ ^ be 

the standard basis of 7ri(T) = Z". 

For each r ^ U, choose a path 7 : [0,1] ^ [/ with 7(0) = ro and 7(1) = r, 

and by abuse of notation denote a map Ŝ  ^ T representing Xi € 7ri(T) also by 

Aj. Let hi{r) denote the cylinder 

hi{r) := 7 X \ : [0,1] X Ŝ  ^ [/ X T ^ 

By Stokes，theorem, its symplectic area f^ (” is independent of choices of 7 and 

a representative of Moreover fixing a flat U{1)-connection V over Fj., denote 

its holonomy around Xi G 7ri(T) = 7ri(Fr) hy Holv(Ai). Then for i = 1 , . . . , n, 

z�:/i-i(f/) —> C is defined by 

/ r \ 
Zi{Fr,V) := exp — u Holv(Ai). (4.3.2) 

\ J Kir) J 

It is a routine check that defines local complex coordinates on Xq. They are 

called the semi-flat complex coordinates which define the corresponding semi-flat 

complex structure on Xq. 

Notations in the above definition are depicted in Figure 4.1. Xq endowed with 

this semi-fiat complex structure is called the semi-flat mirror of X [39，38]. 

Figure 4.1: The cylinders hi 
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Furthermore, if the monodromy of the torus bundle Xq Bq (which is a 

homomorphism 7ri(Bo) GL(n, Z)) has image inside SL{n, Z), then one has a 

nowhere vanishing holomorphic n-form on Xq which is 

d î 八...A dzn 

when written in terms of the semi-flat complex coordinates. We call this the 

semi-flat holomorphic volume form. It was shown in [10] that this holomorphic 

volume form can be obtained by taking Fourier transform of exp(—a;). Thus it 

cncodcs the symplcctic geometric information of Xq. 

While the definition of semi-flat mirror is simple and canonical, it does not 

capture the symplectic geometry of the singular fibers of ji. Moreover, as pointed 

out by Gross-Siebert [27], one has to 'correct' its semi-flat complex structure in 

Older to compactify it to produce the mirror of X. This procedure is introduced 

in the next section. 

4.3.2 Quantum corrections 

Wc now define a procedure to construct the SYZ mirror out of the dual torus bun-

dle and symplectic cnumcrative information of X. This employs open Gromov-

Witten invariants introduced in Chapter 3 and Fourier transform introduced in 

the last scction. 

The setting is as follows. 

Assumption 4.3.3. Let X be a Kahler manifold of complex dimension n, and 

fi : X B be a proper Lagrangian fibrahon with connected fibers. We'll make 

the following assumptions: 

1. B cMJ^ IS a polytope. 

2 Denote the facets of B by 屯” j = 0,... ,m — 1. The pretmages 

Dr•二 A ^ i � C X 
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are Weil divisors of X for all j — 0,..., m—1. They are called the boundary 

divisors. Moreover 一Kx — YlJZo Dj. 

3. For every regular fiber F^ and 卢 G 兀2(1，Fr), 

4- Let Bq he the set of regular values of ji. For generic r ^ Bq (that is, away 

from a proper closed subset of Bq), the torus fiber Fr has minimal Maslov 

index at least two. 

Figure 4.2 gives a simple illustration of the notations in the above setting for 

the moment map on P^. 

B t 

Figure 4.2: The moment map fibration over P^. 

Example 4.3.4. Lei X he a compact toric manifold endowed with a toric Kdhler 

form. Let fi be the moment map induced by the torus action，which gives a 

Lagrangian fibration on X. The image B of jj is a polytope. The inverse images 

DJ = C X of the facets are toric divisors in X, and DJ is 

an anti-canonical divisor of X. Thus Assumptions (1), (2), (3) are satisfied 

(Formula (3) for the Maslov index is proven hy Cho-Oh [12]). 
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Furthermore, if X is Fano, then —Kx • C > 0 for every non-constant holo-

morphic curve C. Suppose u G is a stable disk with Maslov index less 

than two bounded by a Lagrangian toric fiber T C X. By Cho-Oh's classification 

of holomorphic disks [12] (Theorem 2.3.2), each non-constant disk component of 

u intersect at least once, and so has Maslov index at least two. Also hy 

the Fano condition each non-constant sphere component has Maslov index at least 

two. This forces u to be a constant map. Hence Assumption (4) is also satisfied. 

In Chapter 5 we will consider non-toric Lagrangian fibrations which satisfy 

these assumptions. By the previous section, by considering fi away from the dis-

criininant locus T C B one constructs the semi-flat mirror Xq. As a consequence 

to the above assumptions: 

Proposition 4.3.5. Under the setting of Assumption 4.3.3，dB is a subset of 

the discriminant locus V. 

Proof. Assume r G dB is a regular point of fi. Sincc regularity is an open 

condition, there exists a neighborhood U C B of r such, that fi is regular over 

U. Since 5 is a polytope, U has non-empty intersection with the interior of a 

facet if J for some j. Then Dj = should have real dimension 2n — 1, 

contradicting that it is a Weil divisor in X. • 

Now consider quantum corrections of the semi-fiat mirror by open Gromov-

Witten invariants, which are well-defined for Lagrangian fibers with minimal 

Maslov index at least two (see Section 3.3.1). This motivates the following defi-

nition: 

Definition 4.3.6. The wall H c Bq is defined to be the set of all r e Bq such 

that Fr has minimal Maslov index less than two. 

The open Gromov-Wittcn invariants n f for G 7r2(X, F .̂) are locally constant 

with respect to r E Bq — H. However, nf may change drastically as r vary from 
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one connected component to another component of Bq — H, and this is called the 

wall-crossing phenomenon which is studied extensively by Auroux [3，4]. It will 

be studied in Section 5.4 for Gross fibrations on toric Calabi-Yau manifolds. 

Then for a Lagrangian torus fiber F^ Out r E Bq — H, a loop class A G 巩认^].) 

and a boundary divisor Di, we may consider the weighted count of stable disks 

bounded by A and passing through 从： 

\ 
； . 
J 

^ W . A ) n" exp ( — I uj 

[p . Dt) is the intersection number in the above expression. 

Recall that A* is the lattice bundle over Bq whose fiber A* is 7Ti{FR). By 

taking a family version of the above expression, One has the following generating 

function of open Gromov-Witten invariants (which is similar to the one given in 

Definition 3.3.1): 

Definition 4.3.7. For each i = 0, . . . , m — 1, The generating function Xjj^ : 

R o/ open Gromov- Witten invariants is defined by 

(A) - (" . A ) n^ exp (— f (4.3.3) 

where r ^ Bq — H is the image of X under the bundle map A* — Bq； 7 r 2 ( 义， C 

712(X, F^-) consists of elements (3 6 7T2(X, F^) with dp —入/ (/? • Di) is the inter-

section number between ft and D^, which is well-defined because fi F^ = 0. We 

may abbreviate I d , o^s X^. 

Now apply the family version of Fourier transform introduced in the previous 

section on 

Definition 4.3.8. Let Xq Bq be the semi-flat mirror. Define Zi : — 
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H) C for i = 0,... ,m — 1 as the Fourier transform of 工” which is 

AGtti 叫 

= A ) n" exp ( - [ c^) Holv(a^). 
l3e7r2{X,Fr) p 

z^ are referred as the corrected holomorphic functions. 

As we have mentioned above, np may vary drastically when r moves from 

one component to another component of Bq — H. Thus in general z^ cannot be 

extended to be a holomorphic function on the whole Xq. This indicates that the 

complcx structure of Xq requires a correction, and Zi serves as the holomorphic 

functions with respect to the corrected complex structure. In view of this, define 

Definition 4.3.9. Let R he the subring of holomorphic functions on — 

H) C Xq generated hy the corrected holomorphic functions {Z^}"^^. Define X := 

Speci?. 

The above procedure applied on toric fibrations on toric Fano manifolds would 

be trivial: There is no wall (that is, H = and no quantum correction, and 

thus X = (C^)"'. But one rccalls that the mirror of a toric Fano manifold 

consists of not just the space (C^)", but also a holomormphic function W : 

(C^)"" — C known as the Landau-Ginzburg superpotential. In order to obtain 

the superpotential, we consider the generating function J^{Fr) given in Definition 

3.3.1 for every r e Bq — / / , and then apply Fourier transform: 

Definition 4.3.10. Define the superpotential W : — H) ^ C to he the 

Fourier transform of the generating function of open Gromov- Witten in-

variants, that is, 

W ( F r , V ) = ^ ^ ( F „ A ) H o l v ( A ) 
\饥(Fr) 

= ^ Tip exp J — / to Holv(5"") 
PeTT2iX,Fr) 
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The pair (X, W) is defined to be the SYZ mirror of X. In good situations 

(which is the case when we consider Gross fibrations on toric Calabi-Yau mani-

folds in Chapter 5), the superpotential W takes a particularly simple form: 

Proposition 4.3.11. Assume that for every r G Bq — H and /3 G 7r2(X, F^) 

such that Up + 0, there exists some z G {0,..., m — 1} such that p • Di = 1 and 

(5 • D.j = {) for all j + i. Then 

W = Zo-\- Zm-i e R. 

Proof. By definition, 

= Up exp 
昨772 (足A) 

‘ r \ 
—I LJ 

. J p / 

The sum is over all jS with — 2. By the above assumption, each {3 appearing 

in the above sum intersect cxactly one of the boundary divisors Di once. Thus 

1 = 0 

and so its Fourier transform W is Zi. • 

In Section 5.5, the above procedure will be carried out in details for toric 

Calabi-Yau manifolds, which will reproduce the mirrors written down by Hori-

Iqbal-Vafa [28] from the physical perspective. More than that, it produces the 

SYZ map which is the central object to study in this thesis. 



Chapter 5 

SYZ mirrors of toric Calabi-Yaus 

Throughout this chapter, we will always take X to be a toric Calabi-Yau manifold. 

Gross [26] and Goldstein [24] have independently written down a non-toric proper 

Lagrangian fibration ji : X ^ B, and we give a brief review of them in Scction 

5.1. These Lagrangian fibrations have interior discriminant loci of codimension 

two, leading to the wall-crossing of genus-zero open Gromov-Witten invariants 

which will be discussed in Section 5.4. In Section 5.5 we apply the procedure 

given in Section 4.3 to construct the SYZ mirror X . 

5.1 Gross fibrations on toric Calabi-Yau mani-

folds 

First recall some notations for toric geometry introduced in Section 2.2. N is a. 

lattice of rank n and S is a simplicial fan supported in N]^^ ：二 iV ③ R. X = 

denotes the toric manifold associated to a simplicial convex fan E. The primitive 

generators of rays of S are denoted by Vi for i = 0 , . . . , m — 1，where m is the 

number of these generators. Each v̂  corresponds to an irreducible toric divisor 

In this chapter we work with toric Calabi-Yau manifolds (see Definition 2,2.2)， 

56 
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and without loss of generality we always assume that m > n and E is strongly 

convex. Recall that by the definition of toric CY, there is a distinguished lattice 

point u ^ M . The following collects some basic facts in this setting: 

Proposition 5.1.1 ([26]). The meromorphic function w corresponding to M 

is holomorphic. The corresponding divisor (W) is ~Kx = YII^q T)i. 

Proof. For each cone C in S, let Vi” . . . , be its primitive generators, which 

form a basis of N because C is simplicial by smoothness of Xs- Let {vj e Mjj^i 

be the dual basis, which corresponds to coordinate functions on the affine 

piece Uc corresponding to the cone C. We have 
n 

L 二 

because = 1 for all j = 1 , . . . , n. Then 

Muc = C 

which is a holomorphic function whose zero divisor is exactly the sum of irre-

ducible toric divisors of Uc- • 

Proposition 5.1.2 ([26]). Let C M he the dual basis of {t;o, • • •, Vn-i}, 

and ( j be the meromorphic functions corresponding to Vj for j = 0,...，rz — 1. 

Then 

dCo A . . . A dCn-i 

extends to a nowhere-zero holomorphic n-form Q. on X. 

Proof. d(o l\ …t\ d(n-i defines a nowhere-zero holomorphic n-form on the affine 

piece corresponding to the cone M.>o(i'0) • • •, "^n-i}- Let C be an n-dimensional 

cone in E, {•}口 C M be a basis of M which generates the dual cone of C, and 

let Co5 • • • 5 C - i be the corresponding coordinate functions on the affine piece Uc 



SYZ mirror symmetry for toric Calabi-Yau manifolds 58 

corresponding to C. Then 

dCo A . . . A dC„-i 二 Co …Cn-id log Co A ... dlog Cn-i 

= w dlog Co A .. .dlogCn-i 

= ( d e t A ) < A . . . AdC—1 

where A is the matrix such that i^i = ^ i j ^ j - Since the fan S is simplicial, 

A G GL(n, Z) and hence det A = ±1. Thus d^o 八…八 extends to a 

nowhere-zero holomorphic n-form on Uc- This proves the proposition because X 

is covered by affine pieces. • 

Remark 5.1.3. In Proposition 5.1.2 we have chosen the basis {vq, . . . , Vn-i} C 

N• If we take another basis {?io, • • •, tin-i} C N which spans some cone of E, 

then the same construction gives 

dCo A . . . A d(二—1 = idO) A . . . A dCn-i 

where Q，s are coordinate functions corresponding to the dual basis of {ui}. The 

reason is that both {v^} and {ui} are basis of N, and thus the basis change belongs 

to GL(n，Z), and its determinant is ±1. Thus the holomorphic volume form, up 

to a sign, is independent of the choice of the cone and its basis. 

Let 0； be a toric Kahlcr form on Ps and /io ： Ps —> -P be the corresponding 

moment map, where P is a polyhedral set defined by the system of inequalities 

(^j . •) > Cj (5.1.1) 

for j = 1 , . . . , m and constants Cj G M as shown in Figure 5.1. 

The moment map corresponding to the action of the subtorus 

T丄"：二 C N ^ / N 
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[Ti] [Toil [To] [T12I [T2] 

Figure 5.1: The toric moment map image of K^i. 

on X s is 

W ： Xs — M« 师 〉 

which- is the composition of /ig with the natural quotient map M^ 

Definition 5.1.4. Fixing K > the Gross fibration corresponding to K is 

fi: X 4 Mm/]R(^) X 

The base (Mu/R{iy)) x is denoted hy B. 

Since another constant Ki will appear in the next section, we will denote K 

by K2 from now on. 

One has to justify the term 'fibration' in the above definition, that is, : JC — 

B is surjective: 

Proposit ion 5.1.5. Under the natural quotient M^ dP is homeo-

morphic to Mk/]R(z/). Thus ji maps X onto B. 

Proof. For any ^ E Mr, since {vj , = 1 for all j = 1, . . ., m, we may take ^ G M 

sufficiently large such that + satisfies the above system of inequalities 

( 巧 + Cj 
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and hcncc ^ i- tjy e P. Let to be the infimum among all such t. Then ^ 十 tgi^ 

still satisfies all the above inequalities, and at least one of them becomes equality. 

Hcnce ^ + toE 召 dP, and such. Iq is unique. Thus the quotient map gives a 

bijcction between dP and Moreover, the quotient map is continuous 

and maps open sets in dP to open sets in Mk/]R(i： }̂, and hence it is indeed a 

homeomorphism. • 

It is proved by Gross that the above fibration is special Lagrangian using 

techniques of symplectic reduction: 

Proposition 5.1.6 ([26]). With respect to the symplectic form u and the holo-

morphic volume form — K) defined on fi-i (B^t) c X, jj, is a special La-

grangian fibration, that is, there exists Oq G M / 2 7 R Z such that for every regular 

fiber F of fi, wjj? = 0 and 

广 e•。：0� 
Re = 0 . 

、w-K 

This gives a proper Lagrangian fibration : X ^ B where the base B is 

the upper half space. The inverse image = {w = K} is referred as a 

'boundary divisor' since it is a divisor whose image is the boundary of B. 

5.2 Toric modification 

To construct the mirror X as a complex manifold, the idea is to construct coor-

dinate functions of X by counting holomorphic disks emanating from boimdaiy 

divisors of fi : X ^ B (Section 4.3). The problem is that in our situation, the 

base B has only one codimension-one boundary, while we need to construct at 

least n holomorphic functions. To resolve this issue, we consider a one-parameter 

family of Lagrangian fibrations X �i ? ⑴， w h e r e B � is a polytope, such that 

X B appears as the limit of this family. Then one may count holomorphic 

disks in X � to construct holomorphic functions of the mirror. 
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Choose a basis of N which generate a cone in S, say, the one given by 

Vq, . . . , Vn-1- Since this is simplicial, {vj}'^lQ forms a basis of N. We denote 

its dual basis by {^'jjjTo C M as before. 

Remark 5.2.1. While all the constructions from now on depend on the choice of 

this basis, we will see in Proposition 5.5.9 that the mirrors resulted from different 

choices of basis differ simply by a coordinate change. 

We define the following modification to X = X^： 

Definition 5.2.2. Fix > 0. 

1. Let 

P(尺 1) - { U P - {-V,, 0 > -Ku < {v'j A) for all j 1 , . . .，n- l } 

where P is the moment map image of the toric Calabi-Yau manifold X and 

Vj := Vj — Vq for j = 1 , . . . , n — 1. We'll write Voo :=—幻o o/nd v'_j := —Vj. 

More explicitly, the defining inequalities of P�Ki) are 

(5.2.1) 

where Ci 

ciently large such that none of the defining inequalities of P、Ki、^^ redundant. 

2. Let be the inward normal fan to whose rays are generated hy 

幻0) . • • ) '^m—l-i '^li • • • ) ”n—1, 1, • • • 1 作—1)，̂oo • 

3. Let 凡 1) he the toric Kdhler manifold corresponding to (冗i) and denote 

hy 

/ i f 1) ： 4 P附 

the corresponding moment map. 

K , 0 > Q for i = 0, . . . ’ m — 1; 

< 
(>oo 

’ 0 >-Ki for j = 1 ，* _ , , 1， 

” 0 
for j = 1 ,...，Th 1 

the constants appearing in (5.1.1). Ki is assumed 
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Since a toric CY can never be compact, X(沿）is no longer a toric Calabi-Yau 

manifold. For notation simplicity, we will suppress the dependency on Ki and 

write in place of S⑷）and : X' ^ P' in place of f i f ' �: X恥）— 

in the rest of this paper. The fan and toric moment map image P' of X' are 

demonstrated in Figure 5.2. 

[TV] [Toi [To,] [TI2’1 [丁2’] E， 

Figure 5.2: The fan and moment map polytope of X' when X = K^i. 

Analogously, one has a special Lagrangian fibration on X'. The definitions 

and propositions below are similar to that of Section 5.1, so they arc written in 

a brief way. The proofs are similar and thus omitted. 

Proposition 5.2.3. Let w' he the meromorphic function on X' corresponding to 

The corresponding divisor is 

w. 

where we denote each irreducible toric divisor corresponding to Vi by T>i for i — 

0, oo, ±1,...，士(m — 1). (Notice that w' is non-zero holomorphic on D^ and so 

D; do not appear in the above expression of {w').) 

Proposition 5.2.4. Let Q he the meromorphic functions corresponding to Vj for 

J = 0 , . . . , N — 1 . (Recall that {i^jj^lQ d M is the dual basis to {vjY^'q C N•) 
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Then 

：二 dC•八…八 dCn-

extends to a meromorphic n-form on X' with 

Definition 5.2.5. Let 

办冗 1) := {q e Mm /M^) ： -Ki < ,q)<Ki for a " j = 1, • •.，n — 1} 

and 

We have the fibration 

B(沿）：=E(沿）X [-1,1], 

^ 4 ([/4凡1)⑷]，/(KW —刷2 ) ) 

where f : [0, +oo] — [—1,1]; 

x^Kl 

which is a smooth increasing function with /(O) = -1, = 0 and /(+( 

Again we'll suppress the dependency on Ki for notation simplicity and use 

the notations E and fi' X' B' instead. 

Figure 5.2 shows an example of and Figure 5.3 depicts an example of the 

fibration fi'. 

Proposit ion 5.2.6. Under the natural quotient Mr the image of 

P' is E. As a consequence, fi' : X' ^ B' is onto. 
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(Ki,l) 

(Ki,-1) 

Figure 5.3: The base B' is a rectangle when X = Kpi. The discriminant locus is 

In.r^yudB'. 

B' is a polygon whose facets of B' are denoted as 

and 

for J — 1, . . , n — 

and 

：= {{quq2) e B' : (tj； , qr) = -K^} 

屯0 ：= {{gi,q2) GB' •.q2 = -1} 

Their preimages under ji' arc denoted as D” D_” Dq and Dqo respectively D士j 

are the toric divisors I•土】，Dqo is the toric divisor D q o , and Dq — {w' = K2} 

which is NOT a toric divisor. They are called the boundary divisors. 

Proposition 5.2.7. The polar divisor of the meromorphic volume form 0!!{w'— 
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K2) IS 
/ n' \ 

h 二 务 乃 ⑴ -

11' : X' ^ B' is a special Lagrangian fibration with respect to the toric Kdhler 

form and Q!/{w' — K2). 

See Figure 5.3 for an illustration of the above notations. As the parameter 

Ki — 4-00, the boundary divisors D士j for j = 1 , . . . , n — 1 and D^o move to infin-

ity and so the Lagrangian fibration fi is recovered. Its mirror will be constructed 

in Section 5.5. 

5.3 Topological properties of Gross fibrations 

In this section we compute the discriminant locus of /i and fix a choice of gener-

ators of 7r2{X, F), where F C X is a regular fiber of fi. We do the same things 

for the modified, fibration 

5.3.1 The Gross fibration 

The discriminant locus 

First we fix some notations: 

Definition 5.3.1. For each index set 0 / C { 0 , . . . , m—1} such that {vi : i G 1} 

generates some cone C in E； let 

{^eP : {v,, G = Ci for all i E / } (5.3.1) 

which is a codimension-{\I\ — 1 ) face of dP. 

Via the homcomorphism given in Proposition 5.1.5, [Tj] gives a stratification 

of Mk/]R(^). This is demonstrated in Figure 5.1. 

We are now ready to describe the discriminant locus V of /i： 
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Proposition 5.3.2. Let fi be the Gross' fibration given in Definition 5.1.4- The 

discriminant locus of /i is 

(( 
r = a B u L M l 

\ | / | = 2 

x { 0 } 

Proof. The critical points oi jj, = ([/io], \w ~ K 2 P — K^) are where the differential 

of [î o] or that of — /<2p — is not surjective. The first case happens at the 

codiniension-two toric strata of X，and the second case happens at the divisor 

defined by w = K2. The images under /i of these sets are (U|j|=2[乃])x {0} and 

dB respectively. • 

An illustration of the discriminant locus is given by Figure 5.4. 

0 

Figure 5.4: The base of the fibration ^ : X B when X — K^i. In this example, 

r = { r i , r2}uRx{—/(2} . 
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Local trivialization 

By removing the singular fibers, we obtain a torus bundle fi ： Xq ^ Bq (see Equa-

tion (4.3.1) for the notations). We now write down explicit local trivializations 

of this torus bundle, which will be used to make an explicit choice of generators 

of generators of 7ri(F) and 7T2{X, F). Let 

UI ：= 5o - U (py X {0}) 
k^i 

for z = 0 , . . . , TO — 1, which are contractible open sets covering Bq, and hence 

/ i — c a n be trivialized. Without loss of generality, we will always stick to the 

open set 

U := Uo^ Bo-\J ( p y X {0}) = {(gi, g2) e 场：必—0 or e [To]}. 
k^o 

Proposition 5.3.3. 

[To] = {qe Mu/R{k) : {v'j ’ q) > Cj — Co for all j = 1,…，m — 1} 

where 

v'j := Vj — VQ (5.3.2) 

defines linear functions on M^/R{iy) for j = 1 , . . . , m — 1. 

Proof. To consists of all ^ G M^ satisfying 

{vj , > Cj for all j = 1 , . . . , m — 1; 

{vo, 0 = Co-

which implies (v'j , q) > Cj — Cq for all j = 1 , . . . , m — 1. 

Conversely, if q = [(] G Mk/R(^} satisfies (vj , q) > Cj — c � f o r all j = 

1 , . . . , m — 1, then since {u, uq) = 1, there exists t G M such that (-Uq , C + = 

Co. And we still have (vj , ^ + tu^ > Cj — cq for all j = 1 ， … ， m — 1 because 

[vj , = 0. Then {vj , 0 > Cj for all j = 1 , . . . , m — 1. Hencc the preimage of q 

contains ̂  + G Tq. • 
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Using the above proposition, the open set U 二 Uq can be written as 

{(gi, (12�e ^int ： ^ 0 or {v'j , qi) > Cj - Cq for all j = 1 , . . . , m - l } 

where Vj is defined by Equation 5.3.2. Now we are ready to right down an explicit 

coordinate system on fjT^iJJ). 

Definition 5.3.4. Let 

T , . . N^/nvo) 

We have the trivialization 

l i - \ U ) ^ U x (lV/T�i;。〉）X (R/27rZ) 

given as follows. The first coordinate function is simply given by }i. 

To define the second coordinate function, let {1^0,..., i^n-i} C M be the dual 

basis to { v o , . . .， 1 } C N. Let Q he the meromorphic functions corresponding 

to Vj for j = 1 , . . . , n — 1. Then the second coordinate function is given by 

： = (TWT�t;。〉） 

which is well-defined because for each j = 1 , . . . , n — 1, Uj 6 , implying Q is 

a nowhere-zero holomorphic function on 

The third coordinate is given hy arg(u! — K2), which is well-defined because 

w K2 on jj^i (JI). 

Explicit generators of •JTi{Fr) and 冗2(足厂r) 

Now we define explicit generators of 7Ti{Fr) and 兀2(足 F^) for r G f / in terms of 

the above coordinates. For r G U’ one has 

Fr = {Tn/T{vo)) X ( E / 2 7 r Z ) 

and hence 

TTi �兰 ( i V / Z〈如〉）X Z 
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which has generators {入}二o�where A �= (0，1) and \ = ([vj, 0) for i = 1,...，n — 1. 

This gives a basis of 7ri(F^). 

We take explicit generators of 兀2(义，Fr) in the following way. First we write 

down the generators for 兀2(足 T) , which are well-known in toric geometry. Then 

we fix /-Q = (r/i, (72) G U with q2 > 0, and identify 7r2(X, T) with n2(X, Fr�) by 

choosing a Lagrangian isotopy between jP作 and T. (The choicc > 0 seems 

arbitrary at this moment, but it will be convenient for the purpose of describing 

holomorphic disks in Section 5.4.) Finally 兀2(义，-PV) for every r G Bq is identified 

with 71"2(义，î ro) by using the trivialization of = U x Fr^. In this way wc 

have fixed an identification 7:2(X, Fr) = 7r2(X，T). The details are given below. 

1. Generators for tt2{X, T). Let T C X be a Lagrangian toric fiber, which 

can be identified with the torus Tj^. By [12], 712(X, T) is generated by the 

basic disk classcs corresponding to primitive generators Vj of a ray in S for 

= 0 , . . . , m — 1. One has 

d/3j = e # 2 7ri(T N, 

These basic disk classes can be expressed more explicitly in the follow-

ing way. We take the affine chart Uc — C" corresponding to the conc C = 

(iiQ,..., Vn-i) in S. Let 

T p ：= { ( C o , C n - i ) e : i g = e巧 for j = 0，…，n - 1} C X 

be a toric fiber at p = (po,...，pn-i) G M"". For i — 0 , . . . , n —1,13T\ is represented 

by the holomorphic disk u : (A, OA) {Uc： Tp), 

By taking other affine charts, other disk classes can be expressed in a similar 

way. Figure 5.5 gives a drawing for when X = Kpi. Since every disk class P了 

intersects the anti-canonical divisor 公i exactly once, it has Maslov index 

two (Maslov index is twice the intersection number [12]). 
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Figure 5.5: The basic disk classcs in 712(X, T) for a toric fiber Tp of X — Kpi. 

2. Lagrangian isotopy between Ff�and T. 

Fix ro = (gi, g'2) E Bq with q2 > 0. We have the following Lagrangian isotopy 

relating fibers of ji and Lagrangian toric fibers: 

Lt:^{xeX •. [/ioO)j = qi; \w{x) — tp = K! + ^2} (5.3.3) 

where t G [0,/<2]- Lq is a Lagrangian toric fiber, and Lk] = (This is also 

true for q] < 0. We fix > 0 for later purpose.) 

The isotopy gives an identification between 712(X, FJ-Q) and 'K2{X, T). Thus 

we may identify {^J}"^'^ C 7:2 (X, T) as a generating set of 兀2(足 F^J, and wc 

denote the corresponding disk classes by jSj G 712[X, Fr� ) . They arc dcpicted in 

Figure 5.6. 

Figure 5.6: Disks generating 7T2{X, Fr) when X = /Cpi 

Finally by the trivialization of every fiber Fr at r ^ U is identified 
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with Fro, and thus may be identified as a generating set of 兀2(足 K)-

Notice that since Maslov index is invariant under Lagrangian isotopy, each 

Pj € 7T2{X, Fr) remains to have Maslov index two. We will need the following 

description for the boundary classes of /3j： 

Proposition 5.3.5. 

n-l 

d(3j = Ao + E ("“ Vj) \ G {N/Z{vo)) X Z ^ n 认 Fr) 
i=l 

for all j = Q,…，m — 1，where C M is the dual basis of C N. 

Proof. Under the identification 

Tiv 4 (TV/1>。〉）X (M/27rZ) 

where the last coordinate is given by •)，d̂ J — Vj G 7ri(Tiv) is identified with 

/n - l \ n- l 

( h i , 1) = E '^j) M , 1 = E ("“ Vj) A,+Ao G TTi ((TV/T�'"o〉）X (M/27rZ)) 

bccausc {v_, Vj) = 1 for all j = 0 ，…， m — 1. Under the isotopy given in Equation (5.3.3)，this relation is preserved. 

The following proposition gives the intersection numbers 

with various divisors: 

• 

of the disk classes 

Proposition 5.3.6. Let r = {(h, (h) ^ U with q] + 0, and j3i e 7r2(X, F^) be the 

disk classes defined above. Then 

二 1 

for all i = 0,... — 1, where 

w{X) = K2} (5.3.4) 

is the boundary divisor whose image under /i is dB. 
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Proof. We need to use the following topological fact: Let {Lt : t e [0,1]} be an 

isotopy between Lq and Li, and {St ： t G [0,1]} be an isotopy between the cyclcs 

So and Suppose that for all t G [0,1], LtnSt = 0. Then for j3 e 兀2(1, ^o), 

one has the following equality of intersection numbers: 

f3-30 = 13'-Si 

where G 7T2{X, Li) corresponds to /3 under the isotopy Lf. 

First consider the case that r 二 r � . From the isotopy Lt given by Equation 

(5.3.3) and the equalities 

for j = 1 , . . . , m — 1 and 

f o r "i = 1， . . .，m — 1, j = 1, 

/̂ oT.O)? 二 0 

m — one has 

for all j = 1 , . . . , m — 1 and 

for all i — m - 1, J 

Wc also have the isotopy 

A) • 0 

A • = 

m — 

St = {x eX ： w{x) = t} 

for t = [0, K2] between the anti-canonical divisor —KX — and Dq. One 

has St D Lt = 迅 for all t, and so 
m—\ 

for alH = 0 , . . . , m — 1. 

For general r G [/，since [7 n Dj = 0 for all j = 1,..., m — 1 and [/ n Do = 0, 
the isotopy between Fj. and Fr�never intersect Dq and Dj for all j = 1 ， . . . ， 1 . 

Thus the above equalities of intersection numbers are preserved. • 



UdB' 

Figure 5.3 gives an example for the base and discriminant locus of j i . 

By removing the singular fibers of jj.', wc get a Lagrangian torus bundle jj! 

XQ B'Q, where 

B'o ：= B' - r'； 

Local trivialization 

We define 

U：：=风 一 U ( K 1 X {0}) 
k^i 
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5.3.2 The modified fibration 

We write down the discriminant locus of and generators of 7T2{X', F), where 

F is a fiber of //，in this section. This is almost the same as the discussion for 

X in the previous subsection, except that we have more disk classes due to the 

additional toric divisors. The proofs are similar and thus omitted. 

The discriminant locus of /7' 

Definition 5.3.7. For each 0 + I C {0 , . . . , m — 1} such that : z G / } 

generates some cone in , we define 

T'j := Tj n {e e ： < 乂）<KUoraUj = l ” . � n - l � 

where T! is a face of P given in Definition 5.3.1. T'j is a codimension-{\I\ — 1) 

face of 

e dP' : -Ki < 礼 < Ki for all j = l , . . . , n - l } . 

Proposit ion 5.3.8. The discriminant locus of u' is 

J
/
 

T
f
 

o
 

r
t
 

X
 

KI 
rH 



Lt {x e X : [Mx)] = qi] f{\w' 

K ] ^ { q e Eint ： ( � ,q ) > C,- — Co for all j = 1， 

Thus the open set U' = UL can be written as 

between E r � a n d a toric fiber T gives an identification 兀2(1'，"̂ ro)兰 T). 

Finally the trivialization of gives an identification between F^ and 

{(<?!, ^2) e 五 int X ( - 1 , 1 ) :仍—0 or {v'j , qi) > Cj - cq for all j = l,...’m — 1}. 

Then the trivialization is explicitly written as 

(//)-i([/') X {Tj,/T{vo)) X (RftrrZ) 

which is given in the same way as in Definition 5.3.4. 

Explicit generators of 7Ti{Fr) and 71-2(X, F )̂ 

For r e every F^ is identified with the torus (IV/T〈如〉）x (IR/27rZ) via the 

above trivialization. Then a basis of 7Ti{Fr) is given by {入}二。工，where 入0 = 

(0,1) G N/Z{vo) X Z and Â  = (h ] , 0) e N/Z{vo) x Z for i 二 1,…，n — 1. 

Wc use the same procedure as that given in Section 5.3.1 to write down explicit 

generators of 7T2(X', Fr) for r € B'Q. First of all, 7r2(义'，T) is generated by 钱，POO 

and (y幻 corresponding to Vi, Voo and v'^j respectively, where i = 0 , . . . , m — 1 and 

j — 1 , . . . , n — 1. They are depicted in Figure 5.7. 

Then fixing a based point Tq = {qi,q2) £ U' with 0 < < I5 the isotopy 
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which is a contractible set for z = 0 , . . . , m — 1, so that (//)—1([/‘）is trivialized. 

Without loss of generality we stick to the trivialization over the open set 

：二 = 风 — U ( K l X {0}) = e : q2 or g^e K]}‘（5.3.5) 
k^O 

Similar to Proposition 5.3.3, one has 

1
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7
 

Figure 5.7: Disks generating ti2[X',T�for a regular moment-map fiber T when 

X — Kpi • 

for any r G U'. Thus U { “ � } U U {PLjY^Zl can be regarded as 

a generating set of i K)- See Figure 5.8 to get a feeling of what they look 

like topologically. 

Figure 5.8: Disk generating n2{X', Fr). 

Proposition 5.3.9. 

aft =入0 十 ("i, Vj)入 e {N/Z{vo)) xZ^ 7ri(F,) 
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for all j = 0,... — 1, 

d^oo = -Ao 

and 

for fc = 1 , . . . , n — 1. 

We will need to know the following intersection numbers when we computc 

the generation functions of open Gromov-Witten invariants: 

Proposition 5.3.10. Let r = (gi，（?2) ^ U' with q2 • 0, and 线 G 712(X', Fr) he 

the disk classes defined above. For alii — 0,... —1 and = ± 1 , . . . , ± n — 1, 

A • = 1； {3oo�Do = 0; 13[ • Do = 0; 

= 0； Poo-Dk = 0; A' • Dk - Sik; 

二 0 ; 13 �， D ⑴ 二 1 ; A ' . = 0 . 

5.4 Wall crossing phenomenon 

In this section we show that when X is a toric Calabi-Yau manifold and F^ is 

a fiber of the Gross fibratioii, the open Gromov-Witten invariants n̂ g for a disk 

class P e 兀2(义,Fr) bounded by F^ (Definition 3.3.1) exhibit a phenomenon called 

wall-crossing. This is an application of the ideas and techniques introduced by 

Auroiix [3, 4] to the case of toric Calabi-Yau manifolds. The main results are 

Proposition 5.4.7 and 5.4,9. In Chapter 7 wc will give a method to compute 

these open Gromov-Witten invariants. 

Let's begin with the Maslov index of disks (Definition 3.1.2), which is impor-

tant because it determines the expected dimension of the corresponding moduli 

(Equation 3.2.1). The following lemma which appeared in [3] gives a formula for 

computing the Maslov index, which can be regarded as a generalization of the 

corresponding result by Cho-Oli [12] for moment-map fibers of toric manifolds. 



SYZ mirror symmetry for toric Calabi-Yeui manifolds 77 

Lemma 5.4.1 (Lemma 3.1 of [3]). Let Y he a Kdhler manifold of dimension n， 

a he a nowhere-zero meromorphic n-form on Y, and let D denote its pole divisor 

(and so D is the anti-canonical divisor). If L G Y — D is a compact oriented 

special Lagrangian suhmanifold with respect to a, then for each /3 G 7T2{Y, L), 

m = w-D. 

Using the above lemma: 

Corollary 5.4.2. For a regular fiber F of the Gross fihration ji, the Maslov index 

0f^e7l2iX,F) IS 

剛= 2 / 3 • Do. 

For a regular fiber F of the modified fibration ji', the Maslov index of {3 G 

Tr2{X\Fr) IS 
/ n-l n-1 \ 

m = 2/?- Do + î c^ + J ^ i ^ i + X l D—j . (5.4.1) 
V / 

Proof. Recall that the regular fibers Fr oi jj : X 4 B are special Lagrangian 

with rcspcct to Q/{w — K2) whose pole divisor is Dq (see Equation (5.3.4) for the 

definition of DQ). Using the above lemma, the Maslov index of G 兀2(义,K) is 

m = 2/3 • Do. 

Similarly jjf : X' ] B' are special Lagrangian with respect to /{w' — K2) 

whose pole divisor is Dq + D� + X )口 Dj + YlJZi D—j. Thus the Maslov index 

of ^ G TT2(X',Fr) is 

/ n—1 n-l \ 

\ i=i j=i J 
• 

Corollary 5.4.3. Let F be a regular fiber of the Gross fibration ji. For every 

13 e 712(X, F), if MoiF, /3) 0, then /x(/5) > 0. 
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Proof. From the above formula, it follows that the Maslov index of any holomor-

phic disks in G 7T2{X, Fr) oi ^ e 7T2(X', Fr) is non-negative. 

Every stable disk consists of holomorphic disk components and holomorphic 

sphere components, and its Maslov index is the sum of Maslov indices of its disk 

components and two times Chern numbers of its sphere components. The disk 

components have non-negative Maslov index as mentioned above. Since X is 

Calabi-Yau, every holomorphic sphere in X has Chern number zero. Thus the 

sum is non-negative. • 

5.4.1 Stable disks in a toric CY manifold 

First consider a toric Calabi-Yau manifold X. The lemma below gives an expres-

sion of the wall (see Definition 4.3.6). 

Lemma 5.4.4. For r = (gi’g2) G Bq, Mo{Fr,(3) • 0 for some (3 G 7r2(X, F^) 

with jjL{(3) = 0 if and only if q2 = 0. 

Proof. Since X is Calabi-Yau, sphere bubbles in a stable disk have Chern number 

zero and hence do not affect the Maslov index. We can restrict our attention to a 

holomorphic disk u : (A, dA) —>• {X, Fr) whose Maslov index is zero. By Lemma 

5.4.1, u has intersection number zero with the boundary divisor Dq — {w = K2}. 

But since u is holomorphic and Dq is a complex submanifold, the multiplicity for 

cach intersection point between them is positive. This implies 

i n t� Im(n) C ( j r \ B 

Then w o u — K2 is a, nowhere-zero holomorphic function on the disk. Moreover, 

\w ou — K2\ is constant on dA. By applying maximum principle on \w o u — K2\ 

and \w o u — , w ou must be constant with value zq in the circle 

{|卜1^2|2二^：22 + 92} C C . 
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Unless zq = 0, w~^{zo) is topologically M"'"^ x T"^_i，which contains no non-

constant holomorphic disks whose boundary lies in Fr n = i c 

X T?八—1. Hencc zq = 0, which implies q] = 0. Conversely, if q2 — 0, 

Fr intcrsccts a toric divisor along a (degenerate) moment map fiber, and hence 

bounds holomorphic disks which are part of the toric divisor. They have Maslov 

index zero because they never intersect Dq. • 

Combining the above lemma with Corollary 5.4.3, one has 

Corollary 5.4.5. For r = (gi, g2) 6 Bq with q) • 0，Fr has minimal Maslov 

index at least two. 

Using the terminology introduced in Definition 4.3.6, the wall is 

H = Mu/R{iy} X {0}. 

Bq — H consists of two connected components 

B+ Mm/R(e> X (0, +oo) (5.4.2) 

and 

B— ：= M k / R M X {-K2,0). (5.4.3) 

For r e Bq — H. the fiber F” has minimal Maslov index two, and thus n^ is 

well-defined for 卢 G 7T2{X, Fr). There are two cases: r 6 B+ and r 6 B—. 

1. R e B+. 

One has the following lemma relating a Gross fiber Fy. to a Lagrangian toric 

fiber T: 

Lemma 5.4.6. For r G i?+，the Gross fiber F^ is Lagrangian-isatopic to a La-

grangian toric fiber T, and all the Lagrangians in this isotopy do not bound non-

constant stable disks of Maslov index zero. 
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Proof. Let r = {qi, 52) with q2 > 0. The Lagrangian isotopy has already been 

given in Equation (5.3.3), which is 

Lt :={xeX : [fioix)] = gi； \wix) - - /<! + ^2} 

where t e [0, K2]. Since q<2 > 0, for each t G [0, K2], w is never zero on L^. 

By Lemma 5.4.4, L^ does not bound non-constant stable disks of Maslov index 

zero. • 

Using the above lemma, one shows that the open Gromov-Witten invariants 

of Ff when r & B+ are the same as that of T; 

Proposition 5.4.7. For r G B+ and p e Ti2{X,Fr), let pT ^ 7T2{X,T)兰 

7T2(�X, FV) be the corresponding class under the isotopy given in Lemma 5.4-6. 

Then 

nj3 = n^T. 

Tip • Q only when 

= ft + a 

where a' G 丑2(义) is represented by rational curves，and j3j G 兀2(1, F”) is a basic 

disk class given in Section 5.3.1. Moreover, n^^ — 1 for all j = 0 , . . . , m — 1. 

Proof. It suffices to consider those {3 G 兀2(1，Fr) with (lip) — 2，or otherwise 

？1/3 = 0 due to dimension reason. 

The Lagrangian isotopy given in Lemma 5.4.6 gives an identification between 

7T2{X, Fr) and 兀2(足 T), where T is a regular fiber of / i� . Moreover, since every 

Lagrangian in the isotopy has minimal Maslov index two, the isotopy gives a 

cobordism between Mi{Fr,l3) and where /^t e t t s P^T) is the disk 

class corresponding to G rcaiX, Fr) under the isotopy. Hence n^ keeps constant 

along this isotopy, which implies 

n/3 = npT. 
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By dimension counting of the moduli space, n沪 is non-zero only when 

is of Maslov index two (see Equation 3.2.1 and the explanation below Definition 

3.3.1). 

Using Theorem 11.1 of [22], Mi{T,l3^) is non-empty only when /̂ t =々）+ 

cf, where a G H2[X) is represented by rational curvcs, and /3j G 7r2(X, T) ^ 

兀2(义,K) are the basic disk classes given in Scction 5.3.1. For completeness we 

also give the reasoning here. Let u E be a stable disk of Maslov index 

two. u is composed of holomorphic disk components and sphere components. 

Sincc every holomorphic disk bounded by a toric fiber T C X must intersect 

some toric divisors, which implies that it has Maslov index at least two, u can 

have only one disk component. Moreover a holomorphic disk of Maslov index two 

must belong to a basic disk class /3j [12], Thus {3 = [n] is of the form jSj + ot-

Moreover, by Cho-Oh's result [12], n^^ = 1 for all j = 0 , . . . , m — 1. • 

2. r G B—. 

When r G B—，the open Gromov-Witten invariants behave differently com-

pared to the case r E B+ (see Equation 5.4.3 for the definition of BJ). For 

X = C", np has been studied by Auroux [3, 4] (indeed he considered the cases 

n = 2, 3, but there is no essential difference for general n). We give the detailed 

proof here for readers' convenience: 

Lemma 5.4.8 ([3]). When the toric Calabi-Yau manifold is X = C^ and Fr C X 

is a Gross fiber at r e B^, we have 

rifj 
j 1 when = /3o； 

0 otherwise. 

Proof. Let ((̂ 。，...，Cn-i) be the standard complex coordinates of C". In these 

coordina,tes the Gross fibration is written as 

M = (ICoP - ICll', • . .， iCn—- |Cn-l|2, |Co . . . Cn-1 — — K �. 
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Due to dimension reason, np = Q whenever + 2. Thus it suffices to 

consider the case /x(/5) = 2. Write 13 — X^CJ" ki戸“ where 6 7r2(X, F^) are the 

basic disk classes defined in Section 5.3.1. We claim that ko = 1 and ki = 0 for 

alH = 1 , . . . , n — 1 if the moduli space Mi(Fr , (3�i s non-empty. 

Let u be a stable disk in C" representing with = 2. Since C" sup-

ports no non-const ant holomorphic sphere, u has no sphere component. Also by 

Corollary 5.4.5, F^ has ininimal Maslov index two, and so u consists of only one 

disk component (see Proposition 3.2.7). Thus u is indeed a holomorphic map 

A C" 

Sincc q2 < 0，one has |(Co . • • Cn-i) o u — /C2I < K2 on (9A. By maximum 

principle this inequality holds on the whole disk A. In particular, Co • • • Cn-i 

is never zero on A, and so u never hits the toric divisors D^ : = 0} for 

i = 0’...，n — 1. Thus ^ • D^ = 0 for alH = 0 , . . . , n — 1. By Proposition 5.3.6, 

(/3o , = 0 for all j = 1 , . . . , n — 1, and {J3i, Dj) = Sij for i = 1 , . . . , n — 1 and 

j = 0 , . . . , n — 1. Thus 

{/3,T),) = kj = 0 

for j = 1 , . . . , n — 1. Thus (5 — A;oA> But — /co/i(/9o) == 2 and ij^{J3q) = 2, and 

so ko = 1. 

This proves that n^ 0 only when f3 — NOW we prove that N � 。— 1 . 

Since every fiber F^ is Lagrangian isotopic to each other for r E B— and the 

Lagrangian fibers have minimal Maslov index 2，n�。keeps constant as r G 

varies. Hence it suffices to consider r = (0, ^2) for q] < 0, which means that 

ICol = ICil =…=ICn—1| for every (Co,..., Cn-i) € F”. 

In the following we prove that for every p G Fr C (C^)", the preimage of p 

under the evaluation map evo : Mi{Fr, /Sq) is a singleton, and so n恥=1. 

Write p = (po, • • • ,'Pn-i) e (C^)'^. p e Fr implies that \po\ = \pi\ =...= 

\'Pn-i\- Consider the line 

I ：= {(Cpo, CPI, (Pn-l) E ( C T : C G 
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spanned by p. Then w = (q . . . gives an n-to-one covering / —> C^. The disk 

Aj,, ：= {(： e C ： \C - K2I < (K^ + 

never intersects the negative real axis {Re(C) < 0}, and hence we may choose a 

branch to obtain a holomorpiiic map u : Ax2 I (There are n such, choices). 

Moreover there is a unique choice such that u('po .. .Pn—1) = (Po’... ,Pn-i)- The 

image of SAĵ -̂  under u lies in F,‘ Let ( e dAx2 and z = u(C). Then w{z)=( 

satisfies \'w{z) — = K'l + g'2• Moreover z £ I, and so \zo\ = =...=(�几―i|. 

u represents (3�because it never intersects the toric divisors D^ for j — 0 , . . . , n —1 

and it intersect with Dq ~ {w = 0} once. 

The above proves that there exists a holomorphic disk representing 汰 such 

that its boundary passes through p. In the following we prove that indeed this is 

unique. 

Let u G Mi{Fr, /9o) such that evo(u) = p. By the above consideration u is 

a holomorphic disk. Since po • Di = 0, u never hits the toric divisors {Ci — 0} 

for i = 0 , . . ., n — 1, and hence o u : A -> C are nowhere-zero holomorphic 

functions. By applying maximum principle on |Ci/Ci�叫 and \Ci/Ci°u\~^ for each 

i = 2 , . . . , n, which has value 1 on dA, we infer that u must lie on the complex 

line 

{ ( c , c i c，.‘‘，c n - i c ) G ( c > r : c e c ” 

where |q | 二 1 are some constants for i = 1 , . . . , n — 1. Moreover, The line passes 

through and so this is the line I defined above. 

Consider the holomorphic map w o u : A C^. Since u has Maslov index 

two, it has intersection number one with the divisor {w — K2 — 0}，implying 

that ty o 召A winds around K2 only once. Hence w o u gives a biholomorphism 
� 

A ^ defined above. One has u o [w o u) = [u o w) o u = u^ where u is the 

one-side inverse of w defined above. This means u is the same as u up to the 

biholomorphism w o u. Thus u is unique. • 
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Indeed the same statement holds for all toric Calabi-Yau manifolds: 

Proposition 5.4.9. For r G B_ and G 7T2{X, Fr), 

I 1 when 13 — /̂ o； 

I 0 otherwise. 

Proof. Due to dimension reason, n̂ j = 0 if /i(/3) • 2, and so it suffices to assume 

ji{(3) — 2. Let r 二 (qi, q]) with q2 < 0. 

First of all, one observes that when r G every holomorphic disk u : 

(A, dA) — (X，Fr) has image 

Ini(n) C := M — q 2 ) e B : q 2 < 0}). 

This is because (w — K2)〇 u defines a holomorphic function on A . Since r G B_, 

\w — K2\ is constant with value less than K2 on Fr. By maximum principle, 

\w — K2\ o u < K2- This proves the observation. 

Notice that Fr) is homeomorphic to ((Cx)"—1 x C，T)，where 

T = {(Ci,. . . , Cn) e (Cx 广 1 X C : ICil = . . . HC«I = c} 

for c > 0. In particular,兀2(5"-) = 0 which implies that 5L supports no non-

constant holomorphic sphere. Moreover, every non-constant holomorphic disk 

bounded by F^ with image lying in S— must intersect DQ, and thus it has Maslov 

index at least two. 

Now let V G Mi{Fr, /3) be a stable disk of Maslov index two, where r e B—. 

By the above observation, each disk component of v has Maslov index at least 

two, and so v has only one disk component. 

Moreover, the image of a non-constant holomorphic sphere h : CPi —X does 

not intersect Consider w o h, which is a holomorphic function on CPi and 

hencc must be constant. Thus image of h lies in for some c. But for 

c ^ 0, w—i (c) is which supports no non-constant holomorphic sphere. 

Thus c — 0. But w is never zero on S-, implying that D = 0. 



SYZ mirror symmetry for toric Calabi-Yeui manifolds 85 

Thus V does not have any sphere component, because any non-constant holo-

morphic sphere in X never intersect its disk component. This proves for all 

(3 G 7r2(X, F^), F^) consists of holomorphic maps u : (A, dlS) (X, Fr), 

that is, neither disk nor sphere bubbling never occurs. 

In particular, all elements in Fr) have images in S^ and never intersect 

the toric divisors. Writing j3 — 知A) one has 

= = 0 

(see Proposition 5.3.6). Moreover, = 2 forces ko = 1. Thus Fr), 

where j3 has Maslov index two, is non-empty only when 口 = (3q. Thus np = 0 

whenever 3 

Let y = C" X be the complex coordinate chart corresponding to the cone 

{vq, ..., Vn-i). W e have F^ c Sq G V, and since ' ̂ ^ = 0 for every toric divisor 

T> C X, any holomorphic disk representing /?。in X is indeed contained in V. 

Thus 

Then n ^ 二 where the later has been proven to be 1 in L e m m a 5.4.8. • 

From the above propositions, one sees that n̂ g for jS G iiiiX, Fr) changes 

dramatically as r crosses the wall H, and this is the so-called wall-crossing phe-

nomenon. 

5.4.2 Stable disks in the modified fibration 

N o w we consider open Gromov-Witten invariants of X'. The statements are very 

similar, except that there are more disk classes due to the additional toric divisors. 

The proofs arc also very similar and thus omitted. 

Lemma 5.4.10. For r = (gi，g2) € 风 ， + 0 for some (5 G 7r2(X',F,) 

with = 0 if and only if q<2 = Q. 



The wall (see Definition 4.3.6) is 

The two connected components of B'q — H' are denoted by 

B'+ E^' X (0,1) 

and 

B'_ ：= Eint X (-1,0) 

respectively. Again we have two cases to consider: 

1. r G B � . 

Lemma 5.4.12. For r G the fiber Fr is Lagrangian-isatopic to a Lagrangian 

toric fiber of X'’ and all the Lagrangians in this isotopy do not hound non-constant 

stable disks of Maslov index zero. 

Proposition 5.4.13. Forr G and (5 G 7r2(X', Fj), np — Q only when = /?oo； 

(5 二 ftUor k 二 ±1” .�士 (n - 1) or 

{5 — fiJ a for j = 0 , . . . , m — 1 

where a G H2{X) %s represented by rational curves of Chern number zero. More-

over, Ufs = 1 when P = A),...，�—i,/？⑴ or ..., or .. 
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As a conseqiicnce, 

Corollary 5.4.11. The fibration /i' : X' —> B' satisfies Assumption 4-3.3. 

Proof. By construction is a Lagrangian torus fibration whose image B' is a 

poly tope. As discussed in Section 5.2, the inverse images of the facets of B' are 

divisors in X'. Corollary 5.4.2 gives us the formula for Maslov index, which is 

the statement of Assumption (3). By the above lemma, for every r —(仍， /̂2) € 

Bq with CI2 + 0, Fr has minimal Maslov index two. Thus Assumption (4) is 

satisfied. • 

I
J
 

o
 

I
L
 

X
 

t
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2. re 

Proposition 5.4.14. For r E B丨—and j3 G 7r2(X', Fr), n存=1 when 

P - A ) , or j 3 � + — Ad) / o r z = 0，. •.，m — 1; = ±1’. •.，士(n — 1) 

and zero otherwise. 

Those invariants contribute to the quantum corrections of the complex struc-

ture of the mirror, as we shall discuss in the next section. 

5.5 SYZ construction of mirrors 

We have seen that the fibration ji' \ X' ^ B' satisfies Assumption 4.3.3 (Corollary 

5.4.11). Now wc are ready to follow the procedure given in Section 4.3 to construct 

the mirror of a toric Calabi-Yau. The following is the main theorem: 

Theorem 5.5.1. Let (i X B be the Gross fibration over a toric Calabi-Yau 

n-fold X = Xs； and ji' \ X' B, be the modified fibration given by Definition 

5.2.2. 

1. Applying SYZ construction with quantum corrections described in Section 

4-3 on the Lagrangian fibration jj,' : X' ^ B', one obtains a complex mani-

fold 

X = {(II’IJ’;2I，. ‘ . , Z N - I ) E C^ X (Cx)"—1 : uv = G(zi,.. • 1)} (5.5.1) 

where G is a polynomial given by -

n—1 m—1 
G O i , = (1 + 知）+ + S,)zj + + (5.5.2) 

j~l i=n 

The notations 6j, Qa and appeared above are explained in the end of this 

theorem. 
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2. Let H C Bq be the wall (Definition 4-3.6). There exists a canonical map 

such that the holomorphic n-form 

. f 1 \ 
Q. •= Res — rdlog么1 A . . . A dlog Zn^i A dw A dv 

\UV - G [ Z I , . . / 

(5.5.3) 

defined on X C C^x is pulled back to the semi-flat holomorphic vol-

ume form on — II) under p. In this sense the semi-flat holomorphic 

volume form on Xq extends to X. 

3. Let Tx be the generating function of open Gromov- Witten invariants (Def-

inition 3.3.3). The Fourier transform of J-x is given hy p* (CqU)，where Cq 

is some constant (defined by Equation (5.5.9)). 

{X, Q, W = Cqu) is called the SYZ mirror of the toric CY manifold X, where Cl 

is the holomorphic volume form and W is the superpotential. The definitions of 

Qa and z" appeared above are as follows: 

• 's are constants defined by 

/ r \ 

•= ^ exp I - / w ) (5.5.4) 

for i = 0,... — in which the summation is over all a G H^iX, Z) — {0} 

represented by rational curves. (Recall that f3i 

6 7r2(X,T) are the basic disk 

classes bounded by a Lagrangian toric fiber T J 
• denotes the monomial 

("J 
V 

where G M is the dual basis of {vjYJ二 C N which spans a cone of 

the fan E. 



Oj , Vi) Vj 
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• For a = 1,. .. ,?Ti 一 n, qa are Kdhler parameters defined as follows. Let 

Sa G H2{X, Z) be the classes defined by 

=Vi — Vi = 0 

where are the basic disk classes given in Section 5.3.1. Thus 

n-l 

j=i 

Moreover, they are linearly independent for i — n , . . . , m —1, because /9,^'s are lin-

early independent. But H2[X, Z) ^ and so they form a basis of HiiX, Z). 

/Vs are identified with under the Lagrangian isotopy between Fr and T 

given in Section 5.3.1. Thus {5^�}二广 is a generating subset of H2[X, Z). • 

Then Qa exp(— J^^ u). 

Notice that the Laurent polynomial (5.5.2) is independent of the parameters 

Ki,K2. 

We need to check that the above expression (5.5.5) of Sa docs define classes 

in iMx.zy. 

Proposition 5.5.2. is a basis of H2�X,Z). 

Proof. One has the short cxact sequence 

0 —丑2(X) — 712(X, T) 7ri(T) — 0 

where T is a Lagrangian toric 

boundary map d. For i 

V 

二 n, 

fiber, and the second last arrow is given by the 

,m - 1, 
\ n-l 

I
 

= V i 

5.5.5 A 
n_丄 

、力‘ 

Sa '•— 
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By the above proposition, 5i, and so X, can be expressed in terms of Kahler 

parameters q � a n d open GW invariants Uf). 

While throughout the construction we have fixed a choice of ordered basis 

{'̂ illlTo^ of N which generates a cone of S, in Proposition 5.5.9 we will see that 

another choice of the basis amounts to a coordinate change of the mirror. In this 

sense the mirror X is independent of choice of this ordered basis. 

We now apply the construction procedure given in Section 4.3 and prove 

Theorem. 5.5.1. 

5.5.1 Semi-flat complex structure 

First let's write down the semi-fiat complex coordinates on the chart C 

Xq, where U' C B' is given in Equation (5.3.5), and p! X'q ^ B'q is the dual 

torus bundle to : XQ BQ. 

Fix a base point r � G U'. For each r € let \ C 7ri(Fr) be the loop classes 

given in Section 5.3.2. Define the cylinder classes [hi(r)] G 兀2((^0—HU'), ^ro, Fr) 

as follows. Recall that we have the trivialization 

= U ' x {T^/Tivo)) X (E/27rZ) 

given in Section 5.3.2. Let 7 : [0,1] be a path with 7(0) = r � a n d 7(1) = r. 

For j = 1，...，n — 1’ 

hj : [0,1] X M/Z X (Tiv/T{'t;o)) x (R/27rZ) 

is defined by 

\ 27r 一 

and 

ho[R,Q) ：= (7(均 ,0 ,27re) . 

The classes [hi (r)] is independent of the choice of 7. 



SYZ mirror symmetry for toric Calabi-Yeui manifolds 91 

Then the semi-flat complex coordinates Zi on (J1')_\U') for i = 0 , , . . , n — 1 

are defined as 

z人Fr, V) := exp(p, + 27ri 氏） (5.5.6) 

where e�赏i卢*• := Hoi•(入i(r)) and pi := — / [ � � ]c j . 

dzi A . . . A dZn-i A dzo defines the semi-flat holomorphic volume form on 

i^-Hu'). 

5.5.2 Fourier transform of generating functions 

Next we correct the semi-flat complex structure by open Gromov-Witten invari-

ants. The corrected coordinate functions ẑ  are expressed in terms of Fourier 

scries whose coefficients arc FOOO's disk-counting invariants of X. The leading 

terms of these Fourier series give the original semi-flat complex coordinates. In 

this sense the semi-flat complex structure is an approximation to the corrected 

complex structure. The corrected functions have the following expressions: 

Proposition 5.5.3. Let Xi — Zd, for i = 0, oo, ±1,..., 土 ( n — 1) be the gener-

ating functions defined by Equation (4.3.3). The Fourier transforms of Xj/s are 

holomorphic functions Zi on — H') respectively. 

1. For i — 1 , . . . , n — 1, 

Zi = C[zi 

where C[ are constants defined by 

C[ = exp (— [ cj) > 0. (5.5.7) 
V •hi�ro� 

(Recall that ro is the based point chosen to define the semi-flat complex 

coordinates zq, ..., Zn-i in the previous subsection.) 

2. For i = 1 , . . . , n — 1, 

5_2 = e—2Kia;‘i. 
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• = 

where g{zi 

CU on (A')— 

...，^n-l) on 

Zn-i) is the Laurent polynomial 

gi^i,…，:= E C ^ l + Si) H 4 

Ci are constants defined by 

(5.5.8) 

(5.5.9) 

for 2 = 0, 

(5.5.4). 

Ci := exp — I w ) � 0 

,m — 1，and 5i are constants previously defined by Equation 

Znn '•— 
e - ( C o ] 於 1 ， o n 

\ e—沿—c�么o—i on ( J i 'y \B '+Y 

(Recall that Ki and cq are constants appearing in the defining equations 

(5.2.1) of the polytope P'.) 

Proof. The Fourier transform of each 2j is a complex-valued function Zi on 

H') given by 

Zi = Y . 工 i ( A ) H o l v ( A ) = ^ (/?• e x p ( - / a;) Holv(5>/3) 
Xeni{X',Fr) 

By Proposition 5.4.13 and 5.4.14, n " = 0 unless (3 = + or /3oo + (A;—Ad) 

for j = ±1，，.., ± n — 1 and k = 0 , . . . , m — 1, where a G 丑2(义 ')is a class 

represented by rational curves with Chern number zero, which implies that a G 

H^iX) c H2{X'). 

1. By Proposition 5.3.10，among the above classes ( 3 - D i ^ Q only when jS = 

in which ease • D^ — 1. Thus 

r \ 
Zi = exp 

\ 

UJ 
；(T.) } 

Hoi•(明）=exp 
v 

UJ — cj Holv(Ai) 
“ro) J[hiiT)] 乂 
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2. By the same argument 

一 for i = n — 

3. Among the above classes such that np ^ 0, Dq ^ 0 only when = +丨 

in which case + a) • Dq = 1. There are two cases: When r 6 B'—, 

几日k+a = 

1 for A: = 0 and a = 0; 

0 otherwise. 

In this case 
/ 

Zq = cxp OJ 

'Mr) 
Hol•(即0) = exp 

CQZQ. 

When r e B ' 

zo 

/ CO — I IJJ Holv(Ao) 

= - / UJ 
a V 阶 ) , 

Holv(aft(r)) 

exp — / CJ exp - / - - E O " / 
V •hAro) Ahoir)] 々咖 / 

CJ 

Holy Aq + ,巧）A, 

UJ 

4. Among the above classes such that n^ 0, /5 • + 0 only when ^ ^ + 

[(3k — /3o) for fc = 0 , . . . , m — 1, in which case the intersection number is 1. 

The same argument as above shows that 

^riTi •— 
e — … ， ^ n - i ) ) on ("')—Hi?: 

冗广c�之n—1 on e 
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• 

Remark 5.5.4. Let ro G U' be chosen such that Co equals to a specific constant, 

say, 1/2. One may also choose the toric Kdhler form such that the symplectic sizes 

of the disks pi are very large for z = 1 , . . . , m — l , and so C i � 1 (under this choice 

every non-zero two-cycle in X' has large symplectic area, so this Kdhler structure 

is said to he near the large Kdhler limit). According to the above expression of Sq， 

g is approximately Cq, and so CqZq = zq/2 approximates Zq. Similarly ��么q"1 

gives an approximation to 5oo- Thus the semi-flat complex coordinates of Xq are 

approximations to the corrected complex coordinates, and the correction terms 

encode the enumerative data of X'. 

5.5.3 The mirror manifold 

Now take R to be the subring of functions on — H') generated by {zi : 

i = 0, CO, ± 1 , . . . , ± (n — 1)}. From the expression of 爲 given in Proposition 5.5.3, 

one may write R as follows: 

Proposition 5.5.5. 

where R— 二 R+ .. 二 . 

at 9 = + 

are given by [Id] : R_ —R( 

R^^R— X只Q R+ 

.，0/nd Ro is the localization o/Cfz^^,...，z^^j] 

(see Equation (5.5.8)). The gluing homomorphisms 

and 

R+ Rq , 
Zk ^ [zk] for 

^ . 
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The isomorphism is given by 

130 

for j = n — 

So ^ (Co^o, Zog)] 

？oo ^ ( e - 銜 - e - K 广、一 1 ) ; 

Zj (q勺， 

-J ^ 银 1 ， e - 广 ） 

1 Zog) e R and V = (Co-V g, Zq^), one has 

C\u. 1 么 1 ； • • * J 

(5.5.10) 

{uv - g) 

Thus X := Spec(均 is geometrically realized as 

One has the canonical map 

Po ： 

uv = . . . , ^n- l)} 

(5.5.11) 

by setting 

and 

u := 
Cnzo on 

zog on (A')-i(B-

V ：— 

C o ' z o ' g � n (A')-i(i?—); 

zo-i on 民 ) • 

By a change of coordinates, the defining equation of X can be transformed to 

the form appeared in Theorem 5.5.1: 

Propos i t ion 5.5.6. By a coordinates change on C^ x the defining equa-

tion 
m—1 



yVl 
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can be transformed to 

n—l m-1 
柳 = ( 1 + 5。）+ + Sj}zj + + 5i)qi_n+iz' 

j—l i=n 

where C:s are the constants defined by Equation (5.5.9). 

Proof. Consider the coordinates change 

八_ a 
一 •^勺 

for j = 0 , . . . , n - 1 on (C�广—丄.Then 

Co之如=Co产 

and for i = 1 , . , . , m — 1, 

！JẐ  Co�("”""'） 
CiZ”"^ = C^z •VT 

\ i=i / 

The last equality in the above follows from the equality 

n—l n—l 

(力‘'叫)=XI ’ ’仏)二 '叫)= 

for i = 1,…，m — 1 • 

Thus for z = 0 , . . . , n — 1, 

C Z = CoF^ = 

For i — n , . . . , m — 1, 

a 
("J 

is c x p ( — w h e r e Ai^n+i is the symplectic area of 

Si—n+1 = fk-n+1 一 ^^ i^j，'^i-n+l) {^j-
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Thus it equals to qi-n+i-

Now set U = u/Cq, the equation 

m—l 

uv = 
'i=0 

is transformed to 

n—1 m—l 
UV = {l-\- 5o) 

• 

This proves part (1) of Theorem 5.5.1 that the construction procedure given 

in Scction 4.3 produces the mirror as stated. 

Notice that the defining equation of X is independent of the parameter Ki 

used to define the modification X' in Section 5.2，while the toric Calabi-Yau 

manifold X appears as the limit of X' as Ki oo. Thus the mirror manifold of 

X is also taken to be X. 

Remark 5.5.7. Hori-Iqhal-Vafa [28] has written down the mirror of a toric 

Galabi- Yau manifold X as 

uv 

by physical considerations. They realize that the above equation needs to be 'quan-

tum corrected，’ but they did not write down the correction in terms of the symplec-

tic geometry of X. From the SYZ construction； now we see that the corrections 

(which are the factors (1 + S^)) can he expressed in terms of open Gromov- Witten 

invariants of X. 

Composing the canonical map po (5.5.11) with the coordinate changes given 

above, one obtains a map 

p : il-\BQ - H) ^ X (5.5.12) 
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where 

130 

u := 
on {{I'rHB-)； 

and 

V ：二 
…，Zn-i) on ); 

[ o n 

Recall that G is the Laurent polynomial defined by Equation (5.5.2). 

In the following we consider part (2) of Theorem 5.5.1. 

5.5.4 Holomorphic volume form. 

Recall that one has the semi-flat holomorphic volume form on Xq, which is written 

as dlog2i 八...A dlog 么n-i A dlog zq in Section 5.5.1. Under the natural m a p 

p (see Equation (5.5.12)) this semi-flat holomorphic volume form extends to a 

holomorphic volume form A on X which is exactly the one appearing in previous 

literatures (for example, see P. 3 of [32]): 

Propos i t ion 5.5.8. There exists a holomorphic volume form Cl on X which 

has the property that p*Cl = d log Zq 八...八 dlog^:^^—i on jjr^{Bo — H)) where 

p : /i—i(i?o — H) ^ X is the canonical map given by (5.5.12). Indeed in terms of 

the coordinates of C? x (C^)"-^ 

. ( 1 \ 
0 = Res rdlog 八-..八 d log Zn—i A du 八 ch; 

\UV - G(zi, . . J 

where G is the polynomial defined by Equation (5.5.2). 

Proof. Let F — uv — G{zi,,..，Zn-i) be the defining function of X. O n X A 

((ĵ x)n+i，we have the nowhere一zero holomorphic n-form 

d log A ... A d log Zn-i A d log u 

whose pull-back by p is d log A ... A d log Zn-i A dlog Zq. It suffices to prove 

that this form extends to X = {(u, v,Zi,..., 1) G C^ x (C、广一 1 ： F = 0}. It 
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is dear that the form, extends to the open subset of X where u f^ 0. By writing 

the form as 

- d log 2；! A . . . A d log Zn-̂ i A d log 

we see that it also extends to the open subset where v ^ 0. Since 
m~l n—1 / n—1 \ 

udv +vdu=J2 込(1 + n ( " h V^)dlogZk 

where Q^ := I ioi i = 0 , n — 1 and Qi = Qi for i = n,... .m — 1, the above 

n-form can also be written as 

udv + vdu 

/dF\ — 

A d log A .. . A d log Zn-i 八 d log u 

dz^ 
dv 八 d log 之2 八 . . .八 d log Zn~i 八 cki 

which is holomorphic when f j By similar change of variables, we see that 

the form is holomorphic whenever dF + 0, which is always the case because X 

is smooth. 

For n 0, 

-^d log A ...八 d log Zn-i 八 du 八 
r 

wd/u 
二d log 2；1 A ...八 d log Zn-i A d log lA A 

r 
dF 

—d log •Zi A ...八 d log Zn-i A d log li A 
r 

whose residue is d log 2：1 八...八 d log Zn^i 八 d log u. • 

This proves part (2) of Theorem 5.5.1. 

5.5.5 Independence of choices of basis 

If in the beginning we have chosen another ordered basis which generates a cone 

of E to construct the mirror, the complex manifold given in Theorem 5.5.1 differs 
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the original one by a biholomorphism which preserves the holomorphic volume 

form: 

Proposition 5.5.9. Let {no , . . . , Wn-i} C N and {vq, •. -, Vn-i} C N be two 

ordered basis, each generating a cone of E. Let (X, fl) and (X, Q) he the two 

mirror complex manifolds constructed from these two choices respectively. Then 

there exists a biholomorphism (f) : X X with the property that = 士Q. 

Proof. The mirror complex manifolds constructed from the two choiccs are 

J uv 

and 

仏 7;，Cl,‘..，Cn-l) X (C: UV 
-("J. 

respectively, where Qi = 1 for z = 0, . . ., n — 1 and Qi = Qi for i 二 m — 1; 

{vq, . . . , Vn-i} is the dual basis of { fo , . . . , t'n-i}, and {/io, . . . , j in-i} is the dual 

basis of {no, . . . , n„-i}. Notice that the constants Q^ and Si are independent of 

choice of the basis (see Equation (5.5.4)). Let pLj — ̂ ^ ajki^k be the change of 

basis, where Uj^ form a matrix A G GL(n, Z). Then 

E 似 1+幻 n = E 込(1+幻 n n c 
j=l i = 0 j = l k = l 

/n- iyk 

•i=0 fc=l \j 

c
 

Thus the coordinates change 

Zk c
 

O'-jk 

gives the desired biholomorphism. Moreover under this coordinates change 

二 d log 八 . . .A d log Zn-i 八 d log tt 

= ( d e t yl) d log (1 八，，.A d log i A d log n 

土n. 



SYZ mirror symmetry for tone Calabi-Yau manifolds 123 

7.3.2 Three dimensional cases 

Let X = Xs be a toric Calabi-Yau and /3 G 7r2(X, T) be a disk class bounded 

by a Lagrangian toric fiber T C X. By Theorem 7.2.4, the one-pointed open 

Gromov-Witten invariant rifj is non-zero only when (3 — /3k for A: = 0 , . . . , m — 1, 

in which case n 仇 = 1 , or is of the form /？̂  + o; for some a represented by 

rational curves in X. For the later case 

provided that rational curves in X representing a arc contained in X. (Recall 

that X is a toric compactification of X along the Vi direction, and h G H2[X~) 

denote the fiber class.) 

When dimX = 3, we may apply a flop to relate the above expression to some 

known local invariants as follows. Without loss of generality let i = 0 in the 

above expression. Write Y = X and let T>oo be the toric divisor corresponding 

to Voo = —Vo. Let y E Y he one of the torus-fixed points contained in ！Dqo, which 

corresponds to a 3-cone (voo, ui, U2)m of Ey. First we blow up y to get Yi, whose 

fan El is obtained by adding the ray generated hy w ^ Voo + Ui + U2 to Sy. By 

using the blow-up formula of Hu-Gathmann [30, 23] (Theorem 7.1.1), one has 

( [ p t ] > o W - ( l > S 

where tt : Yi y is the blow-up described above, ei G is the correspond-

ing exceptional class, and tt' := PD o tt* o PD : H2(Y) HsiXi). By abuse of 

notations if a G 义）C H2(Y), then 7r-(a} is still denoted as a. 

Write h G H2{Y, Z) as h' + where h' G H2(Y, Z) is the class corresponding 

to the 2-cone (ui, ？x2�r of Ey and 5 G Hai^X, Z). Then 

where h" G H2(V^5 is the class corresponding to the 2-cone (ui, of Ei. 
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Thus the above expression can be written as 

�l�o)oy(h)+a-ei 二�l�0,io’h�+(5+a. 

Now we take a flop of Yi along h" as follows. There exists a unique prim-

itive vcctor uq ^ w such that {uq, Ui, U2} generates a simplicial cone in Si： If 

ui, U2} spans a cone of Ei, then take uq = ；̂0； otherwise since Ei is simplicial, 

there exists a primitive vector uq C ui, U2) with the required property. Now 

(ui, U2, w)^ and (ui, U2, uo)k form two adjacent simplicial cones in Ei, and wc 

may employ a flop to obtain a new toric variety W^ whose fan Ev7 contains the 

adjacent cones {w, uq, Ui)^ and {w, Uq, ^2)1- (See Figure 7.5). 

Figure 7.5: A flop. 

The flop induces a natural isomorphism 丑2(^1)—丑2(浙)，which sends h" G 

H2{Yi) (which corresponds to the cone�^ii,n2�iR) to —e G H2{W), where e G 

H2{W) is the exceptional class corresponding to the cone {uq, w)^. A class a • 

h" € HaiXi) corresponding to a 2-cone C of Ei is sent to a class in H2{W) 

corresponding to C as a cone of J^w, and by abuse of notations it is still denoted 

as a G H2{W). By Li~Ruan's flop formula (Theorem 7.1.2), 

�l�o，W�+朴a = (1)0,0, 

W is the compactification of another toric Calabi-Yau Wq whose fan is as 

follows: First we add the ray generated by w to S^ , and then we apply a flop to 

the adjacent cones {w, Ui, U2) and {uq, ui, U2). Wq is Calabi-Yau because 



P 二 {(>1, Xs) e R ^ ： X 3 > 0 , X i + X 3 > 0, + 2；3 > 0, Xi - X2 ̂  X̂  > 

SYZ mirror symmetry for toric Calabi-Yeui manifolds 106 

and a flop preserves this Calabi-Yau condition. Moreover, —e, (5, a G H2{W) are 

indeed classes in 丑2 (购）C H2{W). Assuming that curves in W representing 

a-\- 6 — e are contained in Wq, then 

-e+8+Q ~ (l)o,0,a+<!>-e 

and the later is a local invariant which can be computed by localization or the 

mirror principle [11，42, 43, 44], For any curve class a G E^iX), = + — e e 

丑2(M,o) is a curve class called the strict transform of a. To conclude, 

P ropos i t ion 7.3.7. Let X he a toric Calabi-Yau manifold and 卢二伪 + a G 

7r2(X, T), where Di is compact and a G H2{X) is represented hy some rational 

curves. Let X, W and Wq be the toric varieties constructed as above. Denote the 

strict transform of a (defined above) by a!. Then 

% = ⑴ 
Wo 

provided that curves in X representing a are contained in X, and curves in VV 

representing a' are contained in Wq-

The above formula provides a way to compute the open Gromov-Witten in-

variants of a toric CY threefold. Yet at present we don't have a proof of the 

Mirror Conjecture 6.2.1 which works uniformly for all toric CY threefolds. In-

stead, we apply the above computational method to some familiar threefolds to 

give evidences of Conjecture 6.2.1. 

1. Opi ( — 1 ) © ( ! V ( — 1 ) . 

For X = —1) © Opi(—1), the generators of the rays of the defining fan 

S are i ; �= (0, 0,l),Vi = (1,0,1),?；2 = (0,1,1) and Vs 二（1，一1,1). We equip 

X with a toric Kabler structure oj SO that the associated moment polytope P is 

given by 

\
J
 

1
 

s
 



之 1, Z2) G C2 X ：糖二 1 + 么1 + 么2 + gZiZ2^}, 

where q = exp(—s). 

Figure 7.6: Opi ( -1 ) 8 Opi ( -1 ) . 

Both Mc{X) and Mk(X) can be identified with the punctured unit disk A* 

and the SYZ map J s y z : A* ^ A* given by (6.2.1) is the identity map. 

On the other hand, <l>(g) = — logg is the unique (up to multiplication by 

constants) solution with a single logarithm of the Picard-Fuclis equation 

where denotes 々着，which implies that that the mirror map ip is the identity. 

Hence, tp • ！？syz = Id, and so Conjecture 6.2.1 holds true for this example. • 

2. K-p2 • 

The primitive generators of the rays of the fan S defining X = can be 

chosen to be Vq = (0, 0,1), Vi = (1, 0，1), V2 = (0,1,1) and ？;3 二 ( - 1 , 一1，1). We 
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where si = f^cj > 0 and I G 丑2(足 Z) is the class of the embedded P^ C X. To 

complexify the Kabler class, we set cu'̂  = u + 27rV^i?，for some real two-form 

B (the 5-field). We let s ^ f ^ c v ^ e C . 

Since there is no compact toric prime divisors in X (see Figure 7.6 below), 

by Theorem 7.2.4, n^ • 0 only when /3 — /？̂  is a basic disk class. Thus the SYZ 

mirror written in Theorem 5.5.1 is given by 

X ^ { 0 , 
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equip X with a toric Kahler structure co associated to the moment poiytope 

P = {{xi,X2, x^) G E^ ： > 0, a；! + > 0, X2 + X3> 0, - X2 + X3 > - S i } , 

where = f^uj > 0 and I G H2(X, Z) = Z) is the class of a line in 

p2 c X. To complexify the Kahicr class, set uj'̂  = to where i? is a 

real two-form (the 7?-field), and let s — J^u;^ G C. 

There is only one compact toric prime divisor Dq which is the zero scction 

p2 ^ /Cp2 and it corresponds to vq. By Theorem 7.2.4, np • 0 only when p = Pi 

is a basic disk class or 二 /?。+ kl for k > 0. The SYZ mirror X in Theorem 

5.5.1 is given by 

V ‘ / oo 
X = {u,v,Zi,Z2) e C^ X (cx)2 ： uv = 1 + ^n^o+fc/^ 

\ 

, 丨 丨 q + Zi + Z2 + 

where q 二 exp(—s). 

Now we apply Proposition 7.3.7 to compute npo+ki- In the construction of 

l y and VKo, ？Joo = ( 0 , 0 , - 1 ) , Ui = (1,0,1), U2 = (0,1,1), w = (1,1,1) and 

Uq — (0,0,1). Thus Wo = A'fi and W is the fiberwise compactification of Wq, 

where Fi is the blowup of P^ at a point. Moreover, J = 0 and e is the (—l)-curve 

in Fi C Wq. Denote the fiber class of Fi by / , one has KL — e — kf + {k — l)e. 

See Figure 7.7 below. 

Since P^ and Fi are Fano, curves in X representing kl are contained in X , 

and curves in W representing kf + (k — l )e are contained in WQ. Thus we have 

_ / I \ •K'FI 
几/3o+fcZ = U/o,0,fc/+(fc-l)e-

The local BPS invariants〈1〉二 1 咖 ( H ) e have been computed by Chiang-
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/ I T ^ J C t l 

Figure 7.7: Polytope picture for ICp2 and i^Fi-

Klemm-Yau-Zaslow and the results can be found in Table 10 in [11]. Thus 

n^o+i = - 2 , 

n/3o+2i = 5， 

n/3o+3i 二 -32 , 

n/3o+4i = 286, 

n/3o+5i = —3038， 

n/?o+6i = 35870, 

Using these results, we can write down the SYZ mirror explicitly as 

X = I (n, V, zi, Z2) G C 2 X ( C X ) 2 : UV = 1 + So{q) + 2；： + 2:2 + “ 
j 

where 

5Q{q) 二 —2q + bq^ - 32g^ + 2 8 6 / — 3038g^ + . . . . 

Now, both M c i ^ ) and M k ( ^ ) can be identified with the punctured unit 

disk A*. Our map S'syz : A* 4 A* (6.2.1) is given by 

JsYz(g) = f?(l -2g + — 32q^ + 286g^ 一 3038q^ + ...)—3. 

On the other hand, the mirror map and its inverse have been computed by 

Grabcr-Zaslow in [25]. First of all, the Picard-Fuchs equation associated to Kp2 
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is 

[巧 + 3 购 + + ⑷ = 0 , 

where denotes the solution of which with a single logarithm is given by 

— g 字 靜 

Hence, the mirror map ijj : A* ^ A* can be written explicitly as 

Q ^ • = exp(-$(g)) = gexp f f ； (二” ( f f i 

\ fc—1 

The inverse mirror map is then computed by inverting the above formal power 

series and is given by 

q g + + + 一 + 3oog5 + 3942g6 十... 

=q(l -2g + — + 286g4 一 3038^^ + .. 

which agrees with the above expression for 

3. i^pixpi . 

For X — i^pi^pi, the primitive generators of rays of the defining fan E can 

be taken to be Uq = (0,0,1), -ui = (1,0,1), V2 = (0,1,1), V3 = ( -1 ,0 ,1 ) and 

V4 = (0, —1,1). We equip X with a toric Kahler structure u) so that the associated 

moment polytope P is defined by the following inequalities 

X3 >0,Xi+X3> 0, 0, -Xi + X3> -s[, -X2 + X3 > 

Here, s； = cu, 4 = 几 � > 0 and h . h € 丑2 (X ,Z)=丑2 (P i x P \ Z ) arc 

the classes of the -factors in pi x P^. To complexify the Kahler class, we set 

oj^ = uj ^ where 5 is a real two-form (the 召-field), and let Si = 

There is only one compact toric prime divisor Dq which is the zero section 

pi X pi 4 Kpixpi. By Theorem 7.2.4, n̂ g 0 only when = is a basic disk 
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class or = /3o + /ci/i + kal^z for ki, k2 > 0. The SYZ mirror X in Theorem 5.5.1 

is given by 

文二 I e C ^ X :uv = l + So(qi, ^2) + + 22 + - + - 1 , 
I J 

where q �— exp(—-Sa) (a = 1, 2) and 

+ (I2) = ^ 几Po+kih+k2hqtq� 
k2 

ki,k2>0 

For simplicity, denote n日o+kih+kih by Let's apply Proposition 7.3.7 to 

compute nfci，fc2. In the construction of X , W and Wq, Vqo — (0, 0, —1)，ui — 

( - 1 , 0 , 1 ) , U2 二 (0,—1，1), w = ( - 1 , - 1 , 1 ) and uo - (0,0,1). Thus Wq = /i：仍 

and W is the fiber wise compactification of Wq, DP) is the blowup of P^ x p i at 

one point. Moreover, = 0 and e is the exceptional curve in DP] C Wq under the 

blow-up map dP? ^ P^ x P ^ See Figure 7.7 below. 

L2 

Figure 7.8: Polytope picture for K^i xpi and Kdp�-

Sincc and F^ are Fano, curves in X representing kl are contained in X, 

and curves in W representing KILI + K2L2 + {ki + K2 — l )e are contained in Wq-

Thus we have 

W KdP� 

and the local invariants appeared in the right hand side above have been computed 

by Chiang-Klemm-Yau-Zaslow and the results can be read off from Table 3 on p. 
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• 

5.5.6 The super potential. 

Recall that wc have defined the generating function J^x of open Gromov-Witten 

invariants (Definition 3.3.3). By taking Fourier transform, we obtain the super-

potential, which is a holomorphic function on (J1)~1(Bq — H), and it extends to 

be a holomorphic function on X\ 

Propos i t ion 5.5.10. Let Zi be the holomorphic functions on ( / i ' ) 一 丑 ) g i v e n 

in Proposition 5.5.3 for i 二 0, oo, ±1，...，±(n — 1). 

1. The Fourier transform of Tx' is the function 

n—1 

i^i 

on 

2. The Fourier transform of Fx is the function 

W^zo 

on — H), which equals to p*{Cqu). (Cq is a constant defined by 

Equation (5.5.9) J 
Proof. The first part is just Proposition 4.3.11. 

For the sccond part, the Fourier transform of T x is 

W^ -7^x(A)Holv(A) ^ n^ exp f - f w) Holv(a/3). 
Xe7ri{X,Fr) f}en2{X,Fr) \ J13 / 

For r G B+, by Proposition 5.4.7, n^ = 0 unless (3 = 风 f o r fc — 0 , . . . , m — 1 

and a G 丑义) represen ted by rational curves. Moreover, n队=1. Thus 

rn-~l / n \ 

= E E n " + a c x p - OJ Holy(9f t ( r ) ) 
'/3j{r)+a y 

= Z q -
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For r G by Proposition 5.4.9, n^ = 0 unless — and n�。=1. Thus 

W = exp ( - f w ) Holv(5/3o) 

V J Mr) J 
— 

By Equation (5.5.12), 5。= p*(CoU). • 

This ends the proof of Theorem 5.5.1. In the next Chapter, we will state a 

conjecturc on the relation between the SYZ mirror and the mirror map, which 

plays a fundamental role in the study of mirror symmetry and its applications. 



Chapter 6 

Mirror maps and SYZ maps 

For a pair (X, X ) of mirror Calabi-Yau manifolds, mirror symmetry asserts 

that there is a local isomorphism between the moduli spacc M c { X ) of complcx 

structures of X and the complexified Kahler moduli space MK、X、of X near the 

large complcx structure limit and large volume limit respectively, such that the 

Frobenius structures over the two moduli spaces get identified. This is called the 

mirror map. It induces canonical flat coordinates on Mc{X) from the natural 

flat structure on A4k{X). A remarkable feature of the SYZ mirror is that for 

typical toric Calabi-Yau manifolds, it is inherently written in these canonical flat 

coordinates. In this Chapter we shall formulate this feature as a conjecture. The 

conjecture will be proved for toric C Y surfaces and some toric C Y threefolds in 

the next Chapter. 

6.1 A quick review on the mirror map 

Let X = X s be a toric Calabi-Yau n-fold. W e adopt the notation used in Chaptcr 

5: G — 0,... ,m — 1 are primitive generators of rays in the fan S, and 

二qI C M is the dual basis of C N. Moreover, H2{X, Z) is of rank 

I = m — n generated by [SaY^J^ (see Equation (5.5.5) and Proposition 5.5.2). 
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1. The complexified Kdhler moduli. 
Let JCIX) be the Kahler cone of i.e. /C(X) C H^{X,R) is the space of 

Kabler classes on X . Then let 

MK{X) = ]C{X) + Z). 

This is the complcxified Kahlcr moduli space of X . A n clement in is 

represented by a complexified Kahler class o;*̂  二 o; + where U G 1C{X) 

and B G IP{X, R). B is usually called the B-field. W e have the map MK{X)— 

defined by 

qi = exp UJ 

for i = 1,... J. This map is a local biholomorphism from an open subset U C 

MK{X) to (A*)^ where A* = G C : 0 < < 1} is the punctured unit disk. 

The inclusion (A*)^ ̂  where A = {2： G C : |2：| < 1} is the unit disk, gives 

an obvious partial compactification, and the origin 0 G A^ is called a large radius 

limit point. From now on, by abuse of notation we will take Mk(^) to be this 

open neighborhood of large radius limit. 

2. The complex moduli. 

O n the other hand, let M c i ^ ) = (A*)、We have a family of noncompact 

Calabi-Yau manifolds {Xg} parameterized by q G Mc{^) defined as follows. For 

q 二 •••^qi) ^ Mc{X), 
r m - l 、 

I { u , V , Z I , . . . , Z N - L ) G C^ X (cx 广一 1 ： uv = Y^ tiZ""^ I , (6.1.1) 

I . 

where U ^ £. are subject to the constraints 

n-l 

t 产杯-1)=豆 a, a = 1 , •..,/‘ (6.1.2) n+a-

Thc origin 0 G A' in the partial compactification M c { ^ ) ^ A^ is called a 

large complex structure limit point. Each {X^} is equipped with a holomorphic 

volume form 
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么 : = R e s 
\ 

uv - Uz' 
-d log 八...八 d log Zn—i A du A d'u (6.1.3) 

3. The mirror map. The mirror map ip : M c i X ) Mk(^) is defined by 

periods: 

a exp 
'71 V '11 

where {71,..., 7；} is a basis of Hn{X, Z). 

Mirror symmetry asserts that ijj 18 & local isomorphism (around the large 

complex structure limit), and this induces canonical flat coordinates on 

by pulling back the fiat coordinates on via ip. 

In practice, one computes the mirror map by solving a system of linear dif-

ferential equations, namely the Picard-Fuchs equations, associated to the toric 

Calabi-Yau manifold X [1，25]. For i — 0,1,..., m — 1, denote by Oi the differen-

tial operator “ 备 . F o r j = 1,..., rz, let 

m—1 

where v] {vj , Vi). For a = 1 , l e t 

f d � n 
i:Qf>0 \du n 

i:Qf<0 

(d 
\dti 

where Q[ -Oj , Va+n-i) for j = 0,... ,n - 1, and Q^ = 5i ,a+n- for i — 

n,... ,m — 1. Then the A-hypergeomctric system (also called G K Z system) of 

linear differential equations associated to X is given by 

T j m = 0 0 ' = n), ⑷ = 0 (a = 1’.’.，（). 

If we denote by Xt the noncompact Calabi-Yau. manifold (6.1.1) parameterized 

by t = (to, ti,..., tm-i) G C ™ and tit the holomorphic volume form (6.1.3) on Xt, 

then, for any n-cycle 7 € H^{X,Z), the period 

riyW ：= / � 
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as a function of 力二 (to, h,..., tm-i), satisfies the above /l-hyper geometric system 

(see e.g. [29] and [32]). 

By imposing the constraints (6.1.2), the A-hypergeometric system is reduced 

to a set of Picard-Fuchs equations, which are satisfied by the periods 

⑷ = [ 〜 丑 n ( X 孙 

as functions of ̂  £ Jvic[X). Now, let ..., be a basis of the solutions 

of this set of Picard-Fuchs equations with a single logarithm. Then there is a 

basis 7i,..., 7； of Hn(X, Z) such that 

^aiq) = / � 

for a = 1,... , and the mirror map • : M c { X ) Mxi-^) is given by 

6.2 A mirror conjecture 

1. The SYZ map. 
In the last Chapter, for every toric Calabi-Yau manifold we have constructed 

its SYZ mirror which is defined by (Theorem 5.5.1) 

uv =(1 + ̂ o) + + 确 + + 

Rccall that M c { X ) ^ with each point q = {qi,.. .,qi) G M c W 

parametrizing tlic complex manifold defined by 

uv = f 'O + ^ h ^ j + Y^ Uz' 
j—1 i—n 

subject to the constraints 

各=“-iiiV(一"")， 



SYZ mirror symmetry for toric Calabi-Yeui manifolds 118 

Thus setting to = 1 + Sq, tj = 1 + 6j for j = 1,..., n — 1 and ti — (1 ^ 6i)q^_n+i 

for i = n,...,m — 1, one has a map 3̂ syz : Mk{X) (<?i, • • • ,Qi)= 

•••,qi) defined by 

qa = qa{l + l+n- 1 ) l[{l + 〜)_("】，“小卜丄），a = l,.‘.，l. ( 6 . 2.1) 

W e will call 3^syz to be the SYZ map since it is defined by the SYZ mirror 

construction in Section 4.3 and Chapter 5. 

2 . The conjecture. 

Noticc that the SYZ map : is canonical, in the sense 

that it is constructed by T-duality and open Gromov-Witten invariants, which 

involve intrinsic structures of the Lagrangian fibration X ^ B. O n the other 

hand, mirror symmetry tells us that the canonical way to identify M.k(X) with 

is via the mirror map ijj. This gives rise to a natural conjecture that 

these two canonical maps equal to cach other: 

Conjecture 6.2.1. The map Ugyz is the inverse of the mirror map that is, 

i/j o Ŝ gYz = Id. In other words, there exists a basis 71 , . . . , of Hn{X, Z) such 

that 

Qa = exp 

f o r q — o/nd a = 1 , . . . , L 

一 f Ct� 
\ ha 

In the literature, various integrality properties of mirror maps and their in-

verses (see e.g. [49]) have been established. This suggests that the coefficients in 

the Taylor expansions of these maps have enumerative meanings. This is a con-

sequcncc of what the above conjecture says for the inverse mirror map, namely, 

it can be expressed in terms of the open Gromov-Witten invariants for X. In 

the next Chapter, we will see that the open G W invariants involved are integers 

(Theorem 7.2.4). 
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To verify Conjecture 6.2.1, we need to compute the open Gromov-Witten 

invariants U/ĵ +q and then compare the map ！iTsYz define by (6.2.1) with the inverse 

mirror map. These are investigated in the next chapter. 



Chapter 7 

Computation of open 

Gromov-Witten invariants 

In this chapter we develop a method to computc the open Gromov-Wittcn in-

variants of toric Calabi-Yau manifolds. The main difficulty is that obstruction 

is non-trivial in this situation, and there is no systematic tool to compute open 

G W invariants. On the other hand, many tools (such as localization and degen-

eration methods) have been developed for computation of closed G W invariants. 

Thus the main idea is to relate the open invariants that we want to compute to 

some dosed invariants which arc computable by current techniques. This idea 

has been used by Chan [9] to investigate the open Gromov-Witten invariants of 

the canonical line bundle Ks of a toric manifold S. 

This method is applied to verify the Mirror Conjecture 6.2.1 for toric Calabi-

Yau surfaces and some typical threefolds such as and K-̂ i xpi. As another 

application, it is applied to compute open G W invariants of semi-Fano toric 

manifolds in Scction 7.4. 
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7.1 G W invariants under blowups and flops 

First we fix the notations for closed Gromov-Witten invariants and review some 

previous results on their transformations under birational maps which will be 

used in this Chapter. The readers are referred to [41, 15] for the definition of 

Gromov-Witten invariants. 

For a projective manifold X, let 仏a；(X, a) be the moduli space of stable 

maps f : (C; ,Ti, • • - Xk) X with genus g{C) = g and [/(C)] = » G H2{X, Z). 

Denote by ev, : — ^ the evaluation maps at marked points f 4 

/'(.rj. The genus g /c-pointed Gromov-Witten invariant for classes G H*{X), 

I — 1,... is defined as 

. k 
� 7 1 , … = / 

where [TVf仏fc(X, ck)广 denotes the virtual fundamental class of A - l仏 a ) . (This 

is very similar to the discussion in Section 3.2, in which Kuranishi structure is 

used. See [41, 15] for the details.) 

W h e n the cxpected dimension of 仏fc(X，a) is zero, for instance when X is a 

Calabi-Yau threefold and /c = 0, wc will be primarily interested in the invariant 

mf,0,a - f 1 (7-1-1) 

which equals to the degree of the 0-cycle [>M"’o(X, of A4gfi{X, a). 

Roughly speaking, the invariant�71’ …,7fc〉“ is a counting of genus g curvcs 

in the class a which intersect with generic representatives of the Poincare dual 

PD{%) of In particular, if wc want to count curves in a homology class a 

passing through a generic point x G X, we simply take some to be [pt], the 

Poincare dual of a point. In the genus zero case, there is an alternative way to 

do this counting: Let tt : X ^ X he the blow-up of X at one point x] we count 

curves in the homology class 7T\a) — e, where 7r'(a) := PD{7t*PD{a)) and e is 

the line class of the exceptional divisor (which is CP""^). By the result of H u [30] 
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(or the result of Gathmann [23] using algebraic geometry), this gives the desired 

counting: 

Theorem 7.1.1. ([23],[30]) Let tt : X ^ X he the blow-up of X at one point，and 

e be the line class in the exceptional divisor. Let a G H2 {X, Z) and 71, • - • , 6 

H*{X). Then one has 

〈71，...，7fc, [ptl>Jfc+i,a = ••• , 7r*7fc〉t’一⑷一 e 

where 7r'(a) = PD{tt*PD{a)). 

Another result that we will use is the transformation of Gromov-Witten in-

variants under a simple flop. Let / : X Xf be a simple flop between two 

thrccfolds along a smooth (—1, —1) rational curve. Denote by T the (—1, —1) 

curvc in X and Tj the corresponding exceptional curve in X f . There is a natural 

isomorphism 

and it has the property that 

= -[r>]. 

Moreover, ^ determines a homomorphism cp* : — E) 

whose restriction on H^(X, M) is the dual m a p and restriction 

on H \ X f , R ) is via Poincare duality. 

The following theorem is proved by A.-M. Li and Y. Ruan. 

Theorem 7.1.2. ([40]) Let f : X --+ Xf be a simple flop between threefolds 

along a smooth (—1, —1) rational curve F C X and ip : H2{X, Z) > H2{Xf, Z) 

be the natural isomorphism. If a ^ m[T] G i?2(义，Z) for any m G Z, then 

、中、,…，V^*7fc�S，《 二� 7 1 ’ •. •， 

for G 
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7.2 A relation between open and closed G W in-

variants 

In this scction we study open Gromov-Witten invariants of a toric Calabi-Yau 

manifold X — X^ by relating them to some closed Gromov-Witten invariants 

(Theorem 7.2.4). The proof is based on the work of Chan [9]. Then wc special-

ize to two and three dimensional cases and compute their open Gromov-Witten 

invariants. 

Let T C X be a regular toric fiber and (3 G 7r2(X, T) be a disk class bounded 

by T . Rccall that the genus zero one-pointed open Gromov-Witten invariant in 

the class (3 is denoted by n^ (see Chapter 3 for a quick review on its definition), 

The main difficulty of computing n^ is the failure of transvcrsality due to sphere 

bubbling (see Section 3.2). Fortunately for toric Calabi-Yau manifolds, one can 

locate the holomorphic spheres using the following simple lemma: 

Lemma 7.2.1. Let Y be a toric manifold and assume the notations of Section 2.2 

for toric geometry. Suppose there exists v ^ M such that u defines a holomorphic 

function on Y whose zeros contain all toric divisors ofY. Then the image of any 

non-constant holomorphic map u : P^ —> y lies in the toric divisors of Y. In 

particular this holds for a toric Calabi-Yau manifold. 

Proof. Denote the holomorphic function corresponding to z/ 6 M by /. Then 

f ou gives a holomorphic function on pi, which must be a constant by maximal 

principle, / o n cannot be constantly non-zero, or otherwise the image of u lies 

in (C^)" C F, forcing u to be constant. Thus f o u 三 0, implying the image of u 

lies in the toric divisors of Y. 

For a toric Calabi-Yau variety X , , == 1 > 0 for alH = 0,. .., m — 1 

implies that the meromorphic function corresponding to n indeed has no poles. 

• 
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As a conseqiiencc: 

Proposition 7.2.2. Let X be a toric Calabi-Yau manifold and T be a Lagrangian 

toric fiber. For a disk class /3 € 兀2(乂, T) which has Maslov index two, J\4i{T, {3) 

is empty unless 

1. P — for some i; or 

2. p = Pi + a, where the i-th toric divisor D^ is compact and a E HaiX, Z) is 

represented hy a rational curve with non-empty intersection with 

Proof. By Theorem 11.1 of [22], MiiX, /3) is empty unless 13 = k A + E j ĉj 

where ki G Z>o and each aj E H2{X, Z) is realized by a holomorphic sphere. 

Since X is Calabi-Yau, every aj has Chern number zero. Thus 

i i 

where denotes the Maslov index of /3. Thus p — pi + a for some i — 

0 , . . . ， m — 1 and a G H2{X, Z) is realized by some chains Q of non-constant 

holomorphic spheres in X. 

Now suppose that a ^ 0, and so Q is not a constant point. By L e m m a 

7.2.1，Q must lie inside U S ^ Q must have non-empty intersection with 

the holomorphic disk representing jSi E tc2[X, L) for generic L, implying some 

components of Q lie inside D^ and have non-empty intersection with the torus 

orbit c T)i. But if D^ is non-compact, then the fan of D^ (as a toric 

manifold) is simplicial convex incomplete, and so D^ is a toric manifold satisfying 

the condition of L e m m a 7.2.1. Then Q has empty empty intersection with the 

open orbit (C^)^ C D^, which is a contradiction. • 

By classifying all the holomorphic disks bounded by regular toric fibers, Cho-

Oli [12] proved that n^ = 1 for the basic disc classes = The remaining task 

is to compute n^ for ̂  = + a with nonzero a G H2{X). To do this we relate 

n日 to certain closed Gromov-Wittcn invariants by compactifying X. 
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First consider the special case that X = Ks is the canonical bundle of a toric 

Fano manifold S. Then the only compact toric divisor in X is Do : S, and 

so it only remains to compute 几；̂̂+⑴ where a G H2{S) is represented by some 

rational curves in S. N o w take the fiberwisc compactification X , whose fan S is 

the refinement of E by adding the ray generated by Voo := —'"o- Let h denote the 

fiber class of X . 

Let p e T C X, M^p := Mi{X, + a) evoX;^ {p} denote the moduli spacc 

of stable disks representing Po-\-a whose boundary passes through p, and iW二 ：= 

M.i{X, h + a) ev。xX {p} denote the moduli space of rational curves representing 

h -{- a and passing through p. It was shown by Chan [9] that the Kuranishi 

structures on M^^ and M ^ are the same (see Figure 7.1 for an illustration), and 

so the corresponding invariants equal to each other: 

Figure 7.1: Equating open invariants with some closed invariants. 

Theorem 7.2.3 (Chan [9]). Let X = Ks he the canonical line bundle of a toric 

Fano surface S and a E H2[S,7j}, and denote by X its fiberwise compactification. 

Then 

Now consider a toric Calabi-Yau manifold X which may not be of the form 

Ks- To compute w々 。+o；, consider a toric compactification X of X as follows. 

Let vo be the primitive generator corresponding to Do, and we take E to be the 

refinement of E by adding the ray generated by foo —幻o (and then completing 

it into a convex fan). By further refinement is necessary, we may assume that 
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S is simplicial so that X = X g is smooth. Denote by /i G H2{X, Z) to be the 

unique curve class such that h • Vq — h • ！Dqq — 1 and h • D — 0 iov all other 

irredudblc toric divisors D. W e also call h to be the 'fiber class'. Then we have 

the following result: 

Theorem 7.2.4. Let X be a toric Calabi-Yau manifold, T C X be a regular 

toric fiber and j3 G 7r2(X, T ) he a disk class bounded hy T . Then n^ ^ 0 only 

when p — is a basic disk class for i = 0,... — 1, in which case n^^ = 1, 

or P = I3i + a where the i-th toric divisor T)i is compact and a E H2{X^ Z) is 

represented by a rational curve with non-empty intersection with D^. 

By relabelling if necessary，seti = 0. Let X be the compactification constructed 

above and h E 丑2(叉)denote the fiber class. Assume that all rational curves in 

X representing a are contained in X. Then 

n/̂。+a = (7.2.1) 

Proof. The first paragraph is just a repetition of Proposition 7.2.2 and the result 

of Cho-Oh [12]. The second paragraph is the main part. 

For simplicity let Mop := M i { X , Pq + a) denote the moduli space of stable 

disks representing + a and M^i := h + a) denote the moduli space of 

rational curves representing h + a. By evaluation at the marked point wc have a 

T-equivariant fibration 

ev : Mop T 

whose fiber at ?? G T C X is denoted as M‘. Similarly we have a Tc-equivariant 

fibration 

ev : Mci^ X 

whose fiber is M:. By the assumption that all rational curves in X representing 

a is contained in X , which in turn is contained in the toric divisors of X , one has 

礼Pp = 
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There is a Kuranishi structure on Mg which is induced from that on Md 

(please refer to [15] and [20，21] for the detailed definitions of Kuranishi struc-

tures). Transversal multisections of the Kuranishi structures give the virtual fun-

damental cycles [Mop] G Hn(X,Q) and [ M ^ G Ho({p},Q)- In the same way we 

obtain the virtual fundamental cycles [Md] G H2n(^,Q) and [M^] e Ho({p}, Q). 

By taking the multisections to be Tc-(T-) equivariant so that their zero sets are 

Tc- (T-) invariant, 

dcg[Â :i/。p] = deg[_Mci/op] 

which arc the invariants ([pt])̂ 2.,/i+Q； and n彻+q； respectively. It remains to prove 

that the Kuranishi structures on M ^ and M ^ are the same, so that their virtual 

fundamental classes have the same degree. 

Let [uci] G M g , which corresponds to an clement ["ii。p] G M‘. u^i : (S, q) X 

is a stable holomorphic map with Uci{q) = p. T, can be decomposed as Eq U E i , 

where Eq ̂  P I such that u^[Eq] represents h, and u^[Ei] represents a. Similarly 

the domain of Uop can be decomposed as A U Si , where A c C is the closed unit 

disk. 

W c have the Kuranishi chart (V̂ i, Bd, Fd, tpd, <Sci) around Ud G M J , where wc 

recall that Ecielm(D^J) = and Ki 二 {df e E;f{q) =p}. O n 

the other hand let (l^p, ITop, Sop) be the Kuranishi chart around nop € 

Now comes the key: since the obstruction space for the deformation of lidls。is 

0, Ea is of the form C •n(o，i)(So，xll⑴,i)(Si，Udj^^TX). Similarly 

Eop is of the form Oe£；" C Uopl*^TX) x Uopls^TX). But since 

Du^^jy^^d =队。 p I s i召， a n d E" can be taken as the same subspace. Thus the two 

Kuranishi charts agree: -^d, r^, V々 i, Sd) = (Kp, E叩,Fop, V̂ op, Sop)-

To see that〈[pt]〉€,好《 is an integer, let Y = X and use Hu-Gathmann's 

blow-up formula (Theorem 7.1.1) to remove the point condition: 
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where h' is represented by the strict transform of h. 

• 

In the next section, we apply the above formula to two and three dimensional 

cases. The Mirror Conjecture 6.2.1 is proven in the two-dimensional case, while 

strong evidences have been found in dimension three. 

7.3 Computations in two and three dimensions 

7.3.1 Two-dimensional cases 

Let X — Xj^ be a toric Calabi-Yau surface. First of all, toric Calabi-Yau surfaces 

are classified by m G Z> o： 

Proposition 7.3.1. Form G Z>o, let E ^ be the convex fan supported in R^ whose 

rays are generated by (i, 1) for 2 — 0,..., m — 1. Then Xj：^ is a toric Calahi- Yau 

surface. Conversely, if X^ is a toric Calahi- Yau manifold, then Xs = as 

toric manifolds for some m > 0. 

Proof. Taking ij — (0,1) G Z^, one has (i, 1)) = 1 for all i == 0’...，m — 1. 

Thus Xy,^ is a toric Calabi-Yau. 

N o w suppose X s is a toric Calabi-Yau surface whose fan E has rays generated 

by 6 iV for 2 = 0,..., m—1. W e may take {vq, ！‘!} as a basis of N and identify it 

with {(0’ 1)，(1,1)} C 1}. Then (î , ？;q) = Vi) = 1 implies that ̂  is identified 

with (0,1). Moreover, since for each i = 0,..., m — 1, (zv, Vi) = 1，Vi must 

be identified with (fĉ , 1) for some ki G Z. Without lose of generality we may 

assume that vq, • • •,'̂ m-i are labelled in the clockwise fashion, so that {ki} is an 

increasing sequence. Inductively, using the fact that {vi-i, Vi} is simplicial, one 

can see that /cj = i for all i = 0,..., m — 1. • 

The following is a list of some familiar toric Calabi-Yau surfaces: 



Remark 7.3.2. Every toric Calahi- Yau surface X-^^ for m > S is the toric reso-

lution of A饥一 2 singularity Cy"Zm—i’ whose fan is given by the cone ] R > o ( ( 0 , 1 )， ( m — 

1,1)) C (See Figure 7.2.) is the set of compact irreducible toric divi-

sors, and it generates fhiX, Z). The Kdhler moduli o/X^^ has canonical Kdhler 

coordinates given by 

(h := exp - UJ 

for m-2. 

(0,1) 

Figure 7.2: Toric resolution of C^/Z, 

W e arc ready to compute the open Gromov-Witten invariants of a Lagrangian 

toric fiber of a toric Calabi-Yau surface. To state the theorem it is more convenient 

to have the following definition: 
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X = cx x c 

X = C' 

X — Kf>i 

0 

2 

3 

m = 

m = 

m = 

m = 
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Definition 7.3.3. Let {sfc}&恥 be a finite sequence of integers and I G Z with 

< I < N2. {sk}klNi is said to be admissible with center I if 

1. Sfc > 0 for all k 二 Ni” .。N2. 

2. Si < 5i+i < + 1 when i < I; 

3. 5, > S4+1 >5^ — 1 when i > I; 

4- ''̂iVi, < 1-

Theorem 7.3.4. Let X = be a toric Calabi-Yau surface and T be a La-

grangian toric fiber. For every jS G 兀2(义，T)，np is either 0 or 1, and n^ — 1 if 

and only if /3 = •..，An-i, or = A + a G 7r2(X,T) for I E {l,...,m - 2}, 

where 

m-2 

k=l 

is an admissible sequence of integers with center I and ！D̂  are irreducible 

compact toric divisors of X corresponding to the rays generated by {k, 1 ) respec-

tively. 

The proof involves using Formula (7.2.1) to relate the open invariants ri/s to 

dosed invariants, the blow-up formula (Theorem 7.1.1) by Hu-Gathmann, and 

Biyan-Leung's result [6] on local invariants of surfaces. As a consequence, 
f f \ 

5,1 — y . 和 exp ~ / uj for i = 0,..., m — 1 
a^O \ Ja J 

are explicit and it is a direct computation to check that 

Corollary 7.3.5. Let X = Xj：^ be a toric Calabi-Yau surface. The defining 

equation of the SYZ mirror X in Theorem 5.5.1 can be simply written as 

柳 = ( 1 + z){l + qiz){l + qiq2z).. . (1 + ... 
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/ ^ forj = l,...,m-2 
'v. 

where 

Qj := cxp 

are the Kdhler parameters. 

Proof of Theorem 7.3.4- By the first part of Theorem 7.2.4, n^^ # Q only when 

/3 = /3t is a basic disk class for 2 = 0，...，m—1, in which case n̂ ŝ  = 1, or = 

where z = 1,..., m — 2 so that D^ is compact, and a G H2(X, Z) is represented 

by a rational curve. 

To compute let X be the toric compactification along the Vi direction as 

in Section 7.2: The fan of X is convex consisting of rays generated by v^ = {i, 1) 

for I = 0,... ’m _ 1, (1,0), (-1, 0) and v^o = —Vi, Since Dk are (-2)-curves, 

rational curvcs in X representing a = Y^^Ii have images contained in 

U ^ f c C X . 

Recall that h G 丑2(叉)is called the fiber class with the properties that h-Di = 

h • Doo = 1 and h . D = 0 for all other irreducible toric divisors D (see Figure 

7.3). Then Formula (7.2.1) says that 

^Pi+cx = 

Thus it remains to compute 

Write y = X , now we may apply the result by H u [30] and Gathmaiin [23] 

which removes the point condition by blow-up: 

= � l � � o y O + a ) 一 e 

where ix \ Y ^Y is the blow-up of y at a point, e 6 丑2(^0 is the corresponding 

exceptional class, and 7r'(6) PD(7r*PD(6)) for h e 丑2(叉)• 

Since a == Y.'k̂ i 办[叫，one has 

m - 2 
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X 

Figure 7.3: A sphere representing h G 丑2(文). 

where C is a (—l)-curve and T>k are (—2)-curves, and their intersection configura-

tion is as shown in Figure 7.4. The Gromov-Witten invariant , 「們, 
,0,0，[C1 + Î fc=i SkPkl 

has already been computed by Bryan-Leung [6], and the result is that the invari-

ant is 1 when the sequence {s^Y^'i is admissible with ccnter I, and 0 otherwise. 

\c 
z • 

Di D D m-l 

Figure 7.4: A chain of P^'s. 

According to Corollary 7.3.5, the SYZ mirror X is given by 

UV = (1 + z){l + qiz){l + qiq2z) . • . (1 + •. . qm-2z) 

where for j = 1,..., m — 2, 

• 

Qj = exp LO 
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Having this explicit expression, it is then a direct calculation to prove the Mirror 

Conjecture 6.2.1 in surface case, which can be restated as follows： 

Theorem 7.3.6 (Conjecture 6.2.1 in surface case). For every toric Calahi-Yau 

surface, the inverse mirror map is the SYZ map. More precisely, let X = Xj：^ 

he a toric Calahi- Yau surface, and (X, 0) be its SYZ mirror. Then there exists a 

basis {7i}二2 ofH2{X,Z) such that 

I UJ= [ Ct 
J'Di Jji 

for all I = ... ,m — 2. 

Proof. Let 7, ;= -[5；] e 丑2(文,Z) for Z = 1，...，m — 2, where 

(7.3.1) 

Si I {u,v,z) eX :\u\ = \v\]ze 

arc two-dimensional submanifolds of X. Fix I G {1,..., to — 2}. Then {72}[二。 

forms a basis of 丑2(义， 

Notice that [Si] can be written as a sum of 2-chains Ci 4- C2 + C3, where 

Ci < (n, v,z) e X : \u\ <l;z ^ - q； 

C2 ：= < iu,v,z) eX :\u\ = l;z€ 

c , : = e X : |u| < = J . 

Sincc (l\z=c — 0 for every c G C^, one has f^^ Q = f^^ Q — 0 and so 

Q = - I Cl. 
'11 Jch 

Recall that locally O is written as dlog z 八 dlogu. Thus 

0 = 
'C2 

-(qi".<7【—1)-

-{gi-qiY 
d log 2 = logg^ = - uj. 

• 
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42 in [11]: 

no，o = 1 

^1,0 二 no,I = 1 

2̂,0 = no,2 = 0, ni，i = 3 

几3’0 = n o , 3 = 0 , 712,1 二 几1,2 = 5 

几4,0 = 几 0 , 4 = 0, n3，i = ni，3 = 7,112,2 = 35 

5̂,0 二 no,5 = 0, n4,i 二 ni’4 = 9,723,2 = 2̂,3 = 135 

Hcncc, 

W 仍 ， ⑷ + + 3giq2 + 5^152 + 5^1 + 7giq2 + Sdqfq^ + 

+9qfq2 + + + 9qiq^ + .... 

Then the SYZ map (6.2.1) 3"syz is given by 

S'sYziqi, g2) = (gi{i + gs))—。，̂2(1 + 如(gi,必)）—2). 

O n the other hand, we can compute the mirror map and its inverse by solving 

the following Picard-Fuchs equations: 

(̂？ - 2gi(0i + + 201 + 202))^(qi, (h) = 0, 

(Ol - 2^2(^1 + 叫(1 + 2^1 + 2没2))亞fei，如）=0， 

where 6a denotes 知泰 hr a = The two solutions to these equations with a 

single logarithm are given by 

= - logqi - /(<?!, ̂ 2), ((71,92) = - log q2 - /tei,如)， 
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where 

20 20 
/(gi,g2) = 2gi + 2q2 + Sg? + 12^1^2 + Sql + j f i + Q0qfq2 + + y 

35 35 
+ + 280gt(?2 + 630^2^2 + 280gig| + —q^ 
252 252 

+ 1260qfq2 + 5040gt^t +
 5

0
4

0 谊么
3
 + 1260giqi + 

5 5 

This gives the mirror m a p ip : (A*)^ (A*)^: 

(办’办）^ Wiexp(/(々i，^)),^exp(/(々i,<^2)))-

W e can then invert this m a p and the result is given by 

(gi,必）^ (gi(l - F(gi,g2)),q2(l - F(gi,q2))) 

where 

F(gi’g2) = 2gi + 2^2 - 3g! - Sg^ + + 4q^g2 + + 4gl 

-5qf + 25^1^2 - 5^2 + • • • • 

Now, we compute 

(1 — F(gi, = 1 + + 92 + 3qiq2 + 5q^q2 + bqiql 

+7qlq2 + Sbqlql + 7qiql 

+9qU2 + + ISbq^ql + Qqiq^ + ... 

W e see that this agrees with the expression of ()~o-

7.4 An application to semi-Fano toric manifolds 

The same computational method by compactification may be applied to other 

situations as well. In this section we study compact scmi-Fano toric manifolds. 

'Semi-Fan。，means the following: 
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Definition 7.4.1. A complex manifold X is said to be semi-Fano if its anti-

canonical divisor —Kx is numerically effective ^, that is, for every complex curve 

C CX, -Kx -C^O. 

The Hirzcbruch surface F2 provides the first non-trivial example of a semi-

Fano toric manifold. It contains a (—2)-ciirve C such that Kx • (7 = 0, so that it 

cannot be a Fano manifold. 

In [17], Fukaya-Oh-Ono-Ohta wrote down the Landau-Ginzburg mirror of a 

compact toric manifold. Yet they did not compute its coefficients, which are the 

open Gromov-Witten invariants. In this section we compute the open Gromov-

Witten invariants in surface case and some three-dimensional examples. 

7.4.1 The SYZ mirror 

Let X be a compact semi-Fano toric manifold (equipped with a toric Kahler form), 

and denote the corresponding moment map by /z : X —> F, where P C M ^ is a 

polytope (see Section 2.2). Let 

m—l 

i=Q 

which is the inverse image of 严七 under fi. One has 

Xo ^ 严 X Ni/N 

as symplcctic manifolds. In this case the dual torus bundle is simply 

Xo = 产 X M m / M . 

Fixing a choice of basis of N , say Vq, ..., Vn-i, the semi-flat complex coordinates 

are simply given by the natural pairings 

Zi{r, d) exp (- [vi, r + i 6̂ )) 
l A more common definition would be requiring -Kx to be ample. But for our purpose 

numerical effectiveness is enough. 
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for (r,0) g X q . 

Then one considers quantum correction by open Gromov-Witten invariants. 

First of all, wc need to verify Assumption 4.3.3 in this situation: 

Proposition 7.4.2. Assumption 4-3.3 is satisfied for the moment map fibmtion 

II : X B on a compact semi-Fano toric manifold X. Moreover, the wall H 

(see Definition 4-3.6) of the fibmtion fi is empty. 

Proof. The image B of the moment map fibration /i on a toric manifold is a 

polytopc. The inverse images of the facets of B are toric divisors Dj in X, and 

Yl̂ '̂ o is an anti-canonical divisor of X . Moreover by Cho-Oh [12], one has 

the following formula for the Maslov index of a disk class /3 G 兀2(足 T) 

bounded by a Lagrangian toric fiber T: 

刚 = 2 / 3 . 5 ； 、 . 

i-o 

Thus Assumptions (1)，(2), (3) are satisfied. 

Now suppose 13 is a. disk class such that the moduli space A^o(T, p) is non-

empty. By Theorem 11.1 of [22], (5 must be of the form ki(3i + Y^j aj where 

ki G Z> o , {ki} cannot be all zero, and each aj G H2{X, Z) is realized by a 

holoniorphic sphere. Since X is semi-Fano, —Kx • oij > 0. Thus 

剛 = + YS-Kx . = 2h + . aj) > 2. 
i J 3 

This proves that every Lagrangian toric fiber T has minimal Maslov index two, 

which implies Assumption (4). In this case the wall H, which consists of r G Bq 

such that Fr has minimal Maslov index less than two, is empty. • 

Since there is no wall, the semi-flat complex structure receives no quantum 

correction, and so the mirror manifold is simply Spec(C[z^^,…，之二工])=(C、)". 

The quantum corrections are recorded by the superpotential (Definition 4.3.10) 

W{Fr, V ) = np exp f cu) Holy (9/5). 
f3 咖(X,Fr) \ h J 
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By Theorem 11.1 of [22], A4i(T,/3) is non-empty only when = + a where 

a G H2{X) is represented by rational curves of Chern nuniber zero, and n"」=1. 

Thus 
m—1 

= + (7.4.1) 

where 

民=XI exp ‘ — 
a^O 

can be expressed in terms of Kahler parameters of X , and 

CO 

V ‘ 

Z/3 ：— exp i — u ) Holv(5/3) 
\ J fi J 

can be expressed in terms of Kahler parameters of X and {ZjY^zl. 

The superpotential itself contains cnumerative information of X , namely, its 

coefficients are expressed in terms of open Gromov-Witten invariants. Further-

more, recently Fukaya-Oh-Ono-Ohta [17] proved that for a compact toric manifold 

X，its quantum cohomology QH*(X) is isomorphic as a ring to 

T ^ytr^ — C [么矛 1, ... , ^n-l] 
�J ； 〈 • / 5 z o , . , . , a 寧 J 

(When X is not semi-Fano, W may not be a Laurent polynomial, and the above 

expression of the Jacobian ring needs to be modified. Since we only consider 

scmi-Fano cases in this thesis, wc omit such complication and the readers arc 

referred to [17] for details.) Thus, an explicit expression of the superpotential W 

gives an explicit presentation of the quantum cohomology ring. 

7.4.2 Open G W invariants and the superpotential 

In the expression (7.4.1) of the superpotential, the only non-cxplicit terms are 

RIP^+a for a 0 represented by rational curves of Chern nuniber zero. If X is Fano, 

then any rational curve has positive Chern number, so that the superpotential is 

simply W — Y^^O^ which is already known by Cho-Oh [12]. But when X 



A n example of semi-Fano toric manifold. Its irreducible toric divisors 

labelled in the anticlockwise fashion. 

One has the following simple formula on the self-intersection number of toric 

divisors in a toric surface: 

Proposition 7.4.3. Let X = Xg be a toric surface, and denote by {fi} the 

primitive generators of rays of the fan S, where the labelling i G is in the 

counterclockwise fashion. Then the self-intersection of T>i is 

I V = Vi+i 八 G Z. 

For example in Figure 7.9, Ds has self-intersection number —2. As a conse-

quence to the above formula, 

Proposition 7.4.4. Let X — X^； be a toric surface, {viji^Zm be the primitive gen-

erators of rays of the fan S labelled in the counterclockwise fashion, and {！)^}^^^™ 

be the corresponding irreducible toric divisors. Suppose that for some Ni,N2 £ 

with Ni < N2, Di has self-intersection (-2) for every i = [iVi]’ [iVi + 1]，’..，[iVj. 

Then there exists M such that Vi) = 1 for alii = [iVi—1], [iVi],...，[A2+ 

1], Thus X = is a compactification of the toric Calabi- Yau surface whose fan 

consists of the rays generated by Vi for i = [Ni — 1], [Â i],..., + 1]-
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is non-Fano, we do have such non-trivial terms and one has to compute them in 

order to write down W explicitly. W e compute these open invariants using the 

method introduced in Section 7.2 for semi-Fano toric surfaces and some threefolds. 

For dim X = 2, let's label the irreducible toric divisors {D^j^Q^ in the anti-

clockwise fashion. Figure 7.9 gives an illustration of such a labelling. 

D3 

r Y„ ^ 
Do 

7
 

o
 

r
e
 4
.
a
 

S

 }
 

F
 /
I
 



where 0 < Ni < i < N2 < m — 1, each Dfc has self-intersection —2 and s^ > 0. 

Then every rational curve representing a has its image contained in U^jy^Dfc. 

Moreover, by Proposition 7.4.4, one has the Calabi-Yau manifold Xq C X, whose 
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Proof. Without loss of generality, let Ni = 1. {•uo，t*i} forms an oriented basis 

of N , which give A^ = Z^ by identifying vq with (1,0) and vi with (1,1). Let 

V2 = (a, b). Since T>i has self-intersection (-2), by Proposition 7.4.3 vq A V2 ^ 2, 

and so 6 = 2. Since X is smooth, vi 八巧=1，forcing a = 1. Thus V2 — (1, 2). 

Inductively Vi = (1, i) for i — [0],..., [N2 + 1]. Thus by taking u = (1, 0) result 

follows. • 

Theorem 7.4.5. Let X he a compact semi-Fano toric surface whose rays are 

labelled in a counterclockwise fashion, and /3 E 7r2(义,T) he a disk class bounded 

by a Lagrangian toric fiber T. Then n^ = 1 if g 二〜is a basic disk class, or 

l3 — j3i a for some i = 0，...，m — 1，where a is of the form 

N2 
a = ^ SfcDfc 

k=Ni 

for some Ni < N2, such that is admissible with center i in the sense 

of Definition 7.3.3, and for every k = Ni,..., N2, D^ has self-intersection (—2). 

Such (3 is said to he an admissible disk class. Otherwise n^ = 0. 

In particular the mirror superpotential has the explicit expression 

(3 admissible 

Proof. By Theorem 11.1 of [22], n^ is non-zero only when (5 = a ioi some 

I and a G H2{X, Z) represented by rational curves with Ci{a) = 0. Moreover by 

[12], n^^ = 1, so it suffices to consider P — Pi<y with a ^ 0. 

Sincc ci (cy) = 0 and X is semi-Fano, a must be of the form 

N2 
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fan consists of the rays generated by Since the moduli spaces A4i(X, /?) 

and A4i(Xo, /3) arc the same, one has n 令 = N o w the result follows from 

Theorem 7.3.4 applying to the toric Calabi-Yau surface Xq. • 

Appendix A gives a list of the superpotentials of all semi-Fano but non-Fano 

toric surfaces (as we have mentioned before, the Fano case is unobstructed and 

was known by [12]). 

Similar to Section 7.3.2, we may also compute the superpotentials for some 

semi-Fano toric threefolds. 

Example 7.4.6. Kp2. Let X = Kp2 be the fiherwise compactification of X = 

The primitive generators of the rays of the fan S defining X can be chosen to 

be vo = (0, 0，1), = (1，0,1)，仍=(0,1,1), V3 = (—1，-1,1) and v^ - (0, 0 , - 1 ) . 

We equip X with a toric Kdhler structure lo associated to the moment polytope 

P = {(Xi,X2,X3) G R^ ： 0 < ：/；3 < Xi+X's > 0, .T2+X-3 > 0, -Xi-X2+X:i > -Si}, 

where 5I = f^cu > 0, I e H2{X, Z) is the class of a line in C X, and 82 = 

�iCj > 0, h G H2{X, Z) is the fiber class of P^, We may complexify the 

Kdhler class and letuf = u; + 27r\/^i?，where B is a real two-form (the B-field). 

All the curve class C satisfies {—Kx) • C > 0； and the only curve class with 

{-Kx) • C 二 Q is C 二 kl where I G 迅PO is the line class 0/P̂  c 义.Now 

except for i — 0, the moduli space 战 + kl) is empty. Thus n^ = 0 unless 

/3 = Pi ^ kl for some k >0, and n如=1. The superpotential is 

W = 1 + y^, nkQi Z3 + + 2：22：3 十 + q2Z; 

where q^ = for i = 1, 2. 

Every curves representing kl are contained in P^ C X. Thus Po-\-kl)= 

A4i(Xo, + kl), where Xq = Kp2. Thus np^j^ki equals to those invariants of Kf2 

which has been computed in Example 2 of Section 7.3.2. 
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Example 7.4.7. K^i xfi. Similar to the previous example, The mirror of X = 

/?pixpi tsW: 

+ X I 么 3 + + qiZi^Zz + 约 23 + 么:̂1、3 + Q̂ iẐ  

where rik^ is the invariants of iCpixpi computed in Example 3 of Section 7.3.2. 



Appendix A 

A list of superpotentials of all 

semi-Fano toric surfaces 

Z Xs \ 

"X 
Xi, 

Figure A.l: Polytopes defining the semi-Fano but non-Fano toric surfaces. The 

numbers indicate the self-intersection numbers of the toric divisors. 
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polytope P superpotential W 

Xi 
-2) 

xi > 0 
X2 > 0 
2ti +t2-xi - 2X2 > 
tl -X2>0 

Z1+Z2 (1 + 92) ft 

-1) 

XI > 0 
X2 > 0 

1̂+̂ 2 + 2t3 -XX-X2 > 
tl+ts.-X2>Q 

Xl — X2 > 0 

A + 0 + = + + + f 

Xa 
-1) 

âi > 0 
> 0 

tl+t2+ 2t3 + 3t4 - XI 
372 > 0 
h+t3+ 2t4 -X2 >0 
tl + t4 + XI — X2 > 0 
tl + 2X1 - 0；2 > 0 

(1 + + 

V2 
V3 
Vi 
V5 

X'l > 0 
X2 >0 

t2+t3+t4- X-l > 0 
tl+t3 + 2t4 -X2 > 
il + t4 + X1 — X2 > C 

tl + 2X1 - X2 > 0 

(1 + gi)zi +Z2 + ̂ ^ + ^ ^ + (1 

5 3 ) ™ + # 

义5 

V6 

-1) 

XI > 0 
> 0 

t2 + is +U - a；! > 
tl+t3+2t4-Xi -； 
tl +i4 — X2 > 0 
tl + Xi — X2 > 0 

Zi + Z2 + 1193 94 + (1 + 

93)- + 

•U5 

V? 

1 , 0 ) 

0 , 1 ) 

,0) 

CCI > 0 
X2 > 0 
t2 + t3+U+t5 > 
tl + is + 2t4 + Sts - Xi 
X2 > 0 

tl + t4 + 2t5 -X2 >0 
tl +t5 + XI - X2 > 0 
h + 2X1 - X2 > 0 

(l + qi)zi +Z2 + 
+ + + + 

X7 

Wl 
V2 
V3 

' U7 

xi > 0 
> 0 

i2-ht3-tl-t3-Xi+X2 > 
t3+t4 + t5- XI > 0 
tl+t4+ 2t5 -X2>0 
h + i s - 3:2 > 0 
h + 2X1 - 0：2 > 0 

(1 + qi)zi + 
<31141^ 
22 

I ̂3 94 95 i 

(1 + 9 4 ) ^ + ^ 



SYZ mirror symmetry for tone Calabi-Yau manifolds 142 

polytope P superpotential W 

Xs 

，0) 

’ 1) 

-1,0) 

- 2 , - 1 ) 

- 1 , - 1 ) 

XI > 0 
â'2 > 0 
t2+t3+U + t5+tfi-Xi > 
ti+t3 + 2i4 + 3i5 + 4t6 -
2X1 - X'2 > 0 
ti +ti + 2*5 + 346 -XI -
X2>0 
tl+t5+ 2t6 - X2 > 0 
ti + te + XI - X2 > 0 
tl + 2X1 - 2；2 > 0 

{l + qi)zi+Z2 + (1 + 
gi£59fl_ isisM (1 

gs + ？354 十 + + 與 + 
2 

qsqA. + (m5 + qsqAqa + qsqlq^)^^^^ + 
{l + q5+ 94 卯 + g3<Z4?5)，& + ^ 

Xg 

1) 

V6 
V7 

XI > 0 

> 0 

t2 + 2t3 +t4,-tl-te -3314-
X2>0 
t3+U + t5+t6 -XI >0 
tl+U+ 2tr�+ Uq -XI -
X2 > 0 

tl+t5+ 2t6 -X2 >0 
tl + te -h XI — X2 > 0 
tl + 2X1 - 3；2 > 0 

(l + gi)zi + Z2 + (1 + 

+ (1 + 94 + 

？495)-

入'10 

V7 
Ws 

XI > 0 
X2 > 0 
亡2 + 亡3 + 亡4 — —亡6 — an + 

> 0 

2ti + t5-tl-~t3- 2X1 + 
X2>0 
ti + ts + tfi - XI > 0 
ti+t5+ 2te -X2>0 
ti+te+ XI - X2 >0 
tl + 2321 -X2>0 

{l + qi)zi+z2 + (1+ ^ 

ffff + d + g s ) ^ 

J I 

‘qiqe^i 
— 十 ( 1 + 

VI 

Xn 

•"5 

V9 

XI > 0 

X2>0 
t2 + 2t3 + 3*4 +t5 - 2ti -
te ~ 3t7 " XI + 2a;2 > 0 

X2>0 
U+t5+t6+t7 -X1>0 
f 1 + ts + 2U + 3t7 一 JCi — 

X2>0 
tl+t6 + 2t7 -X2>0 
tl + tj + XI — X2 > 0 
h +2X1 -X2 > 0 

(1 + gi + 

9l 90 97̂1 

-(1 + gs + q̂ qa)-

519637 
g 难 ) 

+ (1 + 95+ 5596)^ +(1 • 

96 + 9596)^ + ^ 



Bibliography 

[1] M . Aganagic, A. Klemm, and C. Vafa, Disk instantons, mirror symmetry 

and the duality weh, Z. Naturforsch. A 57 (2002), no. 1-2, 1—28. 

[2] V. I. Arnold, Mathematical methods of classical mechanics, Graduate Texts 

in Mathematics, vol. 60, Springer-Verlag, N e w York, 1991. 

[3] D. Auroux, Mirror symmetry and T-duality in the complement of an anti-

canonical divisor, J. Gokova Geom. Topol. G G T 1 (2007), 51-91. 

[4] , Special Lagrangian fibrations, wall-crossing, and mirror symmetry, 

Surv. Differ. Geom., vol. 13, Int. Press, Somerville, M A , 2009, pp. 1-47. 

[5] K. Behrend and Yu. Manin, Stacks of stable maps and Gromov-Witten in-

variants, Duke Math. J. 85 (1996), no. 1, 1-60. 

[6] J. Bryan and N.-C. Leung, The enumerative geometry of K3 surfaces and 

modular forms, J. Amer. Math. Soc. 13 (2000), no. 2, 371-410. 

[7] P. Candelas, X. C. De la Ossa, P. S. Green, and L. Parkes, An Exactly 

soluble superconformal theory from a mirror pair of Calahi-Yau manifolds, 

Phys. Lett. B258 (1991), 118—126. 

[8] A. Cannas da Silva, Lectures on symplectic geometry, Lecture Notes in Math-

ematics, vol. 1764, Springer-Verlag, Berlin, 2001. 

103 



SYZ mirror symmetry for toric Calabi-Yeui manifolds 144 

[9] K.-W. Chan, A formula equating open and closed gromov-witten invariants 

and its applications to mirror symmetry, preprint 2010, arXiv: 1006.3827. 

[10] K.-W. Chan and N.~C. Leung, Mirror symmetry for toric Fano manifolds 

ma SYZ transformations, Adv. Math. 223 (2010), no. 3, 797-839. 

[11] T.-M. Chiang, A. Klemm, S.-T. Yau, and E. Zaslow, Local mirror symmetry: 

calculations and interpretations, Adv. Theor. Math. Phys. 3 (1999), no. 3, 

495-565. 

[12] C.-H. Cho and Y.-G. Oh, Floer cohomology and disc instantons of Lagrangian 

torus fibers in Fano toric manifolds) Asian J. Math. 10 (2006), no. 4, 773— 

814. 

[13] A.I. Efimov, Homological mirror symmetry for curves of higher genus, 

preprint 2009, arXiv:0907.3903. 

[14] B. Fang, C.-C. Liu, D. Treumann, and E. Zaslow, The coherent-constructihle 

correspondence and homological mirror symmetry for toric varieties, 2009, 

arXiv:0901.4276. 

[15] K. Pukaya, Arnold conjecture and Gromov- Witten invariant, Topology 38 

(1999), no. 5，933-1048. 

[16] K. Pukaya, Multivalued Morse theory, asymptotic analysis and mirror sym-

metry, Graphs and patterns in mathematics and theoretical physics, Proc. 

Sympos. Pure Math., vol. 73，Amer. Math. Soc.，Providence, RI，2005， 

pp. 205-278. 

[17] K. Fukaya, Y.-G. Oh, H. Ohta, and K.〇no, Lagrangian Floer theory and mir-

ror symmetry on compact toric manifolds, preprint 2010，arXiv:1009.1648. 

[18] , Lagrangian Floer theory on compact toric manifolds U : Bulk defor-

mations, preprint 2008, arXiv:0810.5654. 



SYZ mirror symmetry for toric Calabi-Yeui manifolds 145 

[19] ，Toric degeneration and non-displaceable Lagrangian tori in S^ x S^, 

preprint 2010, arXiv: 1002.1660. 

[20] , Lagrangian intersection Floer theory: anomaly and obstruction. 

Part AMS/IP Studies in Advanced Mathematics, vol. 46，American Math-

ematical Society, Providence, RI, 2009. 

[21] ， Lagrangian intersection Floer theory: anomaly and obstruction. 

Part II, AMS/IP Studies in Advanced Mathematics, vol. 46，American Math-

ematical Socicty, Providcncc, RI, 2009. 

[22] ，Lagrangian Floer theory on compact toric manifolds. I, Duke Math. 

J. 151 (2010), no. 1, 23-174. 

[23] A. Gathmann, Gromov- Witten invariants of blow-ups, J. Algebraic Geom. 

10 (2001), no. 3, 399-432. 

[24] E. Goldstein, Calibrated fibrations on noncompact manifolds via group ac-

tions, Duke Math. J. 110 (2001), no. 2, 309-343. 

[25] T. Graber and E. Zaslow, Open-string Gromov- Witten invariants: calcula-

tions and a mirror “theorem", Orbifolds in mathematics and physics (Madi-

son, WI，2001), Contenip. Math., vol. 310, Amer. Math. Soc.，Providence, 

R I , 2 0 0 2 , p p . 1 0 7 - 1 2 1 . 

[26] M . Gross, Examples of special Lagrangian fibrations, Symplectic geometry 

and mirror symmetry (Seoul, 2000)，World Sci. PubL, River Edge, NJ, 2001， 

pp. 81-109. 

[27] M . Gross and B. Siebcrt, From real affine geometry to complex geometry) 

preprint 2007, arXiv:math/0703822 . 

[28] K. Hori, A. Iqbal, and C. Vafa, D-branes and mirror symmetry, preprint 

2000, arXiv:hep-th/0005247. 



SYZ mirror symmetry for toric Calabi-Yeui manifolds 146 

[29] S. Hosono, Central charges, symplectic forms, and hypergeometric series in 

local mirror symmetry, Mirror symmetry. V, AMS/IP Stud. Adv. Math., 

vol. 38, Amer. Math. Soc., Providence, RI, 2006, pp. 405-439. 

[30] J. Hu, Gromov- Witten invariants of blow-ups along points and curves, Math. 

Z. 233 (2000), no. 4, 709-739. 

[31] A. Kapustin, L. Katzarkov, D. Orlov, and M. Yotov, Homological mirror 

symmetry for manifolds of general type, preprint 2010, arXiv: 1004.0129. 

[32] Y. Konishi and S. Minabe, Local B-model and Mixed Hodge Structure, 

preprint 2009, arXiv:0907.4108. 

[33] M. Kontsevich, Enumeration of rational curves via torus actions, The moduli 

space of curvcs (Texel Island, 1994)，Progr. Math., vol. 129, Birkhaiiscr 

Boston, Boston, M A , 1995, pp. 335-368. 

[34] , Homological algebra of mirror symmetry, Proceedings of the In-

ternational Congress of Mathematicians, Vol. 1, 2 (Zurich, 1994) (Basel), 

Birkhauser, 1995，pp. 120—139. 

[35] M. Kontsevich and Y. Soibclman, Homological mirror symmetry and torus 

fibrations, Symplectic geometry and mirror symmetry (Seoul, 2000)，World 

Sci. Publ., River Edge, NJ, 2001, pp. 203-263. 

[36] , Affine structures and non-Archimedean analytic spaces, The unity 

of mathematics, Progr. Math., vol. 244, Birkhauser Boston, Boston, M A , 

2006, pp. 321-385. 

[37] C. Krattenthaler and T. Rivoal, On the integrality of the Taylor coefficients 

of mirror maps, Duke Math. J. 151 (2010), no. 2, 175-218. 

[38] N.-C. Leung, Mirror symmetry without corrections) Comm. Anal. Geom. 13 

(2005), no. 2, 287-331. 



SYZ mirror symmetry for toric Calabi-Yeui manifolds 147 

[39] N.-C. Leung, S.-T. Yau, and E. Zaslow, From special Lagrangian to 

Hermitian- Yang-Mills via Fourier-Mukai transform, Adv. Theor. Math. 

Phys. 4 (2000), no. 6, 1319-1341. 

[40] A.-M. Li and Y.-B. Ruan, Symplectic surgery and Gromov-Witten invariants 

of CalaM-Yau 3-folds, Invent. Math. 145 (2001), no. 1, 151-218. 

[41] J. Li and G. Tian, Virtual moduli cycles and Gromov- Witten invariants of 

general symplectic manifolds, Topics in symplectic 4-manifolds (Irvine, CA, 

1996), First Int. Press Lect. Ser., I, Int. Press, Cambridge, M A , 1998, pp. 47-

83. 

[42] B. H. Lian, K.-F. Liu, and S.-T. Yau, Mirror principle. I, Asian J. Math. 1 

(1997)，no. 4，729—763. 

[43] , Mirror principle. II, Asian J. Math. 3 (1999), no. 1, 109-146, Sir 

Michael Atiyah: a great mathematician of the twentieth century. 

[44] , Mirror principle. 111，Asian J. Math. 3 (1999), no. 4，771-800. 

[45] B. H. Lian and S.-T. Yau, Integrality of certain exponential series, 2 (1998), 

215-227. 

[46] A. Polishchuk and E. Zaslow, Categorical mirror symmetry: the elliptic 

curve, Adv. Theor. Math. Phys. 2 (1998), no. 2, 443-470. 

[47] P. Seidcl, Homological mirror symmetry for the genus two curve, preprint 

2008, arXiv:0812.1171. 

[48] A. Stromingcr, S.-T. Yau, and E. Zaslow, Mirror symmetry is T-duality, 

Nuclear Phys. B 479 (1996), no. 1-2, 243-259. 

[49] J. Zhou, Some integrality properties in local mirror symmetry, preprint 2010, 

arXiv:1005.3243. 



SYZ mirror symmetry for toric Calabi-Yeui manifolds 148 

[50] V. V. Zudilin, On the integrality of power expansions related to hypergeomet-

ric series, Mat. Zamctki 71 (2002), no. 5, 662-676. 


