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Abstract 

111 this thesis we study the hyperbolic curvature flows. Qusilinear hyperbolic 

equations are derived and studied for the motion of hypersiirfacos under the 

hyperbolic mean curvaturc flows. As contrast to this, a new hyperbolic curvature 

flow (Gauss curvature flow) is proposed for convex hypersiirfaces. The equations 

satisfied by the graphs of the hypcrsurfaces under these flows give rise to a new 

class of Euclidean invariant fully nonlinear hyperbolic equations. Ba.sed on this, 

we investigate the local solvability, finite time blow-up and asymptotic behavior 
c " 

for these flows. Group invariant solutions of the flows are also concerned. 

In Chapter 2, we present a leisure study on thn rediicibility of a geometric 

motion to a differential equation for its graph for plane curves. It serves as a 

motivation for the introduction of normal and normal preserving flows. We show 

that any Euclidean invariant quasilinear equation arises as the associated equation 

of some normal flow and all fully nonlinear Euclidean invariant equations arise 

from normal preserving flows. We further study Affine type hyperbolic motion. 

Finally, some properties of these flows are p r e s e n t e d . . 

In Chapter 3，the symmetry groups of the hyperbolic flows are determined 

and the corresponding group invariant solutions are discussed. 

Ill Chapter 4, the motions for hypcrsurfaces are studied. Besides the equations 

satisfied by the graphs, we shall derive the equations for the support function of 

convex hypersurface. Based on this, we establish the local solvability of the 



hyperbolic curvature flow. A proliminary discussion on topics such as finite time 

blow-up and asymptotic behavior will be given. 

In the final part of this thesis, motion of free elastic curves is discussed. Con-

servation laws are derived by using the Noothcr's Theorem. We also consider 

group invariant solutions of this flow. 
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摘要 

本論文研究一類雙曲高斯曲率流問題，類似於從平均曲率流倒出擬 

線性雙曲方程，我們硏究了从新的曲率流得到的-•類完全非線性雙曲 

方程。我們進一步討論了幾何流的局部可解性，有限時問爆破，長時 

間行為。對於平面曲線，我們考慮了曲率流的群不變解。 

在論文的第一部分，我們首先給出如何把幾何流約化成單個岡像 

方程。接著引入了法方向流和法方向不變流，並建立了與擬線性和完 

全非線性雙曲方程之間的關係。最後我們給出了仿射幾何雙曲幾何流 

和各種雙曲幾何流的-一些幾何性贾。 

第二部分，我們討論了第一部分平面曲率流的對稱群和相應的群 

不變解。 

第三部分，我們考慮曲面運動。首先得到了 l i l像方程和支搏函败 

方程。基於支撑函數方程，我們給出了曲率流的局部可解性, 

有限時間爆破。 

n冊 

最後…部分，我們討論了一類輝性曲線運動。利用Noether定理 

我們得到了一系列守恆律.最後還考慮了曲率流的群不變解。 
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Chapter 

Introduction 

In the mean curvature flow one studies the moUon of a hypcrsurfacc whose ve-

locity is equal to its mean curvature along its normal direction in the Euclidean 

space. Many results have been obtained over the years and one may consult the 

survey Muisken-Polclen [HP] and the books Eckcr [E], Giga [Gi] and Zhn |Z] for 

detailed discussions. From the point of view of differential equations, the mean 

curvature flow is a quasilincar parabolic equation which is invariant, under the 

Euclidean motion. 

In view of the intimate relation betwooii the heat and the wave equations, it 

is natural to consider tlie hyperbolic version of the mean curvature flow. How-
. • -

ever, as we know, there is few results on hyperbolic version of curvature flow. 

Gurtin and Podio-Guidiigli[GP] modeled a phenomenon which found in Melting 

crystals of helium : appearance of interfacial oscillations. They developed a hy-

perbolic theory for the evolution of the plane curves. In Yaii [Y], it is proposed 

to study the motion of a hypersurface whose acceleration, instead of t.he velocity, 

is equal (,o its mean curvature along the normal direction. The hyperbolic version 

of curvature flow is important in both mathematics and applications, and has 

attracted many mathematician's. In He-Kong-Liu [HKL], local solvability of this 

problem is established and properties such as formation of singularities in finite 
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t.iino and iusyriiptotic behavior of the flow are exarniiiod. However, Lliis most di-

rect analog of the mean curvature flow (liflbrs from its parabolic counterpart by 

not reducible to a Eviclidoan invariant hyperbolic； equation. In LeFloch-Smoczyk 

[LS], the following motion law : 

, 面 = F n i ” 〈 瓦 ’ 。 p - (1.]) 

is studied. Hero F is the driving force and 力 is Uio invorse ol" the iiulnccd metric 

oil the hypei.suI.face X(j), t) in These authors call (1.1) Uie liyj^crbolic iiicjaii 

curvature flow for tho specified choico of F, 

where II is the mean cm vatiiro of X. This flow lias tho advantage of being flo-

rivecl from a llaiiiiltoiiian principle, And lierice possesses some conservaUoii laws. 

Besides, when the initial velocity is along the normal direction, the velocity of ( lie 

hypersurfacc keeps pointing in Iho nonrial direction afterward. A flow with such 

properly is callod a normal flow. For a normal fiow, the graph of the Iiypor.surface 

salisfios a qiULsilincar Euclidean invariant hyperbolic eqiuiticm. Snbswjuontly, tho 

hyperbolic curve shortening problem, that is, taking n = 1 and F to be the curva-

ture of a piano curve in (1), is studied in Kong-Wang [KW] where several cril.eria 

on finite time blow-up for graphs are obtained. In Kong-Lin-Wang [KLW] they 

further study the problem for closed convex curves. 

In chapter 2 of this thesis, we present a geoinctric view of the hyperbolic mean 

curvature (lows in tlie plane. We show that every Euclidean invariant quasilinear 

equation arises as the associated equation of soriio normal flow. 

Aside from tho mean curvature flow, there arc other curvature flows for convex 

hypcrsurfaces, notable ones including the Fircy's model on worn stones [F] and the 

motion by the adine iiornial [Al] and [ST] which applies to image analysis. They 



depcnfJ on the Gauss curvature other Uian Ihe mean ciirvat.iiro. The reader may 

look up [HP] and [Gi] lor more infonmitiori. The differential eqiuitions derived 

from these flows are no longer quasiliiioar. Usually, tlioy arc fully nonlinear. For 

flows involving the Gauss curvature，tlioy arc parabolic Monge-Ampere ecjnations. 

In chapter 4 of this thesis we propose a hyperbolic version of these fully 

nonlinear cnirvatiiro flows. This is tlu; main body of this thesis. For any driving 

force F , consider 
d^X _ ”�OFdX 
雨 二 F n - — ’ （1.2) 

whore is the inverse oi. the second fimdainenlal form on the uniforiiily convex 

hypcrsurface. We say a flow is normal if the velocity is normal l,o (,ho liypcrsurface, 

i.e. if 
/dX dX\ _ 

A flow is called iioi.inal preserving if the normal of the hypcrsurface is irulopcndcnt 

of time dn/df, = 0, i.e. 

• 〈尝 

for each k = 1，…,n. It can bo shown that if this condition is fulfilled initially, 

then it holds for all time under (1.2). For any normal preserving flow, its graph 

satisfies a fully nonlinear Eiicliclcan invariant hyperbolic equation. For instance, 

taking F to bo the negative reciprocal of the Gauss curvaturo, wc obtain the 

hyperbolic Moiige-Anipore equation, 

and taking it to be the Gauss curvature, we have 

(cJetD^u)'^ 
del Dt AL 

(1 + 

It is interesting to observe thai this now oqnation relates the Monge-Ampere op-

erator in space-lime to the Moiige-Aiiiper'e operator in space. It is hyperbolic. 
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and yet. the solution is convex in (.t, t). Diflerenl. choices of F produces many new 

fully noil linear hyperbolic equations. 

Now we siiiriniarizc the main results of the thesis in the following proposition 

and theorems. ‘ . 

Proposition 1.1. Any Euclidean invmiani, quasilinmr hyparholic equation u". 

au-xx + + (•' l.hc associated equation of the nminal jlow in the plane 

炉7 
(9/2 = F n - (1.3) 

whdTc F IS o'f the form h\ + 尸2於 + 尸�7/, 7f.s�，a7id F,，i = 1, 2, 3, dajmiid on�7,.，n) 

only. 

Proposition 1.2. Any Euclidean invarimit fully nonlinear hyperbolic r.quaiion 

Utt — f(x. u, ？ia：, Ui, //j.3., ) is the associaiad vAiaation of a normal pres('Tvin() 

Jlow 

7“二 “’ (1.4) 
A; � 

where F deptuds on (7/；, n), k, and (7^, 7^.,). 
> 

Proposition 1.3. Let X'(', L) be a family of unifounly convex hypersurfac^s sat-

isfying (4.1.1). It is normal preserving if and only if it is given by (1.2) and 

今二 0， 

at t = 0. 

Theorem 1.1. Consider 

n〉二 U， 7 = 1 , … ， 

打 r. “idF拟 =Fn - /尸 ， 

dt^ dzi dzj ‘ (15) 

X(0) and Xe(0) ara given. 



wider 

办 ( H i 

/ is fwrnogeneous of degree one on 厂+， (l.()) 

Itn) < 0, j = l ’ … ， 7 7 ,， ,； ? . „ ) 6 r+. , D R j 

whcTe X ( 0 ) is a uniformly convex hyper surface in R""*̂ / and satisfies 

(n, dXt{0)/dzj) = 0, j = l，.--,n. Suppose X {0 ) G H^iS'') and Xt{()) e 

k > 7i/2 + 2. Let, f G he a symmetric, positive Junction 

on the positive cone saiisjying (1.6). Tfiaiv. exists a posilive T < og such that 

(1.5) has a unique solution X in 

C([0’ T), P I C] ([0，T), 

which is uniformly convex at each L. It is smooth provided X (0 ) and A't(O) are 

smooth^. MoTeover, it is jnaximal in the sense that if T is finite, either the mini-

mum of Um prmcipal curvatures of X{t) tends to zero or 

as t appToachcs T. 

This thesis is organized as follows. In Chapter 2 we study motion of plane 

ciirvcs. First we investigate the reducibility of a gooinetric motion to a difFerential 

equation for its graph for plane curves are presented. It serves as a motivation 

for the introduction of normal and normal pieserving flows. Furthermore, wo 

consider affiiie hyperbolic motion and obtain some properties for the敎、flows. In 

chapter 3, wo present a systematic study on group invariant solutions for the 

flows in chapter 2. Group invariant solutions such as traveling waves, rotating 

waves, expanding and contracting self-similar solutions play important roles in 

the study of parabolic flows. We apply Lie's theory of symmetries to determine 

the symmetry groups of these (iows and examine some of the corresponding group 

invariant solutions. In chapter 4 the motions for hypersiirfaces are discussed. We 
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shall show that, when expressed in terms of the support function H for t he convex 

hypersurface, the equation for (1.2) becomes 

It is the exact analog of 

dt? 

OH 
二 —f\ dt 

which is the corresponding equation arising from 

• dX 
dt 

=Fn. 

In this part, we first show the local solvability for hyperbolic flow of plane 

curves. Next we establish the local solvability of (1.2) for a large class of F based 

on the Caffarelli-Nirenberg-SpruCk [CNS] theory of fully nonlinear elliptic equa-

tions. Finally, a preliminary discussion on topics such as finite time blow-up and 

asymptotic behavior will be given. 

In the final part of this thesis, a new kind flow is established. The flow is 

derived from Hamilton principle based on a geometrically natural action, consist-

ing of a kinetic term and elastic energy term. Conservation laws are derived by 

Noether's Theorem. We also consider group invariant solutions of this flow. 



Chapter 2 

Plane Curves 

2.1 Euclidean invariant motions 

We start by reviewing the reduction of the curve shortening problem to a qiuisi-

linear parabolic equation. Consider the «urve shortening problem or the more 

general problem where a family of plane curves 7(p, 0 is driven by the motion 

law 

^ = F n + Gt, (2.1.1) 

where n and t are respectively the unit normal and tangent vectors of the curve 

7(•，t), and F and G are functions depending on 7 and its derivatives with respect 

to p. The normal n is the inner one when the curve is closed. Suppose for 

p G (a, b) and t € {to, ti), the curve j(p, t) can be expressed in the form of a 

graph (x, u(x, t)), x = x(p, t)\ we have 

7t + (2.1.2) 

Taking inner product with n = (一Ux, 1)/-^/T+lzl and t = {1, Wx)/\/l + wj, we 

see that (2.1.1) is split into two equations, namely, 

ut = y/1 -f F, (2.1.3) 
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and 

1 + t^ 

In the special case where F depends only on k, the curvature of 7，the formula 

k = W x x / ( H - t e l l s lis that (2.1.3) is an evolution equation for u. In principle, 

one can solve (2.1.1) by first solving (2.1.3) for u and then determine x from 

(2.1.4). For instance, in the curve shortening problem F{k) = k and C?三 0, so 

(2.1.3) and (2.1.4) become 

lit = T ^ , (2.1.5) 1 + ui 

and 

= (2.1.6) 
1 + ui 

respectively. In case a solution u has been found for (2.1.5), x can be read-

ily solved as the solution of the ODE (2.1.6). It is routine to verify that then 

{x, u(x, i)) constitutes a solution for the curve shortening problem. 

Before proceeding further, we point out that for motions which only depend 

on the geometry of the curves, one should require the motion law to be a "geomet-

ric" one. Specifically, it means that solutions of (2.1.1) are preserved under any 

repararaetrization as well as Euclidean motions. It turns out that the flow (2.1.1) 

is geometric when F and G depend only on the curvature and ils derivatives 

with respect to the arc-length. For any geometric flow (2.1.1)，the corresponding 

equation (2.1.1) is Euclidean invariant in the following sense. In case under a 

Euclidean motion R, (y, v) = R{x,u), the graphs (x, t)) go over to graphs 

(y, v{y, t)), then v satisfies the same equation (2.1.3) with x and u replaced by 

y and v respectively. The reader is referred to Olver [O] for discussion on group 

invariant differential equations. 

Now, consider the motion of curves where the velocity is replaced by the 
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acceleration 
OS 

= F n + Gt. (2.1.7) 

As the highest order of time derivative involved is two, the functions F and G arc 

allowed to depend on 7, and tlicir derivatives with raspect. to p. Typical geomet-

ric flows are formed from those F and G depending on (7 ,̂ n), (7 ,̂ t), (7t,7(.s), k, 

etc, and their derivatives with respect to the arc-length. All these are invariants 

under reparametrizalions and Euclidean motions. 

When the curves are expressed as graphs 7 = (x, ()), we have 

7u 二 :c"(l’ u：,) + (0, v̂ xx-x-? + 2u:,iXt + u,.tj. 

Taking inner product with n and t respectively yields 

tltl + 2XtU:^t + xjwxa： = ^/l + F, (2.1.8) 

and . 

•r. 二 • (2.1.9) 

The situation is different from (2.1.2). In general, (2.1.8) not only depends on u 

and its derivatives, but also on (2.1.8) and (2.1.9) are coupled. 

Is there some choice of Xt so that (2.1.8) reduces to an equation for u only? 

To examine this possibility, we note that from (2.1.8) 

-Uxt ± ul�UxxUti - F 
Xi = -

Uxx 

When (2.1.8) is reducible to an equation of the form = û j：, u^t) 

for some function 少，plugging this equation into the above expression, one sees 

that Xt must be equal to for some function assuming that F 

contains first and second derivatives of u only. Motivated by this, we introduce 

the following definitions. A flow (2.1.7) is called reducible (to an equation) if 

there exists a function 23, 24) such that whenever the flow is expressed 

as a graph {x,u{x,i)), 
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must hold. For any reducible flow, the equation obtained by subst ituting Xt = <I> 

into (2.1.8) is called the associated equation of the flow. We may assume the 

variables of the function F can be expressed in terms of u and its derivatives. 

Two remarks are in order. First, flows which are not reducible exist. In the 

end of this section we will show that for F 二 k and G 三 0，tliat is, the most di-

rect hyperbolic analog of the ciirvc shortening problem, is not reducible. Second, 

when one is coiicenietl with the initial value problem for (2.1.7), it is natural to 

wonder the flow is reducible for any initial values 7(0) and 7,(0). The answer is 

no. Let us assume locally 7(0) = (/i(p)，/2(P)) and 7((0) = (yi(P)’ .<72(P))- As wc 

have freedom in choosing the parameter, we may assume x = p, that is, fi is the 

identity map. Then the relation Xt = $ at ^ = 0 gives the compaLibility condition 

g\ = ^(/iJ, 92 — /2i9i, /2 1 (.92 — l29\)')- When the initial curve is fixed, that is, f^ 

is given, this condition sets up a constraint between g] and go. 

For a given function F, we will find two classes of "constrained" flows, iiainely, 

the normal and normal preserving flows, and the corresponding fuiictioas G so 

that the flows are reducible. Our approach is based on the observation that any 

associated equation of a reducible flow miist be Euclidean invariant, so we start 

by classifying all Euclidean invariant equations. Of course, this is of interest in 

itself. After obtaining these equations, we may compare them with (2.1.8) to 

guess what the constraint 巾 should be. 

We examine the quasilinear case first. Consider 

lift = auxx + buxi + c, (2.1.10) 

where the coefficients a, b, and c depend on x, u, and ut. 
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Proposit ion 2.1. Any Euclidean invanant equation (2.1.10) is of the fonn 

‘ 一 t t ^ ' T T ^ 

1 湘 
a = h + ul 4 1 + ul 

Ut 
c = s j 1 + ul ？/，(之)， z = y n ^ ， 

where tp, x cmd air. arbitraTy functions. 

Proof . The Euclidean group acts linearly on (.t, U) and trivially on L Its Lie 

algebra of infinitesimal syiniiictries is spanned by 

du, 域 J . 

According to Lie's theory of symmetries, (2.1.10) is Euclidean invariant if and 

only if 

pr(2)v(?�t — auj:.j： - l)u.^t - c) - 0, 

oil uit = aWxi + buj:t + c, where v is any infinitesimal syinirictry and p7.(2)v is the 

second order prolongation of v. By the prolongation formula [()]，pr�d! = d ,̂ 

so 

pr�d“uu - au：,：^ - bw_rt — c) = -a：,^^^ — bj:U:r.t 一 = 0 , 

which implies that a, b, c are independent of x. Similarly, they are also imlepen-

dent of u. Now, for the rotation r = —u么+ :c氏,the second prolongation is given 

by 

pr(2)r = -udx + xdu + (1 + ul)du^ + ŵ wt 久,+ '^UxUxx^u^ 

+ + {utiux + 

Its action on (2.1.10) gives 

+ + a^t^^ut) + SaUxW^-a； + + + + 

+ UtUxx) + + ^i) + c^tihut = uttu 工 + 2utuxu 
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on Utt = aUxx + fxt'xL + c. We eliminate Uu in this equation using (2.1.10). Then 

the variables i/n, w t̂, w!，and Ut become free. By selling the coefficients of ？ 

and Uxt to zero, wc obtain 

Qur (1 + w-x) + (lutUx̂ k + 2a?z.T + but = 0, 

and 

+ <4) + ^̂ u. fi-xtk + bu-j： - 2ui - 0， 

V 

while the lower order torriis give 

丨“1 + ui) + - CU:r. = •. 

These are first order linear PDE's for the coefficients. The second and Uiird 

equations are readily solved to yield 

2u:,ut 1 ( Ut \ 

x/r 
and 

Plugging b into the first equation gives 

1 + 4 

Here c î, xi and ip are arbitrary functions. Clearly the proposition holds. 口 

Taking = x =诊=0，we obtain the simplest Euclidean invariant equation 

o ^xUt , uiu^t '^xx / o i i i 、 Ult 一 2 Urt + , = 1 , 2. 2.1.11) 
1 + wj (1 + u iY 1 + 

Comparing this equation with (2.1.8) where F == /c, we see that <I) = -UxUil(\ + 

The meaning of this constraint becomes clear after using (2.1.2); it means 

t h a t � 7 t , 7 p �= 0 for all time. A flow with this property is called a noTinal flow. 

With this constraint at hand, G could be determined from (2.1.9), but here we 

use a different reasoning which is bailed on the fact that (2.1.7) must preserve 
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this constraint. In other words, i f � 7 f ’ 7 , , �= 0 al I = 0, I hon it holds for all lime. 

Keeping this in mind, we cornputo 

^ 0 , \ 
0 二 百 t � i � � 

={ltt,lp) +〈7/, V 〉 

= + 〈 7 , ， 、 〉 W ’ 

from which we deduce G 二 一�7<’7t.s�. Note that it is imlepeiident of F. Later 

we will see that G depends on F for a normal preserving (low. It, is routine to 

chcck that for any given F and G in (2.1.7), starting from mi initial velocity 

satisfying (7^(0), 7p(0)) = 0, the How (whenever exists) is normal if and only if 

G — — (7(, Ill the following wc show thai any qiia^silinear Euclidean invariant 

equation (2.1.10) arises as the associated equation of some normal flow. 

Proposition 2.2. Any Euclidean invariant equation 

equation of Llie noimal jlow 

Fn- (7f,7i.s)t, 

where F is of the form -\-F2k + 7 t . s ) , (md F]: 

only. 

10) is the associatrA 

(2.1.12) 

2,3, depend mi {7(, n) 

Proof. First, note that 

〈7。 
x A T u 

UtUrt 

and (7t, t) = 0. We also claim 

( i t n t . ) = 2)3/2 

To see this, we first use orthogonality to get = (7 ,̂ n)n. It follows that 

hs 二〈7“ n.,) + ((7t.s,n> +〈7。n,))n, 

so 

(itnts) =〈7“n〉〈7t6 
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aft,or using Frcnct's formula. Now, 7,., = :/：/., (1, //̂；) + .x̂  (0, //.̂ .̂：)x-+ ((), )；/;., wlicro 

Xj, = 1 /(I + hence 

n) = — - - + 
+ u^ 1 + u'； 

and Ihe claim follows. 

Putting these int,o (2.1.8), wa obtain 

Hit Fi + F2— T-TTx + r： 
( 1 + (1 十 

2u.j:ut ulu 
-n. 

Comparing with Proposition 2.1，we simply lake F:j(z) = ^ ^ 丨 z �厂 2 ( : ) = 1 — 

(/?2(2)/4 + X⑷，and F\{z) = ip(z), then I he proposition follows. • 

Next we coiKsiclor the fully nonlinear equation 

Uu = /(a：, u, lix, ut, H x̂, Uxt)- (2.1.13) 

Parallel to Proposition 2.1, we have 

Proposition 2.3. Any Euclidean invaiiant equation (2.1.13) is of the form 

= — + <1̂ (̂ 1,2:2, (2.1.14) 
U'r'r « 

where , 22, Z3) is an arbitrary function and Zi = u^J \J\ + 22 = 

严，ami . 

Uxt Uj：,零 XT 
ZS = {i+uir 

Proof. As in the proof of Proposition 2.1，/ is independent of x and u by Eu-

clidean invariance. From the action of the infinitesimal rotation, the prolongation 

formula gives 

(1 + + Uj:Utfut + + + 'iltUxx)fxt = ^xf + 工 t, 
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whioli implies 

uiiif 'lu-xut “ 山 / 

J {l+uiV H+ul) « 

for some funct.ion 4>i. The proposition now follows from letting <l>{z\, z-z, z-^)= 

By comparing (2.1.14) with (2.1.8)，w(3 see thai, they are idoiit ical if wo chooso 

U-xL Uxx 

This condition is readily ciieckcd to ho equivalent to 

(2.1.15) 

〈7…n〉=0 . (2.1.16) 

A flow (2.1.7) is called a normal presi^.mng flow if (2.1.16) holds for all lime. 

To understand this (Jefiriition, rccall that the angle between the ciirvo and the 

X—axis, rv, is related t o iij. by tan a = u:r. From 

2 Oa ,、 
sec a — = u.j:j:Xt + Uxt = 0, 

dt 

wo see that, (v is independent of time during tho flow. As the normal angle of Uie 

ciirvc is equal to a 4- 7r/2, it is also constant in time. In oUioi words, n{p, t) is 

equal to 11(7;, 0), justifying tho terminology. 

Same as in the quasiliricar case, we can determine G for a normal preserving 

flow. Ill fact, 

. d 
&〈7tp，n> =〈、,n〉+〈，，n,〉 

OF 

OF 
= + hpl^G + t > ( 7 t j n n ) . 

This is an ODE of the form dy/dt — a + by. Clearly, (2.1.7) preserves normal 

preserving flows if and only if G = —k'^Fg. In fact, all fully nonlinear Euclidoan 

invariant equations arise from this way. 
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Proposition 2.4. Any Euclidean inv(iri(mt’ etquatiou (2.1.13) is Ifia associated 

equation of a noTinal preservimj jlow 

lit = Fn-^FA (2.1.17) 

where F depends on (7/,, n), /c, and (7t, 7/,.s). 

Proof . Plug (2.1.15) into (2.1.8) and then use Proposition 2.3. • 

Hyperbolic vorsioiis of the curve sliortc.iiing problem can he found l)y choosing 

difforenl F and G in (2.1.7). in LeFlodi-Snioczyk [LS 

F = 4 ( 1 + 17,作•’ G 二—〈7纟’7,丄 

is choscn. From the above discussion any normal flow is rcdiicihlo with iissociatecl 

equalioii given by 

u u 二 十 (2.1.18) 
2(1 十 wD」 1 + ut. 

In Kong-Wang [KW], 

F = k, a = —〈7t’7“〉， 

is chosen. Again, any normal flow is reducible and its associated equation is 

simply given by (2.1.11). Both equations are quasilinear hyperbolic. Now wc 

may take 

F = k, G = 

in (2.1.7). Any normal preserving flow is reducible, and i(,s associated equation is 

. uttu,. - u l = - f ^ , (2.1.19) 

This is a fully nonlinear, hyperbolic equation as long as the curve is uniformly 

convex. 
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Very often, in the study of the mo I ions of convex ciirvcs, it is useful to express 

Ihe flow in terms of the support function rather than the graph, Chou-Zhu [CZ 

Recall that the normal angle 0 € [0，27t) of a curve satisfies 

— (cos sin 0), — sin 0, cofiO). 

/ 
and the support function is a function of the^normal angle given by 

r 

" ( M 二 <7(P,,)’ - n ) . 

where 7(p, t) is the point on the curve whose normal angle is equal to 0. Any 

closed convex curve can be determined from its support function. In fact, for 

7 = (.T, u(x, t)), we have . 
、 

X = li cos 0 — ho sin 0 * « 

u = h sill 9 + ho cos 0. 

DifFcrcnUating the first of these relalions in •'/: and t, wc have 

1 = + 

0 = III cos 6 — hot sin 0 — {h-\- h0e)Ot sin 9. 

Tlierefore, 

and 

after using the formula 

0,r = 
k 

sin 6 

_ Hit f'os 6 — hot shi 9 \ 
一 . ^ / 

/

\
 

I
I
 

k 二 fh = 
hoo + h 
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By differentiating the second relation, we obtain, 

Ux = ~rOx cos 0 = — cot 0 
k 

_ 1 . _ k 
• 2/̂  3： . 3 Z)， 

Sin 6 sin d 
1 k 

Uxt = —Yrfii = — ~r^(ht sinO - hot sin 0), 
siir 0 sin"̂  0 

ut = hi sin 9 + {h cos 6 + hoo cos 0)61 + hot cos 0 = ‘ 
sin 0 

fhi , f fho /if cos \ htt k . : 
uti = + I -7—7, r-YTT = —7： 一 ~t~t7人^to sin f) — hi cos 0) 

sin 9 \sm0 siir 0 / amO sin 0 

Using those formulas, we can express equations (2.1.18), (2.1.11) and (2.1.19) in 

terms of the support function. For (2.1.9) and (2.1.11), the eqiialioiis arc 

fhi = 
hi 1 + M 

hoo + h 2 

and 

hoe + h ’ 
respectively. As for (2.1.19), the eqiiaUon is 

1 
hti --

hm + h ‘ 
I 

which is the cxact analog of the curve shortening problem when expressed in 

terms of the support function 
‘ 1 

ht = hoo + h 

In concluding this section, let us show that the flow (2.1.7) is not reducible 

when F{k) = k and G 三 0. To formulate the result, put the constraint Xt = 

^{ux.ut.uxx.uxt) into (2.1.8) to got . 

utt + + = 7 ^ ， (2.1.20) 
I+ ui 
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(2.1.4)�now reads a.s 

. (2.1.21) 

Proposi t ion 2.5. There is no such sm.ooUi /miction 4>(2i，22, 23, 24) satisfying (i) 

(2.1.20) is solvable locally in space and time for arfntrujij smooth initial data u{0) 

and Ui(0) and (ii) the comtjuint Xt 二 中W ; r : r， ' ' Z x t ) fuljils (2.1.21). 

Proof . From the constraint wc have 

Xtt =巾；(Wxx^I^ + Uxt) + ^zAUrt'^ + Utt) + 少 打 + U:口:t) + ( 公 ; ( 从 + U^u)-

(2.1.22) 

On the other hand, from (2.1.20) we have 

'^^xxx 2 
Uxll = 1 , g 一 T T "； ^ - 一 1 + ul (1 + 1/2)2 

Eliminaiiiig the term Uxu in (2.1.22) by this pxjuation and then idenUfying it 

with (2.1.21), we obtain a relal,ioii of the form Auxxi + Bu^rxx C = 0, between 

Uj：̂  Utj Uxx, Uxt, Uxxt and Uj:xx- By our assumption (i), all these variables arc free. 

It follows that, A = B = 0, thai is, 

^za + 少:J 一巾—（2之4 + 冲 J = 0， （2.1.23) 

and 

+ 少q [ - — (2Z4 + + T ^ ] = 0， (2-1-24) 
丄十 

for all 22? ^4)- The lower order term C also vanishes, hut we do not need 

it. � -
、 

t 
We solve for from (2.1.23) and plug it into (2.1.24) to get, 

d) 
^ 24 (1 - (2^4 + (巾 + (224 + — ( - 妒 + 

Thus, either 中名鸿=0 or 

4-z? 
= ( ) . 

少，.=土 
(224 -f 2Z:,^>)y/TTVf 
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If = 0, then = 0 and Xi = <t>(u3：, Uf). ll is easy to see that, lliis is 

impossible. We take 

(The other case can be treated similarly.) From (1.24) we have 

(2.1.25) 

23 (22:4 + 2z3<I»)(l + zi 
\
 
/
 

6
 

1
 

/
—
\
 

Differentiate (2.1.25) in 23 

2少 + 223杏 Z3 
2423 (224 + v T T ^ 

•2$ 

^ 中 v ^ + ẑ  + l 
—(224 + + 223<I>)(1 + 

and differentiate (2.1.26) in 24 lo get 

23 24 (224 + 223^)2(1 + 2?: 
1 

(224 + 223巾)(1 + Z?) — (224 + v / T T ^ 

2 223(巾 yrr^+i) 

We find 

(224 + 2zs^)(l + z?) (224 + + 2f 

contradiction holds, so the flow (2.1.7) (F 二 k and G = 0) is not reducible. • 

2.2 Affine invariant motions 

The affine curve shortening problem refers to F = k�""^ and G = 一kr帥ks/3 in 

(2.1.1) has been studied in connection with image processing. Being called the 

fundamental equation of image processing in [AGLM], it is studied in [Al] and 
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[ST]. We may consider its hyperbolic analogs. Recall that the affiiie group is a 

subgroup of the Euclidean group whose infinitesimal symmetries are spanned by 

udx, xdy, xdj： - ud,,}. 

We call (2.1.1) is affine motion if the flow is invariant under affirie group. Assume 

the flow can be reduced to a hyperbolic equation of form (2.1.13), then we have 

Proposit ion 2.6. Any affine invariant equation (2.1.13) is of the form 

. "“二？“十“‘乂苦)， （2.21) 
"XX \ u.f ‘ 

for some functioTi 

Proof . According to Lie's theory of symmetries, (2.1.13) is affine invariant 
4 

if and only if 

p r � - / ) = 0: 

on Utt — f , where v is any infinitesimal symraetxy in {dx, d“udi , xd^, xdj： — ud^ } 

and p r �V is the second order prolongation of v. By the prolongation fonrmla 

[O], = da：, so 

pr�dx�Utt - aUxx 一 hu^t 一 c) = - a iWn — bj:Uxt - = 0, 

which implies that a, 6, c are independent of x. Similarly, they are also indepen-

dent of u. Now, for the rotation r = —udx-hxdu, the second prolongation is given 

by 

p r �r = -w氏 + + (1 + + u^^utdut 十 汉 

-|-(2iixWxt + UtUxx)du:r.t + ('^ttUx + 2UtU.j:t)duu 

Next, for ud: and x氏’ we have 

pr�udx = udx - Urdu: 一 Suix^uxxi 

p r(2)成=x d u + duz. 

ixx 
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From these equations, we obtain 

f Ur-r + “冲（ ix:)) 

where 少 is an arbitrary function. 

Since the affine tangent and normal are related to n and t via 

T = Af — k^n— 

the hyperbolic version of affine curve shortening problem roads as 

• 

=M = 
3 ‘ 

in graph case, 

•Ttt 二 ~ ^Uxx Uxxx 
, J. 

Utt + 2u:^tXt + = ills 

(2.2.2) 

(2.2.3) 

Letting 

xt = 
U^-r 

(2.2..4) 

the second equation of (2.2.3) is reduced to 

u 
Utt xt 

U, 
(2.2.5) 

which corresponds to taking 少(2) = in Proposition 2.6. In fact, once we have 

a solution u{x, t) for a solution u{x, t) for (2.2.5), by differential (2.2.4), we get 

Xtt = 
'^xtt . '^'^xxt'^xt ^xxx'^^xt 
u. 
U 

Ui ui 

xt 
y-xx 

1 J 

+ hx. ^Uxxt'^^xt '^xxx^ 
at 

XXX "•it 

= — - U x i tZj 

that is the first equation of (2.2.3) is satisfied. By the above calculation, we 

obtain the equivalence between the affine flow (2.2.2) and (2.2.5) under (2.2.3), 

that is, when the motion is normal preserving. We observe that by setting 

P - i4i’ q = 
Uxt 
Urr-r 



to 

2.3. SOME DIRECT CONSEQUENCES 23 

the equation (2.2.5) can be written as a conservation law 

Pi + Mx = 0 

iPQ)t + {pq'^+ph^ = 0. 

To conclude this section,双e record the evolution of the curvature under this affine 

invariant flow. We have 
2 , _ "rrrtt r, '^xxxi^xt U'xxxx^xt 

f^tt = : TTT —乙： r~3 1-
+ {l + uiyiu XX 

2 2 
Uxxx^xit + 2 ''̂ âarx'̂ -̂xxt̂x/. ^xxx'^'xt 

Since 

Uxtt = (— + (U. 
Uxx 
U： 

Uxxtt = (— + (Wxx)^)xx, 

thus 

ktt = - Ik-h'', + 2kt - 3/c: .2.6) 

after some computation. 

2.3 Some direct consequences 

For the normal flow (2.1.12), we assume < 7t, t > = 0, and < 7 “ n � = /, then 

we have 

s
,
 t,
 

+
 

A
 n
-

 ̂

 

,
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I
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 I
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I
I
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I
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I
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I
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24 CllAFTEH 2. PLANE CURVES 

Therefore 

Thus 

d � 
= + Ut = /t 人 + 2 ! k k , + / , St. 

where f —< 7,, n >. 

= + 2fkkt + {fts - A/A：), - fssfk 

=ftk：' + 2fkh + {ft)ss - 2UJk - f'^k 

=k^ + 2fkkt + /c,. - 2{kt - fk'')fk - f^k 

二 kss + 2尸 k^k'L 

= + + k'' — /;/c, .3.1) 

Proposition 2.7. The perimeter C{t) of the closed, convex curue 7(-, 0 of (2.1.12) 

satisfies 

and 

dCjt) 
dt 

d'Cjt) 

fkds 

k'^ds. 

The area A{t) enclosed by the closed cuTve 'y{t) of (2.1.12) satisfies 

dA{t) 
dt = - / fds, 

and 

(fA{t) 
dt^ 

=/ k[f - l)d’s. 

Proof. The length of 7 satisfies 

, dC(i) f ds 
dt dt 

dp = fkds. 
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and then 

d'^C(i) 
(It:之 

ftk + fktds + j fVds 

k^ + + 人,）-

= - j , + fsAs 

= - j k^ds. 
J’ 

For an embedded closed solution we can use the formula for the enclosed aroa 

to compute 

A = —- / < 7’ n �d s 

which, after integration by parts, gives 

dA{t)=— 
dt —— 

> ds� 

/ri.s’ 

and then 

dt? - / hds + / Pkds 

f - l)ds. 

• 

When the normal presciving flow (2.1.17) is closed and convex for each Ume 

instar^, its support function satisfies the equation 

Iht = -F. (2.3.2) 

Hence, 6 and t are independent variables and k = 1 /�hoo + h). By a direct 

calculation, . 

k,= hoot + ht 
(jiQo + hy 
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and the curvaturc evolves according to the equation 

, _ ? (hoot + KY _ h.oou + fht 

= { h e , + hy — 

Consider a special ease where F = k in (2.3.2). This equation t,akes a simpler 

form 

hu = + (2.3.3) 

Proposition 2.8. (preserving] convexity) Let ko he the curvat.mn of initial curvc 

7o, and set S — inin {̂A;o(6')} > 0. The initial velocity satisfies kt(0) > 0. Then 

for a C^-solution k of (2.3.3), one has 

k{e,L)>S, 

for t € [0, T), where T is the maximal existence tirrie JOT the solution 7 of (2.1.17) 

for F = k. 

Proof. Since the curvaturc satisfies (2.3.3), we define the operator L as 

follows 

L[k] = (ikee + 2bkoi + cku + dko -f ekt, (2.3.4) 

whore a = A:̂ , 6 = 0, c = — I, c/ = 0, e = 2k~^k(. a, h, c are twice continuously 

differentiable and d, e are continuously differenliahlo. By the direct computation, 

. _ = / j / 2〉 0， 

lierice the operator L is defined by (2.3.5) is hyperbolic in Uie domain 5 ' x |0, T). 

We find k satisfies 

L[k - = 0, X [0,7；)), 

> 0 ^ = 0 (2.3.5) 

d(k - S) 
diy =A:t(0) > 0 f 二 0. 
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Then we apply maximum principle for hyperbolic eqiiaLion [PW) and conclude 

that 

6 < k{0,t) in X [0, To) 

with To < T. • 

Proposition 2.9. The pfimrieter C(i) of the closed, convex cmvc of (2.丄.17) 

salisjies 

dC{t) "冗 

(it 
}u(W 

and 

(fC{t) 
dt'' 

-'2-n 
FdO. 

The aim A{t) enclosed by the closed curve satisfies 

dA{t) 彻 

dt Jo 
h,k-'dO 

and 

'27r 

dt^ Jo 

Proof. ‘ By the definition of perimeter 

(一 Fk-i + hj - /4)激 

C{L) = / \j0\de = / k'^dO 
J{) Jo 

By a dircct calculation 

dC(t) 产 

dt 

r2n r2-n 
I (-k-'^kt)(W = / (hoot + ti�dO = / hide, 
0 Jo Jo 

and then 

響广 r—r腿 
By the definition of area 

邓 ） = ( 7 , n ) d s = - / hkr'dO. 
2 Jo 
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By a direct caknilatioii 

dA(L) 1 广 •'I-n 

(It 

and then 

(fA(l) 

- / (htkr' - hk-'%)dO = - / (ht 
^ Jo 2 ./o 

h[hfm + fh))dO 
I
?
 

2
 r

x
 

1
 1
2
 iji,k-�- htihoo + h.))de = / htk-�(W, 

'27r 

httk-、一 htk-'%(W 

'27r 

-Fk-�+ htiheet + h.t)](ie —.Fk—�+ h^ - f4,]de 

n 

Proposition 2.10. When F = k in the normal prcscrvinf] J low (2.1.17), any 

solution of this flow will blow up in finite time. 

Proof. When F = /c in Uie normal preserving (low (2.1.17), wc havo 

(PCjt) _ 
dt'^ 二 ‘ 

Using Cauchy-Schwarz inequality, 

»27r 

kdO = - / 

J k^ds J ds > (J kdsf = 47r"^ 

If at some iiistr.nt (o, Ji^i^o) < 0, then dC/dt and C will ho doccase for all t > to-

It follows that 祭 < and JC becomes zero in finite lime. On the other 

hand, when dC/dl{t) > 0 i'or all t�we have 

1 d , 9 d ,, 

as so. 

(It ‘ � ‘ 一 \ dt'…一 -�'�£(io). 

It shows that C{t) cannot expand to infinity, and ^ ^ ^ < tor some (:() > 0. 

But then 

contradiction holds am L oo. • 



Chapter 3 

Group Invariant Solutions 

In this chapter, we present a systematic study on the group invariant solutions 

for the following flows: 

The normal hyperbolic How: 

炉 7 

� g = A : n - < 7 , ’ 7 “ �t ; . (3.1) 

The normal preserving hyperbolic flow: 

dl：' k "' � ” 

The affiiie hypcrbolic flow: 
Fi么〜 

M, (3.3) 
dt? 

where M = k^n — r^k'̂ ik^t is the affine normal, n, t arc the Euclidean unit nor-

mal and tangent, and s is the Euclidean arc-length parameter. � 

» 

When the plane curve 7(. ’ 艺）is given locally as a graph of the form (x, u(:c, /))’ 
1 

each (3.1), (3.2)，(3.3) are converted to 

• 1 - uWt . o U工Ut 
Ult = —77-""“ ip^Uxx. + 2 Uj-I, (3.4) 

( 1 + i z 化 1 + ilI 

y2 
. - ul, = (3.5) 

29 



and 

UttUxx 

respectively. 
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A study for these liypcrbolic equations have begun. Wo shall first determine 

the groups of syrnrnetrio.s of these equations. As these are, Euclidean invari-

ant, the Euclidean group forms a invariant group in it,. Furthermore, being not 

(lepondciit on the lime explicitly shows thai the translation in time is also a ono-

parameler group. We shall determine the group of symmetries by determining 

the' Lie algebra of the syriimetrios. The prolongation formuk少 will bo needed in 

the latter. 

3.1 Normal hyperbolic flow 

111 this section, we atterri])!, to investigate on group invariant solution of normal 

hyperbolic flow (3.1), with the grapli equation (3.4). In Lie's theory of symmetry 

groups for differential equations a oiio-parameter group of symmetries is a family 

of local difreomorphisms 

壬二 (工，4 

u = <I>f(x, w), e small, 

satisfying x = and u = u) which preserve solutions of (3.4). The 

vcctor field 
,d , d 

dx du ‘ 
where 

《 (工， =差 L=oZXz’ 
C 

3.6 
4
-
5
 X
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is the infinitesimal symmetry for the 1-paraiiiotcr group. In order to obtain 

all group invariant solutions of (3.4), wc first det.ermine the Lie algebra of all 

infinitGsiinal symmetries. Since the equation is geometric, it, must admit the 

Euclidean motions (translations in x and u, rotation in x — u but not the reflection 

because it is discrete) as its symmetries. Furtliennore, being not, dependent, on t 

explicitly means that il admits translation in i. Finally, the special form of the. 

equation suggests that il admits a certain scaling invariaiicc. 

Theorem 3.1. The Lie algebra of all injinitesimal symmetries of (3.4) is spanned 

by 

{da：, du, di, -ud.j： + xdu, xd^.. + ud^ tdi}. 

Proof. Let 

Q Q Q 
= + T { X , L , U ) — — (3.7) 

be a vector field on the space (.t, t, u). We wish to determine all possible coefficient 

functions r and 小 so that the corresponding ono-parameter group exp(ev) is a 

symmetry group of the equation. According to Theorem 2.31 in [O], v generates 

a symmetry of the equation (3.4) if and only if 

pi^v{utt 一 F) 二 0 on Uu — F = Q, 

where p r �v is the second prolongation of v, 

pr⑵ V = I； + + + + c T 各 + 8 
du: d 飞 Lt duxi duxt dutt 
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and 

(f 二 一 一 rUt) + + 

二（px + — ^x)Ux 一 r^Ut - inul - Tu^LxUi 

(pt = Dt{(p - ^U：, - TUi) + + 丁Utt 

±xx 一 0 = 

lit 
9 = 

(p 

+ 

xt 

(fh — ^tUx + ((pu - rt)ut — “UxUt - Tnuf, 

Ol{(p — ŶZx - rut) + iu^xx + '̂'-̂ xxt 

=(l>xx + (20XU - ^xxhx - TrxUt + — 工 

—2丁:ni'UxUt - - '^uuUlut 

i(f>u - - 2rxU.j:t - S^nUxUxx — 丁uUtU：^：工—2t“?VU^t (3.8) 

+ 

Df((f) - ^Uj： — TUt) + iu^tt + TuUtit 

(i>tt + 一 rtt)ut - ^ttUx + (0U1X -

2^tuU,:Ut — - ^nuUxV^l 

{(pu - '2,Ti)uti - 2^tUxi - ^TuUtUtt - ^uUxUtt 一 

Dxtid - iUx - TUt) + fl^iit + TU:,it 

(t>xi + (0/w - + {(pxu - Txt)ut 

ituUl + (<̂ uu - ^xu - n’i�UxUt 一 一 ^xinuiui 

TuuUxU^t + 4>uUxt - (^u + 

(r„ + 2T^Ut)ur.t - (tx + 7Vix)Wtt - (Tt + 

For simplify, we set 

i 

0 打=A^u^,^ + B'^u^t + 

Cfy"' = A\Ltt + + C V t + D, 

Utt = f�U:�Ut)U:cx + oi'^x, Ut)u,,u 

I 

where A^, B\ C\ and D depend on lower order terms. 

(3.9) 
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Applying the second prolongation pr^v to (3.4), we find that t，0 must 

satisfy the'symmetry conditions. 

+ + Ou-^U^lW + ifniUx^r + .(MW:rt)<//’ (3.10) 

which must be satisfied whenever Ua = f Substituting (3.8) into (3.10)， 

replacing Utt by fu^x + yuxt, we have 

A'ifu,., + gu,.t) + B'u^^t + C = f{AWr + C) 

• + g[A^{fu^：, B'^'a：,^. + + D ‘ 

+ [fu.Uxx + 9urUxtW + {fut'i^xx + {Uth)<P� (3.1 J ) 

To solve (3.11), we look at the terms involving the mixed sccond order partial 

derivatives of u, namely u^x, Wx/.) each of which occurs linearly on the left-hand 

side. We find the defining equations for t he symmetry group to be the following: 

Monomial Uxx, coefficient 

A'f = fA' + g(A^f -h B') + UA^ 4- . 

.Monomial coefficient 

A'g + i^i = fB' + g{A'g + C'') + g j ‘ +>4>� 

Monomial 1, coefficient ‘ • 

C = /C^ + gD. 

Multiplying these equations by (1 + and then setting the coefficients of 

и � u { to zero in the above equations gives,ils certain determining systems for r, 
* • • 

Therefore, after some calculation, we obtain 

Tx = Tu = 0, 
I 

6 = 0 , • 

， ( p x = ‘ , 

... K = ix ‘ •'、 . 
” 、 • 

. ‘ . U 



34 CHAPTFM 3. CROUP INVARIANT SOLUTIONS 

Thus we get 

^ = ax — bu c, 
• • •> ‘ 

T = a/, + ri, 

4) — au-\- bx + e, 
A ^ 

where a, f)�c, d, e are constants. Finally we conclude that the Lie algebra of in-

finitesimal symmetries of the equation is spanned by the following five vector 

fields 

vi = 

V2 = du, . 

V3 = dt’ 

V4 = -udx + xd^, 

’ vs = xd:c + udu + tdi. 

The proof is completed. ‘ • 

In the study of group invariant solution it is more convenient to use the support 

function and normal'angel to describe the flow sometimes. We have expressed 

the flow (3.1) as the equation of support function in Chapter 1, that is 

hit — hlo-l 
hee + h 

(3.12) 

When the curve 7 is represented as a graph and described by the support function 

simultaneously, the following relations hold. 

h = 
U — XUX 

(1 + 

tai?没= 
u. 
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and 

Therefore, 

ho = 
—X — UUj： 

(1 + 1x2)1/2 

ax 二 

du = 

dn-

:dH 

{i + uiyr2 
Ut 

dhe 

(1+别/2 (1 +,4)1/2 
1 -X - UU: + xu., 

du: = T- i ^ d e + — + -ZTTdho-
1 + (1 +u2)2 (1 + 炒 

Now wo can convert vector fields on the jet space (rr, t, u, ？ẑ ) to the jet space 

(0，t, h, he) using these formulas. The following table shows the conversion. Of 
1 

course, one can also compile it by applying the infinitesimal criterion to (3.12). 

Table 3.1: Infinitesimal symmetries in (.r, uj) and {(), hj) 

— ( 1 + uiY " ： … 1 + 广 t “•〃一 1 .； hoe + li 
cos Odu 

du sin Odf, 

—udx + xdu do 

dt dt 

xdy, + udu + tdt tdt + hdh 

For each one-parameter subgroup of the full symmetry group there will be a 

corresponding class of group -invariant solutions which will be determined from 

a reduced ordinary differential equation. Given a group action G, there exist 

functionally independent invariants of form y — v = t,u). If we 

treat v as & function of y, we can compute formulae for the derivatives of u with 

respect to x and t in terms of y, v and the derivatives of v with respect to y. Once 

the relevant formulae relating derivatives of u with respect to x to those of v with 
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respect to y have been determined, the reduced system of difFereiitial equations 

for the G-invariant solutions to the equation is determined by substituting these 

expressions into the equation whereever Ihcy occur. Upon substituting, we find 

the reduced ODE. After solving the reduced equation, for each solution v = (f){y) 

of the reduced equation there corresponds a G- invariant solution u = /(x, t) of 

the original equation, which is given implicitly by the relation 

Now, let's determine the group invariant solutions of (3.1) for some 1-parameter 

subgroups of symmetries. 

(a) Self-Similar solutions. First we take v = xdx + Wt + ud^, or tdt + hdh, 

in terms of support function. Two invariants are h/t and 0. Hciice, invariant 

solution is of the form h{9,t)/t = 0(0)，or h{6, t) = t • (p^O). This is the self-

similar solutions. Under the flow, the shape of the curve remains unchanged but 

it magnitude enlarges or shrinks. Putting this into equation (3.12) yields 

It can be solved ami 

_ = 土0 + (7, 

where C is a constant. As a typical curve we take (f)(0) in the following discussion. 

The self-similar solution, as a curve in (x, u)-plane, is given by 

X = 9 cos 6 - sin 6, 

u = 9 sin 6 + cos 0. 

This is a semi-infinite curve, which, at 没=0, passes (0,1) with a vertical tangent 

and curls to infinity as 6 tends to oo, see Figure 3.1. One may connect this curve 

with the one starting at (0,1) to form a complete curve. This C^ curve satisfies 

the equation for the flow everywhere except at (0，士1) and is a candidate for a 

weak solution, see Figure 3.2. 
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A 

L 

\ 

7 

Figure 3.1: Self-similar solution Figure 3.2: Seli'-siniilar solution 

(b) Circles. Next, we take v = —iz久 + 域 T h e resulting solutions arc circles. 

Let 7o be a circle of radius ro. If 7 is a soluUon of (3.1) with the initial value 

7(x ,0) = 7o, and = - r i n . Then the curve is a circle with radius r, ami 

the flow reduces to the ordinary differential equation 

r"= 
(3.13) 

.(0) = r o � 0 ， n ( 0 ) = n 

More details about (3.13) are discussed in Chapter 4. When n < 0, the circles 

contract to a point. When r! > 0, the circles expand first, then contract to a 

point, see Figure 3.3, 3.4. 

(c) Spiral. Finally, we consider v 二 —ud! + xdu — dt = de — dt. Two invariants 

are h and 0 — t. Hence, the invariant solution is of the form h{6, t) — (i){0 — t). 

Invariant solutions with respect to this group are called spirals. The resulting 

solution is a curve rotating around the origin with speed 1. A direct, computation 

yields 

hit = (f)", hee = 0〃， hot — ~4>\ 



38 ClIAPTFAi 3. GROUP INVARIANT SOLUTIONS 

04 

Olf 

06 

02 

Figure 3.3: r) < 0 

hence 

(/)"：=-1/0. 

We multiple 小‘on the both sides of (3.14), then 

0以 
= C — In � 

Figure 3.4: n > 0 

(3.M) 

(h = ±\/2y/C-\n\(t>'. 

As h{9, t) — (p{6 — i), we may assume 0 > 0 at some 0. Take 

(pe = y/2y/C - hi 

then C — 111 0 means (j) is increasing as 6 increases, until C = In 0 (没 i ) , (po{0]) = 0 , 

= e^. Consider, <pg = —y/2\/C — In 0, then (f) decreases as t increases. We 

extend 0 to a smooth function on [ 权 w h e r e = 0，(p' blows up at "(), 6̂ 2. 

We can also compute 没2 — 没1，since 

so 

(16 

6 2 - 6 1 = 2 

d(f} 
A/2C-ln(/>2 

d(f) 

0 V ^ c - ^ H T ^ 

= 2 广 
Jo x/- I n � 
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We have Ihe figure of (f>(0), sec Figure 3.5. 

Figure 3.5: • 

The curve reads as (x, y) using support function (p and normal angle 0, x = 

(j) cos0 — (j)' siri^, y = + (p' cos 9. We know that {x{0),y(d)) tus a smooth 

plane curvc needs x'{6), y'(9) + 0, at least, i! — — sin G�y' = cos0, 

when 0 � + = —念 + = 0’ i.e. 0 = 士 1， = = 0, we gel a singularity. 

Set 02 - 0 � = e , then max 0 ( l 9 ) = 嫩 ) = e / v ^ . When O/y/^ < 1， 

there is no singularity, the graph of 7 is hyperbole in a cone, which is showed in 

Figure 3.6. 

Figure 3.6: Spiral-



Figure 3.7: Spiral-2 Figure 3.8: S])iral-3 

3.2 Normal preserving hyperbolic flow 

In this section, we attempt to investigate on group invariant solution of normal 

hyperbolic flow (3.2), with the graph equation (3.5). 

Theorem 3.2. The Lie algebra of all infinitesimal syimnetmes of (3.5) ts spanned 

by 

[dx, du -udx + .TĈ u, 工 + udu 4- tdt}. 

Proof. A typical vector field on the space of independent and depondeiit 

variables takes the form 

已 ^ ^ 

V = + t{x, t, ll)— + (p(x, t, u) — , ‘ 

where r, (f) depend on x, t, u. The coefficients of the second prolongation of 

V, (ffT‘, (f)tt, 0对 are determined £ls the same in Theorem 3.1. A vector field v 

generates a one-parameter symmetry group if 

0 " = 〜 、 ( A 
(1 + uiy 

•10 CHAPTER 3. GROUP INVAHIANT SOLVTiONS 

Wlien > 1, there arc two siiigiilarilies. We diooso two examples and 

the show the corrospoiiiding graphs of the curves in Figure 3.7, 3.8. 

/ 



3.2. NORMAL PHESEHVING IIYPERIiOLlC FLOW 

whenever u satisHes (3.5). 

For simplify, wc set 

cT = + B'u^rt + 

(jft = A^uti + + + D, 

where A^, B\ C\ and D depend on lower order terms. (3.15) tuni to b(3 

ylJAhia + + C ” = ;2wxtWxx(>l:�/ + l � x + + D) 

+ ( r ^ - - ⑶ 於 ‘ - 威 乂 ) 一 ^ ^ ^ 少 I 

4! 

Replacing Uu by î t/^ îx + + ul) whenever it occurs, we have 

A^iulf + T ^ ) + '̂''̂ xxVXxt + C^Uxx] = + 
1 + ix^ 1 + u-

+ B X , + C'u工彻工 + Du,^] + C t ^ -

On 7,4 
+ B'u^cu,, + (72u J — 二 ( ： 3 . 1 6 ) 

I丄十 

To solve (3.16), wo look first at the terms involving the various monomials in the 
t 

second order derivatives of u�namely Uxx, Uxt, each of which occurs linearly on 

the left-hand side. 

The coefficient of ut^ is 

2 K. 

^xx 

丨 f M (3.17) 
i-^ul (1+7x2)2 

The coefficient of ul-Uxt is 

A'i n2 
+ (3.18) 1 + ui 1 + ul 

The coefficient of ？ i s 

yl̂  = 2C'' - A\ (3.19) 
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The coeflicioril of Uxxwh is 

The cocfficiciit of ？4,” is 

0 = — B'' 

1 + w'f 

The coefficient of uî u-j-t is 

The coeflicieiit of uxxu'j., is 

0 二 2D. 

i2 0 = - c 

(3.17) can be roduced to 

(2er — 2n + — + ul) = -2u.^[(f)：, + {(puU -

— 一 iuUi 一 TV"a:'“fl， 

(3.2 ⑴ 

(3.21) 

(3.22) 

(3.23) 

which implies 

(3.18) implies 

(3.21) implies 

《：=n, 

Tu 二 0, 

</>u = 二 n-

Tx = 0 , 

Tu = 0. 

(ptt = (i>xx^ 

- ^ t l = 2((/)x„ 一 

^uu — ^tt-
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Finally, we have 

^ = ax — hu + c, 

T — at + d, 

(j) = au + hx + e’ . 

where a, c, 

infinitesimal 

fields 

d,e are constants. Therefore，vvc conclude that the Lie algebra of 

symmetries of the equation is span nod by the following five vector 

Vl 二么， 

V2 =On, 

V3 二这， 

V4 =—ud:c + xd, 

V5 =x^x + udu -

. • 

The corresponding solutions of group {xdx + tdt + are straight lines. 

There is no support function for straight, line. While if we expressed the flow a.s 

the equation of support function 

1 
hu — 

hoo + h 

We find that it is analog as the curve shortening probleiii(CSP) hi = - l/(/彻+ " ) . 

Thus we seek self-similar solutions which are form of 7 == 今(.）as CSP. Then 

A�A7 - n = /c. 

When this curve is not flat, similar as in Scction 2.4 [CZ], A"A must be a non-zero 

constant. After a rescaliiig，we may simply assume the constant is 1 (expanding 

self-similar solution) and -1 (contracting self-similar solution). When it is 1, A(i) 

expands for At(0) > 0, and contracts first then expand for Af.(0) < 0. When it 
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is —1, A � contracts for \i{0) < 0, and expands first then contracts for At(0) > 

0. The reduccd equation are the same as the CSP. The only difference is the 

deforming velocity. We refer [CZ] for more information. 

Figure 3.9: Expanding self-similar Figure 3.10: C()i11,ract,iiig welf-si111ilar 

curve 3-potal curv(3 

Since the reduccd equation of Rotation Group ol" (3.4) and (3.5) are the same, 

tiien the corresponding group invariant solution are the same too. 

3.3 Afflne hyperbolic flow 

In this section, we attempt to give an investigation on group invariant solutions 

of affine hyperbolic flow (3.3) with the graph equation (3.6). By the standard 

method we list in the first section, we obtain the following theorem. • 

Theorem 3.3. The Lie algebra of all injiniiesimal mjnnnetries of (3.6) is spanned 

by 

dt, du, u^x,工du�工dx - udu�3:r氏 + 2tdi + 

Proof. The synmiotry group of (3.6) will again be generated by vector fields 

of the form (3.7). Applying the second prolongation pr(2)v lo (3.6), we find that 

T, (f) must satisfy the symmetry conditions 

+ UucT = + 丨 uii30"T， (3.24) 
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where the coefficients 0工•$，(ffi, wore detennirKMl in Theorem 3.1. Suhslitutiiig 

Utt by u î/uxx + '̂ '̂ xx whenever it occurs, we have . 

A\ui, + u^//) + + CS/,.] + + + + Cf‘ 

= + + + + Du, 

The coefficient of Uxxy t̂ is 

The cocfficieut of iHJx is 

(3.25) 

(3.2()) 

yli + 二 4yi2/3. (.3.27) 

The coeflicient of ui.Uxt is 

丑 1 = 2J5’3. (3.28) 

The coefficient of ut.̂  is 

C^ = 0 . (3.29) 

The coefficient, of wJt is 

B2 = 2A'. (3.30) 

The coefficient of is 

The coefficient of Uxx Uxt is 

The coefficient of wJî  is 

B^ = 2A 3 

(3.31) 

(3.32) 

C = 4CV3. (3.33) 
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The coefficient of Uxx'Uxt is 

0 = 2D. (3.34) 

(3.26), (3.28), (3.30), (3.32) are trivial. (3.27) implies 

(f>n = 377 - Ca 

丁u = 0. 

(3,29) implies 

<f>tt 二 0, 

2知—Tit -(), 

- L t - 0, 

4>uu 一 2rtu = 0 

- 2 6 n = 0, 

-Tuu = 0, 

- fnu = 0. 

(3.31) implies 

0XX = 0, 

2</>iu - x̂x = 0, 

-Tx'j： = 0, 

小uu — = 0 

- 2 t 饥 = ( ) ， 

- U = 0, 

-Tuu = 0, 
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(3.34) implies 

Therefore 

(pxt = 0, t « 

(f>tu 一 � t = 0, 

<Pxu -• Txt = 0, 

= 0 , 

(puu — - ^ x u 一 Ttu 

—Txw = 0， 

—̂ uu 

= 0 

^ — ax + bu + c, 

(f> = dx + eM p， 

a + e, 
口 丁 

where a, b, c, (1�e, p, q are constants. Now it is routine to check Theorem ,3.3 

holds. . n 

For the convenience, we iiso the support function and normal angel to describe 

the flow if the'curve is convex. We have expressed the flow as the equation of 
- . ' ‘ 

support function in Chapter 1，it reads as » 

1 
fht = - ( • 

We can also convert vector fields on the jet space (x, t, u，u^) to the jet space 

{6, t, h, he). The following table shows the conversion for the simply ones. • 

Next, we shall list the reduced equations for these groups in the abovt; table. 
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Table 3.2: Infinitesimal symmetries in (.r. a J ) and (0, h, / } 

IL-rt / X 1 
(^.T.r 

, a . cos Odk 

du sin Qd}i 

—udx + xdu do 
dt ， dt 

氏 + Sudu + 2tOt 2Wt + 3hdk 

(a) Self-Similar solution. We sd l̂c solutions of this flow whose shapes change 

homothetically during the evokitiqi)： 7 = X{t)^{'). 7 is a self-similar solution if 

and only if 厂 

. X(ty'\{t)h-n = ki. 

When this curve is not flat, must be a non-zero constant. After a 

rescaling, we may assume the constant is 3/4，and —3/4. On the other hand, 

the corresponding group of self-similar solutions is {^xd^ + 'Midu + 2亡这)From 

Table 3.2, we get the corresponding group action of {2td( + 3/i(9/J is {(9, t, h)— 

{B, ê t̂, e^h). Hence a self-similar solution could be taken to be That is 

X{ty'X{t)i — 3/4. Plugging this into equation yields 

丄 
4 hoo + h 

1/3 (3.36) 

When X{t)"X{t)i = 一3/4, the support function satisfies 

二 ( ^ , 3 ， ^ (3.37) 

We call the former an expanding self-similar solution (A expands to infinite) 

and the latter a contracting self-similar solution (A tends to 0 at finite time). We 

shall study (3.36) and (3.37) separately. 



3.3. AFFINE HYPEIWOLIC FI.OW 49 

\ V 

First, a typical solution subject the initial conditions "(0) = —a, a > 0 and 

/ie(0) of (3.36) is an even, convex function which is strictly increasing in (0, OQ) 

where 衫0 is the zero of h and ho blows up a»s 0 | OQ. Then the invariant solution 

determined by fi is a convex, complete noncoinpact curve lying insidg the wedge 

{(x, y) : y < |a:| tan ^o} (See Figure 3.11). Denote such curve by The 

invariant solution is the expanding self-similar solution t) = 

J， 

Next, let's denote the solution of (3.37) subject to the initial conditions 

h{0) = a > 1, "0(0) = 0, by h{0,a). h{e) = q which satisfies (3.37) defines 

the shrinking circle. The solutions of (3.37) are positive periodic functions and 

can be solved explicitly. They are support functions of ellipses(Sce Figure 12). 

For A which = —3/4, contracts to 0 if the initial velocity is nonposi-

tive, and expands first then contract to 0 at finite time when the initial velocity 

positive. 

'fuo 

Figure 3.11: Expanding self-Similar 

solution 

Figure 3.12: Coi it racing self-similar 

ciirvos-ellipses 

(b)Circles. We take {udx — xdu}- Two group invariants are i;=以之 + 工？’ y 二 
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We look for invariant solutions as v = v(y). Then we compute 

y 

UUx + .T = 0 

2uut = Vy 

U 工 + UUj：^ = —1 

Ux'Ut + UUxt = 0 

2uf + 2uutt = Vyy, 

so 

Thus equation 

turn to be 

Ur 

ut 

X 
u 

2u 
u： 

W-r-r — 

Uxt = 
U 

U-xUt 

Utt = 

u 
” vy — 

I.e. 

- u^t = (Vxx)3 

”yy - ？X： U^Ut、2 — 1 — U： 

2u u 
V 

u u 

^(Vyy - 2ul) - X^Ui = 
-V. 

w 

2VVyy - V^ H- 4'1>3 = 0 , (3.38) 

If we choose r^ = t», then (3.38) reduced to be 

•5r" + l = 0 , 

The group invariant solution is a family of circles with radius r. We see r � < 0, 

is a decreasing function. When the initial value r'(0) > 0, r increases first, then 
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decreases to 0 at finite time. The circle expands first, then contracts to a point 

in finite time. 

When the initial value r'(0) < 0, r decreases to 0 at finite time. The circle con-

tracts to a point in finite time. 

We show the graph of the radius r(t) in the following figure. 

\ 
\ 

II 20 25 10 12 H 

Figure 3.13: n > 0. ’igiire 3.14: 7.1 < 0. 

(c){udx 4- xdu}-hyperbolic rotation invariant solution 

Group Invariants: v — v^ — y = t. 

Group action: (x, u, t) —y (x cosh e + usinh e, w cosh e x sinh e, t). 

Invariant solution: v = v{y). 

We compute 

• UUx — X = 0 

2UUt = Vy 

+ UUxx = 1 

UxUt + UUxt = 0 • 

2uj + 2uutt = V vy 
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So 

？丄T = 
:r 
u 

Ut = 2u 
ut 

ti-TT — 

Uxt 

飞ht 

u 
U.j:Ut 

u 
^yy — 

Thus equation 

iktu 工工—w 丨 = 

turn to be 

- (1 - ul) . U^Ui�2 ,(1 — ul 
2u u u u 

V 
2(幻yy — x^uf = (v) 

i.e. v{y) satisfies 

2vvyy - v'l - 二 0, 

05 25 

Figure 3.15: v(y), v'(0) > 0. Figure 3.16: /’(?,)，”'(()）< 0. 

Hence the solutions are translating hyperbolas. 
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Figurf，3.17: Hyperbolas 

— udu}-liypcTbol(is. Two invariants are xu = u, t = y. We look at 

invariant solution of form u = v(y)lx. First, we compute 

U + XUr = 0 

XUt — Vy 

2u.j： + XUxx — 0 

Ul + XUrX = 0 

工 Utt = Vyy 

and 

then the equation 

u 
Ut = — • 

X 
Ut 

X 

11 rr — 

Uxt 二 
V” 

yyy 
Utt =— 

X' 
；V 
X 

utiuxx - ^it = W 

is reduced to 
�j h !飞h 
X X' X' 
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2m;卯-(7；,,)- = {vyY. 

Wo know the invariant solutions are hyperbolas. 

(l).Wheii 7；(0) > 0, v'(0) > 0, v{y) iiicrefLses as y increase and blows up at 

finite y. So, the hyperbolas expands and blows up at finite lime. 

(2).If "(O) > 0,f ' (0) < 0, '"(//) decreases as y increase and v(y) lends to 0 al 

finite y. So, the hyperbolas coiitrac'ts. 

(3).When ?;(0) < 0，r/(0) > 0, v[y) increases and tends to 0 at finite y. So, 

the hyperbolas contracLs. 

(4).If v{0) > 0，i/(0) < 0, v{y) decreases aus y increase arid v{y) blows up al 

finite y. So, the hyperbolas expands and blows up at (inile time. 

Figure 3.18: hyperbolas, "(0) > 0 Figure 3.19: liypcrbolajs, < () 



Chapter 4 

Hypersurfaces 

4.1 The evolution equation 

III this chapter, we first study the geometric motion of hypersuriacos given by 

, ？？二 Fn + C 荣， （4.U) 

where A"(-“）is a hypersurface in at oach t. The notion of a normal flow 

extends trivially to all dimensions, namely, X{p, t) is a noimal J low if Xt{p, I) is 

orthogonal to the hypersurface at X { p � t ) for each t. 

Proposition 4.1. The flow (4.1.1) is normal if and only if it is given hy (1.1) 

arid 

〈不’韵 = G ’ ” 1’...,"， 

ati = 0. 

Proof. From (4.1.1) we have 

•^t(Xt,Xk�= G'gjk + � X 山、、 (4.1.2) 

where Xy-三 dXidpk. From this, it is readily seen that the proposition liolds. 口 

55 
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Now, wc write down the equation for l,hc graph of tlic flow. Lei, X{j), t)— 

{x,u(x, L)), where a: = • • • , d q x m c i s on (p, t). We have ‘ 

dX fdx Ou dx^ du\ 
~dt 二 + 瓦), 

and 
d'^x _ /d^x d'^u dx' dx^ du d'^u dx' 

二 V ^ ' dxiOxj'Wm + S i ； " ^ + ‘ dxidi~m + 丽). 

Taking inner product of the last expression with n yields 

Uti + 2ujtx{ + Uijx]x{ = Fy/l + |V?i|'2. 

To deleriiiine Xt we use the orthogonality condition {Xt, Xk) == () to gel 

' 工;"fci + Ut Uk 二 0, 

for each k. Using fjki = ^ki + u^；Ui, and f严=Ski 一 UkUi/(l + |Vnp), wo have 

(4.1.3) 

•T 
ki fc UkUi\ •lit. 

1 + |Vu|2 

So, the aijsociatcd equation is 

uu 一 1 2二 I + (飞於二\�…j = F^l + (4.1.4) 

When F = A + BII, where H is the mean curvature ot"X(-, t) and A, B depend on 

X up to its first order dorivativos, (4.1.4) is hyperbolic if and only if B is posit ive. 

When it comes to the fully nonlinear case, wo coiisiflor uniformly convex hy-

pcrsiirfjices only. A family of (iinifornily convex) hypersurfaces t) is called 

noiinal pieseumig if its iiorinal at X{p, L) is equal lo its iioriiial al 0), or 

eqiiivaleiitly, dn/dt 二 0. 

Proposition 4.2. Let I) be a family of unifonnly convex hypersurfaces sat-

isfying (4.1.1). It is normal preserving if and only if it is given by (1.2) and 

d X , . . . . . 
,n， 

dpj 

at t = 0. 

� S , " � = ( ) ’ 广 1’ 
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Proof. As dn/di is always orthogonal to n, the flow is normal preserving if 

“ and only if 
二� dn dx 

n. 
dpk 

Wc compute 

/an OA \ ^ , 1 

〈瓦’‘〉二 0’ &二 1 

Using 

we have 

= - { n u X k t ) - (n, Xkii) 

©
 

如
一
况
 

/
\
 

nw-

I

I
 

— _ d^X \/dn ca\ OF J d'X \ 
'dt\JtrdiJ “ x ^ ' a ^ A W a ^ ^ / ~Wk~ ” W f c 办 

This is a system of ODE of t,hc form 

d ,) 
where y = (?/，. •.，；(/"), y^ = (nt, Xk), and a" = —Fk — G^(Xf,i, n). Now il is dear 

tlial Ihe flow is normal preserving if and only if a^ 三 0 for all k. The proposition 

follows from the Weigarten equation 

b”�n，dxidx j〉 

To obtain the equation for the graph of a normal preserving flow, we use the 

normal j)resorving condition to obtain Uijxj + uu — 0 for eacii i. It follows tliat 

X\ = i = 1 ’ . . . , 71. 

Plugging this into (4.1.3) yields 

Uu 一 U^^UitUjt = y/l + |Vw|2 F. 
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We claim that this equation can l)c rewritten as 

(let Dl ,u = (let. Dluy/l + F, (4.1.5) 

For, first of all, using a” = Cjj del Dlu, where Cij is the ( i , j )— cofactor ol' D'̂ u, 

it suffices to show 

dot D^jU = Utt del, Dill — CijUitUjt. 

Denoting Xo = t�we compute the determinant of the Hessian matrix Dj fU l)y 

expanding it along the first coiumii 

n 

j=0 

where irijo is thi3 ( j , 0 ) - minor of Dl fU . By expanding along the first row 

(woi, U()2, • •. , Uon) of the ri x n-matrix obtained from Dj t'̂ i by deleting its 0—th 

colmnii and j—tii row, we have 

niji) = (- ly^'hioidj . 

It follows that 
71 

fiet Vl^u =幻-1 )〜m j o 

n 
= l i o o tlet V'̂ u + y ^ (-1 y .fAjo (-1)州 tx…(:iJ 

1 

=Woo det DI.u 一 CijUn)Uj(), 

and the claim holds. 

The equation for the support function of a normal preserving How assimies a 

simple form. 

Recall that, for any convex hypersurface X in Rn+i，jts support function II is 

a function of homogeneous one defined in ]R”+i/{0} satisfying 

II(z) = (z,X(p)),丨 2|二1’ 
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where X{p) is any point on the liypersurface whose unit outer normal is 2. IL 

is well-known that any uniformly convex hyporsiirfacc can he recovered by its 

support function via the formula 

A " ⑷ 二 芸 ⑷ ， ’ … 广 . ’ " ， 

where the unit outer normal z is iisod to parametrize the liypcrsiirfaco. » 

Consider now i) a family of uniformly convex, dosed hypersnrfaccs which 

is normal preserving. We may parametrize the initial hypersiirface by its unit 

outer iiormtil 2. By the normal preserving property, 2 is always the unit outer 

normal for t) for all L In particular, we have n = —2. By taking inner 

product of (4.1.1) with 2，we have 

• 厂 I决X \ 

_ ； : d J J 

— 糾 

= T ~ U F � 

瞀 

after using Euler's identity for homogeneous fviiictioiis. We have the following 

equation for the support function of a normal preserving flow 

' 装 = - F . � (4丄6) 

4.2 Local solvability 

We start by considering the local solvability of liypcrbolic flow for plane curves. 

Assiiino the plane curves 7 can be written as the graphs {x, u{x, t)). By the 

standard theory of hyperbolic system, we have the following result. 
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Consider the quasi-linear system of ？x(.t, t) = , • • • , w"), (x, t) G 

Wt 

-ui ‘ - ‘ 

• 

, d 
+ 〜 r 

uN uN 

+ B = (4. ‘2.1) 

whore Aq, B are N x N-matrix depending on (x, /，u). It is called a symmetric 

hyperbolic system if 
t 

‘ 1. Ao, A\ are synirnctric matrices 

2. ylo is positive definite. 

We recall the standard result [Ta . 

Theorem 4.1. Consider a symmetric hyperbolic system of type (4.2.1) with ini-

tial values 

u{x,0) = (4.2.2) 

For each Un € 11' 

k > N/2 + 1，where 11^' is the k-th order Sobolev spacer in 

there exists a unique local solution u G C(7, H^) for (4.2.1) and (4.2.2), for 

small time to > 0. 
Now we apply this theorem to two caaes. 
First, consider the quasi-linear equation which is derived from a normal How, 

‘Utt = /'iixx + gUa:t + fl, (4.2.3) 

where f, g, h are given by 

2uxUt 
9 = 

f = 

+ 1 
1 + u 2 

A ( UJ 、 

： 一 1 1： ^ ) 

4 ur^i+ui/ 
ui 

h = 

” + 
and 0, ip�ip are arbitrary functions. 
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Proposit ion 4 .1 . Consider the Cauchy problem of (4.2.3) and (4.2.2). Assume 

that 0 � 0 on IR. Then for each (7Zo’ Wi) € I广"x II'', k > 2，the Cauchy problem 

has a unique solution for t in [0, T) , T > 0, wherti T depericis on Ui). 

Proof. We rewrite (4.2.3) into a symmetric hyperbolic system. 
會 

Since . 

=Ut 

= f ( U a ： 

= M c 

f)(ut)x + h 

we have 
u ( 0 0 0 、 

V 

u / \ 
Ut 

Ut = 0 9 f . Ut + h 

Ux u 1 0 J Ux 
X I " / 

Let V = and consider the system 

( o 0 o ] ‘ ” 。 ‘ / 1 \ 

0 9 f + h 

‘ 0 1 0 ) ‘ 0 . 

(4.2.4) 

where now /，g, h are functions of v. 

Lot 
/ 

1 0 0 

Vt 

Multiply both sicias of (4.2.4) by R: 

(4.2.5) 

\
 

/
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2
2
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LL 

o
 
/
 -

o
 

/
 

o
 o

 o
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+
 

/
 

2
2
 

1 0 

0 1 

0 -

al 

2
2
 +
 

I
 

/
 

t
f
-
2
 

0 
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Clearly, (4.2.5) is a symmetric system. It is also hyperbolic, for, we have 

-2 , r 2 r 、（ r 、 9 
=c 

By our assumption, 0 > 0, so 

� � �( i + 色 - + ( / + 

= ' - 4 ( f + 丄 0 ) 

4 4 
•4> < 0’ 

1 + (7；〒（"】 

so R is positive definite. 

By theoreni 4.1, there exists a unique local solution v for (4.2.5) saLisyiiig 

0) = U(i{x) 

t»i(:r，0) = uoi(x) 

工，0) = 

V 

From t,he first and the third equations of (4.2.4), we see that 

= „ ， = V-. 
at ox 

So if we set u = i/)，then the second equation of (4.2.4) shows that： u solves 

(4.2.3). 口 

Next, we lurii to the fully nonlinear hyperbolic equation 

y.tt 

where 

^XX 

Ut , Uxt 

= 1 i 2 ， = = 
1 + UH 

UxxUxUt 
(1 +必2 

We rewrite it into a quasi-linear equation 
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where l.o.t. stands for lower order terms. 

Setting 

V = u’ V — u. 

we get 

V 二 = 

'义=-^vit - + 巾2 +…】 

十少 
V xt 

\2\2 + l.o.t. 

(4.2.6) 

This is a second order 

a first order system as 

quasi-linear system for v^). We can also write it irilo 
t 

following 

(4.2.6) turns into 

/ 1 o W： = W 
2 

wf = •wi -,丄（rtr 
w^ [w 

)2、 
\2 

+ 中 22 

+少 
uPw'ivr 

l + (‘u;】）2 

Z3' 十X 

wf = wl, 

1.2. 

where the first equation is rewritten out completely by the first equation in (4.2.6) 

and the last equation is the conipiitability condition 

. �t = 
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Therefore (4.2.7) can be rewritten in the form 

VJ^ 

V/ 

W" 

/ o 0 0 0 ) 
0 0 0 0 w 

0 0 a h w 

0 1 w 

w 

w' 

xir 

(4.2.8) 

where I is a vector function of w and 

少 
+ •23 

W 

b = 
d) 

I 

Set 

A 

0 0 0 0 

0 0 0 0 

0 0 a b 

0 () 1 0 

Assume = 0, and let 

1 0 0 

0 1 0 

0 0 1 

Then 

0 0 - f 

0 0 0 0 

A' = RA = 

•
§
1
2
 

o
 

6
 

I
 

o
 a
-
2

 
1
0
 

0

0

0
 

0

0

0
 

So A' is symmetric, and the system becomes 

Rwt = A'w^ + /(w; (4.2.9) 
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where /(w) is a vector function which indopcmds of the derivative of w, only 

depends on w. We can see thai R is positive definile. For 

< R 之〉二 ^^+经+约-2 & + (g? + 
As 

A = 4 ( - ) ^ - 4 ( 22 
W^' 、（⑴3)2 l + 

provied < 0. Then (4.2.8) is symmetric hypcrbolic, and the initial value for 

(4.2.8) is given by where ？/�= u(.z\ 0), u^ = Ut(:c, 0), by LlKioroin 

4.1 w is locally solvable. Claim that = w}, i.e. (ut)j： = (Uj.,)t. Since by (4.2.8) 

we have {w^)tx =—】）《，and = Wlt̂ ô = thus = (u^rjt- Therefore 

u is locally solvable. Wc have proved the following proposition. 

Proposit ion 4.2. Consider the fully nonlinmr equation 

Utt = — + y/l+ul<P(ZuZ2), 
u XX 

with initial values (4.2.2). Assume that ^^^ < 0. Then the problem is locally 

solvable 

^{uu{x),uotix)) € X /广，k > 2. 

Now let's consider higher order ca :̂es. Wo will establish the local solvability 

for the normal preserving flow (1.2) where F is a function depending on the prin-

cipal curvatures of the hypersurface. This will be achieved by reducing it to a 

fully nonlinear hyperbolic equation. Since the local solvability for normal fiows 

which is related to quasiliriear hyperbolic equations is similar to the plane curvo 

case, we will not discuss it here. 
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Consider the initial value problem for the How (1.2), that is, 

^ 广 dFdX 
= F n - W 

盼 知 叫 ， (4.2.10) 

X(0) and A'aO) are given. 

for a normal preserving flow. Due to the definition of a normal preserving flow, 

we may always take the independent variable 2 to he the unit outer normal of 

t). Here F is a curvature function. Following the fonniilation in Urbas [IJl), 

which is based on the Caff'arelU-Nirenberg-Spruck theory of fully nonlinear elliptic 

equations [CNS], we take it to be a function f = f(Ri, • • • , /“)’ where - • • , Rn 

are the principal radii of curvature for a uniformly coiivcx hypersurface in 

The smooth function f is defined and symmetric in the positive coiic = {H — 

(/?],•••，R^) : 7?̂  > 0, i = 1, • • • ,n} . Moreover, it is assumed to satisfy the 

following conditions: 

f is homogeneous of degree one on r+, {i.2.1 1) 
df 

dlij {Ru--- ,/^n) < 0 , j = l,...，n ’ e r 

Theorem 4.2. Consider (4.2.10) under (4.2.11) where A'(O) is n uniformly con-

vex hypersurface in and Xt(0) satisfies (n, dXt{0)/dzj) = 0, j = 1，…,n. 

Suppose X{0) G and X,(0) € /广-i(5’")’A: > n/2 + 2. Let f G 

be a symvietric, positive function on the positive cone satisfying (4.2.11). There 

exists a positive T < 00 such that (4.2.10) has a unique solution X in 

C(10, T ) , P I CH[0, R), /广-1 (5")) 

which is unifojinly corivex at each t. It is smooth prvvided X(0) and A'<(0) are 
V 

smooth. Moreover, it is maximal in the seme that if T is finite, either the mmi-

mum of the principal curvatuTes of X{t) tends to zero or 

I 耶川昨 n ) 一 OO, 
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as t approaches T. 

To prove this theorem, wo look at the initial value problem for the a^ssociatod 

equation satisfied by the support functions H(z, i) of the hypersurfaces. By 

(4.1.6), 

d'^H 
= -/(/?!，• • .，/^n), K:，0 € 5 " X [0, T), 

改 (4.2.12) 
H{0) and " , ( 0 ) are given， 

where H{0) is the support ruiictioii of a uniformly convox liypcrsurfaco and //,(()) 

is of hoinogciicoiis degree one. Our first job is to express t he right hand side of 

tiie equation in (4.2.12) in terms of the support function and its derivatives. 

Before proceeding further, wc recall some basic; facts concerning a convex 

hyi)crsurface and its support function. 

Let X be a convex hypersurfacc in 1 R " + � I t s support function II is dcfiiiod a.s 

a function of its unit outer normal by 

H{x) — sup X G «S，〜 

where�•,•�deiiotos the inner product in R " + � . We extend II to ho homogenous 

function on of degree one. Evidently wo also have 

H{x) = sup (x, p), for all x € 

If X is in C^, then so is //. When attains its maximum. The point p ~ p{x) 

is given by 
i dH . � 1 

P = ^ = I , - - '，十 1, 

where H is differciitiable. Notice that its normal is given by x. 

The eigenvalues of tlie Hessian (d'^ll/dxidxj)(x), i,j = 1，.. • ’ n + 1’ consists 

of zero (duo to homogeneity of degree one) and the principle radii of curvature 
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at ])(x). Wc will compule Uic iiiotric and t ho second riiri(lanienlal form ol X in 

terms of the support function in the following. 

Since H is of homogeneous degree one, it is uniquely (let,eriniiicd hy its restric-

tion lo = ± 1, 2 = 1, • • • , n -f 1. As a typical ease, wc consider its restrict,ion lo 

= - 1 . Let 

(丄 1，- • .， '̂Jlt — 1 ) \ 
，• •.，.T„) = //(a：!, • • • , — 1) = \/l + ( 

for X € Tho mapping 

y/l + |.t|2 

(.Tl,---
X “ 

maps R" onto In this coordinate system the metric c-tj on is given by 

tL' i •C1 、 

X 1 + 

The second fuiidaiiierital form of the hypcrsurface at I lie point X(z) is given hy 

VTTW^ \ A T R F 

The radii of principal curvatures are the eigenvalues of the induced iiictric of X 

with rcspect to the second fundamental form, i.e., del{/7ij — Rb”} — 0. It turns 

out they are the eigenvalues of Ihc matrix (s,j) given by 

Sij 二（1 + + x^xk)njk, 

sec [Ul]. This matrix is not symmetric. However, observing that the syniinctric 

matrix given by 

知 = + ———""“"“r)(〜——rW (4.2.13) 

shares the same eigenvalues with (6^) [CNS], wo know there exists a sirioolh 

function F sudi that 
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by om- ELSsnmplioiis on /. The eigenvalues of the rnalrix (OF/dz^j) are given 

precisely by df/dR\,…，dj/dR^, [CNS], so (4.2.11) is equivalent t.o 

OF 
dz ⑷ <()’ (4.2.卜 1) 

on all positive definite matrices A. 

Restricting on the hypeiplaiic ：/：̂+！ = —1, (4.2.12) hocoines 

(dhi 
01：^ (4.2.15) 
•//,(()) and ？/.“()）are given 

where (.s-jj) is in (4.2.13). 

The above discussion leads us to the general fully noiiliiioar hyperbolic equa-

tion 

= ( H x � l y y ) , (:r, t) e ir+i X [o’r 
dv 

(4.2.IG) 

”(0) = /’ ^ ( 0 ) = 仏 

where Ihe smooth function iiatisfies (/>(:/.，2") = ； a n d the ellipl.icity 

condition: Thoro exists a symmetric matrix Zn .such that for any syiiiiiiclric 

matrix Z satisfying Z() + Z is positive defiiiit.o, 

d({) 
dzi 

(x,Z) > 0. (4.2.i7) 

Clearly, this condition is satisfied for (4.2.15) im(l(，r (4.2.14) for v l)cing u — m(0) 

and Zi) the Hessian of n(0). 

We would like lo solve (4.2.16) locally in Uino. To do this we first rediico it, 

to a (luasiliiiear system of second order equations. In I'acl,, for each k = 1，...，".’ 

Vk = dv/dxk satisfies 

= a ” dxidx. 

“、、 Of Ovk d(] 
mO) = — > — dxi, ’ dt dxt 
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where a” = (f)z--(x, D'^v) and h^ =小j•丄[:j：、D‘j/u). Let, us consider a second order 

system for v = (i/, • • • , • 

'W 
dV 

Oxidx. 

dv 
(4.2.18) 

� 0 ) and — (0) arc given, 
C/i' 

whor(3 a'J = / ^ v ) , //• = /J^^v) and = , Vt/')- Cloarly, 

V — {dv/dx^, • • • , Ov/dxjt) solves (4.2.18) whenever v is a solution of (4.2.16). 

Oil the other hand, wo assert that if v solves (4.2.18) vvilli v(0) = V/ and 

v,(0) = Vfy, t hen a solution to (4.2.16) can be found. 

For, we difrereiiUato (4.2.18) in xi to obtain 

4f. 二 (KAj + + 知 , + + 

It follows thai 

• 4)tt =小zjvj"--^ih + , „ ’ . - 《 " ； J ) 

二 
- … 一 b 树 I - + 《 > ; -

after using 

Thus cjki = vĵ  - vl satisfies 

k 
mn. 

= a u d'^uj kl 
+ c klvi 

dxidxj ^^ d:v 

dujki 
々 ） = ( ) ， 1 ( 0 ) 二 0 

for some functions 

(4.2.19) 
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(4.2.19) is a linear second order system. One can show thai t.ho solution l.o 

this system only admits the trivial solution. First, by inlrodiidng a new variable 

W = (w/'', Wj^), we can make (4.2.19) into a lirst order linear system for W 

with zero initial data, namely 

dW 
di 

=AjdjW + B 
(4.2.20) 

W{{)) given . � 

By iiiultiplyiiig this systoiii with the matrix which is t.ho rr copies direct sum 

of TZ given below, w(�c;an turn it into a linear first ‘symmetry hyperbolic: system. 

at axj 

We apply to cach side W and iiitogi atc the system 

= (A-^.w/, W) + (Zi, IV). 

By Uie energy ostiiiiatc, we deduce the Growiiall's inequality d\\W\\'j2/df < 

6'i||iy 11/̂2 + C2. It follows that W vanishes identically. LeUiiig = v^. Cor oac;li 

k, I and Uiere exists a potential function v such that dv/dx^ 二 Consequently, 

f f i ) 

holds for some function c(t). At ^ = 0, 

.v{x, 0) = f{x) + Ci and Vt(x, 0) = g{x) + 02, 

for some constants ci and C2. A solution for (4.2.IG) is Ibuiid l>y taking v{x, I.)= 

v(x, t) + x ( 0 where X solves x" — 一。(,)，X(0) = —q and \''(0) = -c^-
9 

Wc have reduced the solvability of (4.2.16) to that of (4.2.18). A further step 

is to reduce (4.2.18) to a first order systoiu of quasilincar equations. 

Consider the following system for an function w 
• . , ^ “ V 
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du)k 
dt 

如 .J 
d(. dxj 

dt dxj 

w(0) given , 

(4.2.21) 

where w = (w^, ？“⑴，"，“,.，.， ,“尸， 

cienls a ” and aro evaluated al (.t，"“丄，…，u；'"’ • •. 

dear that when 

w' 

w nl 

find the coofii-

•• II is 

w(0) = (.i/.(0)，"/(0)，";(())’ …X(0)’……,7；"(0),<(0),.；'(0),--- ,1；；；(0)) 

wlicrc v(0) and V((0) arc given in (4.2.18), 

w = { v \ v l , v l - ' -，心 ,•""’"?，"; V： 

solves (4.2.21). Conversely, lei w ho a solution of (4.2.21) satisfying l.hcso special 

initial values. Then, for A;, / = 1，…，n, 

次 ( � dxi,) 
du/ \ dw'^ d dwi 

dxk dxk dt 
= 0 , 

whence v = (w\ . . .，� " )s o l v e s (4.2.18). 
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To solve (4.2.21), wc iioto'lhat for oacli A;, ŵ " = (u;V�(()，• •. , w "̂") satisfies 

HT 

0 0 0 .. . 0 

0 0 CI • • • • 

0 1 {) • •• 0 

0 0 0 • • 0 

rti 

0 0 

dx\ + 

+ 

0 .… 0 

0 0 0 •：• () 

0 0 a ^ " . . . a，' 

0 0 0 … 0 

0 0 0 … 0 

0 0 0 • •• 0 

0 0 

0 0 0 • •• 0 dv/k 

0 1 0 . . 0 0x2 

! * 

0 0 0 . . . 0 

+ 

0 1 0 0 

dXn 
+ b, 

whore b = b(:r，w”. By multiplying this system with the matrix IZ which is ilic 

the 7i-coi)ics dircot sum of Uic {n -f 2) x {n + 2) matrix 

1 0 0 ••• 0 

0 1 0 • •• 0 

= ' 0 0 

a tj 

we obtain 

0 0 

^ dw ^. dw … 
Ot 一 厂 一 ’ （4.2.22) 

where yP，s axe now symmetric. When (4.2.22) is derived from (4.2.18), IZ is pos-

itive definite under (4.2.17), so this is a q\uu>iliiioar symmetric hyperbolic system. 

The theory of quasiliiioar syimnetric hyperbolic systems is well-known. Coii-

sider a general system (4.2.22) where TZ, A ,̂ and c are smooth fiincUoiis of 
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(a:, w) € X U, U an open set in for some N. Morcoever, TZ and /l̂ 's 

are symmetric N x A/^-iiiatrices, and all eigenvalues of TZ are positive in IR" x lA. 

The following facts can be found or derived easily from Taylor [T]. 

Lemma 4.1. For any w(0) e k > N/2 + 1，with w e V where V 

is an open set compactly contained in U’ (4.2.22) has a unique classical so-

lution w dejined on some intcival [0, T), T > 0, w(t) G V, which belongs to 

c([o, T), / / 、 i r ) ) n C ([()’ T), /广- i (Rn)). 
‘ 、 ^ 

Proof . The results of exist.eiu!o, uniqiieiiej?s, and regularity for solutions lo a 

system of the form 

�/lo(.T, t�u)— = ^ Aj[t, X, u)u + g{i, x, u), a(()) = /， 

‘ j . 

whore, all Aj are symiiictric, and rurthernioro > ('’/ > 0, arc proved in 

Ta]. So in our case, w satisfies 

^dvf • dw 
at oxj 

whore 尺〉0，and TZ and A^ arc symmetric matrixes. Suppose w € V where V is 

an open sot compactly contained in U�them TZ > cl > 0. Therefore there exist lo-

cfU solution on some interval [0,7) , T > 0, G V，and w G C([0,T), /广(K”）. 

By the equations we also have w 6 /广—（R")). • 

Lemma 4.2 . Suppose ||t/;(f)||(;;i is unifoTinly bounded for I G [0,T). Then their. 

f'.xisLs Ti > T such thai the solution extends to C([0,Ti), with w(t) in 

U. 

• •‘ 

Proof . Wc obtain the energy inequality 

(it 
f 

Now G roil wall's inequality implies tliat. cannot, blow up' na t —>• T unless 

||w||J； does, so wc can use the above loinma to.obtain the conclusion. • 

r 
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L e m m a 4 .3 . w(x, I.) is smooth in IR" x [0, T) if iw(0) is smooth at t = 0. 
% 

Proof. ^ Pick k > n/2 -f 1, and apply Lemma (4.1) to gel, a solution 

w. e C([0,T),H^(W)). We can also apply the.se results with f e //'(R’‘）’ 

for I arlMirarily Ij^gc, together with luiiqueiiess, to get u E C([0,7'i), 

for some interval [0,T\] for Tj < T. But we can use Leniina (4.2) to obtain 

w G C([0,T),.//*=(R")). For arbitrarily large I arid fixed T , this holds. By Soblov 

Embedding theorem, it follows that, w € C°°([0,T) x /广(1R")): 口 

. • 參 

^Mippase now TZ{x, Z) is positive definite at Z whenever Z + Zo is positive 

defiiiilo. From thCsc facts one (lo(iiices that there exists a unkiuo solution l,o 
« 

(4.2.22) on a iiiaxiiruil interval [O，Ti紐)’ 了職；̂  < oo, in tlio souse Uiat wlion T ’而 

is finite, either the lowest eigenvalue of ( �"⑴） + Z(>’ A � ’ saUsfios 

inf A(0 0, 

or 

sup||w(/.)||(7l oo, • 
• -- I 

"ii I T Trnax. 

P r o o f o f T h e o r e m 4 .2 

Set V = u — n(0) in (4.2.15) and consider the problem . 

’ dhj 

(4.2.23) 
说2 

L'(O) = 0 and ?"(()) given， 、 、 

whore 

�= ( 知 + r n S ^ ) ( 〜 + i T i f ? W ) ( " ( 。 ) , j + ”。） 

and Vt{i)) is a function compactly supported in R " which equals to u,(0) in the 

umVball Bi = {x € W ： \x\ < 1}. Prom om?dis(mssion for u(0) € /广+2(]R") 

fy 



/v 

76 CHAPTER 4. HYl'EHSVRFy\CES 

and vt{0) e''"矢+i(ir»), k> n/2 + 1,(4.2.23) has a solution v{t), t e [0,7'). Then 

u = V + ？i(0) solves the equation in (4.2.15). By the finite spoed of propagation of 

solutions (Mizohata [M]) for hyporbolic equations, there exist,s a time T > (J such 

that the values of v{x, t), (x, t) G B”2 x [0, T) depend only on the initial values in 

Bi. Hence, u solves (4.2.15) in B1/2 x [0, T). Passing through the tangent space of 

each point 之 on the unit sphere, we can obtain a similar solution in [0, T(z)). The 

balls B{z) obtained "by projecting all Bi/2 on these tangent spaces lo the sphere 

form an open cover of the sphere. We can choosc finitely many balls to cover Uie 

sphere. Letting T = min{T(2i) , . • • , T{z^)} where Zj, j = 1，…,N, are centers 

of these balls, it is clear that one can construct H(z, t) on [0, T) by putting Uieso 

solutions u together. We have shown that (4.2.12) is locally solvable. 

Letting t) = dH/dzk, we have 

dn dX\ / d\X \ ^ , d dllt � I
.
 I

 

I

I
 

\
/
 

A
 ̂

 U
 

n
'
 

I
 

I

I
 

\
/
 

A
 ̂

 

§
 

^
 dzj dz、 

by Euler's identity for homogeneous functions. It follows that X satisfies the 

normal preserving condition. By Proposition 2.2 it solves (4.2.15) on [0, T). 

The assertion on smoothness oi X follows from Fact (c) above. Finally, from 

the expression relating X and H we sec that the C^—norm of H is controlled by 

the (72—norm of X• The proof of. Theorem 4.2 is completed. 

4.3 Finite time blow-up 

After establishing the local solvability for some general normal preserving flows 

driven by curvatures, we turn to other properties of the flows such as the formation 

of finite time singularities and long time behavior. In the literature numerous 

results concerning these topics are available for fully nonlinear parabolic flows. 

As a preliminary study, we shall focus on the Gauss curvature flow. We take 

F 二 K a > 0，where K is the Gauss curvature of the hypersurface in (4.2.10) 

、 



•1.3. FINITE TIME BLOW-VP 77 

and call the resulting flow the contracting Gauss curvature flow. Its parabolic 

counterpart has been studied by several authors including [F], [T], [C], [A3] and 

A4]. A common feature is, for any closed uniformly convex hypcrsiirface X(0) , 

X{t) contracts to a point in finite time, and its ultimate shape is largely known 

when a is less than or equal to 1/n. To examine the samo question for the 

hyperbolic case, wc first consider a special case, namely, the initial hypcrsurface 

is a sphere and its initial velocity is given by Rin, for sonic real iiiiriiber Ri. 

Under these assumptions, this flow reduces lo aii ODE for / ? � ’ t.lio radius of the 

sphere at time I, 
1 

R"=-—— 
Rna^ 

(4.3.1) 

R{0) = /ii) > 0, = Ri. 

The following proposition can be proved by elementary nicaiis. 

Proposit ion 4 .1 . Let c = Rj/'I - - 1). For a € {l/n, oo), 

(a) when Ri < 0 and c E IR, the sphere contTcicts to a point in finite hmt, 

(b) when R\ > 0 and c < 0, the. sphere expands firsL and then contracts to a point 

in finite time; whan c > 0, it expands to oo and 

Rit) = 
0(0, c> 0 

c = 0， 

as i oo. 

For a G (0,1/n], c is always positive, 

(c) when R\ > 0, the sphere expands first and then contracts to a point in finite 

time. 

(d) when Ri < 0, the sphere contracts to a point in finite time. 
( 

Proof . 

(a), (d). The initial velocity is nonpositive, i.e. R �< 0. 
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We prove it by contradiction. Assume thai li{l) > 0 for all time t > U. Then 

R" = - 1 0 and Ji'{t) < R'(0) = Ri < 0 for t > 0. HcnceJ.hcrc exist, a 

time to such that R{to) = 0. This is a conU adictioii. 

(b). The initial velocity is positive, Ri > 0 and c < 0 . a > 1/n. 

By (4.3.1), we obtain 

— = + c. 
2 no - 1 

y?'(0) > 0, then 3 short time f], s.L. R{t]) > 0, so 

--小、 

R' I 

「 + c-
v/2 V na -

If r > 0, H'(0) > 0, we know ？丄：> 0, then R increase ami R' iricroa.se. R 

expands to oo and 

0 { t ) , c > 0 
m)= 

0(1^), c = 0, 

as I — oo. 

If c < 0, R'(0} > 0，then R increase first and R' attain to 0 in finite time. By 

the conclusion of the (a), the sphere contract to a point. 

(c)Similar as (b), we omit the proof. 

• 
Thus, unlike the parabolic case, inward acceleration does not necessarily mean 

contraction for the hypersurface. The initial velocity plays a role. Nevertheless, 

for a G (0，1/n], although the sphere may expand for a while, it, eventually con-

tracts to its center in finite time. In general, we have 

Propositic^l 4.2. Any solution of the contracting Gauss curvature flow blows up 

in finite time for a € (0，1 /n . 
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Proof. Lot //(•，t) he tho support function of tliis flow. By (4.1.6), it satisHes 

dt'' 

H(0) and Ht(0) arc given. � 

Lot, us assume it exists for all time and draw a contradiction. First, of all, we have 

rr„ = J Kds 

= ( 乂 A ' 。 — 丄 ⑴ 命 ’ 
，s，、 

where cr„ = and A{i) is the surface area of X{t). On tlio other hand, from 

ft o Tjr n IT 
7/(2,0 = / < /-/(2,()) 4-sup 

〜，dt 

we SCO that the growth of the support 

surface area satisfies 

A{t)< 

for some constant C. ll follows thai 

_ dt 

function is at most linear. 

>,0)/,. 

Thcn;fore, the 

Hu = - J K'^ 

rQ-f-l 
< 
< 
< 

a： 

C(1 + /") 
c\ 一 c.广 

for sonic constants Cx and C2. When ria = 1，the term should be replaced 

by C2 logL Therefore, 

Ift (z, s)dzds 

< f " C M ) )心+ 
/ 2 - na V 
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becomes negative for large time. The same conclusion holds when na = I. IIDW-

over, the integral of H{t) is the mean width of the convex body (iiicdoscd by X{t) 

aiul it cannot he negative. To see this wo nolo that when the origin is conlahiod 

inside the convex body, the support function is nonnegalive everywhere, so this 

integral is iioiiiiegativc. When one uses clifforoiit coordinates lo represent I ho 

support functions, they (iiflbr from cac:h other only by a linear function, licricc 

tho integrals arc the same. Thus wo have arrived al a c^^nlracliction. We conclude 

thai the solution of (4.2.10) cannot exist for all Unie when 7/.rv is less t.haii or equal 

to 1. • 

A natural question is: Could the liypersurfacc develop a .singularity liofore 

it contracts to a point under this contracting flow? We beliovo this is possible, 

although an example is out of our hand. Novortlielcss, wc prost̂ nt, a noncoinpact, 

example where an isolated singularity develops in finite l ime for a in (0, 1/n . 

Let. r bo a con vex cone hased at l.he origin in whos(�cross .section is 

bounded by a closed, uniformly convex hypersurface. Acr.ordiiig lo Urhas [Ul|, 

there exists a uniformly convex hypersurface X* sitting inside C and asympLol.ic 

to its boundary at oo satisfying 

〈；r ’n�= A：: 

Consider tlic ODE for a € (0, l/n), 

A" = A(0) = 1’ A'(0) = Al < 0. 

When Al satisfies \\ > 2/(1 — /ift), it is easy to see Uial it. ha.s a solution iii [0, T) 

and X(L) — 0, as i T Lotting X{t) = \{i)X\ it is readily verified that X(t) 

solves the contracting Gauss curvature flow with X(0) = X* and geoinelrically 

it collapses to the boundary of F as i approaches T. Wc see thai the curvature 

blows up only al the origin. Away from the origin, the liypersurfacc; remains 
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smooth, but its Gauss curvature vaiiishos. 

Next wc pifisoiit a iioc;ossary condiUoii ("or t.ho existence of global normal pro-

sorviiig flows (4.2.10) when F is positive. It, leads to a critorioii for finil.o time 

blow-up for special initial velocity. 

Proposition 4.3. Let X be a nonnal presei^nig Jlow soknng (4.2.10) in .S" x 

0, oo) where F > 0. Then Us support function II{z, t) must satisfy 

IIt(z,0) + //i(-2,0) > 0, for all z. (4.:i.2) 

Proof. Let, X be a global noriiial preserving solution of (4.2.10). Then X = 

(/,’ X{t)) is a hypersurfaco in (0, oo) x When expressed locally a«s a gra])h of 

some function, the Gauss ciirvaturc ol" X is of the same sign a.s the (iotcnninant 

of the Hessian matrix of this function, which is positive by (4.1.5) when F is 

positive. Therefore, X is a uniformly convex hypersurface in [0, oo) x lR”+i 且打 

a coordinate systoin, X is expressed a.s tlio union of the graphs of two uniformly 

convex functions u(x’ i) and v{x, L) defined in the closure of sonio convex domain il 

satisfying v < u in il. Given a point X(zo,0) on Ihe initial hypersurfaco, we may 

choose a coordinate system such that, this point is …（）))and its unit, outer 

normal is ( 0 , . . . , 0,1), thai is, Vu(T(), 0) = (0, • • • ,0) holds. Let ("。，<;(""’())） 

be the unique point on X{0) satisfying Vv{yo, 0) = (0, • • •，()). Its unit outer 

normal is given by ( 0 , . . . ,0, —1). So the tangent hypcrplanes at (:/:<>，w,(;r"，0)) 

and (yo，咖o,())) are parallel in 1R"+� 

The tangent hyperplanes of X at (0, xo, w(.to)) and (0’ 从)，'"("()))are given 

respectively by 

is 

Pi ={(/'’ 3:, u) ： Utixo, 0)t = U — 7z(.T(), ())}, 
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and 

It, moans thai 

negative lime. 

P'i = {(/'，工，y): Mm)�(�)L = ” — ？乂:v()，（))}. 

When X is global, F[ always sits above / 2, so ihey never intcrsccl. 

Uiese two hypcrplanes either do not intersect or tlioy intersect at 

When the laller happens, the intersection lime is given 

T = v{yi),0) - ujx^i.O) < 0 
Ut {xu, 0) - ?;,.(;V(), 0) • 

It follows thai 

imist hold. 

Wr express (4.3.2) in terms of the support ('unction. By dilTcrenUaUiig tlio 

relation X(0) = {x,u(x, 0)), wo have X't = (xt. Ui + Ujxj). As t he outer normal 

of X(()) at za is (0, •.. ,0’ 1), 0) = � X t ( 2 o，0 )，= //J2()，(J). Similarly, wo 

have //i(-zo,0) == -?々 (//(>，•), hciice Hi(zo,0) + /A(-20,0 > () from (4.1). 

n 

Condition (4.3.2) can bo rowriUen as�A�(2，0),2> + (Xt(-z,()),-z) > 0 for 

all outicr normal z. Noting that, 2} is the "outer normal speed" along 2, 

the Slim of the inner normal speed along 2 and —2 may be called tho "nel outer 

rioririal speed" along 2;. This condition implies the following criterion for finite 

time blow-up: The solution cannot exist for all lime when t,hc "net outer normal 

speed" is negative for some z. In fact, an uppor bound on its life span is given Ijy 

. ^ r —tho width along z 
iiif < ： ：~： ： z e r>, 

I the net outer normal spoccl rilong z J 

where F is the subset of the upper hemisphere consisting of all z along which 

the net inner normal speed are negative. Note thai the width along 2 is given by 

H{z,0) + H('-z,0) and it is equal to u(xo, 0) — y(?yo,0) in tlio above proof. 
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Finally, wc consider the expanding Gauss curvature (low by taking F = 

— ft > (), in (4.2.19). Results on parabolic expanding Gauss c.urvat uro flows 

can be found in, for instance, Urabs |U1], [U3], and Chow-Tsai |CT). The hy-

[)ersiirlace expands to infinity in infinite time, and becoiiios round wlicii ft is less 

than or equal to 1/n. When ft — \ and n = 2, il is known that the siirfaco 

expands to infinity like a sphere in finite time l)y Schuiiror [S]. In Uie liyporbolic 

case, we examine the motion of a sphere Hrsl. Indeed, when X(()) is a sphere of 

raciiiLS /?<> and has constant normal sjKJcd /?.i, wo have 

Proposition 4.4. Let c = - 幼 + 1 ) . Foj- ft > 0, 

(a) wlum R\ > 0 and c € IR, the sphere expands to infinily as I "j T, where. T is 

Jinite when fi € (1/n, oo) and is infinite when (j G ((), 1 /n]. In fact, 

v
n
f
/
 

a = 

(b) when Hi < 0 and c < 0, the, splieTC first coniracis and then expands to injinity 

behaving like in (a); when R] < 0 and c > 0, the sphere contracts to a point in 

Jinite time. 

Proof . The normal flow reduces to an ODE for ll{l), the radius of the sphere 

at time t, 
• 

R', = 
('1.3.3) 

R{0) = R u > 0, R'{0) = Ri. 

We multiply R' on both sides of the above equation t,o yield 

where c = R^/2 — + 1). For the clifl'oront choico of initial value, we 

obtain the proposition. • 
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'J'here is a spodal ctisc, namely, (i = i and n 二 1, wli(�re a raliior (-.(miplck� 

analysis is possible. In this case the cxpaiulinft How becomes, in lenns of il.s 

support fuiicUoii, a linear problem 

The solution 

h{Oj.) 

hit 二 + h, 

/!(()) = /，/i,(0) = 

tan 1)0 represented hy the cosine scrit\s, namely, 

(4.3.4) 

2 2 
(I, 

+ ^ ( ( �c o s y j p - 1 / + sill s j f — 1 () COS./" 

provided 

and 

/(") = cio + ^ ( a j c o s f hj ain jO), 

VW = a'o + c o s + /�• mijO). 
1 

For soiiio clioicc of f and <7, we show that a uni for inly convcx initial cviive 

may develop rui isolated singiilarily in (iiiit.o time. For this piirpos<、，l(�t. us tako 

f{0) - a(,(0) + a , ( 0 ) c o s + a s ( 0 ) cos 2(9, and g{0) = «;)(()), then 

h(0, /,) = — ~ c H c + a'2(0) cos vM cos 20, 
2 2 

and 

(koo + imt) 二 + - 3a,(())co.s v^, cos 2 仏 
2 

At t — ()，k = 1 /{hoo + h) is given by 

2 

A;(0)= 
ao — 3«2 cos 20 

If wo choose tto = 2 and a2 — —1/3, then A:(0) > 0 and the initial curve is 

unifoniily convex. Moreover, wo take = - 4 , 

{hoo + t) = -rJ + cos \/3t v.os'IO. 
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which is positive at, I — (). However, thorn exists a time T � 0 . 3 such Uial /?卯 + li 

is positive on [0, T) biil it vaiiislios at (±7r/2, T). In oilier words, Uie ik)w is 

regular in [0, T) mid develops two isolated singularities al T. See Figure 4.1. 

Figure 4.1: Siiigiilarit-y for |>r()l>l(�iii ('1.3.1) 

Oil tlio other hand, for a chvss of initial values l.lio (low l>dmvt�s nicely. 

Proposition 4.5. Consider (4.3.4) where, the initial values arc. .smooth and satisfy 
•K 

foo + /，fjoo + (J > 0. Then the J low re.mmns mnoolh and v:q)an(ls to inJinUy Ukx 

a cirdc. 

Proof . It suffices to show that Iiqo + h is positive lor all I. W(�note that 

V? = lioo + h satisfies the one dimensional wave equation with a zero order torin 

(ftt — ^00 + 9�and (-he initial values (p(()) = foo + /，^t (0) = fj()o + (j arc posi-

tive. Therefore, vw may apply the iiuiximuin principle for oiie-diineiisioiial wave 

equation, see soclioii 2 in chapter 4 of Prottor-Weinberger [PW], to obtain tlio 

desired conclusion. The cUsyiiiptoUc behavior of tlio flow can he road ofi" IVoni Mio 

formula of the support function. 

• 



Chapter 5 

Elastic Curves 

In [LS], the authors study i\ moan curvature How whic h slenis IVoni a gooinotrically 

natural action cx)iit.riining kinetic and inl.enial oiiorgy l.ornis. The cqiial.ion iincloi 

considerat.ioi) models the nonlinear motion of an olfistic inombraiio, 11 riven by 

its siirftit:e tension only. It is natural to a.sk what, will happen iC we rc|)la(.(�tli(� 

internal energy by the da«Uc energy. We know l.liat, solutions of the corresponding 

Eulcr-Lagrange equation of elastic oiiorgy of a closed curve 

…)=f f^ds. 

where k is the curvalure of the curvos, arc i.alkxl clfustic curves. There aro several 

t,ypos of equation of motion of elfusUc curves.In t.lio previous works ([K], [BT]), 

the authors considered the motion of a fixed length elastic cnrvos, governed l)y 

t.ho clastic energy. 

In Uiis chap Lor, wo consider the evolution of free (length iincoiistrained) elast.if： 

plane curves, which is derived from an Ilamiltonian principle based on a geoniel-

rically natural action，consisting of a kinetic term and elastic energy lorin. The 

derived evolution equation turns out. to bo a coviplcd system of semi-linear 1-

dimensional piano cciuation, where derivative's "up to foui Ui order are involved. 

Koiso [K) \isc(l a poriurbalion to a composiUou of parabolic operators to prove 

8() 
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Ihe existence of a unique short-time solution for fixed claslic! curve motion. Wo 

assuine tho How is iioriiial t,o gel. a single hyperbolic e("iat,km ami investigate Ihe 

consorvation laws by Noelher's Theorem. 

5.1 The evolution equation 

By Ilamiiloii's pHudple, the equation of motion is given rus critical points of the 

variational problem deli tied by the functional 

C = j AC(/) - E{t)dt, (r,.l) 

where the kinetic energy at t is 

m = ^ / 

and the elastic, energy, 

£{t) = ^ / IM� 

According lo the li ami I Ion i)rinciple, the How we consider is l,l»o stationary 

for i.e. 

去 £(7 +沖)“="=0. 

Proposition 5.1. The sLatioiiai-j/ hoIuUoiih of (5.1) satisfy the equation of motion 

Iti +〈（ lL.)lt = -(A:,.s + 全人,3 + /«:)n — {')tn't.s)t. (5.2) 

Proof. By copulation, 

一 / / 印sdf - j j ^k:\6ds)dL (5.3) 

We assume thai 
(Irf 
Tl 二� 7 / . , t � t + � 7 «， + : 
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t 

and 

‘ =〈7"，t〉t +〈7","〉n， 

Tlio Hrst term of tlie rigiit, liancl of (5.3) rt^ads 

I f = "�7,’(I>,�—/ ' ' 

=二 U {'yf,.<t>)dscii- yy〈7卜中〉(盒 

二 - / / 〈加，中〉丄 / / 

The second t erm roads . 

I J = - 11 (7/,7/.)(t,a>) — J J -M2/:�n，(l>�ksY//. 

The third term l.iinis to ])c 

- J j S{h^)dsdt = - j j k6{k'.)ds(lt 二 -{kk,t + + 小〉. 

The fouitli term is 

- / / & 厂 = J J + I J |il:3�n，(&〉".s>i7. 

Combining the above idoiititios together, we ohl.aiu the proposition. 门 

Since tlie tjuigcntial variations do not alter the sliai>(�ol' the curves, for simplify, 

we take the initial velocity is normal to the curve, i.e. its laugoiitial pari vanishes 

〈 7 h t 〉 “ = (). \ 
. \ 
We can prove this propert.y holds for all times U' they vanisli init ially. Under � \ 

assumption, we can reduce tlic flow to a single equation. • 

For the normal flow 

一 � t ’ 7 / . s � 7 f = ( t . ,7f)7f = A;(n,7 j ) (n,7,)n = A:|7t|2n， 



5.1. Tilt： EVOLUTION b:QllATI()N 89 

then the flow (5.2) yiehL 

1 1 
冬 7" = -(A、.，+ 一 (5.4) 

It is convenient to begin our invostigati(3ii with the ca.sc of graphs. Wc a»ssuim， 

the c urve can he locally written as an entire graph 7 = (:/;, u(:r)). Tliereforo we 

get a single equation for the graph 

"t/ 
2u.CUT - u > � 

I 

''̂ IXTX 

+ 

+ " (1 + 

‘ 八 / •、、• * (1 + ulY 2(1 + 7^)4 2(1 

The equation is t he Euler-Lagrange ocjiiatioii of variation 

£ = J J \ — ll^'dsdt 
2 

ur . "？ 

、 
= J J L d:r(!i, 

where 

L _ Kx 
2(1 + , / � 

111 order to state local vvell-posedness for the flow 

struct variouti conservalion laws satisfied by solution 

of graplis, we would coii-

of the (low via Noether's 

tlicorein using a Lagrangian. In order to derive prccise results, we will present 

some notation aiki preliminaries that will be used.‘ -
• \ 、 、 . 
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5.2 Notation and preliminaries 

Let X = ( t I , … , x " ) be the independent variable with coordinate x', and u — 

{u^, • • • , u^) be the dependent variable with coordinates .a". The derivatives of 

u with respect to x are 
•V 

I 

where 
Q Q Q 

二 … 々 ‘ + " 1 ， 巧 + … , … , … ’ " . 

is the operator of total diirerentiation. � 

• T 

•• - t-

We say an current P = •.. , P^') is conserved if it Wtisfics 
DiP' = 0 ‘ 

along the solution. 
/ • 

• % 

Theorem 5.1. (NoeiheT[0]) Suppose Cris a (local) one-parameter- group of sym-
W 、 

metries of the variational problem C — J L{x, u, w(i)’ • • •，7tr• Let . 
• 

be the infinitesimal generator of G，and � 

Qaix. u) = 0 。 - 时 u^du'^/dx', 

the corresponding characteristic of v. Then Q == ( Q i , . . . , Qq) is also the char-
\ , 

acteristic of a conservation law for the Euler-Lagrange equations E(L) = 0; in 

other words, there is a v-
tuple u—)) = (Pu--- ,Pp) such that . 

•• DivF = Q . E(L) = QiEiiL) 
‘ ) 

is a conservation law in characteristic form for the Euler-Lagiunge equations 

E{L) = 0 . . 
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The statement of Noether's theorem remains the same if we replace varia-
I 

tiorial symmetry by divergence symmetry i.e. there exists a p-tuple B(x’ u.⑷）= 

(Bj,…，Bp) of functions of x, u and derivatives of it such that 
I ‘ 

pr�(L) + L Dive. = D�h) B 

The Noether operator associated with a Lie-Backhind operator v is defined 
by ‘ 

‘ N i = + E D ” • • • A _ , ( C r ) ^ ， 

where the Euler-Lagrange operator is defined by 

仙 i 卯.• .,>1 卯加-J、 

L is referred lo as a Lagrangiaii and the aissociated functional 

C = j L(x, u, u � , • • • , U(r)) dx. � 

Corresponding to each a conserved flow is obtained 零m Noether' theorem. 

A conserve vector is a tuple P = ( P ^ • - - , P" ) , where 

‘ 2 = 1, • • • 

such that � � 
• 

,‘ « 

5.3 Symmetries and conservation laws 

III our work, we consider the scalar case in two dimensions, namely, a:^)= 

(x,t). Suppose V = ^(x, t,u)dx + r(x, u)dt + (p{x,t,u)du is a Noether point 

symmetry generator with gauge (/, g). Then the conserved flow (X, P) is 

X = … Q 尝 + A ( Q ) 去 + +…一/， 

P = 乙 t + Q 芸 + • ) 点 + D “ Q ) 点 + … 一 p. 
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Since the flow we consider is geometric, it is invariant under Euclidean group. 

It is easy to check that the generators 

〜‘ {伪，么,汉n - W^x +工久 } 

are st rict Noether symmetries of the Lagrangiari 

2 2 

L = 2(1+7/2)1 2(1+1X^)5 

and are also syriiinetry group of the corresponding Euler-Lagrange equation 

rs uluf . u^j,^：, IOhxWXXWxxx 
E{L) = utt 一 7 7 - + TT-.~ 

(1 + 必 （1 + ^ 2 (1 + 

、 施 ‘ 乂 MT ？4x ^'hhx 二 0 

(l + ulY (1 + 1^)3 2(1 + ulY 2 ( l + u2)2 一 • 

We found that the Euler-Lagrange equation admits other synmietr}' group (scal-

ing group xdx + 2tdt + udu), but it is not a variational symmetry group of the 

original variational problem. 

We now list广e corresponding conserved vectors for these Noether symmetries 

and conserved Density. 

(i) 一dt, (Qi = ut) 

T, 二 
2(1+^2)5 2(1 + 4 ) 1 (1 + û  

^ L + 以？ 

= 

2(1 + ^2)1 2(1 + ul 

( ^ x ^ ? 丄 SlixwL 
Ut [ 一 — ITT + 2(1+112)5 2(1 + 1/2)2 

+ ( i + 1/二 

UxUf 5u:utui 工 + 零：rzz Wix îxf 

Thus, 

2 ( l + t z 2 ) i 2 (1+^2)1 (1 + ^2)5 (1 + u; 

DJ\ + D^Xi =\tE{L) = Q^E{L) = 0 . 
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5.丄 SYMMETRIES AND CONSERVATION LAWS 

Consider the functional 

E = T\dx = + 
w. 

2(1 + 14)5 2(1 + 4 
•dx 

then 

E{t) - £；(0) = 0， 

which means E = IC + £ (the total Energy) is conserved. 

(":)一么，（Q2 = Ux)-

T2 = u 
Ut Uj:Ut 

(1 + (1 + 

Y — ( _ _ ！ . 4 r , 
A2 — —I— —T -I ： —T + 2(l + t/2)5 2(1 + ^2)2 2(1 

u•工 Uxxx 

Thus, 

DtT. + LKX2 = u.E{L) = QoEiL) = 0. 

Consider the functional 

= / Tidx = 
UxUt 

(l-\-u 2 、 与 
TCIX. 

then 

M ⑷ — 歸 ） = 0’ 

which means M (the linear momenta) is conserved. 

(in)氏，(Qa = !)• 

T3 = 

X-I = 

ut 

( 1 + u 》 

UXUF UN 

D,T3 + D^^Xs = E(L) = 0. 



94 CHAPTER r). ELASTIC CURVES 

Consider the functional 

P= I Tdx = [ ~ ~ - . d x 
I ‘J + 

then 

V{t) - V(0) = 0 

which means V (the momenta) is conserved. 

{iv) —UDX + XDU, [QA = + M I J ) . 

UT LLI{x + UUJ：) 
T,= 

+ 

(x + UUj 
+ (1 +权 ; 

^―T  
2 ( 1 + 2(l + u2ji 2 ( H - u 2 j i 

LIXXX(A： + WUI) + + UU.J：) UR. 

Thus, 

DTXI + 0^X4 = ( x + UU:,)E{L) = 0 . 

Consider the functional 

lLt{x + UUj 
n = / Tdx 二 

-UUx) f / , . . 
"^^r f r r 二 / � 7 f ’ n � � 7 ’ t � "•！ 
LIT) 2 J (1 + 

then 

n(L) - 7^(o) 二 0, 

which means IZ is conserved. 

Finally, we list all these quantities in the following table. 



5.4. GROUP INVARIANT SOLUTION 

Symmetry 

•d. 

du 

Characteristic Coiisei wd Deiijsitv 

E = i  
2 ( 1 + 

M 二——吐 
(I 

•ch fk 

nd-x + 成 + </.?/., 

V = + 
+ 2(1-1 U.2) uiVl 

n lif (X-f liUj 

5.4 Group invariant solution 

(a), {xdx + 2tdt + ud^} 

Group invariants: ？/ = = 

Plug u = into the equation. 

Since 

utt = - ^ ( y - yv' — ？ 
At 2 

Ur —V 

W
I
J
 

"
衫
 

I
-T

 
T
 

T
 

Uxt = -V 

Utt = V 

Uxxxx = v"" — 
t2 

\ 
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the equation (5.5) turn lo he 

1 / I ” � v'{v — v'y)v"y 
# 1 ” - " ) + 2 ( 1 + V 

v"" l O v V V " 
+ 

+ - v'yy'v" 
4(1+1/2)2 

(1 + 1/2)2 (1 4- ,/2)3 (l+."/'2 
v"'' (v -

(1 + ？广 

2(1+1/2)4 8(1 + 

It is a fourth order nonlinear ODE. 

= 0 . 

If we express the flow as the equation of support function, (5.5) turn to 

. {fiooo + hoY heeoo + hoo . 2 1 - fif 
'ht = - T + -̂ -7； —rr^— T, -TTT + 

be 

(5.6) 
hoo + h [hoo + hf (hee + h^ [hoo + hf 2 hoo + h 

The dilatation group {xdx-h2idt-\-iLdu} reads as Self-similar solviUon 

can be written as fi{t, 0) — where (f) satisfies 

0 4>0 • + (pOOOO + (}>00 2 1 
— + 'J~7~. 777 T~‘ rrr + 

4 4(4)00 + 0) {(poo + (f>y^ {(l>00 4- (f)Y ((I)BB + (py^ S(f)99-\-(p' 

Given suitable initial value, we can plot the graph for the curve. 

Figure 5.1: Self-similar circle 

(b) Circles. Let 7 �b e a circlc of radius r � . If 7 is a solution of (2) with the 

initial value 7(x, 0) = 70 > 0，and ^^7(0:, 0) = 7*1 n. Then the normal flow reduces 

to 
1 r位 

T " — . 2r3 27, 
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1. When 7:1 > 0, r̂  increases and blows at finilo Uinc. 

2. When r! < 0 ami, r �> /(ro), / can be delenniiied from the equation, 

decreases first, then increases aiicl blows at finite time. • • 
• 、. 

3. When vi < 0 and r! < /(7’o)’ r decreases and loud to 0 at finite time. 

14 

Figurii 5.2: ri > 0. 

u 

'igure 5.3: /o 二 1 1/3. 

Figure 5.4: n) = i, r! 二 -1/2. 

(c). Traveling wave {dx + ft} 
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invariants: y — x — /,，u = v{y). 

u., V 

Ut = -V 

Uxx - v" 

u-xi = -v" 

〃/ u XXX V 

UTTTT — V 

So Ihe equation is roclucod to 

v'h)" 
V + 

v'Sf 
+ K)”VV" 

(1+7/2) (1+1/2)2 (1+'"/2)2 
V. 

(1 + 

(1 + v'^Y (1 + v'^f 2(1 + t / � 2(1 + 

It is a fourth order nonlinear ODE. 

tr 

/ 2 \ 2 二 a 

When t 二 u = v{y), the curvc is showed in the following figure. 

Figure 0.5: Traveling wave soliilioii 
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