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Abstract

111 this thesis we study the hyperbolic curvature flows. Qusilinear hyperbolic
equations are derived and studied for the motion of hypersiirfacos under the
hyperbolic mean curvaturc flows. As contrast to this, a new hyperbolic curvature
flow (Gauss curvature flow) is proposed for convex hypersiirfaces. The equations
satisfied by the graphs of the hypcrsurfaces under these flows give rise to a new
class of Euclidean invariant fully nonlinear hyperbolic equations. Ba.sed on this,
we investigate the local solvability, finite time blow-up and asymptotic behavior

i
for these flows. Group invariant solutiorcls of the flows are also concerned.

In Chapter 2, we present a leisure study on thn rediicibility of a geometric
motion to a differential equation for its graph for plane curves. It serves as a
motivation for the introduction of normal and normal preserving flows. We show
that any Euclidean invariant quasilinear equation arises as the associated equation
of some normal flow and all fully nonlinear Euclidean invariant equations arise
from normal preserving flows. We further study Affine type hyperbolic motion.

Finally, some properties of these flows are presented..

In Chapter 3> the symmetry groups of the hyperbolic flows are determined

and the corresponding group invariant solutions are discussed.

I11 Chapter 4, the motions for hypcrsurfaces are studied. Besides the equations
satisfied by the graphs, we shall derive the equations for the support function of

convex hypersurface. Based on this, we establish the local solvability of the



hyperbolic curvature flow. A proliminary discussion on topics such as finite time
blow-up and asymptotic behavior will be given.
In the final part of this thesis, motion of free elastic curves is discussed. Con-

servation laws are derived by using the Noothcr's Theorem. We also consider

group invariant solutions of this flow.
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Chapter

Introduction

In the mean curvature flow one studies the moUon of a hypcrsurfacc whose ve-
locity is equal to its mean curvature along its normal direction in the Euclidean
space. Many results have been obtained over the years and one may consult the
survey Muisken-Polclen [HP] and the books Eckcr [E], Giga [Gi] and Zhn |Z] for
detailed discussions. From the point of view of differential equations, the mean
curvature flow is a quasilincar parabolic equation which is invariant, under the

Euclidean motion.

In view of the intimate relation betwooii the heat and the wave equations, it

is natural to consider tlie hyperbolic version of the mean curvature flow. How-

ever, as we know, there is few results on hyperbolic version of curvature flow.
Gurtin and Podio-Guidiigli[GP] modeled a phenomenon which found in Melting
crystals of helium : appearance of interfacial oscillations. They developed a hy-
perbolic theory for the evolution of the plane curves. In Yaii [Y], it is proposed
to study the motion of a hypersurface whose acceleration, instead of the velocity,
is equal (o its mean curvature along the normal direction. The hyperbolic version
of curvature flow is important in both mathematics and applications, and has
attracted many mathematician's. In He-Kong-Liu [HKL], local solvability of this

problem is established and properties such as formation of singularities in finite
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tiino and iusyriiptotic behavior of the flow are exarniiiod. However, Lliis most di-
rect analog of the mean curvature flow (liflbrs from its parabolic counterpart by
not reducible to a Eviclidoan invariant hyperbolic; equation. In LeFloch-Smoczyk

[LS], the following motion law

, H = Fni” ( ° P - (LD
is studied. Hero F is the driving force and 7J is Uio invorse ol' the iiulnccd metric
oil the hypei.sul.face X(j), t) in These authors call (1.1) Uie liyj”crbolic iiicjaii

curvature flow for tho specified choico of F,

where II is the mean cm vatiiro of X. This flow lias tho advantage of being flo-
rivecl from a llaiiiiltoiiian principle, And lierice possesses some conservaUoii laws.
Besides, when the initial velocity is along the normal direction, the velocity of (lie
hypersurfacc keeps pointing in Tho nonrial direction afterward. A flow with such
properly is callod a normal flow. For a normal fiow, the graph of the liypor.surface
salisfios a giULsilincar Euclidean invariant hyperbolic eqiuiticm. Snbswjuontly, tho
hyperbolic curve shortening problem, that is, taking n = 1and F to be the curva-
ture of a piano curve in (1), is studied in Kong-Wang [KW] where several cril.eria
on finite time blow-up for graphs are obtained. In Kong-Lin-Wang [KLW] they

further study the problem for closed convex curves.

In chapter 2 of this thesis, we present a geoinctric view of the hyperbolic mean
curvature (lows in tlie plane. We show that every Euclidean invariant quasilinear

equation arises as the associated equation of soriio normal flow.

Aside from tho mean curvature flow, there arc other curvature flows for convex
hypcrsurfaces, notable ones including the Fircy's model on worn stones [F] and the

motion by the adine iiornial [Al] and [ST] which applies to image analysis. They



depcnf] on the Gauss curvature other Uian The mean ciirvat.iiro. The reader may
look up [HP] and [Gi] lor more infonmitiori. The differential eqiuitions derived
from these flows are no longer quasiliiioar. Usually, tlioy arc fully nonlinear. For

flows involving the Gauss curvature - tlioy arc parabolic Monge-Ampere ecjnations.

In chapter 4 of this thesis we propose a hyperbolic version of these fully
nonlinear cnirvatiiro flows. This is tlu; main body of this thesis. For any driving
force F, consider

anx _ "OFdX
wm - F n - — ° (1.2)

whore  is the inverse oi. the second fimdainenlal form on the uniforiiily convex
hypcrsurface. We say a flow is normal if the velocity is normal Lo (ho liypcrsurface,
ie. if

/X dX\

A flow is called iioi.inal preserving if the normal of the hypcrsurface is irulopcndent

of time dn/df, = 0, i.e.

: (%

for each k = 1 ...,n. It can bo shown that if this condition is fulfilled initially,
then it holds for all time under (1.2). For any normal preserving flow, its graph
satisfies a fully nonlinear Eiicliclcan invariant hyperbolic equation. For instance,
taking F to bo the negative reciprocal of the Gauss curvaturo, wc obtain the

hyperbolic Moiige-Anipore equation,

and taking it to be the Gauss curvature, we have

(cJetD M)A

(1 +

del Dt AL

It is interesting to observe thai this now oqgnation relates the Monge-Ampere op-

erator in space-lime to the Moiige-Aiiiper'e operator in space. It is hyperbolic.
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and yet. the solution is convex in (.t, ). Diflerenl. choices of F produces many new

fully noillinear hyperbolic equations.

Now we siiiriniarizc the main results of the thesis in the following proposition

’

and theorems.

Proposition 1.1. Any Euclidean invmiani, quasilinmr hyparholic equation u".

au-xx + + (' Lhc associated equation of the nminal jlow in the plane
BT
02 = Fn - (1.3)

whdTc F IS o'fthe form h\ + >+ 0 7/fsUaZid F, »i = 1,2,3, dajmiid on'],7 > n)

only.

Proposition 1.2. Any Euclidean invarimit fully nonlinear hyperbolic  r.quaiion
utt — f(x. u, ?a:, Ui,//j.3., ) is the associaiad vAiaation of a normal pres('Tvin()

Jlow
7 A - (1.4)
n), k, and (77, 7°.,).

9

where F deptuds on (7]

Proposition 1.3. Let X'(', L) be a family of unifounly convex hypersurfac’s sat-

isfying (4.1.1). It is normal preserving if and only if it is given by (1.2) and

s = U 7= 1,
at t = 0.
Theorem 1.1. Consider
T -t V= “idF
an dzi dzj - (15)

X(0) and Xe(0) ara given.



wider

/ is fwrnogeneous of degree one on | +° (1.0)

;?7.,) 6 r+.

9

,DQ](Hi Itn) <0, j=1" ..-77,"

whcTe X (0) is a uniformly convex hyper surface in R™/ and satisfies

(n, dXt{0)/dz]) = 0, j =1, .-—,n. Suppose X{0) G HNiS') and Xt{()) e
k > 7i/2 + 2. Let f G he a symmetric,  positive  Junction

on the positive cone saiisjying (1.6). Tfiaiv. exists a posilive T < og such that

(1.5) has a unique solution X in
C([0" T), PIC] ([0-T),

which is uniformly convex at each L. It is smooth provided X(0) and At(O) are
smooth”. MoTeover, it is jnaximal in the sense that if T is finite, either the mini-

mum of Umprmcipal curvatures of X{t) tends to zero or

as t appToachcs T.

This thesis is organized as follows. In Chapter 2 we study motion of plane
ciirves. First we investigate the reducibility of a gooinetric motion to a difFerential
equation for its graph for plane curves are presented. It serves as a motivation
for the introduction of normal and normal pieserving flows. Furthermore, wo
consider affiiie hyperbolic motion and obtain some properties for theZ{ - flows. In
chapter 3, wo present a systematic study on group invariant solutions for the
flows in chapter 2. Group invariant solutions such as traveling waves, rotating
waves, expanding and contracting self-similar solutions play important roles in
the study of parabolic flows. We apply Lie's theory of symmetries to determine
the symmetry groups of these (iows and examine some of the corresponding group

invariant solutions. In chapter 4 the motions for hypersiirfaces are discussed. We
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shall show that, when expressed in terms of the support function H for the convex

hypersurface, the equation for (1.2) becomes

dt?
It is the exact analog of

OH

a —
which is the corresponding equation arising from

. ax
=Fn.
dt

In this part, we first show the local solvability for hyperbolic flow of plane

curves. Next we establish the local solvability of (1.2) for a large class of F based

on the Caffarelli-Nirenberg-SpruCk [CNS] theory of fully nonlinear elliptic equa-

tions. Finally, a preliminary discussion on topics such as finite time blow-up and

asymptotic behavior will be given.

In the final part of this thesis, a new kind flow is established. The flow is

derived from Hamilton principle based on a geometrically natural action, consist-

ing of a kinetic term and elastic energy term. Conservation laws are derived by

Noether's Theorem. We also consider group invariant solutions of this flow.



Chapter 2

Plane Curves

2.1 Euclidean invariant motions

We start by reviewing the reduction of the curve shortening problem to a qiuisi-
linear parabolic equation. Consider the «urve shortening problem or the more

general problem where a family of plane curves 7(p, 0 is driven by the motion

law

A= Fn + Gt, (2.1.1)
where n and t are respectively the unit normal and tangent vectors of the curve
7+ > 8§ and F and G are functions depending on 7 and its derivatives with respect

to p. The normal n is the inner one when the curve is closed. Suppose for

p G (a,b) and t € {to, ti), the curve j(p, t) can be expressed in the form of a
graph (x, u(x, t)), x = x(p, t)\ we have

7t + (2.1.2)

Taking inner product with n = (—Ux, 1)/-"/T+lzl and t = {1, Wx)/\/1 + wj, we

see that (2.1.1) is split into two equations, namely,

ut = y/1-f F, (2.1.3)
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and

1+ t°

In the special case where F depends only on k, the curvature of 7 - the formula
k= Wxx/(H-tells lis that (2.1.3) is an evolution equation for u. In principle,
one can solve (2.1.1) by first solving (2.1.3) for u and then determine x from

(2.1.4). For instance, in the curve shortening problem Ff{k) = k and C?= 0, so

(2.1.3) and (2.1.4) become

(2.1.5)

and

= 2.1.6
1+ ui ( )

respectively. In case a solution u has been found for (2.1.5), x can be read-
ily solved as the solution of the ODE (2.1.6). It is routine to verify that then

{x, u(x, i)) constitutes a solution for the curve shortening problem.

Before proceeding further, we point out that for motions which only depend
on the geometry of the curves, one should require the motion law to be a "geomet-
ric" one. Specifically, it means that solutions of (2.1.1) are preserved under any
repararaetrization as well as Euclidean motions. It turns out that the flow (2.1.1)
is geometric when F and G depend only on the curvature and ils derivatives
with respect to the arc-length. For any geometric flow (2.1.1) > the corresponding
equation (2.1.1) is Euclidean invariant in the following sense. In case under a
Euclidean motion R, (y,v) = R{xu), the graphs (x, t)) go over to graphs
(v, vly, t)), then v satisfies the same equation (2.1.3) with x and u replaced by

y and v respectively. The reader is referred to Olver [O] for discussion on group

invariant differential equations.

Now, consider the motion of curves where the velocity is replaced by the
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acceleration

OS5 _ Fntat (2.1.7)

As the highest order of time derivative involved is two, the functions F and G arc
allowed to depend on 7,  and tlicir derivatives with raspect. to p. Typical geomet-
ric flows are formed from those F and G depending on (7%, n), (/" t), (7t,7(.s), k,

etc, and their derivatives with respect to the arc-length. All these are invariants

under reparametrizalions and Euclidean motions.

When the curves are expressed as graphs 7 = (x, ()), we have

7u Zc"(Vu:,)+ (0, V™o + 2u:,iXt + u,.tj.

Taking inner product with n and t respectively yields

HE + 2XtUAE + xwa: = A+ L, (2.1.8)

and

or. = . (2.1.9)

The situation is different from (2.1.2). In general, (2.1.8) not only depends on u
and its derivatives, but also on (2.1.8) and (2.1.9) are coupled.
Is there some choice of Xtso that (2.1.8) reduces to an equation for u only?

To examine this possibility, we note that from (2.1.8)

-Uxt £ ull) UxxUti - F
Xi=
Uxx
When (2.1.8) is reducible to an equation of the form = uj:, u™)

for some function /)>> plugging this equation into the above expression, one sees
that Xt must be equal to for some function  assuming that F
contains first and second derivatives of u only. Motivated by this, we introduce
the following definitions. A flow (2.1.7) is called reducible (to an equation) if
there exists a function 23, 24) such that whenever the flow is expressed

as a graph  {xufxi)),
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must hold. For any reducible flow, the equation obtained by subst ituting Xt = <$
into (2.1.8) is called the associated equation of the flow. We may assume the

variables of the function F can be expressed in terms of u and its derivatives.

Two remarks are in order. First, flows which are not reducible exist. In the
end of this section we will show that for F —k and G = 0> tliat is, the most di-
rect hyperbolic analog of the ciirvc shortening problem, is not reducible. Second,
when one is coiicenietl with the initial value problem for (2.1.7), it is natural to
wonder the flow is reducible for any initial values 7(0) and 7,(0). The answer is
no. Let us assume locally 7(0) = (/i(p) > /2(P)) and 7((0) = (yi(P) <72P) As wc
have freedom in choosing the parameter, we may assume x = p, that is, fi is the
identity map. Then the relation Xt = $ at * = 0 gives the compalLibility condition
g\ = M/i], 2 — /29, /21 (2 — 129\)')- When the initial curve is fixed, that is, f*

is given, this condition sets up a constraint between g] and go.

For a given function F, we will find two classes of "constrained" flows, iiainely,
the normal and normal preserving flows, and the corresponding fuiictioas G so
that the flows are reducible. Our approach is based on the observation that any
associated equation of a reducible flow miist be Euclidean invariant, so we start
by classifying all Euclidean invariant equations. Of course, this is of interest in
itself. After obtaining these equations, we may compare them with (2.1.8) to

guess what the constraint Ifl should be.

We examine the quasilinear case first. Consider

lift = auxx + buxi + ¢, (2.1.10)

where the coefficients a, b, and ¢ depend on x, u, and ut.
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Proposition 2.1. Any Euclidean invanant equation (2.1.10) is of the fonn

e ttr " TTA

] il
a = h

+ul 4 5 1+ ul
. . - . ut
c = sjl+ ul 2 (2) z —yn/\ y
where tp, x cmd  air. arbitraTy  functions.
Proof. The Euclidean group acts linearly on (.t, U) and trivially on L Its Lie

algebra of infinitesimal syiniiictries is spanned by

du, 7.

According to Lie's theory of symmetries, (2.1.10) is Euclidean invariant if and
only if

pr(Qov(?0t — aujej - - Dut - ¢) - 0,
oil uit = aWxi + buj:t+ c, where v is any infinitesimal syinirictry and p7.(2)v is the
second order prolongation of v. By the prolongation formula [()] > prd! = d*,

SO

prd‘uu caui, 0= bw_rt —¢) = a:m —bi:lirt — - o,

which implies that a, b, ¢ are independent of x. Similarly, they are also imlepen-

dent of u. Now, for the rotation r = —u~Z.+:c[{,the second prolongation is given
by
pr(Qr = -udx + xdu + (1+ uldu™ + wW0, + '""UxUxx u”
+ + {utiux +

Its action on (2.1.10) gives

+ + aMANMUE) + sauxwra ¢ + + +

+ UtUxx) + + M) + cANthut = uttu T+ 2utuxu
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on Utt = aUxx + B + c. We eliminate Uu in this equation using (2.1.10). Then
the variables i/n, wt, w! > and Ut become free. By selling the coefficients of ?

and Uxt to zero, wc obtain

Qur (1 + w) + (utUx*k + 222%zT + but = 0,

and

+ <4) + Mufixtk + by - 2ui - 0>
Vv

while the lower order torriis give
[ “1 + ui) + - CUir. = o,

These are first order linear PDE's for the coefficients. The second and Uiird

equations are readily solved to yield

2u:,ut 1 u \

and

Plugging b into the first equation gives

1+ 4
Here ¢, xi and ip are arbitrary functions. Clearly the proposition holds. -
Taking = x =12=0 > we obtain the simplest Euclidean invariant equation
A . A c
e =% gy M, 2431
1+ wj (1+ uiYy 1+

Comparing this equation with (2.1.8) where F = /¢ we see that <)= -UxUil(\ +

The meaning of this constraint becomes clear after using (2.1.2); it means
thatll 7t,7p [0 for all time. A flow with this property is called a noTinal flow.
With this constraint at hand, G could be determined from (2.1.9), but here we

use a different reasoning which is bailed on the fact that (2.1.7) must preserve
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this constraint. In other words, if(] 7f'7=0 al I=0, I hon it holds for all lime.
Keeping this in mind, we cornputo

N 0/
0 — /Ft0 il [

={IttIp) + (71, V)
=+ (7, ~ ) W’

from which we deduce G = —[1 7<7tSdfe. that itis imlepeiident of F. Later
we will see that G depends on F for a normal preserving (low. It, is routine to
check that for any given F and G in (2.1.7), starting from mi initial velocity
satisfying (7”(0), 7p(0)) = 0, the How (whenever exists) is normal if and only if
G -—(7( Il the following wc show thai any qiia”silinear Euclidean invariant

equation (2.1.10) arises as the associated equation of some normal flow.

Proposition 2.2. Any Euclidean invariant  equation 10) is the associatrA

equation of Llie noimal  jlow

Fn-  (7f7is)t, (2.1.12)
where F is of the form -\-F2k + st.s), (md FJ: 2,3, depend mi {7(, n)
only.
Proof. First, note that
7o
( XATu
and (7t,t) =0. We also claim
] UtUrt
(itnt.) = 2)3/2
To see this, we first use orthogonality to get = (7", n)n. It follows that

hs — {7“n.,) + ((7Tts,n> + (7. n,))n,

SO

(itnts) = {Tn) (76



11

CIAYTElLi 2. PLANE CIJRVKS

aftor using Frenct's formula. Now, 7,., = 7/:/, (1, //3) + XM (0, // AN pet ((), )s [, wlicro
X,=1/1+ hence

+uN 1+u’;
and Ihe claim follows.

Putting these into (2.1.8), wa obtain

Hit Fi + F2~ TTIx + r:
(1+ (1+
2u.jut ulu
1.

Comparing with Proposition 21> we simply lake F:j(z) = "/ /z]2(:)

= 1 —
(/722)/4 + X(4) > and F\{z) =

ip(z), then lhe proposition follows.
Next we coiKsiclor the fully nonlinear equation

Uu = /@a:, u, lix, ut, Hx Uxt)- (2.1.13)

Parallel to Proposition 2.1, we have

Proposition 2.3. Any Euclidean invaiiant equation (2.1.13) is of the form

= — + <1NM 22, (2.1.14)
Ur'r .
where

,22, Z3) is an arbitrary function and Zi = u"] \J\ +
™ > ami

22 =

Uxt uj ;& XT
Z5= {i+uir
Proof. As in the proof of Proposition 21 > / is independent of x and u by Eu-

clidean invariance. From the action of the infinitesimal rotation, the prolongation
formula gives

1+ + Uj:Utfut + + 'iltUxx)fxt = “xf + Tt
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whioli implies
uiiif 'Tu-xut - tr/
] {l+uiVv H+ul)

for some function 4>i. The proposition now follows from letting <I>{z\, z-z, z-")=

By comparing (2.1.14) with (21.8) » w(3 see thai, they are idoiitical if wq g¢hpasg
AL
This condition is readily ciiecked to ho equivalent to

{7--n)> =0. (2.1.16)

A flow (2.1.7) is called a normal presi®.mng flow if (2.1.16) holds for all lime.
To understand this (Jefiriition, rccall that the angle between the ciirvo and the
X—axis, 1v, is related to iij. by tana = wr. From

2 O
sec a E}a = ujjXxt + Uxt = 0,

wo see that, (v is independent of time during tho flow. As the normal angle of Uie
ciirve is equal to a 4 7r/2, it is also constant in time. In oUioi words, n{p, t) is
equal to 11(7, 0), justifying tho terminology.
Same as in the quasiliricar case, we can determine G for a normal preserving
flow. Il fact,
d
&> = ,n)+ (> -n)

OF

OF
+ hplAG + t>(7tjn n).

This is an ODE of the form dy/dt — a + by. Clearly, (2.1.7) preserves normal
preserving flows if and only if G = —k'"Fg. In fact, all fully nonlinear Euclidoan

invariant equations arise from this way.
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Proposition 2.4. Any Euclidean inv(iri(mt’ etquatiou (2.1.13) is Ifia associated

equation of a noTinal preservimj jlow

lit = Fn-"FA (2.1.17)
where F depends on (7/,n), /c, and (7t, 7/,.5).
Proof. Plug (2.1.15) into (2.1.8) and then use Proposition 2.3. .

Hyperbolic vorsioiis of the curve sliortc.iiing problem can he found l)y choosing

difforenl F and G in (2.1.7). in LeFlodi-Snioczyk [LS
F=4(1+17/* G _— ¢ 7L

is choscn. From the above discussion any normal flow is rcdiicihlo with iissociatecl

equalioii given by

uu — + (2.1.18)
2(1 + wDy 1+ ut.

In Kong-Wang [KW],
F = k, a = _W “> s

is chosen. Again, any normal flow is reducible and its associated equation is
simply given by (2.1.11). Both equations are quasilinear hyperbolic. Now wc

may take

in (2.1.7). Any normal preserving flow is reducible, and i(,s associated equation is

uttu,. - ul = - £, (2.1.19)

This is a fully nonlinear, hyperbolic equation as long as the curve is uniformly

convex.
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Very often, in the study of the molions of convex ciirvcs, it is useful to express
Ihe flow in terms of the support function rather than the graph, Chou-Zhu [CZ

Recall that the normal angle 0 € [0>27) of a curve satisfies

— (cos  sin o), — sin 0, cofiO).

and the support function is a function of the®normal angle given by

r

"(M —<7(P,) -n).

where 7(p, t) is the point on the curve whose normal angle is equal to 0. Any
closed convex curve can be determined from its support function. In fact, for

7 = (T, u(x, t)), we have .

>
I

li cos®  hosin 0

hsill 9 + ho cos 0.

NS
Il

DifFcrenUating the first of these relalions in ¢ and t, wc have

1= +

o
Il

Il cos6 — hotsin0 — {h-\- h0e)Ot sin 9.

Tlierefore,

or = .
sin 6

and

_ _ Hit fos6, — hot shi 9/\
F

after using the formula

k —m =
fr hoo + h
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By differentiating the second relation, we obtain,

Ux=%10<c050= — cot 0
_ 1 . _ k
o YN 3, . 32,

Sin 6 sin d
Uxt = =Yrfii = ~'~”y\’\ ht  sinO - hotsin 0),

siir sin'
ut = hisin9 + {h cos 6 + hoocos 0)61 + hotcos0 = _°

sin ()

fhi , f fho /i cos '\ htt k . :
uti = + 1-7-7, r-YTT = =71 — ~t~t7 A Mo sin f) — hi cos 0)

sin 9 \ sm0 siir 0 / amQO  sin 0

Using those formulas, we can express equations (2.1.18), (2.1.11) and (2.1.19) in

terms of the support function. For (2.1.9) and (2.1.11), the eqiialioiis arc

) hi 1+ M
fhi - hoo + h 2
and
hoe + h’
respectively. As for (2.1.19), the eqiiaUon is
1
hti -- )
hm + h
I

which is the cxact analog of the curve shortening problem when expressed in

terms of the support function
’ 1
M= oo+ b

In concluding this section, let us show that the flow (2.1.7) is not reducible
when Ffk) = k and G = 0. To formulate the result, put the constraint Xt =

Mux.ut.uxx.uxt) into (2.1.8) to got

+
]

utt + 7 A (2.1.20)

I+ w
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(2.1.4)nlow reads as

(2.1.21)

Proposition 2.5. There is no such sm.ooli/miction 4>2i- 22,23, 24) satisfying (i)
(2.1.20) is solvable locally in space and time for arfntrujij smooth initial data u{0)
and Ui(0) and (ii) the comtjuint Xt _FW;r:r > "' Zxt) fuljils (2.1.21).

Proof. From the constraint wc have

Xtt=l_h ) (WXXA|A + Uxt)+ "zAUrt'N + Ut) + 2 47+ U:T:H) + 2 5 ( Mo+ UM
2.1.22)
On the other hand, from (2.1.20) we have

"NAxxx 2

Uil = {49 Wi -

Eliminaiiiig the term Uxu in (2.1.22) by this pxjuation and then idenUfying it
with (2.1.21), we obtain a relalioii of the form Auxxi + Bu”rxx C = 0, between
G2 Ut Uxx, Uxt, Ut and Ujixx- By our assumption (i), all these variables arc free.
It follows that, A = B = 0, thai is,

Nza + /i ]—f— QA+ ] =00 (2.1.23)
and
+ /bq - — (274 + +TA~A] =0 (2-1-24)
1+
for all 22?2 ~4)- The lower order term C also vanishes, hut we do not need
it. UJ -

>
t

We solve for from (2.1.23) and plug it into (2.1.24) to get,

Dy (1- @4+ (i + (24 + S T

Thus, either ©4418=0 or

"/

+
(224 f 2Z:7>)y/TTVf
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If = (0, then = 0 and Xi = <¢B:, Uf). 1l is easy to see that, lliis is
impossible. We take

(2.1.25)

(The other case can be treated similarly.) From (1.24) we have

B (224 + 228<b)( + zi \
Differentiate (2.1.25) in 23

270+ 2234
(224 + VT TA
.2$

2423

A FyA + 280+ 1

—(224 + + 223<I>)(1 +

and differentiate (2.1.26) in 24 lo get

B2 (224 + 2237)2(1 + 27
1
(224 + 223111)(1 + Z?) — (224 + vITTA
2R11 yrrN i)
@24+ 2zs™)A +2z?7) @A+ + 2f

We find

contradiction holds, so the flow (2.1.7) (F — k and G = 0) is not reducible. .

2.2 Affine invariant motions

The affine curve shortening problem refers to F = ki1 "'dnd G = —krfjfks/3 in
(2.1.1) has been studied in connection with image processing. Being called the

fundamental equation of image processing in [AGLM], it is studied in [Al] and



2.2. AFFINE INVARIANT MOTIONS 21

[ST]. We may consider its hyperbolic analogs. Recall that the affiiie group is a

subgroup of the Euclidean group whose infinitesimal symmetries are spanned by
udx, xdy, xdj © - ud,,}.

We call (2.1.1) is affine motion if the flow is invariant under affirie group. Assume

the flow can be reduced to a hyperbolic equation of form (2.1.13), then we have

Proposition 2.6. Any affine invariant equation (2.1.13) is of the form

TR Ot T OGE) (2.21)
"XX \ uf -
for some  functioTi
Proof. According to Lie's theory of symmetries, (2.1.13) is affine invariant

4

if and only if
pr - /) =0
on Utt — f, where v is any infinitesimal symraetxy in {dx, d”“udi, xd®, xdj - — ud”}

and pr [V is the second order prolongation of v. By the prolongation fonrmla

[O], = da:, SO
prax0 Utt - alxx — hu™t—c) = -aiWn — bj:Uxt - =0,

which implies that a, 6, ¢ are independent of x. Similarly, they are also indepen-
dent of u. Now, for the rotation r = —udx-hxdu, the second prolongation is given
by
prx = -wik + + (1+ + uMutdut + PV
-|42ixWxt + UtUxx)du:r.t + (‘“tUx + 2UtU.j:t)duu
Next, for ud: and x[X’ we have

prudx = udx - Urdu: — Suixuxxi

pr(2)pk=xdu + duz.
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From these equations, we obtain

f o Urr+ “H (ix:))

where /) is an arbitrary function. .
Since the affine tangent and normal are related to n and t via
T = Af — k" n—
the hyperbolic version of affine curve shortening problem roads as

=M = ) (2.2.2)

in graph case,

Tt — ~ "Uxx Uxxx

, J. (2.2.3)
Utt + 2u:NtXt + = ills
Letting
xt = 22.4
. (2.2.4)
the second equation of (2.2.3) is reduced to
Uxt
225
ut (2.2.5)
which corresponds to taking /[*(2) = in Proposition 2.6. In fact, once we have

a solution uf{x, t) for a solution uf{x, t) for (2.2.5), by differential (2.2.4), we get

"Nxtt . "N Axxt'Nxt Nocxx' NMxt

Xtt = . .
U. Ui ui
Uyt + hx Axxt'Mxt 3%y
y-xx at
1 J
=—-Uxi tZj

that is the first equation of (2.2.3) is satisfied. By the above calculation, we
obtain the equivalence between the affine flow (2.2.2) and (2.2.5) under (2.2.3),

that is, when the motion is normal preserving. We observe that by setting

Uxt
Urr-r
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the equation (2.2.5) can be written as a conservation law
Pi+ Mx =0
iPQ)t + {pqg'ph”™ = 0.

To conclude this section,¥{e record the evolution of the curvature under this affine
invariant flow. We have
2
"rrr r, 'xxxilxt U'xxxx"xt
ttITI' —: r~3 1 o
+ {I + wuiyiu,,

2 2
Uxxx"xit  + 2 ™ax™ Y. Axxx'Nxt

f’\tt =

Since
Uxtt = (= + (U
X ilxx (

u:
Uxxtt = (= + (Wxx)N)xx,

thus

kit = - Ik-h", + 2kt - 3 .2.6)

after some computation.

2.3 Some direct consequences

For the normal flow (2.1.12), we assume < 7t,t >= 0, and < 7 “ n [J =/, then

we have
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Therefore
dD ut - fto . 2k, + /s
= + 2fkkt  + {fts - A/A ), - fssfk
=ftk '+ 2fkh + {ft)ss - 2UJk - f"k
=k~ + 2fkkt + fc. - 2{kt - fK'" )k - frk
= kss + 2/ k~k'L
Thus

= + + k' — [;/c, 3.1)

where f —<7,,n >.

Proposition 2.7. The perimeter C{t) of the closed, convex curue 7(-, 0 of (2.1.12)

satisfies
acijt)
d
dt i
and
d'Cjt)

k'Nds.

The area Aft) enclosed by the closed cuTve 'y{t) of (2.1.12) satisfies

dA
d{tt) = - fds,
and
(fAft) ,
in =/ k[f - Dd’s.

Proof. The length of 7 satisfies

, ac)  f ds
iy = ds.
it at 7 fids
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and then
d':;j(i) ftk + fktds + j  fVds
k™ + + AN, -
= -], + fsAs
= - ] kNds.
T
For an embedded closed solution we can use the formula for the enclosed aroa
A= — /<7 nids
to compute
> dsl]

which, after integration by parts, gives

dA{t)=—

P /ris’

and then

-/ hds + / Pkds

f - Dds.

dat?

When the normal presciving flow (2.1.17) is closed and convex for each Ume

instar”, its support function satisfies the equation

Iht - -F. (2.3.2)

Hence, 6 and t are independent variables and k = 1/ ho# h). By a direct

calculation,

hoot + ht

k= y
(jiQo + hy
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and the curvaturc evolves according to the equation
, _  ?(hoot + KY _ h.oou + fht
={he, +hy -
Consider a special ease where F = k in (2.3.2). This equation takes a simpler
form

hu = + (2.3.3)

Proposition 2.8. (preserving] convexity) Let ko he the curvat.mn of initial curvc
70, and set S — inin MA;0(6)} > 0. The initial velocity satisfies kt(0) > 0. Then
for a C/-solution k of (2.3.3), one has

kfe,L)>S,

for t € [0,T), where T is the maximal existence tirrie JOT the solution 7 of (2.1.17)
for F = L

Proof. Since the curvaturc satisfies (2.3.3), we define the operator L as
follows

L[k] = (ikee + 2bkoi + cku + dko -f ekt, (2.3.4)
whore a = A 6=0,c= —1, ¢/= 0, e = 2k~"k(. a, h, c are twice continuously

differentiable and d, e are continuously differenliahlo. By the direct computation,
_ = /j/2) 0>

lierice the operator L is defined by (2.3.5) is hyperbolic in Uie domain 5' x |0, T).

We find k satisfies
Lk - = 0, X [0,75)),

>0 A= (2.3.5)
dk - S)

gy =AHO) >0 0.
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27

Then we apply maximum principle for hyperbolic eqiiaLion [PW) and conclude

that
6 < k{0,t) in X [0, To)
with To < T.

Proposition 2.9. The pfimrieter C(i) of the closed, convex cmvc

salisjies
dCit) "It
Juw
(it
and
-'2-n
Clt
-
The aim Aft) enclosed by the closed curve satisfies
dAft) 7 1k dO
dt Jo
and
27r
i ; (— Fk-i + hj - /)
0

Proof. * By the definition of perimeter
cL) = /  \jO\de = / k'~dO
70 Jo
By a dircct calculation
r2n r2-n

I’ﬁ(—k—’/\kt)(W = /[ (hoot + H[1dO= / hide,
0 Jo Jo

B r—riR

By the definition of area

ac(t)
dt

and then

W) = (7,n)ds= - hkr'dO.

/
2 Jo

of (2..1.17)
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By a direct caknilatioii

4A(L) 1/ r_(htk ! hk-'%)dO /.q;Zt hlhfm + fh))dO
- r - - 0 = -
(It Ao 2 /0
1 FZ"’
= X iji, k-] htihoo + h.))de = / htk-01 (W,
and then
27
(FAD) httk- ~ — htk-'% (W
27r
-Fk-# htiheet + h.t)](ie — Fk—# h™-  f4,]de

n

Proposition 2.10. When F = k in the normal prcscrvinf] Jlow (2.1.17), any

solution of this flow will blow up in finite time.

Proof. When F = /¢ in Uie normal preserving (low (2.1.17), wc havo
PCit »27r
(PG - kdO = - /
atr'n — ¢

Using Cauchy-Schwarz inequality,

] kNds ] ds > (] kdsf = 47r"~

If at some iiistr.nt (o, Ji"i™o) < 0, then dC/dt and C will ho doccase for all t > to-
It follows that £ < and JC becomes zero in finite lime. On the other

hand, when dC/l{t) > 0 ior all f[] wehave

1d , 94,
as so.
It o0 =\ dt'..— -0 ' £(io).
It shows that C{t) cannot expand to infinity, and """ < tor some () > 0.
But then

contradiction holds am L  oo. .



Chapter 3

Group Invariant Solutions

In this chapter, we present a systematic study on the group invariant solutions
for the following flows:

The normal hyperbolic How:
BT

0 g = A:n-<7,/7"1; . (3.1)

The normal preserving hyperbolic flow:

dl ko o -

The affiiie hypcrbolic flow:

Fiz ~

M (3.3)

where M = k™n — r"k'Mk™ is the affine normal, n, t arc the Euclidean unit nor-

mal and tangent, and s is the Euclidean arc-length parameter. O

When the plane curve 7(.” Z2) 5 given locally as a graph of the form (x, u(:c, /))
1

each (3.1), (3.2) » (3.3) are converted to

. 1 - uWt .0 UILut
Uit = —77-”"'”ipAUXX- + 2 ) U]'-I, (34)
(1+1Zfﬂ: 1+ 4l
y2
_ ul, = (3.5)

29
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and

Ko

UttUxx 3.6

respectively.

A study for these liypcrbolic equations have begun. Wo shall first determine
the groups of syrnrnetrio.s of these equations. As these are, Euclidean invari-
ant, the Euclidean group forms a invariant group in it, Furthermore, being not
(lepondciit on the lime explicitly shows thai the translation in time is also a ono-
parameler group. We shall determine the group of symmetries by determining
the' Lie algebra of the syriimetrios. The prolongation formuk/)> will bo needed in

the latter.

3.1 Normal hyperbolic flow

111 this section, we atterri])!, to investigate on group invariant solution of normal
hyperbolic flow (3.1), with the grapli equation (3.4). In Lie's theory of symmetry
groups for differential equations a oiio-parameter group of symmetries is a family

of local difreomorphisms
= (L4
u = <I>f(x, w), e small,

satisfying x = and u = u) which preserve solutions of (3.4). The

vector field
,d , d
dx du’

where

((T »=%# L=0ZXz’
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is the infinitesimal symmetry for the 1-paraiiiotcr group. In order to obtain
all group invariant solutions of (3.4), wc first det.ermine the Lie algebra of all
infinitGsiinal symmetries. Since the equation is geometric, it, must admit the
Euclidean motions (translations in x and u, rotation in x — u but not the reflection
because it is discrete) as its symmetries. Furtliennore, being not, dependent, on ¢
explicitly means that il admits translation in i. Finally, the special form of the.

equation suggests that il admits a certain scaling invariaiicc.

Theorem 3.1. The Lie algebra of all injinitesimal symmetries of (3.4) is spanned

by
{da:, du, di, -udj:@+ xdu, xd".+ ud® tdi}.
Proof. Let
Q Q Q
=+ T (X ,L, U) — — (3.7)

be a vector field on the space (.t, t, u). We wish to determine all possible coefficient
functions r and /) so that the corresponding ono-parameter group exp(ev) is a
symmetry group of the equation. According to Theorem 2.31 in [O], v generates

a symmetry of the equation (3.4) if and only if

pi*vfutt —F) —0on Uu — F =Q,

where pr v is the second prolongation of v,

pr@V=1; + + + +cT + 8
du: d KLt duxi uxt dutt
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and

(f rut) + +
Z(px + - Mx)Ux - rAUE - inul - TuNLxUi
(pt = DHp - ~U:, - TUi) + + TUtt

(fh — ~NUx + ((pu - rtyut — “UxUt - Tnuf,

6XX = Olflp — N&- rut) + iutxx + Mot

=(I>xx + (0XU - "xxhx - TrxUt + - LT
=27 mi'UxUt - = ""yulUlut
+ i(fu - - 2rxUj:t - SAnUxUxx — Tuum : 2 : 7—2t “Aus3-8)

Jt DR - AU — TUD + iuntt + Tulltit

ot + —rttyut - AttUx + QUIX -

2Mul, Ut — - Mulx VA

+ A(pu - '2,Ti)uti - 27Uxi - ~TulltUtt - ~ulxUtt —

(Pt Dxtid - illx - TU)+ finiit + TU it

(t>xi + (O/w - + {(pxu - Txt)ut

itull + w - xu - n'i0 UxUt — Axinuiui

TuulxUNt + 4>ullxt - (Pu +

(r, + 2T"Uturt - (tx + 7Vix)Wtt - (Tt +

For simplify, we set

O$T:A/\u/\,/\ + B‘/\u/\t_l_
Cfy"' = A\Ltt+ +CVt + D,

utt = fi U:) Ut)U:ek oi' x, Ut)u,,u (3.9)

I
where A%, B\ C\ and D depend on lower order terms.
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Applying the second prolongation pr*v to (3.4), we find that t> 0 must

satisfy the'symmetry conditions.

+ + OUAUAW + ifniUxAr + (MW:rt)</P (3.10)

which must be satisfied whenever Ua = f Substituting (3.8) into (3.10) »

replacing Utt by fu”x + yuxt, we have

A‘ifum + gu,.t) + B'uMMt+ C = f{AWr )
. +  g[ANMfur o B'Ag: A+ + D
o [fulxx + urlxtW + {fut'itxx + {Uth)<P') (3.1J)

To solve (3.11), we look at the terms involving the mixed sccond order partial
derivatives of u, namely u”x, Wx/) each of which occurs linearly on the left-hand
side. We find the defining equations for the symmetry group to be the following:

Monomial Uxx, coefficient

A'f = fA' + g(A®f -hB') + UAN 4

.Monomial coefficient
Ag + 1N =fB' +glA'g +C")+gj" +>4>[]
Monomial 1, coefficient * ]
c =/~ + gD.
Multiplying these equations by (1 + and then setting the coefficients of

ull uto zero in the above equations gives,ils certain determining systems for r,

Therefore, after some calculation, we obtain

Tx= Tu= 0,
6=0, -
s (px = ’ ,
K _ix ! .'\
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Thus we get

N=gx — bu ¢

T= a//+ri/

4) — au-\-bx + ¢,

A .
where g, f)l] od, e are constants. Finally we conclude that the Lie algebra of in-
finitesimal symmetries of the equation is spanned by the following five vector

fields

vi =
V2 = du,
V3 = dt

V4 = -udx + xdh,

vs = xd:c + udu + tdi.

The proof is completed. .

In the study of group invariant solution it is more convenient to use the support
function and normal'angel to describe the flow sometimes. We have expressed
the flow (3.1) as the equation of support function in Chapter 1, that is

hlo-1

hit —
hee + h

(3.12)

When the curve 7 is represented as a graph and described by the support function

simultaneously, the following relations hold.

U — XUX
h o=

(1 +
tai?)&=
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and
-X - Ulj:
ho = (1 + 12)1/2

Therefore,

ax — dan- {i + uiyrZ dhe
du = :dH t
TR A +,012
1 -X - UU: + xu.,
du: = T—-iNde + — + -ZTTdho-
1+ (1+u2)2 (1+ ¥

Now wo can convert vector fields on the jet space (rr,t, u, ?Z") to the jet space

0>t h, he) using these formulas. The following table shows the conversion. Of

1

course, one can also compile it by applying the infinitesimal criterion to (3.12).

Table 3.1: Infinitesimal symmetries in (.r, uj) and {(), hj)

— (1 +wYy "1+ Tt T oe ¢ i
cos Odu
du sin Odf,
—udx + xdu do
dt dt
xdy, + udu + tdt tdt + hdh

For each one-parameter subgroup of the full symmetry group there will be a
corresponding class of group -invariant solutions which will be determined from
a reduced ordinary differential equation. Given a group action G, there exist
functionally independent invariants of form y — v = tu). If we
treat v as & function of y, we can compute formulae for the derivatives of u with
respect to x and t in terms of y, v and the derivatives of v with respect to y. Once

the relevant formulae relating derivatives of u with respect to x to those of v with
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respect to y have been determined, the reduced system of difFereiitial equations
for the G-invariant solutions to the equation is determined by substituting these
expressions into the equation whereever Ihcy occur. Upon substituting, we find
the reduced ODE. After solving the reduced equation, for each solution v = (f){y)
of the reduced equation there corresponds a G- invariant solution u = /(x, t) of

the original equation, which is given implicitly by the relation

Now, let's determine the group invariant solutions of (3.1) for some 1-parameter
subgroups of symmetries.

(a) Self-Similar  solutions. First we take v = xdx + Wt + ud”, or tdt + hdh,
in terms of support function. Two invariants are h/t and 0. Hciice, invariant
solution is of the form h{9,t)t = 0(0)or hi6, t) = t ¢ (p~O). This is the self-
similar solutions. Under the flow, the shape of the curve remains unchanged but

it magnitude enlarges or shrinks. Putting this into equation (3.12) yields

It can be solved ami

= 0+ 7,

where C is a constant. As a typical curve we take (f)(0) in the following discussion.

The self-similar solution, as a curve in (x, u)-plane, is given by

X = 9cos6 - sin 6,

u = 9sin6 + cos 0.

This is a semi-infinite curve, which, at % =0, passes (0,1) with a vertical tangent
and curls to infinity as 6 tends to oo, see Figure 3.1. One may connect this curve
with the one starting at (0,1) to form a complete curve. This C* curve satisfies
the equation for the flow everywhere except at (0> 1) and is a candidate for a

weak solution, see Figure 3.2.
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L J;
¥
Figure 3.1: Self-similar solution Figure 3.2: Seli'-siniilar solution
(b) Circles. Next, we take v = —izX + 15 T h e resulting solutions arc circles.

Let 70 be a circle of radius ro. If 7 is a soluUon of (3.1) with the initial value

7(x,0) = 70, and = -rin. Then the curve is a circle with radius r, ami

the flow reduces to the ordinary differential equation

(3.13)
(0 =rod 0, n(0F n

More details about (3.13) are discussed in Chapter 4. When n < 0, the circles
contract to a point. When r! > 0, the circles expand first, then contract to a

point, see Figure 3.3, 3.4.

(c) Spiral. Finally, we consider v . —ud! + xdu — dt = de — dt. Two invariants
are h and 0 — t. Hence, the invariant solution is of the form h{6, t) — (i){0 — t).
Invariant solutions with respect to this group are called spirals. The resulting

solution is a curve rotating around the origin with speed 1. A direct, computation

yields

hit = ()", hee = 0r > hot — ~4>\
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02

Figure 3.3: r) < 0 Figure 3.4: n > 0
hence
(/)" +=-1/0. (3.M)

We multiple /i on the both sides of (3.14), then

024
=C —In [

(h =  £\2y/C-\n\(t>".

As h{9, t) — (p{6 — i), we may assume 0 > 0 at some 0. Take

(ve = y/2y/C - hi

then C — 111 0 means (j) is increasing as 6 increases, until C = Inoczi), (pof0])- o,

= e Consider, <pg = —1/2\/C — In0, then (f) decreases as t increases. We
extend 0 to a smooth function on [ f{ where = 0 @' blows up at "(), 62
We can also compute 32 — %1 since

d(f}

16
" AC-In(>2

SO
d(f)
0 VAc-AHTA

2 |
Jo x/- Inll

62-61 2
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We have Ihe figure of (f>(0), sec Figure 3.5.

Figure 3.5:

The curve reads as (x, y) using support function (p and normal angle 0, x =

(j) cosO0 — (j)'siri®, y = + (p' cos 9. We know that {x{0),y(d)) tus a smooth
plane curvc needs x'{6), y'(9) + 0, at least, i/ — — sin GLl y= cos0,
when 0+ = <&+ =0 ie 0= =+£1>= = 0, wegel asingularity.

Set 2- 00 =e, then max 0(19)=# )=e/v”". When O/y/" < 1>
there is no singularity, the graph of 7 is hyperbole in a cone, which is showed in

Figure 3.6.

Figure 3.6: Spiral-
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Wlien > 1, there arc two siiigiilarilies. We diooso two examples and

the show the corrospoiiiding graphs of the curves in Figure 3.7, 3.8.

Figure 3.7: Spiral-2 Figure 3.8: S])iral-3

3.2 Normal preserving hyperbolic flow

In this section, we attempt to investigate on group invariant solution of normal

hyperbolic flow (3.2), with the graph equation (3.5).

Theorem 3.2. The Lie algebra of all infinitesimal syimnetmes of (3.5) ts spanned

by
[dx, du -udx + TCN\y T+ udu 4 tdt}.

Proof. A typical vector field on the space of independent and depondeiit

variables takes the form

v = Coetfx, tI)— + (v bu) —

where r, (f) depend on x, t, u. The coefficients of the second prolongation of
V, (ffT", (Ntt, 0N} are determined #s the same in Theorem 3.1. A vector field v

generates a one-parameter symmetry group if

1+ wuiy
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whenever u satisHes (3.5).

For simplify, wc set

cT = + B'uirt+

ANuti + + + D,

(ift
where A%, B\ C\ and D depend on lower order terms. (3.15) tuni to b3

+ C”7 = 2wxtWxx(>LO# 1 O x+ + D)
A AN A //[\|

ylJAhia +
+ (rr--08 R "B X)) —

Replacing Uu by i*t/"Mix + + ul) whenever it occurs, we have

2
ANilf + T A )+ AM"MoVXxt + CAUx] = ¢ K
1+ ixp 1+ u-

+ B X, + CurL#yJr. + Du”r] + C t "

Onva
+ B'u“cu,, + (2u] - = (

L+

To solve (3.16), wo look first at the terms involving the various monomials in the
t
second order derivatives of ul! namely Uxx, Uxt, each of which occurs linearly on

the left-hand side.
The coefficient of utfxis

[  f M (3.17)
i-"ul (1+7x2)2
The coefficient of ul-Uxt is
A'l n2
‘ + (3.18)
1+ ui 1+ ul
The coefficient of ? 1 s
(3.19)

yh = 2C" - A\
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The coeflicioril of Uxxwh is

The cocfficiciit of ?4” is

The coefficient of ui®u-jt is

0 - 2D.
The coeflicieiit of uxxuj, is
0= - ci2
(3.17) can be roduced to
(2er — 2n + — +ul) = 2un(f)
—  — wuli
which implies
(:=n,
Tu = o,
tu= . n
(3.18) implies
x =0,
Tu=20

(3.21) implies

(ptt = ((>xx”

="t = 2((/)x—

Nuu — Nt-

+ {(pul -

. T ma;'“ s

(3.2(1)

(3.21)

(3.22)

(3.23)
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Finally, we have

N=gx — hu+ ¢
T — at + d,

() = au + hx + ¢

where a, c¢,de are constants. Therefore » vvc conclude that the Lie algebra of

infinitesimal symmetries of the equation is spannod by the following five vector

fields

V1l =2
V2 =0mn,
V3 =i »

V4 =—ud:c + xd,

V5 =xx + udu -

The corresponding solutions of group {xdx + tdt + are straight lines.
There is no support function for straight, line. While if we expressed the flow as
the equation of support function

1
hoo + h

hu —

We find that it is analog as the curve shortening probleiii(CSP) hi = -1/(/#]+").

Thus we seek self-similar solutions which are form of 7 = “4(.) as CSP. Then
Al A7n = Jc

When this curve is not flat, similar as in Scction 2.4 [CZ], A"A must be a non-zero
constant. After a rescaliiig > we may simply assume the constant is 1 (expanding
self-similar solution) and -1 (contracting self-similar solution). When it is 1, A(i)

expands for At(0) > 0, and contracts first then expand for Af.(0) < 0. When it
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is —1, A U contracts for \i{0) < 0, and expands first then contracts for At(0) >
0. The reduccd equation are the same as the CSP. The only difference is the

deforming velocity. We refer [CZ] for more information.

Figure 3.9: Expanding self-similar Figure 3.10: C()ill,ract,iiig welf-sil1lilar

curve 3-potal curv(3

Since the reduccd equation of Rotation Group ol' (3.4) and (3.5) are the same,

tiien the corresponding group invariant solution are the same too.

3.3 Afflne hyperbolic flow

In this section, we attempt to give an investigation on group invariant solutions
of affine hyperbolic flow (3.3) with the graph equation (3.6). By the standard

method we list in the first section, we obtain the following theorem. .

Theorem 3.3. The Lie algebra of all injiniiesimal mjnnnetries of (3.6) is spanned
by

dt, du, u™x, TdullTdx - udull 3¢ + 2tdi +
Proof. The synmiotry group of (3.6) will again be generated by vector fields

of the form (3.7). Applying the second prolongation pr(2)v lo (3.6), we find that

T, (f) must satisfy the symmetry conditions

+ UucT = + | uiid0"T > (3.24)
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where the coefficients 0.+ $ i  wore detennirKMI in Theorem 3.1. Suhslitutiiig

Utt by u”i/uxx + "> whenever it occurs, we have

A\ui, + uM/) + + CS/,.] + + + + Cf

(3.25)

The coefficient of Uxxy”t is

(3-20)
The cocfficieut of Hx is
yli + - 4yi2/3. (.3.27)
The coeflicient of ui.Uxt is
1= 2J53. (3.28)
The coefficient of ut” is
cr =0. (3.29)
The coefficient, of wit is
B2 = 2A". (3.30)
The coefficient of is
(3.31)
The coefficient of Uxx Uxt is
BA = 2A3 (3.32)

The coefficient of wji* is

C = 4CV3. (3.33)
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The coefficient of UxxUxt is

0= 2D. (3.34)

(3.26), (3.28), (3.30), (3.32) are trivial. (3.27) implies

(Pn =377 - G
Ju = 0.
(3,29) implies

<f>tt —0,
2H1-Tit (),
-Lt - O,
Lyy — 2rtu = 0
-26n = 0,
-Tuu = 0,
-fnu = 0.

(3.31) implies
XX = 0,

XHn- Mxxo= 0,

-Txj =0,
/huu — =0
-2t W= >
-U =0,

]
=

-Tuu
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(3.34) implies

Therefore

N—ax +bu+t ¢
(f>=dx +eM p-
a+ e,

E—

FLOW

(pxt = O‘t B

(Ptu +1 = 0,

<Pxu * Txt = 0,
=0,

(puu —xu - Ttu

—Bw =0 >

A

47

where a, b, ¢, (1ej p, q are constants. Now it is routine to check Theorem ,3.3

holds.

n

For the convenience, we iiso the support function and normal angel to describe

support function in Chapfer 1 it reads as

fht

= - (e

the flow if the'curve is convex. We have expressed the flow as the equation of
(v

We can also convert vector fields on the jet space (x, t, u » u®) to the jet space

{6, t, h, he). The following table shows the conversion for the simply ones.

Next, we shall list the reduced equations for these groups in the abovt; table.
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Table 3.2: Infinitesimal symmetries in (r.aJ) and (0, h, /}

Lt / X1
NT.r
, a . cos Odk
du sin Qd}i
—udx + xdu do
dt : dt
X + Sudu + 2tOt 2Wt + 3hdk

(a) Self-Similar  solution. We sd"lc solutions of this flow whose shapes change
homothetically during the evokitigi) : 7 = X{H)*{'). 7 is a self-similar solution if
and only if |~

X(ty'\ {Hh-n = ki

When this curve is not flat, must be a non-zero constant. After a
rescaling, we may assume the constant is 3/4>and —3/4. On the other hand,
the corresponding group of self-similar solutions is {*xd” + 'Midu + 2T°%X)From
Table 3.2, we get the corresponding group action of {2td( + 3/i9/] is {9t h)—
{B, et e™h). Hence a self-similar solution could be taken to be That is

X{ty'X{t)i — 3/4. Plugging this into equation yields

1 13 (3.36)
4 hoo + h
When X{t)"X{t)i = —3/4, the support function satisfies
=N, 3 > A (3.37)

We call the former an expanding self-similar solution (A expands to infinite)
and the latter a contracting self-similar solution (A tends to 0 at finite time). We

shall study (3.36) and (3.37) separately.
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First, a typical solution subject the initial conditions "(0) = —a, a > 0 and
/ie(0) of (3.36) is an even, convex function which is strictly increasing in (0, OQ)
where ¥ is the zero of h and ho blows up as0 | OQ. Then the invariant solution
determined by fi is a convex, complete noncoinpact curve lying insidg the wedge
{(x,y) :y < |a] tan "o} (See Figure 3.11). Denote such curve by The
invariant solution is the expanding self-similar solution t) =

g

Next, let's denote the solution of (3.37) subject to the initial conditions
h{o)) = a > 1, "0(0) = 0, by h{0,a). hfe) = q which satisfies (3.37) defines

\' V the shrinking circle. The solutions of (3.37) are positive periodic functions and
can be solved explicitly. They are support functions of ellipses(Sce Figure 12).
For A which = —3/4, contracts to 0 if the initial velocity is nonposi-

tive, and expands first then contract to O at finite time when the initial velocity

positive.

'leO
Figure 3.11: Expanding self-Similar Figure 3.12: Coiitracing self-similar
solution ciirvos-ellipses

(b)Circles. We take {udx — xdu}- Two group invariants are ;=D + T.7 y
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We look for invariant solutions as v = v(y). Then we compute

Ulk+ T=0

2uut =Vy

Ur + udj:»= -1
Ux'Ut + Ulxt = 0

2uf + 2uutt = Vyy,

SO
X
Ur
u
ut 2u
u -
War —
u
U-xUt
Uxt =
u
ut= Y
Thus equation
- unt= (Vxx)3
turn to be
vy - X: urut, 2 - -U:
2u u u u
1% -V.
ANVyy - 2ul) - XAUi = v
w
Le.
2VVyy - VY H- 4153 = 0, (3.38)

If we choose 1" = t», then (3.38) reduced to be
5"+ 1 =0,

The group invariant solution is a family of circles with radius r. We seer [I< 0,

is a decreasing function. When the initial value r'(0) > 0, r increases first, then
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decreases to 0 at finite time. The circle expands first, then contracts to a point
in finite time.
When the initial value r'(0) < 0, r decreases to 0 at finite time. The circle con-

tracts to a point in finite time.

We show the graph of the radius r(t) in the following figure.

1 20 25 D D H

Figure 3.13: n > 0. "igiire 3.14: 71 < 0.

(c){udx  4- xdu}-hyperbolic ~ rotation invariant  solution
Group Invariants: v — v/ — y =t
Group action: (x,u,t) —y (x coshe+ usinhe,wcoshe «xsinhe, f).
Invariant solution: v = v{y).

We compute

. Ulx — X=0
2uUt =Vy
+ Ul =1
UxUt + Ulxt = 0 .

2uj + 2uutt = Vvy
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So

T
2T =
u
ut = iy
ut
#IT —
u
uj:ut
Uxt
u
N
Thus equation
iktu T T—w [ =

turn to be
- Q- u) UNLD2 (1 — ul
2u u u u
1%
Ay — xMuf = (v)
i.e. v{y) satisfies
2voyy - v'l- -0,

Figure 3.15: o(y), v'(0) > 0. Figure 3.16: / (2,)°” () <0.

Hence the solutions are translating hyperbolas.
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Figurf » 3.17: Hyperbolas

— udu}-liypcTbol(is. Two invariants are xu =
invariant solution of form u = v(y)lx. First, we compute
U+ Xur =10
XUt — Vy

uj: + XUxx — 0

U+ XUX=0
Tutt = Vyy
and
u
utr = —-
X
ut
X
urr —
v
Uxt —x
yw
utt =y

then the equation
utiuxx - Nt =W
is reduced to

Giho I
XX X

53

u, t = y. We look at
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2475 ,,)- = {vyY.

Wo know the invariant solutions are hyperbolas.

(I).Wheii 7:@©@ > 0,v'(0) > 0, vfy) iiicrefLses as y increase and blows up at

finite y. So, the hyperbolas expands and blows up at finite lime.

(2).If "(©) > 0,£'(0) < 0, "(//) decreases as y increase and v(y) lends to 0 al
finite y. So, the hyperbolas coiitrac'ts.

(3).When ?;(0) < 0>r/(0) > 0, v[y) increases and tends to O at finite y. So,
the hyperbolas contracLs.

(4).1f v{0) > 0-i/(0) < 0, v{y) decreases asy increase arid v{y) blows up al

finite y. So, the hyperbolas expands and blows up at (inile time.

Figure 3.18: hyperbolas, "(0) > 0 Figure 3.19: liypcrbolajs, <



Chapter 4

Hypersurfaces

4.1 The evolution equation

I this chapter, we first study the geometric motion of hypersuriacos given by

297 Fn + C% > (4U)

b

where A'(- “) is a hypersurface in at oach t. The notion of a normal flow
extends trivially to all dimensions, namely, X{p, t) is a noimal Jlow if Xt{p, I) is

orthogonal to the hypersurface at X{p [ tlor each t.

Proposition 4.1. The flow (4.1.1) is normal if and only if it is given hy (1.1)

arid

(F #w=G" 7 T ..

ati = 0.
Proof. From (4.1.1) we have
AHXEXKE  Glgk + 0 X~ o (4.1.2)

where Xy-= dXidpk. From this, it is readily seen that the proposition liolds. [1

55
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Now, wc write down the equation for lhc graph of tlic flow. Lei, X{j), t)—

{x,u(x, L)), where a: = e e+ dgxmcis on (p,t). We have ‘
dX  fdx Oudx™  du)
th = + E),
and
d'x _ Jd™x d' u dx' dxN du d' u dx'

VA dxiOxj'Wm +Sis "N+ Cdxdiom + i),

Taking inner product of the last expression with n yields
Uti + 2ujtx{ + Uijx]x{ = Fy/l + |V?i|'2. (4.1.3)
To deleriiiine Xt we use the orthogonality condition {Xt, Xk) = () to gel
‘ Tifd+ Utk — 0,

for each k. Using fjki = ~ki+ u2: Ui, and f/™=Ski - UkUi/(l + |Vnp), wo have

T ki fe UkUi\ olit
1+ |Vul2
So, the aijsociatcd equation is
uu —1 21 + R\ =N+ (4.1.4)

When F = A+ BIl, where H is the mean curvature ot"X(-, f) and A, B depend on

X up to its first order dorivativos, (4.1.4) is hyperbolic if and only if B is posit ive.

When it comes to the fully nonlinear case, wo coiisiflor uniformly convex hy-
pcrsiirfjices only. A family of (iinifornily convex) hypersurfaces t) is called
noiinal pieseumig  if its iiorinal at X{p, L) is equal lo its iioriiial al 0), or

eqiiivaleiitly, dn/dt — 0.

Proposition 4.2. Let I) be a family of unifonnly convex hypersurfaces  sat-
isfying (4.1.1). It is normal preserving if and only if it is given by (1.2) and
dX, ... o
Dd%,”]=()’r“ 17 .
at t = 0.
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Proof. As dn/di  is always orthogonal to n, the flow is normal preserving if
“ and only if
—0 /afflzﬂ Ok \ A . 1

(K dpk) =0 &= 1

Wc compute

=-{nuXkt) - (n; Xkit)

Using

L ©

- d "X \/dn ca\ OF J 4d'X \

'dt\ Jtrdi] “ xNa"AWarN /) ~Wk~ " Wifc 73
This is a system of ODE of thc form

@)

where y = (7/>.%> ("), y»= (nt, Xk), and a" = —Fk — G~(Xfi,n). Now il is dear

we have

tlial The flow is normal preserving if and only if a* = 0 for all k. The proposition

follows from the Weigarten equation

b”"0n > dxidx j)

To obtain the equation for the graph of a normal preserving flow, we use the

normal j)resorving condition to obtain Uijxj + uu — 0 for eacii i. It follows tliat
X\ = i=1..,7L
Plugging this into (4.1.3) yields

Uu — UMUitUjt = v/ + [Vw|2 F.
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We claim that this equation can l)c rewritten as
(let D1 ,u = (let. Dluy/1 + F, (4.1.5)

For, first of all, using a” = Cjjdel Dlu, where Cjj is the (i,j) — cofactor ol' D"*u,

it suffices to show
dot DNU = Uttdel, Dill — CijUitUjt.

Denoting Xo = tl] wecompute the determinant of the Hessian matrix Dj fU l)y

expanding it along the first coiumii

j=0
where irijo is thi3 (j, 0)- minor of DI fU . By expanding along the first row

(woi, U()2, ® ., Uon) of the ri x n-matrix obtained from Dj t”¥ by deleting its 0—th

colmnii and j—tii row, we have
niji) = (-ly”'hioidj.

It follows that
1
fiet VI'u  =%]J-1)~mjo

n

=lioo tlet VMu+ y~ (~1y Ao (=1) M be-<@/
1

=Woo det Dl.u — Cijun)Uj(),

and the claim holds.

The equation for the support function of a normal preserving How assimies a

simple form.

Recall that, for any convex hypersurface X in Rn+i » jts support function II is

a function of homogeneous one defined in |R”+i/{0} satisfying

1(z) = (zX(p)), | 20T
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where X{p) is any point on the liypersurface whose unit outer normal is 2. IL
is well-known that any uniformly convex hyporsiirfacc can he recovered by its

support function via the formula

A"(4) = FE @) 7 T

where the unit outer normal z is iisod to parametrize the liypcrsiirfaco.
»

Consider now i) a family of uniformly convex, dosed hypersnrfaccs which
is normal preserving. We may parametrize the initial hypersiirface by its unit
outer ilormtil 2. By the normal preserving property, 2 is always the unit outer
normal for t) for all L In particular, we have n = —2. By taking inner

product of (4.1.1) with 2 we have

r 152X \

— Y
=T~UF!

Z‘E’I
after using Euler's identity for homogeneous fviiictioiis. We have the following

equation for the support function of a normal preserving flow

B
1l
—

0 (4.1.6)

4.2 Local solvability

We start by considering the local solvability of liypcrbolic flow for plane curves.
Assiiino the plane curves 7 can be written as the graphs {x, u{x, t). By the

standard theory of hyperbolic system, we have the following result.
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Consider the quasi-linear system of ?x(t t) = ,e e e w"), (x, )G
-ui
d
. ’ + B =
Wi b 4. 2D

uN uN
whore Ag, B are N x N-matrix depending on (x, / > u). It is called a symmetric
hyperbolic system if

t
¢ 1. Ao, A\ are synirnctric matrices

2. ylo is positive definite.
We recall the standard result[Ta .

Theorem 4.1. Consider a symmetric hyperbolic system of type (4.2.1) with ini-

tial values

ufx,0) = 4.2.2)
For each Un€ 11'

k > N/2 + 1> where 11N' is the k-th order Sobolev spacer in
there exists a unique local solution u G C(7, HM) for (4.2.1) and (4.2.2), for

small time to > 0.
Now we apply this theorem to two caaes.

First, consider the quasi-linear equation which is derived from a normal How,

Uttt = Jiixx + gUa:t + 1], (4.2.3)
where f, g, h are given by

2uxUt A (U

9 =
+ - DA
1 11 )
fo= 1+ & 4 ur™Ni+ui/
ui
h -
” +

and 0, ip[] ipare arbitrary functions.
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01
Proposition 4.1. Consider the Cauchy problem of (4.2.3) and (4.2.2). Assume
that 0 [1 Oon IR. Then for each (7Z0 Wi) € I/""x 1I'', k > 2> the Cauchy problem
has a unique solution for t in [0,T), T > 0, wherti T depericis on Ui).
Proof. We rewrite (4.2.3) into a symmetric hyperbolic system.
Since ’
=Ut
=f(Ua : Dux + h
=Mc
we have
(N
)
ut = 0 9 g, ut t*t oh
I
o U L0) e 1
Let V = and consider the system
(o 0 o] /1N
0 9 f + h (4.2.4)
“010) ‘0
where now / > g h are functions of v.
Lot
"10 0
0 | 3
" al
Loy
Multiply both sicias of (4.2.4) by R: >
W
1 0 O O O o
o
0 1 Vi / + A (4.2.5)
© ., ",
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Clearly, (4.2.5) is a symmetric system. It is also hyperbolic, for, we have

S - T N A

By our assumption, 0 > 0, so

= -4 f + 10)

4 4 ’
1+ @ 7] ®e0

so R is positive definite.

By theoreni 4.1, there exists a unique local solution v for (4.2.5) saLisyiiig

0) = UG{x)
itr> 0) = uoi(x)
T.0) =

v

From the first and the third equations of (4.2.4), we see that

=, = V-
at 10),¢

So if we set u =

i/) » then the second equation of (4.2.4) shows that: u solves

(4.2.3). ([

Next, we lurii to the fully nonlinear hyperbolic equation

where

Ut , Uxt UxxUxUt
= 1 2 0 = = (1 +)/[Z\2
1+WH

We rewrite it into a quasi-linear equation



.1.2. LOCAL SOLVABILITY 01

where l.o.t. stands for lower order terms.

Setting
V=uV —u
we get
V- =
(4.2.6)
’)‘(=-Avit - + I‘h2 + )
V,
WA xt b F Lot
This is a second order quasi-linear system for v?). We can also write it irilo
t
a first order system as following
(4.2.6) turns into
/
W -
= b ] = t
of = 4t B T2 g 12
uPw'ior
+/V 73 +X

wf = wl,

where the first equation is rewritten out completely by the first equation in (4.2.6)

and the last equation is the conipiitability condition
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Therefore (4.2.7) can be rewritten in the form

/o 00 0) w
v 0000 W
(4.2.8)
v/ 00 a n W w
w" 01 W xir

where I is a vector function of w and

. B
w
b = | 9
Set
0 0 0O
0 00O
A
0 0 a b
0 010
Assume = (0, and let
1 0 O
0 10
0 01
00 -f
Then
O 00O
A RA 0 0 o o
I = = a
00 ;5
0 0
1 1

(@

So A' is symmetric, and the system becomes

Rwt = A'w™ + /(w; (4.2.9)
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where /(w) is a vector function which indopcmds of the derivative of w, only

depends on w. We can see thai R is positive definile. For

Ry = MpZZ+25-2&+ (g2 +

= YA 2
A 4\<N")' 4(‘ 1R 1+

provied < 0. Then (4.2.8) is symmetric hypcrbolic, and the initial value for

(4.2.8) is given by where ? /U &#(.z\ 0), u™= Ut(xc, 0), by LiKioroin
4.1 w is locally solvable. Claim that = w}, ie. (ut) . = (Uj.,)t. Since by (4.2.8)
we have {(wMtx =—] ) (>and = WitMo = thus = (ujt- Therefore

u is locally solvable. Wc have proved the following proposition.

Proposition 4.2. Consider the fully nonlinmr  equation

utt= - + y/l+ul<P(ZuZ2),

XX

with initial values (4.2.2). Assume that "N < 0. Then the problem is locally
solvable

NMuufx),uotix)) € X/~ k> 2.

Now let's consider higher order ca™es. Wo will establish the local solvability
for the normal preserving flow (1.2) where F is a function depending on the prin-
cipal curvatures of the hypersurface. This will be achieved by reducing it to a
fully nonlinear hyperbolic equation. Since the local solvability for normal fiows
which is related to quasiliriear hyperbolic equations is similar to the plane curvo

case, we will not discuss it here.
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Consider the initial value problem for the How (1.2), that is,

N
—Fyq - @ dFdX
By Foooyg o (4.2.10)
X(0) and A'aO) are given.

for a normal preserving flow. Due to the definition of a normal preserving flow,
we may always take the independent variable 2 to he the unit outer normal of

t). Here F is a curvature function. Following the fonniilation in Urbas [I]JI),
which is based on the Caff'arelU-Nirenberg-Spruck theory of fully nonlinear elliptic
equations [CNS], we take it to be a function f = f(Ri, ¢ ¢ ¢ ,/”)" where -e e Rn
are the principal radii of curvature for a uniformly coiivex hypersurface in
The smooth function f is defined and symmetric in the positive coiic = {H —
(/?],eee> RN : >0, i= 1, ¢ ,n}. Moreover, it is assumed to satisfy the

following conditions:

f is homogeneous of degree one on r+, {i.2.1 1)

df

dlij {Ru--- ,/"n) <0, i=1..., n’ e r

Theorem 4.2. Consider (4.2.10) under (4.2.11) where A'(O) is n uniformly con-
vex hypersurface in and Xt(0) satisfies (n, dXt{0)/dzj)) =0, = 1~ ..,n.
Suppose X{0) G and X,(0) € /I -i(5"YA: > n/2 + 2. Let f G

be a symuietric, positive function on the positive cone satisfying (4.2.11). There

exists a positive T < 00 such that (4.2.10) has a unique solution X in
C(10, T), PI CH[o, R), /T7-1(5"))

which is unifojinly corivex at each t. It is smooth provided X(0) and A'<() are

smooth. Moreover, it is maximal in the seme that if T is finite, either the mmi-

mum of the principal curvatuTes of X{t) tends to zero or

LERJIT#En) —QO
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as t approaches T.

To prove this theorem, wo look at the initial value problem for the a’ssociatod
equation satisfied by the support functions H(z, i) of the hypersurfaces. By
(4.1.6),

d'"H
= -/(/N>ee . /), K:>0€5" X[0,7)

g (4.2.12)
H{0) and ",(0) are given >

where H{0) is the support ruiictioii of a uniformly convox liypcrsurfaco and //,(())
is of hoinogciicoiis degree one. Our first job is to express the right hand side of

tiie equation in (4.2.12) in terms of the support function and its derivatives.

Before proceeding further, wc recall some basic; facts concerning a convex
hyi)crsurface and its support function.
Let X be a convex hypersurfacc in 1R"+ [ Itsupport function II is dcfiiiod as

a function of its unit outer normal by
Hix) — sup XG &~

wherel! ¢ deiiotos the inner product in R"+ [ We extend II to ho homogenous

function on of degree one. Evidently wo also have
H{x) = sup (x,p), for all x €

If X is in C», then so is //. When attains its maximum. The point p ~ p{x)

is given by
i dH .0 1

P = A=l-ste T,
where H is differciitiable. Notice that its normal is given by x.

The eigenvalues of tlie Hessian (d'I/dxidxj)(x), ij =1>.. «+ n+ 1 consists

of zero (duo to homogeneity of degree one) and the principle radii of curvature



08 ‘ CHAPTER 4. HYPFMSUKFACES

at J)(x). Wc will compule Uic iiiotric and tho second riiri(lanienlal form ol X in
terms of the support function in the following.
Since H is of homogeneous degree one, it is uniquely (leteriniiicd hy its restric-

tion lo =+12=1 99+ ,n-f1 As a typical ease, wc consider its restriction lo

= -1. Let

oo Ty = flait ee e, —1y =1+ ETpeo =

yl + [t2
for X€ Tho mapping
(.Tl,---
.
maps R" onto In this coordinate system the metric c-tj on is given by
tL'i-C1
1+ X

The second fuiidaiiierital form of the hypcrsurface at Ilie point X(z) is given hy

VITWA \ATRF

The radii of principal curvatures are the eigenvalues of the induced iiictric of X
with rcspect to the second fundamental form, i.e., del{/7ij — Rb”} — 0. It turns

out they are the eigenvalues of Ihc matrix (s,j) given by
Sij — (1+ + x"xk)njk,

sec [Ul]. This matrix is not symmetric. However, observing that the syniinctric

matrix given by

Ho o= o+ ) (W (4.2.13)

shares the same eigenvalues with (6”) [CNS], wo know there exists a sirioolh

function F sudi that
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by om- ELSsnmplioiis on /. The eigenvalues of the rnalrix (OF/dz”j) are given

precisely by df/dR\,--- > dj/dR", [CNS], so (4.2.11) is equivalent to
diF (4) <() 4.2. ~1)
on all positive definite matrices A.
Restricting on the hypeiplaiic :/:4! = —1, (4.2.12) hocoines
(dhi
or:" (4.2.15)

*//{) and ?/. () ae given
where (.s4j) is in (4.2.13).

tion
=(HxO lyy), (r, ¢ e ir+ti X [0'r
(4. 2.16)
dv
TOy= 7 M0y =14
where The smooth function iiatisfies (/X(:/.>2) = ; and the elliplicity

condition: Thoro exists a symmetric matrix Zn .such that for any syiiiiiiclric
matrix Z satisfying Z() + Z is positive defiiiit.o,

d(.{) (x,z) > 0. (4.2.i7)
dzi

Clearly, this condition is satisfied for (4.2.15) im{( >r (4.2.14) for v l)cing u — m(0)
and Zi) the Hessian of n(0).

We would like lo solve (4.2.16) locally in Uino. To do this we first rediico it,

to a (luasiliiiear system of second order equations. In I'acl, for each k = 1> ..-"’

Vk = dv/dxk satisfies

=@ xidx.

RN Of Ouk d(]
mQO) = dxi, ' dt- dxt
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where a” = (fz--(x, D' v) and h" =//y+_[[j - ~Djh). Let, us consider a second order

system for v = (i/, ¢, .
av
"W Oxidx.
(4.2.18)
do ]
0 0pnd — (0) arc given,
1’
whor(3 a'] = I"v), I = /™) and = ,Vt/"- Cloarly,

V — {dv/dx", » ¢ ¢ ,Ov/dxjt) solves (4.2.18) whenever v is a solution of (4.2.16).
Oil the other hand, wo assert that if v solves (4.2.18) wvilli v(0) = V/ and
v,(0) = Viy, then a solution to (4.2.16) can be found.

For, we difrereiiUato (4.2.18) in xi to obtain

4. = (KA + + Al + +

9

It follows thai

° 4)tt =/pzjoj" Aih -+ A S B

— bl - + £>;-

after using

Thus cjki = v*- vl satisfies

4 U d'rlf . ivi
dxidxj AN d

(4.2.19)
dujki
Z ) =() > 1(0) =0

for some functions
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(4.2.19) is a linear second order system. One can show thai tho solution lo
this system only admits the trivial solution. First, by inlrodiidng a new variable
W= (w/" Wj”), we can make (4.2.19) into a lirst order linear system for W
with zero initial data, namely

aw

—AidiW  + B
g Y

(4.2.20)
1 WHf)) given .

By iiiultiplyiiig this systoiii with the matrix which is tho rr copies direct sum

of TZ given below, w([l c;aturn it into a linear first ‘symmetry hyperbolic: system.

at axj

We apply to cach side W and iiitogiatc the system

= (A"w/, W) + (Zi, IV).

By Uie energy ostiiiiatc, we deduce the Growiiall's inequality d\\W\\R/df <
01| |iy /2 + C2. It follows that W vanishes identically. LeUiiig = v/ Cor oacli

k, I and Uiere exists a potential function v such that dv/dx" — Consequently,
ffi)
holds for some function c(t). At N = 0,
0fx, 0) =flx) +Ci and Vit(x,0) = gfx) + 02,
for some constants ci and C2. A solution for (4.2.1G) is Ibuiid Py taking v{x, I1.)=

v(x, t) + x(0 where X solves x" — —<(,) " X(0) = —q and \"(0) = -c"-

9

Wc have reduced the solvability of (4.2.16) to that of (4.2.18). A further step

is to reduce (4.2.18) to a first order systoiu of quasilincar equations.

Consider the following system for an function w
. . , A “V
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du)k
dt
il J
d(. dxj
(4.2.21)
dt dxj
w(0) given ,
where w = (w?, ? 11)"> %0 , w' find the coofii-
cienls a” and aro evaluated al (t>" “L .. u;' @ o, wil e II is

dear that when

w(0) = (i/.0) > "/(0) » "0 ...X(OY......,7 i "(0),<(0),. i "(0),—1:::0Q

wlicrc v(0) and V((0) arc given in (4.2.18),

w = {V\Vl,Vl-‘- B /L:\ ,.uu’ n?,n; V:

solves (4.2.21). Conversely, lei w ho a solution of (4.2.21) satisfying l.hcso special

initial values. Then, for A,/ = 1> ... n,

du/ \ dw'N d dwi _
K (O dxi,) dxk dxk  dt

whence v = (w\ ... [ 8plves (4.2.18).
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To solve (4.2.21), wc iioto'lhat for oacli A, w"' = (WV(() > + *. ,wN") satisfies

00O ... 0 00O eee (O
0 0 CI oo i 00
01 ) =~ 0 N 0 00 =« 0 du/k
+
HT 000 <0 dx \ 010 .0 0x2
!*
0 0 o 0 000 0
0 0 0 0
0 0 ah" a'
0 0 0 0
+ + b,
00 0 0 dXn
0 10 0

whore b = b(:r » w”. By multiplying this system with the matrix IZ which is ilic

the 7i-coi)ics dircot sum of Uic {n -f 2) x {n + 2) matrix

1 0 0 e O
0 10 = 0

= 0 0

atf
00
we obtain
N dw N, dw
ot — - — (4.2.22)

where yP> s axe now symmetric. When (4.2.22) is derived from (4.2.18), IZ is pos-

itive definite under (4.2.17), so this is a q\uu>iliiioar symmetric hyperbolic system.

The theory of quasiliiioar syimnetric hyperbolic systems is well-known. Coii-

sider a general system (4.2.22) where TZ A", and c are smooth fiincUoiis of
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(a;, w) € X U, U an open set in for some N. Morcoever, TZand /IMs
are symmetric N x A/’ iiatrices, and all eigenvalues of TZ are positive in IR" x [A.

The following facts can be found or derived easily from Taylor [T].

Lemma 4.1. For any w(0) e k > N2 + 1>with w e V where V
is an open set compactly contained in U (4.2.22) has a unique classical  so-
lution w dejined on some intcival [0,T), T > 0,w(t) G V, which belongs to
c([o, T),//, ir)) n C ([ T), /] -i(Rn)).

Proof. The results of exist.eiulo, uniqiieiiej?s, and regularity for solutions lo a

system of the form
Jlo(.T, thu)— ="~ Ajlt, Xwu + gfi, x, u), a(() =/

J
whore, all Aj are symiiictric, and rurthernioro > ("/ > 0, arc proved in
Ta]. So in our case, w satisfies

Ndof * dw

at 0xj

whore K!) 0> and TZ and A" arc symmetric matrixes. Suppose w € V where V is
an open sot compactly contained in ULl themIZ > ¢l > 0. Therefore there exist lo-
dU solution on some interval [0,7), T > 0, GV >and w G C([0,T), /T K" ) .
By the equations we also have w 6 /I— (R"). .

Lemma 4.2. Suppose ||t/X0)||Gi is unifoTinly bounded for I G [0,T). Then their.

fl.xisLs Ti > T such thai the solution extends to C([0,Ti), with w(t) in
U.
Proof. Wec obtain the energy inequality
(it
f
Now Groilwall's inequality implies tliat. cannot, blow up'na t = T unless

|[w|[]; does, so wc can use the above loinma to.obtain the conclusion. .
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Lemma 4.3. w(x, 1)is smooth in IR" x [0, T) if iw(0) is smooth at t = 0.

Proof. * Pick k > n/2 -1, and apply Lemma (4.1) to gel, a solution
w. e C([0,T),H W)). We can also apply these results with f ¢ /MR 9’
for I arlMirarily Ij“gc, together with luiiqueiiess, to get u E C([0,7'i),

for some interval [0,T\] for Tj < T. But we can use Leniina (4.2) to obtain
w G C([0,T),.//*=(R")). For arbitrarily large I arid fixed T, this holds. By Soblov
Embedding theorem, it follows that, w € C*"([0,T) x /] (1R")): 1

AMippase now TZ{x, Z) is positive definite at Z whenever Z + Zo is p’/ositive
defiiiilo. From thCsc facts one (lo(iiices that there exists a unkiuo solution lo

(4.2.22) on a iiiaxiiruil interval [O - Ti4ft)” TH&%;” < oo, in tlio souse Uiat wlion T’ [

is finite, either the lowest eigenvalue of (["(1)) + Z(> A [ 'saUsfios

inf AO 0,
or

sup | [w(/)]I(7 00, *
I

"ii I T Trnax.

Proof of Theorem 4.2
Set V= u — n(0) in (4.2.15) and consider the problem
’ dhj
Vil (4.2.23)
. LO)= 0and ?"(()) given

whore

E(H+rnSA)(—=+iTif2W)("(e ),j *+7°)
and Vt{i)) is a function compactly supported in R" which equals to u,(0) in the

umVball Bi = {x € W  \x\ < 1}. Prom om?dis(mssion for u(0) € /] +2(]R")
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and vt{0) e""K+i(ir»), k> n/2 + 1,(4.2.23) has a solution v{t), te [0,7'). Then
u = V+ ?7i(0) solves the equation in (4.2.15). By the finite spoed of propagation of
solutions (Mizohata [M]) for hyporbolic equations, there exist,s a time T > (J such
that the values of v{x, t), (x,t) G B”2 x [0,T) depend only on the initial values in
Bi. Hence, u solves (4.2.15) in B1/2 x [0, T). Passing through the tangent space of
each point 7 on the unit sphere, we can obtain a similar solution in [0, T(z)). The
balls B{z) obtained "by projecting all Bi/2 on these tangent spaces lo the sphere
form an open cover of the sphere. We can choosc finitely many balls to cover Uie
sphere. Letting T = min{T(2i),. * * ,T{z")} where Zjj = 1 ...,N, are centers
of these balls, it is clear that one can construct H(z, t) on [0, T) by putting Uieso

solutions u together. We have shown that (4.2.12) is locally solvable.

Letting ©) = dH/dzk,  we have

dn dXy ) an d\tYJ¢ N, d it O
- dzj dz

by Euler's identity for homogeneous functions. It follows that X satisfies the
normal preserving condition. By Proposition 2.2 it solves (4.2.15) on [0, T).

The assertion on smoothness oi X follows from Fact (c) above. Finally, from
the expression relating X and H we sec that the C*"—norm of H is controlled by

the (72—norm of Xe The proof of. Theorem 4.2 is completed.

4.3 Finite time blow-up

After establishing the local solvability for some general normal preserving flows
driven by curvatures, we turn to other properties of the flows such as the formation
of finite time singularities and long time behavior. In the literature numerous
results concerning these topics are available for fully nonlinear parabolic flows.
As a preliminary study, we shall focus on the Gauss curvature flow. We take

F K a > 0°-where K is the Gauss curvature of the hypersurface in (4.2.10)
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and call the resulting flow the contracting Gauss curvature flow. Its parabolic
counterpart has been studied by several authors including [F], [T], [C], [A3] and
A4]. A common feature is, for any closed uniformly convex hypcrsiirface X(0),
X{t) contracts to a point in finite time, and its ultimate shape is largely known
when a is less than or equal to 1/n. To examine the samo question for the
hyperbolic case, wc first consider a special case, namely, the initial hypcrsurface
Under these assumptions, this flow reduces lo aii ODE for / ? [J tlio radius of the

sphere at time I,
1

Rnan

([

(4.3.1)
R{0) = /ii) > 0, = Ri.

The following proposition can be proved by elementary nicaiis.

Proposition 4.1. Let ¢ = Rj/'I - - 1). For a € {l/n, o00),

(1) when Ri < 0 and c E IR, the sphere contIcicts to a point in finite hmt,

(b) when R\ > 0 and c < 0, the. sphere expands firsL and then contracts to a point

in finite time; whan ¢ > 0, it expands to oo and

0(0, c>0
Rit) =

as i 00.

For a G (0,1/n], c is always positive,
(c) when R\ > 0, the sphere expands first and then contracts to a point in finite
time.

(d) when Ri < 0, the sphere contracts to a point in finite time.

(

Proof.

(a), (d). The initial velocity is nonpositive, i.e. R < 0.
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We prove it by contradiction. Assume thai Ii{]) > 0 for all time t > U. Then
rRm=- 1 0 and Ji'{t) < R@©@ = Ri < 0 for + > 0. Hcnce].hcre exist, a
time tosuch that R{to) = 0. This is a conU adictioii.

(b). The initial velocity is positive, Ri > 0 and ¢ <0. a > 1/n.

By (4.3.1), we obtain

- = + c.
2 no - 1

y?'(0) > 0, then 3 short time f], sL. R{t]) > 0, so

R’ I
- V/2 V na -

I'+C—

Ifr >0, H@O) > 0, we know ? [ :> 0, then R increase ami R’ iricroa.se. R
expands to oo and

0f{t), c>0

m)=
014,

o
I
o

as I — oo.

If c <0, R'(O} > 0> then R increase first and R' attain to 0 in finite time. By

the conclusion of the (a), the sphere contract to a point.

(c)Similar as (b), we omit the proof.

Thus, unlike the parabolic case, inward acceleration does not necessarily mean
contraction for the hypersurface. The initial velocity plays a role. Nevertheless,
for a G (0°1/n], although the sphere may expand for a while, it, eventually con-

tracts to its center in finite time. In general, we have

Propositic”l 4.2. Any solution of the contracting Gauss curvature flow blows up

in finite time for a € 0°1/n.



1.3. FINITE TIMP : BLOW-UP 79

Proof. Lot //(*» 1) he tho support function of tliis flow. By (4.1.6), it satisHes

dt”
71 H(0) and Ht(0) arc given.

Lot, us assume it exists for all time and draw a contradiction. First, of all, we have

rr, = | Kds
= ( X A’ o — J_ <1> fﬁ '
YS} )
where a,, = and A{i) is the surface area of X{t). On tlio other hand, from
ft oTjr nIT
7/(2,0 = / ; < /-I(2,()) 4-sup i >,0)/,.
~ > dt -

we SO that the growth of the support function is at most linear. Thcn;fore, the
surface area satisfies

A<

for some constant C. 11 follows thai

Hu = -] K~
JQf
<
<
< C(1 + /u)
c¥ c /"
for sonic constants Cx and C2. When ria = 1> the term should be replaced

by C2logL Therefore,
Ift (z, s)dzds

< f "CM))ii+
/ 2- na \Y
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becomes negative for large time. The same conclusion holds when na = 1. IDW-
over, the integral of H{t) is the mean width of the convex body (iiicdoscd by X{t)
aiul it cannot he negative. To see this wo nolo that when the origin is conlahiod
inside the convex body, the support function is nonnegalive everywhere, so this
integral is iioiiiiegative. When one uses clifforoiit coordinates lo represent Iho
support functions, they (iiflbr from cach other only by a linear function, licricc
tho integrals arc the same. Thus wo have arrived al a ¢""nlracliction. We conclude

thai the solution of (4.2.10) cannot exist for all Unie when 7/wv is less thaii or equal

to 1. .

A natural question is: Could the liypersurfacc develop a .singularity liofore
it contracts to a point under this contracting flow? We beliovo this is possible,
although an example is out of our hand. Novortlielcss, wc prost’nt, a noncoinpact,

example where an isolated singularity develops in finite 1ime for a in (0, 1/n.

Let. r bo a convex cone hased at lLhe origin in whos(Ll crossection is
bounded by a closed, uniformly convex hypersurface. Acr.ordiiig lo Urhas [Ul]|,
there exists a uniformly convex hypersurface X# sitting inside C and asympLol.ic

to its boundary at oo satisfying
(sr'nld A
Consider tlic ODE for a € (0, I/n),
A" = A@0) =1 A'(0) = Al < 0.

When Al satisfies \\ > 2/(1 — /ift), it is easy to see Uial it. has a solution iii [0, T)
and X(L) — 0, asi T Lotting X{t) = \{i)X\ it is readily verified that X(t)
solves the contracting Gauss curvature flow with X(0) = X* and geoinelrically
it collapses to the boundary of F as i approaches T. Wc see thai the curvature

blows up only al the origin. Away from the origin, the liypersurfacc; remains
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smooth, but its Gauss curvature vaiiishos.

Next wc pifisoiit a iioc;ossary condiUoii (or tho existence of global normal pro-
sorviiig flows (4.2.10) when F is positive. It leads to a critorioii for finilo time

blow-up for special initial velocity.

Proposition 4.3. Let X be a nonnal presei*nig Jlow soknng (4.2.10) in .S" x
0, 0o) where F > 0. Then Us support function Il{z, t) must satisfy

1It(z,0) + //i(-2,0) > 0, for all z. (4.:1.2)
Proof. Let, X be a global noriiial preserving solution of (4.2.10). Then X =
(/," X{t)) is a hypersurfaco in (0, 0o) x When expressed locally asa gra])h of

some function, the Gauss ciirvaturc ol' X is of the same sign as the (iotcnninant
of the Hessian matrix of this function, which is positive by (4.1.5) when F is
positive. Therefore, X is a uniformly convex hypersurface in [0, 00) x IR"+H HT
a coordinate systoin, X is expressed as tlio union of the graphs of two uniformly
convex functions u(x” i) and v{x, L) defined in the closure of sonio convex domain i/
satisfying v < u in il. Given a point X(z0,0) on Ihe initial hypersurfaco, we may
choose a coordinate system such that, this point is ... () )and its unit, outer
normal is (0,... ,0,1), thai is, Vu(T(),0) = (0, ® * * ,0) holds. Let ("> ><(" ()
be the unique point on X{0) satisfying Vv{yo,0) = (0, ® * *>()). Its unit outer
normal is given by (0,... ,0, —1). So the tangent hypcrplanes at (:/:<>>wjft">0)
and (yo ° flo,())) are parallel in 1R"+]

The tangent hyperplanes of X at (0, xo, w(.to)) and (0" ) » "("()))are given
respectively by

S

pi ={(/" 3w : Utxo, Ot = U—74T(, ()},
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and
Pli= (' >Try: Mm)U(OH” — 2300 O
When X is global, F[ always sits above / 2, so ihey never intcrsccl. It, moans thai
Uiese two hypcrplanes either do not intersect or tlioy intersect at negative lime.
When the laller happens, the intersection lime is given
T = o{yi)0) - upx"i.0) <0
Ut {xu, 0) - 2,.(V(), 0) o

It follows thai

imist hold.

Wr express (4.3.2) in terms of the support (‘unction. By dilTcrenUaUiig tlio
relation X(0) = {xu(x, 0)), wo have X't = (xt. Ui + Ujxj). As the outer normal
of X(()) at za'is (0, ».. ,0" 1), 0) =0 Xt(200) » = //]20) » (J). Similarly, wo
have //i(-z0,0) = 2%(//c> +), hciice Hi(zo,0) + /A(-20,0 > () from (4.1).

Condition (4.3.2) can bo rowriUen asl[] Al] (2 » 0)R2XXt(-z,(),-z) > 0 for
all outicr normal z. Noting that, 2} is the "outer normal speed" along 2,
the Slim of the inner normal speed along 2 and —2 may be called tho "nel outer
rioririal speed" along 2. This condition implies the following criterion for finite
time blow-up: The solution cannot exist for all lime when thc "net outer normal
speed" is negative for some z. In fact, an uppor bound on its life span is given Ijy

N

Nor —tho width along z
i1if : :

< : e . . z e r>,
I the net outer normal spoccl rilong z ]

where F is the subset of the upper hemisphere consisting of all z along which
the net inner normal speed are negative. Note thai the width along 2 is given by

H{z,0) + H('-z,0) and it is equal to u(xo, 0) — y(?yo,0) in tlio above proof.
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Finally, wc consider the expanding Gauss curvature (low by taking F =
— ft > (), in (4.2.19). Results on parabolic expanding Gauss c.urvat uro flows
can be found in, for instance, Urabs |Ul], [U3], and Chow-Tsai |CI). The hy-
[)ersiirlace expands to infinity in infinite time, and becoiiios round wlicii ft is less
than or equal to 1/n. When ft — \ and n = 2, il is known that the siirfaco
expands to infinity like a sphere in finite time l)y Schuiiror [S]. In Uie liyporbolic
case, we examine the motion of a sphere Hrsl. Indeed, when X(()) is a sphere of

raciiill.S /&> and has constant normal sjKJed /?.i, wo have

Proposition 4.4. Let ¢ = - % +1). Foj- ft > 0,
(1) wlum R\ > 0 and c € IR, the sphere expands to infinily as I ' T, where. T is
Jinite when fi € (1/n, 0oo) and is infinite when (j G ((), 1/n]. In fact,

¢

(b) when Hi < 0 and c < 0, the, splieTC first coniracis and then expands to injinity
behaving like in (a); when R] < 0 and ¢ > 0, the sphere contracts to a point in

Jinite  time.

Proof. The normal flow reduces to an ODE for 11{l), the radius of the sphere

at time t,
R', =
('1.3.3)

R{0) = Ru> 0, R'{0) = Ri.

We multiply R' on both sides of the above equation to yield

where ¢ = R"/2 — + 1). For the clifloront choico of initial value, we

obtain the proposition. .
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There is a spodal ctisc, namely, (i = i and n = 1, wli(T re raliior (-.(miplckl
analysis is possible. In this case the cxpaiulinft How becomes, in lenns of ils

support fuiicUoii, a linear problem

hit — + h
oY= 1 h,(0) =

(4.3.4)

The solution tan 1)0 represented hy the cosine scrit\s, namely,

h{Oj.
{0j.) 5 9
(1
+ " ((cosyjp- 1/ + sill sjf — 1 () COS/

provided

/(") = cio+ ~(aj cosf hjainjO),
and

VW = do + cos + /UmijO).

1
For soiiio clioicc of f and <7 we show that a uniforinly convex initial cviive
may develop rui isolated singiilarily in (iiiito time. For this piirpos<- »1({ltis tako
fl0) - a(,(0) +a,(0) cos+as(0) cos2(9 and g{0) = «)(()), then

h@, /)= 5 ~ ~c H 9 ¢ + a2(0) cos vM cos 20,

and

(koo + imt) = ) + ) - 3a,(())co.s v/, cos 21/,

At t — ()>k= 1/thoo + h) is given by

A;(0)=
(0) a0 — 3«2 cos 20
If wo choose tto = 2 and a2 — —1/3, then A:0) > 0 and the initial curve is
unifoniily convex. Moreover, wo take = -4,
thoo + t) = -r] + cos \/3t v.0s'IO.
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which is positive at, I — (). However, thorn exists a time T [0 0. 3uch Uial /4[ + i
is positive on [0, T) biil it vaiiislios at (¥7r/2, T). In oilier words, Uie ikyw is

regular in [0, T) mid develops two isolated singularities al T. See Figure 4.1.

Oil tlio other hand, for a chvss of initial values llio (low I>dmvt(]=icely.

Proposition 4.5. Consider (4.3.4) where, the initial values arc..smooth and satisfy

foo + /> fijoo + (J]> 0. Then the Jlow re.mmns mnoolh and v:qan(ls to inJinUy Ukx

a cirdc.

Proof. It suffices to show that figo + h is positive lor all 1 W (U notdhat
V2= lioo + h satisfies the one dimensional wave equation with a zero order torin
(ftt — 700 + 9and  (-he initial values (p(()) = foo + />~ (0) = £fjQo + (j arc posi-
tive. Therefore, vw may apply the iiuiximuin principle for oiie-diineiisioiial wave
equation, see soclioii 2 in chapter 4 of Prottor-Weinberger [PW], to obtain tlio
desired conclusion. The cUsyiiiptoUc behavior of tlio flow can he road ofi" IVoni Mio

formula of the support function.



Chapter 5

Elastic Curves

In [LS], the authors study i\ moan curvature How whic h slenis IVoni a gooinotrically
natural action cxjiitriining kinetic and inl.enial oiiorgy l.ornis. The cqiial.ion iincloi
considerat.ioi) models the nonlinear motion of an olfistic inombraiio, ITlriven by
its siirftit:e tension only. It is natural to ask what, will happen ICwe rc|)la(.(C] tli(C
internal energy by the da«Uc energy. We know Lliat, solutions of the corresponding

Eulcr-Lagrange equation of elastic oiiorgy of a closed curve

LI | Ads.

where k is the curvalure of the curvos, arc i.alkxl clfustic curves. There aro several
typos of equation of motion of elfusUc curves.In tlio previous works ([K], [BT]),
the authors considered the motion of a fixed length elastic cnrvos, governed l)y

tho clastic energy.

In Uiis chapLor, wo consider the evolution of free (length iincoiistrained) elastif :
plane curves, which is derived from an Ilamiltonian principle based on a geoniel-
rically natural action » consisting of a kinetic term and elastic energy lorin. The
derived evolution equation turns out. to bo a covipled system of semi-linear 1-
dimensional piano cciuation, where derivative's "up to foui Ui order are involved.

Koiso [K) \isc(l a poriurbalion to a composiUou of parabolic operators to prove

80
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Ihe existence of a unique short-time solution for fixed claslic! curve motion. Wo

assuine tho How is iioriiial to gel. a single hyperbolic e("iat km ami investigate Ihe

consorvation laws by Noelher's Theorem.

5.1 The evolution equation

By Ilamiiloii's pHudple, the equation of motion is given ns critical points of the

variational problem delitied by the functional

C =j AC)) - Eftdt (r,.D)

where the kinetic energy at f is

and the elastic, energy,

£t) =~/ IMD

According lo the liamillon i)rinciple, the How we consider is Lo stationary

for i.e.

EE(T i) "="=0.
Proposition 5.1. The sLatioiiai-j/ holuUoiih of (5.1) satisfy the equation of motion
Iti + C CIL)It = -(Ays + &2/3 + /<n — {)in't.s)t. (5.2)

Proof. By copulation,

—~ //  Hsf - jj "k\6ds)dL (5.3)

We assume thai
(Irf

TI 07/ tF T« 4
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and

=7t + (7" n>

Tlio Hrst term of tlie rigiit, liancl of (5.3) rt*ads

If = "U7/(>/ -
=" U ({yf.<t>)dscii- yy 7rH) (&

= - <meoy L/

The second term roads

I] = - 11 (7,7/)(ta>) -J7 -M2/:C0n s (>0 ksYy/).
The third term Lliinis to ])c

- Jj Sth™Ndsdt = - jj ké{k')ds(lt —-{kkt + + /N .

The fouitli term is

-// &= 7]] + 1] |il:30n > (&) ".s>i7.

Combining the above idoiititios together, we ohl.aiu the proposition. []

Since tlie tjuigcential variations do not alter the sliai>(L! dhe curves, for simplify,

we take the initial velocity is normal to the curve, i.e. its laugoiitial pari vanishes
(7Tht) “ = (.

We can prove this propert.y holds for all times U they vanisli initially. Under

assumption, we can reduce tlic flow to a single equation. .

For the normal flow

—0T) U HE (4,76)7f = A;(n,7))(n,7,)n = A2
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then the flow (5.2) yiehL

g 7" = .(A\.’+ —_— (5.4)

It is convenient to begin our invostigati(3ii with the ca.sc of graphs. Wc a»ssuim °
the curve can he locally written as an entire graph 7 = (/;, u(:r)). Tliereforo we

get a single equation for the graph

2u.CUT - u > [
llt/
I
"NXTX
+ "1+

(1+ulyY 201+ 7 201
The equation is the Euler-Lagrange ocjiiatioii of variation

£ =77\ — oI dsdt

ur . "9

= J J L drt

where

L _ K
<\ 2(1 + "

111 order to state local vvell-posedness for the flow of graplis, we would coii-
struct variouti conservalion laws satisfied by solution of the (low via Noether's
tlicorein using a Lagrangian. In order to derive prccise results, we will present

some notation aiki preliminaries that will be used. -

< W
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5.2 Notation and preliminaries

Let X = (tI,...,x") be the independent variable with coordinate x', and u —

{u, » * » ,u”) be the dependent variable with coordinates .a". The derivatives of

u with respect to x are

v
I
where
Q Q Q
- . & S M s TG g e e e
is the operator of total diirerentiation. g
T
. - .
We say an current P = .. ,PN) is conserved if it Wtisfics
DiP' = 0 !

along the solution.

!

%

Theorem 5.1. (oeineTl0])  Suppose Cris a (local) one-parameter- group of sym-
w .

metries of the variational problem C — J L{x, u, w(i)" * ® > 7tre Let

be the infinitesimal  generator of G ’and O

Qaix. u) = 0o -4  ulNdu'Ndx',

the corresponding  characteristic ~ of v. Then Q = (Qi,... ,QQ) is also the char-
\ )
acteristic  of a conservation law for the Euler-Lagrange  equations E(L) = 0; in
other words, there is a v-
tuple u—)) = (Pu-—- ,Pp) such that
oo DivF = Q .E(L) = QiEil)
is a conservation law in characteristic form  for the Euler-Lagiunge equations

E{L) =0.



53. SYMMETRIES AND CONSEUVATJON LAWS ] 91

The statement of Noether's theorem remains the same if we replace varia-

I
tiorial symmetry by divergence symmetry i.e. there exists a p-tuple B(x" u.(4)) =

(Bj,... » Bp)  of functions of x, u and derivatives of it such that

I

pr(L) + L Dive. = D[ h)B

The Noether operator associated with a Lie-Backhind operator v is defined
by ‘

N i = + E D" ¢« A_,(Cr)r>

where the Euler-Lagrange operator is defined by

filii oo 21 grn-=J.

L is referred lo as a Lagrangiaii and the aissociated functional

C=j Lx uull,b e Ur) dx U

Corresponding to each  a conserved flow is obtained Zm Noether' theorem.

A conserve vector is a tuple P = (P” ¢ --,P"), where
¢ 2= 1’.. [

such that . 0 0

5.3 Symmetries and conservation laws

III our work, we consider the scalar case in two dimensions, namely, a:N)=
(x,t). Suppose V = (x, tu)dx + r(x, wu)dt + (p{x,tu)du is a Noether point

symmetry generator with gauge (/, g). Then the conserved flow (X, P) is

X = QZE + A(Q)%+ groo—/>

P

Zt+Q=+ ) A+ D"Q)s + - —p
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Since the flow we consider is geometric, it is invariant under Euclidean group.

It is easy to check that the generators

~ {(th> 2., n- WA + T /L)

are strict Noether symmetries of the Lagrangiari
2 2

L2 2(1+712)1  2(1+1X8)5

and are also syriiinetry group of the corresponding Euler-Lagrange equation

s uluf ., IO XX Whocx
E{L) =  utt — a4 d‘]_“l_-.~,\ 2 a +
WM MT ?4x “hhx =0
(I + WY (1 + 1M3 2(1 + uY 2(1 + u2)2 —

We found that the Euler-Lagrange equation admits other synmietr}' group (scal-

ing group xdx + 2tdt + udu), but it is not a variational symmetry group of the

original variational problem.

We now list] e corresponding conserved vectors for these Noether symmetries

and conserved Density.
D —a @ = w

2(1+42)5  2(1+ 4)1 (1+uw

AL+
2(1+ A2)1 21+ ul

( AxAN? 1 SlixwL
Utl — 2(1+113J9 + 2(1 + 112)2

+ (i +1=
UxUf Suutui T+ Eirzz Wix ixt
2(1+tz2)i 2(1+72)1 1+ "2)5 1+ uw
Thus,

Djw + DXi =WtE{L) = QE{L) = 0.
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Consider the functional

E= T\dx = + T ey
2(1+ 14)5 21+ 4
then
Ef) - £:0) =0

which means E = IC + £ (the total Energy) is conserved.

(") (R = Ux)-

_ Ut Uj:Ut
Y — ( _  _ ! . 4r ,
Az — —lo(l + y2f 1 2(f + AT *+ 201
u- T Uxxx
Thus,
DtT. + LKX2 = uE{L) = QoEiL) = 0.
Consider the functional
. UxUt
= | Tidx = TCIX.
A-W-ul s

then
M) —§F) = 0

which means M (the linear momenta) is conserved.

()% > (Qa = De
o ut
(1+u)
UXUF UN
X-I =

Dyl + D, X3 = E(L) = 0.
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Consider the functional

then

vit) - V) =0

which means V (the momenta) is conserved.

fi) —UDX + XDU. [QA = + MIJ).

) ur LLIx + UUJ:)

T,= (x + Ulj
+ (1 +4%;
+ AT
2(1+ 2(1 + u2ji 2(H-u2ji
LIXXX(A: + WUD + + UUJ:) UR.

Thus,

DTXI + 0°%X4 = (x + UU,E{L) = 0.

Consider the functional

ILt{x +UUx . .
n =/ Tdx — & "/\/\arc)frr :J;é 7fn0 DAt "
(1 +LD2 J

then

niL) - 7(0) =0,

which means [/ is conserved.

Finally, we list all these quantities in the following table.
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Symmetry Characteristic Coiisei wd Deiijsitv
od. T e
d M ——u
u 0
(] = +
ch f Y=oy 21 10
nd-x + |% + <2, n lif &1 HUj

5.4 Group invariant solution

(a), {xdx + 2tdt + ud”}
Group invariants: ?/ = =

Plug u = into the equation.

Since

utt= - N - yo' - ?
ay Y
Ur -V

Uxt = -V

Ut =v .

J

L
Trr - %

Uxxxx = v"'t‘ —
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the equation (5.5) turn lo he

1/ I 70 oo —ov'yho'y + - v'yy'v
# 1 no_m ) + 2 ( 1 + V 4(1+1/2)2
v IOvVvV"
1+ 122 (14,23 + (I+."/'2 1+ 2
,UIIH (,U

2(1+1/2)4  8(1 + -0

It is a fourth order nonlinear ODE.

If we express the flow as the equation of support function, (5.5) turn to be

(TR IS S i PN e b 2 Lt (5.6)
hoo + [hoo + hfr (hee + h"™ [hoo + hf 2 hoo + h
The dilatation group {xdx-h2idt-\-iLdu} reads as Self-similar solviUon
can be written as fift, 0) — where (f) satisfies
0 4>0 . + (?Q,OOO + Q>00 2 1

4 " a@o0+ 0)" TG00 + oy 00 T@Y  wms + oy S99\~

Given suitable initial value, we can plot the graph for the curve.

Figure 5.1: Self-similar circle

(b) Circles. Let 7 be a circlc of radius r[J If 7 is a solution of (2) with the
initial value 7(x, 0) = 70 > 0> and *7(0; 0) = 71n. Then the normal flow reduces

to
1 rfi

T "3 o
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1. When 71 > 0, 1" increases and blows at finilo Uinc.

2. When r! < 0 ami, r > /(ro), / can be delenniiied from the equation,

decrease.s first, then increases aiicl blows at .finite time.

3. When vi < 0 and r! < /(70) r decreases and loud to 0 at finite time.

Figurii 5.2: ri > 0. igure 5.3: /o 1 1/3.

Figure 5.4: n) = i, r! —-1/2.

(c). Traveling wave {dx + ft}



08

invariants: y — x — /,>u = ofy).

u, 14
ut = -V
Uxx - v"
uxi= v
uXXX V”/
So The equation is roclucod to
vwto st K)"VV"
a+7/2) T arr/22 a2 (a4 v
V.
A+vAY  @+vM 21+t/ 0 21+ /22 —d

CIIAI'TELi 5. KLA*S'm:

It is a fourth order nonlinear ODE.

When t =

u = ofy), the curvc is showed in the following figure.

Figure 0.5: Traveling wave soliilioii

CUHVICS
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