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Abstract 

In an epidemic, the international traffic accelerates the spread of infections 

across wide geographic areas. Policy makers are interested to know the impact 

on the disease transmission once the international traffic has been re-scaled. 

Since the pharmaceutical interventions are usually not ready in the early stage 

of a new epidemic, the travel restriction is a high potential intervention that 

should be included into the containment and mitigation strategies for officials. 

According to some researches, the value of the travel restriction was contro-

versial; and most importantly, we discovered several practical and theoretical 

limitations in the epidemic models. These problems largely motivated us to 

study the effectiveness of the travel restriction on the epidemic control in both 

at-risk countries and the source country. In the body of thesis, new method-

ologies of epidemic modeling were developed by making use of the influenza A 

(HlNl) pandemic in 2009 as a case study. Our result showed that the travel 

restriction was valuable on slowing down the growth of epidemics for both at-

risk countries and the source country. The time delay of the epidemic would 

offer public health experts, policy makers, and scientists more time for prepa-

ration and decision making on control measures. Although solely imposing 

the travel restriction showed little benefit on reducing the final attack rate 

and the probability of cases exportation, it offered additional contribution on 

even halting the epidemic growth once other interventions such, as antiviral 

and hospitalization could also be implemented. Therefore, the implementa-

tion of the travel restriction must be a potential intervention to control the 



epidemic spread, especially for the next epidemics which could be lethal and 

highly intrusive. 



摘要 
在一個流行病疫情中，國際性交通加速了感染個案在廣泛的地理區域中傳播。政 

策制定者都會有興趣知道一旦國際交通比例重新調整後，對疾病傳播有多影響。 

由於抗病毒藥物通常都不能夠在一個新疫情的早期階段中準備好，旅遊限制絕對 

是一個具相當潛力的措施，而且應納入官方的疫情遏制和緩解計劃。根據一些硏 

究，旅遊限制的價値是相當爭議性的，更最重要的，我們發現了幾個在傳染病模 

型中的實際和理論局限。這些問題大大地促使我們硏究旅遊限制在存在風險國家 

和病源國的疫情控制成效。在這篇論文中，我們建購了新的流行病模型理論，並 

透過利用二零零九年的甲型流感(HlNl)大流行作爲個案硏究。我們的結果顯示， 

旅遊限制爲減慢存在風險國家和病源國的疫丨青增長帶來一定價値。時間的延遲將 

會爲公共衛生專家，決策者和科學家提供更多空間去準備和制定控制疫情的策 

略。雖然單獨實施旅遊限制只倉旨減少一小部分最終發病率及病源輸出的可能性， 

但一旦其他疫情控制措施例如抗病毒藥物及住院也可以同時間提供，旅遊限制絕 

對能夠提供額外的貢獻，甚至停止疫情的增長。因此，旅遊限制絕對是一個具相 

當潛在能力的疫情控制措施，特S提對於未來的疫病大可能高侵襲性及致命。 
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Chapter 1 

Introduction 

1.1 statement of the Problem 

The novel influenza A (HlNl), swine flu has spreaded across more than 70 

countries and the speed of disease transmission raised the public awareness 

on control measure globally. When the epidemic outbreak was started in the 

source country, Mexico, containing the epidemic was one of the priority ac-

tions. Unfortunately, the containment strategy was fail and the mass inter-

national travel pattern lead infected individuals to carry their virus to other 

at-risk countries. The prior action of at-risk countries is to delay the epidemic 

outbreak locally in order to squeeze more time to preparation and to minimize 

the attack rate afterward. Therefore, the objectives of imposing the control 

measures especially the travel restriction, between the source country and the 

at-risk countries are different. Recently, several literatures have developed dif-

ferent epidemic models to evaluate the effectiveness of various interventions. 

Among those interventions, the travel restriction gained most interest. Since 

there are several limitations for these epidemic models such as inadequate dis-

tribution of travel pattern and lack of uncertainty estimates, the value of the 

travel restriction has not yet been proven. 

In this paper, methodologies will be newly developed, by making use of 

the influenza A (HlNl) pandemic in 2009 as a case study to demonstrate the 

1 



impact of travel restriction in views of the source country and the at-risk 

countries. 

1.2 Importance of Epidemic Models 

In reality, it is hard to have high standard experimental or observational studies 

to analyze the strategies on controlling the transmissions of infectious diseases. 

Most clinical trial designs are not practical for assessing the effectiveness of 

some interventions, such as face masks and isolation, because of the ethical con-

siderations which relate to epidemics in general. Therefore, policy makers are 

hard to understand the effectiveness of their strategies. Fortunately, by using 

the mathematical models, the dynamic of the epidemic and the impact of the 

interventions can be demonstrated. The models are able to use mathematical 

science to describe the disease system under the constraints of interventions 

from the biological, political, and epidemiological data. The modeling result 

could thus explain and quantify how infectious diseases spread in the real 

world. So mathematical models play essential roles in offering valuable advice 

among different political settings for epidemics. Because of the above advan-

tages, there is an increasing trend in applying mathematical models to explore 

the spread patterns of infectious diseases and the impacts of interventions in 

recent decades. 

1.3 Applications of Epidemic Modeling 

Epidemic models have been used to design optimum strategies in containing 

the disease at a source country, assignment of treatments or vaccination, prepa-

ration of the interventions, and controlling the antiviral resistance in epidemics 

over the past decades. Longini, et al. [75] estimated the disease transmission 

pattern in southeast Asia and assessed the possibility for containing the H5N1 

2 



influenza epidemic. Reily, et al. [97] designed the optimum dose coverage in 

order to maintain a lower illness attack rate in the United States. In order 

to prepare effective interventions, Ferguson, et al. [39] employed a stochastic 

simulation model to study the effectiveness of various control measures such as 

geographical treatments allocation and workplace, household or hospital quar-

antine. Besides, Gani, et al. [49] estimated the ratio of the antiviral resistance 

in view of different antiviral coverage situations during an influenza pandemic. 

Apart from that, epidemic models have also been used to predict the threats 

of bioterrorism from emerging virus. 

1.4 Pandemic Influenza A (HlNl ) 

Novel influenza A (HlNl), also called swine flu, is a new influenza virus that 

caused its first illness in Mexico in 2009. In mid-march 2009, Mexico govern-

ment identified an unreasonable increase in the number of influenza-like illness 

cases, even though it was not in peak seasons of the influenza outbreak [77]. 

After half a month, an acute respiratory illness was discovered on two children 

and was further confirmed as a new influenza A (HlNl) virus in mid-April 2009 

[78]. Then the first notification of novel influenza A (HlNl) was announced by 

the World Health Organisation (WHO) on April 26, 2009. Because additional 

cases were successively discovered in the United States [79], WHO raised the 

pandemic alert level to phase five in the end of April. Because of insufficient 

information on this particular infectious disease, the World Health Organiza-

tion (WHO) declared the first global influenza pandemic on June 11, 2009. 

In a recent clinical update, more than 214 countries and territories worldwide 

have reported laboratory-confirmed influenza A (HlNl) cases, and the disease 

has caused more than 18,000 deaths [116]. Its high transmissibility has raised 

the public awareness of disease control measures. 



With Hong Kong's large-scale international travel pattern and a high pop-

ulation density, the Centre for Health Protection (CHP), Hong Kong has re-

ported about 300 severe cases and 80 fatal cases from influenza A HlNl in 

Hong Kong since May 1, 2009 [22]. The virus has been widely circulating lo-

cally, and it is therefore necessary to implement effective control measures in 

order to relieve the disease burden. According to CHP, the control measures for 

mitigation was adjusted and taken effect in Hong Kong after the disease out-

break [90]. Up to eight Designated Flu Clinics (DFCs) were implemented for 

managing patients with fever and influenza-like illnesses. Confirmed cases with 

mild symptoms were not required for admissions and were provided with symp-

tomatic treatments and reassessments. Antiviral treatments were only given to 

influenza like illness patients with chronic diseases or in immuno-compromised 

states. Hospitalization was target for clinically more serious cases, confirmed 

cases from pregnancy, and cases presenting medical risk factors, which include 

those suffering from chronic diseases or having immuno-compromised states. 

In the pandemic, the international traffic accelerated the spread of infec-

tions across wide geographic scales. The researchers, even publics, would like 

to know the impact on the influenza A (HlNl) disease transmission once the 

traffic has been either partially or completely blocked. Moreover, the value of 

the travel restriction is still not clear now, especially when the pharmaceuti-

cal interventions are not ready in the early stage of the pandemic. Therefore, 

the pandemic influenza A (HlNl) would be a good case study to explore the 

impact of interventions in both source country and at-risk countries, in order 

to have well planning of containment and mitigation strategies in the future. 



1.5 Dissertation Outline 

Chapter 2 of the dissertation is the literature review of the current mathemati-

cal models, the statistical methods, and the applications in epidemics. The re-

search questions will also be identified in this chapter. Chapter 3 demonstrates 

the impact of travel restriction for at-risk countries with the corresponding 

methodology, the result, and the discussion which employing the pandemic 

influenza A (HlNl) as a case study. The impact of travel restriction for a 

source country is analyzed in Chapter 4; the corresponding methodology, the 

result, and the discussion will also be noted which used the pandemic influenza 

A (HlNl) as a case study. Chapter 5 is the summary and the conclusion from 

the findings. 



Chapter 2 

Literature Review 

2.1 Epidemic Models 

Mathematical modelling has been used for transmission mechanism of infec-

tious disease for a long time. Hamer [57] has developed one of the earliest 

epidemic models in 1906. The model considered the probability of infection in 

one time step proportional to the product of the number of susceptible individ-

uals and the number of infected individuals. Ross [99] adopted the method in a 

time series model and called it mass action principle in 1916. Until 1927, Ker-

mack and McKendrick [66] developed a famous SIR model and it still works 

as a princpal for various extensions of epidemic models for nowadays. The 

details of Kermack and McKendrick SIR model will be discussed in Section 

2.1.2. 

In an epidemic model design, it is necessary to know the requirement of 

identification of the questions and decide how much detail should be incor-

porated. For example, to evaluate the travel restriction, it is better to put 

the travel pattern into the model. However, for model with greater detail, the 

parameter values should be set carefully, otherwise bias will be introduced. 

On the other hand, some model structures are sensitive to parameters so the 

evaluation of the sensitivity is important. 

Generally, the epidemic models are in compartmental form, that is, the 
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population is divided into different compartments or categories according to 

individual disease status, demographic details, and risk factors, so that, the 

compartmental epidemic models can have better resolution in disease trans-

mission dynamic. However, the model complexity increase with the number 

of compartments as well as the available data; the statistical inference is hard 

to be drawn for complicated structural model especially for those with many 

latent variables. 

A large amount of frameworks of infectious disease transmission model are 

from deterministic and stochastic structures. Due to the complexity of epi-

demic models, the deterministic structures are relatively easy to build and thus 

common in practice in order to demonstrate the average behavior of infectious 

disease transmission. But the main problem is that deterministic models do 

not capture any uncertainty along with the time series of disease propagation. 

On the other hand, the stochastic structures are often individual-based and 

incorporate the stochastic variation into the epidemic system, especially when 

the number of infected individuals is small or the chance event is important in 

the transmission dynamics [13]. For example, the epidemic can go to extinct 

provided that the number of initial infected subjects is small. In addition, 

the statistical inference for epidemiological parameters is more appropriate to 

be drawn in stochastic models. Typically, binomial chain method is adopted 

in discrete time stochastic models such as the Reed-Frost model [2] and the 

Greenwood model [56]. The stochastic epidemic models have been used exten-

sively on infectious disease like foot and mouth disease [108], meningococcal 

disease [93], and Human immunodeficiency virus (HIV) [64]. As for a whole 

picture, the deterministic models are usually used as explanatory tools in de-

scribing the general picture of the epidemic and to estimate the transmission 

parameters followed-by the complex models. 



2.1.1 Definitions of Epidemiological Quantities 

Understanding the quantity of the disease mechanism is crucial to effective 

pandemic preparation. Basic reproductive numbers (Rq) is defined as the av-

erage number of secondary infections produced by a typical infected individual 

in a wholly susceptible population. It is usually difficult to measure as not all 

people in the population are susceptible due to the pre-existing immunity es-

pecially for influenza. So the reproduction number (or effective reproduction 

number), that is, the average number of secondary infections produced by a 

typical infected individual and denoted as R, is estimated. In order to prevent 

the pandemic, the quantity R which identifying the intensity of interventions 

used, should be maintained smaller than 1. The more control measures and 

interventions should be introduced if the quantity R is large. Some estimated 

basic reproduction numbers are listed in Table 2.1. 

Table 2.1: Examples of the basic reproduction numbers {R-q) according to 
different infectious diseases 

Infectious Disease Estimated Rn Reference 

Measles 16-18 [6] 
HIV 2-5 [5] 

Foot-and-Mouth disease 3.5-4.5 [41] 

Smallpox 3.5-6 [50] 

SARS 2-5 [111] 

Influenza 1-3 [82] 

According to World Health Organization (WHO) [114], a simple figure for 

strategy from range of reproduction number and case fatality rate is presented 

(Figure 2.1). The higher the value of the reproduction number, the more com-

plex to contain the disease. For the lower value of R, government bodies should 

consider the cost for containment and benefits of mitigations. 



Explicit interventions unlikely to 
be justified either for 
containment or mitigation 

Implement most stringent 
interventions and watch 
carefully for the population 
response to the new 
infection: apparently high R。 

may drop rapidly when high 
case-fatality rate fully 
appreciated 

Intervene only after 
considering the cost of non-
containment and the costs and 
benefits of mitigations 

Most stringent Interventions, 
for contBinmcnt or cffcctivc 
mitigation 

Case Fatality rate (%) 

Figure 2.1: Strategies from range of reproduction number and case fatality 
rate, WHO 

Generation time, or serial interval (T), is the average time between the 

onset of symptoms in a given infected individual and the onset of symptoms in 

individuals that person has infected. When the serial interval is large, health 

politician will have much more time to apply control measures. 

Force of infection (A), the rate of susceptible individuals become infected 

by an infectious disease, that is, the number of new infections divided by the 

product of number of exposed and average duration of exposure. 

Transmission rate (/?), is calculated by the product of the transmission 

probability and contacts rate. 

2.1.2 Kermack and McKendrick SIR Model 

Kermack and McKendrick (1927) [66] SIR model is one of the earliest math-

ematical models in the history of epidemic model. The model categorizes 

population into Susceptible, Infected, and Recovered. Susceptible individuals 
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where (3 and 7 are the model parameters and 7 is the recovery rate. As 

the infectious period is assumed exponential distributed, we denote I /7 as the 

average infectious period. By linearising the system [32], the basic reproductive 

numbers Rq is equal to /SN/'f. 

Although the Kermack and McKendrick model is extremely simple and the 

assumption of exponential infectious period may not be hold in some situations 

[112], it works as a fundamental model in epidemic disease transmission over 

the past 70 years. 

10 

in 5'-stage have chance to be infected and progress to Infection /-stage until 

recovery to i?-stage. The flow is shown in the following figure 2.2: 

Figure 2.2: Flow of SIR model 

We denote (3 as the transmission rate so the force of infection A (rate of 

susceptible individuals become infected) would be (31, where I is the number 

of infectious individuals. By mathematical convention, we denote S, I and R 

as the subpopulations in each compartment for time t. The total population 

size N, is equal to <5 + i" + for any time and N == S k)T time zero. The 

SIR model can be written as the following system of nonlinear differential 

equations: 
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Apart from the deterministic version, the Kermack and McKendrick model 

has been extended stochastically. Using the same notation with a time indi-

cator, t, Greenwood [56] adopted the binomial chain idea and the probability 

of susceptible individuals becoming infected would be 

P(I(t + 1) = ?； + = 5,1{t) = i)= (2.2) 

for A; = 0,1, 2 , s . The p is the probability of a susceptible individual got 

the virus in the community and s, i, and k are constants. A limitation of the 

model is that the value of p is fixed over time which causes the epidemic ended 

in an arbitrary fast rate. The problem is improved in Reed-Frost model [2]; 

the probability of disease transmission depends on the number of infectious 

individuals at time t, i.e., p{i) = 1 — (1 — B a r t l e t t (1949) [12] incoprorated 

the stochastic effects in deterministic SIR model theoretically and applied 

equally well in modelling the disease transmission for measles. 

2.1.3 Susceptible-Exposed-Infectious-Removed 

SEIR Model 

SEIR model is another common epidemic model with adding an Exposed 

(latent) compartment on SIR model. Latent period is defined as the period 

of time that individuals get infected but not yet infectious. Once suspectible 

individual get infected, they will refer to the Exposed £^-stage and followed by 

Infectious /-stage. The flow is shown in the following figure 2.3: 

The latent period is also assumed exponential distributed, so the average 

latent period is equal to l/a. Following similar configuration of SIR model, 
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Susceptible — ^ Exposed Infectious Recovered 

Figure 2.3: Flow of SEIR model 

the system of nonlinear differential equations of SEIR model can be written 

as: 

些 
H 

n 

=PSI - aE 

= d E — 7 / 

= 7 / 

(2.3) 

The formula of the reproduction number in SEIR model is the same as that 

in SIR model. However, SEIR has a slower growth rate as the susceptible 

individuals require to pass through the latent class before contributing to the 

disease transmisson process. 

2.1.4 SIR and SEIR Model Extension 

Since many essential factors contribute to the disease transmission in reality, 

simple epidemic SIR and SEIR models cannot account for the effects of all 

factors; therefore, the classical models have been extended into different ways 

to incorporate various effects. For example, the time scale of the disease spread 

is slow and the demographical data such as population births and deaths would 

affect the disease dynamic, the system should incorporate the birth rate and 

mortality rate together. Another important factor that will affect the disease 

dynamic for a long time scale is the seasonal variation. Several literatures have 
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addressed this problem by replacing the infection parameter into time-varying 

periodic function or developing more compartments for measles, chickenpox, 

and influenza [73，20]. Population heterogeneity, that is, is another important 

factor that different individuals may have different pattern from contracting to 

transmission, also affect to the disease dynamics. For example, children have 

higher risk to infect chickenpox due to the nature of contacts. With enough 

information, the model can offer essential information for those sub-classes 

such as influenza [85, 110]. 

Apart from individual characteristics, most of the disease models are de-

veloped to quantify the effectiveness on the pharmaceutical and the non-

pharmaceutical interventions based on SIR model and SEIR model during 

epidemic. Many articles have evaluated the effectiveness of pharmaceutical 

interventions such as antiviral treatments [3, 74] and vaccination [85] on in-

fluenza epidemics. In order to optimize the required resource, the final illness 

attack rate was assessed under different antiviral treatment and vaccine sup-

ply by multi-compartments models. Non-pharmaceutical interventions namely 

school closure [110], isolation, quarantine [21, 70, 119], and travel restriction 

[37] have also extended the SEIR models to address the control measure 

properties. Given various pandemic situations, i.e., reproduction numbers, the 

models quantified the efficacy for these public health interventions. Because 

some single strategies may not be feasible, the combination strategies were 

also found to be effective for reducing the global spread of pandemic across a 

range of reproduction numbers [41, 75]. It enables policy makers to leverage 

on the effectiveness of some control measures and to reduce potential impact 

of others. 
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2.1.5 Travel Restriction in Epidemic Models 

For the infectious disease with high transmissibility such as influenza, the 

global travel network plays a central role in geographical spread of disease. In 

current world, the speed and volume of international travel are unprecedented 

and the massive movement converge to favor the emergence of infectious dis-

ease. Travelers may carry pathogens in their bodies and thereby facilitate the 

introduction of a communicable disease into a new geographical area. There-

fore, travel restrictions can reduce the rate of new infected people imported 

from or exported to different areas. So in model construction, it is necessary to 

consider the geographical feature, population characteristics, and travel pat-

terns. Up to this moment, the epidemic models of global scale have been 

applied to specific outbreaks such as seasonal influenza [55], human immun-

odeficiency vims (HIV) [43], severe acute respiratory syndrome (SARS) [61], 

and recently, influenza A (HlNl) [44]. 

A large proportion of literature has studied the global disease spread prob-

lem from the meta-population, or 'patch' SIR and SEIR model structures 

[100, 55, 44, 45, 27, 37] to assess the effectiveness of travel restrictions. The 

transmission between cities was connected by a symmetric air travel matrix 

(nxn) for which matrix elements {(Tij) for row i and column j represented 

average daily passenger flow from city i to j . And a transportation opera-

tor ( r y was implemented on the susceptible (S) and latent compartment (E) 

individuals at time t in the SEIR model as follows: 

mit)) = sm+f：剛字—s烛 f ] 
. 1 几j 几i 
尸1 J 

m{t)) = m + ⑴ 字 — m ) ^ 
.—1 j 

(2.4) 
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where N is the total number of cities and n̂  is the populaton size of city 

i. Hence, the probability of travel for each time step is ((Jij/ui) from city i 

to city j. The meta-population approach would have thousands differential 

equations in the system as well as more than 3,000 airports in 220 countries 

[24]. However, some of the literatures did not consider the stochastic variation 

[100, 55] i.e. constant volume of passenger flow. Colizza (2006) [24], re-phased 

the model into stochastic version and the stochastic variable for the number of 

individuals travelled from city i to city j , j + 1,... would follow a multinomial 

distribution. However, the model used the same infectious parameters for all 

cities which is inappropriate due to different contact patterns. 

Besides the patch structure, there are some other model structures to study 

the traffic rescaling globally; for instance, multi-group based model and net-

work model. Multi-group based model allows individuals to capture high levels 

of heterogeneity such as household structure, workplace structure, and school 

structure [39, 75]. These kinds of models can be used to investigate con-

tainment measures due to actual setting of locations [95]. Network model is 

another type of model structure that can also be applied in actual location set-

tings represented by clusters and vertex. Riley, et al. has applied the spatial 

network transmission model in Great Britain locally to investigate the disease 

dynamic for smallpox [96]. However, the big challenge is that both model 

structures required large amount of information for groups. Moreover, the 

large number of parameters would make the parameter estimation much more 

complex. Additionally, those models usually study local spatial transmission, 

rather than global airline transmission as it is hard to incorporate the travel 

distance model in the social contact network. 
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2.2 Statistical Preliminaries: Relating Data to 

Models 

In most of the epidemic models, parameter estimation is an essential part for 

model constructions. When relating data to model, we should maintain a 

balance between the completeness of data captured and the adequacy of the 

inference drawn on the data structure. 

Least-square estimation, maximum likelihood (ML), and expectation maxi-

mization (EM) algorithm are common statistical estimation method employed 

in epidemic modeling studies. Least-square estimation method, minimising 

the sum of square differences between observed data and model prediction, is 

a typical approach dealing with estimation problems. Chowell, et al. [21] used 

least-square method to estimate the basic reproductive number (Rq) of the 

Ebola hemorrhagic fever outbreaks in Congo and Uganda. The method fitted 

the epidemiological data into a deterministic SEIR epidemic model. Maxi-

mum. likelihood (ML) method is similar to least-square method which adapts 

the independent Gaussian errors in the epidemic models. Lekone, et al. [68] 

employed maximum likelihood estimation method to estimate the SEIR model 

parameters for an outbreak of Ebola in Congo in 1995. These methods are easy 

to be implemented; however, they are hard to solve the intractable likelihoods 

given high dimensional integral regions. Expectation maximization (EM) al-

gorithm is another method to solve complex likelihood [14]. It works well 

for unimodal likelihoods, but it does not converge properly for multimodal 

likelihoods as the algorithm highly depends on the initial conditions. 

Markov Chain Monte Carlo (MCMC) is a computational intensive approach 

to optimize the estimates via the Monte Carlo samples. High dimension of 

parameters space does not offer any obstacle to the MCMC method. Not 

only estimates parameters with uncertainty, the great flexibility of the MCMC 

method offers data augmentation for the unobserved process, especially the 
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non-reported data and unobserved compartments in the epidemic models dur-

ing Markov chains generation. Therefore, the MCMC method has been em-

ployed in many epidemic modeling studies in the past [53, 35, 88]. 

The following sections will briefly introduce the background of MCMC and 

its relationship to Bayesian inference. 

2.2.1 Markov Chain Monte Carlo 

The MCMC optimize estimates by drawing samples from the Monte Carlo 

method and adapting the convergence through Markov Chains. The asymp-

totic property ensures the parameter converged in the realisations. The idea 

of Markov Chain Monte Carlo (MCMC) was first used in physics context in 

1953 [76] and was generalised in statistical field by Hastings, et al. in 1970 

[58]. With sufficient computing resource, MCMC became a famous computa-

tional algorithm for statistical community; it broadens horizons in Bayesian 

inference, stochastic processes, and statistical computing. 

Monte Carlo sampling makes use of randomness to come up with the 

random variable estimates. It usually deals with the inferential problems which 

involve intractable integrations as well as multi-dimensionality. Given function 

f of interest and p{x) a probability density corresponding to a random variable 

X , the expectation Ep{f) can be approximated by 

1 “ 

if n is taken to be large enough. By the law of large numbers, the confi-

dence of the random variable estimate increases with the number of sampling. 

Existing theories have proven that the degree of convergence from Monte Carlo 

sampling towards the true values of the variables. The greatest advantage of 

the estimation technique is easy in implementation. 
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A Markov Chain is a sequence of random variables {X^} which the prob-

abilities of the values depend on its previous time. That is, 

= Xt\Xt^i = xt-i,Xo = XQ) 二 Pi^Xt = xt\Xt-i = xt-

There are two kinds of properties for a Markov Chain: Homogeneous and 

ergodidty. A homogeneous Markov Chain indicates that the transition prob-

abilities will not change in the progression of states transitions. Provided 

that the number of iterations n approachs to infinity, the distribution, which 

is independent to the initial condition Xq, is equilibrium. If there is only 

one equilibrium distribution, the Markov Chain {X^} is called ergo die. That 

means, if Xt � / , then Xt- i � f . Most of the MCMC algorithms satisfy 

the above conditions and ensure the convergence to the target distributions; 

the Gibbs sampling and the Metropolis-Hastings algorithm are the common 

MCMC method to obtain the posterior estimates [48, 58, 76 . 

Gibbs sampling 

Gibbs sampling is a MCMC scheme provided that the transition probabili-

ties are formed by the full conditional distributions of parameters. It was 

firstly introduced by Geman, et al. [52] in an image processing publication. 

Suppose O = (^1 ,OpY and f are the parameter and distribution of inter-

est respectively, the Gibbs sampling draws the samples from the successive 

generations from the full univariate conditional distributions alternatively i.e. 

fi{Oi\di,氏一 1,氏+1,Op). Here is the algorithm [48]: 

1. Start the iteration counter at j = 1 and set the initial values for = 

(树 0),…，4。))'. 
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2. Sample candidate new value © � from full conditional distributions 

冲)〜/i(叫趁-1)，...,难一D) 

�/2(叫冲‘-”，越―1),… 

炒)〜/p ⑷冲1),,...,<二11)) 

(2.5) 

3. The Gibbs sequence is obtained. Change the iteration counter from j 

to j + 1. Return to step 2 until convergence is reached. 

By the law of conditional expectation, the distribution of interest can be 

estimated by the Monte Carlo average, 

= (2.6) 
J 3=1 

given J is sufficiently large enough. The Markov chains approach to sta-

tionary distribution given sufficient large number of iterations after the burn-in 

period. In extension of Gibbs sampler, random selection can be adopted for 

the number of parameter updates, and this sampling method is called random 

scan Gibbs sampler. The MCMC method has been demonstrated its wide va-

riety of application in statistical aspects, and its great flexibility of usage in 

the Bayesian statistics [51, 103]. 

Metropolis-Hastings algorithm 

The Metropolis-Hastings (MH) algorithm is one of the parameter updating 

schemes to generate a convergent distribution. Once the non-iterative gen-

eration of probability distribution f is complex especially in high dimension 
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integration, the Metropolis algorithm is able to draw / without its specific 

forms of parametric conditional distributions [76]. Given suitable conditions 

[48]，the Markov chain correctly converges to target distribution. 

Suppose paramters B, the Metropolis-Hastings algorithm produces sequence 

of draws as follows [48]: 

1. Start the iteration counter at j = 1 and set the initial values for 0(o)‘ 

2. Sample candidate new values G' from the proposal density 

which is a probability of generating G' given previous values €)(—丄). 

The proposal density must be symmetric in Metropolis sampling, i.e. 

Q;(e'|e(j'-”) = a(e("_-i)|e'). 

3. Accept the new values 0 ' with probability min(l, A), where 

/(e')a(6>'|e(H)) 

If accepted, G ) � — 6 ' ; otherwise, 0�—©(•^.-工）and the chain does not 

move. 

4. Change the iteration counter from j to j + 1 and return to step 2 until 

convergence is reached. 

It can be proven that (not showed here) the Metropolis-Hastings algorithm 

ensures the reversibility property of the Markov chain for the pair (x, y) with 

respect to / , i.e. 

f{x)a{x\y) = f{y)a{y\x) (2.8) 
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Therefore, the transition probabilities for the chains are the same for both 

direction x y and y — x. Consequently, the algorithm generates a Markov 

chain { 0 � , ...} and the transition probability from to GP'+i only 

depends on Ĝ ' but not { 9 ^ B^'-^}. 

Random walks are common proposals for the MH algorithm and there are 

many random walk proposal distributions such as gamma, uniform, and Gaus-

sian. Suppose a Gaussian random walk step, the new values 6 ' is generated 

from, 

9 ' =沙 - 1 ) + e (2.9) 

where e follows a symmetric normal density i.e. cr )̂. The cr is a step 

size of the chain and 9'�N(0�_”, A^). Tuning A affects the acceptance rate for 

the parameter updates and the acceptance rate is suggested to be around 20% 

to 40% for a good convergence mixing. Roberts, et al. recommended around 

23% acceptance rate is optimal for a Gaussian random walk MH algorithm [98]. 

Typically, the selection of the proposal distribution is somehow arbitrary; it is 

similar to that of priors, which poorly mismatch of high density region would 

likely to converge slowly. 

Implementation and Diagnosis 

In general, the objective of the MCMC algorithms is to obtain the stationary 

density for the chain in a number of runs. Since the rate of convergence usually 

depends on initial starting points, the sampler, and the posterior density space 

[98], a number of initial steps, which regarded as the burn-in period, are 

discarded in order to minimize the effect from the initial non-convergence. 

Given enough number of iterations, the Markov chain is most likely to converge 
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to its stationary distribution. Inefficient start points would greatly extend 

the required burn-in period; it is suggested to start the simulation with a 

point closed to the mode of our target distribution. Sometimes the chains are 

thinned in order to eliminate the correlation among samples. Suppose n is 

any fixed value, we usually take the every In-th, 2n-th, ... iterations as a kind 

of thinning methods with interval n. 

MCMC diagnosis is essential to identify problems with convergence. We 

can monitor the convergence by the time series trace plot, that is, the plot of 

generated values versus the number of iterations. As for Metropolis-Hastings 

algorithm, the convergence can be diagnosed by the time series trace plot. 

Good mixing of chains would show no trend, presumably toward a station-

ary state. The lagged autocorrelations plot is another graph to monitor the 

underlying correlation structure for the time series. If the samples are highly 

correlated, slow convergence of the ergo die average posterior estimates would 

likely occur which means the chains receive small amount information from 

the iterations. The samplers behave good at autocorrelation if the chains have 

the geometric decay trend in the lagged autocorrelations plot. 

2.2.2 Bayesian Inference 

Different from classical likelihood inference, Bayesian does not treat param-

eters as fixed but draws the estimate by repeated sampling principle, which 

adapts prior distributions on the model parameters. Using Bayes theorem, 

the posterior distribution of interest is calculated by the combination of the 

prior and the likelihood. Suppose parameters are denoted by B, the posterior 

distribution is equal to 
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=L(eMQ) (2.10) 
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which L{Q) is the likelihood function from observed data and 7r(0) is the 

prior distribution assigned to the parameters. The formula is called Bayes' 

theorem. The denominator in the formula is a normalising constant. It is 

hard to be calculated in Bayesian settings, however, it can be resolved by 

computational sampling method, like MCMC. 

Regarding prior distributions, the selection of the priors is usually based on 

epidemiological beliefs. Conjugate priors, which lead the posterior belonging 

to the same family distribution, are common in practice and they are usually 

computational convenient in MCMC method. Besides, it is also common to 

use non-informative priors to provide a baseline assumption for analysis. An 

non-informative prior means that the probability of every candidate value of 

parameter 9 is equal, i.e., 

pie)=-——,a< 9<h 
b — a 

given a bounded continuous parameter space [a, b]. In MCMC methods, 

the data dominate the posteriors in stationary stages whatever the prior infor-

mation is, so the exact forms of the priors are not important in most scenarios. 

In Bayesian analysis, we are interested in drawing the posterior distribu-

tion; among the inference problems, most of them come down to expectation 
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calculation and MCMC is powerful enough to achieve the estimates. Once the 

converged posteriors are obtained, the point estimation and interval estimation 

in addition to the probability density plots would normally be our practical 

interest. 

Mean, median, and mode are the common measures of central tendency for 

the posterior distributions. The decision of selecting the measures of central 

location depends on the shape of the posterior; for example, if the posterior 

is unimodal and symmetric, the three central tendency measures coincide. In 

asymmetric posteriors, median is usually prefered since mean is affected by 

the outliers heavily and mode maybe close to the non-representative peak. 

Apart from location measures, measures of dispersion, for example, credible 

intervals, are other statistics of interest. Typically, the lower bound and the 

upper bound of the credible interval are simply taken as the Q;/2-th quantile 

and the 1 — Q:/2-th quantile of P{B\data) respectively. 

2.2.3 Application in Epidemic Models 

Due to the great flexibility, the Bayesian inference and the MCMC method 

have been employed widely in the epidemic modeling studies [94, 118，53, 

54, 68, 35, 88]. In practice, the dynamic model structures would make the 

inference much more complex. Besides, epidemic data, such as the times of 

infection are usually unobserved [88, 54]. With extensive available computing 

power, computational simulation methods like MCMC perform efficiently on 

solving complicated likelihoods. Moreover, the MCMC methods are well-suited 

to data augmentation even for large dimensionality. Hence, the estimated 

epidemic models would be more adequate than that of using reference values 

to describe the disease transmission mechanism as well as the intervention 

effectiveness. 

In order to draw the inference for epidemic models, the observations are 
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usually adopted from either the times of status or the incidence count. O'Neill, 

et aL used the times between each detection of measles cases in household out-

breaks to analyze the distributions of infections by the MCMC method [87]. 

The literature also demonstrated the augmentation skill of MCMC to impute 

the unobserved infection times [88，86, 87]. The MCMC methods like Gibbs 

sampling and Metropolis-Hastings algorithm were found performing well in 

some situations, but converged badly for some parameters; the convergence 

testing is thus important. Lekone, et al. [68] employed a Bayesian method on 

SEIR model to study the Ebola outbreak from the daily counts of reported 

cases and reported deaths. The MCMC did well on imputing the unobserved 

series but had to use of final outbreak size in data augmentation. Besides, the 

article did not describe any method in solving the problems of non-reported 

data. Apart from them, the Bayesian inference has also been drawn for sev-

eral epidemic models in order to solve the complex likelihoods and to provide 

uncertainty estimates [35, 118]. 

2.3 Identification of Research Question 

In this thesis, we will fully evaluate the value of travel restriction. The travel 

restriction will be assessed for two wide areas: 1，the impact for at-risk coun-

tries and 2，the impact for the source country. In addition, some of the current 

limitations from the literature review will be overcome. 

2.3.1 Impact of Travel Restriction: At-risk Countries 

The impact of travel restriction for at-risk countries has been studied in many 

epidemics. However, the research topic is still of interest for policy makers and 

epidemiologists, as the implementation is controversial over past decades and 

there are several limitations in these studies. 
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Most of the literatures support that the travel restriction is a valuable inter-

vention. Epstein , et al. [37] simulated the scenarios with air travel restrictions 

by a global SEIR model and demonstrated reductions on the cumulative inci-

dence in the early period of an epidemic. Besides, a 95% travel restriction was 

able to delay the first passage times (FPT) for more than two weeks. Compared 

to other control measures, a moderate proportion of travel rescaling could not 

reduce a certain amount of final illness attack rate. However, it was important 

to delay the epidemics especially when the initial growth rate was relatively 

low [117]. Colizza et al. [25] employed a meta-population stochastic model 

to indicate that air travel restriction was able to decrease the probability of 

global outbreaks. Wood, et al. [117] have investigated the effectiveness of the 

internal border control on limiting influenza spread in the context of Australia, 

and demonstrated that it could delay the pandemic for several weeks between 

two cities. The authors also noted that the travel restriction worked better 

in more isolated communities that lacked international ports. Brownstein, et 

al. [18] used weekly influenza and pneumonia mortality data to illustrate the 

association between the decrease of volume in air travel and the time delay to 

a influenza season. 

In contrast to above findings, Cooper, et al. [27] showed that even if more 

than 90% of air travels had been blocked, the rate of the global spread only 

would have achieved a little reduction once major outbreaks were underway. 

Similar to the study of Cooper, et al., Hollingsworth, et al. [60] employed 

a SEIR model to conclude that the travel restriction only slowed down the 

export process of infected cases, instead of halting the spread even if 99% of 

air travel was banned. 

Apart from the above research motivation, there are several major limi-

tations that can be improved in current literatures. Firstly, previous studies 

focused only on air travel restrictions, but in many cities, including Hong 
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Kong, it is not the main means of transport for arriving and departing trav-

elers. Statistics show that annually more than half of the passengers who 

arrived in Hong Kong came either by sea or land [62]. Figure 2.4 illustrates 

that more than ten million visitors came to Hong Kong from Asia by land 

transport annually. Visitors from North America and Europe contributed a 

higher proportion of air transport arrivals. Therefore, the incorporation of 

air, sea, and land transport was necessary to demonstrate the effectiveness of 

travel restrictions. Secondly, most of the mathematical models only took into 

account the latent individuals who traveled between countries. But with only 

a limited screening sensitivity at the border points of entry [28], a large num-

ber of infected cases could enter, thereby resulting in a large increase in the 

rate of disease transmission locally [15]. Such studies may therefore provide 

misleading information on the effect of travel restrictions [23]. Thirdly, most 

of the geographical epidemic models were deterministic and they did not give 

consideration to the stochastic variation [10, 9]. Fourthly, they ignored the 

city heterogeneities in force of infections. For example, they assumed all coun-

tries had the same number of imported cases [4]. Given the information on 

disease transmission among various countries, meta-population models were 

preferred to distance transmission models and to network transmission models 

[95] which arbitrarily adopted meanings in point-to-point transmission. 

In chapter 3，a mathematical model will be developed to describe the dis-

ease spread and to explore the impact of travel restriction on the influenza A 

(HlNl) pandemic by using Hong Kong as a case study. The model will adapt 

the following properties to improve the current limitations: 

« Air, sea, and land transportation; 

• Limited screening sensitivity of the border points of entry; 

• Stochastic uncertainty; 
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Figure 2.4: Total arrivals (in millions) by air, sea, and land transport in 2007. 

Transportation type 

£3 The Americas • Europe 0 South Africa, Middle East, and Australia 

Countries are allocated to different categories: the Americas, Europe, Asia, 
South Africa, Middle East, and Australia. Forty-four countries were selected 
in total which contributed more than 95% of arrivals to Hong Kong. 

• Spatial heterogeneities in force of infections i.e. different numbers of 

import cases according to the initial growths of the countries. 

In addition, the effectiveness of antiviral drugs and hospitalization is also 

investigated according to the strategies from the Department of Health, Hong 

Kong [90]. 

2.3.2 Impact of Travel Restriction: Source Country 

In the early phase of an epidemic, the top priority of mitigating strategies is 

to contain the pandemic outbreak at the source country. The public health 
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measures, like the travel restrictions, play an important role to reduce the pos-

sibility of infected cases exported to other areas as well as to delay the spread 

from the source area. In view of source country, epidemic studies usually focus 

on the time delays to epidemic seeded to other areas from the infected source 

rather than the illness attack rates, which is a different perspective to at-risk 

countries. 

With the understanding to the distribution of the exported infections from 

the source country, experts are able to assess the possibility of disease con-

tainment and to have better preparation for the control measures, like the 

border control. However, researchers have to face the problems of the time 

delay until the first official disease confirmation and the non-reporting rate, 

while formulating the distribution. As for the influenza A (HlNl) pandemic, 

it was believed that the virus has been circulated within communities several 

months before the recognition of the disease outbreak [63, 71]. Before the ac-

tive surveillance of influenza A (HlNl) and the confirmative diagnosis from 

clinicians and microbiologists, the vims was undetected over a period of time. 

Several studies estimated the initial point of the disease outbreak around the 

mid-January to late-Feburary through the analysis of the viral genetic sequence 

and the epidemic models [47，106], and the delay would have significant impact 

on simulation results [19, 40]. Apart from the initial time delay, the reporting 

rate was low for the influenza A (HlNl) pandemic. Most of the ascertainment 

was particularly focused on cases with severe condition. Also, either asymp-

tomatic or mild cases were not presented in medical consultation. A good 

example of official surveillance being under-estimated the disease transmission 

intensity in the community would be the telephone interviews from the Beijing 

Center for Disease Prevention and Control (CDC) [120], which showed that 

the consultation rate among influenza-like illness (ILI) patients was no more 

than 50% in Beijing, China. 
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Although the issues of initial reporting delay and non-reporting are impor-

tant, most of the epidemic modeling studies have neglected these factors in 

model development. Caley, et al. [19] quantified the distribution of the initial 

time delay with justified factors, like in-flight transmissions and the proba-

bility of screening at exit and entry borders. Given pd the probability of the 

epidemic initiated on day d followed by identification at source region, they 

drew the probability distribution of the time delay (D) until the epidemic was 

first initiated in the at-risk country as 

Pr{D 二 d) = {l-pi)il-P2){l-P3)...{l-Pd-i)Pd 

They concluded number of travelers who attempted to enter the at-risk 

countries largely determined by the rate of country-to-country spread. But 

the study did not deal with the non-reporting issue. Hollingsworth, et al. [60] 

constructed an epidemic model to investigate the impact of travel restriction. 

However, the probability of exported cases to countries was arbitrarily as-

sumed. Most importantly, no estimation was done on the estimation of model 

parameters for the studies. 

In addition, most of the epidemic models are deterministic without the 

consideration of the stochastic variation. The lack of the model uncertainty 

would be an obstacle to justify the significance of the modeling outcomes. 

In general, the use of bayesian approach is recommended, as it is able to 

incorporate the uncertainty of parameters along with the stochastic variation. 

The bayesian approach is also prefered to univariate-vary the parameters for 

a sensitivity analysis. 

Consequently, a mathematical model which incorporated the effect of ini-

tial reporting delay and the reporting rate behind the surveillance data will be 
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developed in chapter 4 to demonstrate the impact of travel restriction by as-

sessing the probability distribution of exported cases from the source country. 

The model will adapt the Bayesian approach and will employ the influenza 

A (HlNl) pandemic in Mexico as a case study. The model incorporates the 

following properties: 

• Initial reporting delay; 

® Under-reporting; 

• Statistical Inference on model parameters. 

The model is able to offer insights of the initial epidemic dynamic to epi-

demiologists, and to advise policy makers to have a better management on 

containing an epidemic at the source country. 

31 



Chapter 3 

Impact of Travel Restriction: 

At-risk Countries 

In this chapter, we studied the impact of travel restriction on the influenza A 

(HlNl) pandemic in views of at-risk countries through a stochastic compart-

ment al model. As for most of the previous epidemic modeling studies, they 

only focused on air travel restriction and assumed 100% screening sensitivity 

at the border points of entry which were not realistic. In section 3.2, we de-

veloped an epidemic model which incorporated all means of air, land, and sea 

transport with stochastic uncertainty. In addition, the use of antiviral and 

hospitalization were also adopted in order to provide a more realistic compart-

ment on the recovery, and also to compare the effectiveness of these control 

measures. The model was then applied to the influenza A (HlNl) pandemic 

in Hong Kong and the modeling results were demonstrated in section 3.3. 

According to our result, we concluded that the greatest value of travel 

restrictions was in their ability to slow down the spread of the epidemic. With 

the imposition of other interventions that can suppress the disease transmission 

intensity, whether locally or not, the restrictions on all external travel reduced 

the local attack rates, and they even halted the disease spread. Similar to 

the findings of other previous research, solely implementing travel restrictions 

was not completely effective in reducing the attack rates, especially during the 
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severe scenarios. In practice, the pharmaceutical interventions, like vaccine 

and antiviral, are usually not available early enough once a new emerging virus 

has arrived in the community. So the travel restriction is a simple and direct 

non-pharmaceutical intervention to slow down the epidemic during the early 

stage, in order to allow a longer period for the preparation of the mitigation 

response, especially for the next emerging virus with unknown characteristics. 

The details of discussion were highlighted in section 3.4. 

3.1 Introduction 

For infectious diseases with high transmissibility, such as influenza, the trav-

eling patterns of individuals play an essential role in the geographical spread 

of disease. Travelers may carry pathogens in their bodies and thereby facili-

tate the introduction of a communicable disease into a new geographical area. 

Travel restrictions are a kind of social control measure that have been evalu-

ated in several epidemics such as influenza [55], human immunodeficiency virus 

(HIV) [43], SARS [61], and, recently, influenza A (HlNl) [44]. Nevertheless, 

not all the relevant literature supports the value of air travel restrictions for 

containing the epidemic [16-19]. The studies have shown that air travel restric-

tions have only a limited benefit in slowing the global spread of a pandemic 

influenza. Besides, travel restrictions have low social acceptability, and they 

may also have a huge impact on the economy. 

Despite these factors, the investigation of the value of travel restrictions re-

mains essential. Firstly, previous studies focused only on air travel restrictions, 

but in many cities, including Hong Kong, it is not the main means of transport 

for arriving and departing travelers. Statistics show that annually more than 

half of the passengers who arrived in Hong Kong came either by sea or land 

[62]. Figure 2.4 illustrates that more than ten million visitors came to Hong 

Kong from Asia by land transport annually. Visitors from North America and 
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Europe contributed a higher proportion of air transport arrivals. Therefore, 

the incorporation of air, sea, and land transport was necessary to demonstrate 

the effectiveness of travel restrictions. Secondly, most of the mathematical 

models only took into account the latent individuals who traveled between 

countries. But with only a limited screening sensitivity at the border points of 

entry [28], a large number of infected cases could enter, thereby resulting in a 

large increase in the rate of disease transmission locally [15]. Such studies may 

therefore provide misleading information on the effect of travel restrictions [23]. 

Thirdly, most of the geographical epidemic models were deterministic and they 

did not give consideration to the stochastic variation [10, 9]. Fourthly, they ig-

nored the city heterogeneities in force of infections. For example, they assumed 

all countries had the same number of imported cases [4]. Given the informa-

tion on disease transmission among various countries, meta-population models 

were preferred to distance transmission models and to network transmission 

models [95] which arbitrarily adopted meanings in point-to-point transmission. 

In addition, other control measures, such as antiviral drugs and hospitaliza-

tion, should be included in the model in order to better manage the spread of 

the disease and the way it is controled. 

In our study, an epidemic mathematical model was developed to describe 

the disease spread and to explore the impact of travel restrictions via air, 

sea, and land travel on the influenza A (HlNl) pandemic in Hong Kong. We 

also studied the effectiveness of antiviral drugs and hospitalization for the 

comparison. Furthermore, we investigated some important effects of changes, 

including reproduction numbers from non-local countries to Hong Kong, the 

screening sensitivity at entry border points, the implementation date on travel 

restrictions, and the length of latent period. The results will provide valuable 

information to government policy-makers and to public health experts. 
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3.2 Model Formulation 

We extended the discrete stochastic SEIR model [56，2, 68] to study the in-

fluenza A (HlNl) dynamic and the impacts of the interventions locally. The 

model was developed to adapt the arrivals both of latent and infectious indi-

viduals by means of air, land, and sea transport and the use of antiviral and 

hospitalization with stochastic uncertainty. 

3.2.1 Basic Stochastic SEIR Model 

Let At be a time step and {t�t + At] be a time interval, we denote S{t), 

E(t), I{t), and R(t) as the number of individuals in Susceptible, Exposed, 

Infected, and Recovered compartments at time t, respectively. Suppose B(t) 

is the incidence, the number of susceptible become infected and C(t) is the 

number of infected individuals who start to be infectious at time t. And D{t) 

is the number of individuals who recover or die from infectious state at time t. 

Assume the population is homogeneously mixed, the system of general SEIR 

stochastic model with no intervention is 

+ A t ) = 糊 一 邵 ） 

E{t + At) = F( t ) + B(t) - C(t) 

I ( t + A t ) = ^ I ( t ) + C ( t ) ~ n ( t ) 

R{t + At) = R{t) + D(t) 

An individual would have a probability p to get into next stage which 

follows a bernoulli distribution. So by given n individuals, the number of in-

dividuals who get into next stage would follow a binomial distribution with 

probability m. We take bin(m, n) as a binomial distribution with parameters 
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probability m and number of total individuals n. The corresponding distribu-

tions for the classes 

B(t)�6in(l — exp[-^I{t)AtlS{t)) 

C{t)�hm{l — exp(-aAt), E{t)) 

D(t)�bin{l — exp{-^At),I{t)) 

(3.2) 

where the rate of infection is equal to l3I(t) /N for a time step where (3 is the 

transmission rate and N is the population size. The a and 7 are the constant 

transition rates from latent state to infectious state and from infectious state 

to removed state respectively. And the rates are transformed into probabilities 

assuming in poisson process. 

3.2.2 Arrived and Departed Cases 

In the disease transmission model, latent {IM^{t)) and infectious {IM\t)) 

travelers arrive from other countries by transport k-th and come to the com-

partments E{t) and I{t). A single population model adapts the travel effect 

from 3 modes of transport: sea, land, and air. Suppose the probabilities of 

travel are the same for all individuals and the probability of travelers import 

from country i-th (i = 1,2, ...,p) are represented by by mode of transport 

fc (A; = 1, 2,3) for air, sea, and land respectively. 

Here are the model compartments of imported cases in latent status, 

/ M 丑⑴= “ 丑 • (3.3) 
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and infectious status, 

= (3.4) 

The number of latent subjects, Ei{t), and the number of infectious subjects, 

Ii{t), at time t of country •i-th are generated from discrete-time SEIR model 

based on the reproduction numbers of the countries, 

Ei{t + At) = Ei{t) + � [ 1 — exp(-i3iAtIi{t)/Ni)] 一 丑 i�[1 — expi-aAt)] 

Ii(t + At) = Ii(t) + Ei(t)ll — exp(-aAt}]-刷[1 — exp(-jAt)] 

(3.5) 

where 1 — exp{—piAtIi{t)/Ni), 1 — exp(—aAt), and 1 — exp(—^At) are the 

per capita probabilities of infection, becoming infectious, and becoming recov-

ered respectively given transmission parameter jSi in population Ni. Individual 

transmission parameter is calculated from the basic reproduction number 

(i?o) of country i-th. It is defined as the average number of secondary infections 

produced by a typical infected individual in a wholly susceptible population. 

In order to allow the transmission heterogeneities between non-local countries, 

we will estimate the reproduction numbers by the initial exponential growth 

rate method [21] employing two months after dates of their first onset cases 

daily surveillance data [115] [34] [47], 

i?o = l + — + ( … ) r (3.6) 
oq 
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where r is the initial exponential growth rate estimated by the least square 

fitting to the model, i.e. /o^farit/im(cumulative number of cases at time t) 

oc rt. 

At the same time, a number of infected individuals will leave and carry 

the pathogens away from the local city. Let mf be the probability of de-

parture from local area by the mode of transport k, the compartments of ex-

ported cases in latent status, EX^{t), and in infectious status, EX乂t), will be 

况几(肌f，五GO) and I{t)) respectively. The compartments 

of exported cases in latent status will be, 

EX^{t) = J 2 b i n { m l E { t ) ) (3.7) 

and in infectious status will be, 

E X ' ( t ) = Y , b i n ( m f j ( t ) ) (3.8) 

Given p is the sensitivity of the entry screening board, so only 1 — ẑ  propor-

tion of imported infectious individuals are able to be scanned [28], the system 

of the stochastic equations: 

E{t + At) = E(t) + B{t) + IM^{t) — EX^(t) — C{t) 
(3.9) 

I{t 十 At) = I{t) + C{t) + (1 — y)IM\t) — EX\t) — D � 
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A simple schematic flow is shown in Figure 3.1. 

( 1 
1 

) \ © ^ 1 / 

/ / 
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Figure 3.1: Schematic flow of SEIR model which incoporates import-export 
latent and infectious individuals 

3.2.3 Antiviral and Hospitalization 

Two new compartments are added into the model, antiviral Treatment T{t) 

and Hospitalization H(i). Once individuals become infectious, they seek for 

antiviral treatment and hospitalization with proportions P t and pn respec-

tively. With regard to limited resources, part of them may be untreated as 

proportions pu- We adapt a ip fraction reduction of infectiousness for individ-

uals who receive antiviral. Suppose classes M{t) and N(t) are the number of 

infectious individuals who take antiviral treatment and hospitalization at time 

t respectively. The P{t) and Q{i) are the number of removed individuals from 

antiviral treatment and hospitalization with transition rates 7r and 7/7 to the 

removed status. Let f^ be the restriction fraction for import transportation 

A:-th, the stochastic system is as follow, 
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S{t + M) =s{t)- -B{t) 

E(t + At) - m - f (1 - fk)IM^{t) - EX' 

I{t + At) =I(t) + C{t) -f - (1 - / f c K i - 释 ' � --EX^{t)-

T{t + At) = m -1 -M{t) -Pit) 

H{t + At) 二 Hit)-hiV� -Q{t) 
R{t + At) 二 R{t) -j - m -hP{t) + Q{t) 

(3.10) 

Because infectious individuals include those being treated and hospital-

ized, the probability of a susceptible person becoming infected is equal to 

1 - exp[P[I{t) + (1 - ^)T(t) + H{t)]/N] for a time step At where (3 is the 

transmission rate. The corresponding distributions for the classes, 

Bit)�bind - expl-^m + (1 — 讽 t ) + H(t)]At]\S{t)) 

C{t)�bm{l — exp( -aAt ) ,F ( t ) ) 

M{t)�bin{pTAt, I{t)) 

N{t) - binipnAt, I{t)) 

D{t) - bin{pu[l — exp(—fRAt)], I{t)) 

P{t)�bin{l - exp{-jTAt),T(t)) 

Q(t)�bin(l - H(t)) 

(3.11) 

In this model, is the transition rates from infectious state to removed 

state. The 77- and are the transition rates from the treatment state to 

the removed state and from the hospitalization state to the removed state 
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respectively. The detailed descrptions of the parameters 

Table 3.2. A simple schematic flow is showed in Figure 3.2. 

highlighted in 

/ / w T 
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H 

Figure 3.2: Schematic flow of SEIR model which incorporates the compart-
ments treatment and hospitalization with import-export latent and infectious 
individuals 

3.3 Case Study: Effectiveness of Travel Re-

striction for 2009 Influenza A (HlNl ) Pan-

demic in Hong Kong 

Using the 2009 influenza A (HlNl) pandemic as a case study, the methodology 

was employed to assess the effectiveness of the travel restriction via different 

transportation in Hong Kong. The effectiveness of the antiviral and hospi-

talization was also studied for the comparison. Furthermore, the effects of 

changes in the reproduction numbers from the non-local countries, the screen-

ing sensitivity on entry border points, the implementation date of travel re-

strictions, and the length of latent period were investigated. The results would 

offer valuable advice to the government policy makers and the public health 

experts. 
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3.3.1 Materials 

Population and Transportation 

Population data were taken from the International Database (IDB), U.S. Cen-

sus Bureau [89]. The individual probability of travel for each country was 

calculated by the daily rate of travel divided by the population size. The ar-

rival data were taken from visitor arrival statistics provided by the Hong Kong 

Tourism Board [62]. The statistics included the total number of arrivals by 

countries with their modes of transport. Forty-four countries were selected 

which annually contributed more than 95% of the arrivals to Hong Kong (Fig-

ure 2.4). The yearly statistics for frequency of departures from Hong Kong 

residents by different modes of transport were collected from the Census and 

Statistics Department, Hong Kong [38]. The data were assumed to be uni-

formly distributed daily. 

Epidemiological Details 

Since we did not have any available information of the cross-immunity from 

past influenza infections, the initial population was set to be 100% susceptible. 

The local daily surveillance of confirmed infected cases was from the press 

releases on human swine flu, Department of Health, Hong Kong [92]. The 

average latent and infectious periods of influenza A (HlNl) were set to 1.45 

and 2.9 days respectively [44, 16]. The length of the latent period would be 

tested in a sensitivity analysis for the values of a half-day and two days. 

The latent (IM^{t)) and infectious {IM^(t)) travelers were based on the 

discrete-time SEIR model which depended on the basic reproduction num-

bers. The reproduction numbers were estimated by the initial exponential 

growth rate method [21] where daily surveillance data，from the World Health 

Organization (WHO) [115] and the European Centre for Disease Prevention 

and Control (ECDC) [34] pandemic HlNl situation updates, of two months 
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Table 3.1: Frequency of departures and 
of transports in 2007 

arrivals by countries with the modes 

Mode of transport 
Country Total Air Sea Land 
Departure 
Hong Kong 80,682,000 6,141,000 8,871,000 65,670,000 
Arrival 
United States 1,230,927 724,023 191,178 315,726 
Canada 395,167 219,469 59,004 116,694 
Honduras 1,662 675 225 762 
Mexico 35,706 21,260 5,821 8,625 
Argentina 10,515 5,690 1,805 3,020 
Brazil 40,339 19,861 8,061 12,417 
Venezuela 10,896 4,356 1,612 4,928 
United Kingdom 601,168 448,647 68,007 84,514 
Netherlands 110,816 70,592 15,712 24,512 
Denmark 30,013 18,734 4,193 7,086 
Finland 21,830 13,365 3,448 5,017 
Norway 18,624 12,381 2,327 3,916 
Sweden 49,810 30,909 7,449 11,452 
Austria 24,046 14,514 4,529 5,003 
Germany 234,763 149,370 38,523 46,870 
Switzerland 46,870 32,529 6,561 7,780 
France 231,091 135,291 41,515 54,285 
Belgium 32,413 20,190 5,114 7,109 
Italy 118,841 73,043 17,564 28,234 
Portugal 18,639 9,419 8,199 1,021 
Spain 65,131 38,460 10,757 15,914 
Russia 32,858 21,256 4,314 7,288 
South Africa 72,897 47,001 4,357 21,539 
Bahrain 2,500 1,833 106 561 
Egypt 16,361 7,764 579 8,018 
Israel 63,435 38,692 9,537 15,206 
Jordan 11,084 4,809 333 5,942 
Kuwait 4,366 2,838 283 1,245 
Saudi Arabia 19,435 13,616 787 5,032 
Turkey 41,011 20,619 2,764 17,628 
United Arab Emirates 11,881 9,358 615 1,908 
Australia 633,599 418,760 83,173 131,666 
New Zealand 117,215 82,461 10,762 23,992 
Japan 1,324,336 748,478 273,334 302,524 
South Korea 876,231 507,872 136,095 232,264 
Indonesia 366,217 185,197 63,102 117,918 
Malaysia 504,487 237,542 105,036 161,909 
Philippines 552,942 365,490 70,956 116,496 
Singapore 631,963 393,423 93,794 144,746 
Thailand 387,219 246,732 47,800 92,687 
India 317,510 178,018 33,588 105,904 
Taiwan 2,238,731 1,248,228 123,793 866,710 
Macau 626,103 30,547 553,682 41,874 
China 15,485,789 2,069,683 1,618,643 11,797,463 

The statistics were from the Hong Kong Tourism Board [62] and the Census and Statistics 
Department, Hong Kong [38]. 43 



after the first onset case was used for model fitting. The surveillance data from 

different countries were listed on internet [113]. A sensitivity analysis was per-

formed on the RQS of the non-local countries for values with 20% increases and 

20% decreases respectively. 

3.3.2 Scenario Design 

The mathematical model was developed to assess the effectiveness of: (i) the 

travel restrictions relating to different means of transport; and (ii) the use of 

the antiviral and the hospitalization for the influenza A (HlNl) pandemic in 

Hong Kong locally. The travel restrictions were supposed to take effect on 

the day after the first global onset case. Different start dates were tested in 

the sensitivity analysis. The antiviral and the hospitalization strategies were 

implemented locally 3.5 months after the first global onset case, which was 

similar to the strategies from the Department of Health, Hong Kong [90]. 

Travel restrictions relating to sea, land, and air travel. We applied 90% 

and 99% import restrictions (fk) on different combinations of A;~th transport. 

We also considered that only one-third of infectious cases was identifiable at 

the entry borders at the baseline scenario[28]. A 95% value and a 5% value 

of screening sensitivities were tested in the sensitivity analysis section. In 

addition, the start date on the travel restrictions was tested for three months 

and five montlis after the first global onset case, respectively. 

antiviral and hospitalization. We assumed that 12% (pt) of the infectious 

subjects were offered antiviral and 6% (pn) of the infectious subjects were 

selected for hospitalization, according to the experience in influenza pandemic 

[49，119]. The remaining 82% (pu) of infectious individuals were untreated. 

The antiviral would reduce 60% infectiousness for the individuals [40]. Both 

interventions would reduce the average infectious period by 1.5 days [7]. Com-

partments for antiviral T{t) and hospitalization H{t) were developed in the 
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model for assessment. 

The detailed descriptions of the parameters were highlighted in Table 3.2. 

Epidemic evolution 

The influenza A (HlNl) epidemic was seeded according to the start dates 

(Table 3.3) of the countries [115] [34]. The earliest epidemic was seeded at 

Mexico on March 11, 2009 [47]. Each country developed its own infected 

cases which generated from the discretized-time SEIR model based on the 

estimated reproduction number. At the same time, the countries sent their 

infected cases to Hong Kong and the local epidemic evolution was initiated by 

the successive imported cases via air, sea, and land traffic. The first passage 

times (FPT) and first one hundred passages times (FHPT) were calculated for 

different restriction strategies. 

Baseline scenario 

Since the Hong Kong government confirmed the first imported case of influenza 

A (HlNl) on May 1，2009 [91], the initial numbers of latent cases Ei(0) and 

infectious cases 7^(0) were iteratively estimated, and this minimized the differ-

ence between the reported date and the simulated first passage time (FPT). 

Adapting the stochastic nature, the baseline transmission rate, j3 was fitted 

for the first two months after the day of the first local onset case without any 

travel restrictions and intervention. The local daily surveillance of confirmed 

infected cases, shown in Figure 3.3, was from the press releases on human 

swine flu, published by the Department of Health, Hong Kong [92]. Optimum 

parameter was chosen which had average minimum relative mean square error 

between empirical and estimated cumulative incidence by Monte Carlo simu-

lation. The reproduction number was the product of the transmission rate and 

the average infectious period. We adopted the range of parameter space for 

the reproduction numbers according to previous influenza A (HlNl) studies 
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Table 3.2: Parameters, definitions, 
Parameter Definition 

and values for the model 
Value Ref/remarks 

î o 

TE = l/c 

TI 

TT 

TH 

PT 

VH 

PU 

IR 

IT 

IH 

fk 

reproductive number 

Average latent period (days 

Average infectious period (days) 

Average infectious period (days) 
for individuals treated with an-
tiviral treatment 

Average infectious period (days) 
for hospitalized individuals 

Proportions of infectious sub-
jects selected for treatment 

Proportions of infectious sub-
jects selected for hospitalization 

Proportions of untreated infec-
tious subjects 

Transition rates from infectious 
state to removed state 

Transition rates from treatment 
state to removed state 

Transition rates from hospital-
ization state to removed state 

Restriction fraction 
transportation 

for k-th 

Fraction of infectiousness reduc-
tion for antiviral treatment 

Sensitivity of the screening board 
for infectious subjects 

Estimated 

1.45 

2.9 

1.4 

1.4 

0.12 

0.06 

1 — PT — Pij=0.82 

l/Tj 二 0.34 

1/(TT - 1 )=2 

l/(Tff - 1)=2 

90%, 99% 

60% 

0.3 

Local baseline es-
timated about 1.3; 
test in range from 
1.1 to 1.7 

[44] [16]; test with 
0.5 and 2 days 

[44] [16] 

[7] 

[7] 

[49] 

[119] 

Assumption 

[40] 

[28]; test with 0.95 
and 0.05 
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Table 3.3: Start date of epidemic (2009) and 
Country Start date M M / D D 

estimated RQ (CI) 
Ro (CI) 

United States 04/21 1.62 1.52， 1.72) 
Canada 04/28 1.42 1.38, 1.47) 
Honduras 05/23 1.39 1.31， 1.48) 
Mexico 03/11 1.56 1.52， 1.59) 
Argentina 05/09 1.81 1.73， 1.90) 
Brazil 05/09 1.45 1.42, 1.49) 
Venezuela 05/29 1.43 1.37, 1.49) 
United Kingdom 04/28 1.51 1.47’ 1.54) 
Netherlands 05/01 1.42 1.38, 1.47) 
Denmark 05/02 1.37 1.32, 1.42) 
Finland 05/13 1.32 1.30, 1.35) 
Norway 05/11 1.27 1.26, 1.28) 
Sweden 05/07 1.39 1.37, 1.41) 
Austria 04/30 1.24 1.20, 1.27) 
Germany 04/30 1.37 1.34, 1.39) 
Switzerland 05/01 1.38 1.35, 1.41) 
France 05/02 1.33 1.31, 1.35) 
Belgium 05/14 1.24 1.23， 1.26) 
Italy 05/03 1.29 1.27， 1.31) 
Portugal 05/06 1.24 1.21， 1.27) 
Spain 04/28 1.30 1.25, 1.35) 
Russia 05/23 1.06 1.04, 1.08) 
South Africa 06/18 1.69 1.62, 1.76) 
Bahrain 05/27 1.35 1.31, 1.40) 
Egypt 06/03 1.35 1.30, 1.40) 
Israel 04/29 1.42 1.39, 1.45) 
Jordan 06/17 1.26 1.23， 1.30) 
Kuwait 05/25 1.10 1.09, 1.11) 
Saudi Arabia 06/03 1.48 1.43, 1.54) 
Turkey 05/17 1.30 1.27, 1.32) 
United Arab Emirates 05/25 1.30 1.25， 1.34) 
Australia 05/09 1.87 1.77, 1.98) 
New Zealand 04/29 1.35 1.30, 1.41) 
Japan 05/09 1.44 1.35, 1.53) 
South Korea 05/03 1.43 1.39， 1.46) 
Indonesia 06/24 1.69 1.62, 1.75) 
Malaysia 05/16 1.59 1.54， 1.64) 
Philippines 05/22 1.66 1.60, 1.71) 
Singapore 05/27 1.58 1.53, 1.64) 
Thailand 05/14 1.80 1.71, 1.88) 
India 05/17 1.56 1.51, 1.60) 
Taiwan 05/20 1.28 1.23, 1.32) 
Macau 06/19 1.39 1.34， 1.45) 
China 05/12 1.52 1.50， 1.55) 

The epidemic start dates of the countries were from WHO [115] and ECDC [34]. 
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[47] [44] [17] [31], 

Figure 3.3: Local cumulative incidence from May 1, 2009 to June 30, 2009. 

3.3.3 Computer simulation 

The model was implemented in software SAS 9.1.3. Simulation was started 

from the day of first global onset case with one day time step. The program 

generated one hundred realizations for each scenerio. The medians, means, 

and the 95% non-parametric confidence intervals of tlie incidence and the time 

of imported case arrivals were calculated over the realizations among different 

scenarios. The syntax and the functions of the SAS programs were highlighted 

in Appendix A. 

3.3.4 Result 

Scenarios with no interventions 

Given no intervention in the early epidemic period, the local baseline RQ for 

influenza A (HlNl) was estimated to be around 1.4 during the first two months 

after the reported FPT. The estimated parameters Ei{0) and 7 (̂0) were equal 
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to 90 individuals which obtained May 4 as a mean FPT with a 95% confidence 

interval [Apr 14, May 16]. Values of RQ were adopted for the mild {RQ — 1.1) 

and the severe (RQ = 1.7) scenarios in Hong Kong, and these were in line with 

other studies [47, 121]. 

Showed in Table 3.3, the RQS were ranged from 1.1 to 1.9 for other countries. 

All of the estimated initial growth rates were fitted significantly (p — value < 

0.05). In the baseline scenario {RQ = 1.4), the medians of FPT and first one 

hundred passage time (FHPT) of infected cases to Hong Kong were the 55th 

and the 90th day, respectively (Table 3.4). Because the influenza A (HlNl) was 

initiated in the Americas, the infected cases arrived in Hong Kong at the fourth 

month by air travel, which was the main means of transport from the Americas 

(Figure 3.4). The number of imported cases by air transport was more than 

that by land transport during the first six months. Afterwards, because the 

emerging vims had circulated to most the Asian countries, including China, 

the number of imported cases thus increased exponentially by land transport 

during the seventh month after the first global case onset. Because ships were 

not the main external means of transport to Hong Kong, they did not deliver 

a large number of cases during the epidemic period (Figure 3.4). 

Given no control measures, the cumulative AR was 4.7% in the first five 

months, and it exceeded more than 50% after seven months, when the RQ — LA 

in Hong Kong. The seven months' cumulative AR was close to that of the 

final AR (Table 3.5). For a mild scenario (RQ = 1.1), there was no more 

than 2% cumulative AR in the first five months locally, and the seven months' 

cumulative AR only reached two-thirds of the final cumulative AR (Table 3.6). 

If the local scenario was severe {RQ = 1.7), the seventh month was near the 

end of the influenza A (HlNl) epidemic, and the cumulative AR exceeded 70% 

(Table 3.7). 
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Table 3.4: Median FPTs and FHPTs 
at the baseline scenario. 

days) with confidence intervals (CI) 

Control measure Transportation FPT (95% CI) FHPT (95% CI) 
No travel restriction 55 (35， 67) 90 (89, 92) 
90% travel restriction Air 62 (42, 72) 99 (97, 100) 

Sea 56 (34, 67) 92 (90, 93) 
Land 58 (44, 69) 93 (91, 95) 
Air, Sea 66 (51, 77) 102 (101，104) 
Air, Land 69 (45, 81) 106 (104, 107) 
Sea, Land 58 (30, 69) 95 (93，96) 
All transports 94 (88, 98) 114 (114, 115) 

99% travel restriction Air 61 (37, 72) 99 (97,101) 
Sea 57 (28, 68) 92 (90, 94) 
Land 59 (38, 69) 93 (92, 95) 
Air, Sea 65 (39, 78) 104 (101, 105) 
Air, Land 68 (49, 82) 107 (108, 110) 
Sea, Land 59 (34, 70) 95 (93, 96) 
All transports 117 (116, 118) 138 (138，139) 

Travel restrictions took effect on the day after the first global case onset. The 
medians and the non-parametric 95% confidence intervals were obtained from 
100 simulation runs. 
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Table 3.5: Median cumulative ARs (in %) with confidence intervals (CI) for 
different control measures without AH at the baseline scenario. 

Control measure Transportation No antiviral and hospitalization 

5 months 7 months End of epidemic 
54.1 (53.9, 54.3) 57.8 (57.6， 57.9) 
49.1 (48.7， 49.8) 56.2 (56.1， 56.3) 
52.9 (52.7’ 53.2) 57.1 (57.0, 57.2) 
50.5 (50.2， 50.9) 55.0 (54.9, 55.1) 
45.9 (45.3, 47.0) 55.5 (55.4, 55.6) 
39.5 (38.5, 40.6) 53.2 (53.0, 53.3) 
48.8 (48.5, 49.2) 54.3 (54.2, 54.4) 
25.9 (24.6， 27.2) 52.3 (52.2’ 52.5) 
48.4 (47.8， 49.0) 56.0 (55.9, 56.2) 
52.8 (52.6’ 53.2) 57.0 (57.0, 57.2) 
50.1 (49.8, 50.8) 54.7 (54.6， 54.9) 
44.0 (43.1, 45.1) 55.2 (55.1， 55.4) 
34.7 (33.2， 37.6) 52.6 (52.5, 52.8) 
48.1 (47.7, .48.7) 53.9 (53.7’ 54.0) 
2.4 (1.9, 2 .9) 51.7 (51.5, 51.8) 

No travel restriction 
90% travel restriction 

99% travel restriction 

Air 
Sea 
Land 
Air, Sea 
Air, Land 
Sea, Land 
All transports 
Air 
Sea 
Land 
Air, Sea 
Air, Land 
Sea, Land 
All transports 

(4.3，5.2) 

(2.0, 2.5) 
(3.7, 4.6) 
(3.3, 4.1) 
(1.2, 1.8) 
(0.9, 1.2) 
(2.8, 3.5) 
(0.3, 0.4) 
(1.6, 2.2) 
(3.7, 4.9) 
(3.3, 4.8) 

1.13 (1.0，1.4) 

0.7 (0.6, 1.1) 
2.9 (2.7, 3.4) 
0.0 (0.0, 0.0) 

4.7 
2.0 

4.1 
3.7 
1.4 
1.0 
3.0 
0.3 
1.8 

4.0 
3.6 

Travel restrictions took effect on the day after the first global case onset. The medians 
the 95% non-parametric confidence intervals of each scenario were obtained from 100 
simulation runs. 

and 

Table 3.6: Median cumulative ARs (in %) with confidence intervals (CI) for 
different control measures without AH at the mild scenario. 

Control measure Transportation No antiviral and hospitalization 

5 months 7 months End of epidemic 
1.6 (1.5， 1.7) 23.5 (23.3； ,23.7) 33.8 (33.6’ 33.9) 
0.7 (0.7, 0.8) 17.1 (16.9； ,17.3) 30.7 (30.5, 30.9) 
1.4 (1.3， 1.4) 21.5 (21.2, ,21.7) 32.5 (32.4, 32.7) 
1.3 (1.2, 1.3) 17.0 (16.8, ,17.4) 28.2 (28.0, 28.5) 
0.5 (0.5， 0.5) 14.1 (13.9^ ,14.3) 29.3 (29.1, 29.5) 
0.4 (0.3, 0.4) 7.9 (7.7, 8 •1) 23.6 (23.5, 23.9) 
1.0 (1.0, 1.1) 14.3 (14.0, ,14.6) 26.5 (26.2, 26.8) 
0.1 (0.1， 0.2) 3.6 (3.4, 3 .8) 21.1 (20.7, 21.4) 
0.6 (0.6， 0.7) 16.3 (16.1: ,16.5) 30.4 (30.2， 30.6) 
1.4 (1.3， 1.4) 21.2 (21.0, ,21.6) 32.4 (32.2, 32.6) 
1.2 (1.2， 1.3) 16.3 (16.1. ,16.6) 27.6 (27.4, 27.8) 
0.4 (0.4, 0.4) 12.9 (12.6： ,13.1) 28.8 (28.6, 29.0) 
0.2 (0.2， 0.3) 5.6 (5.5, 5 .9) 22.1 (21.8, 22.4) 
1.0 (0.9, 1.0) 13.2 (12.9: ,13.5) 25.5 (25.3, 25.8) 
0.0 (0.0, 0.0) 0.3 (0.3, 0 .3) 19.5 (19.0， 19.9) 

No travel restriction 
90% travel restriction 

99% travel restriction 

Air 

Land 
Air, Sea 
Air, Land 
Sea, Land 
All transports 
Air 
Sea 
Land 
Air, Sea 
Air, Land 
Sea, Land 
All transports 

Travel restrictions took effect on the day after the first global case onset. The medians and 
the 95% non-parametric confidence intervals of each scenario were obtained from 100 
simulation runs. 
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Day one was taken to be March 11, 2009 (the time of the first global case 
onset). The solid lines represent the average cases; the dotted lines represent 
the corresponding lower and upper bounds of the 95% non-parametric 
confidence intervals. 

Impact of the interventions 

Table 3.4 shows that travel restrictions worked well for slowing down the local 

spread of the influenza A (HlNl) epidemic in Hong Kong at the baseline fitted 

scenario {RQ = 1.4). Excepting all air, sea, and land travel restrictions, there 

were no big differences for FPTs and FHPTs between 90% and 99% restrictions 

of one or two kinds of transport (Table 3.4). Among the three kinds of single 

transport restrictions, air travel restrictions worked best in slowing down the 

FPT and FPHT; they delayed the passage times for one more week than 

when no travel restrictions were used. The FPT and FHPT could have an 

additional one to two weeks' delay when both air and land transports were 

restricted. Once the volume of all transports was reduced 90%, more than one 

month delay to FPT and FHPT was observed compared to that with no travel 
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Figure 3.4: Number of imported cases to Hong Kong by different transports 
vs. days with no travel restriction. 
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Figure 3.5: Daily incidences vs. days at the baseline scenario {RQ = 1.4) 
without the uses of the antiviral and hospitalization. 
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The upper panel (A) and the lower panel (B) illustrate the 90% and the 99% 
restriction rescaling respectively. Day one was taken to be March 11，2009 
(the time of the first global case onset). The solid lines represent the average 
cases; the dotted lines represent the corresponding lower and upper bounds 
of the 95% non-parametric confidence intervals. 
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Table 3.7: Median cumulative ARs (in %) with confidence intervals (CI) for 
different control measures without AH at the severe scenario. 

Control measure Transportation No antiviral and hospitalization 

5 months months End of epidemic 
No travel restriction 
90% travel restriction 

99% travel restriction 

Air 
Sea 
Land 
Air, Sea 
Air, Land 
Sea, Land 
All transports 
Air 
Sea 
Land 
Air, Sea 
Air, Land 
Sea, Land 
All transports 

21.6 (16.5，48.7) 

9.9 (6.5, 28.2) 

18.2 (13.9, 33.8) 

16.7 (12.6, 28.5) 

5.8 (4.2’ 11.4) 

4.5 (2.7, 15.5) 

14.0 (10.2，28.7) 

0.9 (0.8’ 1.1) 

8.9 (6.1, 18.8) 

17.4 (13.6, 25.5) 

16.5 (12.5, 29.2) 

5.4 (3.4，11.5) 

3.3 (1.9, 9.3) 

13.2 (9.8, 22.3) 

0.0 (0.0，0.0) 

72.2 

71.2 

71.9 

70.9 

70.7 

69.4 

70.5 

66.3 

71.1 

71.8 

70.7 

70.5 

70.3 

23.9 

(72.1, 

(71.1， 

(71.8’ 

(70.8, 

(70.5, 

(69.0, 

(70.4， 

(65.8’ 

(71.0， 

(71.7, 

(70.7, 

(70.2’ 

(68.3’ 

(70.2， 

(18.7’ 

72.3) 

71.4) 

72.0) 

71.0) 

70.9) 

69.9) 
70.7) 

66.9) 
71.3) 

71.9) 

70.9) 

70.8) 

69.6) 
70.4) 

28.9) 

72.9 

72.0 

72.5 

71.3 

71.6 

70.3 

70.9 

69.8 

71.9 

72.4 

71.1 

71.4 

70.0 

70.7 

69.5 

(72.8， 

(71.9, 

(72.4’ 

(71.2’ 

(71.5， 

(70.2， 

(70.8， 

(69.8, 

(71.8’ 

(72.4， 

(71.1’ 

(71.3’ 

(69.9， 

(70.6, 

(69.4, 

72.9) 

72.0) 

72.6) 

71.4) 

71.7) 

70.4) 

71.0) 

70.0) 

72.0) 

72.5) 

71.2) 

71.5) 

70.1) 

70.8) 

69.6) 

Travel restrictions took effect on the day after the first global case onset. The medians and 
the 95% non-parametric confidence intervals of each scenario were obtained from 100 
simulation runs. 

fraction reduction. Moreover, a 99% travel restriction could have additional 

two months' delay to FPT and FHPT (Table 3.4). 

Among the three kinds of transport, the restriction on air travel was ef-

fective in controling the five months' cumulative ARs; the ARs kept no more 

than a half of the one from baseline (Table 3.5). The peak time could have 

two more weeks' delay if a single 99% air travel restriction had been imposed 

(Figure 3.5B). Once the land travel was also blocked in either 90% or 99%, 

seven months' cumulative ARs would have a 15% to 20% decrease and five 

months' cumulative ARs could be maintained at around 1% on average. They 

also deferred the peak time for about 3.5 weeks. Most importantly, both the 

90% and the 99% travel restrictions for all means of transport were able to 

keep no more than 1% of the five months' cumulative ARs. The 90% rescaling 

of all means of transport could maintain the seven months' cumulative AR 

as a half of when there were no travel restrictions, and it delayed the peak 
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time from the 25th week to the 30th week (Figure 3.5A). Compared to when 

no travel restrictions were implemented, the 99% travel restriction kept the 

seven months' cumulative AR to below 3% on average, and it also deferred 

the peak time for 11 weeks (Figure 3.5B). Nevertheless, the blocking of sea or 

land transport did not confer any large reduction in the five months' and seven 

months' cumulative ARs. The travel restrictions also showed no large reduc-

tion in cumulative ARs at the end of the influenza A (HlNl) epidemic. Even 

when all transports were 99% rescaled, there was only a 5% cumulative AR 

drop compared to that when no travel restrictions were implemented (Table 

3.5). 

With the combined use of antiviral and hospitalization (AH), the travel 

restrictions made greater impacts on slowing down the ARs increase and de-

ferring the incidence peak time. Even if no external travel restrictions had been 

implemented, the seven months' and final cumulative ARs had still decreased 

from 54% to 29% and from 58% to 37%, respectively (Table 3.8). When travel 

restrictions were implemented, the five months' and the seven months' cumu-

lative ARs were reduced by more than half of those when no intervention was 

implemented. Although the blockings on a single route did not greatly slow 

down the cumulative ARs' growths, the restrictions on air travel could delay 

the peak time for more than three weeks (Figure 3.6A and Figure 3.6B). As 

shown in Table 3.8, the blocking of air and land travel was one of the more ef-

fective ways of slowing down the growth of the cumulative ARs. In addition to 

the use of AH, a 99% restriction of air and land travel could maintain the seven 

months' cumulative AR to below 10%. They could also delay the peak time for 

more than six weeks (Figure 3.6B). Once all the external means of transport 

were 99% rescaled with the use of AH, the increase in the cumulative ARs was 

greatly deferred, and no more than 1% of the ARs were shown. Most impor-

tantly, it greatly extended the peak time, which occurred about five months 

after when no interventions were implemented (Figure 3.6B). Apart from the 
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epidemic delay, the restrictions on all means of transports could reduce the 

peak incidence for more than half of that when only using AH (Figure 3.6A 

and Figure 3.6B). The 99% travel restriction on all means of transport was 

also able to reduce the final cumulative AR to about 14% in addition to the 

use of AH (Table 3.8). 

Table 3.8: Median cumulative ARs (in %) with confidence intervals (CI) for 
different control measures with AH at the baseline scenario. 

Control measure Transportation antiviral and hospitalization 

5 months 7 months End of epidemic 
2.4 (2.3’ 2.9) 29.2 (28.9’ 29.6) 36.5 (36.3’ 36.6) 

Air 1.0 (1.0， 1.1) 22.5 (22.2, 22.8) 33.6 (33.4, 33.8) 
Sea 2.1 (2.0， 2.6) 27.2 (26.9, 27.8) 35.3 (35.2, 35.5) 
Land 1.9 (1-8, 2.5) 22.8 (22.5, 23.5) 31.3 (31.1, 31.5) 
Air, Sea 0.7 (0.7, 0.8) 19.2 (18.8, 19.5) 32.3 (32.1， 32.5) 
Air, Land 0.5 (0.5, 0.6) 11.9 (11.4, 12.4) 27.1 (26.9’ 27,4) 
Sea, Land 1.5 (1.4, 1.7) 20.0 (19.5, 20.3) 29.7 (29.5, 29.9) 
All transports 0.2 (0.2’ 0.2) 5.6 (5.4, 6.0) 24.9 (24.6, 25.2) 
Air 0.9 (0.9， 1.0) 21.7 (21.3， 22.0) 33.3 (33.1, 33.4) 
Sea 2.1 (1.9’ 2.3) 27.0 (26.7, 27.4) 35.2 (35.0, 35.4) 
Land 1.8 (1.7’ 2.1) 22.0 (21.7， 22.5) 30.7 (30.4, 30.9) 
Air, Sea 0.6 (0.5, 0.7) 17.7 (17.3, 18.1) 31.8 (31.6, 32.0) 
Air, Land 0.4 (0.3， 0.5) 8.8 (8.4，9, .3) 25.7 (25.5, 26.1) 
Sea, Land 1.5 (1.4’ 1.7) 18.7 (18.3, 19.2) 28.8 (28.6, 29.0) 
All transports 0.0 (0.0, 0.0) 0.5 (0.4, 0, .6) 22.9 (22.6, 23.2) 

No travel restriction 
90% travel restriction 

99% travel restriction 

Travel restrictions took effect on the day after the first global case onset, whereas the 
antiviral and hospitalization were implemented 3.5 months after the first global case onset. 
The medians and the 95% non-parametric confidence intervals of each scenario were 
obtained from 100 simulation runs. 

For a milder local scenario {RQ = 1.1), the travel restrictions were more 

effective on the delay of the influenza A (HlNl) epidemic. The blocking of 

air travel was still the best choice among the three means of transport for 

controling the increase of cumulative AR in the first five months of the epidemic 

(Table 3.6). Because the disease transmissions were comparatively slow and 

mild, both the 90% and the 99% land import restrictions decreased the peak 

ARs by one-third. If the air travel was also restricted, the peak time would 

be deferred by three to four weeks (Figure 3.7A and Figure 3.7B). In addition 
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Figure 3.5: Daily incidences vs. days at the baseline scenario {RQ = 1.4) 
without the uses of the antiviral and hospitalization. 
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The upper panel (A) and the lower panel (B) illustrate the 90% and the 99% 
restriction re-scaling respectively. Day one was taken to be March 11, 2009 
(the time of the first global case onset). The solid lines represent the average 
cases; the dotted lines represent the corresponding lower and upper bounds 
of the 95% non-parametric confidence intervals. 
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to keeping the seven months' cumulative below 1%, the 99% rescaling of all 

means of transport was able to delay the peak time for a year after the first 

global case arose (Table 3.6; Figure 3.7B). The 90% all travel restrictions could 

also delay the peak time for about seven weeks. In the presence of AH, the 

air, land and all transports restrictions showed an obvious impact on ARs 

reduction (Figure 3.8A and Figure 3.8B). The 90% and 99% blockings of air 

and land travel controled the final ARs by no more than 5%. Once all routes of 

travel were restricted with the use of AH, the spread of the local epidemic was 

halted; the 99% travel restriction was able to keep the value of final cumulative 

AR 0.2% on average (Table 3.9). 

Table 3.9: Median cumulative ARs (in %) with confidence intervals (CI) for 
different control measures with AH at the mild scenario. 

Control measure Transportation antiviral and hospitalization 

5 months 7 months End of epidemic 
No travel restriction 1.0 (1.0’ 1.0) 11.5 (11, .4， 11.6) 15.9 (15.8，16.0) 
90% travel restriction Air 0.5 (0.4, 0.5) 8.1 (8.0，8.2) 12.6 (12.4, 12.7) 

Sea 0.9 (0.8，0.9) 10.2 (10 .1’ 10.3) 14.6 (14.4, 14.7) 
Land OR (0 8, 0 8) 6.9 (6.8， 7.1) 9.9 (9.7, 10.0) 
Air, Sea 0.3 (0.3， 0.3) 6.7 (6.6, 6.8) 11.0 (10.9，11.2) 

Air, Land 0.2 (0.2, 0.2) 3.0 (2.9, 3.1) 5.1 (5.0，5.2) 

Sea, Land 0.6 (0.6, 0.7) 5.4 (5.4, 5.6) 8.0 (7.9, 8.1) 
All transports 0.1 (0.1, 0.1) 1.3 (1.3, 1.4) 2.5 (2.5, 2.6) 

99% travel restriction Air 0.4 (0.4’ 0.4) 7.8 (7.7, 7.8) 12.2 (12.1’ 12.3) 
Sea 0.9 (0.8, 0.9) 10.0 (10.0’ 10.1) 14.4 (14.3, 14.6) 
Land 0.8 (0.7， 0.8) 6.4 (6.4, 6.6) 9.2 (9.0’ 9.3) 
Air, Sea 0.2 (0.2, 0.3) 6.1 (6.1, 6.2) 10.4 (10.3’ 10.6) 
Air, Land 0.2 (0.1, 0.2) 2.1 (2.0, 2.1) 3.5 (3.4, 3.6) 
Sea, Land 0.6 (0.6, 0.7) 4.8 (4.7, 4.9) 7.0 (6.9, 7.2) 
All transports 0.0 (0.0, 0.0) 0.1 (0.1, 0.1) 0.2 (0.2, 0.3) 

Travel restrictions took effect on the day after the first global case onset, whereas the 
antiviral and hospitalization were implemented 3.5 months after the first global case onset. 
The medians and the 95% non-parametric confidence intervals of each scenario were 
obtained from 100 simulation runs. 

However, the import travel restrictions became less effective in the case of 

the severe scenario (RQ = 1.7), especially for the ARs’ reduction. Compared to 

1.6% of the five months' cumulative AR in the mild scenario, the five months' 
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Figure 3.5: Daily incidences vs. days at the baseline scenario {RQ = 1.4) 
without the uses of the antiviral and hospitalization. 

125 
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Ro- no restriction 

The upper panel (A) and the lower panel (B) illustrate the 90% and the 99% 
restriction re-scaling respectively. Day one was taken to be March 11, 2009 
(the time of the first global case onset). The solid lines represent the average 
cases; the dotted lines represent the corresponding lower and upper bounds 
of the 95% non-parametric confidence intervals. 
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The upper panel (A) and the lower panel (B) illustrate the 90% and the 99% 
restriction re-scaling respectively. Day one was taken to be March 11, 2009 
(the time of the first global case onset). The solid lines represent the average 
cases; the dotted lines represent the corresponding lower and upper bounds 
of the 95% non-parametric confidence intervals. 
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Figure 3.5: Daily incidences vs. days at the baseline scenario {RQ = 1.4) 
without the uses of the antiviral and hospitalization. 
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cumulative AR attained 22% on average with a large variation which could be 

up to 49% in the severe scenario (Table 3.7). Imposing restrictions on air travel 

reduced the five months' cumulative AR by more than 50%, and it delayed the 

peak time for more than one week (Figure 3.9A and Figure 3.9B). In the 

severe scenario, the 99% restrictions on all means of transport was still able to 

halt the local spread during the first five months, and it kept the cumulative 

AR to about one-third of that without intervention use; it also deferred the 

epidemic peak time for about eight weeks. Nevertheless, the travel restrictions 

did not greatly contribute to the decrease in the final cumulative ARs and 

peak ARs; this was because of rapid disease transmission (Table 3.7; Figure 

3.9A and Figure 3.9B). The use of the antiviral and hospitalization became 

more important in this scenario; the five months' cumulative AR dropped 

to 9% even when there were no travel restrictions. Because the incidence 

growth was suppressed by the use of AH, the travel restrictions worked better 

in slowing down the epidemic. The 90% rescaling of all means of transport 

reduced the seven months' cumulative AR from 72% to 32% (Table 3.10)，and 

it delayed the epidemic peak for a further seven weeks (Figure 3.10A). When 

a 99% restriction was imposed on all means of transport, the seven months' 

cumulative AR would be kept to no more than 4% on average, and the peak 

time would be delayed for about 12 weeks (Figure 3.10B). 

Effect of Ro from non-local countries 

We adopted 20% increases and 20% decreases to the RQS from a total of 44 

non-local countries, in order to test these effects on our results. The RQS ranged 

from 1.3 to 2.2 with a median value of 1.7 and ranged from 0.8 to 1.5 with a 

median value of 1.1 for the 20% increases and the 20% decreases, respectively. 

Although five countries did not occur any outbreak i.e. RQ < 1, it made small 

impact on the size of infected cases exportation among all countries. 

Showed in Figure 3.11，the external travel restrictions performed slightly 
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Table 3.10: Median cumulative ARs (in %) with confidence intervals (CI) for 
different control measures with AH at the severe scenario. 

Control measure Transportation antiviral and hospitalization 

5 months months End of epidemic 
No travel restriction 
90% travel restriction 

99% travel restriction 

Air 
Sea 
Land 
Air, Sea 
Air, Land 
Sea, Land 
All transports 
Air 
Sea 
Land 
Air, Sea 
Air, Land 
Sea, Land 
All transports 

9.0 

4.2 

7.9 

7.5 

2.4 

2.0 
6.0 

0.4 

3.8 

8.1 

6.8 
2.1 

1.4 

5.9 

0.0 

(7.2， 

(3.0’ 

(6.3’ 

(5.6， 

(1.8， 

(1.2， 

(4.5, 

(0.4’ 

(2.6， 

(6.0, 

(5.3, 

(1.4’ 

(0.9’ 

(4.2, 

(0.0, 

12.9) 

13.1) 

17.6) 

22.1) 

4.5) 

9.2) 

17.9) 

0.5) 
13.3) 

18.7) 

11.3) 

5.1) 

3.4) 

13.0) 

0.0) 

(53.7, 
(50.5, 

(52.9, 

(50.8, 

(48.1’ 

(42.9’ 

(49.4, 

(31.1, 

(49.9， 

(52.7, 

(50.4， 

(46.7, 

(39.5, 
(48.9, 

54.0 

51.0 

53.1 

51.1 

48.8 
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Travel restrictions took effect on the day after the first global case onset, whereas the 
antiviral and hospitalization were implemented 3.5 months after the first global case onset. 
The medians and the 95% non-parametric confidence intervals of each scenario were 
obtained from 100 simulation runs. 
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The upper panel (A) and the lower panel (B) illustrate the 90% and the 99% 
restriction re-scaling respectively. Day one was taken to be March 11，2009 
(the time of the first global case onset). The solid lines represent the average 
cases; the dotted lines represent the corresponding lower and upper bounds 
of the 95% non-parametric confidence intervals. 
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Figure 3.5: Daily incidences vs. days at the baseline scenario {RQ = 1.4) 
without the uses of the antiviral and hospitalization. 
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Figure 3 . 5 : Daily incidences vs. days at the baseline scenario {RQ = 1.4) 
without the uses of the antiviral and hospitalization. 
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The upper panel (A) and the lower panel (B) illustrate the 90% and the 99% 
restriction re-scaling respectively. Day one was taken to be March 11, 2009 
(the time of the first global case onset). The solid lines represent the average 
cases; the dotted lines represent the corresponding lower and upper bounds 
of the 95% non-parametric confidence intervals. 

64 

1
5

 
a

 
还

 
G
 

s
l
e
n
p
!
>
!
p
u
!

 
0
 

� 

呂 B 
a» "D 
u 175 

1 150 

125 

100 

75 

50 

25 

O 



better in deferring the FPTs and the FHPTs when the RQS from non-local 

countries decreased. Given the RQS increased by 20%, the medians of FPT and 

the FHPT were day 44-th and day 74-th respectively with no travel restriction; 

the medians of FPT and the FHPT were day 63-th and day 112-th respectively 

when the RQS decreased 20%. Amongst all situations for the changes of the 

RQS, either 90% or 99% of air travel rescaling could have about 1 week delay 

for the FPTs; but once all means of transport were 90% or 99% restricted, the 

FPT would have one month more delay when the RQS decreased 20% compared 

to that of the RQS with 20% increases. Moreover, the FHPT could be delayed 

for more than 2.5 months with 20% decreases of the RQS, whereas the FHPT 

was delayed for 1.5 months with 20% increases of the RQS for a 99% restriction 

of all means of transport. 

Since the number of imported cases depended on the changes of the RQ 

from the non-local countries, the growth of the local epidemic was affected 

by the cases passage times (Figure 3.12). When the RQS increased by 20%, 

the five months' cumulative AR attained 19% and the epidemic ended at the 

seventh month since the first global case arose. During the first five months, the 

blockings of all external means of transport were still effective on controlling 

the cumulative ARs. A 99% travel restriction maintained about 12% of seven 

months' cumulative AR (Figure 3.12A). Similar to the baseline scenario, the 

travel restriction made greater impacts on slowing down the ARs increase 

with the use of antiviral and hospitalization (AH); a 99% rescaling of means 

of all transport controlled the final AR at about 20% in addition to the use 

of AH (Figure 3.12B). When the RQS decreased by 20%, the travel restrictions 

performed better in slowing down the disease transmission. Even if only the 

air travel was either 90% or 99% restricted, the seven months' cumulative ARs 

would have reduced about 15% compared to that of no intervention (Figure 

3.12C). A 99% restriction of all means of transport would have halted the local 

spread i.e. cumulative ARs < 0.1% in seven months' time whether or not the 
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Figure 3.11: FPT and FHPT when non-local countries RQ increased by 20% 
or decreased by 20%. 

The upper panel (A) and the lower panel (B) illustrate the FPT and the 
FHPT respectively. Day one was taken to be March 11, 2009 (the time of the 
first global case onset). The medians are demonstrated as the dots in the 
interpolations; the corresponding lower and upper bounds of the 95% 
non-parametric confidence intervals are demonstrated as the lower cups and 
upper cups respectively. 
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lU JW M 
The upper panel (A and B) and the lower panel (C and D) show the 
cumulative ARs with the non-local countries' RQS increased by 20% and 
decreased by 20% respectively. The absences and the presences of the uses of 
the antiviral and hospitalization are illustrated in left column (A and C) and 
right column (B and D) respectively. The baseline scenario (RQ = 1.4) was 
adopted. 

Effect of screening sensitivity at entry border points 

In the baseline scenarios, we set 30% as the value of the screening sensitivity 

at entry border points; the value of the screening sensitivity was tested as 

high as 95% and as low as 5% in our results. According to Figure 3.13 and 

3.14, the screening sensitivities at entry border points affected slightly on the 

times of cases arrival. Amongst most of the travel restriction strategies, a 95% 
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AH had been used (Figure 3.12C and 3.12D). However, the final cumulative 

ARs would not be affected by the changes of the RQS from non-local countries. 

Figure 3.12: Median cumulative ARs on different time points when non-local 
countries RQ increased by 20% or decreased by 20%. 
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screening sensitivity showed at most only a one to two weeks additional delay 

to the FHPTs compared to that of a 5% screening sensitivity (Figure 3.13). 

Figure 3.13: FPT and FHPT when screening sensitivity increased to 95% or 
decreased to 5%. 

The upper panel (A) and the lower panel (B) illustrate the FPT and the 
FHPT respectively. Day one was taken to be March 11, 2009 (the time of the 
first global case onset). The medians are demonstrated as the dots in the 
interpolations; the corresponding lower and upper bounds of the 95% 
non-parametric confidence intervals are demonstrated as the lower cups and 
upper cups respectively. 

The increase of the screening sensitivity at entry border points offered a 

moderate benefit on slowing down the growths of cumulative ARs. Showed in 

Figure 3.14A-D, a 95% screening sensitivity showed only half of five months' cu-

mulative ARs compared to that of a 5% screening sensitivity. The 95% screen-

ing sensitivity also decreased the seven months' cumulative ARs by about 10% 

in most of the restriction strategies whether or not the AH had been imposed. 
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Figure 3.14: Median cumulative ARs on different time points when screening 
sensitivity increased to 95% or decreased to 5%. 

ill 
The upper panel (A and B) and the lower panel (C and D) show the 
cumulative ARs with the screening sensitivities increased to 95% and 
decreased to 5% respectively. The absences and the presences of the uses of 
the antiviral and hospitalization are illustrated in left column (A and C) and 
right column (B and D) respectively. The baseline scenario (RQ = 1.4) was 
adopted. 
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Effect of implementation date on travel restrictions 

In the simulation, we started the implementations of travel restrictions at the 

day after the first global case arose. We also tested the impacts on our results 

by pushing the implementation date of the travel restrictions to either five 

months or three months after the first global case arose. Showed in Figure 

3.15A and 3.15B, imposing travel restrictions five months after the first global 

case arose would be too late obviously. Even if all means of transport had been 

99% rescaled, the reduction in the cumulative AR was too small. However, it 

could still decrease the seven months' cumulative AR by no more than 10% 

if the growth of the epidemic was slowed down by the use of AH. Showed 

in Figure 3.15C, imposing the travel restrictions three months after the first 

global case arose would be a little bit late; but fractional blockings on all 

means of transport worked well in deferring the growth of the ARs. The 99% 

restriction would reduce the five months' and seven months' cumulative ARs 

more than half of that without intervention. With the use of AH, imposing 

the 99% restriction of all mean of transport was able to control the cumulative 

AR by no more than 2% in the first seven months; a 90% restriction could still 

maintain the average seven months' cumulative AR about 6% to 7% (Figure 

3.15D). 

Effect of length of latent period 

In the baseline scenario, the length of the latent period was set as 1.45 days, in 

accordance with the reference value. The impacts on the FPTs and the FHPTs 

were tested given that the latent period increased to two days or decreased to 

a half-day. Showed in Figure 3.16, our result was insensitive to the changes on 

the lengths of the latent period. The difference of the latent period's lengths 

did not show large variations on the FPT (Figure 3.16A) among all restrictions 

strategies; even if all means of transport had been 99% blocked, the FHPT 
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Figure 3.15: Median cumulative ARs on different time points when implemen-
tation date of travel restrictions delayed for five months or three months. 

mli 
The upper panel (A and B) and the lower panel (C and D) show the 
cumulative ARs with the implementation dates on travel restrictions delayed 
for five months and three months respectively. The absences and the 
presences of the uses of the antiviral and hospitalization are illustrated in left 
column (A and C) and right column (B and D) respectively. The baseline 
scenario (RQ — 1.4) was adopted. 
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would only have several days' difference between two days and a half-day in 

the latent periods (Figure 3.16B). Since the effect of the latent period's length 

on the local epidemic growth was beyond our scope, only the rate of passages 

i.e. FPT and FHPT had been investigated. 

Figure 3.16: FPT and FHPT when latent period increased to 2 days or de-
creased to 0.5 day. 

The upper panel (A) and the lower panel (B) illustrate the FPT and the 
FHPT respectively. Day one was taken to be March 11，2009 (the time of the 
first global case onset). The medians are demonstrated as the dots in the 
interpolations; the corresponding lower and upper bounds of the 95% 
non-parametric confidence intervals are demonstrated as the lower cups and 
upper cups respectively. 

3.4 Discussion 

The choice of intervention use is usually an issue both for the public and for the 

policy-makers during the epidemic period. Previous mathematical modeling 
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studies demonstrated various impacts on disease control for different interven-

tions [119，39, 49, 74, 110, 97, 107]. In this paper, a mathematical model was 

developed to quantify the impact of the travel restrictions on air, sea, and 

land travel with stochastic uncertainty for human influenza A (HlNl). The 

infectious disease has spread to more than 214 countries and territories, and it 

caused almost 20,000 deaths; the large and dense international travel network 

should be one of the risk factors. Most of Hong Kong's visitors arrived by land 

transport; however, the efficacy of travel restrictions has been strongly argued 

[60，37, 18]. Because of the limited data and the limitations of the methodol-

ogy used in the epidemic models, it was hard to quantify the impact of travel 

restrictions other than that on air travel [55, 23]. In our study, the statistics of 

the number of arrivals in Hong Kong from 44 countries using air, sea, and land 

transport were collected [62], and they were adopted in a mathematical model 

to demonstrate the disease dynamic for influenza A (HlNl) and the impacts 

of the travel restrictions on all modes. The use of antiviral and hospitalization 

was also incorporated into the model in order to allow a proper comparison of 

the effectiveness of the transport restrictions. 

Deferring the disease spread is important to the pandemic management 

of the early phase, whereas public health experts, policy-makers and scientists 

usually require a period of time for decision-making on epidemic control. Once 

the epidemic is not eliminable in the source country, another effective approach 

is to delay the disease spread in the at-risk countries. We adopted the influenza 

A (HlNl) pandemic in 2009 as a case study and the results showed that the 

greatest impact of travel restrictions was to slow down the spread of the disease. 

The local baseline reproduction number (RQ) was estimated to be about 1.4. 

Because the influenza A (HlNl) was initiated in the Americas, the restriction 

on air travel, which was the main means of transport from the Americas to 

Hong Kong, was most effective in delaying the time to the FPT and FPHT 

among the types of single transport restriction. Six months after the first global 
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case arose, the emerging virus had circulated to most Asian countries, including 

China, and the number of imported cases therefore increased exponentially by 

land transport; the five months' cumulative ARs could be maintained around 

1% on average and the peak time could be additionally deferred for 3.5 weeks 

when both air and land transport were thus restricted. Expressed simply, the 

99% restriction of all means of transport was the most efficient strategy for 

defering the local epidemic. It kept the cumulative AR below 3% during the 

first seven months and also it deferred the peak time for 11 weeks. With 

the use of antiviral and hospitalization (AH), the travel restrictions were more 

successful in deferring the growth of the ARs and the incidence peak time. The 

local epidemic was halted during the first seven months and the peak time was 

delayed for an additional five months once all external means of transport 

were 99% rescaled with the use of AH. Most importantly, the restrictions on 

all means of transport decreased the peak incidence by more than half of that 

when using only AH. 

The travel restrictions worked better in the mild scenario (RQ = 1.1)，but 

they performed less well in the severe scenario (RQ = 1.7). When RQ = 1.1， 

the 99% rescaling of all means of transport also greatly delayed the peak time 

for a year. It finally halted the spread of the local epidemic with the use of 

AH. When RQ = 1.7, the 99% restriction on all means of transport was still 

capable of halting the local spread during the first five months. However, the 

disease spread at a higher rate locally and the local infectious cases transmitted 

the HlNl virus to others successively far more than the imported cases did. 

Therefore, the travel restrictions did not greatly contribute to the decrease in 

the peak ARs. In line with previous findings [60], the transport network only 

had a major role when the infected case numbers were low globally. The use 

of AH became more important in the severe scenario because it could suppress 

the incidence growth in the epidemic; the travel restrictions would still be 

effective in the scenario. A 99% restriction on all means of transport with the 
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use of AH could still keep the seven months' cumulative AR at no more than 

4%, and the peak time would be delayed for about 12 weeks. 

Apart from taking control measures locally, the effectiveness of the travel 

restrictions increased with the reduction of the HQS from a total of 44 non-local 

countries. Because the number of imported cases depended on the changes of 

the RQS, the growth of the local epidemic was greatly affected by the successive 

disease transmission from the cases. If control measures had taken effect in 

those non-local countries that decreased the RQS by 20% on average, a 99% 

restriction on all external means of transport would possibly have halted the 

local spread, i.e., the cumulative ARs < 0.1% in seven months' time, whether or 

not the AH had been used. Moreover, increasing the screening sensitivity at the 

entry border points was beneficial for slowing down the growth of cumulative 

ARs; a 95% screening sensitivity showed half of the five months' cumulative 

ARs compared to that of a 5% screening sensitivity amongst most of the travel 

restriction strategies. Our results also suggested that it would be necessary to 

impose the restrictions no later than three months after the first global case 

arose. The implementation of the travel restrictions at the end of the fifth 

month would be almost useless; this is because the local epidemic would have 

by then evolved to a mature stage, in which the disease transmission would 

depend on the local exponentially increased cases rather than on the successive 

imported cases. 

Due to economical, legal, and social consequences, it is hard to rigorously 

enforce the travel restriction even in a single country. However, the importance 

and the potential of imposing the travel restriction cannot be neglected. In 

recent decades, more serious diseases, such as SARS and influenza A (HlNl), 

successively emerged into our society and affected wider age groups compared 

to epidemics in the past. It is predictable that a more lethal virus might 

emerge in the near future. According to our result, the travel restriction is 

able to reduce the rate of the disease spread and even perform better with 
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the combination use of other control measures. Therefore, implementation of 

travel restrictions must be a potential public health control measure to reduce 

and to delay the community disease spread, especially for the next epidemics 

which could be highly intrusive and invasive. Moreover, the pharmaceutical 

interventions, like vaccine and antiviral, are usually not available early enough 

once a new emerging virus has arrived in the community. The travel restric-

tion is a simple and direct non-pharmaceutical intervention to slow down the 

epidemic during the early stage, in order to allow a longer period for the 

preparation of the mitigation response, especially for the emerging virus with 

unknown characteristics. In an additional cost-effectiveness study (Appendix 

C), we examined the costs and benefits of imposing travel restrictions before 

the availability of effective interventions such as antiviral and hospitalization 

on potential extensions of influenza A (HlNl) virus' transmissibilities and 

case-fatality rates. According to our results, the cost of a 99% travel restric-

tion of all means of transports would be $11,636 million if it was imposed 

for 3.5 months before the availability of effective interventions; the travel re-

striction was cost-effective only if the RQ increased to 8 and the case-fatality 

rate > 15%. However, the effect of epidemic delay from the travel restriction 

reduced a large portion of health care costs for imposing 5 months and 6.5 

months before the availability of effective interventions once the disease trans-

mission intensity was comparatively mild with 6% to 15% case-fatality rate; 

the travel restriction was also cost-effective for a late delivery of treatments 

when case-fatality rate attained 25%. 

Not exactly mandatory, the travel rescaling can be implosed by several 

ways, such as travel advisories and screenings at border points. Our analy-

sis also demonstrated that increasing the screening sensitivity at the borders 

would beneficial to delay the passage times of the infected cases as well as 

to slow down the epidemic growth locally. As described by Hollingsworth et 

al. [60], travel restrictions were better applied to the source country during 
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the containment phase. They would be effective in minimizing the number of 

cases being exported, and hence in reducing the successive disease transmission 

country by country over the global transport network. 

In our study, we used a major city, Hong Kong, as a place to demonstrate 

the effectiveness of travel restrictions. Travel restrictions were likely to show a 

better illness rate reduction when the local disease transmission intensity was 

mild. In some rural areas, the disease transmission intensities as well as the 

reproduction numbers were not too high because of limited human mobility 

and contacts. In addition, these areas may not receive a large number of 

travelers from different source regions. So these areas may obtain more benefit 

from imposing the 

additional delay in 

travel restrictions. As mentioned by Caley et al. [19 

importing an epidemic was obtainable. 

an 
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Chapter 4 

Impact of Travel Restriction: 

Source Country 

In this chapter, a new method was developed to evaluate the possibility of the 

disease containment by travel restrictions in view of the source country. In 

most of the epidemic modeling studies, surveillance data are important to the 

parameter configurations in the mathematical models. However, the surveil-

lance data are usually subject to the time delay until the first disease confir-

mation and also to the non-reporting rate. So in section 4.2，we developed an 

Markov Chain Monte Carlo (MCMC) method, which imputed the unobserved 

data, to estimate the model parameters subject to the abovementioned prob-

lems. The method was validated by a series of simulations in section 4.3 and 

was applied to the influenza A (HlNl) outbreak in Mexico which showed in 

section 4.4. the model was able to demonstrate the probability distribution 

of exported cases, and thus the possibility of the disease containment by the 

travel restrictions was assessed. 

According to our result, all of the estimates were consistent with other 

studies. Most importantly, we concluded that only strict restrictions on trav-

elling, i.e., allowing three to 15 travelers exported per day, could have a chance 

of preventing an at-risk country from importing cases from the source region. 

If the travel restrictions had been implemented in combination with other 
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interventions, such as vaccination and antiviral drugs, to reduce the disease 

transmission locally, the possibility of the containment was enhanced. Be-

sides, early control measures in the source region were crucial to contain the 

epidemic. In practice, the travel restrictions are not suggested being the first 

priority of the interventions in view of the source country once a new epi-

demic is initiated; other intervention, such as isolation and antiviral should be 

adopted in the community in order to suppress the growth of disease. As long 

as the incidence is controlled at a low rate, the containment at the source area 

is possible along with other effective interventions. 

4.1 Introduction 

In mid-march 2009, the Mexican government identified an unexpected increase 

in the number of influenza-like illness cases, even though it was not the peak 

season for influenza outbreaks [77]. After about a fortnight, an acute respi-

ratory illness was discovered in two children and it was confirmed as a new 

influenza A (HlNl) virus in mid-April 2009 [78]. The first notification of this 

novel influenza A (HlNl) was announced by the World Health Organization 

(WHO) on April 26, 2009. Because additional cases were successively discov-

ered in the United States [79], the WHO raised the pandemic alert level to 

phase five at the end of April. After the first global influenza A (HlNl) case 

had been confirmed, the containment phase was initiated. Therefore, most 

countries had taken control measures on border points to screen out the sus-

pected cases, especially for those with traveling from. Mexico and the United 

States, in order to prevent the possibility of local disease transmission from 

the source country. 

With the understanding to the distribution of the exported infections from 

the source country, researchers are able to assess the possibility of disease con-

tainment and to have better preparation for the control measures, like the 
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border control. However, researchers have to face the problems of the time 

delay until the first official disease confirmation and the non-reporting rate, 

while formulating the distribution. As for the influenza A (HlNl) pandemic, 

it was believed that the virus had been circulating within communities before 

the disease outbreak was recognized [63，71]. Before the active surveillance of 

influenza A (HlNl) and the confirmative diagnosis from clinicians and micro-

biologists, the virus had been undetected for a period of time. Several studies 

estimated the initial point of the disease outbreak as being around mid-January 

to late-February through the analysis of the viral genetic sequence and the epi-

demic models [47, 106], and the delay would have had a significant impact on 

the simulation results [19, 40]. Apart from the initial time delay, the reporting 

rate was low for the influenza A (HlNl) pandemic. Most of the ascertainment 

was particularly focused on cases with severe condition. Also, asymptomatic 

or mild cases were not presented at medical consultation. A good example of 

official surveillance being underestimated in the disease transmission intensity 

would be the telephone interviews from the Beijing Center for Disease Preven-

tion and Control (CDC) [120], which showed that the consultation rate among 

influenza-like illness (ILI) patients was no more than 50% in Beijing, China. 

Although the issues of initial reporting delay and non-reporting are im-

portant, most of the epidemic modeling studies have neglected these factors 

in model development. Caley, et al. [19] developed a complex probability 

distribution model accounted for the time delay between the start of an epi-

demic and the subsequent cases exported. But the study did not deal with the 

non-reporting issue. Hollingsworth, et al. [60] constructed an epidemic model 

to investigate the impact of travel restrictions. However, the probability of 

exported cases to countries was arbitrarily assumed. Most importantly, no 

estimations have been carried out on the model parameters for the studies. 

In our study, a stochastic mathematical model was constructed to improve 
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the above limitations. Typically, infectious disease transmission model are ei-

ther deterministic or stochastic. The deterministic models are easier to build 

and used to demonstrate the average behavior, but they do not incorporate 

the stochastic uncertainty into the epidemic systems. Besides, the transmis-

sion intensity in the models is determined by the basic reproduction number 

{Ro), which is defined as the average number of secondary infections produced 

by a typical infectious individual in a wholly susceptible population. The RQ 

was estimated in the model and adopted some characteristics of the following 

model. First, we incorporated the time of the first exported case (FET) from 

Mexico to the at-risk countries. With unknown severity and transmissibility 

for the emerging virus, the at-risk countries were alert to the cases arose; given 

the information of the travel intensity, the FET would be an indicator to the 

determination of the disease outbreak stage in the source country. Observed 

from the data source (Table 4.2), most of the reported cases have traveled 

to Mexico or have exposed to the groups with Mexico travelling history and 

the fact gave us insight on the estimation. Second, the model was based on 

Bayesian Theorem, an inference that capable to incorporate the expert sugges-

tions, multiple data sets, and the reference information when establishing prior 

distributions given unknown parameters. Incorporation of the experience and 

the available knowledge regarding the disease characteristic in models is useful 

for the appropriate management of infectious disease [72, 84，112]. Besides, 

the use of Bayesian approach is able to take the uncertainty of parameters into 

account along with the stochastic variation. The Bayesian approach is also 

preferred to vary the parameters for a sensitivity analysis. 

In this chapter, we developed a mathematical model to estimate the repro-

duction number subjected to the initial reporting delay and the reporting rate 

behind the surveillance data. Most importantly, we applied the method to the 

influenza A (HlNl) outbreak in Mexico, in order to demonstrate the proba-

bility distribution of exported cases, and thus studied the possibility of the 
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disease containment by the travel restriction. The methodology and the case 

study would be able to offer the insights of disease transmission and a better 

management in intervention preparation to officials, public health experts, and 

epidemiologists. 

4.2 Methodology 

4.2.1 System of Stochastic Disease Transmission Model 

We adopted a simple stochastic SIR model to describe the disease dynamic 

[66, 56, 2]. Let At be a time step and {t,t + At] be a time interval, and the 

population size, N, is divided into three classes: susceptible {S{t))] infectious 

(/(t)); and recovered {R{t)), at each time point t. Because we could not 

confirm whether the imported cases were in latent status or infectious status 

when they arrived in the countries, we employed an SIR model in convention. 

In the stochastic model, as soon as the susceptible individuals in compartment 

become infected, they will move to the compartment I{t) and stay for the 

infectious period T!. The incidence, X{t), follows a binomial distribution with 

the probability of an individual becoming infected, pi{t), in the compartment 

S{t) at time t. Let binijn, n) be a binomial distribution with parameters 

probability m and number of total individuals n, the incidence 

X[t)�bin[pi(t),S[t)) (4.1) 

and the probability distribution of the incidence, 

P{X{t + At) = x\S(t) = s, I{t) = -
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where 5, i, and x are constants. Assume the population is randomly mixed, 

the probability of an infection 

Pi{t) = 1 — exp 丨纟彻、 
U J ‘V y At (4.3) 

where 0 < pi{t) < 1; RQ is the basic reproduction number, which is defined 

as the average number of secondary infections produced by a typical infectious 

individual in a wholly susceptible population. The Ro/Tj is the transmission 

coefficient for the infectious disease. 

When the infectious period is over, the individuals in compartment I{t) 

will recover and move to the compartment R(t) with rate 1/T/ for one time 

step. Hence, the number of the removed subjects becomes 

Y(t)�bin(j>R,I(t)) (4.4) 

where the probability of recovering 

PR = I — exp 
\Ti, 

At (4.5) 

and 0 < pij < 1. In summary, the system of the stochastic epidemic model 

could be presented by the following equations: 
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S{t + At) = Sit) - X(t) 

/ ( f + At) 二 / � + J C � 一 y � (4.6) 

R(t + At) = R(t) + Y(t) 

4.2.2 Probability Distribution of Exported Cases from 

Source Region 

During the period of the epidemic, travelers may carry the virus from the source 

region to other at-risk countries; and the global pandemic would be likely 

to occur from successive disease transmissions. The travelers are considered 

as having an equal probability of being exposed to the disease as are the 

individuals at the source country [71]. We assume the count of infectious cases 

includes the travelers, instead of separating the imported cases and local cases 

[65]; this is because it is hard to know exactly how many travelers there are 

and for how long they have stayed in the source country. Let M be the daily 

rate of travel to particular country, the probability distribution of exporting 

Z infected travelers from the source region on day I would be 

Z r^bin(pi(t),M) (4.7) 

assumed the travelers expose the same daily risk pj{t) as the resident cases 

in the source country. 

Let rrii be the daily rate of travel to country i-th, the probability of export-

ing Zi infected travelers from the source region to country i-th on day t would 

be 
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= Pt{z=z,) = (4.8) 
J 

where 0 < qt，zi < 1； and qt^ is the probability of no exported cases from 

the source region on day t. 

Suppose T is the number of days from the epidemic initiation to the first 

global surveillance count and k {k = 0,1,2,3,...) is the number of days after 

the first global surveillance count, the probability distribution of the time with 

the first exported case (FET) from the source region on day r-\-k thus become 

P{T = T + /c) = 21’0取0私o-..gT+fc-i，o(l - qr+k,o) (4-9) 

which is a geometric distribution. 

4.2.3 Reporting Rate 

The reporting proportion is incorporated in the model development. Because 

there is a period of time of non-reporting delay before the confirmation of the 

emerging virus, the influenza A (HlNl) surveillance count is zero before day 

r-th. Suppose an actual incidence X{t) and a constant reporting rate r over 

time, the observed surveillance, U{t — r), is proportional to rX{t) after the 

day of first surveillance r. The model of the surveillance time series could be 

formulated as 

0, a t <T] 
U{t - r ) = <； (4.10) 

rX{t), if t > r. 
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〈 ‘ ⑷ ⑷ 叩 — 邓 ( 4 - 1 2 ) 

where t* is the total number of days from the time series surveillance data. 

And the corresponding log-likelihood function would be, 

LL(e) = X； log 
S{t) 

U{t-r 
O / 

+ U(t - r)log{pi{t)) 
(4.13) 
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We assume that no false positive and no false negative is presented from 

the laboratory testing. 

4.2.4 Statistical Inference 

The estimation of parameters is based on the Bayesian approach. Suppose 6 

was our parameters of interest, the posterior distribution for the parameters 

would be 

… 丨 , � L ( Q ) 7 r ( Q ) 
fie\data) = I 丄 I � ) 

^[data) (4.11) 
oc L(0)7r(e) 

where 7r(0) is the prior distribution of parameters, and L(6) is the full 

likelihood function. The full likelihood function is then constructed as 

m = 



The uncertainties of the model parameters are represented by the poste-

rior distribution given the data depending on the prior distributions and the 

likelihood function. 

Our estimates are based on the posterior distributions of the parameters 

which are obtained by the MCMC method. The MCMC method is able to up-

date the posterior distibution by sampling from the prior distributions. It has 

been employed in many epidemic modeling studies [53, 35, 88]; this is because 

of its powerful ability to augment data. In our situation, as the time series 

[S{1), S{2), S{3),..., S{T — 1)] and [/(I), 7(2), 7(3),…,I{r - 1 ) ] are unobserved, 

the dynamic equation (Eq.4.6) could not be constructed. We simply denote 

the latent variables h = [S{T — 1), J(r — 1)] rather than the whole series, as the 

likelihood function base on them only. The marginal likelihood of 0 would be 

Z / " ( e ) = / P{data\Q,h)f(h\Q)dh (4.14) 

where P{data\Q, h) is either a full information or augmented likelihood 

function and /(h|G) is a latent states distribution. Direct maximum likeli-

hood (ML) estimation is typically preferred to solve the likelihood because 

of its strong theoretical properties; however, maximizing the would 

be impossible because it is hard to directly draw samples from /(h|9). The 

expectation maximization (EM) algorithm is able to iteratively maximize the 

L讯(Q) between E-step (Expectation) and M-step (Maximization), but it could 

be trapped into local maxima. As for this situation, the MCMC algorithm is 

able to construct the Markov chains by drawing alternating back and forth 

between the conditional distributions /(h|6, data) and /(0|h, data). The re-

cursive simulation eliminates the computation of the integral with respect to 

h. Unlike the EM algorithm, the update of parameters does not solely depend 

87 



on the increase of the likelihood function at each step; it could justify the effect 

of being trapped into the local maxima. By the Bayes theorem, the posterior 

target density 

f(e,h\data) oc P{data\e,h)7r{e) (4.15) 

where 7r(0) is the prior distribution of parameters. 

In the MCMC algorithm, the infectious period T! was fixed generally [94, 

118], as it was highly correlated to RQ. We also fix the reporting rate r; 

however, it could be post-validated with the probability distribution of the 

first exported case from the source region (Section 4.2.2). Besides, the update 

of r has to go through the state variable h as r does not directly relate to the 

likelihood. So the most convenient way to draw the h is from the distribution 

of G. Because the random walk proposal is employed for the update of B, 

given univariate value 0, new values 0' are drawn from 

e' 二 + e (4.16) 

where e has a symmetric normal density, i.e., N{0, cr̂ ). The a is the step 

size of the chain and 6' ~ a^). So the proposal distribution is a 

symmetric function 

a(印(H)) = ~j=-exp 
\J2TIG 2a2 

(没(i-1) — e丨斤 (4,17) 
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In the construction of latent variables h = [^(t—1), / ( r —1)], the variability 

could be large along with the increase of r in Eq.4.6 , and the acceptance of r 

will be problematic. Without loss of generality, we take the expectation of h 

from each update of r in order to adjust the variance inflation, i.e., 

S{T - 1 ) = N 

I(j ~1) = /(O) + 

0 

Y^Mtnt) 

(4.18) 

So that the jump probability of the latent state is equal to that of 

(4.19) 

which does not deviate the principle of the MH algorithm. The approach 

is similar to the EM algorithm which latent samples are generated from the 

current estimates of interest, but the parameter updates depending on the 

Metropolis step instead of maximization of the expectation of the log-posterior 

function. 

The steps of the corresponding Metropolis-Hastings algorithm of reproduc-

tion number estimation (RQ) would be: 

1. Start the iteration counter at j = 1 and set the initial values for R^^ and 

T(0); 

2. Sample ĥ R̂ d̂ata from the new value T', i.e. Accept the new 

values with probability min{l, A), where 
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P(h(i-i) 1 , data)a{h'\hO'-^)) . 

If we accept, t • � = T ' ; otherwise, t � = a n d the chain does not 

move; 

3. Sample Ro\h,data by generating new values G' from the proposal density 

a{R'Q\RQ~^^). Accept the new values with probability min(l, B), where 

If we accept, RQJ) 二 otherwise, 7?oi) = and the chain does not 

move; and 

4. Change the iteration counter from j to j + 1 and return to step 2 until 

convergence is reached. 

The probability A and B are equivalent to the product of the likelihood 

ratio, prior densities ratio, and the proposal densities ratio given the current 

and the modified Markov chains. Random step sizes are adopted and they 

are tuned to allow the acceptance rates within 20% to 40%. The MCMC 

estimation is iterated 100,000 times, in addition to the 10,000 iterations for 

burn-in period. The burn-in iterations are discarded in order to eliminate 

the bias from the initially chosen points. The 100,000 iterations are obtained 

for the posterior distributions. The convergence of Markov chains mixing in 

the MCMC process will be diagnosed by the autocorrelation function and the 

90 



time series trace plot. Stationary chains represent a good mixing pattern in 

the MCMC. 

4.3 Simulation Study 

4.3.1 Simulation Scenarios 

In this section, we tested the performance of the estimation method. The set-

tings of the simulations were mostly according to the experience of influenza 

epidemics. We simulated three sets of time series data according to the follow-

ing settings: 

1. PI: Ro = 1.2, T = 28，and r = 0.3; 

2. P2: RQ = 1.5, r 二 16, and r = 0.15; and 

3. P3: Ro = 1.8, r = 7, and r = 0.05. 

We also fixed the infectious period (Tj) to three days. About one month 

expected epidemic time series data were generated from our SIR stochastic 

model. We fixed the population to 1,000,000 residents. The prior information 

is showed in Table 4.3. 

4.3.2 Results 

In the simulation, we reparameterized the transmission coefficient as ^ = 

Ro/Ti for simulation convenience. Each MCMC estimation took about one 

hour. The posterior mean, standard deviation (SD), and 95% credible interval 

from the MCMC estimation are showed in Table 4.1; for the three simulated 

datasets, all of the estimated parameters were close to the actual values. Con-

vergence was easily obtained for the parameters. 
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Table 4.1: Simulated posterior mean, standard deviation (SD), and 95% cred-
ible interval from MCMC estimation 

Basic reproduction number (RQ) Initial reporting delay (r) 
Data A c t u a l M e a n ( S D ) 95% CI A c t u a l M e a n ( S D ) 95% CI 

value value 
r 2 1.2(0.009) [1.179, 1 . 2 2 1 ] ^ 28(1) [26, 30] 

P2 1.5 1.5(0.002) [1.491, 1.509] 16 15(1) [14, 17] 
P3 1.8 1.8(0.001) [1.794, 1.806] 7 

As showed in Figures 4.1 (A, B), 4.2(A, B), and 4.3(A, B), all of the posterior 

distributions were distinct from the non-informative priors. The acceptance 

rates were maintained within 20% to 40%. According to Figures 4.1(C, D), 

4.2(C, D), and 4.3(C, D), the MCMC chains were well-mixing with random 

patterns after discarding the burn-in iterations. The convergence of parame-

ters also showed low correlations to their lags (Figures 4.1(E, F), 4.2(E, F), and 

4.3(E, F)). Starting values were randomly selected with finite log-likelihood. 

Different starting values did not deviate so much in convergence of the esti-

mation. 

4.4 Case Study: Contain the Influenza A (HlNl ) 

outbreak at Mexico 

In this section, the methodology was applied to the influenza A (HlNl) pan-

demic in Mexico in 2009. The objective was to estimate the basic reproduction 

number subjected to the initial reporting delay and the under-reporting in the 

first wave of the influenza A (HlNl) pandemic at Mexico. Followed by the es-

timation, we studied the distribution of the exported cases, and thus assessed 

the possibility of containing the disease in the source country, Mexico. 
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Figure 4.1: Posterior distributions, time series trace and autocorrelation plots 
of and r for simulation set PI. 

A A 

J 
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The kernel smoothed posterior distributions are showed on the upper panel 
(A and B). The time series trace plot illustrated the jumps of 100,000 
iterations and are showed on the middle panel (C and D). The fifty-lag 
autocorrelation plots are showed on the bottom panel (E and F). The p and 
r are aligned on the left column (A, C, and E) and on the right column (B, 
D, and F) respectively. 
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Figure 4.2: Posterior distributions, time series trace and autocorrelation plots 
of (3 and T for simulation set P2. 

The kernel smoothed posterior distributions are showed on the upper panel 
(A and B). The time series trace plot illustrated the jumps of 100,000 
iterations and are showed on the middle panel (C and D). The fifty-lag 
autocorrelation plots are showed on the bottom panel (E and F). The and 
r are aligned on the left column (A, C, and E) and on the right column (B, 
D, and F) respectively. 
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Figure 4.3: Posterior distributions, time series trace and autocorrelation plots 
of (3 and r for simulation set P3. 
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The kernel smoothed posterior distributions are showed on the upper panel 
(A and B), The time series trace plot illustrated the jumps of 100,000 
iterations and are showed on the middle panel (C and D). The fifty-lag 
autocorrelation plots are showed on the bottom panel (E and F). The J3 and 
r are aligned on the left column (A, C, and E) and on the right column (B, 
D, and F) respectively. 
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4.4.1 Materials 

The population of Mexico (N) was set as 106,682,518 in 2009 which figure 

was provided by the National Council for Population of Mexico [81]. The 

influenza A (HlNl) surveillance data shown in Figure 4.4 were obtained from 

the Ministry of Health of Mexico for the months between March 14, 2009 and 

April 30, 2009 [80]. This period covered the first wave of the influenza A 

(HlNl) epidemic. 

Figure 4.4: Confirmed cases in Mexico between March 14，2009 and April, 30， 

2009. 

23-Apr 

In order to validate the model, we adopted the number of passengers on 

flights from airports in Mexico, which data were provided by Fraser, et al. [47]. 

The estimation only involved these countries given that their first imported 

influenza A (HlNl) cases had traveled to Mexico with evidence. The passenger 

counts, the date of arrival, and the corresponding reference are showed in Table 

4.2. The daily rates of travel from Mexico to particular country i-th, m.i, were 

roughly calculated by dividing the passenger count in March and April 2009 
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by 61 days. We did not take the United States into account because flying 

was not the only means of cross-border transport between the two countries. 

The rest of the daily travel rates from different countries were used in further 

simulation. 

Table 4.2: Number of travelers exported from Mexico by air in March and 
April, 2009 and date of the first imported cases from Mexico to the corre-
sponding countries 

Destination Travelers Date of the first ex- Reference 
country counts ported case from Mex-

ico (2009) 
Canada 101,313 28，Apr [47] 
Spain 65,724 28，Apr [47] 
United Kingdom 20,513 28, Apr [47] 
Costa Rica 16,950 29, Apr [47] 
Germany 35,772 30, Apr [47] 
Netherlands 27,640 30’ Apr [83] 
France 61,960 1’ May [46] 
Columbia 24,535 3，May [26] 
El Salvador 15,090 4，May 36 
Argentina 24,609 7’ May [8] 
Belgium 5,240 - -

Brazil 38,749 - -

Chile 18,535 - -

Cuba 42,802 - -

Guatemala 39,460 - -

Honduras 2,340 - -

Italy 12,060 - -

Japan 4,675 - -

Nicaragua 3,101 - -

Panama 48,717 - -

Peru 15,478 - -

Venezuela 9,150 - -

* USA was not taken into account in estimation as airline was not the only 
main cross-border transportation from Mexico. 
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4.4.2 Epidemiological Details 

The epidemiological details were mostly from the previous findings of influenza 

A (HlNl). The reproduction number (RQ) was in the range of 1 to 3 and it 

followed a uniform prior distribution [47,121，118]. The length of the infectious 

period (T/) was fixed as three days, and its sensitivity was tested. We also 

set the initial delay (r) ranging from two days to 120 days, and the previous 

estimates of the start date of the outbreak were around mid-January 2009 to 

late-February 2009. 

Because we did not have any information of the reporting rate (r) during the 

first wave of the epidemic, r was chosen within 0.1% to 40% by grid searching 

and was fixed before each MCMC estimation; the optimum r would be chosen 

which minimized the mean absolute difference (MAD) between the simulated 

and the actual day of the first exported case (FET) from Mexico (Table 4.2 

and Section 4.2.2) along with other estimated parameters. 

The details of the parameters are highlighted in Table 4.3. 

Table 4.3: Parameter definitions, prior distributions, reference, and remarks 
Parameter Definition Prior distribution Ref/remarks 
RQ Reproduction number Uniform(l, 3) 

T Initial delay before the first Uniform(l, 120) 
global surveillance 

TJ Infectious period Fixed at 3 days 

rrii Daily rates of travel from Fixed 
Mexico to country z-th 

[47, 121, 
118 
[47, 106] 

[44, 16, 
121] 
See Table 
4.2 

4.4.3 Computer simulation 

The methodology was implemented in software R 2.12.1. The syntax and the 

functions of the R programs were highlighted in Appendix B. 
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1.233(0.006) 
16(1) 

1.221 to 1.242] 
13 to 19] 

By a grid search method, the r was iteratively estimated and it was about 

8% with a MAD between the simulated and the actual days of the first ex-

ported case from different countries (Figure 4.6). The only disadvantage of 

this method is that it is time-consuming. The result was similar to the value 

of 5.2% as estimated by Wu, et al. [118] in the Hong Kong influenza A study 

at the end of June, 2009. 

From Table 4.4，the estimated RQ was about 1.233 with a credible interval 

[1.221 to 1.242]. Compared to the studies from Fraser, et al. [47] and Yang, 

et al. [121], our estimated RQ was slightly lower than the range of 1.4 to 1.6 

and the range of 1.3 to 1.7 from the epidemiological analyses, respectively; 

but close to the value of 1.22 from a genetic study described by Fraser, et al. 

Our precision of the estimated RQ was higher than that of the 95% confidence 

interval [1.05 to 1.60] in the genetic analysis. 

As showed in Table 4.4, the estimated start date of the outbreak was around 
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4.4.4 Result 

Initial outbreak in Mexico 

The developed MCMC algorithm was applied to the influenza A (HlNl) data. 

100,000 iterations were drawn after discarding the 10,000 burn-in period. As 

showed in the autocorrelation plot (Figure 4.5(E, F)), there were no strong lags 

for the iterations. According to the time series trace plots (Figure 4.5(C, D))， 

the convergences were obtained and the posterior distributions were drawn; 

the posterior distributions were not highly skewed. The estimated results are 

summarized in Table 4.4. 

Table 4.4: Acceptance rates, estimated posterior mean, standard deviation 
(SD), and 95% credible interval for surveillance data 

Parameter Acceptance Mean(SD) 95% CI 
rate 

%
 %
 

6
 7
 

3
 3
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Figure 4.5: Posterior distributions, time series trace and autocorrelation plots 
of P and r for influenza A (HlNl) surveillance data. 
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The kernel smoothed posterior distributions are showed on the upper panel 
(A and B). The time series trace plot illustrated the jumps of 100,000 
iterations and are showed on the middle panel (C and D). The fifty-lag 
autocorrelation plots are showed on the bottom panel (E and F). The j3 and 
r are aligned on the left column (A, C, and E) and on the right column (B, 
D, and F) respectively. 

100 



Figure 4.6: Mean absolute error (MAD) for different reporting rates in MCMC 
estimation 

February 25, 2009 with a 95% credible interval [February 23, 2009 to March 1， 

2009]. In line with the study from Towers, et al. [106], our estimated start date 

of the outbreak was similar to their estimate value of late-February by fitting 

an SIR model. Our estimate was also in good agreement with the finding from 

Fraser, et al. [47] which estimated that the initial time of the outbreak was 

within a 95% credible interval [November 3，2008 to March 2, 2009]. 

By using the MCMC samples, we simulated the initial growth of the epi-

demic until the end of April, 2009. One thousand incidence curves were sim-

ulated by randomly choosing the estimated values from the previous MCMC 

samples. The result is demonstrated in Figure 4.7 and Table 4.5. According to 

the table, more than 1,000 individuals had been infected with the influenza A 

(HlNl) virus at the end of March, at which time the emerging virus had still 

not been confirmed. The infections increased exponentially and nearly 6,000 

local cumulative incidence arose in Mexico in mid-April, 2009. At the same 

time, officials started to confirm that the emerging virus was a new influenza 
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A (HlNl) vims [78]. By the end of April, almost 40,000 individuals in Mexico 

had been infected with influenza A (HlNl), and the severity of disease traiis-

rnissioii caused the WHO to raise the pandemic alert level to phase five. Our 

findings were in agreement with the study of Fraser, et al. [47]，which sug-

gested more than 20,000 individuals were infected with influenza A (HlNl) 

in Mexico by the end of April. Marc, et al. [71] estimated at least 113,000 to 

375,000 influenza A HlNl incidence during the month of April, 2009 by means 

of the person-at-risk approach. Our estimated cumulative incidence was lower 

than that of Marc, et al., which maybe caused largely by the spatial effect. 

Figure 4.7: Estimated cumulative incidence up to the end of April 2009. 

:-Mar 13-Apr 27-Apr 

The observed cases were showed in orange bar while the estimated cases were 
showed in green line; the solid line was the median incidence, and the dotted 
lines were the non-parametric 95% upper confidence interval and lower 
confidence interval respectively in 1,000 simulations. 

An additional sensitivity analysis was performed in order to test how sen-

sitive of the length of the infectious period (T/) was to our results. A shorter 

Tj = (2.5 days) and a longer T/ (3.5 days) were set. The MCMC results were 
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Table 4.5: Estimated cumulative incidence on March 31, April 15, and April 
30, 2009. 

Date Median (95%CI) 
March 31 1,045 [733 to 1,456] 
April 15 6,366 [4,439 to 9,135] 
April 30 39,175 [26,518 to 56,915] 

showed in Figure 4.8 and 4.9. Given a shorter infectious period (TJ = 2.5), the 

mean RQ and r were estimated as 1.128 with 95% CI [1.115 to 1.138] and 15 

with 95% CI [12 to 19] respectively. The result did not deviate greatly from 

our original result. As showed in Figure 4.8(C-F), the iterations were well-

mixed and did not violate the MCMC diagnosis. And for the longer infectious 

period (T/ = 3.5), the mean RQ and r was estimated as 1.313 with 95% CI 

[1.306 to 1.314] and 16 with 95% CI [13 to 18] respectively. The result was not 

too sensitive, although the distribution of was slightly skewed. According 

to Figure 4.9(C-F), the iterations were also well-mixed and did not violate the 

MCMC diagnosis. 

Possibility of containing the disease at the source country by travel 

restrictions 

Followed by the estimation, the distributions of the infected cases' exportation 

time from Mexico, which related to the rates of travels were studied. We further 

investigated the possibility of containing the disease in the source country by 

travel restrictions. 

In this section, the distributions of the cases exportation time in the base-

line scenario was mostly simulated from the MCMC samples. The days of 

exporting a certain numbers of infected cases such as the first infection expor-

tation time (FET), were the main endpoints in the study. As showed in Table 

4.2, the daily rates of travel (m) were in the range 40 to 1,600 travelers 

from Mexico to the other countries. We adopted m = 300 and m = 1, 500 
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Figure 4.8: Posterior distributions, time series trace and autocorrelation plots 
of (3 and r given TJ = 2.5. 
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The kernel smoothed posterior distributions are showed on the upper panel 
(A and B). The time series trace plot illustrated the jumps of 100,000 
iterations and are showed on the middle panel (C and D). The fifty-lag 
autocorrelation plots are showed on the bottom panel (E and F). The P and 
T are aligned on the left column (A, C, and E) and on the right column (B, 
D, and F) respectively. 
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Figure 4.9: Posterior distributions, time series trace and autocorrelation plots 
of P and T given Tj = 3.5. 
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The kernel smoothed posterior distributions are showed on the upper panel 
(A and B). The time series trace plot illustrated the jumps of 100,000 
iterations and are showed on the middle panel (C and D). The fifty-lag 
autocorrelation plots are showed on the bottom panel (E and F). The (3 and 
r are aligned on the left column (A, C, and E) and on the right column (B, 
D, and F) respectively. 
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to study the distribution of the cases exportation time in Figure 4.10 and 

4.11. The statistics are summarized in Table 4.6. In the baseline scenario 

{RQ = 1.23), a country with a lower travel rate to Mexico, such as Chile and 

the UK (m w 300), would directly receive an influenza A (HlNl) infected case 

about 2.5 months after the first local case arose. Up to ten cases arrived in 

an at-risk country at the fourth month (Table 4.6). The daily probability of 

exporting infected cases from Mexico was no more than 0.1 for the first two 

months since the local case arose (Figure 4.10A). Once a country had a larger 

passenger flow from the source country, such as Canada (m 1,500)，the FET 

would mostly arise at the beginning of the third month, followed by additional 

three weeks time for the tenth imported case (Table 4.6); the daily probability 

of exporting at least one case would approach 0.05 (Figure 4.10B). 

Table 4.6: Exportation days of infected cas( 
restrictions. 

m Order of Restriction LL 
cases ratio 

for 0%, 90%, and 99% travel 

Median UL 

300 First 0% 51 79 93 
90% 71 98 114 
99% 0 117 149 

Tenth 0% 91 101 107 
90% 116 125 137 
99% 0 0 0 

1500 First 0% 38 65 79 
90% 57 84 99 
99% 76 104 121 

Tenth 0% 81 87 92 
90% 101 107 113 
99% 0 134 164 

The medians and the confidence intervals were simulated from 50,000 
iterations for each scenario. Zero day represented insufficient exported 
in the scenario. 
* LL = Lower bound of a non-parametric 95% confidence interval. 
* UL = Upper bound of a non-parametric 95% confidence interval. 

Suppose a 90% (m = 30) and a 99% (m = 3) travel restrictions were 
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60 9 0 1 2 0 1 5 0 

D a y s ince the first local case 

180 2 1 0 2 4 0 

Figure 4.10: Probability of exporting at least one case from the source country 
by days (qt,>o) at baseline. 

A 
1.000 

No restriction 
9 0 % travel restriction 
9 9 % travel restriction 

9 0 1 2 0 1 5 0 1 8 0 2 1 0 2 4 0 

D a y s ince the first local c a s e 

The daily rates of travel (m) were set as 300 and 1,500 in the upper figure 
(A) and the lower figure (B) respectively. No intervention, a 90% travel 
restriction, and a 99% travel restriction were illustrated in a solid line, a 
dashed line, and a dotted line respectively. The median reproduction number 
from the MCMC samples was used. 
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Figure 4.11: Probability distributions of time until cases exported given dif-
ferent daily rates of travel. 
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Days until the first exported c Days until 10 exported c 

The daily rates of travel (m) were set as 300 and 1,500 in upper panel (A and 
B) and lower panel (C and D) respectively. The distribution of days since the 
first local case until the first exported case (FET) and ten exported cases 
were aligned on the left column (A and C) and the right column (B and D) 
respectively. No intervention, 90% travel restriction, and 99% travel 
restriction were illustrated in solid line, dashed line, and dotted line 
respectively. The distributions were simulated in 50,000 iterations. Zero day 
represented insufficient exported cases in the scenario. 
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implemented between the U K and Mexico on the day that the first local case 

arose, almost two weeks to 1.5 months additional delay to F E T was observed 

for the restrictions comparison with the no intervention scenario (Figure 4.11 A 

and Table 4.6). Most of the daily probabilities of exporting cases were reduced 

by half when the 90% travel restrictions were imposed on air travel between 

the U K and Mexico (Figure 4.10A). Optimistically, once Mexico maintained 

99% travel restrictions to the U K , the probability of exporting ten infected 

cases was near zero at the initial epidemic outbreak (Figure 4.1 IB). The 99% 

travel restrictions were able to reduce the daily probability of exporting at 

least one case to no more than 0.07 (Figure 4.10A). 

As for Canada, 99% travel restriction (m = 15) still obtained about an 

additional 1.5 months' delay to F E T in comparison with the no intervention 

scenario. Canada would have the first ten cases directly from Mexico on the 

4.5-t/i month. A maximum daily exporting probability of 0.28 could be ob-

tained (Figure 4.10B), when the 99% travel restrictions were implemented 

between them. However, the 90% travel restrictions (m = 150) were not able 

to stop the daily probability approaching to one during the epidemic (Figure 

4.10B). Compared to the baseline situation, 90% travel restrictions mainly de-

layed both F E T and the first ten cases for almost a further three weeks from 

Mexico to Canada (Figure 4.11(C, D)). 

The behavior of the F E T in terms of the magnitude of travel rates is sum-

marized in Figure 4.12 and Table 4.7. In a baseline setting, the F E T could 

be delayed for more than 100 days when the daily rate of travel was kept be-

low 30 per day, which was almost equivalent to 99% travel restrictions between 

Canada and Mexico; a delay of more than three months could also be obtained, 

given lower than 100 daily rate of travel. In a milder scenario {RQ = 1.1)，an 

at-risk country could delay the first non-local case arrival on the fifth month 

once the daily rate of travel from the source region fell below ten; delay of more 

than three months to the F E T from Mexico to another country was observed 
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even if there were about 3,000 travelers per day between them. When the 

scenario became severe {RQ = 1.7), a delay of no more than two months to the 

F E T was allowed, even if the daily rate of travel was below ten. Surprisingly, 

the F E T did not change very much once the daily rate of travel exceeded 1,000 

between Mexico and a particular country for each of the scenarios. 

Figure 4.12: First exportation time (FET) of infected case given different daily 

rates of travel. 

180 

150 

120 

90 

60 

Daily rate of travel 

The median FETs were illustrated in solid line, dashed line, and dotted line 
for baseline scenario [RQ = 1.2), mild scenario {RQ = 1.1), and severe scenario 
(RQ = 1.7) respectively. The medians were simulated from 10,000 iterations. 

On the other hand, the effectiveness of travel restrictions depended greatly 

on the disease transmission intensity (Figure 4.13 and Table 4.7). Given a mild 

scenario {RQ = 1.1), the F E T could be delayed to the mid-fifth month for m = 

30 from Mexico. The difference of F E T between 30 and 3,000 daily rates of 

travel, which was equivalent to placing 99% travel restrictions, could be as long 

as two months between a connected country to Mexico; 90% travel restrictions 
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Table 4.7: First exportation time (FET) of infected case given different daily 
rates of travel (m) and reproduction numbers {RQ). 

i?n m LL Median UL 
1.1 3 0 162 211 

30 95 138 162 

300 69 109 131 
1500 47 89 110 
3000 39 80 101 

1.2 3 0 126 160 
30 75 106 122 
300 54 84 100 
1500 40 70 85 

3000 34 63 78 
1.7 3 44 59 71 

30 36 49 56 
300 26 40 47 
1500 20 33 40 
3000 17 31 38 

The medians and the confidence intervals were simulated from 10,000 
iterations for each scenario. 
* LL = Lower bound of a non-parametric 95% confidence interval. 
* U L = Upper bound of a non-parametric 95% confidence interval. 
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could also have a one-month delay to FET. As showed in Figure 4.13, F E T 

mostly arrived in a country on the fifth month once the RQ was kept around 

1.1 for rn = 30; if other interventions, such as antiviral drugs and vaccination, 

could had been applied to the initial growth of the epidemic (as well as reducing 

the local disease transmission), the containment of the epidemic would have 

not been impossible. Once the epidemic was uncontrollable, the 99% travel 

restrictions were still able to defer the F E T for more than one month for RQ = 

1.4; the delay to F E T decreased to half-a-month under 99% travel restrictions, 

but the delay was for no more than two weeks when 90% travel restrictions 

were in place and when RQ = 1.7. 

Figure 4.13: First exportation time (FET) of infected case given different 

reproduction numbers. 

Reproduction number 

The median FETs were illustrated in dashed line, dot-dot-dash line, solid 
line, dot-dash line, and dotted line for daily rates of travel m 二 3, m = 30, 
m = 300，m = 1,500，and m = 3’ 000 respectively. The medians were 
simulated from 10,000 iterations. 

In order to have a macro view of the impact of travel restrictions, we 

illustrate the distributions of exporting cases from Mexico to a total of 22 
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countries (Figure 4.14). Without any travel restrictions, all of the 22 countries 

would import at least one infected case directly from the source country by the 

end of the fourth month after the first local case arose. Although 90% travel 

restrictions could delay for one further month the exporting of cases from 

Mexico, all of the countries would eventually import infected cases. Several 

countries were able to prevent the arrival of cases once 99% travel restrictions 

were imposed. However, more than 80% of countries still imported cases after 

imposing strict travel restrictions to Mexico. 

Figure 4.14: Number of countries with imported case from Mexico for 0%, 
90%, and 99% travel restrictions by days. 

- N o restriction 
9 0 % travel restriction 
9 9 % travel restriction 

90 120 150 180 210 

D a y s ince the first local c a s e 

The medians were illustrated in solid lines. The upper bounds and lower 
bounds of non-parametric 95% confidence intervals were illustrated in dotted 
lines. Each scenario was simulated from 10,000 iterations. 

As described above, the severity of the disease transmission was an impor-

tant factor with regard to the effectiveness of the travel restrictions. If other 

interventions, such as antiviral drugs, have reduced 20% of the RQ after the 
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60th day (i.e., the effective reproduction number 冗 1)，several at-risk countries 

have been able to prevent the arrival of cases even with 90% travel restrictions; 

99% travel restrictions were able to decrease the number of countries by half 

(Figure 4.15A). Once the effectiveness of the other interventions could decrease 

40% of the RQ (i.e. the effective reproduction number 0.7)，no more than 

three countries would received an infection from the source country when im-

posing 90% travel restrictions during the epidemic. And 99% travel restrictions 

would contain the influenza A (HlNl) epidemic at the source country (Figure 

4.15B). Therefore, reducing the severity of the disease transmission during the 

early phase of the epidemic would greatly enhance the effectiveness of travel 

restriction and the possibility of containment. 

In the simulation scenarios, we implemented the travel restrictions on the 

day of the first influenza A (HlNl) case announcement i.e., March 14, 2009, 

and the estimated initial start time of epidemic was at late February. Fraser, 

et al. [47] has estimated the lower bound of the initial time could be down 

to early November. However, if the epidemic started in November, the local 

incidence would have been closed to the epidemic peak when the first influenza 

A (HlNl) case was announced. The probabilities of exporting infected cases 

approached to one even though the travel restrictions were imposed on March 

14, 2009 (day 134-th) immediately (Figure 4.10). The late detection would 

contribute to a large public health impact of the outbreak. If the epidemic 

had been started in early January, imposing the travel restrictions on the day 

of the first influenza A (HlNl) case announcement (day 73-th) would have 

been still effective since the probabilities of exporting infected cases had been 

below 0.1 before the implementation. 
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-No restriction 
90% travel restriction 

-99% travel restriction 

Day since the first local esse 

Jl 
Day since the first local case 

A 20% and a 40% decrease of the reproduction numbers were demonstrated 
in the upper figure (A) and the lower figure (B) respectively. The medians 
were illustrated in solid lines. The upper bounds and lower bounds of 
non-parametric 95% confidence intervals were illustrated in dotted lines. 
Each scenario was simulated from 10,000 iterations. 
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Figure 4.15: Number of countries with imported case from Mexico when the 
reproduction numbers were reduced on day 60-th. 
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4.5 Discussion 

In this section, we developed a stochastic SIR model to study the distribution 

of the exported infections from the source country. The model incorporated the 

aspects of the time delay until an epidemic initiated and the under-reporting in 

the parameters estimation. The developed model was based on Bayesian infer-

ence which took the uncertainty into account for the model parameters along 

with the stochastic variation. Besides, a M C M C algorithm was developed to 

impute the unobserved process within the dynamic equations. In order to val-

idate the estimation algorithm, a simulation study was done. The simulation 

results were satisfactory as all of the parameters converged to the acceptable 

values and performed well in diagnosis. 

W e further applied the methodology to parameters estimation in the initial 

outbreak period of influenza A (HlNl) epidemic at Mexico. The estimated 

basic reproduction number, subjected to issues of the initial delay, and the 

under-reporting, was about 1.233 with a credible interval [1.221 to 1.242] using 

the surveillance data between March 14, 2009 and April 30, 2009 (Figure 4.4). 

Moreover, the estimated start date of outbreak was around February 25’ 2009 

with a 95% credible interval [February 23, 2009 to March 1, 2009], and the 

reporting rate was about 8%. The estimates were consistent to other studies. 

By incorporating the estimates, the impact of the travel restrictions, as 

well as the possibility of containing the influenza A (HlNl) epidemic, were 

examined in the view of the source country. In the baseline scenario {RQ = 

1.23), the FETs were around 2 to 2.5 months to other countries. The U K , 

to which a daily rate of travelers was closed to 300, import no more than 

ten cases from Mexico during the epidemic when 99% travel restrictions were 

implemented. Even though Canada had 1,500 travelers per day from Mexico, 

it was possible to have no more than ten imported cases after 99% travel 

restrictions were imposed. Nevertheless, imposing 90% travel restrictions only 
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delayed the time of cases exporting from Mexico for any country. In terms of 

the magnitude of travel rates, the F E T could be deferred for more than 100 

days once the daily rate of travel was restricted to below 30 persons per day. 

But it would not change so much once the daily rate of travel exceeded 1,000. 

Moreover, the effectiveness of travel restrictions increased with the reduction 

of the local disease transmission intensity. 

Generally, most of the countries would receive the infections from the source 

country given the complex airline network whether or not they imposed strict 

travel restrictions. As described by Hollingsworth, et. al. [60], early control 

measures in the source region were crucial to contain the epidemic. If other 

interventions had reduced a certain proportion of the disease transmission 

intensity initially, the travel restriction would have been able to prevent the 

arrival of cases from other countries; as large as possible in the RQ reduction, 

it would have been possible to contain the influenza A (HlNl) epidemic at the 

source region. 

In conclusion, the sole adoption of travel restrictions would be insufficient 

to halt the spread of the epidemic. Because of the high incidence rates in 

Mexico, only strict 99% restrictions on travelling i.e., three to 15 travelers per 

day, could have a chance of preventing an at-risk country from importing cases 

from the source region. However, if the travel restriction had been implemented 

in combination with other interventions, such as antiviral drugs, to reduce 

the disease transmission locally, the containment at the source area would 

have been possible. Most importantly, the travel restrictions were valuable in 

retarding the export of cases in terms of weeks. 
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Chapter 5 

Summary and Conclusion 

5.1 Summary of Findings 

In this thesis, new methodologies were developed, by performing a case study 

on the influenza A (HlNl) pandemic in 2009 to assess the impact of travel 

restriction on the spread of disease in views of the at-risk countries and the 

source country. 

In the pandemic influenza A (HlNl), the international traffic accelerated 

the spread of infections across a wide geographic area. Policy-makers will be 

interested to learn of its impact on the disease transmission once the traf-

fic has been re-scaled. Because the pharmaceutical interventions will not be 

available during the early stage of the pandemic, travel restrictions should be 

a high-potential intervention for including into the official containment and 

mitigation strategies. In some researches, the value of travel restrictions re-

mains controversial and, more importantly, several practical and theoretical 

limitations have been found and were described in chapter 2. These problems 

largely motivated us to study the effectiveness of travel restriction on the pan-

demic control in both source country and at-risk countries, in order to have 

well planning of strategies in the future. 

In chapter 3, we developed a stochastic model that incorporated air, sea, 

and land transportation to explore the impact of the travel restriction in view 

118 



of the at-risk countries. The use of antivirals and hospitalization was also 

incorporated in the model in order to provide a more realistic compartment on 

the recovery, and also to compare the effectiveness of these control measures. 

The modeling results showed that restrictions on air travel, the main means 

of transport from the Americas to Hong Kong, was the most effective of the 

three types of restriction in delaying the arrival of the infected cases during the 

early stage of the epidemic. With the use of antivirals and hospitalization, the 

restrictions on all means of transport could reduce the peak incidence by more 

than half. Also, the spread of the local epidemic was halted by these inter-

ventions when the scenario was mild. However, the effectiveness of the travel 

restrictions strongly relied on the use of antivirals and hospitalization when 

the scenario was severe. Our result also showed that if other control measures 

had been taken effect in the non-local countries that could decrease the disease 

transmission intensity, the restriction of all means of external transport would 

possibly have halted the local spread of the disease in seven months time, 

whether or not the antivirals and hospitalization had been used. Moreover, 

increasing the screening sensitivity at the entry border points was beneficial in 

slowing down the growth of the cumulative attack rates. In brief, the greatest 

value of travel restrictions was in their ability to slow down the spread of the 

epidemic. With the imposition of other interventions that can suppress the 

disease transmission intensity, whether locally or not, the restrictions on all 

external travel reduced the local attack rates, and they even halted the disease 

spread. According to our additional cost-effectiveness study (Appendix C), 

the travel restriction was cost-effective and the epidemic delay reduced a large 

portion of health care costs for imposing 5 months and 6.5 months before the 

availability of effective interventions once the disease transmission intensity 

was comparatively mild with 6% to 15% case-fatality rate. In general, the 

travel restriction was also cost-effective for a late delivery of treatments when 

case-fatality rate attained 25%. 
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In chapter 4, a new methodology was developed to evaluate the possibility 

of the disease containment by travel restriction in view of the source country. 

A M C M C method, which imputed the unobserved process within the dynamic 

equations, was also developed to estimate the reproduction number subjected 

to the problems of initial reporting delay and the reporting rate behind the 

surveillance data. The estimation algorithm has been validated by a series of 

simulation. The methodology was further applied to parameters estimation in 

the initial outbreak period of influenza A (HlNl) epidemic in Mexico. The 

estimated basic reproduction number was about 1.233 with a credible interval 

[1.221 to 1.242] and the estimated start date of outbreak was around February 

25, 2009 with a 95% credible interval [February 23，2009 to March 1，2009]. 

By incorporating the estimates, the impact of the travel restriction as well as 

the possibility of containing the influenza A (HlNl) epidemic was examined in 

the view of the source country. Due to the high incidence rate in Mexico, only 

a strict 99% restriction on travelling, i.e., allowing three to fifteen travelers 

exported per day, could have a chance to prevent an at-risk country from 

importing cases from the source region. However, if the travel restriction had 

been implemented along with other interventions such as antiviral to reduce 

the disease transmission locally, the containment at the source area would have 

been possible. Besides, early control measures in the source region were crucial 

to contain the epidemic. In most of the situations, travel restriction was able 

to slow down the export of cases in terms of weeks. 

In summary, travel restriction of either at-risk countries or the source 

country is valuable on slowing down the growth of epidemics. The time delay 

of the epidemic would offer public health experts, policy makers, and scientists 

more time for preparation and decision making on epidemic control especially 

when an unknown virus emerges to our society. Although solely imposing the 

travel restriction showed little benefit on reducing the final attack rate and 

the probability of cases exportation, it offered additional contribution on even 
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halting the epidemic growth once other interventions such as antiviral and 

hospitalization could also be utilized. Therefore, the implementation of the 

travel restriction should be a potential intervention to control the epidemic 

spread, especially when the next epidemics which could be lethal and highly 

intrusive. 

5.2 Limitation 

The methodologies have four major limitations. 

First, limited data affected the model structure. In chapter 3, we focused 

on the local disease transmission dynamic incorporating the transportation 

from a local area to the others. Due to limited data, we could not construct 

every coupling between countries in the model so that we could not depict the 

result from a global point of view. O n the other hand, we adopted a simple 

stochastic SIR model structure only with the use of the incidence count in-

stead of a SEIR model in chapter 4. In practice, border points may not be 

able to screen out all individuals especially for those in latent status, so the 

incorporation of the latent compartment into the model is required to quantify 

the impact of screening sensitivity. But since we could not confirm whether 

the exported cases who arrived in other countries were in latent status or infec-

tious status, the adoption of SIR model would be preferred in the estimation 

process. Moreover, the investigated travel restrictions were rigorously enforced 

in chapter 4, and both latent and infectious individuals would have the same 

rescaling proportion. Therefore, imposing the extra latent compartment in the 

model does not improve our result. 

Second, the characteristics of the travel pattern and the influenza, A (HlNl) 

virus affected the model structure. In chapter 3 and chapter 4, the daily rates 
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of travels were assumed uniformly distributed but they may decrease grad-

ually due to the increasing severity of disease spread, thus, fat-tailed distri-

bution such as Log-normal and Weibull distributions would be more appro-

priate. Apart from that, several studies discovered that the distributions of 

the incubation and infectious periods were mainly right skewed like Gamma, 

Log-normal, and Weibull distributions [30, 29, 109, 69]. Since the length of 

the infectious period highly correlated to the reproduction number, the con-

vergence was bad and it was not considered in the M C M C algorithm. On the 

other hand, since the variability from the binomial distributions have been 

adopted in the process of infections generation, the importance of adding ex-

tra variability from the periods would be relatively low. However, additional 

sensitivity analysis has been done for the lengths of latent and infectious du-

rations to explore these effect on our results in chapter 3 and chapter 4. In 

general, it is suggested conducting household transmission studies in order to 

draw more realistic distributions before being employed in the models [29]. 

Third, the resolution level of our models may not be high enough. In 

chapter 3，we did not quantify the risk of infection of an inbound travel and 

on an aircraft [19], the local incidence may be underestimated. Additional 

compartments could be built to account for those effects, but it will increase 

the model complexity. Moreover, transports that require long traveling time do 

not easily allow rapid international spread of disease with a short generation 

time. It cannot be doubted that travels that spend several days to Hong 

Kong exist, but such cases must be very small proportion. For example, the 

proportion of overseas passenger who directly traveled from overseas by sea 

transport is extremely low. But instead of taking direct flight or ferry to Hong 

Kong, some overseas passenger prefer taking a flight to Macau or mainland 

China and then transfer to Hong Kong by ferry or train connections due to 

the economical and time concerns. The multi-leg travel would greatly reduce 

the required waiting time since infection among import cases. In our model, 

122 



no adjustment was made for multi-leg travel for one or more transports due 

to the limitation of available statistics; however, the previous results did not 

show a big quantitative difference between single-leg and multi-leg travels [37]. 

Forth, the M C M C estimation converges badly in some situations. In chap-

ter 4, we have designed several situations for the simulation in accordance with 

previous influenza scenarios; but in some extreme scenarios, such as when the 

reproduction number is close to 1，the convergence would take a long time with 

poor mixing. Moreover, the M C M C method works best if the data are taken 

from the initial growth of the epidemic; it works much less well when the data 

are taken after the peak time. But we seldom apply the method beyond the 

initial epidemic growth because it is unrealistic that epidemics are discovered 

by officials after the peak times. 

5.3 Future Research 

In the thesis, we offered advice on the implementation of travel restrictions 

through the use of epidemic modeling on the influenza A (HlNl) pandemic. 

But in the future, new viruses could be lethal and highly invasive when antivi-

ral drags or vaccination are not yet ready. So in what scenario that we should 

implement the travel restrictions and even combination with other interven-

tions with maximum benefit? The question motivates us to consider widely in 

the scenario and intervention setting. 

First, our result showed that travel restriction worked better when the ini-

tial growth of the epidemic was mild; it benefited the control disease more 

when the new virus had a mild transmissibility but caused high mortality. 

The model should explore its potential applicability of various infectious dis-

ease virus such as SARS. Additionally, a more comprehensive travel network 

with heterogeneity in travelers should be considered. In balancing the health 

impacts, economic costs, and intervention efficacies, the threshold point of 
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travel restrictions implementation should be investigated. 

Second, there are many available pharmaceutical and non-pharmaceutical 

interventions to control the epidemics nowadays. In the thesis, we assessed the 

interaction between the practice of travel restriction, antivirals, and hospital-

ization; other interventions such as vaccination [85] and school closure [110] 

are also effective in reducing the growths of epidemics. Because of limited 

resources and safety impacts, it is better to have considerate and optimum 

combination strategies for controlling epidemics effectively across wide ranges 

of disease transmissibility and lethality. Therefore, a large scale compartmental 

model or a network model should be developed to evaluate each combination 

strategy. 

To conclude, the future research will provide a throughout guidelines on 

containment and mitigation of an epidemic to health policy makers. 
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Appendix A 

SAS programs for studying the 

impact of travel restriction for 

at-risk countries 

The programs were built in software SAS 9.1.3. Here are the following pro-

grams and their functions: 

• R E A D D A T A : To create SAS dataset from csv data. 

• TRAVELFIT: To fit the initial exponential growth and estimate the 

reproduction number for the travel data from non-local countries. 

• EIFIT: To fit the E(0)s and /(0)s for different non-local countries. 

• BASELINEFIT: To fit the baseline reproduction number. 

• FPTSIM: To simulate the F P T and F H P T from random import. 

• S I M M O D E L : To simulate the scenario. 

• SIMCI: To simulate the confidence intervals for scenarios. 
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READDATA 
/氺*氺本氺*本•氺**本*********氺S j：***氺本本氺氺氺氺本本*****氺氺氺本本氺***本氺氺********** 氺+ * * * * * * 

/ Program name： READDATA 
/ Version: 1.0 
/ Author: Marc, Biostatistician 
/ Study name: HlNl simulaton study 
/ Created date: 0iMAY2010 
/ Purpose: To Create SAS 
/ Notes: 

/* Build Up Library directory */ 
libname simdata ，D:\PhD Study\Thesis\datâ  
/* Create SAS Tab 
PROC IMPORT dataf 

getnames - yes; 
run; 
/* Create SAS 
PROC IMPORT 

getnames = 
run; 
/* Create SAS Tab 
PROC IMPORT dataf 

getnames = yes; 
run; 
/* Create SAS Tab 
PROC IMPORT dataf 

getnames = yes; 
run; 
/* Create SAS Tab 
PROC IMPORT dataf 

getnames = yes; 
run; 
/* Create SAS Tab 
PROC IMPORT dataf 

getnames = yes; 

population */ 
2="D:\population• 

sxport */ 
="D:\export. 

OUT: .population; 

le= 
5rt */ 
:\iiriport. 

e infect */ 
le="D:\infect. 

local */ 
3二"D:\local. 

OUT: .export； 

OUT=simdata. 

OUT: .infect: 

OUT=simdata.local: 

iatepattern */ 
="D:\datepattern.csv" OUT: .datepattern; 

/* Sort 
proc 

by country 
dataset */ 

proc sort dat 
by country; 

s imdata.population; 

proc sort 
by country •infect; 

TRAVELFIT 

Author: Marc, Biostatistician 
Study name: HlNl simulaton study 
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01MAY2010 
Purpose： To fit the initial exponential _ 

for the travel data from non-local countries 
reproduct: 

/* Build Up Library directory */ 
_ :\Users\marc.in£ 

/* Create individual country day nuni 
* country with first date; 
data first_dt_im (rename =(date=first_.dt)) 

set simdata.infect (Iseep = country date) 
by country; 
if first.country; 

HP\Documents\My SAS Files\PLOS\data， 

:ber */ 

data first„dt_ex (rename =(date=first_dt)) 
set simdata.local (keep = country date) 
by country; 
if first.country; 

* calculate the day number after first 
proc sql; 

create table iixf_iina as 
A.*, log(A.confirmed) as 

.infect as A, first_dt_ini 
where trim(A.country)=trim(B.country) 

quit; 

* Limit 2 months for fitting; 
data inf_im; 

set inf_ima; 
if iday <61; 

run; 

proc sql; 
create table inf_ex as 
select A.*, B.firsts 
from simdata.local as A, 
where trim(A.country): 

quit ； 

B.first_dt, (A. .first；- 1) Lday 

.first_dt + 1) as iday 

/* Macro exponential fit: 
of latent period 

— of latent period */ 
xpfit(lat, inf)； 

/* Exponential growth rate estimation */ 
proc reg data - iiif„im tableout outest=b 

model logcon = iday ； 
by country; 

b: 
(keep = country iday 

if 一 T Y P E - "FARMS"; 

Lday=r)) 

data lb (keep 
set b; 
if —TYPE一 = 

run; 

data ub (keep 
set b; 
if _TYPE„ = 

run: 

country iday 

country iday 

=(iday=lr)) 

3 = ( i d a y = u r ) ) 
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data umlb; 
merge lb mb ub; 
by country; 

run; 

/* Reproduction number and beta for inf period = 2.9; 
data epi_para; 

set umlb; 
repro =1 + &inf*&lat*(r+*2 + r*((l/&;inf ) + (l/&lat)))； 
Irepro -1 + &inf+&lat*(lr**2 + lr*((l/&inf)+(l/&lat))); 
urepro =1 + &:inf*&lat* (ur**2 + ur* ((l/&inf)十（l/&lat))); 
beta = repro/&inf; 

run; 

•/jnend expfit; 

/* Exponential fit for inf period = 2.9; lat period = 1.45 */ 
y。expfit(1.45, 2.9); 

/* Deterministic SEIR model by country */ 

/* Macro for SEIR generation: 
eO: initial number of latent subjects 
iO: initial number of infectious subjects 
lat: length of latent “ 
inf: length of _ _ 
dayno: number of days generation */ 
/flinacro seir (eO, iO，lat, inf, dayno)； 

/* Simulated the SEIR for each country */ 
y。do city_id= 1 %to 44; 

proc sql; 
create table init_&city„id as 
select A.country， A.beta, A.repro， B.population 
from epi„para as A, simdata.population as B 
where triiri(A.country) =trim(B.country) and B.id=&city_id; 

quit; 

data seir„&city_id; 
set init„&city_id; 
s=population; 

iday =1; 
output； 
do iday - 2 to &dayno; 
incident=s*(1-exp( ( (-l*beta*i) /population))) 
infectious-e*(l-exp(-l/&lat))； 
reinove=i* (1-exp(-l/&inf))； 
s二s - incident； 
e=e+incident-infectious； 
i=i+infectious-remove； 
r二r+remove； 
output； 
end; 

run; 

t±± &city_id>l "/othen %do; 

proc append base = seir.l data = i 

• 45 */ 

/* List of R */ 
proc append base = init. 

proc sort data = E 
by iday country; 

seir_&city_id; 

init_&city_id; 
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/* Merge the day list */ 
proc sql; 

quit 

daylist_im as 
country 

datepattern as A, 

daylist_€ 
country 

datepatte 

proc sql; 
create table im—dt as 
select A.*, B,first_dt, (A.date 
from daylist_im as A, first_dt„iin as 
where trim(A.country)=trim(B.country) 

quit; 

-export 

first dt 1) i day-

create table ex„dt as 
select A.*， B.first„dt, (A.date - B.first, 
from daylist—ex as A， first_dt_ex as B 
where trim(A.country)=trim(B.country)； 

quit ； 

/* Merge tlie population, 
proc sql; 

create table im_trans as 
select A . C . p o p u l a t i o n , 

int((B.air)/365) as 
int((B.land)/365) e 

from im_dt as A, simdata. 
where trim(A.country)=trj 

quit; 

proc sql; 
create 
select A.*, C.population， 

iiit((B.air)/365) a£ 
iiit({B.land)/365) £ 

from ex_dt as A, simdata. 
where trim(A.country)= 

quit ； 

export 

1) iday 

int((B.total)/365) as total.d, 
air_d, int((B.sea)/365) as sea_ 
3 land一d 
Import as B, simdata.population 
n (B. country) =trini (C. country)； 

int((B.total)/365) as total一d, 
iir_d， int((B.sea)/365) as sea_d， 
land_d 

B，simdata.population a£ 
.country) =triia (C. country)； 

proc sort data = i 
by iday country; 

run; 

/* Merge seir case 

trans; 

to day list */ 

merge im^trans 
by iday country; 
if not missing(dayno)； 
if iday < 0 then iday=.； 
if missingCe) then e = 0; 
else e = int(e)； 
if inissing(i) then i = 0; 
else i=int(i)； 
iri_total=total_d/population; 

.d/population; 

.d/population; 
‘_d/population; 

iday country 

* Sort the c 
proc sort data = s 

by dayno country 

according to day 

/* Merge daily case to local */ 
data daily_ex (keep =date dayno iday confirmed 

merge ex.trans inf_ex{keep = iday confirmed)； 
-total 二and) 
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by iday; 
if not inissingCdayno)； 
if iday < 0 then iday=.； 

=total_d/population; 
_d/population; 
_d/population; 

m_land=land_d/popnlation; 
run; 

yoinend seir; 

EIFIT 
/ *****氺*氺氺本水*氺氺木**氺氺木***氺氺氺氺氺氺*木氺本氺氺氺氺木氺氺本氺氺**************氺***氺***氺氺本氺本本**本本* 

/ Program name: EIFIT 
/ Version: 1.0 
/ Author: Marc, Biostatistician 
/ Study name: HlNl simulaton study 
/ Created date: 01MAY2010 
/ Purpose: To fit the E(0)s and l(0)s for different non-local countries 

Notes: 

/+ Export 
libnaane result 

output file */ 
:\Baselinefit': 

/* Macro for E(0), 1(0) fitting: 
ei_ll: lower limit of E(0), 1(0) 
ei_ul: upper limit of E(0), 1(0) 
d: the length of E(0)， 1(0) increase per step 

immber of realizations per E(0), 1(0) 
of latent period 
of infections period 
proportion of import infectious subjects 

dayno: max number of days generation */ 

/olet 
/olet 
%let 

_fit(ei—11, 

&ei_ll； 
&ei一11; 

ul. d， inf， dayno) 

/* Start E(0) 
7Ao /ountil 

/* Start 
%do si = 

1(0) realization 

3r E(0), 1(0) simulation */ 
%to &sim; 

%seir(&e_sini, ki 

/* Day limit */ 
data seir_iin_dl: 

&inf, &dayno)： 

if dayno 
run: 

fedayno ； 

/* Generate 

y„put My 

/* Daily 

simulation of 

if 
m latent case 
0 or m total total 
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if 
else 
if e 

if 

erand_"total = ranbin(0 total)： 

ranbinCO 

=ranbinCO 
Land = 0 then 
1 - ranbin(0, 

land 

* Random infectious cases; 
if i = 0 or m_total = 0 then irand—total 
else irand_total = int (&screen*raiibin(0, i 
if i = 0 or m_air = 0 then irand__air = 0; 
else irand_air ~ int(&screen+ranbin(0,i,n 
if i = 0 or m_sea = 0 then irand„sea = 0; 
else irand_sea = int(&screen+ranbin(0,1,2 
if i = 0 or m.land = 0 then irand_land = 
else irandJLand = int(&screen*rarLbin(0,i, 

.,m_total)): 

L_air))； 

L_sea))； 
0； 
m—land))； 

proc sql; 
create table im_list 
select date, dayno, 

simi(eraiid_total) as 
smn(erand_sea) as ( 
sum (iraixd_total) as 
s皿（iraiid_sea) as d 

from seir_iin_rand 
group by date, dayno； 

quit; 

e_total 5 sum(erand_air) as 
_sea，s皿(erand_land) as e—land, 
i—total , sum(irand_air) as 
_sea，sum(ircLnd_land) as i—land 

/* pick up days with 
ind; 

imported * / 

二and >0 .land >0 

it a im—list-pick; 
set iiii_list_ind; 
if St 

dayno ； 
-list—pick; 

/* Calculate 
%let s 
%let 

simulation */ /* FPT 
data fpt 

set iin_list_pick 
b y S t — i m p o r t ; 
if first.St 
iter 
iter 

/* Store the j 

l±± &si > 1 oi 

proc append 
run; 

'/end; 

E(0), 1(0) simulation result */ 

rno —= 1 %then %do; 
36 = fpt_l_l data = fpt.&fname; 
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/* End of per E(0) , 1(0) simulation */ 

%let e_si3n = 7oSysevalf (&;e_sim+fed)； 
Volet i_sim = %sysevalf (&i_sini+&d)； 
%let rno = %sysevalf(&rno+l)； 

/* End of E(0), 1(0) realization */ 
•/�end; 

/* Simulation summary */ 
proc sql; 

select m€ 
from fpt. 
group by 

quit; 

proc print； 

/* 95% CI i 
proc sort c 

by dayno； 
run: 

_day as 
L (dayno) as ni_day，eset ； 

FPT */ 
i = result.eifit240320il: 

dayno = mfpt) 

data sortfpt； 
set result.eifit24032011; 
meaiilag=int ((dayno+lagCdayno) )/2): 

run; 

data ll_fpt(rename^ meanlag = Ifpt) 
ul_fpt(rename= meanlag = ufpt). 

set sortfpt; 
by dayno； 
if _n_= 3 then output ll_fpt ； 
if _n_= 50 then output med.fpt; 
if _!!_= 98 then output ul_fpt ； 

run; 

data fptci; 
merge ll_fpt(keep=lfpt) med^fpt(keep=mfpt) ul_fpt(keep=ufpt) 

proc print;run; 

7oput Hello! Finished! 

。/。mend ei_fit: 

BASELINEFIT 
Program name: BASELINEFIT 
Version: 1.0 
Author: Marc, Biostatistician 
Study name: HlNl simulaton study 
Created date: 01MAY2010 
Purpose: To fit tlie baseline reproduction 

/+ Macro for R fitting: 
r_ll: lower limit of the reporduction 
r_ul: upper limit of the reporduction 
d: the length of R 
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of realizations 
length of latent 
length of _ 

proportion" of impc 
‘ - eratj dayno: number of days 

baselinefit(r_ll -ul, d， 

/* Initiated 
"/oSeirOO, 90, 

countries own a 
15, 2.9, &dayno) 

infectious subjects 
*/ 

sim,lat, inf, screen, dayno)； 

,ses with estimated E(0), 1(0) */ 

/* Day limit */ 
data seir_iiQ_dl; 

set seir_im; 
if dayno < &dayno； 

run; 

/• Start R 
Volet repro 
•/。let rno = 1; 

•/。do "/ountil (&repro -ul) 
/* Start 
Vodo si = 

3r R simulation */ 
7cto &sim; 

running RO二 &repro simulation of 

* Random latent cases； 
if e = 0 or in_total = 0 then 
else eraixd_total = ranbinCO, 
if e = 0 or m_air = 0 then 
else erand„air = ranbinCO, 
if e = 0 or m_sea = 0 then 
else erand_sea = ranbin(Oj 
if e = 0 or m.land = 0 then erand.iand = 
else erand-land = ranbin(0,e,m.land)； 

* Random infectious cases; 
if i = 0 or m__total = 0 then irand^total 
else irand_total = int(&screen*ranbin(0,j 
if i = 0 or m—air = 0 then irand_air = 0; 
else irand_air = int (&screen*reinbin(0, i,n 
if i = 0 or m_sea = 0 then irand„sea = 0; 
else iraixd-sea = int(&screen+ranbin(0,i,ii 
if i = 0 or m_land = 0 then irand—land = 
else irand-land = int(&screen*ranbirL(0,i， 

= 0； 

，m—total)) 

.air)); 

_sea))； 

n一land))； 

proc sql; 
create table im_daily as 
select date, dayno, 

simi(erand_total) as e_total , sum(erand_air) 
siam(erand_sea) as e_sea, sum(ercind_lcLnd) as ( 
sum(irand_total) as i.total ， sum(irand_air) 
siiin(irand_sea) as i_sea, sum(irand_land) as : 

from seir„im_rand 
group by date, dayno； 

qui t ; 

as 
..land 

/* Merge export */ 

table trans^daily E 
A . B . m _ t o t a l , B.n 

from im_daily as A, daily, 
where A.date ” B.date anc 

_air, B.n 
as B 

A。dayno 

B.confirmed 
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quit; 

/* Transpose data for array 
proc transpose data=trans_dc 

proc transpose data=trans. 

* / 

proc transpose 
var e_land; 
run; 

proc transpose 

data=trans_ 

=trans 

proc transpose data二traiis_ 

proc transpose data=traiis_ 
var i l a n d : 

proc transpose =trans. 

proc transpose data=trans_ 

proc transpose data=traiis_ 
var i l a n d ; 

proc transpose data=trans_ 
var confirmed: 

out: 

y out"iin_ 

out: 

(drop: 

(drop: 

(drop: 

(drop: 

(drop= 

(drop: 

prefix=im— 

prefix=im. 

-land; 

prefix: 

prefix= 

prefix: 

out=iii_air (drop 

y out=m_sea (drop: 

out-m_land (drop: 

y out=confirmed (drop: 

prefix: 

prefix; 

prefix=m_land； 

=confirmed; 

/* calculate the parameters ‘ 
%let dno-yasysevalf (&dayno+l)； 
Volet beta=%sysevalf (ferepro/feinf ) 

daily_arr (keep: confirmed 
-land 

b c d ej 
s i_laiid 

-land) 

.land confirmed: 

a
a
a
a
a
a
 a
a
a
a

 a
a
a
a
a
 

r
r
r
r
r
r
 r
r
r
r

 r
r
r
r
r
 

r
r
r
r
r
r
 r

 r

 ̂

 r

 r
r
r
r
r
 

_air-arr(*): 
_sea_arr(*)； 
_laiid_arr(*) 
-air—arrO); 
•sea一arr ⑷ : 
_land_arr(*) 

•airl -
•seal -
3_landl 
.airl -
- S e a l -

Llandl 

im-

.land&dno: 

-land&dno: 

m—air—axr(*) m_airl - m—air&dno; 
m—sea—arr (*) m_seal - in_sea&diio; 
in_land„arr (*) m„landl - m.land&dno; 
confirmed^arr(*) confirmed：! - confirmedMno; 

_arr (fedayno)； 
_arr(fedayno); 
„arr(&dayno); 
_arr(&dayno)； 
iyno_arr(&dayno)； 

D k = 1 to fedayno； 

if k = 1 then do; 
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dayno—arr(k)=k； 
s_arr(k) =7055071; 
e_arr(k)=0; 
i_arr(k)=0; 
r_arr(k)=0; 

Lse do 
dayno_ •00 = 

parameters; 
biiib=l-exp(-l* ( (&beta*i_arr (k-1) ) /7055051)): 
binc=i-exp(-l*(l/&lat)); 
bind=i-exp('l*(l/&inf)); 

if s_arr(k-l) <= 0 or i_arr(k-l)-
else b=ranbin(0,s_arr(k-1) ,binb) 
if e_arr(k-l) <= 0 then c=0; 
else c=ranbin(0,e„arr(k-1) ，bine) 
if i一arr(k-l) <= 0 

0 b= 

else d=ranbin(0,i_arr(k-1) bind)： 

then do: 

ranbin(0,e_arr(k-1),m_air_arr(k))； 
sea=ranbin(0,e_arr(k-1),m—sea—arr(k)〉； 
land- ranMn(0，e_arr(k-i) , m_land_arr (k)) 

if i_arr(k-1) then 

_air=ranbin(0，:i 
.sea=ranbin(0,j 
_land=ranbin(6， 

_arr(k-l) 
_arr(k-l),i 
L_arr(k-1) 

iir一arr(k)); 
3ea_cLrr(k))； 
.land^arrCk)) 

arr(k)； 
arr(k); 

land„arr(k) 
arr(k)； 

sea_arr(k)； 
_land_arr(k) 

:(k) = s_arr(k-l) 
:(k) = e_arr(k-l) 

.arr(k) 

:(k) 

_arr(k-l) - d 
sea 

•arr(k-l) + d; 

•land; 

-land 
land: 

s=s_axr(k) 
e=e_arr(k) 
i=i_arr(k) 
r=r_arr(k), 
dayno=dayno_arr(k) 

output； 

.arr(k) 
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MSE */ 

run; 

/* Calculate 

yolet 
y„let St 
o/let 

proc sql; 
create table daily_se as 

select sum(((confirmed-
from daily_arr; 

quit ; 

_c) **2))/count(confirmed) 

/* Store 
%±t &si ： 

proc 

simulation result 
)r &riio、1 %theii 

daily_se_ 

%do; 

daily_se— 

%end; 

/* Er 
7oend; 

of R simulation */ 

Xlet repro= Xsysevalf (&:repro+&d) 
%let rno = %sysevalf(&rno+l)； 

/* End of R realization */ 
ŷ end; 
/* Export summary of i 
proc sql; 

create table ineaii_m! 
select meaii(nLse) as 
from daily—se_l_l 
group by repro; 

quit; 

proc print；run； 

y.put Hello! Finished! 

%inend baselinef it: 

square 

repro 

RO */ 

FPTSIM 
Program name: FPTSIM 
Version: 1.0 
Author: Marc J 
Study name: HlNl simulaton study 
“ “‘ 01MAY2010 

To simulate the FPT and FHPT from 

Amendment history 
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/* Macro for model simulation: 
directory 

of realizations 
length of latent 
- - o f infectious • 

proportion of import infectious subjects 
gdayres: day number start for travel restriction 
imfair: Import restriction fraction 
imfsea: Import restriction fraction 
imfland: Import restriction fraction 
‘ ‘ of days generation */ 

%Taacro fptsim(dir 

libname result 

/* Non-local 
。/。seir(90，90 

/+ Day limit */ 
data seir_iiii_dl; 

set seir_iin; 
if dayno < fedayno； 

run: 

90 and E0=90 
&dayno)； 

gdayres, imfair, 

* / 

imfland,dayno) 

/* Start per R simulation */ 
�/odo s i = 1 %to fesim; 

%put Simulation 
%put Im Marc — 

feimfland for day &gdayres； 

* Random latent cases; 
if e = 0 or in_total = 0 
else erand_total = ranbinCO, 
if e = 0 or m—air = 
else erand_air = ranbin(0, 
if e = 0 or iii_sea = 0 then erand_sea = 
else erand_sea = ranbin(0,e，iiL_sea); 
if e = 0 or m_land = 0 then erand_laiid 
else erand_land = ranbin(0, e,iii_laiid)； 

infectious cases; 
一 t o t a l - 0 then irand_total 

total - ranbin(O,i,iii_total)； 
= 0 or in一air = 0 then iraiid_air = 0; 
iraiid_air = ranbin(0, i,m„air)； 
- 0 or m^sea = 0 then irand一sea = 0; 
irand_sea = raiibin(0,i,m_sea)； 
= 0 or m_laiid 二 0 then irand_land = 
irand_land - raiibin(0,i,in_land)； 

proc 
by 

run: 
dayno country; 

proc sql; 
create table s皿im as 
select date, dayno, 

sum (ereoid^total) as 
STomCerand̂sea) as 
Slim (irand_t ot al) as 
sinn(irand_sea) as i_ 

from seir_im„rand 
group by date, dayno; 

quit; 

%put Simulation: 
%put Im M a r c . — 

_total，s皿（erarui_air) 
3a, siim(erarLd_laiid) as < 
.total 
3a，sum(iraiid_land) 

land 
is starting; 

land. 

day fegdayres 
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/* Calculated the cumulative 
data im_list_&si; 

set sumim; 
if 1 < dayno < &gdayres then total_ini_inf=e„air + e—sea + e_laiic 

+ i_air + i_sea + i_land; 
if dayno >= &gdayres then 

t ot al_ iiii„ inf=int ((l-&imf air) *e_air) + int ( (l-feimf sea) *e_sea) 
+ int((l-&imfland)*e_land)+int(^screen*((l-feimfair)*i_ 
十(l-&imf sea)*i_sea + (l-&imf land) *i_laiid))； 

if dayno in (0,1) then c皿胃ini„inf =0; 
else ciiin„iiii_inf+total_.im_iiif: 

/* Day of FPT and FHPT*/ 
data fptcut_&si (keep=dayno ciam_im_inf fpt_f lag)； 

set im_list_&si; 
if cum_im_inf>=1； 
fpt.flag=l; 

run; 

data fpt_&si (keep=fpt)； 
set fptcut_&si; 
by fpt.flag; 
if first .fpt_.flag; 
fpt=dayno； 

run; 

data fhptcut_&si (keep=dayno cum_iin_inf fhpt_flag) 
set im_list_&si; 
if cimi_im_inf>=100 ； 
fhpt_fiag-l； 

rrni; 

data fhpt_&si (keep-fhpt)； 
set fhptcut_&si; 
by fhpt_flag; 
if first.fhpt_flag; 
fhpt=dayno； 

run; 

%±f Ecs±>l %then %do; 
proc append base = fpt_l data = fpt_&si; 
run; 

proc append base = fhpt_l data = fhpt„&si; 
run; 

%end; 

%end; 

data result .fpt ； 
merge fpt„l fhpt_l; 

run; 

"/oput Hello! Finished!; 

Xmend fptsim; 

SIMMODEL 
Program name: SIMMODEL 
Version: 1.0 
Author: Marc J 
Study name: HlNl simulation study 
Created date: 01MAY2010 
Purpose: To 
Motes: 
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Macro for model simulation: 
r: the result directory 

repro: the reporductd 
of -

length of 
of infectious 
proportion of import infectious subjects 

dayres: day number start for travel restriction 
dayintervem: day number start for antivirals and hospitalization 
pt: proportions of infectious subjects selected for treatment 
ph: proportions of infectious subjects selected for hospitalization 
pu: proportions of untreated infectious subjects 
imfair: Import restriction fraction for air 

Import restriction fraction for sea 
:Import restriction fraction for land 

exfair: Emport restriction fraction for air 
Emport restriction fraction for sea 
:Emport restriction fraction for land 
transition rates from treatment state to removed state 
transition rates from hospitalization state to removed state 
infectiousness reduction for receiving antivirals 
number of days generation 

simmodeKdir, 
pTi,imfair J 
infre， dayno) 

dayres， dayinterven, pt, ph, 
exf land, Earn t, Earn h. 

libname result 

/氺 Non-local 
%seir(90， 90， 

=90 and 
fedayno) 

EO-90 */ 

/* Day limit */ 
.dl: 

M a y n o ； 

/* Start per R simulation */ 
y。do si - 1 %to &sim; 

/* Daily 
seir_ 

set 

* Random latent cases; 
if e = 0 or m_total = 0 then 
else erand_total = ranbinCO 
if e - 0 or m_air - 0 then 

ranbinCO 
if _sea = 0 then 
els a - ranbinCO 
if _land = 0 then 

ranbin(0,1 

infectious cases; 
= 0 or m_total = 0 then iraiid_total 
irand^total = ranbinCO,i,m_total)； 
= 0 or ni_air = 0 then irand一air = 0; 

ranbiii(0，i，m—air)； 
= 0 or m.sea = 0 then irand„sea = 0; 
irand_sea = ranbin(0,i,iii„sea)； 
= 0 or m^land = 0 then irand_land = 
irand__land = ranbin(0，i，m一land); 
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proc sql; 

—total，s皿（eraiid_air) as e_£ 
3a，suiii(eraiid_land) as e_land， 
_total , sum(irand_air) as i_c 
3a, sum(iraiid„land) as i_laiid 

select date, dayno, 
sum(erand.tot al) as 
siim(eraiid_sea) as € 
s皿(irand_tot al) as 
s皿（irand_sea) as i 

from seir_im_rand 
group by date, dayno； 

quit; 

y^put Simulation: dayres &dayres dayinterven fedayinterven air &imfair 
land 

%put Im Marc. 

proc sql; 
create table 
select A.*， I 
from sumim as 
where A.date 

quit; 

/* Transpose di 
proc transpose 

with pt &pt ph &ph pu &pu 
simulation &si is starting; 

trans_daily e 
.m.total, B.n 
A, daily_ex 

ita for array 
data=trans dc 

A.dayno = B.daync 

* / 

proc transpose data-trans_ 

proc transpose data=trans_ 

(drop: 

(drop: 

y out=iin„e„land (drop=_ 

_air (drop=_ 

_sea (drop=_ 

.land (drop= 

prefix: 

prefix: 

proc transpose data=trans_daily out: 

proc transpose data=trans. 
var i_sea; 
run; 

proc transpose data=trans一 
var i_land; 
run; 

proc transpose data=traiis. 
var m—air; 
run; 

proc transpose data=trans_ 
var m_sea; 
run; 

proc transpose data=traiis_ 
var m_land; 
rim: 

/* calculate the parameters ‘ 
y。let diio=%sysevalf (&dayno+l)； 
Xlet beta:y。sysevalf (&repro/&;inf)； 

data daily_arr (keep-dayno s e i t h r b c d m n p q e j 
ex_e_land ex_i_air ex_i_sea ex„i_land im_e_ 

total_iin„inf cum_im_inf 
exfrnlaind 

transediff transidiff binb bine bind binp binq) 
3_air im_e_sea iin_e_laiid 
L air im i_sea im_i_land 

pref ix=im_e_laiid; 

prefix= 

prefix: 

prefix: land: 

land: 

-land 
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array 
array 
array 

-arr(*) 
im_e_seal — ±m_e_si 

land&dno； 

_sea_arr(*) 
_ 1 and— arr ( * ) ini_ i m— i „ 1 and&dno ； 

m_air—arr(*) 
iii_sea_arr(+) 
m_land_arr(*) 

array 
array 
array 
array 

§
 

h
 d
 

r
 r
 

o
 o
 o

 o

 o
 

^
^
^
^
^
 

t
d

 a
 c
d

 a
 

d
 d d

 d
 d
 

&
 & &

 &
 &
 yno；； 

(Mayno) 

/* start loop of dc 
do k = 1 to &dayno; 

/* day 
if k =1 

daync _axr(k)=k; 
(k) =7055071; 

arr ⑴ = 0 ; 
arr ⑴ = 0 
arr(k)=0 
arr ⑴： 
arr ⑴： 

/* day>0 */ 
else do; 

/* days before travel restriction and control mee 
if k < M a y r e s and k < Mayinterven then do; 

dayno_arr(k)=k； 

* Binomial parameters； 
binb=l-exp(-l*((&beta*i_arr(k-1))/7055051))； 
binc=l-exp(-l*(l/&lat))； 
bind=l-exp(-l*(l/&inf)); 

if s_arr(k-l) <= 0 or i_arr(k-l) <= 0 then b=0; 
else b=raiibin(0, s_arr (k-1) ,binb) 
if e_arr(k-1) <= 0 then c=0; 
else c=ranbin(0,e_arr(k-l) ,binc) 
if i_arr(k-l) <= 0 then d=0; 
else d=ranbin(0,i_arr(k-1) ,bind) 

* / 

rcinbin (0, e_arr (k-1)，m 
sea=r£Lnbin(0,e_arr(k-l)，m 
land= ranbin(0,e_arr(k-1) 

_air一arr(k))； 
.sea_arr(k)); 
’ m_laiid_arr (k)) 

if -(k-1) 
Lir=0 ； 
sea=0: 

then do; 

else do; 
ex_i_c =TanMn(0， 

=ranbiii(0， 
.arr(k-1) 
.arr(k-1) 

.arr(k)) 

.arr(k)) 
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/* Endif of 

=s_arr(k-1) - b; 
=e_arr(k"l) + b - c + transediff j 
=i一arr(k-1) + c - d 
treinsidiff; 
=r_arr(k-l) + d; 

travel restriction 

if e_arr(k-l) o 
ex_e_air=0; 
ex_e_sea=0; 
ex_e_land=0; 

end; 
else do: 

.air=int((1-exfmair)*ranbin(0, 
_sea=int((l-exfmsea)*ranbin(0， 
.land= int ((l-exfmland) *ranbiii(0 

if i_arr(k-l) 

.e_air=im„e_air_arr(k)； 

.e_sea=iin_e—sea一arr (k)； 

.e_land= im_e_l£iiid_arr (k) 

.i一air=im—i_air—arr(k)； 

.i_sea=im_i_sea_axr(k)； 

.i_land=im_.i_land„arr (k)； 

* Transportation operator; 
transediff=im„e_air + im„ej 

transidiff=iiit (&screen* (im_i_c 
-ex_i_air 一 ex_i_sea 

•land; 
iin„i_se 
_i_land: 

„arr(k))); 
.arr(k))); 

'(k))) 

.land)) 

control measure */ 

/* days after travel restriction but before control measure */ 
if k >= fedayres and k < M a y int erven then do; 

iirifmsea=&imf sea; 
imf ml and=&iinf 1 an 
exfmair=&exfair； 
exfmsea=&exfsea: 

parameters； 
binb=l-exp(-l*((&beta*i_arr(k-l))/7055051)); 
binc=l-exp(-l*(i/&lat)); 
bind-l-exp(-i*(i/&inf)); 

if s_arr(k-l) <= 0 or i_arr(k-1) <= 0 then b=0; 
else b=ranbin(0,s_axr(k~l) ,biiib)： 
if e,arr(k-l) <= 0 then c=0; 
else c=ranbin(0,e_arr(k-1) ,binc) 
if i.arr(k-l) <= 0 then d=0; 
else d=raiibiii(0,i„arr(k-l) ，bind) 

int {(l-exfmair) *rarLbiii (0, i_arr (k-1) ,m_air_arr (k)))； 
sea=int((l-exfmsea)*ranbiii(0,i.arr(k-1) ,m_sea_arr(k))); 
land: int ((l-exfmland)*ranbin(0,i_axr(k-1)，ni_land__arr(k))) 
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.land=raiibin(0,i_arr(k-1)，ni_laiid_axr(k)) 

s_arr(k) 
e_arr(k) 
i_arr(k) 

r_arr(k) 
t_arr(k) 
h_arr(k) 

arr(k-l) 
arr(k-l) 
,e_arr(k 



=iirt ( (l-imfmair) *im_e_air_arr (k))； 
-imfmsea) *iin_e_sea_arr (k))； 

.land= int((l-imfmland)*im_e_iaad_arr(k)) 
_air=int((l-imfmair)*im_i_air_arr(k))； 
_sea=int ( (1-imf msea) *iin_i_sea_arr (k))； 
_land= int ( (l-imfmland) *iin_i_iaiid_arr (k)) 

* Transportation 
transediff= 

- e x _ _ _ _ 
transidif f=iiit (&screen* (iin_i_air + im__i_sea + im_i_land)) 

-ex_i_air - ex_i_sea 〜 l a n d ; 

s_arr(k) = s一arr(k-l) - b; 
e—arr(k) = e_arr(k-1) + b - c + transediff； 
i—arr(k) = i_arr(k-1) + c - d 

+ transidiff; 
r_arr(k) = r_arr(k-1) + d; 
t_arr ⑴ = 0 ; 
h_arr(k)=0; 

/* Endif of days after travel restriction but before control measure */ 
end ； 

/* days before travel restriction but after control measure */ 
if k < &dayres and k >= &dayiiiterven then do; 

dayno_arr(k)=k; 

* Binomial parameters; 
binb=l-exp(-l*((&beta*(i_arr(k-l)+(l-&infre)*t.arr(k-l)+h_arr(k-l)))/7055051)) 
binc=l-exp(-1*(1/&lat))； 
bind=&pu*(l-exp(-l*(l/&inf))); 
binp= 1 -exp ( ̂  1 *&gain_t)； 
binq= 1 --exp (-1 *&gain_h.)； 

if s_arr(k-l) <= 
else b=raiibiii(0, 
if e_arr(k-l) <= 
else c=ranbiii(0, 

if i一arr(k-1) <= 
else d-ranbin(Oj 
if i_arr(k-l) <= 
else m=ranbin(0, 
if i_arr(k-1) <= 
else n-ranbinCOj 

if t,arr(k-l) <= 
else p=ranbin(Oj 
if li_arr(k-l) 

0 or i„arr (k-1) <= 0 then b=0; 
3 _ a r r ( k - 1 ) ，binb)； 
0 then c=0; 
3_arr(k-1) ，bine)； 

0 then d=0; 
L_arr(k-1) ，bind)； 
0 or &pt <= 0 then m=0; 
L„arr(k-l), ; 
0 or &ph <= 0 then n=0; 
L_arr(k"l), &ph); 

0 or binp <= 0 then p=0; 
b_arr(k-1)，binp)； 
0 or binq <= 0 then q=0; 

q=r anbin(0,h_ arr(k-1),binq) 

then 

=int ((l-exfinair)*ranbiii(03 
_sea=iiit ((1-exf msea) *r anbin (0, 

•(k-1)，m一air—arr (k))) 
_arr (k-1) ,iii_sea„arr(k))) 

int ((1-exf inland) *ranbiii (0, e_arr (k-1) , m—land—arr (k))) 

if i_arr(k-1) <= 0 then do; 
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int ((l-exfmair) *raiibin(0，i—arr (k-1)，m_i 
sea=int ((1-exfmsea)*ranbin(0,i_arr(k-1) ,m_i 
land= int ( (1-exf mland) *ranbiii (0，i„arr (k-1) 

_arr(k))): 
-arr(k))). 

:(k))) 

.air=int ( (l-imfmair) *im__e„air_arr (k))； 
_sea=int ( (l-imfmsea) *iin„e_sea_arr (3c))； 
_laiLd= int ( (1-imf mland) *im„e_laiid_arr (k)) 
_air=int ( (l-imfmair) *iiti_i_air„arr (k))； 
_sea=int ((l-imfmsea) *im_i„sea_arr (k))； 
_laiid== int ( (l-imfmland) *iin_i„laiid_arr (k)) 

* Transport at ion operator; 
transediff=im_e_air + iiii_e_sea + im e„land 

traiisidiff=int (&screen*(im_i_air + iin_i_sea + iin„i_laiid)) 
- e x i air 一 ex_i_sea 一 ex inland: 

s_arr(k) = s—arr(k-1) 
e_arrOO = e_arr(k-l) 
i_arr(k) = i一arr(k-1) 

+ transidiff 

transediff: 

t_arr(k) 
h_arr(k) 
r_arr(k) 

/氺 Endif days 

t_arr(k-l) 
h_arr(k-l) 
r_arr(k-1) 

travel restriction but after control 

/* days after travel restriction and control 
if k >= fedayres and k >= &dayinterven then dc 

* / 

imfms e a=&imf sea; 
imfmland-&imf1and； 
exfmair-&exfair； 
exfms ea=&exf se a； 
exfmland=&exfland; 

dayno_arr(k)=k; 

* Binomial parameters; 
l3inb=l-exp(-l*((&beta*(i_arr(k-l) + (l-Mnfre)*t,arrCk-l)+h_arr{k-l)))/7055051)) 
binc=l-exp("l*(l/&lat)); 
bind==apu*(l-exp(-l*(l/&iiif))); 
binp=l-exp(-l»&:gaiii_t)； 
binq=l"exp(-l*&gain_h)； 

(k-1) <= 0 
0，S -

if s 
else b=ranbin 
if e_arr(k-l) 
else c=ranbin 

if arr(k-1) 
else d=raiiMn 
if i_arr(k-1) 
else in=ranbin 
if i_arr(k-1) 
else n = r a 2 i b i n 

if t_arr(k-l) 
else p^ranbin 
if li_arr(k-l) 
else q=raiibin(0, h^arr (k-1) 

i一arr(k-l) < 
_arr(k-1) ，binb); 

o 0 then c=0; 
0,e_arr(k-1) ,binc)： 

then b: 

< = 0 then d= 
0,i_arr(k-l) 
< = 0 or &pt 
0,i_arr(k-l) 
< = 0 or &ph 
0,i_arr(k-1) 

< = 0 or binp 
0，t_arr(k-l) 
< = 0 or binq 

， b i n d ) ； 
= 0 then 
&pt); 
= 0 then 
Soph); 

binp) 
<=0 

binq): 

then p=C 
} 

then q= 
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_air=int ( (1-exf mair) *ran"bin (0，e_arr (k-1) 
^sea=int((l-exfmsea)*ranbin(0,e_arr(k-1) 
_laiid= int ( (1-exf ml and) *ranbin (0, e_arr (k-l) 

�(k))) 
•axr(k))); 

,(k))) 

(k-1) 

land=0: 

0 then do; 

int((1-exfmair)*ranbin(0,i—arr(k-l), 
int((1-exfmsea)*ranbiii(0,i_arr(k-l)，m—i 
= i n t ((l-exfrnland) *raiibin (0, i^arr (k-1) 

import； 
int ((l-imfmair) *iin_e_air_arr (k))； 

sea=int ((l-imfmsea) *iin_e_sea_arr (k)); 
land二 int ((l-imfmland) *iin„e_land_cLrr (k)) 
air=int ((1-imfmair) *iin_i__air_,axr (k))； 
sea=int((l-imfmsea)*im_i_sea_arr(k))； 
land= int ( (l-imfmland) *iin_i—land—arr (k)) 

* Transportation 
transediff= 

： 一 a r r ( k ) ) ) ; 
i_arr{k))); 
-land—arr(k))) 

transidif f=int (&screen* (im_i_air + im_i_sea + ini_i_laiid)) 

s„arr(k) = s—arr(k-l) - b; 
e„arr(k) = e—arr(k-i) + b 
i_arr(k) = i_arr(k-1) + c 

+ transidiff 

transediff: 

t_arr(k) 
h_arr(k) 
r_arr(k) = i 

/* Endif days 

t_arr(k-l) 
h_arr(k-l) 
r_arr(k-l) 

travel restriction control * / 

/* Enddo days>0 */ 

s=s_arr(k)； 
e=e_arr(k)； 
i=i一arr(k)； 
t=t_arr(k)； 
h=h_arr(k)； 
r=r_arr(k)； 
total_im„inf=iin_e_air 
if k in (0,1) then cm 
else ciim_im_inf+to"tal_ 
dayno=dayno_arr(k)； 
output； 

_im_inf 

/* End of loop day */ 

data result« 
set daily. 

/ * of R simulation */ 

7oput Hello! Finished! 

Xmend simmodel; 

162 



/* start 
%do si : 

* Day of FPT; 
data firstcut_&si (keep=dayno cuiii_im_inf fpt_flag) 

set result.sim_&si; 
if cuiii_im_inf >=1; 
fpt_flag=l; 

run; 

data fpt_&si (keep=arrlday)； 
set firstcut_&si; 
by fpt_flag; 
if first.fpt_flag; 
arrlday=dayno； 

Day of FHPT; 
ata firstlOOcut. 
set result.sim. 
if cum_im„inf>= 
fhpt_flag=l; 

(keep=dayiio cum_im_inf fhpt_flag) 

3.ta fhpt^&si (keep=arrlOOday) 
set firStlOOcut_&si； 
by fhpt_flag; 
if first.fhpt_flag; 
arrlOOday=dayno； 

Peak attack rate (%)； 
proc sql; 

table pi_&si as 
round((100*max(b))/7055051,0.01) as peak—rate 

result.sim—&si; 
quit; 

proc sort data = pi_&si nodup； 
by peak一rate; 

* Peaic times (weeks)； 
proc sql; 

create table pt_&si as 
select round((dayno)/7,0.1) as peakJ 
from result .siin_&si 
where b = (select niax(b) from result. 

quit; 

proc sort data = pt_&si nodup； 
by peak_time; 

* Cumnmlative attack rate C D by months； 
proc sql; 

table ci4_&si as 
rouiid((100*sum(b))/7055051,0.1) 

result. sini_&si 
where dayno <=120; 

quit; 

proc sql; 
create table ci5_&si as 
select romid((100+siim(b))/7055051,0.1) 
from result.sim_&si 
where dayno <-150; 

quit; 
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/本 Macro for resulting statistics: 
le result directory 
le simulated times */ 
simresult(dir, sim)； 

result &:dir: 

.mulation */ 
Iti 



proc 
— ““ ci6_&si as 

select ro-uiid((100*sum(b))/7055051,0.1) as cum.rate 

table ci7_&si as 
rouiidC (100*sum(b) )/7055051,0.1) 

result. siin_&si 
where dayno <=210; 

quit; 

rcmnd((100*s碰(b))/7055051,0.1) 
from result.sim_&si 
where dayno <=240; 

quit; 

proc sql; 
create table ci9_&si as 
select round((100*suin(b))/7055051,0.1) as cum.rate 
from result. sini_&si 
where dayno <=270; 

quit ； 

proc sql; 
table cilO_&si as 
roundC(100*STajn(b) )/7055051,0.1) as cum_rate 

result.sim_&si 
where dayno <=300; 

quit; 

proc sql; 
create table cill_&si as 
select round( (100*suin(b) )/7055051,0.1) as cuin_rate 
from result.sim—fesi 
where dayno <=330; 

quit; 

proc sql; 
create table cil2_&si as 
select round((100*suin(b) ) /7055051,0.1) as cum.rate 
from result•sim_&si 
where dayno <=360; 

quit; 

proc sql; 
table ciall_&si as 
roundC(100*stim(b) )/7055051,0.1) as cma.rate 

result. siin_&si 
where dayno <=600; 

quit; 

t±± &si>l 7othen %do; 

proc append base - fpt_l data = fpt_&si ； 
run: 

proc append 
run; 

proc append 
run: 

fhpt„l data = fhpt^ 

pi_l data = pi_&si； 

pt_l data = pt_&si; proc append bas 
run; 

proc append base = ci4„l data = ci4 
rim; 
proc append base = ci5_l data = ci5 
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run; 

proc append 

proc 
run: 

ci7- ci7. 

%end; 

/* Summary of results */ 
/* FPT */ 
proc means data=fpt_l noprint； 

var arrlday; 
output out = fpt_print N;N 

a.ta fpt一print (keep 
set fpt print； 
pl=(pi+p5)/2; 
pu=(p95+p99)/2; 
name - ，FPT 

pl=pi p5=p5 p50=p50 p95=p95 p99=p99; 

pi p50 pu)； 

/* FHPT */ 
proc means data=fhpt_l noprint； 

var arrlOOday; 
output out == fiipt_print N-M 

run: 

ita fhpt_print (keep 
set fhpt—print; 
pl=(pl+p5)/2; 
pu-(p95+p99)/2; 
name - 'FHPT，； 

N 

pl=pl p5=p5 p50=p50 p95=p95 p99=p99; 

pi p50 pu)； 

/* P 
proc 

AR */ 
LQS data=p: 
jeak一rate; 

output out = pi_print N=N 

data pi_print (keep = name W 
set pi一print; 
pl=(pl+p5)/2; 
pu=(p95+p99)/2; 
name = ，Peak AR (%)，； 

run; 

/* Peak time */ 
proc means data=pt_l noprint; 

var peak.time; 
output out = pt_print N=N 

pl=pl p5=p5 p50=p50 p95=p95 p99=p99; 

pi p50 pu); 

pl=pl p5=p5 p50=p50 p95=p95 p99=p99; 
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ata pt„print (keep = name N 
set pt_print; 
pl=(pl+p5)/2; 
pu=(p95+p99)/2; 
name = ，Peak times (weeks)】 

/+ Cum AR by months */ 
proc means data=ci4_l noprint； 

var cum—rate; 
output out = ci4_print N=N 

ata ci4_priiLt (keep = name N 
set ci4_prirLt ； 
pl=(pl+p5)/2; 
pu=(p95+p99)/2; 
name = '4 months cum AR (%)^ 

proc means data=ci5_l noprint； 
var cum_rate; 
output out = ci5_print N-N 

run; 

data ci5_print (keep = name N 
set ci5_print; 
pl-(pl+p5)/2; 
pu=(p95+p99)/2; 
name = ,5 months cum AR (%)， 

run; 

proc means data=ci6_l noprint; 
var CTim.rate ； 
output out = ci6_print N=N 

run; 

data ci6_priiit (keep = name N 
set ci6_print; 
pl=(pl+p5)/2; 
pu=(p95+p99)/2; 
name = ，6 months cum AR (%), 

run; 

proc means data=ci7_l noprint； 
var cum一rate; 
output out = ci7_print N=N 

run; 

data ci7_print (keep = name M 
set ci7_print; 
pl=(pl+p5)/2; 
pu=(p95+p99)/2; 
name = '7 months cum AR (%)】 

proc means data=ci8_l noprint； 
var cum„rate ； 
output out = ci8_print N-N 

run; 

data ciS.print (keep = name N 
set ci8_print; 
pl={pl+p5)/2; 
pu=(p95+p99)/2; 
name = '8 months cum AR (%)‘ 

proc means data=ci9_l noprint; 
var cuin_rate; 
output out = ci9_print N=N 

run; 

pi p50 pu)： 

pl=pl p5=p5 p50=p50 p95=p95 p99=p99; 

pi p50 pu)； 

pl=pl p5=p5 p50=p50 p95=p95 p99=p99; 

pi p50 pu)； 

=niean pl=pl p5=p5 p50=p50 p95=p95 p99=p99; 

pi p50 pu)； 

=meaii pl=pl p5=p5 p50=p50 p95=p95 p99=p99 ； 

pi p50 pu)； 

=mean pl=pl p5;p5 p50=p50 p95=p95 

pi p50 pu)； 

=p99; 

pl=pl p5=p5 p50=p50 p95=p95 p99=p99; 
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data ci9_prizit (keep 
set ci9一print; 
pl=(pl+p5)/2; 
pu=(p95+p99)/2; 

pi p50 pu) 

AR a) 
run; 

proc ns data=cilO_l noprint; 
vax cum—rate; 
output out = ci10—print N=N 

ita cilO_print (keep 
set cilO_print; 
pl=(pl+p5)/2; 
pu=(p95+p99)/2; 
name = ，10 months ci 

丨 name N 

L AR a) > 

noprint； proc means data=cill 
var cum_rate; 
output out = cill_print N: 

run; 

data cill一print (keep = name N 
set cill_priiit ； 
pl=(pl+p5)/2; 
pu=(p95+p99)/2; 
name = '11 months cum AR (%)' 

run; 

proc means data=cil2_l noprint； 
var ciim_rate; 
output out = cil2_priiit N=M 

run; 

data cil2_print (keep = name N n 
set cil2_print; 
pl=(pl+p5)/2; 
pu=(p95+p99)/2; 
name =，12 montlis cum AR (%)‘； 

run; 

proc means data=ciall_l noprint； 
var cum.rate; 
output out = ciall—print N-N 

data ciall_print (keep = r 
set ciali_print; 
pl=(pl+p5)/2; 
pu=(p95+p99)/2; 
name = ,End of epidemic 

run; 

N 

pl=pl p5=p5 p50=p50 p95=p95 p99=p99; 

pi p50 pu)； 

pl=pl p5=p5 p50=p50 p95=p95 p99=p99; 

pi p50 pu)； 

pl=pl p5=p5 p50=p50 p95=p95 p99=p99; 

pi p50 pu)； 

pl=pi p5=p5 p50=p50 p95^p95 p99=p99; 

pi p50 pu)； 

data summary; 
set fpt_print 

ci7—print 
run; 

proc print ；run; 

%niend simresult; 

fhpt_print pi_ 
ci8_print ci9. 

AR (%) 

.print pt_priiit ci4_print ci5_print ci6_print 

.print cilO_print cill_print cil2„print ciall__print; 

SIMCI 
Program name: SIMCI 
Version; 1.0 
Author: Marc， 
Study name: HlNl simulaton study 
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Created date: 01MAY2010 
Purpose: To simulate th. 
Notes: 

confidence intervals 

/* Macro for finding the confident interval by day: 
idir: the dataset directory with 100 epidemic seric 
dir: the result directory 
fname: name of the file 

reproduction number shown in log window */ 
simciCidir, 

s init &idir; 
9 result fedii 

reprc 
%inaci 

/* Start per R simulation +/ 
y。do day = 1 %to 600; 

% l e t S t = 
%let sidst=&day&st； 

%do si 7 o t O 

/ o l e t S i d = Jcsi; 
%let sidno=&day&sid； 

data resiiltd一&sidno 
set init. sira_&si; 
if dayno = M a y ; 

run: 

Voif 7 o t h e n % d o i 

proc 
run: 

(keep = dayno b) 

_&day&st resuitd„&s idno； 

proc sort 
by b; 

re suitd_&day&st:； 

data resultlag„May&st ； 
set resultd_May&st ； 
lagb=int((b+lag(b))/2) 

data ll_&day(keep=dayno 
ul_&day(keep=d£ 

set resTiltlag_&dayS 
by b; 
if _n_= 3 then output ll_&day; 
if _n_ = 98 then output ul_&day• 

lagb = lb) 
- • ub) 

proc sql; 
create table m l _ M a y 
select int(ineaii(b)) £ 
from resultd_&day&st 
group by dayno； 
quit; 

mb, dayno 

%if &day>l %do; 
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proc 

proc 
run 

proc 

11_1 data = ll_&day; 

ul_l data = ul_&day; 

ml_l data = inl_&day; 

"/oPUT write file day 

data result. 
merge ul_1 
by dayno； 

run; 

•/。PUT Finish 

11. 
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Appendix B 

R programs for studying the 

impact of travel restriction for 

the source country 

The programs were built in software R 2.12.1. Here are the following programs 

and their functions: 

« COREFILE: A core file to call all sub-files, 

• MCMCfunction: A function for M C M C metropolis random walk 

• MCMCplot: A function to generate the time series trace plot, autocor-

relation plot, and probability density plot from simulated data 

• OBSDIFF: A function to calculated the absolute difference between ex-

ported days 

• SIMULATION: A simulation study to test the M C M C metropolis ran-

dom walk 

• SIROBS: Application of the M C M C method on the epidemic data and 

a sensitivity analysis 
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SIMINCIDENCE: To simulate incidence curve 

SIMFETPDF: To simulate the probability distributions of F E T and 

FIOET 

SIMEPFET: To simulate expected daily probability distributions of F E T 

SIMFETVSM: To simulate F E T against different daily rates of travel 

SIMFETVSRO: To simulate F E T against different RO 

S I M C O U N T R Y : To simulate number of countries received infected cases 

by day 
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COREFILE 
# Program name: COREFILE 
# Version: 1.0 
# Airthor: Marc, 
# Study name: HlNl 
# Created date: 01N0V2010 
# Purpose: A core file foi 

study 

the study (Chapter 4) 

############################# 
### Function of the study ### ############################# 

Function of MCMC ### 
；WMCMCf unction") 

Function of MCMC plots 
:\\MCMCplot") 

Function to 
:\\OBSDIFF") 

######################## 

### Simiilation study ### ######################## 

Simulation testing study 
':\\SIMULATION") 

################## 

### Case study ### ################## 

### MCMC from epidemic data a 
source("C:\\SIRQBS") 

values 

sensitivity analysis 

Simu 

Simu 

Simu 

Simu 

Simu 

Simu 

curve 
:\\SIMINCIDENCE") 

3 the probability distributions of FET 
:\\SIMFETPDF") 

FIOET 

3 expected daily probability distributions of FET 
:\\SIMEPFET") 

FET against 
WSIMFETVSM" 

different daily of travel 

ate FET against different RO 
"C:\\SIMFETVSRO") 

ate number of countries received infected 
"C:\\SIMCOUNTRY") 

by day 

MCMC function 

Author: Marc, 
Study name: HlNl simulaton study 

01N0V2010 
function for MCMC metropolis walk to 
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# posterior distribution 
# Notes: 

####################################################### 
### Log likelihood for the Stochastic dynamic model ### ####################################################### 

logpost=fmiction(u,N,ROad,TIp,tau,rate){ 

# stochastic SIR model # 

# adapt tan 

datalength=length(u[,1]) 
sirp=niatrix (0,tau+l, 7) 
sirp[lJ=c(0,N,IO,0,0,0,0) 
for (i in 1 :tau)-[ 

pi=l-exp(-1*(ROad*sirp[i，3])/H) 
x=rouiid(pi*sirp[i,2] , 0) 
S=niax (0，sirp [i, 2] -x) 
y=roiind (sirp[i,3] *TIp,0) 
i=max(0,sirp[i，3]+x-y) 
R=max(0,sirp[i,4]+y) 

} sirp[i+l，]=c(i，S,I,R’0，x’y) 

Stau=sirp[tau+1，2] 
Itau=sirp[tau+1,3] 

sir =matrix(0,datalength+1,7) 
sir [lJ=c(tau,Stau,Itau,0,0,0,0) 

#likelihooci matrix 
for (i in 1 :datalength)-C 

pi=l-exp(-l*(ROad*sirCi,3])/N) 
x=trunc(u[i,2]/rate) 
S=max(0，sir[i,2]-x) 
y=round(sir [i,3]*TIp,0) 
i=max(0,sir[i,3]+x-y) 
R=max(0,sir[i，4]+y) 

# likelihood 
loglikeli=-log(dbinom(x，sir [i,2],pi,0)) 
sir [i+1，]=c(tau+i,S,Iloglikeli,x,y) 

sumlikesir=suin(sir [2: (datalength+1) , 5]) 
return (sumlikesir) 

} 
MCMCepi=function(u,M,burnin,M){ 

# Set prior information 
# Initial RO, TI, rate, aO 
R0j=1.5 
TI=3 

ROadj=ROj/TI 
LROad=l/TI 
UR0ad=3/TI 

TIpj=l-exp(-l*(l/TI)) 

ratej=0.2 
Lrate=0.001 
Urate=0.8 

tauj=20 
Ltau=l 
Utau=120 

draws=c(0，ROadj，TIpj,tauj,ratej,0,0,0,0) 
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:(buriiin+M-l)){ 

# random walk single move # 
# rules: accept with prob min(l, A) # 

# Initiate acceptance rate 
ROadacpt-0 
Tlpacpt=0 
tauacpt=0 
rateacpt-0 

# random step size 
VROad=(rimif(l)/30)*(UROad-LROad) 
Vtau== (ninif (1) /5) * (Utau-Ltau) 

# update tail, Stan，Itau 
taunew=roimd(rnorm(1,tauj,Vtau),0) 
if (taiiiiew>Ltau & taunew<Utau){ 

tauA=logpost(u,NjROadj，Tipj，tamiew,ratej) 
if (is.finite(tauA)){ 

A=exp(-l*(tauA-logpost(u,N,ROadj，TIpj，taiij，ratej))) 
if (runif(1) < min(l,A)) { 

tauj==taunew 
tauacpt=l 

# update RO 
ROadiiew=rnonn (1, ROadj ,VROad) 
if (ROadnew>LROad & ROadnew<UROad)-C 

ROadA=logpost(u,N,ROadnew,Tipj，tauj，ratej) 
if (is.finite(ROadA)){ 

A=exp(-1*(ROadA-logpost(u,N,ROadj,TIpj，tauj，ratej))) 
if (runif(1) < min(l,A)) { 

ROadj=ROadnew 
ROadacpt=l 

simulations # 
draws = rbind(draws,c(iter,ROadj,TIpj jtauj,ratej, 
ROadacpt,TIpacpt jtauacpt,rateacpt)) 

return(draws) 
} 

MCMCplot 
# Program name: MCMCplot 
# Version: 1.0 
# Author: Marc, 
# Study name: HlNl simulaton study 
# Created date: 01NOV2010 
# Purpose: A function to generate the time series 

“ plot, and probability density-
simulated data 

trace plot. 
plot 

MCMCplot=function(drawsdat){ 

174 



# 3 by 3 plots 
par(mfrow=c(4,2)) 

# RO 
plot(drawsdat[,2],xlab="",ylab="“,main="RO",type="l",axes=F)；axis(1)；axis(2) 
acf(drawsdat[，2],xlab="lag",ylab="",main="RO",axes=F);axis(l);axis(2) 
hist(drawsdat[,2],freq = FALSE,breaks =300， main="RO",xlab="“,ylab="") 
plot(density(drawsdatL,2]),main="RO",xlab=""，ylab="") 

# tan 
plot(drawsdat C,4],xlab="",ylab="",niain="tan",type="1",axes=F);axis(1);axis(2) 
acf(drawsdat[,4],xlab="lag",ylab="“ ,main="tau",axes=F)；axis(1);axis(2) 
hist(drawsdat[,4],freq = FALSE,breaks =300,niain="tau",xlab="",ylab="") 
plot (density (drawsdat [, 4] ,bw=0.4) ,niain="tau" ,xlab=" " ,ylab="") 

OBSDIFF 
Program name: OBSDIFF 
Version: 1.0 
Author: Marc, 
Study name: HlNl simulaton study 
Created date: 01N0V2010 
Purpose: A function to calculated the absolute difference between 

exported days 
Notes: 

Function to calculated the absolute difference between exported days 
续 #########################################t-

obsdiff=f miction(firstdata,m,N,ROad,Tip，tau){ 

10=7 
datalengtli=200 
sir =matrix(0,datalength.+l,6) 
sir[l，]=c(0,N，IO,0,0，0) 
# SIR matrix 
for (i in 1:datalength){ 

pi=l-exp(-l*(ROad*sir[i,3])/N) 
x=round(pi*sirCi,2], 0) 
S=max(0,sir[i,2]-x) 
y=round(sir[i,3]*TIp，0) 
l=max(0,sir[i,3]+x-y) 
R=max(0,sir [i，4]+y) 

^ sir[i+l,]=c(i,S，I，R,x，y) 

inlength=length(f irstdata) 
itern=200 
axrdaydrawk=NULL 

for (iter in 1: item){ 
arrdayk=NULL 
for (i in 1 :ml6ngth)-C 

for (j in 1 :d.atalength.)-C 
#pin=l-exp ( (-ROad*m [i] *sir Ci+1,3])/(N)) 
piii=l-exp ( (-ROad*sir [j+1,3])/ (N)) 
#first=rbinom(l, l,pm) 
f irst=rbinom(l,in[i] ,pm) 
if (first>0) { 

arrday=sir[j+1,1] -tau 
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arrday=999 

arrdayk = rbind(arrdayk,arrday) 

arrdaydrawk=cbind(arrdaydrawk，arrdayk) 

arrdaynied=round( apply (arrdaydrawk， 

diff=abs (cirrdayTned-obsf irstdata) 
absdiff = sum(diff) 
return (absdiff) 

geometric dist changed to binomial dist (result is similar) 

SIMULATION 
:SIMULATION 

.0 
Author: Marc, Biostatistician 
Study name: HlNl simulaton study 
Created date: 01N0V2010 
Purpose: A simulation to test tli 
Notes •• 

MCMC metropolis walk 

################################## 
### Prepare simulation dataset ### ################################## 

井 stocliastic SIR model function to obtain the simulation dc 
SIRsim=fiinc"fcioi^(M，TI,RO,taii，rate,datalengtli，buff erperiod){ 

=nLatrix(0, tau+datalength+buf f erperiod+1,6) 

(0,N,I0，0，0，0) 
day 0 

i r C l , ] 

or (i in 1:(tau+datalength+bufferperiod)){ 
pi=l-exp((-RO*sir[i，3])/(TI*N)) 

# expected incidence 
x=round(pi*sir [i,2]，0) 
S==niax (0，sir [i, 2] -x) 
p r = l - e x p ( - l * ( l / T I ) ) 
y=rotLnd(pr*sir [i ,3] ,0) 
l = i n a x ( 0 , s i r [ i ， 3 ] + x - y ) 
R==max (0,sir [i, 4] +y) 
sir[i+l，]=c(i，S，I,R，x，y) 

# function to generate misreported incidence 
11=360 (l,datalength,by=l) 
for (i in l:dataleiigth){ 

u[i]=round(sir[tau+i+l，5] *rate，0) 

ku=seq(l： 
Tidata=cbind (ku， 
ret-arn(udata) 

### Simulatiion settings: PI, 
# Scenario PI # 
Pidatalength=30 
PIbufferperiod=60 
P1N=1000000 
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P1R0=1.2 
P1TI=3 
Pltau=28 
Plrate=0.3 
Plu=SIRsim(PlN,PlTI； 

# Scenario P2 井 
P2ciatalength=30 
P2bufferperiod=60 
P2N=1000000 
P2R0=1.5 
P2TI=3 
P2tau=16 
P2rate=0.15 
P2u=SIRsiin(P2N,P2TI 

PlRO.Pltau,Pirate,Pldatalength.Plbufferperiod) 

P2R0,P2tau, ， P 2 d a t a l e n g t h , P 2 b u f f e r p e r i o d ) 

P3datalength=30 
P3bufferperiod=60 
P3N=1000000 
P3R0=1.8 
P3TI=3 
P3tau=7 
P3rate=0.05 
P3u=SIRsiiii(P3N,P3TI,P3R0,P3tau, 
########################## 

### Simulation testing ### ########################## 

,P3datalengtli,P3buff erperiod) 

### PI ### 
# Set up burn-in period and iteration numbers M 
Plburnin=10000 
P1M=100000 
# Imin 
system 
Plpara=MCMCepi(Plu,1000000,Plburnin,PlM) 

# Acceptance rate 
acptrates=niatrix (0,1,4) 
for (i in 1 : 4 K 

acptrates [, i] =sum (P Ipara [，（ 5+i) ] ) / (P Ibumin+P IM) 

acptrates 

# Eliminate burn-in period 
Plpaxab=Plpara[(Plburnin+l):(Plburnin+PIM),] 
# MCMC statistics 
MCMCstat=matrix(0,4,5) 
for (i in 1 : 4 K 

mean=mean (Plparab [，i+1]) 
median=median(Plparab [, i+1]) 
a=table(round(Plparab[,i+1],4)) 
mode=as.numeric(names(a)[a==max(a)]) 
sd=sqrt(var(Plparab[,i+1])) 
L=quantile(Plparab[,i+1],0.025) 
U=quaiitile(Plparab[,i+1] ,0.975) 
MCMCstat [i,]=c(mean,median,sd，L,U) 

> 
MCMCstat[1,]=round(MCMCstat[1,],3) 
MCMCstat[2，]=round(MCMCstat[2,] ,2) 
MCMCstat[3,]=round(MCMCstat[3,]，0) 
MCMCstat[4,]=round(MCMCstat[4,],4) 
MCMCstat 

# The MCMC di 
MCMCplot(Pipe 

igno 
cab) 

ostic plots 

# Scatter plot 
pair s("PIparab[,2]+PIparab[,4] 

main="Scatterplot matrix") 

# Save MCMC data 

'R0" ''tan" 
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save(Plpara, 
file = "C:\\P1. 

# Set Tip burn-
P2burnin=10000 
P2M=100000 

Imin for 6000 iterations 

P2para=MCMCepi (P2u, 1000000, P2burniii,P2M) 

# Acceptance rate 
acptrates=inatrix(0,1,4) 
for (i in 1:4){ 

acptrates [, i] =suin(P2para [, (5+i) ] ) / (P2biirnin+P2M) 

acptrates 
# Eliminate burn-in period 
P2parab=P2para [ (P2burnin+1):(P2burnin+P2M),] 

# MCMC statistics 
MCMCstat=inatrix(0,4,5) 
for (i in 1:4){ 

meaii=mean(P2parab [,i+l]) 
median=mediaii(P2parab C,i+1]) 
a=table(round(P2parabC,i+l]，4)) 
mode=as.numeric(names(a)[a==max(a)]) 
sd=sqrt(var(P2parab[,i+1])) 
L=quaiitile (P2parab [, i+1] , 0.025) 
U=quarLtile (P2parab [, i+1] , 0.975) 
MCMCstat[i，]=c(mean，median,sd,L，U) 

} 
MCMCstat[i，]=round(MCMCstat[1，]，3) 
MCMCst at [2，] =round (MCMCstat [2j ,2) 
MCMCstat[3,]=round(MCMCstat[3，] ,0) 
MCMCstat[4,]=round(MCMCstat[4,] ,4) 
MCMCstat 

# The MCMC diagnostic plots 
MGMGplot(P2parab) 

# Scatter plot 
pairs(-P2parab[,2] +P2parab [,4] ,labels=c("RO" , "tai 

main="Scatterplot matrix") 

# Save MCMC data 
save(P2para, 
file = "C:\\P2.RData") 

# Set up burn-in period and iteration 
P3buxnin=10000 
P3M=100000 
# Imin for 6000 iterations 
systeni.time({ 
P3para=MCMCepi(P3u,1000000,PSburnin,P3M) 

# Acceptance rate 
acptrates=matrix(0,1,4) 
for (i in 1:4){ 

acptrates[,i]=sum(P3para[，(5+i) ] )/(P3bm:nin+P3M) 

acptrates 
# Eliminate burn-in period 
P3parab=P3para [(P3burnin+1):(P3burnin+P3M)，] 

# MCMC statistics 
MCMCstat=matrix(0,4,5) 
for (i in 1:4){ 

mean=ineaii(PSparab [, i+1]) 
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iiiedian=inediaii(P3parab [,i+l]) 
a=table(round(P3parab[,i+l3 ,4)) 
mode=as.numeric(names(a)[a==max(a)]) 
sd=sqrt(var(PSparab[,i+1])) 
L=quantile(P3parab[,i+1],0.025) 
U=quantile(PSparab[,i+l],0.975) 
MCMCstat[i,]=c(mean,median，sd，L,U) 

> 
MCMCstat [l,]=roiand(MCMCstat [1，] ,3) 
MCMCstat[2，] =round(MCMCstat[2,],2) 
MCMCstat [3,] =rotind(MCMCstat [3，] ,0) 
MCMCstat [4,] =roiind(MCMCstat [4，] ,4) 
MCMCstat 

# The MCMC diagnostic plots 
MCMCplot(PSparab) 

# Scatter plot 
pairs(~P3parab [,2]+P3parab[’ 4],labels=c("R0' 

main="Scatterplot matrix") 

# Save MCMC data 
save(P3para, 
file = "C:\\P3.RData") 

SIROBS 
# Program name: SIROBS 
# Version: 1.0 
# Author: Marc J 
# Study name: HlNl simulaton study 
# Created date: 01MOV2010 
# Purpose: MCMC from epidemic data and sensitivity analysis 
# Notes: 
###########################################################i 
# Amendment history: 
# I--Amendeci date--丨--Amended by-_I Description 
# 

######################## 
### Epidemic dataset ### ######################## 

# Mexi gov 14/3-30/4 (48) 
u=c(2,1,3,1,2,3,3,4,4.5,7,2,1,2,5,7,4,10,10,9,4,4,11,5,7,4,4,4,11,17, 

26,20,12,19,26,33,44,107,114,154,226,280,318,398,411,304,280,227) 

datalength=length(u) 

# corresponding day 
ku=seq(l,datalength,by=l) 

udata=cbind(ku’ u) 

#################### 
### Arrival data ### #################### 

# day 1 = 14/3 
# First case arrival day 
obsfirstdata=c(46,46,46,47,48,48,49,51,52,55) 

# Travel rate 
mi=c(101313,65724,20513,16950,35772，27640,61960,24535,15090,24609) 

obsindaily=trunc (ini/61) 

####################### 
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### MCMC estimation ### ####################### 

# Set up burn-in 
burnin=5000 
M=20000 
system.time({ 
obspara=MCMCepi(udata,106682518,burnin,M) 

# Acceptance rate 
acptrates=matrix(0,1,4) 
for (i in 1:4){ 

acptrates [，i]=sum(obspara[,(5+i)])/(burnin+M) 

acptrates 
# Eliminate burn-in period 
obsparab=obspara[(burnin+l)：(burnin+M)，] 

# MCMC statistics 
MCMCstat=matrix(0,4,5) 
for (i in 1:4){ 

mean=inean (obsparab [, i+1]) 
mediaii=inedian(obsparab [, i+1]) 
a=table(round(obsparab[，i+1],4)) 
inode=as • immeric (names (a) [a==max (a)]) 
sd=sqrt(var(obsparab[,i+1])) 
L=quantile(obsparab[,i+1],0.025) 
U=quaiitile(obsparab[,i+1] ,0.975) 
MCMCstat [i,]=c(mean，median，sd，L，U) 

} 
MCMCstat[1J=round(MCMCstat[1，]，3) 
MCMCstat[2,]=round(MCMCstat[2，]，2) 
MCMCstat[3，]=round(MCMCstat[3，] ,0) 
MCMCstat [4,]=ro皿d(MCMCstat[4,] ,4) 
MCMCstat 

# The MCMC diagnostic plots 
MCMCplot(obsparab) 

# Save MCMC data 
save(obspara, 
file = "CrWobs.RData") 

# Validate the estimated parameters 
R0mcinc=4 
TIpincmc=l-exp(-l*(l/3)) 
tauincmc=20 
obsdiff (obsfirstdata, obsmdaily, 106682518, ROincmc,TIpmcmc,taiimcmc) 
############################ 

### Sensitivity analysis ### ############################ 

########## 
# TI=2.5 # ########## 

# Set up burn-in period and iteration numbers M 
salburnin=10000 
salM=100000 
system.time({ 
salpara=MCMCepi (udata, 106682518，salbtirnin, salM) 

# Acceptance rate 
acptrates=matrix(0,1,4) 
for (i in 1:4){ 

acptrates C,i] =sujn(salpara[, (5+i)] )/(salburnin+salM) 

acptrates 

# Eliminate burn-in period 
salparab=salpara[(salburnin+1):(s alburnin+ salM),] 
# MCMC statistics 
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MCMCstat=matrix(0,4,5) 
for (i in 1:4){ 

mean=inean(salparab [,i+l]) 
median=inediaiL(salparab [, i+1]) 
actable(roundCsalparab[,i+1] ,4)) 
mode=as.numeric(names(a)[a==max(a)]) 
sd=sqrt(var(salparab[,i+l])) 
L=quantile(salparab C,i+1],0.025) 
U=qiiantile(salparab[,i+1]，0.975) 
MCMCstat [i, ] =c (mean,median，sd，L,U) 

} 
MCMCst at [1, ] =roiind (MCMCstat [1, ]，3) 
MCMCstat[2,]=round(MCMCstat[2 J，2) 
MCMCstat[3,]=round(MCMCstat[3 J，0) 
MCMCstat [4,]=rouiid(MCMCstat [4,] ,4) 
MCMCstat 

# The MCMC diagnostic plots 
MCMCplot(salparab) 

# Save MCMC data 
saveCsalpara, 
f i l e = - . - • ‘ 
########## 

# TI=3.5 # ########## 

# Set up burn-in period and iteration 
sa2burnin=10000 
sa2M=100000 
system.timeC-C 
sa2para=MCMCepi(udata,106682518,sa2burnin,sa2M) 

# Acceptance rate 
acptrates=matrix(0,1,4) 
for (i in 1:4){ 

acptrates[，i]=stun(sa2para[,(5+i)])/(sa2burnin+sa2M) 

acptrates 

# Eliminate burn-in period 
sa2parab=sa2para[(sa2burn.in+l) : (sa2buriiin+sa2M),] 
# MCMC statistics 
MCMCst at=!iiatrix(0,4,5) 
for (i in 1:4){ 

mean=mean(sa2parab[,i+l]) 
mediaii=itiediaii(sa2parab[,i+l]) 
a=table(round(sa2parabE,i+1]，4)) 
mode=as. nun i e r i c (names ( a ) Ca==max(a ) ] ) 
sd=sqrt(var(sa2parab[,i+1])) 
L=quaiitile(sa2parab[,i+1] ,0.025) 
U=quantile(sa2parab[,i+1],0.975) 
MCMCstat[i,]=c(mean,median,sd,L,U) 

} 
MCMCstat[1，]=round(MCMCstat[1,],3) 
MCMCstat[2，]=round(MCMCstat[2, ] ,2) 
MCMCstat[3，]=round(MCMCstat[3,3,0) 
MCMCstat[4，]-round(MCMCstat[4,] ,4) 
MCMCstat 

# The MCMC diagnostic plots 
MCMCplot(sa2parab) 

# Save MCMC data 
save(sa2para, 
file = "C:\\sa2.RData") 
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SIMINCIDENCE 

# Author: Marc, Biostatistician 
# Study name: HlNl simulaton study 
# Created date: 01N0V2010 
# Purpose: To simulate incidence curve 
# Notes: 

##################### 
# Load MCMC samples # ##################### 

load("C:\\obs.RData") 

# Eliminate burn-in period 
burnin=10000 
M-100000 
obsparab=obspara [ (burnin+1) : (burnin+M), 

# Epidemic settings 
M=106682518 

井################## 
# Incidence curve # ################### 

# Create store file for incidence 
datalength=50 
biiffer=30 
# number of simulations 
itern=1000 

xst ore-matrix (0, buf f er+datalength+1，item) 

# Sinnilate incidence 
for (j in 1: item)-[ 

select RO and tau 
=trunc(runif(1,1，（M+i))) 
=obsparab[randnol，2] 

TI=3 
TIpraiid=l-exp(-l*( 1/TI)) 
randiio2=triinc (runif (1,1, (M+1))) 
taiiraiid=obsparab [randno2，4] 

# stochastic SIR model 
sirsim=matrix(0,buffer+datalength+1，6) 
sirsim[l,]=c(0,N,10,0,0,0) 

for (i in 1:(buffer+datalength)){ 
if (i<taurand){ 

sirsiiii[i+lJ=c(i,N, 10,0,0,0) 

pi=l-exp(-1*(ROadrand*sirsim[i，3])/N) 
#x=rbinoin(l，sirsiin[i，2]，pi) 
x=round(pi*sirsim[i,2] , 0) 
S=iiiax(0, sirsim [i, 2] -x) 
#y=rMnoin(l，sirsim[i,3] ,Tlprand) 
y=r otmd ( T Ipr and* s i r s im [ i, 3 J，0) 
I=inax (0，sirsim [i，3] +x-y) 
R=inax(0, sirsim [i，4] +y ) 
sirsim. [i+l,]=c(i，S，I,R,x，y) 

# store 
xstore [,j]= 
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xdraw = NULL 
for (k in 1: (buffer+dataleiigth+l)){ 

x:_ll=qiiaiitile(x:st:ore [k，] ,0.025) 
x_inl=iiiedian(xstore [k,]) 
x„ul=U=quaiitile(xstore[k,] ,0.975) 
xdraw=rbiiid (xdraw»c (x_ll > x—ml ’ x„ul)) 

xdraw 

# File save 
write•CSV(xdraw, 
f ile="C: W x d r a w . csv" , row .names = FALSE) 

SIMFETPDF 
Program name: SIMFETPDF 
Version: 1.0 
Author: Marc, 
Study name: HlNl simulaton study 
Created date: 01N0V2010 
Purpose: To simulate the probability distributions of FET and FIOET 
Notes: 
邮##################################################################^1 

Amendment history: 
I --Amended date--I--Amended by--1 Description 1 

##################### 
# Load MCMC samples # ##################### 

load("C:\\obs.RData") 

# Eliminate burn-
burnin=10000 
M=100000 
obsparab=obspara[(burnin+1);(burnin+M) 

# Epidemic settings 
M=106682518 

################################## 
# Distribution of exported cases # ################################## 

simdaydist=function(itern,setm,firstcut){ 

datalength=240 
arrdayk=MULL 

# SIR model 
for (iter in 1: iterii){ 

# Random select RO 
randnol=trunc(rrniif(1,1,(M+1))) 
ROadrand=obsparab[randnol,2] 
TI=3 
TIprand=l-exp(-l*(l/TI)) 

sir =matrix(0,datalength+l,7) 
sir[l J=c(0,N,IO’0，0’0，0) 

# SIR matrix 
for (i in 1 :datalengtli){ 

pi=l-exp(-l*(ROadrand*sir[i,3] )/N) 

183 



x=rouiid(pi*sir Ci,2] , 0) 
S=max (0，sir [i, 2] -x) 
y=round Uir [i,3] *TIprand, 0 ) 
I=max (0，sir [i, 3] +x-y) 
R=max(0, sir [i, 4] +y) 
newcase=rbinom(l,setm,pi) 
cumcas e=iiiax (0, sir [i ,7] +newcase) 
sir [i+1 ,]=c(i,S,I,R,x,y, c 皿 case ) 
if (cumcase>firstcut) t 

arrday=sir[i+1,1] 

arrday=0 

Store the arrival day 
rrdayk = rbind(arrdayk, cday) 

__ simulated exported day 
return (arrdayk) 

井 distribution of in=300, first case, 10000 
system.time({ 
first liri300=siiiidaydist (50000，300,0) 
firstIm300r90=simdaydist(50000,30,0) 
firstlm300r99=simdaydist(50000,3,0) 
» 

FET300=cbind(firstImSOO.firstIm300r90.firstIin300r99) 

# statistics 
FETstat=matrix(0,3,5) 
for (k in 1 : 3 K 
meaii=mean (FET300 C,k]) 
mediaii=median (FET300 [, k]) 
sd=sqrt(var(FET300 [,k])) 
L=quantile(FET300[,k],0.025) 
U=quantile(FET300[,k],0.975) 
FETstat[k,]=c(mean，median,sd,L，U) 
> 

FETstat 

# pdf plot 
hist(FET300[,l].breaks =300， main="“,xlab="“,ylab="“,axes=F) 
axis(l) 
axis(2，las=l) 
b o x O 

hist(FET300 [，2],breaks 
axis ⑴ 
axis(2,las=l) 
b o x O 

hist(FET300[,3] 
axis(l) 
axis(2,las=l) 
b o x O 

丨，xlab=““,ylab=““，axes=F) 

,ylab="",axes=F) 

plot(density(FET300[’1],bw=0.8),xlim=c(0,180),ylim=c(0,0.1),main=““,xlab=““,ylab=““,axes=F) 
axis ⑴ 
axis(2，las=l) 
boxO 
lines(density(FET300[,2],bw=0.8),lty=2) 
lines(density(FET300[,3],bw=0.6),lty=3) 

# distribution of m=1500, first case, 1000 iterations # 
systein.tiine({ 
firstlml500=simdaydist(50000，1500,0) 
f irst Inil500r90=siindaydist (50000,150,0) 
firstIml500r99=simdaydist(50000,15,0) 

FET1500=cbind(firstlinl500,firstlml500r90,firstliiil500r99) 

# statistics 
FETstat=matrix(0,3,5) 
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for (k in 1:3){ 
mean=mean(FET1500[,k]) 
median=median(FET1500[，k]) 
sd=sqrt(var(FET1500[，k])) 
L=quaiitile(FET1500[,k] ,0.025) 
U=quaiitile(FET1500[,k] ,0.975) 
FETstat[k,]=c(mean,median,sd,L,U) 

FETstat 

Lot 
",ylab="",axes=F) 

# pdf plot 
hist(FET1500[, 
axis(l) 
£Lxis(2,las=l) 
b o x O 

hist(FET1500[, 
axis ⑴ 
axis(2,las=l) 
b o x O 

hist(FET1500[: 
axis(l) 
axis(2,las=l) 
b o x O 

,xlab="“,ylab="“，axes=F) 

3].breaks =300， main="”,xlab="“,ylab="“,axes=F) 

plot(density(FET1500[，1]，bw=0.8)’ xlini=c(0，180),ylim=c(0,0.1),main="“,xlab="“,ylab="”’ axes=F) 
axis(l) 
axis(2,las=l) 
b o x O 
lines(density(FET1500 [,2]，bw=0.8),lty=2) 
lines(density(FET1500[，3]，bw=0.8)，lty=3) 

# distribution of m=300, first 10 cases, 50000 iterations # 
systein.tiine({ 
first 10in300=siindaydist (50000,300,9) 
firstl0in300r90=simdaydist (50000,30,9) 
first10m300r99=simdaydist(50000,3,9) 

F10ET3OO=cbind(firstlOm300,firstlOm3OOr9O,firstlOm3OOr99) 

# statistics 
F10ETstat=matrix(0,3,5) 
for (k in 1:3){ 
nieaii=niean(F10ET300[,k]) 
niediaii=mediaii(F10ET300 [，k]) 
sd=sqrt(var(F10ET300[，k])) 
L=quaiitile(F10ET300[,k]，0.025) 
U=quaiitile(F10ET300[.k] ,0.975) 
FlOETstat[k,]=c(mean,median,sd， 
> 

FlOETstat 

# pdf plot 
hist(F10ET300[，1] 
axis(l) 
axis(2,las=l) 
boxO 

]iist(F10ET300C,2] 
axis(l) 
axis(2,las=l) 
boxO 

Mst(F10ET300[,3] 
axis(l) 
axis(2,las=l) 
boxO 

main="",xlab=““’ ylab="“，axes=F) 

=300，iiiain=" “ , xlab= “ •‘, ylab=" “ , axes=F) 

="",xlab="",ylab="",axes=F) 

plot(density(F10ET300[,13,bw=0.5),xlim=c(0,180),ylim=c(0,1) 
main="“，xlab="“，ylab="“，axes=F) 

axis ⑴ 
axis(2,las=l) 
b o x O 
lines(density(F10ET300[，2],bw=0.5),lty=2) 
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lines(density(F10ET300[,3],bw=0.4)，lty:3) 

# distribution of ni=1500, first 10 cases, 50000 
system.tiine(-C 
firstl0inl500=sinidaydist (50000,1500,9) 
first10ml500r90=simdaydist(50000,150,9) 
firstl0inl500r99=simdaydist (50000，15，9) 

F10ET1500=cbind(firstlOml500,firstlOml500r90,firstlOnii500r99) 

# statistics 
F10ETstat=matrix(0,3,5) 

(k in 1:3){ 
=mean(F10ET1500[.k]) 

=inediaii(F10ET1500C,k]) 
sd.=sqrt (var (F10ET1500 C,k])) 
L=quantile(F10ET1500[,k],0.025) 
U=quantile(F10ET1500[,k],0.975) 
FlOETstat[k,]=c(mean,median,sd,l 
} 

FlOETstat 

， U ) 

# pdf plot 
hist(F10ET1500[，l] 
axis(l) 
axis(2，las=l) 
b o x O 

hist(F10ET1500[,2] 
axis(1) 
axis(2,las=l) 
b o x O 

M s t (F10ET1500[，3] , breaks =30C 
axis(l) 
axis(2,las=l) 
b o x O 

plot(density(F10ET1500[,1],bw= 
main="“,xlab="“，ylab=““， 

axis(l) 
2LXis(2,las=l) 
b o x O 
lines(density(F10ET1500[,2],bv 
lines(density(F10ET1500[,3],bw=0.45),lty=3) 

,ylab=" '’，axes=F) 

,xlab="“，ylab="“，axes=F) 

="",ylab="“： =F) 

.5),xlim=c(0,180),yld 
ces=F) 

0.5),lty=2) 

:(0，0.4) 

SIMEPFET 
SIMEPFET 

Version: 1.0 
Author: Marc, 
Study name: HlNl simulaton study-
Created date: 01N0V2010 
Purpose: To simulate expected daily probability distributions of FET 
Motes: 

# Epidemic settings 
N=106682518 
10=7 

########################################## 
# Expected PDF of export > 0 case by day # ########################################## 

Epexp-function(setin){ 
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datalength=240 
arrdayk=NULL 

# expected RO 
TI=3 
TIpraiid=l-exp(-l*(l/TI)) 
R0ad=0.411 

# SIR model 
sir =niatrix (0, datalength+1,8) 
pbyday =matrix(0,datalength+1,3) 
sir [lJ=c(0,N. 10,0,0,0,0,0) 

:datalength){ 
pi=l-exp(-l*(ROad*sir[i，3])/N) 
x=round(pi*sir[i,2] , 0) 
S = m a x ( 0 , s i r [ i , 2 ] - x ) 
y=roundUir [i，3] *TIprand，0) 
l = m a x ( 0 , s i r [ i ， 3 ] + x - y ) 
R = m a x ( 0 , s i r [ i , 4 ] + j r ) 
pO=dbinom(0，setm,pi) 
p l = l - d b i n o i i i ( 0 , setm,pi) 
s i r [ i + l , ] = c ( i , S , I , R , x , v , p O , p l ) 
pbyday[i+1,]=c(i,pO,pl) 

_ probability by day 
return (pbyday) 

# pdf of export by day for m=300 with restrictions 
Ep300r0=Epexp(300) 
Ep300r90=Epexp(30) 
Ep300r99=Epexp(3) 

Ep300=cbind(Ep300r0,Ep300r90,Ep300r99) 

# File save 
write.csv(Ep300, 
file="C:\\Ep300.csv",row.names = FALSE) 

# pdf of export by day for m=1500 with restrictions 
Epl500r0=Epexp(1500) 
Epl500r90=Epexp(150) 
Epl500r99=Epexp(15) 

Epl500=cbind(Epl500r0,Epl500r90,Epl500r99) 

# File save 
write.csv(Epl500, 
file="C:\\Epl500.csv",row.names = FALSE) 

SIMFETVSM 
# Program name: SIMFETVSM 
# Version: 1.0 
# Author: Marc, 
# Study name: HlMl simulaton study 
# Created date: 01N0V2010 
# Purpose: To simulate FET against different daily rates of travel 
# Notes: 
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 本 

# A m e n d m e i r t h i s t o r y : 
# I--Amemied date--I——Amended b y I Description 

Epidemic settings 
=106682518 
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工 0 = 7 

############################## 
# First export day against m # ############################## 

dayvsni=function(itern,lni,xim,f irstcut ,R0){ 
datalength=200 

# Select RO 
10=7 
TI=3 
TIprand=l-exp (-1* (l/TI)) 
ROadrand=RO/TI 

mdayiter=NULL 
# SIR model 
for (iter in 1 :itern)-C 

mdaydrawk=l\rULL 
for (mlevel in seq(lm，iim，by=10)){ 

sir =inatrix (0, datalength+1,7) 
sir[l，]=c(0,N,I0，0,0,0，0) 

# SIR matrix 
for (i in 1:datalength){ 

pi=l-exp(-1*(ROadrand*sir[i，3])/N) 
x=round(pi^sir[i,2]， 0) 
S=nLax(0, sir [i，2] -x) 

= r o u n d U i r [ i , 3 ] * T I p r a n d , 0 ) 
“ .[i，3]+x-y) 

' [ i , 4 ] + y ) 
=rbinom(1,mlevel,pi) 

c皿case=max(0，sir[i,7]+newcase) 
sir [i+1,]=c(i，S，I,R，x，y，cumcase) 
if (cuincase>firstcut) { 

m d a y d r a w = s i r [ i + 1 ， 1 ] 

break 

} 
mdaydraw=0 

# Store the arrival day per simulations 
mdaydrawk - rbind(mdaydrawk,mdaydraw) 

3r:cbind(mdayit er，mdaydrawk) 

‘ simulated exported day 
return (mdayiter) 

# 1000 iterations m against first 
system. tii]ie({ 
dayvsmdr aw=dayvsm(1000,10,5000,0,1.23) 

# export days statistics 
dmdraw = NULL 
drawleiigth=length(dayvsmdraw [，1]) 
for (k in 1:(drawlength)){ 

dm^ll-quantile(dayvsmdraw[kj ,0.025) 
dm—ml=inedian(dayvsaidraw[k，]) 

ul=U=quantile(dayvsmdraw [k,],0.975) 
xbind (dmdraw，c (dm.ll，dm_ml, dm„ul)) 

diiidata=cbind(seq(10，5000,10)，dmdraw) 

# File save 
write.csv(dmdata, 
f ile=" C: Wdmdata, csv" , row. names = FALSE) 
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SIMFETVSRO 
Program name: SIMFETVSRO 
Version: 1.0 
Author: Marc， Biostatistician 
Study name: HlNl simulaton study 
Created date: 01N0V2010 
Purpose: To simulate FET against different RO 

Amendment history: 
. ‘ I A m e n d e d by-一I Description-

Epidemic settings 
=106682518 

############################## 
# First export day against R # ############################## 

ROvsFET=fuiict i on (item，RO，f irstcut) { 

datalength=240 

井 Random select RO 
10=7 
TI=3 
TIprand=l-exp(-l*(l/TI)) 
ROadrand=RO/TI 

mdayiter=NULL 
# SIR model 
for (iter in 1:itern){ 

mdaydrawk=KrULL 
for (mlevel in c(3，30,300，1500,3000)){ 

sir =matrix(0,datalength+1,7) 
sir[l，]=c(0，N,I0’0，0,0，0) 

# SIR matrix 
for (i in 1 :datalength)-C 

pi=l-exp (-1* (ROadraiid*sir [i, 3] ) /N) 
x-round(pi*sir[i,2]，0) 
S=max(0,sir[i，2]-x) 
y=round(sir [i，3] *TIpraiid，0) 
I-max(0，sir [i，3]+x-y) 
R^maxCO，sir[i，4]+y) 
iiewcase=rbinoin(l,mlevel, pi) 
c"mncase=max (0，sir [i，7] +newcase) 
sir[i+l,]=c(i,S,I,R,x,y,cuiiicase) 
if (cumcase>firstcut) { 

nidaydxaw=sir [i+1，1] 
break 

} 
mdaydraw-0 

# Store the arrival day per simulations 
mdaydrawk = rbind(mdaydrawk,mdaydraw) 

iridayiter=cbind(indayiter jindaydrawk) 

# export the simulated exported day 
return (mdayiter) 

# 1000 iterations m against first 
system.time({ 
R0vsFETdraw=R0vsFET(10000,1,23,0) 
}) 
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statistics 
rfdraw = MULL 
drawlength=length(ROvsFETdraw[,1]) 
for (k in 1:(drawlength)){ 

rf_ll=quantile(ROvsFETdraw[kj,0.025) 
rf_ml=median(ROvsFETdraw [k,]) 
rf_ul=U=quaiitile(ROvsFETdraw[k,]，0.975) 
rfdraw=rbind(rfdraw,c(rf_ll,rf_ml，rf_ul)) 

> 
cbind(c(3,30，300,1500,3000),rfdraw) 

SIMCOUNTRY 
Program name: SIMCOUNTRY 
Version: 1•0 
Author: Marc, Biostatistician 
Study name: HlNl simulaton study 
Created date: 01M0V2010 
Purpose: To 
Notes: 

of countries received infected cases by day 

##################### 
# Load MCMC samples # ##################### 

load("C:\\obs.RData") 

# Eliminate burn™in period 
biirnin=10000 
M=100000 
obsparab=obspara[(buriiin+l) : (burnin+M) 

# Epidemic settings 
N=106682518 

###################################################### 
# Number of countries received infected cases by day # ###################################################### 

# Travel rates by 22 countries 

msim=c(24609，5240,38749，101313，18535,24535，16950,42802, 
15090,61960,35772,39460,2340,12060,4675,27640,3101, 
48717，15478，65724,20513，9150) 

nisiindaily=trmic (msim/ 61) 

countrycount=function(itern,pm,firstcut,pR,pRtime){ 

datalengtli=240 
kcoiiiitdraw=NULL 
mlength=length (msimdaily) 
msinires=round( (l-pin)*insimdaily，0) 

# SIR model 
for (iter in l:itern){ 

# Random select RO 
randnol=trunc(runif(1,1,(M+1))) 
ROadraiid=obsparab [randnol，2] 
10=7 
TI=3 
TIprand=l"exp(-l*(l/TI)) 

marrive ==matrix ( 0, ml ength，1) 
sir -matrix(0 jdatalength+l ,7) 
kcoimt-matrixCOjdatalength+l, 1) 
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sir[l，]=c(0，N，I0，0，0，0，0) 
kcount[1,]=0 

# SIR matrix 
for (i in 1:datalength){ 

if (i>pRtime)-C 
ROadinterven=pR*ROadraiid 

ROadinterven=ROadrand 
> 
pi=l-exp(-l* (ROadinterven*sir [i，3] ) /N) 
x=round(pi*sir[i,2]，0) 
S=inax (0，sir [i，2] -x) 
y=roundIsir [i,3] *TIpraiid，0) 
I-max(0，sir[i，3]+x-y) 
R-max(0，sir[i，4]+y) 

# simulate 
for (j 

newcase= 
if (iieTJcase>;firstcirt 

marrive [j，1] 二 1 

c-uincase=sum(marrive) 
sir[i+l，]=c(i，S，I，R，5 
kcount [i+1，] =cumcase 

>Cj]，pi) 
• iCj,l]==0)-C 

,cumcase) 

# Store the country count per simulations 
kconntdraw=cbind(kcountdraw 5 kcount) 

# export the simulated exported day 
return (kcountdraw) 

# iOOOO iterations m against first 
systeiri.tinie({ 
kcoimtrO-countrycoimt (10000,0,0,1,60) 
kcountr90=countrycount(10000,0.9,0,1,60) 
kcountr99=countrycount(10000,0.99,0,1,60) 

# export days statistics 
kdrawrO = NULL 
drawlength=length(kcountrO[,1]) 
for (k in 1:(drawlength)){ 

k_ll=quantile(kcountrO[k,],0.025) 
k_ml=inedian(kcountrO [k,]) 
k_ul=U=quantile(kcountrO[kJ,0.975) 
kdrawrO=rbiiid (kdrawrO, c (k_ll，Is: 一 ml，k_ul)) 

# export days statistics 
kdrawr90 = = 狐 L 
drawlength=leiigth(kcouiitr90 [, 1]) 
for (k in 1:(drawlength)){ 

k_ll=qiiaiitile(kcountr90[k,] ,0.025) 
k_ml=median(kcountr90 [k,]) 
k_ul=U-quaiitile(kcomitr90[kj ,0.975) 
kdrawr90=rbind(kdrawr90,c(k_ll,k_ml，k_ul)) 

# export days statistics 
kdrawr99 = NULL 
drawlength=length(kcountr99[,1]) 
for (k in 1:(drawlength)){ 

k_ll=qiiantile(kcouiitr99 [k,]，0.025) 
k_iiil-inedian(kcountr99 [k,]) 
k_ul=U=quaiitile(kcoiintr99[kj ,0.975) 
kdrawr99=rbind(kdrawr99,c(k_ll，k—ml，k_ul)) 
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# File save 

kdraw=cbiiid. (kdrawrO，kdrawr90, kdrawr99) 

write.CSV(kdraw, 
f ile=" C: Wkdraw. csv ", row. name s = FALSE) 

# 10000 iterations m against first export day in 
system.time({ 
kcountrOR8=comitrycount(10000,0,0,0.8,60) 
kcountr90R8=comitrycount(10000，0.9,0,0.8，60) 
kcountr99R8=comitrycomit(10000,0.99,0,0.8,60) 

# export days statistics 
kdrawrORS = NULL 
drawlength=length(kcountrORS[,1]) 
for (k in 1:(drawlength)){ 

k_ll=quantile(kcountrORS[k,],0.025) 
k_ml=mediaii(kcountrOR8[kJ ) 
k_ul=U=quantile(kcountrORS[k,],0.975) 
kdrawr0R8=rbind(kdrawrORS,c(k_ll,k一ml,k_ul)) 

# export days statistics 
kdrawr90R8 = NULL 
drawlength=length(kcouiitr90R8 [, 1]) 
for (k in 1:(drawlength)){ 

k_ll=quaiitile (kcountr90R8 [k, ]，0 • 025) 
k_inl=median(kcountr90R8[k,]) 
k_ul=U=quaiitile(kcomitr90R8 [k，] ,0.975) 
kdrawr90R8=rbind (kdrawr90R8，c (k_ll，k_nil, k_Til)) 

# export days statistics 
kdrawr99R8 = NULL 
cirawlength=length(kcomitr99R8 [, 1]) 
for (k in 1:(drawlength)){ 

k_ll=qTiaiitile(kcoiintr99R8[k,] ,0.025) 
k_ml=mediaii(kcomitr99R8 [k,]) 
k_ul=U=quaiitile(kcouiitr99R8[k,] ,0.975) 
kdrawr99R8=rbind(kdrawr99R8,c(k_ll,k_nil,k_ul)) 

# File save 

]5;drawR8=cbind (MrawrORS, kdrawr90R8, kdrawr99R8) 

write.CSV(kdrawRS, 
file="C:\\kdrawR8.csv",row.names = FALSE) 

# 10000 iterations m against first 
system.time({ 
kcount rOR6=country c ount(10000,0,0,0.6,60) 
kcomitr90R6=coTmtrycoimt (10000,0.9,0,0.6,60) 
kcountr99R6=coTintrycomit (10000,0.99,0,0.6,60) 

# export days statistics 
kdrawrOR6 = MULL 
drawlength=length(kcomitrOR6[,1]) 
for (k in 1:(drawlength)){ 

k_ll=quantile(kcountrORS[k,]，0.025) 
k_ml=mediaii(kcountrORS [k,]) 
k_ul=U=quaiitile(kcountrORS [k,] ,0.975) 
kdrawrOR6=rbind(kdrawrORS,c(k_ll，k_ml，k_ul)) 

kdrawr90R6 = NULL 
drawlength=lengtli(kcouiitr90R6 [, 1]) 
for (k in 1:(drawlength)){ 

k_ll=quantile(kcountr90R6[k,],0.025) 
k_nil=mediaii(kcountr90R6 [k.]) 
k_ul=U=quantile(kcoimtr90R6[kj,0.975) 
kdrawr 90R6=rbind (kdrawr90R6, c (k_ll,]j_ml,k_ul)) 
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kdrawr99R6 = NULL 
drawlengtli=length(kcoTintr99R6 [, 1]) 
for (k in 1:(drawlength)){ 

k_ll=quantile(kcoTintr99R6[k,] ,0.025) 
k_ml=iiiediaii (kcountr99R6 [k,]) 
k_ul=U=quaiitile(kcoTintr99R6[k,] ,0.975) 
kdrawr99R6=rbind(kdrawr99R6, c (k_ll,k_iiil,k_ul)) 

# File save 

kdrawR6=cbind(kdraurOR6，kdrawr90R6，kdrawr99R6) 

write.csv(kdrawR6, 
file="C:\\kdrawR6.csv",row.names = FALSE) 
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Appendix C 

restrictions 

Methods 

Modeling the Cost-effectiveness Analysis 

In the cost-effectiveness analysis (CEA), we compared the costs and the quality-

adjusted life year (QALY) with strategies of no available intervention and im-

posing 99% travel restrictions before the time of the availability of antiviral 

and hospitalization in a year. The total cost (CTotai) of each strategy was 

calculated by 

•Total = Ci + CH + Cp ( C . l ) 

where the cost of travel restrictions, health care, and production were repre-

sented by C/, CH, and Cp respectively. The costs and benefits were discounted 

at rate of 3% per annum. All costs are in Hong Kong dollars (HKD$) (2009). 
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The incremental cost-effectiveness ratio (ICER) was the main endpoint of the 

study. The numerator of ICER was the incremental cost which was the dif-

ference of the costs, and the denominators was the difference of QALYs from 

imposing travel restrictions. An intervention is 'cost-saving' if it can reduce 

costs and also can raise the QALYs. A n intervention is 'cost-effective' if its 

ICER is less than a determined threshold with increases in QALYs [104, 102]. 

Median ICERs were obtained from 100 realizations that were simulated from 

the epidemic model. The C E A was analyzed using Microsoft Excel, version 

2003. 

Scenario Design 

W e analyzed the cost-effectiveness by selecting the time of the availability of 

antiviral and hospitalization to 3.5 months, 5 months, and 6.5 months after the 

first global onset case. W e assumed the virus influenza A-like with the same 

lengths of the latent period and infectious period. The RQ was considered in 

range of 1.5 to 8 for all countries in the model. The 99% travel restriction was 

imposed from the time of first global case onset to the time of antiviral and 

hospitalization being available. The case-fatality rate was considered in range 

of 0.5% to 50%. 

Oseltamivir and Zanamivir were selected as the standard antiviral treat-

ment during the pandemic influenza A (HlNl) [33]. Each patient would receive 

one course of antiviral treatment. Severe patients who were hospitalized would 

stay in hospital and were absent from work for 7.7 days on average [67]. W e also 

assumed 30%, 50% and 20% of the untreated infections as in asymptomatic, 

mild, and moderate status respectively. The mild and moderate cases would 

seek medical care as well as seeing doctors and taking prescribed medication. 
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Moderate cases and the patients who received antiviral would be absent from 

work for 1.5 days. 

Costs 

Costs of Travel Restrictions (CJ) 

The direct economic impact from the travel restrictions is the tourism industry 

in Hong Kong. According to the statistics of Hong Kong government [105], 

the tourism industry contributed 2.6% (HKD$40,264 million) to Hong Kong's 

Gross Domestic Product (GDP) in 2009. The tourism-related activities such 

as accommodation services, retail trade, transport services, and food and bev-

erage services were included into the GDP's calculation. W e assumed the 

restricted length of time and scale of travel was directly proportional to the 

local G D P i.e. the 99% travel restrictions brought a monthly HKD$3,324.75 

million loss in Hong Kong's G D P in 2009. 

Health Care Costs {CH) 

Table C.l presents the cost variables utilized in the C E A . Oseltamivir and 

Zanamivir were $222.7/case for a single course of treatment which included a 

brief medical consultation. Individual who sought medical care was required to 

spend $335 in total for the medical consultation and the prescribed medication. 

Severe subject who was hospitalized spent $16,170 for staying in a Hospital 

Authority (HA) hospital. W e assumed zero travel costs for seeking treatments. 

The size of the antiviral stockpile was considered as sufficient in one year 

period. 
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Table C. 

Parameter 
: C E A parameters and the corresponding values 

Value Remark Reference 

Hospitalization 

Oseltamivir 

Zanamivir 

Medical care 

Lost productivity 

QALY lost 

$16,170/case 

$222.7/case 

$222.7/case 

$335/case 

$2,825.9/hospitalized 
case; $550.5 per mod-
erate case or case who 
received antiviral 

0.008 for an untreated 
infection; 0.004 for 
an individual who re-
ceived antiviral; 0.017 
for a hospitalized indi-
vidual 

$2,100/day and stay in hospital 
for 7.7 days 

EUR21.624 for single treatment 
course; one EUR converted to 
HKD$10.3 

EUR21.624 for single treatment 
course; one EUR converted to 
HKD$10.3 

$127 for medical consultation 
and $100 for prescribed medica-
tion with 5% inflation each year 

Average monthly wage was 
$11,000 which divided by 30 
days; hospitalized cases absented 
from work for 7.7 days; moderate 
cases and patients who received 
antiviral absented from work for 
1.5 days 

[42] 

[33] 

[33] 

[42] 

[101] 

[11] and 
sumption 
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Production Costs {Cp) 

The monthly salary was assumed to be $11,000 on average for a Hong Kong 

resident [101]. Severe subjects would lose their productivity when staying in 

hospitals. It costed $2,825.9 for a hospitalized case. Moderate case or case 

who received antiviral lost $550.5 for a 1.5 days absented period. Table C.l 

summarizes the production costs in the C E A . 

Quality-adjusted Life Year Lost 

A Q A L Y is a measure of an individual's physical health as well as a measure of 

disease burden. In our study, previously published Q A L Y s losts of pandemic 

influenza A (HlNl) were used [11]. Individual who received antiviral was 

assumed in having half of Q A L Y s lost as an untreated subject (Table C.l). 

Results 

In our model, the cost-effectiveness was dependent on the interplay between the 

case-fatality rate, the transmission intensity, and the implementation time of 

effective interventions. According to the modeling results, the total cost would 

be $7,265 million if only antiviral and hospitalization imposed on 3.5 months 

after the first global onset case, and the case-fatality rate was assumed in 0.5% 

that similar to that of pandemic (HlNl) 2009 [1], The cost of a 99% travel 

restriction of all means of transports would be $11,636 million if it was imposed 

for 3.5 months. The program would cost $363 million for each Q A L Y gained 

in this situation. In views of C E A , it was not recommended including travel 

restrictions in the plan of pandemic (HlNl) 2009 (Figure C.l). By employing 

per capita G D P $231,600 of Hong Kong in 2009 as the cost-effective threshold 
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[104，59], the travel restriction was cost-effective only if the RQ increased to 8 

and the case-fatality rate > 15%. 

Figure C.l: Incremental cost-effectiveness ratio (ICER) for 99% travel restric-

tions of all means of transports with different reproduction numbers (RQ) and 
case-fatality rates when the antiviral and hospitalization were available on 3.5 

months after the first global onset case. 

2% 4% 6% 8% 10% 

Case- fa ta l i t y ra te 

The solid lines of RQS are illustrated in different colors showed in top-right 
corner. The red dotted line represents the cost-effective threshold i.e. 

$231,600. The solid lines of RQ = 1.5 cannot be showed in the image due to 

its ICER > 2 million within the range of case-fatality rates. 

Although a 99% travel restriction of all means of transports would cost 

$16,624 million for five months, it was cost-effective in some situations once 

the antiviral and hospitalization were available at the end of the fifth month 

after the first global onset case. Imposing travel restriction allowed the gain of 

about 154 thousand Q A L Y s and the average ICER was about $166,400 in one 

year period when the RQ — 2 with 15% case-fatality rate (Figure C.2). The 

travel restriction was also cost-effective once the case-fatality rate attained 25% 
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2 % 4 % 6 % 8% 10% 3 5 % 

C a s e - f a t a l i t y r a t e 

The solid lines of RQS are illustrated, in different colors showed in top-right 
corner. The red dotted line represents the cost-effective threshold i.e. 
$231,600. 
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with high disease transmission intensity. If the antiviral and hospitalization 

were only available at 6.5 month after the first global onset case, the travel 

restrictions delayed the epidemic and was cost-effective when the RQ = 1.5 with 

about 6% case-fatality rate (Figure C.3); more than 100 thousand QALYs were 

gained by paying $21,611 million for travel restrictions in total. 

Figure C.2: Incremental cost-effectiveness ratio (ICER) for 99% travel restric-
tions of all means of transports with different reproduction numbers (RQ) and 
case-fatality rates when the antiviral and hospitalization were available on 5 
months after the first global onset case. 
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0,50% 2% 4% 6% 8% 10% 40% 45% 

Case-fatality rate 

The solid lines of RQS are illustrated in different colors showed in top-rigl.it 
corner. The red dotted line represents the cost-effective threshold i.e. 
$231,600. 
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Figure C.3: Incremental cost-effectiveness ratio (ICER) for 99% travel restric-
tioiiB of all means of transports with different reproduction numbers {RQ) and 
case-fatality rates when the antiviral and hospitalization were available on 6.5 
months after the first global onset case. 
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