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Abstract

In an epidemic, the international traffic accelerates the spread of infections
across wide geographic areas. Policy makers are interested to know the impact
on the disease transmission once the international traffic has been re-scaled.
Since the pharmaceutical interventions are usually not ready in the early stage
of a new epidemic, the travel restriction is a high potential intervention that
should be included into the containment and mitigation strategies for officials.
According to some resecarches, the value of the travel restriction was contro-
versial; and most importantly, we discovered several practical and theoretical
limitations in the epidemic models. These problems largely motivated us to
study the effectiveness of the travel restriction on the epidemic control in hoth
at-risk countrics and the source country. In the body of thesis, new method-
ologies of epidemic modeling were developed by making use of the influenza A
(H1N1) pandemic in 2009 as a casc study. Our result showed that the travel
restriction was valuable on slowing down the growth of cpidemics for both at-
risk countriecs and the sowrce country. The time delay of the epidemic would
offer public health experts, policy makers, and scientists more time for prepa-
ration and decision making on control measures. Although solely imposing
the travel restriction showed little benefit on reducing the final attack rate
and the probability of cases exportation, it offered additional contribution on
even halting the epidemic growth oncc other interventions such as antiviral
and hospitalization could also be implemented. Therefore, the implementa-

tion of the travel restriction must be a potential intervention to control the



epidemic spread, especially for the next epidemics which could be lethal and

highly intrusive.
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Chapter 1

Introduction

1.1 Statement of the Problem

The novel influenza A (H1N1}, swine flu has spreaded across more than 70
countrics and the speed of discase transmission raised the public awarcness
on control measure globally. When the cpidemic outbreak was started in the
source country, Mexico, containing the epidemic was one of the priority ac-
tions. Unfortunately, the containment stratcgy was fail and the mass inter-
national travel pattern lead infected individuals to carry their virus to other
at-risk countries. The prior action of at-risk countries is to delay the epidemic
outbreak locally in order to squeeze more time to preparation and to minimize
the attack rate afterward. Thercfore, the objectives of imposing the control
measures especially the travel restriction, between the source country and the
at-risk countries are different. Recently, several literatures have developed dif-
ferent epidemic models to evaluate the effectiveness of various interventions.
Among those interventions, the travel restriction gained most intercst. Since
there are several limitations for these epidemic models such as inadequate dis-
tribution of travel pattern and lack of uncertainty estimates, the value of the
trave] restriction has not yet been proven.

In this paper, methodologies will be newly developed, by making use of

the influenza A (II1N1) pandemic in 2009 as a case study to demonstrate the



impact of travel restriction in views of the source counfry and the at-risk

countrics.

1.2 Importance of Epidemic Models

In reality, it is hard to have high standard experimental or observational studies
to analyze the strategies on controlling the transmissions of infectious discascs.
Most clinical trial designs are not practical for assessing the effectiveness of
somc interventions, such as face masks and isolation, because of the ethical con-
siderations which relate to cpidemics in general. Therefore, policy makers are
hard to understand the effectiveness of their strategies. Fortunately, by using
the mathematical modcls, the dynamic of the epidemic and the impact of the
interventions can be demonstrated. The models arc able to use mathematical
science to describe the disease system under the constraints of interventions
from the biological, political, and epidemiological data. The modeling result
could thus explain and quantify how infectious diseases spread in the real
world. So mathematical models play essential roles in offering valuable advice
among different political settings for epidemics. Because of the above advan-
tages, there is an increasing trend in applying mathematical models to explore
the spread patterns of infectious discases and the impacts of interventions in

recent decades.

1.3 Applications of Epidemic Modeling

Epidemic models have been used to design optimum strategies in containing
the disease at a source country, assignment of treatments or vaccination, prepa-
ration of the interventions, and controlling the antiviral resistance in epidemics
over the past decades. Longini, et al. [75] estimated the disease transmission

pattern in scutheast Asia and assessed the possibitity for containing the I15N1



influenza epidemic. Reily, et al. [97] designed the optimum dose coverage in
order to maintain a lower illness attack rate in the United States. In order
to prepare effective interventions, Ferguson, ¢l al. [39] cmployed a stochastic
simulation model to study the effectiveness of various control measures such as
geographical treatments allocation and workplace, houschold or hospital quar-
antine. Besides, Gani, el al. [49] cstimated the ratio of the antiviral resistance
in view of different antiviral coverage situations during an influenza pandemic.
Apart from that, cpidemic models have also been used to predict the threats

of bioterrorism from emerging virus.

1.4 Pandemic Influenza A (H1N1)

Novel influenza A (HIN1), also called swine flu, is a new influenza virus that
caused its first illness in Mexico in 2009. In mid-march 2009, Mexico govern-
ment identified an unreasonable increase in the number of influenza-like illness
cases, even though it was not in peak seasons of the influenza outbreak [77).
After half a month, an acute respiratory illncss was discovered on two children
and was further confirmed as a new influenza A (H1IN1) virus in mid-April 2009
[78]. Then the first notification of novel influenza A (H1N1) was announced hy
the World Iealth Organisation (WIO) on April 26, 2009. Because additional
cases were successively discovered in the United States '79], WHO raised the
pandemic alert level to phase five in the end of April. Becanse of insufficient
information on this particular infectious discase, the World Health Organiza-
tion (WHO) declared the first global influenza pandemic on June 11, 2009.
In a rceent clinical update, more than 214 countries and territories worldwide
have reported laboratory-confirmed influenza A (HIN1) cases, and the disease
has caused more than 18,000 deaths [116]. Its high transmissibility has raised

the public awareness of disease control measures.



With Hong Kong's large-scale international travel patfern and a high pop-
ulation density, the Centre for Health Protection (CHP), Hong Kong has re-
ported about 300 severe cases and 80 fatal cases from influenza A IIIN1 in
Hong Kong since May 1, 2009 [22]. The virus has been widely circulating lo-
cally, and it is therefore necessary to implement effective control measures in
order to relieve the discase burden. According to CHP, the control measures for
mitigation was adjusted and taken effect in Hong Kong after the discase out-
break [90]. Up to eight Designated Flu Clinics (DFCs) were implemented for
managing patients with fever and influenza-like illnesses. Confirmed cases with
mild symptoms were not required for admissions and were provided with symp-
tomatic treatments and reassessments. Antiviral treatments were only given to
influenza like illness patients with chronic diseases or in immuno-compromised
states. Hospitalization was target for clinically more serious cases, confirmed
cases from pregnancy, and cases presenting medical risk factors, which include
those suffering from chronic diseases or having immunc-compromised states.

In the pandemic, the international traffic accelerated the spread of infec-
tions across wide geographic scales. The researchers, even publics, would like
to know the impact on the influenza A {H1N1) disease transmission once the
traffic has been either partially or completely blocked. Moreaver, the value of
the travel restriction is still not clear now, especially when the pharmaceuti-
cal interventions are not ready in the early stage of the pandemic. Therefore,
the pandemic influenza A (HIN1) would be a good case study to explore the
impact of interventions in both source country and af-risk countries, in order

to have well planning of containment and mitigation strategies in the future.



1.5 Dissertation Outline

Chapter 2 of the dissertation is the literature review of the current mathemati-
cal models, the statistical methods, and the applications in epidemics. The re-
search questions will also be identified in this chapter. Chapter 3 demonstrates
the impact of travel restriction for at-risk countrics with the corresponding
methodology, the result, and the discussion which employing the pandemic
influenza A (HIN1) as a case study. The impact of travel restriction for a
source country is analyzed in Chapter 4; the corresponding methodology, the
result, and the discussion will also be noted which used the pandemic influenza
A (ITINI) as a case study. Chapter 5 is the summary and the conclusion from

the findings.



Chapter 2

Literature Review

2.1 Epidemic Models

Mathematical modelling has been used for transmission mechanism of infec-
tious discase for a long time. Hamer [57] has developed one of the earliest
epidemic models in 1906. The model considered the probability of infection in
one time step proportional to the product of the nurnber of susceptible individ-
uals and the number of infected individuals. Ross [99] adopted the method in a
time series model and called it mass action principle in 1916, Until 1927, Ker-
mack and McKendrick [66] developed a famous STR model and it still works
as a princpal for various extensions of cpidemic models for nowadays. The
details of Kermack and McKendrick S{R model will be discnssed in Scetion
2.1.2.

In an epidemic model design, it is necessary tc know the requirement of
identification of the guestions and decide how much detail should be incor-
porated. For example, to evaluate the travel restriction, it is better to put
the travel pattern into the model. However, for model with greater detail, the
paramcter values should be set carefully, otherwisc bias will be introduced.
On the other hand, some model structures are sensitive to paraneters so the
evaluation of the sensitivity is important.

Generally, the epidemic models are in compartmental form, that is, the



population is divided into different compartments or categories according to
individual discasc status, demographic details, and risk factors, so that, the
compartmental epidemic models can have better resolution in disease trans-
mission dynamic. However, the model complexity increase with the number
of compartments as well as the available data; the statistical inference is hard
to be drawn for complicated structural model cspecially for those with many
latent variables.

A large amount of frameworks of infectious discase transmission model are
from deterministic and stochastic structures. Due to the complexity of epi-
demic models, the deterministic structnres are relatively easy to build and thus
common in practice in order to demonstrate the average behavior of infectious
disease transmission. But the main problem is that deterministic models do
not capturc any uncertainty along with the time series of disecase propagation.
On the other hand, the stochastic structures are often individual-based and
incorporate the stochastfic variation into the epidemic system, especially when
the number of infected individuals is small or the chance event is important in
the transmission dynamics [13]. For example, the epidemic can go to extinct
provided that the number of initial infected subjects is small. In addition,
the statistical inference for epidemiological parameters is more appropriate to
be drawn in stochastic models. Typically, binomial chain method is adopted
in discrete time stochastic models such as the Reed-Frost model [2] and the
Greenwood model [56]. The stochastic epidemic models have been used exten-
sively on infectious discase like foot and mouth discase [108], meningococcal
disease [93], and Human immunodeficiency virus (HIV) [64]. As for a whole
picture, the deterministic models are usually used as explanatory tools in de-
scribing the general picture of the epidemic and to estimate the transmission

parameters followed-by the complex models.



2.1.1 Definitions of Epidemiological Quantities

Understanding the quantity of the disease mechanism is crucial to effective
pandemic preparation. Basic reproductive numbers (Rg) is defined as the av-
erage number of secoendary infections produced by a typical infected individual
in a wholly susceptible population. It is usually difficult to measure as not all
people in the population are susceptible due to the pre-existing immunity cs-
pecially for influenza. So the reproduction number {or effective reproduction
number), that is, the average number of secondary infections produced by a
typical infected individual and denoted as R, is estimated. In order to prevent
the pandemic, the quantity R which identifying the intensity of interventions
used, should be maintained smaller than 1. The more control measures and
interventions should be introduced if the quantity R is large. Some estimated

basic reproduction numbers are histed in Table 2.1.

Table 2.1: Examples of the basic reproduction numbers (Rg) according to
different infectious diseases
Infectious Disease  Estimated By Reference

Measles 16-18 (6]

HIV 2.5 5]
Foot-and-Mouth discasc 3.5-4.5 i41]
Smallpox 3.5-6 [50]
SARS 2-5 [111]
Influenza 1-3 [82]

According to World Health Organization (WHQ) [114], a simple figure for
strategy from range of reproduction number and case fatality rate is presented
(Figure 2.1). The higher the value of the reproduction number, the more com-
plex to contain the disease. For the lower value of R, government bodies should

consider the cost for containment and benefits of mitigations.






in S-stage have chance to be infected and progress to Infection /-stage until

recovery to R-stage. The flow is shown in the following figure 2.2:

Susceptible | —» Infectious — Recovered

Figurc 2.2: Flow of 57R model

We denote 8 as the transmission rate so the force of infection A (rate of
susceptible individnals become infected) would be F, where I is the mumber
of infectious individuals. By mathematical convention, we denote S, [ and R
as the subpopulations in cach compartment for time ¢. The total population
size N, is cqual to § 4 I + R for any time and N = § for time zero. The
SIR model can be written as the following system of nonlinear differential

equations:

ds N

df

— =881l (2.1)
dR

@

where 8 and v are the model parameters and v is the recovery rate. As
the infectious period is assumed exponential distributed, we denote 1/ as the
average infectious period. By linearising the system i32], the basic reproductive
numbers Rg is equal to SN/7.

Although the Kermack and McKendrick model is extremely simple and the
assumption of exponential infectious pericd may not be held in some situations
[112], it works as a fundamental model in epidemic disease transinission over

the past 70 years.
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Apart from the deterministic version, the Kermack and McKendrick model
has been cextended stochastically. Using the same notation with a time indi-
cator, ¢, Greenwood [56] adopted the binomial chain idea and the probability

of susceptible individunals becoming infected would be

PUG+ D =it HSW) =s 1) =)= | = |0 -p* (22

for k =0,1,2,...;s. The p is the probability of a susceptible individual got
the virus in the community and s, 4, and & are constants. A limitation of the
model is that the value of p is fixed over time which causes the epidemic ended
in an arbiftrary fast vate. The problem is improved in Reed-Frost model [2];
the probability of disease transmission depends on the number of infectious
individuals at time ¢, i.c., p(¢) = 1 — (1 —p). Bartlett {1949) [12] incoprorated
the stochastic effects in deterministic SIR model theoretically and applied

equally well in modelling the disease transmission for measles.

2.1.3 Susceptible-Exposed-Infectious-Removed
SEIR Model

SFTR model is another common epidemic model with adding an Exposed
{latent) compartment on SIR model. Latent period is defined as the period
of time that individuals get infected but not yet infectious. Once suspectible
individual get infected, they will refer to the Exposed E-stage and followed by

Infectious I-stage. The flow is shown in the following figure 2.3:

The latent period is also assumed exponential distributed, so the average

latent period is equal to 1/q. Following similar configuration of SIR model,

11



Susceptible | —* Exposed — Infectious — Recovered

Figure 2.3: Flow of SEIR model

the system of nonlinear differential equations of SEIR model can be written

as:

ds

E——_‘BLQI

d—Fi:,(J'SI—aE

di 2.3)
dl . (2.
amab—'}!

L

a !

The formula of the reproduction number in §EI R model is the same as that
in S1R model. However, SEJR has a slower growth rate as the susceptible
individuals require to pass through the latent class before contributing to the

disease transmisson process.

2.1.4 SIR and SEIR Model Extension

Since many essential factors contribute to the discase transmission in reality,
simple epidemic SR and $EIE models cannot account for the effects of all
factors; therefore, the classical models have been extended inta different ways
to incorporate various effects. For example, the time scale of the disease spread
is slow and the demographical data such as population births and deaths would
affect the disease dynamic, the system should incorporate the birth rate and
mortality rate together. Another important factor that will affect the disease

dynamic for a long time scale is the scasonal variation. Several literatures have
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addressed this problem by replacing the infection parameter into time-varying
periedic function or developing more compartments for measles, chickenpox,
and influenza |73, 20]. Population heterogeneity, that is, is another important
factor that different individuals may have different pattern from contracting o
transmission, also affect to the disease dynamics. For example, children have
higher risk to infect chickenpox due to the nature of contacts. With enough
information, the model can offer essential information for those sub-classes
such as influenza [85, 110].

Apart from individual characteristics, most of the discase models arc de-
veloped to quantify the cffectiveness on the pharmaccutical and the non-
pharmaccutical interventions based on S7R model and SEJR model during
epidemic. Many articlas have evaluated the effectiveness of pharmaceutical
interventions such as antiviral treatments [3, 74] and vaccination [85] on in-
fluenza epidemics. In order to optimize the required resource, the final illness
attack rate was assessed under different antiviral {reatment and vaccine sup-
ply by multi-compartments models. Non-pharmaceutical interventions namely
school closure [110], isolation, quarantine [21, 70, 119], and travel restriction
[37] have also extended the SEIR models to address the control measure
properties. Given various pandemic situations, i.e., reproduction numbers, the
models quantified the efficacy for these public health interventions. Because
some single strategies may not be feasible, the combination strategies were
also found to be effective for reducing the global spread of pandemic across a
range of reproduction mumbers [41, 75!. It enables policy makers to leverage
on the effectiveness of some control measures and to reduce potential impact

of others.
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2.1.5 Travel Restriction in Epidemic Models

For the infectious disease with high transinissibility such as influenza, the
global travel network plays a central role in geographical spread of diseasc. In
current world, the speed and volume of international travel are unprecedented
and the massive movement converge to favor the emergence of infectious dis-
case. Travelers may carry pathogens in their bodies and thercby facilitate the
introduction of a communicable discasc into a new geographical arca. There-
fore, travel restrictions can reduce the rate of new infected people imported
from or exported to different areas. So in model construction, it is necessary to
consider the geographical feature, population characteristics, and travel pat-
terns. Up to this moment, the epidemic models of global scale have been
applied to specific outbreaks such as seasonal influenza [55], human immun-
odeficiency virus (HIV) '43]; severe acute respiratory syndrome (SARS) [61],
and recently, influenza A (HIN1) [44].

A large proportion of literature has studied the global disease spread prob-
lem from the meta-population, or 'patch’ STR and STt/ R model structurcs
100, 55, 44, 45, 27, 37] to assess the effectiveness of travel restrictions. The
transmission between cities was connected by a symumetric air travel matrix
(nxn) for which matrix clements ;) for row 4 and column j represented
average daily passenger {low {rom eity ¢ to j. And a {ransportation opera-
tor (€;) was implemented on the susceptible {(§) and latent compartment (E)

individuals at time { in the SE{R model as follows:

QUS(E)) = Si{t) + Z [S; (f — 8, (t)
) (2.4)
QE(t)) = Ei(1) +Z[E 0% = (1)
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where N is the total number of cities and n; is the populaton size of city
i. Hence, the probability of travel for cach time step is (oy;/n;) from city 4
to city j. The meta-population approach would have thousands differential
cquations in the system as well as more than 3,000 airports in 220 countrics
[24]. However, some of the literatures did not consider the stochastic variation
100, 55 i.e. constant volume of passenger flow. Colizza (2006) [24], re-phased
the mode] into stochastic version and the stochaslic variable for the number of
individuals travelled from city 7 to city 4,7 + 1, ... would follow a multinomial
distribution. However, the model used the same infectious paramneters for all
cities which is inappropriate due to different contact patterns.

Besides the patch structure, there are some other model structures to study
the traffic rescaling globally; for instance, multi-group based model and net-
work model. Multi-group based model allows individuals to capturc high levels
of heterogencity such as houschold structure, workplace structure, and school
structure (39, 75'. These kinds of models can be used to investigate con-
tajnment measures due to actual setting of locations [95]. Network model is
another type of model structure that can also be applied in actual location set-
tings represented by clusters and vertex. Riley, et al. has applied the spatial
network transmission model in Great Britain locally to investigate the disecasc
dynamic for smallpox [96]. Ilowever, the big challenge is that both model
structurcs required large amount of information for groups. Moreover, the
large number of parameters would make the parameter estimation much more
complex. Additionally, those models usually study local spatial transmission,
rather than global airline transmission as it is hard to incorporate the travel

distance model in the social contact network.
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2.2 Statistical Preliminaries: Relating Data to

Models

In most of the epidemic models, parameter estimation is an csscntial part for
model constructions. When relating data to model, we should maintain a
balance between the completeness of data captured and the adequacy of the
inference drawn on the data structure.

Least-square estimation, maximum likelihood (ML), and cxpectation maxi-
mization (EM) algorithm are common statistical estimation method employed
in epidemic modcling studics. Least-square estimation method, minimising
the sum of square differences belween observed data and model prediction, is
a typical approach dealing with estimation problems. Chowell, et al. [21] used
least-square method to estimate the basic reproductive number (Ry) of the
Ebola hemorrhagic fever outbreaks in Congo and Uganda. The method fitted
the epidemioclogical data into a deterministic SEIR, epidemic model. Maxi-
mum likelihood (ML) methed is similar to least-square method which adapts
the independent Gaussian errors in the epidemic models. Lekone, et al. [68]
cmiployed maximum likelihood estimation method to estimate the SEIR model
parameters for an outbreak of Ebola in Congo in 1995. These methods are casy
to be implemented; however, they are hard to solve the intractable likelihoods
given high dimensional integral regions. Expectation maximization (EM) al-
gorithm is another method to solve complex likelihood [14]. It works well
for unimodal likelihoods, but it does not converge properly for multimodal
likelihoods as the algorithm highly depends on the initial conditions.

Markov Chain Monte Carlo {(MCMC) is a computational intensive approach
to optimize the estimates via the Monte Carlo samples. High dimension of
parameters space does not offer any obstacle to the MCMC method. Not
only estimates parameters with uncertainty, the great flexibility of the MCMC

method offers data angmentation for the unobserved process, especially the
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non-reported data and unobscrved compartments in the cpidemic models dur-
ing Markov chains generation. Thercfore, the MCMC method has been em-
ployed in many cpidemic modeling studies in the past [53, 35, 88].

The following sections will briefly introduce the background of MCMC and

its relationship to Bayesian inference.

2.2.1 Markov Chain Monte Carlo

The MCMC optimize estimates by drawing samples from the Monte Carlo
method and adapting the convergence through Markov Chains. The asymp-
totic property ensures the parameter converged in the realisations. The idea
of Markov Chain Monte Carlo (MCMC) was first used in physics context in
1933 [76] and was generalised in statistical field by Hastings, el al. in 1970
58]. With sufficient computing resource, MCMC became a famous computa-
tional algorithm for statistical community; it broadens horizons in Bayesian
inference, stochastic processes, and statistical computing.

Monte Carlo sampling makes usc of randomness to come up with the
random variable estimates. It usually deals with the inferential problems which
involve intractable integrations as well as multi-dimensionality. Given function
f of interest and p(x) a probability density corresponding to a random variable

X, the expectation E,(f) can be approximated by
1 L
o D)
=1

if n is taken to be large cnough. By the law of large numbers, the confi-
denee of the random variable estimate increases with the number of sampling.
Existing theorics have proven that the degree of convergence from Monte Carlo
sampling towards the true values of the variables. The greatest advantage of

the estimation technique is easy in implementation.
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A Markov Chain is a sequence of random variables { X, } which the prob-

abilities of the values depend on its previous time. That is,

P(Xy =g Xeqy =2, Xo = 20) = P(Xy = 2| Xy 1 = 1)

There are two kinds of propertics for a Markov Chain: Homogeneous and
ergodicity. A homogeneous Markov Chain indicates that the transition prob-
abilities will not change in the progression of states transitions. Provided
that the number of iterations n approachs to infinity, the distribution, which
is independent to the initial condition Xg, is cquilibrium. If there is only
one equilibrium distribution, the Markov Chain {X,,} is called ergodic. That
means, if X, ~ f, then X;_y ~ f. Most of the MCMC algorithms satisfy
the above conditions and cnsure the convergence to the target distributions;
the Gibbs sampling and the Metropolis-Hastings algorithm arc the common

MCMC method to obtain the posterior estimates [48, 58, 76.

Gibbs sampling

Gibbs sampling is a MCMC scheme provided that the transition probabili-
ties are formed by the full conditional distributions of paramcters. It was
firstly introduced by Geman, et al. [52] in an image processing publication,
Suppose © = (#y,...,8,)" and f are the paramecter and distribution of inter-
est respectively, the Gibbs sampling draws the samples from the successive
generations from. the full univariate conditional distributions alternatively i.c.

fi(8:464, ..., 81, Biq1, .., By). Here is the algorithm [48]:

1. Start the iteration counter at 7 = 1 and set the initial values for ©© =

GRS
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2. Sample candidate new value €9 from full conditional distributions

89 o f1(8:]0570, .80 )

(7} {7=1) ali-1) i
92J r-\"-/‘ﬂf('9.2|glj|I :933 a"-:g;gj l]) (25)

89" ~ f(B8,16777,, ..., 89°)

"1 p—

3. The Gibbs sequence is obtained. Change the iteration counter from j

to 7 + 1. Return to step 2 until convergence is reached.

By the law of conditional expectation, the distribution of interest can be

estimated by the Monte Carlo average,

(8 = BB =~ 5 fo (8:l.) (26)

=1

given J is sufficiently large enough. The Markov chains approach to sta-
tionary distribution given sufficient large number of iterations after the burn-in
period. In extension of Gibbs sampler, random selection can be adopted for
the number of parameter updates, and this sampling method is called random
scan Gibbs sampler. The MCMC mcthod has been demonstrated its wide va-
riety of application in statistical aspects, and its great flexibility of usage in

the Bayesian statistics [51, 103].

Moetropolis-Hastings algorithm

The Metropolis-Hastings (MII) algorithm is one of the parameter updating
schemes to generate a convergent distribution. Once the non-iterative gen-

eration of probahility distribution f is complex especially in high dimension
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integration, the Metropolis algorithm is able to draw [ without its specific
forms of parametric conditional distributions [76]. Given suitable conditions
[48', the Markov chain correctly converges to target distribution.

Suppose paramters 8, the Metropolis-Hastings algorithm produces sequence

of draws as follows [18]:

1. Start the itcration counter at j = 1 and sct the initial values for ©®,

2. Sample candidate new values ©' from the proposal density o(€'|@0—1),
which is a probability of generating €' given previous values ©U1),
The proposal density must be symmetric in Metrepolis sampling, i.e.

a(@')00-1) = o(0U-1)0").

3. Accept the new values € with probability min(1, A), where

4o _©)aE]ev)

~ f(BUD)a(0U-1e) (2.7)

Tf accepted, O = ©'; otherwise, O = OU-L and the chain does not

move.

4. Change the itcration counter from j to § + 1 and return to step 2 until

convergence is rcached.

It can be proven that (not showed here) the Metropolis-Hastings algorithm
ensures the reversibility property of the Markov chain for the pair {x,y) with

respect to f, Le.

F)elxly) = fly)alylz) (2.8)
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Thercfore, the transition probabilitics for the chains are the same for both
direction & — y and y — x. Conscquently, the algorithm generates a Markov
chain {0°,6!,...,0% ..} and the transition probability from 67 1o €+! only
depends on €7 but not {O°, &%, ...,677 1}

Random walks are common proposals for the MH algorithm and there are
many random walk proposal distributions such as gamma, uniform, and Gaus-
stan. Suppose a Gaussian random walk step, the new values & is generated

from,

o =oU-Y L (2.9)

where ¢ follows a symmetric normal density i.e. N(0,02). The o is a step
size of the chain and & ~ N(8Y=1 ¢2). Tuning ¢ affects the acceptance rate for
the parameter updates and the acceptance rate is suggested to be around 20%
to 40% for a good convergence mixing. Roberts, et al. recommended arcund
23% acceptance rate is optimal for a Gaussian random walk MH algorithm [98].
Typically, the selection of the proposal distribution is somehow arbitrary; it is
similar to that of priors, which poorly mismatch of high density region would

likely to converge slowly.

Implementation and Diagnosis

In general, the objective of the MCMC algorithms is to obtain the stationary
density for the chain in a number of runs. Since the rate of convergence usually
depends on initial starting points, the sampler, and the posterior density space
(98], & number of initial steps, which regarded as the durn-in peried, are
discarded in order o minimize the effect {rom the initial non-convergence.

Given enough number of iterations, the Markov chain is most likely to converge
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to its stationary distribntion. Inefficient start points would greatly extend
the required burn-in period; it is suggested to start the simulation with a
point closed to the mode of our target distribution. Sometimes the chains arc
thinned in order to eliminate the correlation among samples. Supposc n is
any fixed value, we usually take the every 1n-th, 2n-th, ... iterations as a kind
of thinning methods with interval n.

MCMC diagnosis is essential to identify problems with convergence. We
can monitor the convergence by the time series trace plot, that is, the plot of
gencrated values versus the number of iterations. As for Metropolis-Hastings
algorithm, the convergence can be diagnosed by the time series trace plot.
Good mixing of chains would show no trend, presumably foward a station-
ary state. The lagged autocorrelations plot is another graph to monitor the
underlying correlation structure for the time scries. If the samples arc highly
correlated, slow convergence of the ergodic average posterior estimates would
likely occur which means the chains receive small amount information from
the iterations. The samplers behave good at autocorrelation if the chains have

the geometric decay trend in the lagged autocorrelations plot.

2.2.2 Bayesian Inference

Different from classical likelihood inference, Bayesian does not treat param-
eters as fixed but draws the estimate hy ropeated sampling principle, which
adapts prior distributions on the model parameters. Using DBayes theorem,
the posterior distribution of interest is calculated by the combination of the
prior and the likelihood. Supposc parameters are denoted by €, the paosterior

distribution is equal to
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L(@)Y=(©)
P{data)
___L@)n(e)
Jo L(O)7(0)dO

x L(O)x{(©)

P(6|data) =

(2.10)

which L(©) is the likelihood function from observed data and «(©) is the
prior distribution assigned to the parameters. The formula is called Bayes’
theorem. The denominator in the formula is a normalising constant. It is
hard to be calculated in Bayesian settings, howcever, it can be resolved by
computational sampling method, like MCMC.

Regarding prior distributions, the selection of the priors is usually based on
cpidemiological beliefs. Conjugate priors, which lead the posterior belonging
to the same family distribution, are comnmon in practice and they are usually
computational convenient in MCMC method. Besides, it is also common to
use non-informative priors to provide a baseline assumption for analysis. An
non-informative prior mecans that the probability of every candidate value of

parameter # is equal, i.c.,

given a bounded continuous parameter space [a.b]. In MCMC mcthods,
the data dominate the posteriors in stationary stages whatever the prior infor-
mation is, so the exact forms of the priors arc not important in most scenarios.
In Bayesian analysis, we are interested in drawing the posterior distribu-

tion: among the inference problems, most of them come down fo expectation
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calculation and MCMC is powerful enough to achieve the estimates. Once the
converged posteriors are obtained, the point estimation and interval estimation
in addition to the probability density plots would normally be our practical
interest.

Mean, median, and mode are the common measures of central tendency for
the posterior distributions. The decision of selecting the measures of central
location depends on the shape of the posterior; for example, if the posterior
is unimodal and symmetric, the three central tendency measures coincide. In
asymmetric posteriors, median is usually prefered since mean is affected by
the outlicrs heavily and mode maybe close to the non-representative peak.
Apart from location measures, measurcs of dispersion, for example, credible
intervals, are other statistics of interest. Typically, the lower bound and the
upper bound of the credible interval are simply taken as the a/2-th quantile

and the 1 — a/2-th quantile of P(8|dela) respectively.

2.2.3 Application in Epidemic Models

Duec to the great flexibility, the Bayesian inference and the MCMC method
have been employed widely in the cpidemic modeling studies [94, 118, 53,
54, 68, 35, 88]. In practice, the dynamic model structurcs would make the
inference much more complex. Besides, epidemic data, such as the times of
infection are usually unobserved [88, 54]. With extensive available computing
power, computational simulation methods like MCMC perform efficiently on
solving complicated likelihoods. Moreover, the MCMC methods are well-suited
to data augmentation even for large dimensionality. Ience, the estimated
epidemic models wonld be more adeguate than that of using reference values
to describe the discase transmission mechanism as well as the intervention
effectiveness.

In order to draw the inference for epidemic models, the observations are
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usually adopted from either the times of status or the incidence count. (’Neill,
el ai. used the times between cach detection of measles cases in household ont-
breaks to analyze the distributions of infections by the MCMC method [87].
The literature also demonstrated the augmentation skill of MCMC to impute
the unobserved infection times [88, 86, 87]. The MCMC methods like Gibbs
sampling and Metropolis-Ilastings algorithm were found performing well in
some situations, but converged badly for somc parameters; the convergence
testing is thus important. Lekone, et al. [68] employed a Bayesian method on
SFEIR model to study the Ebola outbreak from the daily counts of reported
cases and reported deaths. The MCMC did well on imputing the unobserved
geries bul had Lo use of final outhreak size in data augmentation. Besides, the
article did not deseribe any method in solving the problems of non-reported
data. Apart from them, the Bayesian inference has also been drawn for sev-
eral epidemic models in order to solve the complex likelihoods and to provide

uncertainty estimates [35, 118].

2.3 Identification of Research Question

In this thesis, we will fully evaluate the value of travel restriction. The travel
restriction will be assessed for two wide areas: 1, the impact for at-risk coun-
trics and 2, the impact for the source country. In addition, some of the current

limitations from the literature review will be overcome.

2.3.1 Impact of Travel Restriction: Al-risk Countries

The impact of travel restriction for af-risk countrics has been studied in many
epidemics. However, the research topic is still of interest for policy makers and
epidemiologists, as the implementation is controversial over past decades and

there are several limitations in these studies.



Most of the literatures support that the travel restriction is a valnable inter-
vention, Epstein , et al. [37] simulated the scenarios with air travel restrictions
by a global SE£/J R model and demonstrated reductions on the cumulative inci-
dence in the early period of an epidemic. Besides, a 95% travel restriction was
able to delay the first passage times (FPT) for more than two weeks. Compared
to other control measures, a moderate proportion of travel rescaling could not
reduce a certain amount of final illness attack rate. However, 1l was important
to delay the epidemics especially when the initial growth rate was relatively
low [117]. Colizza el al. [25) employed a meta-population stochastic model
to indicate that air trave! restriction was able to decrease the probability of
global outbreaks. Wood, el al. [117] have investigated the effectiveness of the
internal barder control on limiting influenza spread in the context of Australia,
and demonstrated that it could delay the pandemic for several weeks between
two cities. The authors also noted that the travel restriction worked better
in more isolated communities that lacked international ports. Brownstein, ¢!
al. [18] used weekly influenza and pneumonia mortality data to illustrate the
association between the decrease of volume in air travel and the time delay to
a influenza scason.

In contrast to above findings, Cooper, ef al. [27] showed that even if more
than 90% of air fravels had been blocked, the rate of the global spread only
would have achieved a little reduction once major outbreaks were underway.
Similar to the study of Cooper, et al., Hollingsworth, et al. [60] employed
a SETR model to conclude that the travel restriction only slowed down the
export process of infected cases, instead of halting the spread even if 99% of
air travel was banned.

Apart from the above research motivation, there are several major limi-
tations that can be improved in current literatures. Firstly, previous studies

focused only on air travel restrictions, but in many cities, including Hong
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Kong, it is not the main mcans of transport for arriving and departing trav-
clers. Statistics show that annually more than half of the passengers who
arrived in Hong Kong came cither by sca or land [62]. Figure 2.4 illustratcs
that more than ten million visitors came to Hong Kong from Asia by land
transport annually. Visitors from North America and Europe contributed a
higher proportion of air transport arrivals. Therefore, the incorporation of
air, sea, and land transport was necessary to demonstrate the effectivencss of
travel restrictions. Sccondly, most of the mathematical models only took into
account the latent individuals who traveled between countries. But with only
a limited screening sensitivity at the border points of entry [28], a large num-
ber of infected cases could enter, thereby resulting in a large increasc in the
rate of disease transmission locally [15]. Such studies may therefore provide
rnisleading information on the effect of travel restrictions [23]. Thirdly, most
of the geographical epidemic models were deterministic and they did not give
consideration to the stochastic variation [10, 9]. Fourthly, they ignored the
city heterogeneities in force of infections. For example, they assumed all coun-
tries had the same number of imported cases [4]. Given the information on
diseasc transmission among various countries, meta-population models were
preferred to distance transmission models and to network transmission models
[95] which arbitrarily adoptcd meanings in point-to-point transmission.

In chapter 3, a mathcematical model will be developed to describe the dis-
ease spread and to explore the impact of travel restriction on the influenza A
(H1N1) pandemic by using Hong Kong as a case study., The model will adapt

the following properties to improve the current limitations:

e Alir, sea, and land {ransportation;
e Limited screening sensitivity of the border points of entry;

¢ Stochastic uncertainty;
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Figure 2.4: Total arrivals (in millions) by air, sea, and land transport in 2007.
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Countries are allocated to different categories: the Americas, Europe. Asia,
South Africa, Middle East, and Australia. Forty-four countrics were sclected
in total which contributed more than 95% of arrivals to Hong Kong.

e Spatial heterogeneities in force of infections i.e, different numbers of

import cases according to the initial growths of the countries.

In addition, the effectiveness of antiviral drugs and hospitalization 1s also
investigated according to the strategics from the Department of Health, Hong

Kong [90].

2.3.2 Impact of Travel Restriction: Source Country

In the carly phasc of an epidemic, the top priority of mitigating strategics is

to contain the pandemic outbreak at the source country. The public health
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measures, like the travel restrictions, play an important role to reduce the pos-
sibility of infected cases exported to other areas as well as to delay the spread
from the source arca. In view of source country, epidemic studies usually focus
on the time delays to epidemic seeded to other areas from the infected source
rather than the illness attack rates, which is a different perspective to at-risk
countries.

With the understanding to the distribution of the exported infections from
the source country, cxperts are able to assess the possibility of disease con-
tainment and to have better preparation for the control measures, like the
border contrel. However, rescarchers have to face the preblems of the time
delay until the first official disease confirmation and the non-reporting rate,
while formulating the distribution. As for the influenza A (H1N1) pandemic,
it was believed that the virus has been circulated within communitices several
months before the recognition of the discase outbreak (63, 71]. Before the ac-
tive surveillance of influenza A (HIN1) and the confirmative diagnosis from
clinicians and microbiologists, the virus was undetected over a period of time.
Several studies estimated the initial point of the discase outbreak around the
mid-January to late-Feburary through the analysis of the viral genetic sequence
and the epidemic models *47, 106], and the delay would have significant impact
on simulation results {19, 40]. Apart from the initial time delay, the reporting
rate was low for the influenza A (HIN1) pandemic. Most of the ascertainment
was particularly focused on cases with severe condition. Alsc, either asymp-
tomatic or mild cases were not presented in medical consultation. A good
example of official surveillance being under-estimated the disease transmission
intensity in the community would be the telephone interviews from the Beijing
Center for Disease Prevention and Control (CDC) [120], which showed that
the consultation rate among influenza-like illness (ILI) patients was no more

than 50% in Beijing, China.
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Although the issucs of initial reporting delay and non-reporting arc impor-
tant, most of the cpidemic modeling studies have neglected these factors in
model development. Caley, et al. [19] quantified the distribution of the initial
time delay with justified factors, like in-flight transmissions and the proba-
bility of screening at exit and cniry borders. Given pg the probability of the
¢pidemic initiated on day d followed by identification at source region, they
drew the probability distribution of the time delay (D) until the epidemic was

first initiated in the at-risk country as

PriD=d)y=(1-p){1—p2)(1 —ps).{l — pa_1)pa

They concluded number of travelers who attempted to enter the at-risk
countries largely determined by the rate of country-to-country spread. But
the study did not deal with the non-reporting issue. Hollingsworth, et al. [60]
constructed an epidemic model to investigate the impact of travel restriction.
However, the probability of cxported cases to countries was arbitrarily as-
sumed. Most importantly, no estimation was done on the estimation of model
parametors for the studies.

In addition, most of the epidemic models are deterministic without the
consideration of the stochastic variation. The lack of the model uncertainty
would be an obstacle to justify the significance of the modeling outcomes.
In general, the use of bayesian approach is recommended, as it is able to
incorporate the uncertainty of paramcters along with the stochastic variation.
The bayesian approach is also prefered to univariate-vary the parameters for
a gensitivity analysis.

Consequently, a mathematical model which incorporated the effect of ini-

tial reporting delay and the reporting rate behind the surveillance data will be
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developed in chapter 4 to demonstrate the impact of travel restriction by as-
scssing the probability distribution of exported cases from the source country.
The model will adapl the Bayesian approach and will employ the influenza
A (HIN1) pandemic in Mexico as a casc study. The model incorporates the

following propertics:
o Initial reporting delay;
o Under-reporting;
o Statistical Inference on model paramcters.

The model is able to offer insights of the initial epidemic dynamic to epi-
demiologists, and to advise policy makers to have a better management on

containing an epidemic at the source country.
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Chapter 3

Impact of Travel Restriction:

At-risk Countries

In this chapter, we studied the impact of travel restriction on the influenza A
(H1N1) pandemic in views of af-risk countrics through a stochastic compart-
mental model. As for most of the previous epidemic modeling studies, they
only focused on air travel restriction and assumed 100% screening scnsitivity
at the border points of entry which were not realistic. In section 3.2, we de-
veloped an cpidemic model which incorporated all means of air, land, and sca
transport with stochastic uncertainty. In addition, the use of antiviral and
hospitalization were also adopted in order to provide a more realistic compart-
ment on the recovery, and also to compare the effectiveness of these control
measures. The model was then applied to the influenza A (HIN1) pandemic
in Hong Kong and the modeling results were demonstrated in section 3.3.
According to our result, we concluded that the greatest value of travel
restrictions was in their ability to slow down the spread of the epidemic. With
the imposition of other intcrventions that can suppress the disease transmission
intensity, whether locally or not, the restrictions on all external travel reduced
the local attack rates, and they even halted the disease spread. Similar to
the findings of other previous research, solely implementing travel restrictions

was not completely effeetive in reducing the attack rates, especially during the
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severe scenarios. In practice, the pharmaccutical interventions, like vaccine
and antiviral, are usually not available early encugh once a new emerging virus
has arrived in the community. So the travel restriction is a simple and direct
non-pharmaccutical intervention to slow down the epidemic during the early
stage, in order to allow a longer period for the preparation of the mitigation
response, cspecially for the next emerging virus with unknown characteristics.

The dotails of discussion were highlighted in section 3.4.

3.1 Introduction

For infectious diseases with high transmissibility, such as influenza, the trav-
eling patterns of individuals play an essential role in the geographical spread
of disease. Travelers may carry pathogens in their bodies and thereby facili-
tate the introduction of a communicable disease inte a new geographical arca.
Travel restrictions are a kind of social control measure that have been evalu-
ated in several epidemics such as influenza [55], human immunodeficiency virus
(HI'V) [43!, SARS [61], and, recently, influenza A (HI1N1) [44 . Nevertheless,
not all the relevant literature supports the value of air travel restrictions for
containing the epidemic [16-19]. The studies have shown that air travel restric-
tions have only a limited benefit in slowing the global spread of a pandemic
influenza. Besides, travel restrictions have low social acceptability, and they
may also have a huge impact on thc economy.

Despite these factors, the investigation of the value of travel restrictions re-
mains essential. Firstly, previous studics focused only on air travel restrictions,
but in many cities, including Hong Kong, it is not the main means of transport
for arriving and departing travelers. Statistics show that annually more than
half of the passengers who arrived in Hong Kong came either by sea or land
[62]. Figure 2.4 illustrates that more than tcn million visitors came to Hong

Kong from Asia by land transport annually. Visitors from North America and
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Europe contributed a higher proportion of air transport arrivals. Therefore,
the incorporation of air, sca, and land transport was necessary to demonstrate
the effcctiveness of travel restrictions. Secondly, most of the mathematical
models only took into account the latent individuals who traveled between
countrics. But with only a limited screening sensitivity at the border points of
cntry [28], a large number of infected cases could enter, thereby resulting in a
large increase in the rate of disease transmission locally [15!. Such studies may
therefore provide misleading information on the effect of travel restrictions [23].
Thirdly, most of the geographical epidemic models were deterministic and they
did not give consideration to the stochastic variation [10, 9]. Fourthly, they ig-
nored the city heterogeneities in force of infections. For example, they assumed
all countries had the same number of imported cases [4]. Given the informa-
tion on disease transmission among various countries, meta-population models
were preferred to distance transmission models and to network transmission
models [95] which arbitrarily adopted meanings in point-to-point transmission.
In addition, other control measurcs, such as antiviral drugs and hospitaliza-
tion, should be included in the model in order to better manage the spread of
the disease and the way it is controled.

In our study, an epidemic mathematical model was developed to describe
the discase spread and to explore the impact of travel restrictions via air,
sea, and land travel on the influenza A (H1N1) pandemic in Hong Kong. We
also studied the effectiveness of antiviral drugs and hospitalization for the
comparison. Furthermore, we investigated some important effects of changes,
including reproduction numbers from non-local countries to llong Kong, the
screening sensitivity at entry border points, the implementation date on travel
restrictions, and the length of latent period. The results will provide valuable

information to government policy-makers and to public health experts.
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3.2 Model Formulation

We extended the discrete stochastic SETR model [56, 2, 68] to study the in-
fluenza A (HIN1) dynamic and the impacts of the interventions locally. The
model was developed to adapt the arrivals both of latent and infectious indi-
viduals by means of air, land, and sca transport and the use of antiviral and

hospitalization with stochastic uncertainty.

3.2.1 Basic Stochastic SEIR Model

Let At be a time step and {¢,¢ — Af] be a time interval, we denote S(t),
I2(#), I(#), and R(t) as the number of individuals in Susceptible, Exposed,
Infected, and Recovered compartments at time ¢, respectively. Suppose B(f)
is the incidence, the number of susceptible become infected and C(t) is the
number of infected individuals who start to be infectious at time . And D(t)
is the number of individuals who rccover or die from infectious state at time ¢.
Assume the population is homogencously mixed, the system of general SEIR

stochastic model with no intervention is

S(t + At) = S(t) — B(t)
E(t+ At) = E(t)+ B(t) — C(t) 31)
I{t+ AL = I{t) + C(t) — D(¥)

R(t+ At) = R(t) + D(t)

An individual would have a probability p to get into next stage which
follows a bernoulli distribution. So by given n individuals, the number of in-
dividuals who get into next stage would follow a binomial distribution with

probability m. We take bin(m, n) as a binomial distribution with parameters
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probability m and number of total individuals n. The corresponding distribu-

tions for the classcs

B(#) ~ bin(1 — exp[—%f(t)At], S(t))
C(t) ~ bin(1 — cap{—aAt), E(L)) (3:2)
D(t) ~ bin(1 — exp(—~yAL), I(t))

where the rate of infection is equal to JI(#)/N for a tire step where § is the
transmission rate and N is the population size. The & and v are the constant
transition rates from latent state to infections state and from infectious state
to removed state respectively. And the rates arc transformed into probabilities

agsnming in poisson process.

3.2.2 Arrived and Departed Cases

In the disease transmission model, latent (JA7(¢)) and infectious (JM'(2))
travelers arrive from other countries by transport k-th and come to the com-
pariments E(t) and I{¢). A single population model adapts the travel effect
from 3 modes of transport: sea, land, and air. Suppose the probabilities of
travel are the same for all individuals and the probability of travclers import
from country i-th (i = 1,2, ..., p) are represented by mfm by mode of transport
k (k=1,2,3) for air, sca, and land respectively.

Here are the model compartments of imported cases in latent status,

IME(t) =" bin(my,, Ei(t)) (3.3)

3
k=1 i=1
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and infectious status,

3 p

MY =" bin(mi, 1(1)) (3.4)

k=1 i=1

The number of latent subjects, F5;(¢), and the number of infectious subjects,
I;(t), at time t of country i-th arc gencrated from discrete-time SETR model

bascd on the reproduction numbers of the countries,

Ei(t — Al) = Ey(t) + Sit)[1 — exp(=BiALL{t)/N;)] — Ei(t)(1 — exp(—all)]
L{t + AL = I,(t) + B(t)[1 — cap(—alt)] — L[ — exp(—~yAL)]
(3.5)

where 1 — exp(—FALL{(1)/N;), 1 — cop(—ait), and 1 — cap(—7yAt) are the
per capita probabilities of infection, becoming infectious, and becoming recov-
ered respectively given transmission parameter 3; in population N;. Individual
transmission paramcter 4; is calculated from the basic reproduction number
{Ry) of country i-th. It is defined as the average number of secondary infections
produced by a typical infected individual in a wholly susceptible population.
In order to allow the transmission heterogeneities between non-local countries,
we will estimate the reproduction numbers by the initial exponential growth
rate method [21] employing two months after dates of their first onset cases

daily surveillance data [115] {34] [47],

rP+(a+9)r
@y

Ro=1+ {3.6)
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where 7 is the initial exponential growth rate cstimated by the least square
fitting to the model, i.e. logarithn{cumulative number of cases al time ¢)
x ri.

At the same time, a number of infected individuals will leave and carry
the pathogens away from the local city. Let mi be the probability of de-
parture from local area by the mede of transport &, the compartments of ex-
ported cases in latent statns, EXF(¢), and in infectious status, EX'(¢), will be
523 bin(mE, B(#)) and S5 bin(m¥F, I(t)) respectively. The compartinents

of exported cases in latent status will be,
3
BXP() = bin(mf, E(t)) (3.7)
k-1
and in infectious status will be,

EXI(t) = bin(mf, I(t)) (3.8)

k=1

Given v is the sensitivity of the entry screening board, so only 1—v propor-
tion of imported infectious individuals arc able to be scanned [28], the system

of the stochastic equations:

S(t+ At) = §@) — B(?)

E(t+At) = B(t) + B(t) + IME(¢) — EXE(t) — C() 59
I+ AD =10 +C) + (1 —)IM() — EX(t) — D(t)

R(t + At = R(t) + P(2)
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A simple schematic flow is shown in Figure 3.1.

90690
VAV
S|—|E|—} 1 |—|R

Figure 3.1: Schematic flow of SEFTR model which incoporates import-export
latent and infectious individuals

3.2.3 Antiviral and Hospitalization

Two new compartments are added into the model, antiviral Treatment 7'(t}
and Hospitalization H{¢). Once individuals become infectious, they scek for
antiviral treatment and hospitalization with proportions pr and py respec-
tively. With regard to limited resources, part of them may be untreated as
proportions py. We adapt a 3 fraction reduction of infecticusness for individ-
uals who receive antiviral. Suppose classes A (¢) and N(2) are the number of
infectious individuals who take antiviral treatment and hospitalization at time
t respectively. The P(t) and €(2) are the number of removed individuals from
antiviral treatment and hospitalization with transition rates vy and g to the
removed status. Let fi be the restriction fraction for import transportation

k-th, the stochastic system is as follow,
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S(t+ At) = S(t) — B(t)
B(t+ At) = E() + B() + (1 — [)IME () - BXP() - C@)
I+ A =I1(t) + C() + (1 = fi)(1 =) IMI(t) — EXI(t) — D(t) — M(t) — N(t)
T(t 4 Al) =T(t) + M(t) — P(1)
H{i+ Ay = H{) + N{t) — Q(¥)
Rt + Aty = R(t) + D{) + P(t) + Q1)
(3.10)

Because infectious individuals include thosc being treated and hospital-
ized, the probability of a susceptible person becoming infected is equal to
1 —exp[3[7(t) + (1 — ¢)T(@) + H()]/N]| for a time step At where J is the

transmission rate. The corresponding distributions for the classes,

B(E) ~ bin{1 — eap|~ {1(2) + (1~ $)T(0) + HO]AT), S(2)
C(1) ~ bin(1 — exp(—alt), B(t))
M(t) ~ bin(prAt, (1))
N(t) ~ bin{paAt. I(1)) (3.11)
D(t) ~ bin(py[l — exp{—vrAL)], 1(t))
P(1) ~ bin(1 — exp(—vpAt), T(1))
Q) ~ bin(1 ~ exp(—yuAt), H(2))

In this model, vg is the transition rates from infectious state to removed
state. The vyr and <y are the transition rates from the treatment state to

the removed state and from the hospitalization state to the removed state
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3.3.1 Materials

Population and Transportation

Population data were taken from the International Databasce (IDB), U.S. Cen-
sus Bureau [89]. The individual probability of travel for cach country was
calculated by the daily rate of travel divided by the population size. The ar-
rival data were taken from visitor arrival statistics provided by the Hong Kong
Tourism Board [62]. The statistics included the total number of arrivals by
countrics with their modes of transport. Forty-four countries were selected
which annually contributed more than 95% of the arrivals to Hong Kong (Fig-
ure 2.4). The yearly statistics for frequency of departures from Hong Kong
residents by different modes of transport were collected from the Census and
Statistics Department, Hong Kong [38]. The data were assumed to be uni-

formly distributed daily.

Epidemioclogical Details

Since we did not have any available information of the cross-immunity from
past influenza infections, the initial population was set Lo be 100% susceptible.
The local daily surveillance of confirmed infected cases was from the press
releases on human swine flu, Department of Health, Hong Kong [92]. The
average latent and infectious periods of influenza A (HIN1) were set to 1.45
and 2.9 days respectively [44, 168]. The length of the latent period would be
tested in a sensitivity analysis for the values of a half-day and two days.

The latent (IME(t)) and infectious (I A7{t)) travelers were based on the
discrete-time SETR model which depended on the basic reproduction num-
bers. The reproduction numbers were estimated by the initial exponcntial
growth rate method i21] where daily surveillance data ,from the World Health
Organization {WHO) [115] and the European Centre for Disease Prevention
and Control (ECDC} [34] pandemic HIN1 situation updates, of two months
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Table 3.1: Frequency of departurcs and arrivals by countries with the modes

of transports in 2007
Mode of transport

Country Total Air Sea Land
Departure

Hong Kong 80,682,000 6,141,000 8,871,000 65,670,000
Arrival

United States 1,230,927 724,023 191,178 315,726
Canada 395,167 219,469 59,004 116,694
Honduras 1,662 675 225 762
Mexico 35,706 21,260 5,821 8,625
Argentina 10,515 5,690 1,805 3,020
Brazil 40,339 19,861 8,061 12,417
Venezuela 10,396 4,356 1,612 41,928
United Kingdom 601,168 448,647 68,007 84,514
Netherlands 110,816 70,592 15,712 24,512
Denmark 30,013 18,734 4,193 7,086
Finland 21,830 13,365 3448 5,017
Norway 18,624 12,381 2,327 3,916
Sweden 49,810 30,909 7,449 11,452
Austria 24,0486 14,514 4,529 5,003
Germany 234,763 149,370 38,523 46,870
Switzerland 46,870 32,529 6,561 7,780
France 231,091 135,291 41,515 54,285
Belgium 32,413 20,190 5,114 7,109
Ttaly 118,841 73,043 17,564 28,234
Portugal 18,639 9,419 8,199 1,021
Spain 65,131 38,460 10,757 15,914
Russia 32,858 21,956 4,314 7,288
South Africa 72,887 47,001 4,357 21,539
Bahrain 2,500 1,833 106 561
Egypt 16,361 7,764 579 8,018
Isracl 63,435 38,692 8,537 15,206
Jordan 11,084 4,809 333 5,942
Kuwait, 4,366 2,838 283 1,245
Saudi Arabia 19,435 13,616 787 8,032
Turkey 41,011 20,619 2,764 17,628
United Aral Emirates 11,881 9.358 615 1,908
Australia 633,599 418,760 83,173 131,666
New Zealand 117,215 82,461 10,762 23,992
Japan 1,324,336 TA8ATS 273,334 302,524
South Korea 876,231 507,872 136,095 232,264
Indonesia 366,217 185,197 63,102 117,918
Malaysia 504,487 237,542 105,036 161,909
Philippines 552,042 365490 70,956 116,496
Singapore 631,963 303,423 93,794 144,746
Thailand 387,219 216,732 47,800 02,687
India 317,610 178,018 33.588 105,904
Taiwan 2,238,731 1,248 228 123,793 866,710
Macau 626,103 30,547 553,682 41,874
China 15,185,789 2,069,683 1,618,643 11,797,463

The statistics were from the Hong Kong Tourism Board [62] and the Census and Statistics
Department, Hong Kong [38]. 43



after the first onsct case was used for model fitting. The surveillance data from
different countrics were listed on internet [113]. A sensitivity analysis was per-
formed on the Rgs of the non-local countries for values with 20% increases and

20% decrcases respectively.

3.3.2 Scenario Design

The mathematical model was developed to assess the effectiveness of: (i) the
iravel restrictions relating to different means of transport; and (ii) the use of
the antiviral and the hospitalization for the influenza A (H1N1) pandemic in
Hong Kong locally. The travel restrictions were supposed to take cffect on
the day after the first global onset case. Different start dates were tested in
the scusitivity analysis. The antiviral and the hospitalization strategies were
implemented locally 3.5 months after the first global onset case, which was
similar to the strategies from the Department of Health, Hong Kong [90].

Travel restrictions relating to sea, land, and air travel. We applied 90%
and 99% import restrictions {f;) on different combinations of k-th transport.
We also considered that only one-third of infectious cases was identifiable at
the entry borders at the baseline scenario[28]. A 95% value and a 5% value
of screening sensitivitics were tested in the sensitivity analysis section. In
addition, the start date on the travel restrictions was tested for three months
and five months after the first global onset case, respectively.

antiviral and hospitalization. We assumed that 12% (pr) of the infectious
subjects were offered antiviral and 6% (pg) of the infectious subjects were
selected for hospitalization, according to the experience in influenza pandemic
[49, 119]. The remaining 82% (py) of infectious individuals were untreated.
The antiviral would reduce 60% infectiousness for the individuals [40]. Both
interventions would reduce the average infectious period by 1.5 days [7]. Com-

partments for antiviral T'(¢) and hospitalization H{f} were developed in the
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model for assessment.

The detailed descriptions of the parameters were highlighted in Table 3.2.

Epidemic evolution

The influenza A (HIN1) epidemic was seeded according to the start dates
(Table 3.3) of the countries [115] [34]. The carlicst epidemic was seeded at
Mexico on March 11, 2009 [47]. Each country developed its own infected
cases which gencrated from the discretized-time SEIR model based on the
estimated reproduction number. At the same time, the eountries sent their
infected cases to Hong Kong and the local epidemic evolution was initiated by
the successive imported cascs via air, sca, and land traffic. The first passage
times {FPT) and first one hundred passages times {FHPT) were calculated for

different restriction strategies.

Baseline scenario

Since the Hong Kong government confirmed the first imported case of influenza
A {HIN1} on May 1, 2009 [91], the initial numbers of latent cases /;(0) and
infectious cases I;(0) were iteratively estimated, and this minimized the differ-
ence between the reported date and the simulated first passage time (FPPT).
Adapting the stochastic nature, the baseline transmission rate, § was fitted
for the first 1wo months after the day of the first local onset case without any
travel restrictions and intervention. The local daily surveillance of confirmed
infected cases, shown in Figare 3.3, was from the press relcases on human
swine flu, published by the Department of Health, Hong Kong [92]. Optimum
paramecter was chosen which had average minimum relative mean square crror
between empirical and cstimated cumulative incidence by Monte Carlo simu-
lation. The reproduction number was the product of the transmission rate and
the average infectious period. We adopted the range of parameter space for

the reproduction numbers according to previous influenza A (HIN1} studies
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Table 3.2: Parameters, definitions, and values for the model

Parameter  Definition Value Ref/remarks

iy Basic reproduclive number Estimated Local baseline es-
timated ahout 1.3;
test in range from

1.1 to 1.7
Tg=1/a Average latent period (days) 1.45 [441[16]; test with
0.5 and 2 days
Ir Average infectious period (days) 2.9 [14:[16]
Tr Average infectious peried (days) 1.4 (7]
for individuals treated with an-
tiviral ireatment
Ty Average infectious period (days) 1.4 (7]
[or hospitalized individaals
pr Proporiions of inlectious sub-  0.12 (49!
jects selected for treatment
PH Proportions of infectious sub- 0.06 [119]
jocts selected for hospitalization
Py Proportions of untreated infec- 1—pr —pp=0.82
Lious subjects
YR Transition rates from infectious 1/77=0.34
stale to removed state
¥r Transition rates from treatment 1/{Tp — 1)=2
state to removed state
Yir Transition rates from hospital- 1/(¥7 — 1)=2
ization statc to removed state
fie Restriction fraction for A-th 90%, 99% Assumption
fransportation
P Fraction of infectiousness redue- 60% [40]
tion for antiviral treatment
v Sensitivity of the screcning board 0.3 [28]; test with 0.95
for infectious subjects and 0.05
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Table 3.3: Start date of epidemic (2009) and estimated Ry (CI)

Country Start date MM /DD Ry (CI)

United States 04/21 1.62 (1.52, 1.72)
Canada 04/28 1.12 (1.38, 147}
Honduras 05/23 1.39 (1.31, 1.48)
Mexico 03/11 1.56 {1.52, 1.59)
Argentina 05/09 1.81 {1.73, 1.90)
Brazil 05/09 1.45 {1.42, 1.49)
Venezuela 05/29 1.43 (1.37, 1.49)
United Kingdom 04/28 1.51 (1.47, 1.54)
Netherlands 05/01 1.42 (1.38, 1.47)
Denmark 05702 1.37 (1.32, 1.42)
Finland 05/13 1.32 (1.30, 1.35)
Norway 05/11 1.27 (1.26, 1.28)
Sweden 05707 1.39 (1.37, 1.41)
Austria 04/30 1.24 (1.20, 1.27)
Germany 04/30 1.37 (1.34, 1.39}
Switzerland 05/01 1.38 (1.35, 1.41)
France 05/02 1.33 (1.31, 1.35)
Belgium 05/14 1.24 (1.23, 1.26)
[taly 05/03 1.29 (1.27, 1.31)
Portugal 05/06 1.24 (1.21, 1.27)
Spain 04/28 1.30 (1.25, 1.35)
Russia 05/23 1.06 (1.04, 1.08)
South Africa 06/18 1.69 (1.62, 1.76)
Bahrain 05/27 1.35 (1.31, 1.40)
Egypt 06/03 1.35 (1.30, 1.40)
Tsracl 01/29 1.42 (1.39, 1.45)
Jordan 06/17 1.26 (1.23, 1.30)
Kuwait 05/25 1.10 (1.09, 1.11)
Saudi Arabia 06/03 1.48 {1.43, 1.54)
Turkey 05/17 1.30 (1.27, 1.32)
United Arab Emirates 05/25 1.30 {1.25, 1.34)
Australia 05/09 1.87 {1.77, 1.98)
New Zealand 04/29 1.35 (1.30, 1.41)
Japan 05/09 1.44 (1.35, 1.53)
South Korea 05/03 1.43 (1.39, 1.46)
Indonesia 06/24 1.69 (1.62, 1.75)
Malaysia 05/16 1.59 (1.54, 1.64}
Philippines (5/22 1.66 (1.60, 1.71)
Singapore 05/27 1.58 (1.53, 1.64)
Thailand 05/14 1.80 (1.71, 1.88)
India 05/17 1.56 (1.51, 1.60)
Taiwan 03/20 1.28 (123, 1.32)
Macan 06/19 1.39 {1.34, 1.45)
China 05/12 1.52 (1.50, 1.55)

The epidemic start dates of the countries were from WHO [115] and ECDC [34].
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to 90 individuals which obtained May 4 as a mean FPT with a 95% confidence
interval [Apr 14, May 16]. Values of Ry were adopted for the mild (Rg = 1.1}
and the severe (Jty = 1.7) scenarios in Hong Kong, and these were in line with
other studies [47, 121].

Showed in Table 3.3, the Rgs were ranged from 1.1 to 1.9 for other countries.
All of the estimated initial growth rates were fitted significantly (p — value <
0.05). In the baseline scenario (Ry = 1.4), the medians of FPT" and first one
hundred passage time (FHPT) of infected cascs to Hong Kong were the 55th
and the 90th day, respectively {Table 3.4). Because the influenza A (HIN1) was
initiated in the Americas, the infected cases arrived in Hong Kong at the fourth
meonth by air travel, which was the main means of transport from the Americas
{(Figurc 3.4). The number of imported cases by air transport was more than
that by land transport during the first six months. Afterwards, because the
emerging virus had circulated to most the Asian countries, including China,
the number of imported cases thus increased exponentially by land transport
during the seventh month after the first global case onset. Because ships were
not the main external means of transport to llong Kong, they did not deliver
a large number of cases during the epidemic period {Figure 3.4).

Given no control measures, the cumulative AR was 4.7% in the first five
months, and it exceeded more than 50% after seven months, when the Ay = 1.4
in Hong Kong. The seven months’ cumulative AR was close to that of the
final AR {Table 3.5). For a mild scenario (R, = 1.1), there was no more
than 2% cumulative AR in the first five months locally, and the seven months’
cumulative AR only reached two-thirds of the final cumulative AR, (Table 3.6).
If the local scenario was severe (R, = 1.7), the seventh month was near the
end of the influenza A (HIN1) epidemic, and the cumulative AR exceeded 70%
(Table 3.7).
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Table 3.4: Mecdian FPTs and FHPTs (in days) with confidence intervals (CI)
at the bascline scenario.

Control measure Transportation FPT (95% CI) FIIPT (95% CI)
No travel restriction 55 (35, 67) 90 (89, 92)
90% travel restriction  Air 62 (42, 72) 99 (97, 100)
Sea 56 (34, 67) 92 (90, 93)
Land 38 (44, 60) 93 (91, 95)
Air, Sca 66 (51, 77) 102 (101, 104)
Air, Land 69 (45, 81) 106 (104, 107)
Sea, Land 58 (30, 69) 95 (93, 96)
All transports 94 (88, 98) 114 (114, 115)
99% travel restriction  Air 61 (37, 72) 99 (97,101)
Sca 57 (28, 68) 92 (90, 94)
Land 59 (38, 69) 93 (92, 95)
Air, Sea 65 (39, 78) 104 (101, 105)
Air, Land 68 (49, 82) 107 (108, 110)
Sea, Land 59 (34, 70) 95 (93, 96)

All transports 117 (116, 118) 138 (138, 139)

Travel restrictions took effect on the day after the first global case onset. The
ruedians and the non-parametric 95% confidence intervals were obtained from
100 simulation runs.



Table 3.5: Median cumulative ARs {(in %) with confidence intervals (CI) for

different control measures without AH at the baseline scenario.
No antiviral and hospitalization

Control measure

Transportation

5 months

f months

End of epidemic

No travel restriction
90% travel restriction

99% travel restriction

Air

Sea

Lund

Air, Sea

Air, Land
Sea, Land

All transports
Air

Sca

Land

Air, Sea

Air, Land
Sea, Land

All transports

47 (4.3,5.2)
2.0 (2.0, 2.5)
4.1 (3.7, 4.6)
7(3.3,4.1)
4(1.2,18)
0 (0.9, 1.2)
0 (2.8, 3.5)
3 (0.3, 0.4)
1.8 (1.6, 2.2)
4.0 (3.7, 4.9)
3.6 (3.3, 1.8)
1.13 (1.0, 1.4)
0.7 (0.6, 1.1)
2.9 (2.7, 3.4)
0.0 (0.0, 0.0)

54.1 (53.9, 54.3)
49.1 (48.7, 49.8)
52.9 (52.7, 53.2)
50.5 {50.2, 50.9)
45.9 (45.3, 47.0)
39.5 (38.5, 40.6)
48.8 (48.5, 49.2)
25.9 (24.6, 27.2)
48.4 (47.8, 49.0)
52.8 (52.6, 53.2)
50.1 (49.8, 50.8)
44,0 (13.1, 45.1)
34.7 (33.2, 37.6)
48.1 (47.7, 48.7)
4 (1.9, 2.9)

57.8 (57.6, 57.9)
56.2 (56.1, 56.3)
57.1 (57.0, 57.2)
55.0 (54.9, 55.1)
55.5 (55.4, 55.6)
53.2 (53.0, 53.3)
54.3 (54.2, 54.4)
52.3 (52.2, 52.5)
56.0 {55.9, 56.2)
57.0 (57,0, 57.2)
54.7 (54.6, 54.9)
55.2 (55.1, 55.4)
52.6 (52.5, 52.8)
53.9 (527 51.0)
51.7 (51.5, 51.8)

Travel restrictions took effect on the day after the first global case onsct. The medians and
the 95% non-parametric confidence intervals of each scenario were obtained from 100

simulation runs.

Table 3.6: Median cumulative ARs (in %) with confidence intervals (CI) for

different control measures without AH at the mild scenario.
No antiviral and hospilalization

Control measure

Transportation

3 months

7 manths

End of epidemic

No travel resiriction
90% travel restriction

99% travel restriction

Air

Sea

Land

Alr, Sca

Air, Land
Sea, Land

All transports
Air

Sea

Land

Air, Sea

Air, Land
Sea, Land

All transports

16 (15, 1.7)
0.7 (0.7, 0.8)
1.4 (1.3, 1.4)
1.3 (1.2, 1.3)
0.5 (0.5, 0.5)
0.4 (0.3, 0.4)
1.0 (1.0, 1.1)
0.1 (0.1, 0.2)
0.6 (0.6, 0.7)
1.4 (1.3, 1.4)
1.2 (1.2, 1.3)
0.4 (0.4, 0.4)

2 (0.2, 0.3)
1.0 (0.9, 1.0)
0.0 (0.0, 0.0)

23.5 (23.3, 23.7)
17.1 (16.9, 17.3)
21.5 (21.2, 21.7)
17.0 (16.8, 17.4)
14.1 (13.9, 14.3)
7.9 (7.7, 8.1)

14.3 (14.0, 14.6)
3.6 (3.4, 3.8)

16.3 (16.1, 16.5)
21.2 (21.0, 21.6)
16.3 (16.1, 16.6)
12.9 (12.6, 13.1)
5.6 (5.5, 5.9)

13.2 (12.9, 13.5)
0.3 (0.3, 0.3)

33.8 (33.6, 33.9)
30.7 (30.5, 30.9)
32.5 (32.4, 32.7)
28.2 (28.0, 28.5)
29.3 (29.1, 29.5)
23.6 (23.5, 23.9)

5 {26.2, 26.8)
21.1 (20.7, 21.4)
30.4 (30.2, 30.6)
32.4 (32.2, 32.6)
27.6 (27.4, 27.8)
28.8 (28.6, 29.0)
22.1 (21.8, 22.4)
25.5 (25.3, 25. 8)
19.5 (19.0, 19.9)

Travel restrictions took offect on the day afier the first global case onsct. The medians and
the 95% non-parametric confidence intervals of each scenario were obrained from 100

simulation runs.
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Figure 3.4: Number of imported cases to Hong Kong by different transports
vs. days with no travel restriction.

— A

— Land

Day one was taken to be March 11, 2009 (the time of the first global case
onsct). The solid lines represent the average cases; the dotted lincs represent
the corresponding lower and upper bounds of the 95% non-parametric
confidence intervals.

Impact of the interventions

Table 3.4 shows that travel restrictions worked well for slowing down the local
spread of the influenza A (HIN1} epidemic in Hong Kong at the baseline fitted
scenario (Rp = 1.4). Excepting all air, sea, and land travel restrictions, there
were 1o big differences for FPTs and FHPTs between 90% and 99% restrictions
of one or two kinds of transport (Table 3.4). Among the three kinds of single
transport restrictions, air travel restrictions worked best in slowing down the
FPT and FPHT, they delayed the passage times for onc more weck than
when no travel restrictions were used. The FPT and FHPT could have an
additional one to two weeks' delay when both air and land transports were
restricted. Once the volume of all transports was reduced 90%, more than one

month delay to FPT and FHPT was observed compared to that with no travel
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Table 3.7: Median cumulative ARs {in %) with confidence intervals (CI) for

different control measures without AH at the severe scenario.
No antiviral and hospitalization

Control measure Transportation

5 months 7 months End of epidemic

No travel restriction 21.6 (16.5, 48.7) 722 (72.1, 72,3} 72.0 (72.8, 72.9)
90% travel restriction  Air 9.9 (6.5, 282) 712 (71.1,7L4) 72.0 (71.9, 72.0)
Sea 18.2 (13.9, 33.8) T1.9(71.8,72.0) 72.5(72.4,72.6)

Land 16.7 {12.6, 28.5) 70.9 {70.8, 71.0) 71.3 (71.2,71.4)

Air, Sea 5.8 (4.2, 11.4)  70.7 (70.5, 70.9) 71.6 (7L.5, 71.7)

Air, Land 45 (27,155)  69.4 (69.0, 69.9) 70.3 (70.2, 70.4)

Sea, Land 14.0 {10.2, 28.7) 70.5 (70.4, 70.7) 70.9 (70.8, 71.0)

All transports 0.9 (0.8, 1.1} £6.3 (65.8, 66.9) 69.8 (69.8, 70.0)

99% travel restriction  Air 8.9 (6.1, 18.8) 71.1 (71.0,71.3) 71.9 (71.8, 72.0)
Sea 17.4 (13.6, 25.5) 71.8 (70.7,71.9) 724 (72.4, 72.5)

Land 16.5 (12,5, 20.2)  70.7 (70.7, 70.9) 711 (71.1, 71.2)

Air, Sea 54 (3.4, 11.5) 70.5 (70.2, 70.8) 71.4 (71.3,71.5)

Air, Land 3.3 (1.9, 9.3) 68.8 (68.3, 69.6) 70.0 (69.9, 70.1)

Sea, Land 13.2 (9.8, 22.3) 70.3 (70.2, 704} T0.7 (70.6, 70.8)

All transports 0.0 (0.0, 0.0} 23.9 (18.7, 28.9)  69.5 (69.4, 69.6)

Travel rvestrictions took effect on the day after the first global case onset. The medians and
the 95% non-parametric confidence intervals of cach scenario were obtained from 100

simulation runs.

fraction reduction. Moreover, a 99% travel restriction could have additional

two months’ delay to FPT and FHPT (Table 3.4).

Among the three kinds of transport, the restriction on air travel was ef-

fective in controling the five months’ cumulative ARs; the ARs kept no more
than a half of the one from baselinc (Table 3.5). The peak time could have
two morc weeks’ delay if a single 99% air travel restriction had been imposed
{Figurc 3.5B). Once the land travel was also blocked in cither 90% or 99%,
seven months’ cumulative ARs would have a 15% to 20% decrease and five
months’ cumulative ARs could be maintaincd at around 1% on average. They
also deferred the peak time for about 3.5 weeks. Most importantly, both the
90% and the 99% travel restrictions for all mecans of transport were able to
keep no more than 1% of the five months’ cumulative ARs. The 90% rescaling
of all means of transport could maintain the scven months’ cumulative AR

as a half of when there were no travel restrictions, and it delayed the peak
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time from the 25th week to the 30th week (Figure 3.5A). Compared to when
no travel restrictions were implemented, the 99% travel restriction kept the
seven months’ cumulative AR fo below 3% on average, and it also deferred
the peak time for 11 weeks (Figure 3.5B). Nevertheless, the blocking of sea or
land transport did not confer any large reduction in the five months’ and scven
months’ cumulative ARs. The travel restrictions also showed no large reduc-
tion in cumulative ARs at the end of the influenza A (HIN1) epidemic. Even
when all transports were 99% rescaled, there was only a 5% cumulative AR
drop comparcd to that when no travel restrictions were implemented {(Table
3.5).

With the combined use of antiviral and hospitalization (AH), the travel
restrictions made greater impacts on slowing down the ARs increase and de-
forring the incidence peak time. Even if no external travel restrictions had been
implemented, the seven months’ and final cumulative ARs had still decreased
from 54% to 29% and from 58% to 37%, respectively (Table 3.8). When travel
restrictions were implemented, the five months’ and the seven months’ cumu-
lative ARs were reduced by more than half of thosc when no intervention was
implemented. Although the blockings on a single route did not greatly slow
down the cumulative ARs’ growths, the restrictions on air travel could delay
the peak time for more than three wecks (Figure 3.6A and Figure 3.6B). As
shown in Table 3.8, the blocking of air and land travel was one of the more ef-
fective ways of slowing down the growth of the cumulative ARs. In addition to
the use of AH, a 99% restriction of air and land travel could maintain the seven
months’ cumulative AR to below 10%. They could also delay the peak time for
more than six weeks (Figure 3.6B). Once all the external means of transport
were 99% rescaled with the use of AH, the increase in the cumulative ARs was
greatly deferred, and no more than 1% of the ARs were shown. Most impor-
tantly, it greatly extended the peak time, which occurred about five months

after when no interventions were implemented (Figure 3.6B). Apart from the
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cpidemic delay, the restrictions on all means of transports could reduce the
peak incidence for more than half of that when only using AH (Figure 3.6A
and Figure 3.6B). The 99% travel restriction on all means of transport was
also able to reduce the final cumulative AR to about 14% in addition to the
use of AH {Table 3.8).

Table 3.8: Median cumulative ARs (in %) with confidence intervals (CI) for

different control measures with AH at the baseline scenario.

Control measure Transportation antiviral and hospitalization
5 months 7 months End of epidemic
No travel restriction {2.3,2.9) 20.2 (289, 20.6) 36.5 (36.3, 26.6)
90% travel restriction  Air 1 0 (1 0,1.1) 225 (22.2, 22.8) 33.6 (33.4, 33.8)
Sea 2.1(2.0,2.6) 27.2(26.9,27.8) 35.3(35.2, 35.5)
Land 1.9 (1.8,2.5) 22.8 (22.5,23.5) 31.3 (31.1, 31.5)
Air, Sea 0.7 (0.7,0.8) 19.2 (18.8,19.5) 32.3(32.1, 32.5)
Alr, Land 0.5 (0.5,0.6) 11.9(11.4,12.4) 27.1(26.9, 274)
Sea, Land 1.5(14, 1.7) 20.0(19.5,20.3) 29.7{29.5, 29.9}
All transports 0.2 (0.2, 0.2) 5.6 (5.4, 6.0) 24.9 (24.6, 25.2)
99% travel restriction  Air 0.9 (0.9,1.0) 21.7(21.3, 22.0) 33.3(33.1, 33.4)
Sea 21(1.9,23) 27.0(26.7,274) 35.2(35.0, 35.4)
Land 1.8 (1.7, 2.1y 22.0 (21.7,22.5) 30.7 (30.4, 30.9}
Alr, Sca 0.6 (0.5, 0.7) 17.7 (17.3, 18.1) 31.8 (31.8, 32.0}
Air, Land 0.4 (0.3,0.5) 8.8 (8.4,9.3) 25.7 {25.5, 26.1)
Sea, Land 1.5(1.4,1.7) 187 (183, 19.2) 28.8 (28.6, 29.0)
All transports 0.0 (0.0, 0.0) 0.5 (0.4, 0.6} 22.9 (22.6, 23.2)

Travel restrictions took effect on the day after the first global case onsct, whereas the
antiviral and hospitalization were implemented 3.5 months after the first global case onset.
The medians and the 95% non-parametric confidence intervals of each seenario were
obtained from 100 simulation runs.

For a milder local scenario (Rp = 1.1), the travel restrictions were more
effective on the delay of the influenza A (HIN1) epidemic. The blocking of
alr travel was still the best choice among the three means of transport for
controling the increase of curmulative AR in the first five months of the epidemic
{Table 3.6).
mild, both thc 90% and the 99% land import restrictions decreased the peak

Because the discase transmissions were comparatively slow and

ARs by onc-third. If the air travel was also restricted, the peak time would
be deferred by three to four weeks (Figure 3.7A and Figure 3.7B). In addition
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to keeping the seven months’ cumulative below 1%, the 99% rescaling of all
means of transport was able to delay the peak time for a year after the first
global case arose (Table 3.6; Figurc 3.7B). The 90% all travel restrictions could
also delay the peak time for about seven weeks. In the presence of AH, the
air, land and all transports restrictions showed an obvious impact on ARs
reduction (Figurc 3.8A and Figurce 3.8B). The 90% and 99% blockings of air
and land travel controled the final ARs by no more than 5%. Once all routes of
travel were restricted with the use of AH, the spread of the local epidemic was
halted; the 99% travel restriction was able to keep the value of final cumulative

AR 0.2% on average {Table 3.9).

Table 3.9: Median cumulative ARs (in %) with confidence intervals (CI) for

different control measures with AH at the mild scenario.
antiviral and hospitalization

Control measure

Transportation

5 months 7 months End of epidemic
No travel restriction 1.0 (1.0, 1.0) 11.5(11.4,11.6) 15.9(15.8, 16.0)
90% travel restriction  Air 0.5 (0.4, 0.5) 8.1 {8.0,8.2) 12.6 (124, 12.7)
Sea 0.9 (0.8,09) 102 (10.1,10.3) 146 (14.4, 14.7)
Land 0.8 (0.8,0.8) 6.9 (6.8, 7.1) 4.9 (9.7, 10.0)
Air, Sea 0.3 (0.3, 0.3) 6.7 (6.6, 6.8) 11.0 (10.9, 11.2)
Air, Land 0.2 (0.2,0.2) 3.0(29,31)  51(50,52)
Sea, Land 0.6 (0.6,0.7) 5.4 (54, 5.6) 8.0(7.9,8.1)
All transports 0.1 (0.1, 0.1} 1.3 (1.3, 1.4) 2.5 (2.5, 2.6)
99% travcl restriction  Air 0.4 (0.4, 04) 7.8 (7.7, 7.8) 12.2 (12.1, 12.3)
Sea 0.9 (0.8,0.9) 100 (10.0,10.1) 14.4 (14.3, 14.6)
Land 0.8 (0.7, 0.8) 6.4 (6.4, 6.6) 9.2 (9.0, 9.3)
Air, Sea 0.2 (0.2,0.3) 6.1(6.1,6.2) 10.4 (10.3, 10.6)
Air, Land 0.2 (0.1,0.2) 2.1 (20,2.1) 3.5 {3.4, 3.6)
Sca, Land 0.6 (0.6, 0.7) 4.8 (4.7, 4.9) 7.0 (6.9, 7.2)
All transports 0.0 (0.0, 0.0) 0.1 (0.1, 0.1) 0.2 (0.2,0.3)

Travel restrictions took effect on the day after the first global case onset, whereas the
antiviral and hospitalization were implemented 3.5 months after the first global case onset.
The medians and the 95% non-parametric confidence intervals of each scenaric were
obtained from 100 simulation runs.

However, the import travel restrictions hecame less effective in the case of
the severe scenario ( By = 1.7), cspecially for the ARs’ reduction. Compared to

1.6% of the five months’ cumulative AR in the mild scenario, the five months’
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cumulative AR attained 22% on average with a large variation which could be
up to 49% in the severe scenario (Table 3.7). Imposing restrictions on air travel
reduced the five months’ cumulative AR by more than 50%, and it delayed the
peak time for more than one week (Figure 3.9A and Figure 3.9B). In the
scvere scenario, the 99% restrictions on all means of transport was still able to
halt the local spread during the first five months, and it kept the cumulative
AR to about one-third of that without intervention use; it also deferred the
epidemic peak time for about eight weeks. Nevertheless, the travel restrictions
did not greatly contribute to the decrease in the final cumulative ARs and
pcak ARs; this was because of rapid discasce transmission (Table 3.7; Figure
3.9A and Figure 3.9B). The usc of the antiviral and hospitalization became
more important in this scenario; the five months’ cumulative AR dropped
to 9% even when there were no travel restrictions. Because the incidence
growth was suppressed by the usc of AH, the travel restrictions worked better
in slowing down the cpidemic. The 90% rescaling of all means of transport
reduced the seven months’ cumulative AR from 72% to 32% (Table 3.10}, and
it dclayed the epidemic peak for a further seven weeks (Figurce 3.10A). When
a 99% restriction was imposed on all means of transport, the seven months’
cumulative AR would be kept to no more than 4% on average, and the peak

time would be delayed for about 12 weeks (Figure 3.10B).

Effect of R) from non-local countries

We adopted 20% increases and 20% decreasces to the Rps from a total of 44
non-local countries, in order to test these cffects on our results. The Rps ranged
from 1.3 to 2.2 with a median valuc of 1.7 and ranged from 0.8 to 1.5 with a
median value of 1.1 for the 20% increases and the 20% decreases, respectively.
Although five countries did not occur any outbreak i.e. Ry < 1, it made small
impact on the size of infected cascs cxportation among all countrics.

Showed in Figure 3.11, the external travel restrictions performed slightly
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Table 3.10: Median cumulative ARs (in %) with confidence intervals {CI) for
different control measures with AH at the severe scenario.

Control measure Transportation antiviral and hospitalization
5 months 7 months End of epidemic
No travel restriction 9.0 (7.2, 12.9) 540 (53.7, 54.3) 55.9 (55.8, 56.0)
90% travel restriction  Air 4.2 (3.0, 13.1) 51.0 (50.5, 52.5) 54.2 (54.1, 54.4)
Sea 7.9 (6.3, 17.6) 53.1 (52.9, 53.8) 55.2 (55.1, 55.5)
Land 7.5 (5.6, 22.1) 51.1 {50.8, 52.8) 53.0 (52.8, 54.0)
Air, Seca 2.4 (1.8,4.5) 48.8 (48.1, 50.3) 53.5 (53.3, 53.6)
Air, Land 2.0 (1.2,9.2) 444 (42.9, 48.0) 51.0 (50.8, 51.1)
Sea, Land 6.0 (4.5, 17.9} 49.9 (494, 51.3) 52.2 (52.0, 52.6)
All transports 0.4 (0.4, 0.5)  32.2 (31.1, 33.6) 50.0 {49.9, 50.2)
99% travel rostriction  Air 3.8 {(2.6,13.3) ©50.5(49.9,51.8) 54.0(53.9, 54.3)
Sea 8.1 (6.0,18.7y 53.1 (52.7, 53.7) 55.0 (55.0, 55.4)
Land 6.8 (5.3, 11.3) 50.7 (50.4, 51.3) 52.6 (52.5, 52.8)
Air, Sca 2.1 (14,5.1) 478 (46.7, 50.1) 53.2 (53.1, 53.3)
Air, Land 14 (0.9,34) 41.6 (30.5, 45.9) 50.4 (50.2, 50.5)
Seca, Land 59 (4.2, 13.0) 49.5 (48.9, 50.6) 517 (51.6, 51.9)
All transports 0.0 (0.0,0.0) 3.7 (3.0, 4.9) 49.3 (49.2, 49.3)

Travel restrictions took effect on the day after the first global case onset, whereas the
antiviral and hospitalization were implemented 3.5 months after the first global case onset,
The medians and the 95% non-parametric confidence intervals of each scenario were
obtained from 100 simulation runs,
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better in deferring the FPTs and the FHPTs when the Rgs from non-local
countrics decreased. Given the Rys increased by 20%, the medians of FPT and
the FHPT were day 44-th and day 74-th respectively with no travel restriction;
the medians of FPT and the FHPT were day 63-th and day 112-th respectively
when the Rgs decrcased 20%. Amongst all situations for the changes of the
Rys, cither 90% or 99% of air travel rescaling could have about 1 week delay
for the FPTs; but once all means of transport were 90% or 99% restricted, the
FPT would have one month more delay when the Ros decreased 20% compared
to that of the Rys with 20% increases. Moreover, the FHPT could be delayed
for more than 2.5 months with 20% decreases of the Rps, whercas the FHPT
was delayed for 1.5 months with 20% incrcases of the Rygs for a 99% restriction
of all means of transport.

Since the number of imported cases depended on the changes of the Ry
from the non-local countries; the growth of the local epidemic was affected
by the cases passage times (Figure 3.12). When the Rgs increased by 20%,
the five months’ cumulative AR attained 19% and the epidemic ended at the
seventh month since the first global case arose. During the first five months, the
blockings of all external means of transport were still effective on controlling
the cumulative ARs. A 99% travel restriction maintained about 12% of seven
months’ cumulative AR (Figure 3.12A). Similar to the baseline scenario, the
travel restriction made greater impacts on slowing down the ARs increase
with the use of antiviral and hospitalization {AH); a 99% rescaling of mcans
of all transport controlled the final AR at about 20% in addition to the use
of AH (Figure 3.12B). When the Rys decrecased by 20%, the travel restrictions
performed better in slowing down the discase transmission. Even if only the
air travel was cither 90% or 99% restricted, the seven months’ cumulative ARs
would have reduced about 15% compared to that of no intervention (Figure
3.12C). A 99% restriction of all means of transport would have halted the local

spread i.c. cumulative ARs < 0.1% in seven months’ time whether or not the
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screening sensitivity showed at most only a one to two wecks additional delay

to the FHPTs compared to that of a 5% screcning sensitivity (Figurc 3.13).

Figure 3.13: FPT and FHPT when screening sensitivity increased to 95% or
decreased to 5%.
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The upper panel (A) and the lower panel (B) illustrate the FPT and the
FHPT respectively. Day one was taken to be March 11, 2009 (the time of the
first global case onset). The medians are demonstrated as the dots in the
interpolations; the corresponding lower and upper bounds of the 95%
non-parametric confidence intervals are demonstrated as the lower cups and
upper cups respectively.

The increase of the screening sensitivity at entry border points offered a
moderate benefit on slowing down the growths of cunulative ARs. Showed in
Figure 3.14A-D, a 95% screening sensitivity showed only half of five inonths’ cu-
mulative ARs comparced to that of a 5% screening sensitivity. The 95% screen-
ing sensitivity also decreased the seven months’ cumulative ARs by about 10%

in most of the restriction strategies whether or not the AH had been imposed.
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Effect of implementation date on travel restrictions

In the simulation, we started the implementations of travel restrictions at the
day after the first global case arose. We also tested the impacts on our results
by pushing the implementation date of the travel restrictions to either five
months or three months after the first global case arose. Showed in Figure
3.16A and 3.15B, imposing travel restrictions five months after the first global
case arose would be too late obviously. Even if all means of transport had been
99% rescaled, the reduction in the cumulative AR was too small. However, it
could still decrease the seven months’ cumulative AR by no more than 10%
if the growth of the epidemic was slowed down by the usc of AH. Showed
in Figure 3.15C, imposing the travel restrictions three months after the first
global casc arosc would be a little bit late; but fractional blockings on all
means of transport worked well in dcferring the growth of the ARs. The 99%
restriction would reduce the five months’ and seven months’ cumulative ARs
more than half of that without intervention. With the use of AH, imposing
the 99% restriction of all mean of transport was able to controel the cumulative
AR by no more than 2% in the first seven months; a 90% restriction could still
maintain the average seven months’ cumulative AR about 6% to 7% (Figure

3.15D).

Effect of length of latent period

In the baseline scenario, the length of the latent period was set as 1.45 days, in
accordance with the reference value. The impacts on the FPTs and the FHPTs
were tested given that the latent period increased to two days or decreased to
a half-day. Showed in Figure 3.16, our result was insensitive to the changes on
the lengths of the latent period. The difference of the latent period’s lengths
did not show large variations on the FPT (Figure 3.16A) among all restrictions

strategies; even if all means of transport had been 99% blocked, the FHPT
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would only have several days’ difference between two days and a half-day in
the latent periods (Figure 3.16B). Since the effect of the latent period’s length
on the local epidemic growth was beyond our scope, only the rate of passages

i.c. FPT and FHPT had been investigated.

Figure 3.16: FPT and FHPT when latent period increased to 2 days or de-
creased to 0.5 day.
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The upper panel (A) and the lower panel (B) illustrate the FPT and the
FHPT respectively. Day one was taken to be March 11, 2009 (the timc of the
first global case onset). The medians are demonstrated as the dots in the
intcrpolations; the corresponding lower and upper bounds of the 95%
non-parametric confidence intervals are demonstrated as the lower cups and
upper cups respectively.

3.4 Discussion

The choice of intervention use is usually an issue both for the public and for the

policy-makers during the epidemic period. Previous mathematical modeling
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studies demonstrated various impacts on disease control for different interven-
tions [119, 39, 49, 74, 110, 97, 107]. In this paper, a mathematical model was
developed to quantify the impact of the travel restrictions on air, sea, and
land travel with stochastic uncertainty for human influenza A (HIN1). The
infectious discase has spread to more than 214 countries and territories, and it
caused almost 20,000 deaths; the large and dense international travel network
should be onc of the risk factors. Most of Hong Kong’s visitors arrived by land
transport; however, the efficacy of travel restrictions has been strongly argued
(60, 37, 18]. Because of the limited data and the limitations of the methodol-
ogy used in the epidemic models, it was hard to quantify the impact of travel
restrictions other than that on air travel [55, 23]. In our study, the statistics of
the number of arrivals in Hong Kong from 44 countrics using air, sca, and land
transport were collected [62], and they were adopted in a mathematical model
to demonstrate the disease dynamic for influenza A (HIN1) and the impacts
of the travel restrictions on all modes. The usc of antiviral and hospitalization
was also incorporated into the model in order to allow a proper comparison of
the effectiveness of the transport restrictions.

Deferring the discase spread is important to the pandemic management
of the carly phase, whereas public health experts, policy-makers and scientists
usually require a period of {ime for decision-making on epidemic control. Once
the epidemic is not eliminable in the source country, another effective approach
is to delay the disease spread in the at-risk countries. We adopted the influenza
A (H1N1) pandemic in 2009 as a casc study and the results showed that the
greatest impact of travel restrictions was to slow down the spread of the discase.
The local baseline reproduction number (Ry) was cstimated to be about 1.4.
Because the influenza A (HIN1) was initiated in the Americas, the restriction
on air travel, which was the main means of transport from the Americas to
Hong Kong, was most effective in delaying the time to the FPT and FPHT

among the types of single transport restriction. Six months after the first global
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case arose, the emerging virus had circulated to most Asian countries, including
China, and the number of imported cases therefore increased exponentially by
land transport; the five months’ cumulative ARs could be maintained around
1% on average and the peak time could be additionally deferred for 3.5 weeks
when both air and land transport were thus restricted. Expressed simply, the
99% restriction of all means of transport was the most efficient strategy for
defering the local epidemic. It kept the cumulative AR below 3% during the
first seven months and also it deferred the peak time for 11 weeks. With
the use of antiviral and hospitalization (AH), the travel restrictions were more
successful in deferring the growth of the ARs and the incidence peak time. The
local epidemic was halted during the first seven months and the peak time was
delayed for an additional five months once all external means of transport
werc 99% rescaled with the usc of AH. Most importantly, the restrictions on
all means of transport decrcased the peak incidence by more than half of that
when using only AH.

The travel restrictions worked better in the mild scenario { Ry = 1.1), but
they performed less well in the severe scenario {(Rg = 1.7). When Ry = 1.1,
the 99% rescaling of all means of fransport also greatly delayed the peak time
for a year. It finally halted the spread of the local epidemic with the use of
AH. When Ry = 1.7, the 39% restriction on all means of transport was still
capable of halting the local spread during the first five months. However, the
discase spread at a higher rate locally and the local infectious cases transmitted
the HIN1 virus to others successively far more than the imported cases did.
Therefore, the travel restrictions did not greatly contribute to the decrease in
the peak ARs. In line with previous findings [60], the transport network only
had a major role when the infected case numbers were low globally. The use
of AH became more important in the severe scenario because it could suppress
the incidence growth in the epidemic; the travel restrictions would still be

effective in the scenario. A 99% restriction on all means of transport with the
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use of AH could still keep the seven months’ cumulative AR at no more than
4%, and the peak time would be delayed for about 12 weeks.

Apart from taking control measures locally, the cffectiveness of the travel
restrictions increased with the reduction of the Rys from a total of 44 non-local
countrics. Because the number of imported cases depended on the changes of
the Rys, the growth of the local epidemic was greatly affected by the successive
disease transmission from the cases. If control measures had taken effect in
thosc non-local countries that decreased the Rgs by 20% on average, a 99%
restriction on all external means of transport would possibly have halted the
local spread, i.e., the cumulative ARs < 0.1% in seven months’ time, whether or
not the AH had been used. Moreover, incrcasing the screening sensitivity at the
entry border points was beneficial for slowing down the growth of cumulative
ARs; a 95% screening sensitivity showed half of the five months’ cumulative
ARs compared to that of a 5% screening sensitivity amongst most of the travel
restriction strategies. Our results also suggested that it would be necessary to
impose the restrictions no later than three months after the first global casc
arose. The implementation of the travel restrictions at the end of the fifth
month would be almost uscless; this is because the local epidemic would have
by then evolved to a maturc stage, in which the disease transmission would
depend on the local exponentially increascd cascs rather than on the successive
imported cascs.

Due to economical, legal, and social conscquences, it is hard to rigorously
enforce the travel restriction cven in a single country. However, the importance
and the potential of imposing the travel restriction cannot be neglected. In
recent decades, more serious diseases, such as SARS and influenza A (HIN1)},
successively emerged into our society and affected wider age groups compared
to epidemics in the past. It is predictable that a more lethal virus might
emerge in the near future. According to our result, the travel restriction is

able to reduce the rate of the discase spread and even perform better with
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the combination use of other control measurcs. Thercfore, implementation of
travel restrictions must be a potential public health control mcasurc to reduce
and to delay the community discasc spread, especially for the next epidemics
which eould be highly intrusive and invasive. Morcover, the pharmaceutical
interventions, like vaccine and antiviral, are usually not available carly cnough
once a new emerging virus has arrived in the community. The travel restric-
tion is a simple and dircct non-pharmaceutical intervention to slow down the
epidemic during the carly stage, in order to allow a longer period for the
preparation of the mitigation response, especially for the emerging virus with
unknown characteristics. In an additional cost-effectiveness study {Appendix
C), we examined the costs and benefits of imposing travel restrictions before
the availability of effective interventions such as antiviral and hospitalization
on potential extensions of influenza A (HIN1) virus’ transmissibilities and
case-fatality rates. According to our rcsults, the cost of a 99% travel restric-
tion of all mecans of transports would be $11,636 million if it was imposed
for 3.5 months hefore the availability of effective interventions; the travel re-
striction was cost-effective only if the Ry increascd to 8 and the case-fatality
rate > 15%. However, the effect of epidemic delay from the travel restriction
reduced a large portion of health care costs for imposing 5 months and 6.5
months before the availability of effective interventions once the discase trans-
mission intensity was comparatively mild with 6% to 15% casc-fatality rate;
the travel restriction was also cost-effective for a late delivery of treatments
when casc-fatality rate attained 25%.

Not cxactly mandatory, the travel rescaling can be implosed by several
ways, such as travel advisories and screenings at border points. Qur analy-
sis also demonstrated that increasing the screening sensitivity at the borders
would beneficial to delay the passage times of the infected cases as well as
to slow down the cpidemic growth locally. As described by Hollingsworth ef

al. [60], travel restrictions were better applied to the source country during
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the containment phase. They would be effective in minimizing the number of
cases being exported, and hence in reducing the successive disease transmission
country by country over the global transport network.

In our study, we used a major city, Hong IKong, as a place to demonstrate
the effectiveness of travel restrictions. Travel restrictions were likely to show a
better illness rate rednction when the local disease transmission intensity was
mild. In some rural areas, the disease transmission intensities as well as the
reproduction numbers were not too high because of limited human mobility
and contacts. In addition, these arcas may vot receive a large number of
travelers from different source regions. So these areas raay obtain more benefit
from imposing the travel restrictions. As mentioned by Caley et ol. [19], an

additional delay in importing an epidemic was obtainable.
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Chapter 4

Impact of Travel Restriction:

Source Country

In this chapter, a new method was developed to evaluate the possibility of the
discase containment by travel restrictions in view of the source country. In
most of the epidemic modeling studics, surveillance data are important to the
parameter configurations in the mathematical models. However, the surveil-
lance data are usually subject to the time delay until the first disease confir-
mation and also to the non-reporting rate. So in section 4.2, we developed an
Markov Chain Moente Carlo (MCMC) method, which imputed the nnobserved
data, to estimate the model parameters subject to the abovementioned prob-
lems. The method was validated by a series of simulations in section 4.3 and
was applied to the influenza A (HIN1) outbreak in Mexico which showed in
section 4.4. the model was able to demonstrate the prebability distribution
of exported cases, and thus the possibility of the disease containment by the
travel restrictions was assessed.

According to our result, all of the cstimates were consistent with other
studies. Most importantly, we concluded that only strict restrictions on trav-
elling, i.e., allowing three to 15 travelers cxported per day, could have a chance
of preventing an at-risk country from importing cases from the source region.

If the travel restrictions had been implemented in combination with other

78



interventions, such as vaccination and antiviral drugs, to reduce the disecase
transmission locally, the possibility of the containment was cnhanced. Be-
sides, early control measures in the source region were crucial to contain the
epidemic. In practice, the travel restrictions are not suggested being the first
priority of the interventions in view of the source country once a new epi-
demic is initiated; other intervention, such as isolation and antiviral should be
adopted in the community in order to suppress the growth of discase. As long
as the incidence is controlled at a low rate, the containment at the source arca

is possible along with olher effective interventions.

4.1 Introduction

In mid-march 2008, the Mexican government identified an unexpected increase
in the number of influenza-like illness cases, even though it was not the peak
season for influenza outbreaks [77]. After about a fortnight, an acute respi-
ratory illness was discovered in two children and it was confirmed as a new
influenza A (HIN1) virus in mid-April 2009 [78]. The first notification of this
novel influenza A (HIN1) was announced by the World Health Organization
{WHO) on April 26, 2009. Because additional cases were successively discov-
ered in the United States [79], the WHO raised the pandemic alert level to
phase five at the end of April. After the first global influenza A (HIN1) casc
had been confirmed, the containment phase was initiated. Therefore, most
countries had taken control measures on border points to screen out the sus-
pected cases, especially for those with traveling from Mexico and the United
States, in order to prevent the possibility of local disease transmission from
the source country.

With the understanding to the distribution of the exported infections from
the source country, researchers are able to assess the possibility of disease con-

tainment and to have befter preparation for the control measures, like the
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border control. Howcever, researchers have to face the problems of the time
delay until the first official disease confirmation and the non-reporting rate,
while formulating the distribution. As for the influenza A (HIN1) pandemic,
it was belicved that the virus had been circulating within communities before
the discasc outbreak was recognized [63, 71]. Before the active surveillance of
influenza A (H1N1) and the confirmative diagnosis from clinicians and micro-
biologists, the virus had been undetected for a period of time. Several studies
estimated the initial point of the discase outbreak as being around mid-January
to late-February through the analysis of the viral genetic sequence and the epi-
demic models {47, 106, and the delay would have had a significant impact on
the simulation results [19, 40]. Apart from the initial time delay, the reporting
rate was low for the influenza A (HIN1) pandemic. Most of the ascertainment
was particularly focused on cases with severe condition. Also, asymptomatic
or mild cases were not presented at medical consultation. A good example of
official surveillance being underestimated in the disease transmission intensity
would be the telephone interviews from the Beijing Center for Disease Preven-
tion and Control (CDC) [120], which showed that the consultation rate among
influenza-like illness (ILI) patients was no more than 50% in Beijing, China.
Although the issues of initial reporting delay and non-reperting are im-
portant, most of the epidemic modeling studies have neglected these factors
in model development. Caley, et al. [19] developed a complex probability
distribution model accounted for the time delay between the start of an epi-
demic and the subsequent cases exported. But the study did not deal with the
non-reporting issue. Hollingsworth, ef al. [60] constructed an epidemic model
to investigate the impact of travel restrictions. However, the probability of
exported cases to countrics was arbitrarily assumed. Most importantly, no
estimations have been carried out on the model parameters for the studies.

In our study, a stochastic mathematical model was constructed to improve
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the above limitations. Typically, infectious disease transmission model are ei-
ther deterministic or stochastic. The deterministic models are easier to build
and used to demonstrate the average behavior, but they do not incorporate
the stochastic uncertainty into the cpidemic systems. Besides, the transmis-
sion intensity in the models is determined by the basic reproduction number
(Ro), which is defined as the average number of secondary infections produced
by a typical infectious individual in a wholly susceptible population. The By
was estimated in the modcl and adopted some characteristics of the following
model. First, we incorporated the time of the first exported case (FET) from
Mexico to the at-risk countrics. With unknown severity and transmissibility
for the emerging virus, the at-risk countries were alert to the cases arose; given
the information of the travel intensity, the FET would be an indicator to the
determination of the discase outbreak stage in the source country. Observed
from the data sourcce {Table 4.2), most of the reported cases have traveled
to Mexico or have exposed to the groups with Mexico travelling history and
the fact gave us insight on the estimation. Sccond, the model was based on
Baycsian Theorem, an inference that capable to incorporate the expert sugges-
tions, multiple data sets, and the reference information when establishing prior
distributions given unknown paramecters. Incorporation of the experience and
the available knowledge regarding the discasc characteristic in models is useful
for the appropriate management of infectious disease (72, 84, 112]. Besides,
the use of Baycsian approach is able to take the uncertainty of parameters into
account along with the stochastic variation. The Bayesian approach is also
preferred to vary the parameters for a sensitivity analysis.

In this chapter, we developed a mathematical model to estimate the repro-
duction number subjected to the initial reporting delay and the reporting rate
behind the surveillance data. Most importantly, we applied the method to the
influenza A (HIN1) outbreak in Mexico, in order to demonstrate the proba-

bility distribution of exported cases, and thus studied the possibility of the
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disease containment by the travel restriction. The methodology and the case
study would be able to offer the insights of disease transmission and a better
management in intervention preparation fo officials, public health experts, and

epidemiclogists.

4.2 Methodology

4.2.1 System of Stochastic Disease Transmission Model

We adopted a simple stochastic STR model to describe the discase dynamic
(66, 56, 2]. Tet At be a time step and (£,¢ + At] be a time interval, and the
population size, N, is divided into three classes: susceptible (S(t)); infectious
(I{t)); and rccovered (R(t)}, at each time point . Because we could not
confirm whether the imported cases were in latent status or infections status
when they arrived in the countries, we employed an 5712 model in convention.
In the stochastic model, as soon as the susceptible individuals in compartment
S(t) become infected, they will move to the compartment J(£) and stay for the
infectious period Ty, The incidence, X (2}, follows a binomial distribution with
the probability of an individual becoming infected, p;(f), in the compartment
S(l) at time ¢ Let bin(m,n) be a binomial distribution with paramcters

probability m and number of total individuals n, the incidence

X(t) ~ bin(p;(2). 5(t)) (4.1)

and the probability distribution of the incidence,

PX(+ M) —2|S0) = 5,1(t) =) = | ~ | ;@7 [l —pr(@F™  (4.2)
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where s, 1, and x arc constants. Assurac the population is randomly mixed,

the probability of an infection

=1 e[ (2) (12) o o

where 0 < pr(f) < 1; Ry is the basic reproduction number, which is defined
as the average number of secondary infections produced by a typical infectious
individual in a wholly susceptible population. The Ry/T7 is the transmission
cocfficient (J) for the infectious disease.

When the infectious period is over, the individnals in compartment J{z)
will recover and move o the compartment R(#) with rate 1/7; for one time

step. Hence, the number of the removed subjects becomes

Y (t) ~ bin(pn, (1)) (4.1)

where the probability of recovering

pr =1 exp [— (Ti;) At] (4.5)

and 0 < pg < 1. In summary, the system of the stochastic epidemic model

could be presented by the following equations:
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S{t + At) = 5@) — X(2)
T(t 4 Af) = I{1) + X(1) — Y (1) (1.6)

Rt +A) = R()) + Y ()

4.2.2 Probability Distribution of Exported Cases from

Source Region

During the period of the epidemic, travelers may carry the virus from the source
region to other at-risk countrics; and the global pandemic would be likely
to occur from successive discase transmissions. The travelers are considered
as having an equal probability of being exposed to the disease as are the
individuals at the source country [71]. We assumne the count of infectious cases
includes the travelers, instead of separating the imported cases and local cases
[65]; this 1s because it is hard to know exactly how many travelers there are
and for how long they have stayed in the source country. Let M be the daily
rate of travel to particular country, the probability distribution of exporting

Z infected travelers from the source region on day ¢ would be

Z ~ bin(py(t), M) (47)

assumed the travelers expose the same daily risk pr(#) as the resident cases
in the sonrce country.

Let m; be the daily rate of travel to country i-th, the probability of cxport-
ing 2; infected travelers from the source region to country ¢-th on day ¢ would

he
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oy = PUZ = ) = ( )p,r(tr“(l ~ prt)y (48)

&

where 0 < ¢,,, < 1; and ¢ is the probability of no exported cases from
the source region on day ¢,

Suppose T is the number of days from the epidemic initiation to the first
global surveillance count and k {(k = 0,1,2,3,...) is the number of days after
the first global surveillance count, the probability distribution of the time with

the first exported case {(FET) from the source region on day 7+ k thus become

P(T =7+ k) = 9‘1,092,093,0---@r+k—1.0(1 - q'r—i-k,[]) (4‘9)

which is a geometric distribution.

4.2.3 Reporting Rate

The reporting proportion is incorporated in the model development. Because
there is a period of time of non-reporting delay before the confirmation of the
emerging virus, the influecnza A (HIN1) surveillance count is zero before day
7-th. Suppose an actual incidence X{2) and a constant reporting rate r over
time, the observed surveillance, U(L — 7), is proportional to rX(t) after the
day of first surveillance 7. The model of the surveillance time serics could be

formulated as

Uit—7)= (4.10)



We agsume that no false positive and no falsc negative is presented from

the laboratory testing.

4.2.4 Statistical Inference

The cstimation of parameters is based on the Bayesian approach. Suppose ©
was our parameters of interest, the posterior distribution for the parameters

would be

L(©)%(9)
P(data) (4.11)
x L(©)x(©)

f(Oldata) =

where 7(8) is the prior distribution of parameters, and L(©) is the full

likelihood function. The full likelihood function is then constructed as

L{®) = H (U{j(i)T)) pr(t)707(1 - pr(1))507VED (412)

=+

where {, is the total number of days from the time series surveillance data.

And the corresponding log-likelihood function would be,

te S +
LL®) = [zog (U(t(—)'r]) + Ut — 7)log(pi(t))

t=r

(4.13)
L IS() — U — 7)) log(1 —pf(t))]

86



The uncertainties of the model parameters arc represented by the poste-
rior distribution given the data depending on the prior distributions and the
likelihood function.

Our estimates are based on the posterior distributions of the paramcters
which are obtained by the MCMC method. The MCMC method is able to up-
date the posterior distibution by sampling from the prior distributions. It has
been employed in meny epidemic modeling studies [53, 35, 88]; this is because
of its powerful ability to augment data. In our situation, as the time serics
[8(1), 5(2), 8(3),...,S(r=1)] and [1(1),1(2),I(3), ..., I{T — 1)] are unobserved,
the dynamic equation (Eq.4.6) could not be constructed. We simply denote
the latent variables h = [S{r — 1), 7(7 — 1)] rather than the whole series, as the

likelihood function base on them only. The marginal likelihood of © would be
o) = /P(data|(-), h)f{h|8)dh (4.14)

where P(data|©,h) is either a full information or augmented likelihood
function and f(h|©) is a latent states distribution. Dircet maximum likeli-
hood (ML) cstimation is typically preferred to solve the likelihood because
of its strong theoretical properties; however, maximizing the L™(Q) would
be impossible because it is hard to directly draw samples from f(h|@). The
expectation maximization (EM) algorithm is able to iteratively maximize the
L™(©) between E-step (Expectation) and M-step (Maximization), but it could
be trapped into local maxima. As for this situation, the MCMC algorithm is
able to construct the Markov chains by drawing alternating back and forth
between the conditional distributions f(h|6, data) and f{8|h, data). The re-
cursive simulation eliminates the computation of the integral with respect to

h. Unlike the EM algorithm, the update of parameters does not solely depend
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on the increasce of the likelithood function at cach step; it could justify the effect
of being trapped into the local maxima. By the Bayes theorem, the posterior

target density
F (8, h|data) « P(data|®, h)x(8) (4.15)

where 7(0) is the prior distribution of parameters.

In the MCMC algorithm, the infectious period 77 was fixed generally [94,
118], as it was highly correlated to Ro. We also fix the reporting rate r;
however, it could be post-validated with the probability distribution of the
first exported case from the source region {Section 4.2.2). Besides, the update
of 7 has to go through the state variable h as 7 docs not directly relate to the
likelihood. So the most convenient way to draw the h is from the distribution
of ©. Because the random walk proposal is employed for the update of ©,

given univariate value 8, new values & are drawn from

g =l 4 {(4.16)

where ¢ has a symmetric normal density, i.c., N(0,0%). The o is the step
size of the chain and & ~ N(#Y=1 4%). So the proposal distribution is a

symmetric function

a(§16979) = ——eap |~y (95 — 67 (4.17)

1
A
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In the construction of latent variables h = [S(7—1), I(7—1)], the variability
could be large along with the increasce of r in Eq.4.6 , and the acceptance of 7
will be problematic. Without loss of generality, we take the expectation of h

from each update of 7 in order to adjust the variance inflation, i.e.,

Sr-1)=N- |3 p;(t)S(t)]
:=2—2 7—2 (418)
I{r = 1) = 1{0) + [ZP:(L)S(")] - {ZPB(*)I@)}

So that the jump probability of the latent state is cqual to that of 7,

a(l[n07) = a(r'|rU)) (4.19)

which does not deviate the principle of the MH algorithm. The approach
is similar to the EM algorithm which latent samples arc gencrated from the
current estimates of interest, but the parameter updates depending on the
Metropolis step instead of maximization of the expectation of the log-posterior
function.

The steps of the corresponding Mctropolis-Hastings algorithm of reproduc-

tion number cstimation (Ry) would be:

1. Start the iteration counter at j = 1 and set the initial values for Rg]) and

70

2. Sample h|gg gate from the new value 7, i.e. a(h'[h¥~U). Accept the new

values with probability min(1, A), where
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P[RSV, data)a(hl|K)
P(hG-|RY™Y data)o(h’|ht-D)

(4.20)

If we accept, 79 = 77 otherwise, 7) = 70~1 and the chain does not

move;

3. Sample Ryhgate LY generating new values © from the proposal density

a(R{)]RéjFl}). Accept the new values with probability min(1, B), where

__P(R}|n9, data)a(RS V| RY)
P(RYV W), data)a( 1Y RS

(4.21)

If we accept, R{j) = R); otherwise, Rj) = R} ™! and the chain does not

move; and

4. Change the iteration counter from 7 to j + 1 and return to step 2 until

convergence is reached.

The probahility A and B are equivalent to the product of the likelihood

ratio, prior densities ratio, and the proposal densities ratio given the current

and the modified Markov chains. Random step sizes are adopted and they

arc tuned to allow the acceptance rates within 20% to 40%. The MCMC

estimation is iterated 100,000 times, in addition to the 10,000 iterations for

burn-in period. The burn-in iterations are discarded in order to climinate

the bias from the initially chosen points. The 100,000 iterations arc obtained

for the posterior distributions. The convergence of Markov chains mixing in

the MCMOC process will be diagnosed by the autocorrclation function and the
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time series trace plot. Stationary chains represent a good mixing pattern in

the MCMC.

4.3 Simulation Study

4.3.1 Simulation Scenarios

In this section, we tested the performance of the cstimation method. The set-
tings of the simulations were mostly according to the experience of influenza
epidemics. We simulated three sets of time series data according to the follow-

ing settings:
1. P1: Ry=12, 7 =28, and r =0.3;
2. P2: By=15 7=16, and r = 0.15; and

3. P3: Ry=18,7=7, and r = 0.05.

We also fixed the infectious period (T7) to three days. About one month
expected epidemic time series data were generated from our SIR stochastic
model. We fixed the population to 1,000,000 residents. The prior information
is showed in Table 4.3.

4.3.2 Results

In the simulation, we reparametferized the transmission coefficient as § =
Ry /T for simulation convenience. Each MCMC estimation took about one
hour. The posterior mean, standard deviation (SD), and 95% credible interval
from the MCMC estimation are showed in Table 4.1; for the three simulated
datasets, all of the estimated parameters were close to the actual valves, Con-

vergence was easily obtained for the parameters.
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Table 4.1: Simulated posterior mean, standard deviation {SD}, and 95% cred-
ible interval from MOMC estimation

Basic recproduction number {R) Initial reporting delay (7)
Data Actual Mean(SD) 95% CI Actual Mean(SD) 95% CI
value value
Pi 1.2 1.2{0.009) [1.179, 1.221] 28 28(1) 126, 30]
P2 1.5 1.5(0.002) [1.491,1.509] 186 15(1) (14, 17]
P3 1.8 1.8(0.001) [1.794, 1.806] 7 7(1) 6, 8]

As showed in Figures 4.1(A, B), 4.2(A, B), and 4.3(A, B), all of the posterior
distributions werc distinct from the non-informative priors. The acceptance
rates were maintained within 20% to 40%. According to Figures 4.1(C, D),
4.2(C, D}, and 4.3(C, D), the MCMC chains were well-mixing with random
patterns after discarding the burn-in iterations. The convergence of paramec-
ters also showed low correlations to their lags {(Figurcs 4.1(E, F), 4.2(E, F), and
4.3(E, F)). Starting values were randomly sclected with finite log-likelihood.

Different starting values did not deviate so much in convergence of the esti-

mation,

4.4 Case Study: Contain the Influenza A (H1N1)
outbreak at Mexico

In this section, the methodology was applicd to the influenza A (HIN1) pan-
demic in Mexico in 2009. The objective was to estimate the basic reproduction
number subjected to the initial reporting delay and the under-reporting in the
first wave of the influenza A (HIN1) pandemic at Mexico. Followed by the es-
timation, we studied the distribution of the exported cascs, and thus assessed

the possibility of containing the discase in the source country, Mexico.
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by 61 days. We did not take the United States into account because flying

was not the only means of cross-border transport between the two countries.

The rest of the daily travel rates from different countries were used in further

simulation.

Table 4.2: Number of travelers exported from Mexico by air in March and
April, 2009 and date of the first imported cases from Mexico to the corre-

sponding countries

Destination Travelers Date of the first ex- Reference
country counts ported case from Mex-

ico (2009)
Canada. 101,313 28, Apr (47]
Spain 65,724 28, Apr (47]
United Kingdom 20,513 28, Apr [47]
Costa Rica 16,950 29, Apr [47]
Germany 35,772 30, Apr [47]
Netherlands 27,640 30, Apr [83]
France 61,960 1, May [46]
Columbia 24,535 3, May [26]
El salvador 15,090 4, May [36]
Argentina 24,609 7, May (8]
Belgium 5,240 - -
Brazil 38,749 - -
Chile 18,535 - -
Cuba 42,802 - -
Guatemala 39,460 - -
Honduras 2,340 - -
Italy 12,060 - -
Japan 4,675 - -
Nicaragua 3,101 - -
Panama 48,717 - -
Peru 15,478 - -
Venezucla 9,150 - -

* USA was not taken into account in estimation as airline was not the only
main cross-border transportation from Mexico.
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4.4.2 Epidemiological Details

The epidemiological details were mostly from the previous findings of influenza
A (H1N1). The reproduction number (Ry) was in the range of 1 to 3 and it
followed a uniform prior distribution [47, 121, 118]. The length of the infectious
period (77) was fixed as three days, and its sensitivity was tested. We also
sct the initial delay (7) ranging from two days to 120 days, and the previous
estimates of the start date of the outbreak were around mid-January 2009 to
late-February 2009,

Because we did not have any information of the reporting rate (r) during the
first wave of the epidemic, r was chosen within 0.1% to 40% by grid scarching
and was fixed before each MCMC estimation; the optimum r would be chosen
which minimized the mean absolute difference (MAD) between the simulated
and the actual day of the first exported case (FET) from Mexico (Table 4.2
and Section 4.2.2) along with other estimated parameters.

The details of the parameters are highlighted in Table 4.3.

Table 4.3: Parameter definitions, prior distributions, reference, and remarks

Parameter Definition Prior distribution  Ref/remarks
Ry Reproduction number Uniform(1, 3) [47, 121,
118]
T Initial delay before the first Uniform(1, 120) [47, 106]
global surveillance
T; Infectious period Fixed at 3 days [44, 16,
121]
m; Daily rates of travel from Fixed See Table
Mexico to country i-th 4.2

4.4.3 Computer simulation

The methodology was implemented in software R 2.12.1. The syntax and the
functions of the R programs were highlighted in Appendix B.
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4.4.4 Result

Initial outbreak in Mexico

The developed MCMC algorithm was applied to the influenza A (HIN1) data.
100,000 iterations were drawn after discarding the 10,000 burn-in period. As
showed in the autocorrelation plot (Figure 4.5(E, F)), there were no strong lags
for the iterations. According to the time series trace plots (Figure 4.5(C, D)),
the convergences were obtained and the posterior distributions were drawn;
the posterior distributions were not highly skewed. The cstimated results are
summarized in Table 4.4.

Table 4.4: Acceptance rates, estimated posterior mean, standard deviation
(SD), and 95% credible interval for surveillance data

Parameter Acceptance Mean(SD) 95% CI

rate
Ry 36% 1.233(0.006) [1.221 to 1.242]
T 37% 16(1) [13 to 19]

By a grid search mcthod, the r was iteratively estimated and it was about
8% with a MAD between the simulated and the actual days of the first ex-
ported case from different countries (Figure 4.6). The only disadvantage of
this method is that it is time-consuming. The result was similar to the value
of 5.2% as cstimated by W, et al. [118] in the Hong Kong influenza A study
at the end of June, 2009.

From Table 4.4, the estimated Ry was about 1.233 with a credible interval
[1.221 to 1.242]). Compared to the studies from Fraser, et al. [47] and Yang,
et al. [121], our estimated Ry was slightly lower than the range of 1.4 o 1.6
and the range of 1.3 to 1.7 from thc epidemiological analyses, respectively;
but close to the value of 1.22 from a genetic study described by Fraser, et al.
QOur precision of the cstimated Ry was higher than that of the 95% confidence
interval [1.05 to 1.60] in the genetic analysis.

As showed in Table 4.4, the estimated start date of the outhreak was around
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Figure 4.5: Posterior distributions, time scries trace and autocorrelation plots
of B and 7 for influenza A (HIN1) surveillance data.
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The kernel smoothed posterior distributions are showed on the upper panel
{A and B). The time scrics trace plot illustrated the jumps of 100,000
iterations and are showed on the middle panel (C and D). The fifty-lag
autocorrelation plots are showed on the bottom panel (E and F). The 8 and
7 are aligned on the left column (A, C, and E} and on the right column (B,
D, and F) respectively.
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Figure 4.6: Mean absolute error (MAD) for different reporting rates in MCMC
estimation
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February 25, 2009 with a 95% credible interval [February 23, 2009 to March 1,
2009]. In line with the study from Towers, et al. [106], our estimated start date
of the outbreak was similar to their cstimate value of late-February by fitting
an SIR model. Our estimate was also in good agreement with the finding from
Fraser, et al. [47] which estimated that the initial time of the outbreak was
within a 95% credible interval [November 3, 2008 to March 2, 2009].

By using the MCMQC samples, we simulated the initial growth of the epi-
demic until the end of April, 2009. One thousand incidence curves were sim-
ulated by randomly choosing the estimated values from the previous MCMC
samples. The result is demonstrated in Figure 4.7 and Table 4.5. According to
the table, more than 1,000 individuals had been infected with the influenza A
(HLN1) virus at the end of March, at which time the emerging virus had still
not been confirmed. The infections increased exponentially and nearly 6,000
local cumulative incidence arose in Mexico in mid-April, 2009. At the same

time, officials started to confirm that the emerging virus was a new influenza
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A (HINL) virus [78]. By the end of April, almost 40,000 individuals in Mexico
had been infected with influenza A (H1N1), and the severity of disease trans-
mission caused the WHO to raise the pandemic alert level to phase five. Qur
findings were in agreement with the study of Fraser, et al. [47], which sug-
gested more than 20,000 individuals were infected with influenza A (HIN1}
in Mexico by the end of April. Marc, et al. [71] estimated at least 113,000 to
375,000 influenza A HIN1 incidence during the month of April, 2009 by means
of the person-at-risk approach. Our cstimated cumulative incidence was lower

than that of Marc, et al., which maybe caused largely by the spatial effect.

Figurc 4.7: Estimated cumulative incidence up to the end of April 2009.
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The observed cases werc showed in orange bar while the estimated cases were
showed in green line; the solid line was the median incidence, and the dotted
lines were the non-parametric 95% upper confidence interval and lower
confidence interval respectively in 1,000 simulations.

An additional scnsitivity analysis was performed in order o test how scn-
sitive of the length of the infectious period (T;) was to our results. A shorter

Ty = (2.5 days) and a longer T; (3.5 days) were set. The MCMC results were
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Table 4.5: Estimated cumulative incidence on March 31, April 15, and April
30, 2009.

Date Median (95%CT)
March 31 1,045 733 to 1,456]
April 15 6,366 [4,439 to 9,135]
April 30 39,175 [26,518 t0 56,915]

showed in Figure 4.8 and 4.9. Given a shorter infectious period (77 = 2.5), the
mean Ry and 7 were estimated as 1.128 with 95% CI [1.115 to 1.138] and 15
with 95% CI [12 to 19] respectively. The result did not deviate greatly from
our original result. As showed in Figure 4.8(C-F), the iterations were well-
mixed and did not viclate the MCMC diagnosis. And for the longer infectious
period (T; = 3.5), the mean Ry and 7 was estimated as 1.313 with 95% CI
[1.306 to 1.314] and 16 with 95% CI [13 to 18] respectively. The result was not
too sensitive, although the distribution of Ry was slightly skewed. According
to Figure 4.9(C-F), the iterations were also well-mixed and did not violate the

MCMC diagnosis.

Possibility of containing the disease at the source country by travel

restrictions

Followed by the estimation, the distributions of the infected cascs’ exportation
time from Mexico, which related to the rates of travels were studied. We further
investigated the possibility of containing the discase in the source country by
travel restrictions.

In this scction, the distributions of the cases exportation time in the base-
line scenario was mostly simulated from the MCMC samples. The days of
exporting a certain numbers of infected cases such as the first infection expor-
tation time (FET), were the main endpoints in the study. As showed in Table
4.2, the daily rates of travel (m) were in the range == 40 to 1,600 travelers

from Mexico to the other countrics. We adopted m = 300 and m = 1,500
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Figure 4.8: Posterior distributions, time scrics trace and autocorrelation plots
of 4 and 7 given Tr = 2.5.
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The kernel smoothed posterior distributions are showed on the upper panel
(A and B). The time series trace plot illustrated the jumps of 100,000
iterations and are showed on the middle panel {C and D). The fifty-lag
autocorrelation plots are showed on the bottom panel {E and F). The 8 and
T are aligned on the left column (A, C, and E) and on the right column (B,
D, and F) respectively.
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Figurc 4.9: Posterior distributions, time series trace and autocorrelation plots

of 7 and 7 given T7 = 3.5.
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The kernel smoothed posterior distributions are showed on the upper panel
(A and B). The time series trace plot illustrated the jumps of 100,000
iterations and are showed on the middle panel (C and D). The fifty-lag
autocorrelation plots are showed on the bottom panel (E and F). The g and
7 are aligned on the left column (A, C, and E) and on the right column (B,

D, and F) respectively.
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to study the distribution of the cases exportation time in Figurce 4.10 and
4.11. The statistics are summarized in Tablc 4.6. In the baseline scenario
(Hp = 1.23), a country with a lower travel rate to Mexico, such as Chile and
the UK {m = 300), would directly receive an influenza A (HIN1) infected case
about 2.5 months after the first local casce arose. Up to ten cases arrived in
an at-risk country at the fourth month (Table 4.6). The daily probability of
exporting infected cases from Mexico was no more than 0.1 for the first two
months since the local case arosc (Figure 4.10A). Once a country had a larger
passenger flow from the source country, such as Canada {m = 1, 500), thc FET
would mostly arise at the beginning of the third month, followed by additional
three weeks time for the tenth imported case (Table 4.6); the daily probability
of exporting at least one case would approach 0.05 (Figure 4.10B).

Table 4.6: Exportation days of infected cascs for 0%, 90%, and 99% travel

restrictions.
m Order of Restriction LL Median UL
cases ratio
300 First 0% 51 79 93
90% 71 98 114
99% 0 117 149
Tenth 0% 91 101 107
90% 116 125 137
99% 0 0 0
1500 First 0% 38 65 79
90% 57 84 99
99% 76 104 121
Tenth 0% 81 87 92
90% 101 107 113
99% 0 134 164

The medians and the confidence intervals were simulated from 50,000
iterations for each scenario. Zero day represented insufficient exported cases
in the scenario.

* LL = Lower bound of a non-parametric 95% confidence interval.

* UL = Upper bound of a non-parametric 95% confidence interval.

Supposc a 90% (m = 30) and a 99% {m = 3) travel restrictions were
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Figure 4.10: Probability of exporting at lcast onc casc from the source country
by days (g: o) at bascline.
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The daily rates of travel () were set as 300 and 1,500 in the upper figure
{A) and the lower figure (B) respectively. No intervention, a 90% travel
restriction, and a 99% travel restriction were illustrated in a solid line, a
dashed line, and a dotted line respectively. The median reproduction number
from the MCMC samples was used.
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Figure 4.11: Probability distributions of time until cases exported given dif-
ferent daily rates of travel.
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The daily rates of travel (m) were set as 300 and 1,500 in upper panel (A and
B) and lower pancl (C and D) respectively. The distribution of days since the
first local case until the first exported case (FET) and ten exported cases
were aligned on the left column (A and C) and the right column (B and D)
respectively. No intervention, 90% travel restriction, and 99% travel
restriction were illustrated in solid line, dashed line, and dotted line
respectively. The distributions were simulated in 50,000 iterations. Zero day
represented insufficient exported cases in the scenario.
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implemented between the UK and Mexico on the day that the first local case
arose, almost two weeks to 1.5 months additional delay to FET was observed
for the restrictions comparison with the no intervention scenario (Figure 4.11A
and Table 4.6). Most of the daily probabilitics of exporting cases were reduced
by half when the 90% travel restrictions were imposed on air travel between
the UK and Mexico {Figure 4.10A). Optimistically, oncc Mexico maintained
99% travel restrictions to the UK, the probability of exporting ten infected
cases was near zero at the initial epidemic outbreak (Figure 4.11B). The 99%
travel restrictions were able to reduce the daily probability of exporting at
least one case to no more than 0.07 (Figure 4.10A).

As for Canada, 99% travel restriction (m = 15) still obtained about an
additional 1.5 months’ delay to FET in comparison with the no intervention
scenario. Canada would have the first ten cases directly from Mexico on the
4.5-th month. A maximum daily exporting probability of 0.28 could be ob-
tained (Figure 4.10B), when the 99% travel restrictions were implemented
between them. However, the 90% travel restrictions (m = 150) were not able
to stop the daily probability approaching to one during the epidemic (Figure
4,10B). Compared to the baseline situation, 30% travcl restrictions mainly de-
layed both FET and the first ten cases for almost a further three weeks from
Mexico to Canada (Figure 4.11(C, D)).

The behavior of the FET in terms of the magnitude of travel rates is sum-
marized in Figure 4.12 and Table 4.7. In a baseline setting, the FET could
be delayed for more than 100 days when the daily rate of travel was kept be-
low 30 per day, which was almost equivalent to 99% travel restrictions between
Canada and Mexico; a delay of more than three months could also be obtained,
given lower than 100 daily rate of travel. In a milder scenario (R = 1.1}, an
at-risk country could delay the first non-local case arrival on the fifth month
once the daily ratec of travel from the source region fell below ten; delay of more

than three months to the FET from Mexico to another country was observed
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cven if there were about 3,000 travelers per day between them. When the
scenario became severe (R = 1.7), a delay of no more than two months to the
FET was allowed, even if the daily rate of travel was below ten. Surprisingly,
the FET did not change very much once the daily rate of travel exceeded 1,000

between Mexico and a particular country for each of the scenarios.

Figure 4.12: First exportation time (FET) of infected case given different daily
rates of travel.
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The median FETSs were illustrated in solid line, dashed line, and dotted line
for baseline scenario ( Ry = 1.2), mild scenario (R = 1.1), and severe scenario
(Rg = 1.7} respectively. The medians were simulated from 10,000 iterations.

On the other hand, the effectiveness of travel restrictions depended greatly
on the discasc transmission intensity (Figurc 4.13 and Table 4.7). Given a mild
scenario (R = 1.1), the FET could be delayed to the mid-fifth month for m =
30 from Mexico. The difference of FET between 30 and 3,000 daily rates of
travel, which was cquivalent to placing 99% travel restrictions, could be as long

as two months between a connected country to Mexico; 90% travel restrictions
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Table 4.7: First exportation time (FET) of infected case given different daily
rates of travel (m) and reproduction numbers (Rp).

Hy m LL Median UL
1.1 3 0 162 211
30 95 138 162
300 69 109 131
1500 47 89 110
3000 39 80 101
1.2 3 0 126 160
30 75 106 122
300 54 84 100
1500 40 70 85
3000 34 63 78
1.7 3 44 59 71
30 36 49 56
300 26 40 47
1500 20 33 40
3000 17 31 38

The medians and the confidence intervals were simulated from 10,000
iterations for each scenario.

* LL. = Lower bound of a non-parametric 95% confidence interval.

* UL = Upper bound of a non-parametric 95% confidence interval.
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could also have a one-month delay to FET. As showed in Figure 4.13, FET
mostly arrived in a country on the fifth month once the Ry was kept around
1.1 for m = 30; if other interventions, such as antiviral drugs and vaccination,
could had been applied to the initial growth of the epidemic (as well as reducing
the local disease transmission), the containment of the epidemic would have
not been impossible. Once the epidemic was uncontrollable, the 39% travel
restrictions were still able to defer the FET for more than one month for Ry =
1.4; the delay to FET decreased to half-a-month under 99% travel restrictions,
but the delay was for no more than two wecks when 90% travel restrictions

were in place and when Ry = 1.7,

Figure 4.13: First exportation time (FET) of infected case given different
reproduction numbers.
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The median FETs were illustrated in dashed line, dot-dot-dash line, solid
line, dot-dash linc, and dotted line for daily rates of travel m = 3, m = 30,
m = 300, m = 1,500, and m = 3,000 respectively. The medians were
simulated from 10,000 iterations.

In order to have a macro view of the impact of travel restrictions, we

illustratc the distributions of cxporting cascs from Mexico to a total of 22
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60th day (i.c., the effective reproduction number 22 1), several at-risk countrics
have been able to prevent the arrival of cases even with 90% travel restrictions;
99% travel restrictions were able to decrease the number of countries by half
{Figure 4.15A). Once the effectiveness of the other interventions conld decrease
40% of the Ry (i.e. the effective reproduction number = 0.7), no more than
three countries would received an infection from the source country when im-
posing 30% travel restrictions during the epidemic. And 99% travel restrictions
would contain the influenza A (HIN1) epidemic at the source country (Figure
4.15B). Therefore, reducing the severity of the discase transmission during the
early phase of the epidemic would greatly enhance the effectiveness of travel
rostriction and the possibility of containment.

In the simulation scenarios, we implemented the travel restrictions on the
day of the first influenza A (H1N1) case announcement i.e., March 14, 2009,
and the estimated initial start time of epidemic was at late February. Fraser,
et al. [47] has estimated the lower bound of the initial time could be down
to early November. However, if the epidemic started in November, the local
incidence would have been closed to the epidemic peak when the first influenza
A (ITI1N1) case was announced. The probabilities of exporting infected cases
approached to one even though the travel restrictions were imposed on March
14, 2009 (day 134-th) immediately (Figure 4.10). The late detection would
contribute to a large public health impact of the outbreak. If the cpidemic
had becn started in carly January, imposing the travel restrictions on the day
of the first influenza A {HIN1) case announcement (day 73-th) would have
been still effective since the probabilitics of exporting infected cases had been

below 0.1 before the implementation.

114






4.5 Discussion

In this section, we developed a stochastic SIR. model to study the distribution
of the exported infections from the source country. The model incorporated the
aspects of the time delay until an epidemic initiated and the under-reporting in
the parameters estimation. The developed model was based on Bayesian infer-
ence which tock the uncertainty into account for the model paramcters along
with the stochastic variation. Besides, a MOMC algorithm was developed to
impute the unobserved process within the dynamic equations. In order to val-
idate the estimation algorithmn, a simulation study was donce. The simulation
results were satisfactory as all of the parameters converged to the acceptable
values and performed well in diagnosis.

We further applied the methodology to paramcters estimation in the initial
outbreak period of influenza A (HIN1) epidemic at Mexico, The estimated
basic reproduction mumber, subjocted to issnes of the initial delay, and the
under-reporting, was about 1.233 with a credible interval [1.221 to 1.242] using
the surveillance data between March 14, 2009 and April 30, 2009 (Figure 4.4).
Moreover, the estimated start date of outbreak was around February 25, 2009
with a 95% credible interval [February 23, 2009 to March 1, 2009], and the
reporting rate was about 8%. The estimates were consistent to other studies.

By incorporating the cstimates, the impact of the travel restrictions, as
well as the possibility of containing the influenza A (HIN1) epidemic, were
cxamined in the view of the source country. In the bascline scenario (Ry =
1.23), the FETs were around 2 to 2.5 months to other countrics. The UK,
to which a daily rate of travelers was closed to 300, import no more than
ten cascs from Mexico during the cpidemic when 99% travel restrictions were
implemented. Even though Canada had 1,500 travelers per day from Mexico,
it was possible to have no more than ten imported cascs after 99% travel

restrictions were imposed. Nevertheless, imposing 90% travel restrictions only
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delayed the time of cascs cxporting from Mexico for any country. In terms of
the magnitude of travel rates, the FET could be deferred for more than 100
days once the daily rate of travel was restricted to below 30 persons per day.
But it would not change so much once the daily rate of travel exceeded 1,000.
Morcover, the effectiveness of travel restrictions increased with the reduction
of the local discasc transmission intensity.

Generally, most of the countries would reccive the infections from the source
country given the complex airline network whether or not they imposed strict
travel restrictions. As described by Hollingsworth, ct. al. [60}, early control
measures in the source region were crucial to contain the epidemic. If other
interventions had reduced a certain proportion of the disease transmission
intensity initially, the travel restriction would have been able to prevent the
arrival of cases from other countries; as large as possible in the Ry reduction,
it would have heen possibie to contain the influcnza A (H1N1) epidemic at the
source region.

In conclusion, the sole adoption of travel restrictions would he insufficient
to halt the spread of the cpidemic. Because of the high incidence rates in
Mexico, only strict 98% restrictions on travelling i.e., three to 15 travelers per
day, could have a chance of preventing an at-risk country from importing cases
from the source region. However, if the travel restriction had been implemented
in combination with other interventions, such as antiviral drugs, to reduce
the disease transmission locally, the containment at the source arca would
have been possible. Most importantly, the travel restrictions were valuable in

retarding the export of cases in terms of wecks.
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Chapter 5

Summary and Conclusion

5.1 Summary of Findings

In this thesis, new methodologics were developed, by performing a case study
on the influenza A (HIN1) pandemic in 2009 to assess the impact of travel
restriction on the spread of discase in views of the at-risk countries and the
source country.

In the pandemic influenza A (HIN1), the international traffic accelerated
the spread of infections across a wide geographic area. Policy-makers will be
interested to learn of its impact on the disease transmission once the traf-
fic has been re-scaled. Because the pharmaceutical interventions will not be
available during the early stage of the pandemie, travel restrictions should be
a high-potential intervention for including into the official containment and
mitigation strategies. In scme researches, the value of travel restrictions re-
mains controversial and, more importantly, several practical and theoretical
limitations have been found and were described in chapter 2. These problems
largely motivated us to study the effectiveness of travel restriction on the pan-
demic control in both source country and at-risk countries, in order to have
well planning of strategies in the future.

In chapter 3, we developed a stochastic model that incorporated air, sea,

and land transportation to explore the impact of the travel restriction in view
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of the at-risk countries. The use of antivirals and hospitalization was also
incorporated in the model in order to provide a more realistic compartment on
the recovery, and also to compare the effectiveness of these control measurcs.
The modeling results showed that restrictions on air travel, the main means
of transport from the Americas to Hong Kong, was the most effective of the
three types of restriction in delaying the arrival of the infected cases during the
early stage of the epidemic. With the use of antivirals and hospitalization, the
restrictions on all means of transport conld reduce the peak incidence by more
than half. Also, the spread of the local epidemic was halted by these inter-
ventions when the scenario was mild. However, the effectiveness of the travel
restrictions strongly relied on the use of antivirals and hospitalization when
the scenario was severe. Qur result also showed that if other control measures
had been taken effect in the non-local countries that could decrease the disease
transmission intensity, the restriction of all means of external transport would
possibly have halted the local spread of the discase in seven months time,
whether or not the antivirals and hospitalization had been used. Morcover,
increasing the screening sensitivity at the entry border points was beneficial in
slowing down the growth of the cumulative attack rates. In brief, the greatest
value of travel restrictions was in their ability to slow down the spread of the
epidemic. With the imposition of other interventions that can suppress the
disease transmission intensity, whether locally or not, the restrictions on all
external trave] reduced the local attack rates, and they even halted the discase
spread. According to our additional cost-effectiveness study {Appendix C),
the travel restriction was cost-effective and the epidemic delay reduced a large
portion of health care costs for imposing 5 months and 6.5 months before the
availability of effective interventions once the disease transmission intensity
was comparatively mild with 6% to 15% case-fatality rate. In general, the
travel restriction was also cost-effective for a late delivery of treatments when

case-fatality rate attained 25%.
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In chapter 4, a new methodology was developed to evaluate the possibility
of the disease containment by travel restriction in view of the source country.
A MCMC method, which imputed the unobserved process within the dynamic
equations, was also developed to estimate the reproduction number subjccted
to the problems of initial reporting delay and the reporting ratc behind the
surveillance data. The estimation algorithm has been validated by a series of
simulation. The methodology was further applicd to parameters estimation in
the initial ountbreak period of influenza A {II1N1) epidemic in Mexico. The
estimated basic reproduction number was about 1.233 with a credible interval
[1.221 to 1.242] and the estimated start date of outbreak was around February
25, 2009 with a 95% credible interval [February 23, 2009 to March 1, 2009).
By incorporating the cstimates, the impact of the travel restriction as well as
the possibility of containing the influenza A (H1N1) epidemic was examined in
the view of the source country. Due to the high incidence rate in Mexico, only
a strict 99% restriction on travelling, i.e., allowing three to fiffeen travelers
exported per day, could have a chance to prevent an at-risk country from
importing cascs from the source region. Howcever, if the travel restriction had
been implemented along with other interventions such as antiviral to reduce
the discase transmission locally, the containment at the source area would have
been possible. Besides, early control measures in the source region were crucial
to contain the epidemic. In most of the situations, travel restriction was able
to slow down the export of cases in terms of weeks.

In summary, travel restriction of either ef-risk countries or the source
country is valuable on slowing down the growth of epidemics. The time delay
of the epidemic would offer public health experts, policy makers, and scientists
more time for preparation and decision making on epidemic control especially
when an unknown virus cmerges to our society. Although solely imposing the
travel restriction showed little benefit on reducing the final attack rate and

the probability of cases exportation, it offered additional contribution on even
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halting the cpidemic growth once other interventions such as antiviral and
hospitalization could also be utilized. Therefore, the implementation of the
travel restriction skould be a potential intervention to control the cpidemic
spread, especially when the next epidemics which could be lethal and highly

mtrusive.

5.2 Limitation

The methodologics have four major limitations.

First, limited data affected the model structure. In chapter 3, we focused
on the local discase transmission dynamic incorporating the transportation
from a local area to the others. Due to limited data, we could not construct
every coupling between countries in the model so that we could not depict the
result from a global point of view. On the other hand, we adopted a simple
stochastic §1R model structure only with the use of the incidence count in-
stead of a SEIR model in chapter 4. In practice, border points may not be
able to screen out all individuals especially for those in latent status, so the
incorporation of the latent compartment into the model is required to quantify
the impact of screening sensitivity. But since we could not confirm whether
the exported cases who arrived in other countries were in latent status or infec-
tious status, the adoption of SIR model would be preferred in the estimation
process. Morcover, the investigated travel restrictions were rigorously enforced
in chapter 4, and both latent and infectious individuals would have the same
rescaling proportion. Therefore, imposing the extra latent compartment in the
model does not improve our result.

Second, the characteristics of the travel pattern and the influenza A (H1N1)

virus affected the model structure. In chapter 3 and chapter 4, the daily rates
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of travels were assumed uniformly distributed but they may decrease grad-
ually due to the increasing severity of disease spread, thus, fat-tailed distri-
bution such as Log-normal and Weibull distributions would be more appro-
priate. Apart from that, several studies discovered that the distributions of
the incubation and infectious periods were mainly right skewed like Gamma,
Log-normal, and Weibull distributions [30, 29, 109, 69]. Since the length of
the infectious period highly correlated to the reproduction number, the con-
vergenee was bad and it was not considered in the MCMC algorithm. On the
other hand, since the variability from the binomial distributions have been
adopted in the process of infections generation, the importance of adding ex-
tra variability from the periods would be relatively low. However, additional
sensitivity analysis has been donc for the lengths of latent and infectious du-
rations to explore these effect on our results in chapter 3 and chapter 4. In
general, it is suggested conducting household transmission studies in order to
draw more realistic distributions before being cmployed in the models [29].
Third, the resolution level of our modcls may not be high enough. In
chapter 3, we did not quantify the risk of infection of an inbound travel and
on an aircraft [19], the local incidence may be underestimated. Additional
compartments could be built to account for those effects, but it will increase
the model complexity. Morcover, transports that require long traveling time do
not casily allow rapid international spread of disease with a short generation
time. It cannot be doubted that travels that spend several days to Hong
Kong exist, but such cases must be very small proportion. For example, the
proportion of overseas passenger who directly traveled from overseas by sea
transport is extremely low. But instead of taking direct flight or ferry to Hong
Kong, some overseas passenger prefer taking a flight to Macau or mainland
China and then transfer to Hong Kong by ferry or train connections due to
the cconomical and time concerns. The multi-leg travel would greatly reduce

the required waiting time since infection among import cases. In our model,
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no adjustment was made for multi-leg travel for one or more transports due
to the limitation of available statistics; however, the previous results did not
show a big quantitative difference between single-leg and multi-leg travels [37].

Forth, the MCMC estimation converges badly in some situations. In chap-
fter 4, we have designed several situations for the simulation in accordance with
previous influenza scenarios; but in some extreme scenarios, such as when the
reproduction number is close to 1, the convergence would take a long time with
poor mixing. Morcover, the MCMC method works best if the data are taken
from the initial growth of the epidemic; it works much iess wcoll when the data
are taken after the pcak time. But we seldom apply the method beyond the
initial epidemic growth becausc it is unrealistic that epidemics are discovered

by officials after the peak times.

5.3 Future Research

In the thesis, we offered advice on the implementation of travel restrictions
through the use of epidemic modeling on the influenza A (HIN1) pandemic.
But in the future, new viruses could be lethal and highly invasive when antivi-
ral drugs or vaccination are not yet rcady. So in what scenario that we should
implement the travel restrictions and cven combination with other interven-
tions with maximum henefit? The question motivates us to consider widely in
the scenario and intervention sctting.

First, our resnlt showed that travel restriction worked better when the ini-
tial growth of the epidemic was mild; it benefited the control disease more
when the new virs had a mild transmissibility but causcd high mortality.
The model should explore its potential applicability of various infectious dis-
case virus such as SARS. Additionally, a more comprehensive travel network
with heterogeneity in travelers should be considered. In balancing the health

impacts, economic costs, and intervention efficacies, the threshold point of
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travel restrictions implementation should be investigated.

Second, there are many available pharmaceutical and non-pharmaccutical
interventions to control the epidemics nowadays. In the thesis, we assessed the
interaction between the practice of travel restriction, antivirals, and hospital-
ization; other interventions such as vaccination [85] and school closure [110]
are also effective in reducing the growths of epidemics. Because of limited
resources and safety impacts, it is better to have considerate and optimum
combination strategies for controlling epidemics effectively across wide ranges
of disease transmissibility and lethality. Therefore, a large scale compartmental
model or a network model should be developed to evaluate each combination
strategy.

To conclude, the future rescarch will provide a throughout guidelines on

containment and mitigation of an cpidemic to health policy makers.
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READDATA

/****** sk LEL L L] kR L2 EL L2 L EEE L]

/ Program name: READDATA

/ Versiom: 1.0

/ Anthor: Marc, Bicostatistician

/ Study name: HIN1 simulaton study

/ Created date: Q1MAY2010

/ Purpose: To Create SAS dataset from csv data

/ Notes:

/

/ Amendment history:

5 | --Amended date--|--Amended by--—|---------—- Desicription-—-—-——-———=== |
/

ok ekt T T Y

/% Build Up Library directory */
libname simdata ’D:\PhD Study\Thesis\data’;

/* Create SAS Table population */

PROC IMPORT datafile="D:\population.esv" OUT=simdata.population;
getnames = yas;

run;

/* Create SAS Table axport */

PROC IMPOURT datafile="D:\export,csv" OUT=simdata.export;
getnames = yes;

TuL;

/* Create SAS Table import */

PROC IMPURT datafile="D:\import.csv" OUT=simdata.import;
gatnames = yes;

TuR;

/* Create SAS Table infect */

PROC IMPORT datafile="D:\infect.csv" QUT=simdata.infect;
getnames = yes;

TUn;

/* Create SAS Table local */

PROC IMPORT datafile="D:\local.csv" OUT=simdata.local;
getnames = yes;

run;

/* Create SAS Table datepattern */

PROC IMPORT datafile="D:\datepattern.csv" OUT=simdata.datepattern;
getnames = yes;

Tun;

/% Sort the dataset */

proc sort data = simdata.impeort;
by country;

on;

proc sort data = simdata.population;
by countzry;
rin;

proc sort data = simdata.infect;
by country dats;
Tun;

TRAVELFIT

FEZETET T Y *
/ Program name: TRAVELFIT
/ Version: 1.0

/ Author: Marc, Biostatistician

/ Study name: HiNl1 simulaton study

Rk ES SR EER SR EE e P22 P EE AR A EESE P E Y 2 2
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/ Created date: C01MAY2010

/ Purpose: To fit the initial exponential growth and estimate the reproduction number
/ for the travel data from non-leocal countries

5 Notes:

/ Amendment history:

/ |-—hmended date-—{--Amended by——|--——-———= Description——————-—---- |
/
/

EELELE LRSS S PP PR LA LR LR ER S LR RS LR L Ll PR LS ] *********/

/% Build Up Library directory */
libname simdata ’GC:\Users\marc.marc-HP\Documents\My SAS Files\PLOS\data’;

/* Create individual country day number */

* country with first date;

data first_dt_im (rename ={date=first_dt));
set simdata.infect (keep = country date} ;
by ceountry;
if first.country;

rum;

data first_dt_ex (rename ={(date=first_dt));
set simdata.local (keep = country date) ;
by country;
if firet.country;

run;

*# calculate the day pumber after first onset case;
proc sq1;
craate table inf_ima as
select A.*, log(A.confirmed) as logcon, B.first_dt, (A.date - B.first_dt + 1) as iday
from simdata.infect as A, first_dt_im as B
where trim(A.country)=trim(B.country);
quit;

* Limit 2 monthe for fitting;
data inf_im;

Zet inf_ima;

if iday <61;
run;

proc sql;
create table inf_ex a=
select A.*, B.first_dt, {A.date - B.first_dt + 1) as iday
from simdata.lecal as A, first_dt_ex as B
where trim(i.country)=trim(B.country);
quit;

/* Macreo for exponential fit:
lat: length of latent period
inf: length of latent period */
Ymacro expfit(lat, inf);

/# Exponential growth rate estimation */
proc reg data = inf_im tableout cutest=b noprint;
medel logecon = iday ;
by country;
run;

data mb (keep = country iday rename={iday=r});

get b;
if _TYPE_ = "PARM3";
run;

data 1b (keep = country iday rename=(iday=1r));

g8t b;
if _TYPE_ = "LS5B";
run;

data ub (keep = country iday rename=(iday=ur));

set b;
if _TYPE_ = "USHB";
run;
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data umlh;
merge 1lb mb ub;
by country;
rm;

/* Reproducticn number and beta for inf pericd = 2.9; lat period = 1.45 %/
data epi_para;

set umlb;

repro =1 + ginfsflat*{r+*2 + r*({1/2inf)+(1/%lat}));

lrepro =1 + Zinf*klat*{(1r++2 + lr*x{(1/&inf)+{1/&1lat})};

urepro =1 + Zinf*&lat*{ur**2 + ur*{((1/&inf)+(1/&lat}});

beta = repro/&inf;
run;

Ymend expfit;

/% Exponential fit for inf period = 2.9; lat period = 1.45 %/
fexpfit{l1.45, 2.9);

/* Deterministic SEIR model by country */

/* Macro for SEIR generation:

e0: dinitial number of latent subjects

i0: initial number of infectious subjects
lat: length of latent peried

inf: length of latent peried

dayno: number of days generation */
Ymacro seir{e, i0, lat, inf, dayne);

/* Simulated the SEIR for each country */
Ydo city_id= 1 %to 44;

proc sql;

create table init_&eity_id as

select &.country, A.beta, A.repre, B.population

from epi_para as A, simdata.population as B

where trim(A.country)=trim(B.country) and B.id=gcity_id;
quit;

data seir_&city_id;
set init_&city_id;
s=populaticn;
e=gel);
i=&i0;
r=0;
iday =1;
output;
do iday = 2 to &dayno;
incident=s*%(1-exp( ({ (-lxbeta*i)} /population} }};
infectious=e*(l-exp(-1/&lat));
remove=ix{1-exp(-1/&inf));
8=s - incident;
e=e+incident-infections;
i=i+infectious-remove;
r=r+rYemove ]
output;

end;

in ;

%if geity_id>1 Ythen Ydo;

proc append base = seir_1 data = seir_f&city_id;
run;

/% List of R =/
proc append base = init_1 data = imit_&city_id;
Tun;

Yend;
Yend;
proc sort data = geir_1;

by iday country;
run;
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/# Merge the day list #/
proc sgql;

create table daylist_im as

select A.%*, B.country

from simdata.datepattern as A, simdata.import as B;
quit;

proc sql;

create table daylist_ex as

select A.*, B.country

from simdata.datepattern as A, simdata.export as B;
quit;

proc sql;
create table im_dt as
select A.*, B.first_dt, (A.date -~ B.first_dt + 1) as iday
from daylist _im as A, first_dt_im as B
where trim(A.country)=trim{(B.country);
quit;

proc sql;
create table ex_dt as
select A.*, B.first_dt, (A.date - B.first_dt + 1) as iday
from daylist_ex as A, first _dt_ex as B
where trim(A.country}=trim(B.country};
quit;

/% Merge the population, import and export data */
proc sql;
create table im_trans as
select A.=*, C.population, int((B.total)/365) as total_d,
int ((B.air)/365) as air_d, int((B.sea)/365} as sea_d,
int ((B.land)/365) as land_d
from im_dt as A, simdata.impert as B, simdata.population as C
where trim(A.country}=trim(B.country}=trim(C.country);
quit;

proc sql;
create table ex_trans as
select A.*, C.population, int{(B.total}/365) as total_d,
int{{B.air)/365) as air_d, int{{B.sea)/355) as sea_d,
int{{B.land)/365) as land_d
from ex_dt as A, simdata.export as B, simdata.population as C
where trim(A.country)=trim(B.country)=trim{C.country);
quit;

proc sort data = im_trans;
by iday country;
run;

/* Merge seir casas to day list */
data seir_im;
merge im_trans seir_1(keep = iday country e i);
by iday country;
if not missing{dayno)};
if iday < 0 than iday=.;
if missing(e) then e = 0;
else & = int(e);
if missing(i) themn i = 0;
alse i=int(i);
m_total=total_d/population;
m_air=air_d/popu1ation;
m_sea=sea_d/populaticn;
m_land=land_d/populatiocn;
run;

* Sort the case according to day number;
proc sort data = sgeir_im;

by dayno country;
run;

/* Merge daily case to local */

data daily_ex (keep =date dayno iday confirmed m_total m_azir m_sea m_land);
merge ex_trans inf_sx(kesp = iday confirmed}:
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by iday;

if not missing{daync};

if iday < 0 them iday=.;
m_total=total_d/population;
m_air=air_d/populaticn;
m_sea=sea_d/pcpu1ation;
m_land=land_d/population;

run;

Ymend seir;

/ ** * e,
/ Program name: EIFIT

/ Version: 1.0

/ Author: Marc, Biostatistician

/ Study name: HIN1 simulaton study

/ Created date: O1MAY2010

/ Purpese: To fit the E(0)s and I(0)s for different non-local countries
/ Notes:

/

/

/

/

/

*

Amendment history:
|--Amended date—-|--Amended by--|----—---——- Description--=-=w=————m=

e e 3 o e ok 3k o e e ke ok ool o o e R ok R e ke oo o s e o R o ol o R R R O R R R R %+ ***/

/* Export and sxplore the output file */
libname result ‘C:\Baselinefit’;

/% Macro for E(0}, I(0) fitting:

ei_11: lower 1limit of E(0), I(0)

ei_ul: upper limit of E(0), I(0)

d: the length of E{(Q}, I(0) increase per step

sim: number of realizations per E{0)}, I{0}

lat: length of latent period

inf: length of infectious peried

screen: the proportion of impert infectious subjects
dayne: max number of days generation */

fmacre ei fit(ei 11, ei_vl, d, sim,lat, inf, screen, daymo);

&ei_11;
kei_11;

%let e_sim
%let i_sim
%let Tno = 1i;

/* Start E{0), I{0) realization #*/
%do %until (Ze_sim > &ei_ul);

/* Start per E(0), I(0) simulation */
%do 51 = 1 Yto ksim;

%seir(fe_sim, &i_sim, &lat, &inf, kdayno);
/* Day limit */
data seir_im_dl;
soet seir_im;
if dayno < &dayne;
run;
/* Generate a set of random import data up to FPT */
#put My name is Marc. I am running E{0)= %e_sim, I{0)= %i_sim simulation &si of &sim;
/* Daily sum of random import */
data seir_im_rand;
set seir_im_d1;

* Random latent cases;
if e = 0 or m_total = ¢ then erand_total = 0;
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else erand_total = ranbin{0,e,m_total);

if @ = 0 or m_air = 0 then erand_szir = 0;
alse serand_air = ranbin(0,e,m_air);

if e = 0 or m_sesa = 0 then erand_sea = 0;
elsa erand_sea = ranbin{0,e,m_sea);

if e = 0 or m_1and = 0 then erand_land = Q;
else erand_land = ranbin(0,e,m_land);

* Random infections cases;

if i = 0 or m_total = O then irand_total = 0;

else irand_total = int(&screen*ranbin(0,i,m_totall);
if i = 0 or m_alr = § then irand_air = 0;

else irand_air = int{&screen*ranbin{0,i,m_air})};

if i = 0 or m_sea = Q then irand_sea = 0;

else irand_sea = int{&screen*ranbin{0,i,m_sea));

if i =0 or m_land = 0 then irand_land = Q;

else irand_lapd = int(&screan*ranbin(0,i,m_land));

run;

proc sort data = seir_im_rand;
by date dayno country;
run;

proc sql;
create table im_list as
select date, dayno,
sum{erand_total} as e_total , sum{erand_air} as e_air,
sum{erand_sea) as e_sea, sum(erand_land) as e_land,
sum{irand_total) as i_total , sum{irand_air) as i_air,
sum{irand_sea} as i_sea, sum{irand_land) as i_land
from seir_im_rand
group by date, dayno;
quit;

/¥ pick up the days with imported cases */
data im list_ind;
set im_list;

if e_air » Q or e_sea > 0 or e_land >0 or i_air > 0 or i_sea > 0 or i_land

then st_import =1;
else st_import=0;
Tun;

data im_list_pick;
set im_list_ind,;
if st_import=i1;
rum;

prec sort data = im_list_pick;
by st_import daymo;
run;

/* Calculate the FPT %/
Ylet s=_gsi;
¥let fname= &rnoks;

/* FPT per simulation */
data fpt_&fnams;
set im_list_pick;
by st_import;
if first.st_import;
iter_set=&rno;
iter=&si;
eget=ke_sgim;
imset=ki_sim;
run;

/* Store the per E(0), I(0) simulation result #/
%if &si > 1 or &xrmo "= 1 ¥then %do;

proc append base = fpt_1_1 data = fpt_g&iname;
run;

%end;
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/* End of psr E(0), I{Q) simulation #/
Yend:

#let e_sim = Ysysevalf{&e_sim+id);
#let i_sim = Y%sysevalf{&i_sim+id);
%let rno = Ysysevalf{&rno+l);

/* End of E(0), I(0) realizatiom */
Yend;

/* Simulation summary #/
proc sql;
create table mean_day as
select mean(dayno) a8 m_day, eset, iset

from fpt_1_1
group by eset, iset;
quit;

proc print;run;

Jf# 95% CI for FPT */

proc sort data = result.eifit24032011;
by dayno;

run;

data sortipt;
get result.eifit24032011;
meanlag=int ((dayno+lag(dayno))/2);
run;

data 11_fpt(rename= meanlag = 1fpt) med_fpt (rename= daync = mipi)
ul_fpt(rename= meanlag = ufpt);
set sortfpt;
by dayno;
if _n_= 3 then ocutput 11_fpt;
if _n_= 50 then output med_fpt;

if _n_= 98 then output ul_fpt;
run;
data fptei;

merge 11_fpt{keep=1lipt) med_fpt{keep=mfpt} ul_fpt{kesp=ufptj};
Tun;

proc print;run;
4put Hello! Finished!;

Ymend ei_fit;

BASELINEFIT

/***#*********************************************** FEEFE **#&

/ Program name: BASELINEFIT

/ Versioen: 1.0

Author: Marc, Biostatistician

Study name: HIN1 simulaton study

Created date: OIMAY2010

gurpose: To fit the baseline reproduction number
otes:

Amendment history:
|--Amendsd date--|--Amended by-~|----------Description—————-~——~—-~ !

/
/
/
/
/
/
/
/
/
/
*

/* Macro for R fitting:

r_l11: lower limit of the Teporduction mumber
r_ul: upper limit of the reporduction number
d: the length of R increase per step
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sim: number of realizations per R

lat: length of latent periocd

inf: length of latent period

scraen: the proportion of import infectious subjects
dayno: mmber of days generation */

Ymacro baselinefit(r_11, r_ul, d, sim,lat, inf, screen, dayne);

/* Initiated the countries own cases with estimated E(0}, I(0) */
%seir(90, 90, 1.45, 2.9, &dayno);

/* Day limit */
data seir_im_d1;

get seir_im:

if daynoe < &daymo;
run;

/* Start R realization */
Ylet repro = &r_11;
%let rno = 1;

Y%do Yuntil (&repro > &r_ul);

f#* Start per R simulation */
%do 8i = 1 ¥to ksim;

4put My name is Marc. I am running RO= &repro simmlation &si of &sim;

/* Daily sum of random import =/
data seir_im_rand;
set seir_im dl1;

* Random latent cases;

if e = 0 or m_total = 0 then erand_total = 0;
else erand_total = ranbin{0,e,m_total);

if € = 0 or m_air = 0 then erand_air = 0;
glse erand_air = ranbin(0,e,m_air);

if e = 0 or m_sea = 0 then erand_gea = Q;
glzse erand_sea = ranbin{0,e,m_sea);

if @ = 0 or m_land = 0 then erand_land = {;
else srand_land = ranbin{0,e,m_land};

* Random infacticus cases;

if 1 = 0 or m_total = 0 then irand_total = 0;

else irand_total = int(&screen*ranbin(0,i,m_totall}};
if 1 =0 or m_air = 0 then irand_air = 0;

else irand_air = int(&screen*ranbin{0,i,m_air));

if 1 = or m_sea = ( then irand_sea = 0;

else irand_sea = int(&screen*ranbin{0,i,m_sea));

if i = 0 or m_land = O then irand_land = 0O;

else irand_land = int{kscreen*ranbin(0,i,m_land}};

run;

proc gort data = seir_im_rand;
by date dayno country;
run;

proc sqi;
create table im_daily as
select date, dayno,
sum(erand_total) as e_total , sum(erand_air) as e_air,
sum(erand_sea) as e_sea, sum(erand_land) as e_land,
sum{irand_total) as i_total , sum{irand_air) as i_air,
sum{irand_sea) as i_sea, sum{irand_land) as i_land
from seir_im_rand
group by date, dayno;
quit;

/* Marge export data #/
proc sql;
create table trans_daily as
select A.*, B.m_total, B.m_air, B.m_sea, B.m_land, B.confirmed
from im_daily as 4, daily_ex as B
where A.date = B.date and A.dayno = B.dayno;
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quit;

/* Transpose data for array use #*/

proc transpose data=trans_daily out=im_e_air (drop=_name_ ) prefix=im_e_air;
var e_air;
run;

proc transpose data=trans_daily out=im_e_sea (drop=_name_)} prefix=im_e_sea;
var e_sea;
run;

proc transpose data=trans_daily out=im_e_land (drop=_name_} prefix=im_e_land;
var e_land;
run;

proc transpose data=trans_daily out=im_i_air (drop=_name_) prefix=im_i_air;
var i_air;
run;

proc transpose data=trans_daily out=im_i_sea (drop=_name_ ) prefix=im_i_sea;
var i_sea;
run;

proc transpose data=trans_daily out=im_i_land (drop=_name_} prefix=im_i_land;
var i_land;
run;

proc transpose data=trans_daily out=m_air (drop=_name_) prefiz=m_air;
var m_air;
run;

proc transpose data=trans_daily out=m_sea (drop=_name_) prefizx=m_sea;
var m_sea;
run;

proc transpose datastrans_daily out=m_land (drop=_name_) prefix=m_land;
var m_land;
run;

proc transpose data=trans_daily out=confirmed (drop=_name_} prefix=confirmed;
var confirmed;
run;

/* calenlate the parameters %/
#let dno=Ysysevalf (#dayno+1);
#let beta=Ysysevalf (&repro/kinf);

data daily_arr (keep=daync s e 1 r confirmed cum_c¢ b ¢ d ex_e_air
ex_e_sea eX_e_land ex_i_air ex_i_sea ex_i_land
im_e_air im_e_sea im_e_land im_i_air im_i_sea im_i_land);
merge im_e_alr im_e_sea im_e_land
im_i_air im_i_sea im_i_land
m_air m_sea m_land confirmed;

array im_e_air_arr(*) im_e_airl - im_s_air&dno;
array im_e_sea_arr(*) im_e_seal - im_e_sea&dno;
array im_e_land_arr{+} im_e_landl - im_e_land&dno;
array im_i_air_arr(+*) im_i_airl - im_3_air&dno;
array im_i_sea_arr(*) im_i_seal - im_i_sea&dno;
array im_i_land_arr{+*) im_i_landl - im_i_land&dno;

array m_air_arr(*} m_airl - m_air&dno;

array m_sea_arr(*} m_seal - m_seakdno;

array m_land_arr(*} m_landl - m_land&dno;

array confirmed_arr{*} confirmedl - confirmed&dno;

array s_arr(&dayne);
array e_arr(fdayno} ;
array i_arr{&dayne} ;
array r_arr{&dayne} ;
array dayno_arr{&dayno} ;
do k = 1 to &dayno;

if k = 1 then do;
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dayno_arr (k)=k;
s_arr(k) =T0B5071;

i_arr (k) =0;
r_arr (k) =0;

end;

else do ;
dayno_arr(k)=k;

* Binomial parameters;
binb=1-exp{-1*((&beta*i_arr{k-1})/7055051)};
binc=l-exp{-1*(1/&lat));
bind=1-exp{~1*(1/&inf));

if s_arr(k-1) <= 0 or i_arr{k-1) <= 0 then b=0;
else b=ranbin{0,s_arr{k-1) ,binb};

if e_arr(k-1) <= 0 then c=0;

else c=ranbin(0,e_arr(k-1) ,binec};

if i_arr{k-1) <= 0 then 4=0;

else d=ranbin{(0,i_arr(k-1) ,bind);

* Random export;
if e_arr(k-1) <= 0 then do;
ex_e_air=0;
ex_a_sea=(,;
ex_a_land=0;
end;
else do;
ex_e_air=ranbin(0,e_arr(k-1),m_air_arr(k));
ax_o_sea=ranbin(0,e_arr (k-1) ,m_sea_arr(k));
gx_e_land= ranbin{0,e_arr(k-1),m_land_arr{k});
end;

if i_arr{(k-1) <= 0 then do;
ex_i_air=0;
ex_i_sea=0;
ex_i_land=0;
end;
glse do;
ex_i_air=ranbin(0,i_arr (k-1),m_air_arr{k));
ex_i_sea=ranbin(0,i_arr(k-1),m_sea_arr(k));
ex_i_land=ranbin{0,i_arr(k-1),m_land_arr{k}};
end;

* Random import;
im_e_air=im_e_air_arr(k};
in_e_sea=im_e_sea_arr(k);
im_e_land=im_s_land_arr(k};
im_i_air=im_i_air_arr(k};
im_i_sea=im_i_sea_arr (k)
im_i_land=im_i_land_arr(k};

a_arr(k) = s_arr(k-1) - b;
a_arr(k) = e_arr{k-1} + b - ¢
+ im_e_air + im_e_sea + im_e_land
ex_e_air - ex_e_sea - ex_e_land;
i_arr(k) = i_arr{k-1) + ¢ - 4
+ im_i_air + im_i_sea + im_i_land
— ex_i_air - ex_i_sea - ex_i_land;
r_arr(k) = r_arrik-1) + d;

end;

s=s_arr{k);

e=e_arr{k);

i=i_arr{k);

r=r_arr{k);
dayno=dayno_arr{k};
confirmed=confirmed_arr (k) ;
cum_c=c+lag(c) ;

output;



end;
run;
/# Calculate the MSE #/

Ylet s=_ksi;

Ylet st=_1;

%let fname= krncks;
#4let fnamest= &rnokst;

proc sgl;
create table daily_se as
select sum{{{confirmed-cum_c)#**2))/count{confirmed) as mse
from daily arr;
quit;

data daily_se_&fname;
set daily_se;
repre = frepro;
gim=fk=1i;

run;

/* Store the simulation result */
%if &si > 1 or krno "= 1 %then Y¥do;

proc append base = daily_se_1_1 data = daily_se_&fname;
run;

Yend;

/% End of per R simulation #/
Yend;

Alet repro= %sysevalf (kreprotid);
4lst rno = Ysysevalf (frmo+l);

/# End of R realizaticn */
Yend;

/¥ Export summary of mean square error for RO #/
proc eql;

create table mean_mse as

select mean{mse) as m_mse, repro

from daily_se_1_1

group by repro;
quit;

proc print;run;
Yput Hello! Finished!;

Ymend baselinefit;

FPTSIM

/ ¥k Fk ok RSP LR R LR P EEEE PR I E RS SES E TEE S R T
/ Program name; FPTSIM
/ Versiom: 1.0
/ Author: Marc, Biostatistician
/ Study name: HIN1 simulaton study
/ Created date; 01MAY2010
/ Purpose: To simulate the FPT and FHPT from randem import
; Wotes:
/ Amendment history:
5 |--Amended date--|--Amended by--|---------- Description———--—————~== |
/
ko & LR L L] ¥ *************************************************/
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J* Macro for model simulation:

dir: the result directory

sim: number of realizations

lat: length of latent period

inf: length of infectious period

screen: the propertion of import infectious subjects
gdayres: day number start for travel restriction
imfair: Impert restriction fraction for air
imfsea: Import restriction fraction for sea
imfland: Import restriction fractien for land
dayno: number of days generation */

Ymacro fptsim{dir, sim,lat, inf, screen, gdayres, imfair, imfsea, imfland,dayno);
libname result &dir;

/% Non-local cases with I0=920 and E0=90 */
%seir(80, 90, klat, &inf, &daymo);

/# Day limit #/
data seir_im_dl;

sat seir_im;
if dayne < &dayne;
run;

/# Start per R simulation =/
%do si = 1 Yto ¥sim;

4put Simulation: alr &imfair sea &imfsea land kimfland for day &gdayres;
Yput Im Marc. The simulation &si is starting;

/#* Daily sum of random import */
data seir_im_rand;
set seir_im d1;

* Random latent cases;

if @ = 0 or m_teotal = 0 then erand_total = 0;
else srand_total = ranbin{D,e,m_total);

if @ = 0 or m_air = 0 then erand_air = 0;
alse srand_air = ranbin{D,e,m_air);

if &« = 0 or m_=sea = 0 then erand_sea = 0;
slse erand_sea = ranbin{{0,e,m_sea);

if e = 0 or m_land = O then erand_land = 0;
alse srand_land = ranbin{0,e,m_land};

#* Random infectious cases;

if 1 = 0 or m_total = O then irand_total = 0;
else irand_total = ranbin(C,i,m_total);

if 1 =0 or m_air = ¢ then irand_air = Q;
else irand_air = ranbin{0,i,m_air);

if 1 =D or m_sea = O then irand_sea = Q;
alse irand_sea = ranbin{(Q,i,m_sea);

if i = ¢ or m_land = O then irand_land = 0;
alse irand_land = ranbin(0,i,m_land);

rin;

proc sort data = seir_im_rand;
by date dayno country;
run;

proc sql;
create table sumim as
select date, dayno,
sum{erand_total) as e_total , sum{erand_air) as e_air,
sumf{erand_sea) as e_sea, sum{erand_land} as e_land,
sumf{irand_total) as i_total , sum{irand_air) as i_air,
sumf{irand_sea) as i_sea, sum{irand_land} as i_land
from seir_im_rand
group by date, dayno;
quit;

vput Simulation: air &imfair sea &imfsea land Zimfland for day kgdayres screen &screen;
%put Im Marc. The simulation &si is starting;
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/* Calculated the cumulative imported cases */
data im_list_&ksi:
set sumim;
if 1 < dayno < &gdayres then total_im_inf=e_air + e_sea + g_land
+ i_air + i_sea + i_land;
if dayne »>= &gdayres then
total_im_inf=int{{i-Zimfair)*e_air) + int({1-&infsea)*e_sea)
+ int((1-ginfland}*e_land)+int(&screen* ({1-&imfair)*i_air
+ (1-Zimfsea)*i_sea + (1-§imfland)¥*i_land));
if dayno in (0,1} then cum_im_inf =0;
else cum_im_inf+total_im_inf;
run;

/* Day of FPT and FHPT+/

data fptcut_&si (keep=dayno cum_im_inf fpt_flag);
get im_list_&si;
if cum_im_inf>=1;
fpt_flag=1;

Yun;

data fpt_%si (keep=ipt};
set Iptcut_&si;
by fpt_flag;
if first.fpt_flag;
fpt=dayno;

run;

data fhpteut_&si (keep=daync cum_im_inf fhpt_flag);
set im_list_ksi;
if cum_im_inf>=100;
fhpt_flag=1;

Yun;

data fhpt_&si (keep=fhpt);
set fhpteut_&si;
by fhpt_flag;
if first.fhpt_flag;
fhpt=dayna;

run;

Y%if &si>l Ythen Ydo;

proc append base = ipt_l data = fpt_&si,;
run;

proc append base = ibpt_1 data = fhpt_&si;
run;

%end;
Yend;
data result.ipt;
merge fpt_1 fhpt_1;
rum;

%put Helle! Finished!;

Ymend fpteim;

SIMMODEL

* rrEkkkkkRkkE k¥
Program name: SIMMODEL
Version: 1.0
Author: Marc, Biostatistician
Study name: HINI simulaton study
Created date: OIMAY2010
Purpeose: To simulate the scemariocs
Notes:

o Ty g T, S, Mo, T, o, e,
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Amendment history:
| -~Amended date--|--Amended by-—|-w~————sem Description-—--~-----—~~ |

/
/
/
/
*

Py £k EE T [TTI1 T Fhkk ke ek

/* Macro for model simmlation:

dir: the result dirsctory

repre: the reporduction number

sim: number of realizations

tat: length of latent peried

inf: length of infectious period

screen: the proportion of import infectious subjects

dayres: day number start for travel restriction

dayintervem: day number start for antivirals and hospitalization
pt: proportions of infectious subjects selected for treatment
ph: proportions of infectious subjects selected for hospitalization
pu: proportions of untreated infectious subjects

imfair: Import restriction fraction for air

imfsea: Import restriction fraction for sea

infland: Impert restriction fraction for land

exfair: Emport restriction fraction for air

exfsea: Emport restriction fraction for sea

extland: Emport restriction fraction for land

gam_t: transition rates from treatment state to removed state
gam_h: transitiomn rates from hospitalization state to removed state
infre: infectiousnsse reducticn for receiving antivirals

dayno: number of days generation */

Ymacro simmodel{dir, repro, sim,lat, inf, screen, dayres, dayinterven, pt, ph,
pu,imfair, imfsea, imfland,exfair, exfsea, exfland, gam t, gam_h,
infre, dayno);

litname result &dir;

/* Non-local cases with I0=90 and E0=90 =/
Yseir(90, 90, &lat, &inf, &dayno);

/* Day limit */
data seir_im dl;

get seir_im;

if dayno < &dayno;
Tun;

/% Start per R simulation */
%do si = 1 %to ksim;

/#* Daily sum of random import */
data seir_im_rand;
set seir_im_dl;

# Random latent cases;

if e = { or m_total = 0 then erand_total = 0;
else erand_total = ranbin{0,e,m_total);

if e = § or w_air = O then erand_air = Q;
alse erand_air = ranbin{0,e,m_air);

if @ = 0 or m_sea = O then erand_sea = {;
else erand_sea = ranbin(0,e,m_se=a);

if e = § or m_land = O then erand_land = 0;
else erand_land = ranbin{Q,e,m_land};

* Random infectious cases;

if i = 0 or w_total = 0 then iramnd_total = 0;
else irand_total = ranbin{0,i,m_total);

if i = 0 or m_air = 0 then irand_air = 0;
else irand_air = ranbin(0,i,m_air);

if i =0 or m_sea = 0 then irand_sea = (;
else irand_sea = ranbin(0,i,m_ssa);

if i = 0 or m_land = O then irand_land = 0;
else irand_land = rambin{0,i,m_land);

run;

proc sort data = seir_im_rand;
by date dayno country;
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run;

proc sql;
create table sumim as
gelect date, dayno,
sum{erand_total) as e_total , sum{erand_air) as e_air,
sum{erand_sea) as e_sea, sum(erand_land) as e_land,
sum{irand_total) as i_total , sum{irand_air) as i_air,
sum{irand_sea) as i_sea, sum(irand_land) as i_land
from seir_im_rand
group by date, dayno;
quit;

Yput Simulation: dayres &dayres dayinterven &dayinterven air &imfair sea
Zimfsea land &imfland with pt &pt ph &ph pu &pu screen &screem infre &infre;
Y%put Im Marc. The simulation &si is starting;

/* Merge export data #*/
proc sql;
create table trans_daily as
select A ¥, B.m_total, B.w_air, B.m_sea, B.m_land
from sumim as A, daily ex as B
where A.date = B.date and A.dayno = B.dayno;
quit;

/* Transpose data for array use */

proc transpose data=trans_daily out=im_e_air (drop=_name_ )} prefix=im_e_air;
var e_air;
n;

proc transpose data=trans_daily out=im_e_sea (drop=_name_) prefix=im_e_sea;
var e_sea;
on;

proc transpose data=trans_daily out=im_e_land (drop=_name_ ) prefix=im_e_land;
var e_land;
Tun;

proc transpose data=trans.daily out=im_i_air (drop=_name_ ) prefix=im_i_air;
var i_ailr;
Iun;

proc transpose data=trans_daily ocut=im_i_sea (drop=_name.) prefix=im_i_sea;
var i_sea;
run;

proc transpose data=trans_daily out=im_i_land {(drop=_name_} prefix=im_i_land;
var i_land;
Tun;

proc transpose data=trans_daily out=m_air {drop=_name_) prefix=m_air;
var m_air;
run;

prac transpose data=trans_daily out=m_sea (drop=_name_) prefix=m_sea;
var m_sea;
run;

proc transpose data=trans_daily out=m_land (drop=_name_} prefix=m_land;
var m_land;
run;

/* calculate the parameters */
%let dno=fsysevalf(&dayno+l);
%let beta=isysevalf (krapro/&inf);

data daily_ arr (keep=dayno s e it hr bcdmnnpq ex_e_air ex_ e_sea
ex_a_land ex_i_air ex_i_sea ex_i_land im_e_air im_e_sea im_e_land im_i_air
im_i_sea im_ji_land total_im_inf cum_im_inf imfmair imfmsea
infmland exfmalr exfmsea exfmland
transadiff transidiff binb binc bind binp bing);
merge im_e_air im_e_sea im_s_land
im_i_air im_i_sea im_i_land
m_air m_sea m_land;



array im_e_air_arr(+} im_e_airl — im_e airkdno;
array im_e_sea_arr(*) im_e_seal - im_e_seakdno;
array im_e_land arr(*) im_e_landl - im_e_land&dno;
array im_i_air_arr(*) im_i_airl - im_i air&dno;
array im_i_sea arr{*) im i_seal — im_i_ seakdno;
array im_i_land_arr(*} im_i_landl — im_i_land&dne;

array m_air_arr{(+*) m_airl - m_air&dno;
array m_sea_arr{*) m_seal - m_seakdno;
array n_land arr(*) m_landl - m_land¥dno;

array s_arr (&dayno);
array e_arr{&dayno} ;
array i_arr{&dayno} ;
array r_arr{&dayno} ;
array t_arr{&dayno} ;
array b_arr{&daynoc) ;
array dayno_arr(&dayno) H

/# start loop of day */
doe k = 1 to &dayno;

/x day O %/
if k =1 then do;

dayno_arr{k}=k;
s_arr(k) =7065071;
a_arr(k)=0;
iarr(k)=0;
r_arr{k)=0;

t_arr (k)=0;

h_arr (k}=0;

and;

/€ day>0 */
else do;

/* days befors travel restriction and control measure */
if k < gdayree and k < &dayinterven then do;

dayno_arr{k)=k;

* Binomial parameters;
binb=1-exp(-1*{{&beta*i_arr(k-1})/70585051)};
binc=l-exp(~1#{1/&lat}};
bind=1-exp(-1*(1/&inf));

if s_arr(k-1) <= 0 or i_arr(k-1) <= 0 then b=0;
else b=ranbin{0,s_arr{k-1) ,binb);

if e_arr(k-1) <= 0 then ¢=0;

else c=ranbin{0,e_arr{k-1) ,binc);

if i_arr(k-1) <= 0 then d=0;

else d=ranbin{(0,i_arr(k-1) ,bind);

* Random export;
if e_arr(k-1) <= 0 then do;
ex_6_alr=0;
eX_a_gea~0;
ex_e_land=0;
and;
alsa do;
ex_e_air=ranbin(0,e_arr(k-1),m_air_arr(k));
ex_a_sea~ranbin(0,s_arr(k-1) ,m_sea_arr{k));
gx_e_land= ranbin(0,e arr(k-1),m_land_arr(k));
end;

if i_arr(k-1) <= 0 then do;
ex_1i_air=0;
ex_i_sea=0;
erx_i_land=0;

end;

else do;
ex_i_air=ranbin{0,i_arr(k-1),m_air_arr({k));
ex_i_sea=ranbin{0,i_arr(k-1),m_sea_arr(k));
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ex_1i_land=racbin(C,i_arr{k-1),m_land_arr{k));
and;

# Random import;
im_e_air=im_e_air_arr(k):
im_e_sea=im_e_sea_arr(k);
im_e_land= im_e_land_arr{k);
im_i_air=im_i_air_axrr(k};

im i sea=im_i_sea_arr(k};
im_i_land=im_3i_land_arr(k);

* Transportation operator;
trangediff=im_e_air + im_e_sea + im_&_land
- ex_e_alr - ex_e_sea - &x_e_land;
transidiff=int (&screen*{im_i_air + im_i_sea + im_i_land})
- ex_i_air - ex_i_sea - ex_i_land;

s_arr(k) = s_arr{k-1) - b;
e_arr{k) = e_arr(k-1) + b - ¢ + transediff;
i_arr (k) i_arr(k-1) + ¢ - 4
+ transidiff;
r_arr(k) = r_arr(k-1} + d;
t_arr (k)=0;
h_arxr (k)=0;

]

/* Endif of days before travel restriction and control measure */
end;

/# days after travel restriction but before control measure */
if k >= &dayres and k < &dayinterven then do;
dayno_arr(k)=k;

imfmair=kimfair;
imfmsea=kimfsea;
imfmland=gimfland;
exfmair=fexfair;
exfmzea=kexfzea;
exfmland=kexfland,;

* Binomial parameters;
binb=1-exp{-1#({&beta*i_arr(k-1)}/7055051));
binc=l-exp(-1#(1/&lat)};
bind=1-exp(-1*(1/&inf));

if s_arr(k-1) <= 0 or i_arr(k-1} <= 0 then b=0;
else b=ranbin(0,s_arr(k-1) ,binb};

if e_arr(k-1i) <= 0 then c=0;

glse c=ranbin(0,e_arr(k-1i) ,binc};

if i_arr(k-1i) <= 0 then d=0;

glse d=ranbin(0,i_arr{k-1) ,bind};

* Random axport;
if e_arr(k-1) <= 0 then do;
ax_e_air=0;
ax_e_sea=0;
ex_o_land=0;
end;
elze do;
ex_e_air=int({l-exfmair)*ranbin(0,e_arr(k-1),m_air_arr{k}));
ex_a_saa=int{{l-exfmzea)*ranbin(0,e_arr(k-1) ,m_sea_arr(k)));
ex_a_land= int{{l-exfmland}*ranbin{0,e_arr(k-1),m_land_arr(k))});
end;

if i_arr(k~1) <= 0 then do;
ex_i_air=0;
ax_1_sea=0;
ex_i_land=0;
end;
elee do;
ex_i_air=int{{l-exfmair)*ranbin(0,i_arr{(k-1),m_air_arr{k)}};
ex_i_sea=int{{1-exfmsea)*ranbin(0,i_arr{k-1),m_sea_arr(k)));
ex_i_land= int({l-exfmland}+*ranbin{0,i_arr(k-1),m_land_arr{k)});
end;

* Random import;
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im_e_air=int{{l-imfmair}#*im_e_air_arr(k)};
im _e_sea=int((l-imfmsea)*im_e_sea_arr(k)};
im_e_land= int((l-imfmland)+*im_e_land_arr{k)};
im_i_air=int((1-imfmair)#*im_i_air_arr{k));
im_i_sea=int((1-imfmsea)#*im_i_sea_arr{k));
im i _land= int((l-imfmland)*im i land_arr(k)}:

* Transportation operator;
transediff=im_e_air + im_e_sea + im_e_land
- ex_e_air — ex_e_sea - ex_e_land;
transidiff=int{kscreen*{im_i_air + im_i_sea + im_i_land))
— eX_i_air - ex_i_sea — ex_i_land;

a_arr(k) = s_arr{k-1} - b;
e_arr(k) = e_arr{k-1} + b — ¢ + transediff;
i_arr(k) = i_arr(k-1) + ¢ — d

+ transidiff:
r_arr(k) = r_arr(k-1) + d;

h_arr (k}=0;

/* Endif of days after travel rastriction but before control measure *f
end;

/% days before travel restriction but after contrcl measure */
if k < %dayres and k »= Zdayinterven then de;

imfmair=0;
imfmsea=0;
imfmland=0;
axfmair=0;
exfmsea=0;
exfmland=0;

dayno_arr (k)=k;

* Binomial parameters;
binb=1-exp{-1*{(kbeta*{i_arr(k-1)+(l-&infre)+t_arr(k-1}+h_arr(k-1)))/7055051));
binc=1-exp{(-1*{1/&lat));

bind=&pu*{1-exp(-1*(1/&inf})});

binp=1-ezp{-1*kgam_t};

bing=1-exp{-1l*&gam_h};

if s_arr{k-1) <= 0 or i_arr(k-1) <= 0 then b=0;
else b=ranbin(0,s_arr(k-1} ,binb);

if e_arr(k-1} <= 0 then ¢=0;

else c=ranbin(0,e_arr(k-1} ,binc);

if i_arr(k-1) <= 0 then d=0;

else d=rapbin(0,i_arr(k-1}) ,bind):;

if i_arr(k-1) <= 0 or &pt <= 0 then m=0;
else m=ranbin(0,i_arr(k-1}, &pt);

if i_arr(k-1) <= 0 or &ph <= 0 then n=0;
else n=ranbin(0,i_arr(k-1}, &ph);

if t_arr(k-1}) <= 0 or binp <= 0 then p=0;
else p=ranbin(0,t_arr(k-1},binp);
if h_arr{k-1} <= 0 or bing <= 0 then q=0;
else g=ranbin(0,h_arr{k-1) ,bing);

* Random export;
if e_arr(k-1} <= 0 then do;
ex_a_air=0;
ex_a_sea=(;
ex_e_land=0;
end;
alse do;
ex_e_air=int{{l-exfmair)*ranbin0,e_arr{k-1),m_air_arr(k)});
ex_a_sea=int({l-exfmsea)*ranbin{0,e_arr{k-1),m_sea_arr(k))};
ex_a_land= int{{l1-exfmland}*ranbin{0,e_arr{k-1},m_land_arr{k)));
end;

if i_arr(k-1) <= ¢ then do;

ax_i_air=0;
ex_i_saa=0;
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ox_i_land=0;
end;
alse do;
ex_i_air=int{{l-exfmair)}*ranbin{0,i_arr(k-1) ,m_air_arr{k)));
ex_i_sea=int{(l-exfmsea}*ranbin{0Q,i_arr(k-1),m_sea_arr(k)));
gx_i_land= int {{1-exfmland) +ranbin{0,i_arr{k-1},m_land_arr{k))};
ond;

* Random import;
im_e_air=int({(i-ipfmair)+*im_e_air_arr{k))};
im_e_sea=int{{i-imfmsea)*im_e_sea_arr(k)):
im_e_land= int{{1-imfmland)*im_e_land_arr{k)};
im_i_air=int((l-imfmair}*im_i_air_ arr(k));
im_i_sea=int{(i-imfmsea}*im_i_sea_arr(k));
im_i_land= int((l-imfmland}#im_i_land_arr (k});

* Transportation operator;
trangsediff=im_e_air + im_e_sea + im_e_land
- ex_e_alr - ex_e_sea — ex_a_land;
transidiff=int{gscreen*{im_i_air + im_i_sea + im_i_land))
- ex_i_air - ex_i_sea - ex_i_land;

s_arr(k) = s_arr(k-1) - b;
e_arr(k}) = e_arr(k-1) + b - ¢ + transediff;
i_arr(k) = i_arr(k-1) + ¢ - d
+ transidiff
-m - n;
t_arr(k) = t_arr(k-1) + o - p;
h_arr(k) = h_arr(k-1) + n - q;
r_arr(k) = r_arr(k-1) + d + p + q;

/#* Endif days before travel restriction but aiter control measura */
and;

/* days after travel restriction and control measurs */
if k >= &dayres and k »>= &dayinterven then de;

imfmair=kimfair;
infmzea=kimfzea;
imfmland=4&imfland;
exfmairskexfair;
exfmsea=kexfsea;
axfmland=%exfland;

dayno_arr (k}=k;

* Binomial parameters;

binb=1-exp(-1*{ {(¥beta*(i_arr(k-1)+(1-&infre)*t_arr{k-1)+h_arr{k-1)))/7055051}};
binc=1l-exp{-1*{(1/&lat)};

bind=gpus{i~exp(-1*(1/&inf)));

binp=1-exp{-i*kgam_t);

bing=1-exp{-1*&gam_h) ;

if s_arr{k-1) <= 0 or i_arr{(k-1} <= Q then b=0;
else b=ranbin(0,s_arr(k-1} ,binb);

if e_arr(k-1) <= 0 then c=0;

else c=ranbin(0,e_arr{k-1) ,binc);

if i_arr(k-1) <= 0 then d=0;

else d=ranbin{0,i_arr(k-1i) ,bind);

if i_arr(k~1) <= 0 or &pt <= 0 then m=0;
else m=ranbin(0,i_arr(k-1), &pt);

if i_arr(k-1) <= 0 or &ph <= 0 then n=0;
else n=ranbinf{0,i_arr(k-1}, &ph);

if t_arr{k-1) <= 0 or binp <= 0 then p=0;
else p=ranbin{0,t_arr{k-1),binp);
if h_arr(k-1) <= 0 or bing <= 0 then g=0;
else g=ranbin(0,h_arr(k-1),bing);

* Random export;

if e_arr(k-1} <= 0 then do;
ex_s_air=l;
ex_e_seas(;
ex_e_land=0;
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end;

alsa do;
ex_e_air=int{{l-exfmair)*ranbin{0,e_arr(k-1) ,m_air_arr{k})):
ex_e_sea=int{{l-exfmsea)*ranbin(0,e_arr(k-1),m_sea_atr(k}});
ex_e_land= int{{i-exfmland}*ranbin(0,s_arr(k-1),m_land_arr{k}}):

end;

if i_arr(k-1) <= 0 then do;
ex_i_air=0;
ex_1_sea=0;
ex_1_land=0;
and;
alae do;
ex_i_air=int{{l-exfmair)*ranbin(0,i_arr{k-1) ,m_air_arr(k)}};
ex_i_sea=int((i-exfmseal)*ranbin(0,i_arr(k-1),m_sea_arr(k})};
gx_iwland= int{{l-exfmland}*ranbin{0,i_arr(k-1),m_land_arr{(k)));
end ;

* Random import;
im_e_air=int{{l-imfmair)*im_e_air_arr(k));
im_e_sea=int{{1-imfmsea)*im_e_sea_arr(k));
im_e_land= int({l-infmland)*im_e_land_arr{k});
im_i_air=int{{1-imfmair)*im_i_air_arr(k));
im_i_sea=int{{i-imfmsea)*in_i_sea_arr(k));
im_i_land= int({l-imfmland)+*im_i_land_arr (k});

#* Transportation cperator;
trangediff=im_e_air + im_e_sea + im_e_land
- exX_e_air - ex_e_sea — ex_e_land;
transidiff=int (&screen*{im_i_air + im_i_sea + im_i_land))
- ex_i_air - ex_i_sea - ex_i_land;

s_arr(k) = s_arr(k-1) - b;
g_arr{k) = e_arr{k-1) + b - ¢ + transediff;
i_arrdk) = i_arr(k-1) + ¢ - 4
+ transidiff
-z - n;
t_arr(k) = t_arr(k-1) + m - p;
h_arr(k) = h_arr(k-1) + n - q;
r_arr(k) = r_arr(k-1) +d + p + q;

/* Endif days after travel restriction and controcl measure */
end;

/* Endde days>0 */
end;

s=g_arr(k);

e=a_arrfk);

i=i_arr(k);

t=t_arr(k);

h=h_arr(k);

r=r_arr(k);

total_im_inf=im_e_air + im_e_sea + im_e_land + im_i_air + im_i_sea + im_i_land;
if k in (0,1) then cum_im_inf =0;
else cum_im_inf+tetzl_im_inf;
dayno=dayno_arr(k};

output;

/* End of loop day */
end;

run;
data result.simw_&si;
set daily_arr;

run;

/* End of per R simulatica */
Yend;

%put Hello! Finished!;

Ymend simmodel;
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/* Macro for resulting statistics:
dir: the result directory

sim; The simulated timez */
Ymacre simresult(dir, sim);

libname result &dir;

/* Start per R simulaticn */
%de 8i = 1 Yto &sim;

* Day of FPT;

data firstcut_kei (keep=dayne cum_im_inf fpt_flag);
set result.sim_&si;
if cum_im_inf>»=1;
Ipt_flag=1;

run;

data Ipt_ksi (keep=arriday);
get firstcut_g&s2;
by ipt_flag;
if first.fpt_flag;
arrlday=dayno;

run;

# Day of FHPT;

data first100cut_&si (keep=dayno cum_im_inf fhpt_flag};
set result.sim_&si;
if cum_im_inf>=100;
fhpt_flag=1;

run;

data fhpt_&si {keep=arr100day);
set firsti00cut_&si;
by fhpt_flag,;
if first.fhpt flag;
arr100day=dayno;

run;

* Peak attack rate (%};

proc sql;
create table pi_&si
select round((100*max(b))/7055051 0.01) as peak_rate
from result.sim_&si;

quit;

proc sort data = pi_&si nodup;
by peak_rate;
run;

* Peak times (weeks);
proc sql;

create table pt_ksi as

select round((dayna)/7,0.1> as peak_time

from result.sim_&si

where b = (select max(b) from result.sim_&si);
quit;

proc sort data = pt_&ai nodup;
by peak_time;
run;

# Cumumlative attack rate (%) by months;
proc sql;
create table ci4d_fsi as
select round{{100*sum(b}}/7065051,0.1) as cum_rate
from result.=sim_&ai
where dayno <=120;
quit;

proc sql;
create table cib_%=i as
select round{(100*sum(b))/7055051,0.1) as cum_rate
from result.sim_&si
where dayne <=150;
quit;
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proc sql;
create table cif_&si a
selact ruund((lOO*sum(b))/?OSSOSI
from result.sim_&si
vhere dayno <=180;
quit;

proc sql;
create table ciV_ksi as
select round{{100*sum(b))/7055051,
from result.sim_&si
where dayno <=210;
quit;

proc sql;
create table cif_&si a
select round((100*3um(b))/7055051
from result.sim_&ksi
where dayno <=240;
quit;

proc sql;
create table cif%_&ksi a
select round{(100*sum(b))/7055051
from result.sim_&si
where dayno <=270;
quit;

proc sql;
create table cill_&si as

salect round((100*sum{b}) /7055051,

from result.sim_&ksi
where dayno <=300;
quit;

proc sql;
create table cill_&si as

select round((100%sum{b))/7056051,

from result.sim_ksi
where dayno <=330;
quit;

proc sql;
create table ¢il2 _&si a
select round((100*sum(b))/7055051
from result.sim_&si
where dayno <=360;
quit;

proc sql;
create table ciall_&si as
gelect round{(100*sum(b) /7055051
from result.sim_&si
where dayno <=800;
quit;

Yif &si>1 %then ¥do;

0.1)

0.1)

09.1)

0.1}

0.1)

0.1}

0.1)

0.1}

as

as

as

as

as

a5

as

proc append base = fpt_l1 data = fpt_&si;

run;

proc append base = fhpt_1 data =
Tun;

proc append basa = pi_l data = pi_

run;

proc append base = pt_1 data
Tun;

pt_

fhpt _&ai;

ksi;

Esi;

proc append base = cid_1 data = cid_isi;

Tun;

proc append base = ¢ib_l data

cib_&si:
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run;

proc append base = cif_1 data = cif_ksi;
run;

proc append base = ci7_1 data = ci7_&si;
run;

proc append base = ci8_1 data = ci8_ksi;
run;

proc append base = cif9_1 data = cif_ksi;

run;
proc append base = ¢il0_1 data = cilQ_ksi;
run;
proc append base = ciil_1 data = cill _ksi;
run;
proc append base = ¢il2_1 data = cil2_ksi;

Iun;

proc append base = ciall_1 data = ciall_&si;
run;

fend;
%end;

/* Bummary of results %/
/% FPT =/
proc means data=fpt_1 noprint;
var arrlday;
cutput out = fpt_print N=N mean=mean pl=pl pb=p5 p50=p50 p$5=p95 pH9=p99;
rum;

data fpt_print (keep = name N mean pl pS0 pu);
set fpt_print;
pl=(pi+p5)/2;
pu—(p95+p99)/2
name = ‘FPT '
run;

/% FHPT =/
proc means data=fhpt_1 noprint;

var arrlQQday;

output out = fhpt_print N=N mean=mean pl=pl pS=pS pS0=pB0 p95=p95 poOY=pda;
rum;

data fhpt_print (keap = nams N mean pl p50Q pu);
set fhpt_print;
pl=( p1+p5?
pu‘(p95+p99)/2
name = ’FHPT
run;

/* Peak AR */
proc means data=pi_1 noprint;

var peak_rate;

output out = pi_print N=N mean=mean pl=pl p5=p5 pbO=pb0 p95=pSb p99=p93;
rum;

data pi_print (keep = name N mean pl p50 pu};
set pi_print;
pl=(pl1+p5)/2;
pu—(p95+p99)/2
name = ‘Peak AR (¥)?;
run;

/% Peak time */
proc means data=pt_l neoprint;
var peak_tims;
output out = pt_print N=N mean=mean pi=pl pS=p5 p50=p50 pO5=pS5 phI=p99y;

165



run;

data pt_print (keep = name N mean pl p50 pu);
set pi_print;
pl={p1+p5)}/2;
pu={p95+p99}/2;
name = ’Peak times (weeks)';
run;

/% Cum AR by months */
proc means data=ci4_1 noprint;
var cum_rate;
cutput out = cid4_print N=N mean=mean pl=pl p5=p5 p50=pb0 pS5=pO§ po99=pdI;
run;

data ci4_print (keep = name N mean pl pS0 pu);
set cid_print;
pl={pl+pb)/2;
pu={p95+p99}/2;
name = ’4 months cum AR (%)?*;
run;

proc means data=cib_1 meprint;

var cum_rate;
output cut = c¢ib5_print N=N mean-mean pl=pl p5=p5 pSO0=pb0 p95=p95 pl9=p99;
Tun;

data ci5_print (keep = name N mean pl p50 pul;
set ciS_print;
pl={pl+p53/2;
pu=(p9d5+p9e)/2;
name = '5 months com AR (%) ’;
run;

proc means data=cif_1 noprint;

var cum_rate;
output out = cib_print N=N mean=mean pl=pil p5=p5 pBEO=p5Q p95=p95 p99=poo;
run;

data ci6_print {keep = name N mean pl p5Q pu);
set cif_print;
pl=(pl+pb)/2;
pu=(p95+p99}/2;
name = ’6 monthe cum AR (%)’;
run;

proc means data=ci7_1 noprint;

var cum_rate;
output out = c¢i7_print N=N mean=mean pl=pl pb=pb pS0=p50 pS5=pO85 p99=pss;
rum;

data ci7_print (keep = name N mean pl p50 pu};
set ci7_print;
pl={p1+p5)/2;
pu={p95+p99)/2;
name = ’7 months cum AR (%)’;
run;

proc means data=ciB8_l1 noprint;

var cum_rats;
output out = ciB_print N=N mean-mean pi=pl pS=pb pS0=pS0 p86=p85 pHo=p99;
run;

data ci8_print (keep = name N mean pl pb0 pu);
set ci8_print;
pl=(pl+p5)/2;
pu=(p95+p99) /2;
name = '8 months cum AR (¥)7;
run;

proc means data=ci®_1 noprint;

var cum_rate;
output out = ci9_print N=N mean=mean pl=pl pS=p5 pS0=p50 p9S=pd5 pS9=p9o;
Tun;
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data ci9_print (keep = name N mean pl p50 pul;
set ci®_print;
pl=(pl+p5}/2;
pu={p95+p99)/2;
name = ’9 months cum AR (%)°’;
ram;

proc means data=cilO_1 neprint;
var cum_rate;
output out = ¢i10_print N=N mean=mean pl=pl pb=p5 pS0=pb0 pY5=pSH poOI=psY;

rm,

data ¢il0_print (keep = name N mean pl pb0 pu);
get cill_print;
pl={pl+p8)/2;
pu={p95+p989}/2;
name = ‘10 months cum AR (%) ’;
run;

proc means data=cill_1 noprint;

var c¢um_rate;
output out = ¢ill_print N=N mean—mean pl=pl pB=p5 pBG=pbE0 p96=pU5 po9=p9d;
Tun;

data ¢ill_print (keep = name N mean pl pSQ pu);
set cill_print:
pl={pl+pb)/2;
pu={p85+p98)/2;
name = ’11 months cum AR (%) 7;
run;

proc means data=cii2_1 moprint;

vaT cum_rate;

output out = ¢il2 print N=N mean=mean pl=pl p5=p5 pb0=pb{ pS5=p95 pS9=p9%;
run;

data ¢il?_print (keep = name N mean pl pS0 pud;
set ¢il2_print;
pl=(pl+p5}/2;
pu=(p95+p82) /2;
name = ’12 months cum AR (%)
run;

proc means data=ciall_1 noprint;
var cum_rate;
output out = c¢iall_print N=N mean=mean pl=pl p5=p& pSQ=pH0l p95=pS& p99=piv;

run;

data c¢iall print (keep = name N mean pl p5¢ pu};
set ciall_print;
pl={p1+p5)/2;
pu=(p95+p99)/2;
name = *End of epidemic cum AR (%)’;
rn;

data summary;
set fpt_print fhpt_print pi_print pt_print cid_print cib_print cié_print
c17_print ¢i8_print ci9 _print cii0_print cill_print ¢il2 print ciall_print;
Tun;

proc print ;run;

Ymend simresult;

SIMCI

/** Hk kKRR R RSP PSS LSS PR L 2R e R AL PR EEES SRS EL EY T
/ Program name: SIMCI

/ Versiom: 1.0

/ Author: Marc, Biostatistician

/ Study name: HiN1 simulaten study
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/ Created date: QiMAY2010
/ Purpose: To simulate the confidence intervals for scenerios

/ Notes:
/
/ Amendment history:
? {--Amended date-—|--Amended by--|--—===wc— Description-—-———mm=mm—|
/
% P— R R FEERREERRR AR AR R Rk ]

/* Suppress the notes of log window */
options nonotes;

/* Macro for finding the confident interval by day:
idir: the dataset directory with 100 epldemic series
dir: the resnlt directory

fname: nams of the file

repro: reproduction number shown in log window */
Ymacre simci(idir, dir, fname, repro);

libnama init &idir;
libnama result &dir;

/* Start per R simulation */
#do day = 1 %to 600;

%let st = _1;

Ylet sidst=&dayst;
Ydo si = 1 %to 100;

%let sid = _&si;
#let sidno=gdayksid;

data resultd_&sidno (keep = dayno bj);
sat init.sim_&si;
if dayne = Zday;

run;
%if Esi>1 Ythen %do;

proc append base = resultd_kdaygst data = resultd &sidno;
Tun;

Yend;
Yend;

proc sort data = resultd &dayést;
by b;

rum;

data resultlag &daygst;
set resultd_&daykst;
lagb=int ({b+lag(b)}/2);

run;

data 11_gday{keep=dayno lagb rename= lagbh = 1lb)
ul_jday (keep=dayno lagh rename= lagh = ub);
set resultlag_g&daykst;
by b;
if _n_= 3 then output 11 &day;
if n_ = 98 then ocutput ul §day;
run;

proc sgl;

create table ml_&kday as

gelect int(mean{b)} as mb, dayno
from resultd &dayist

group by dayno;

quit;

%if &day>»1 %then ‘do;
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proc append base = 11_1 data
Tun;

11_g&day;
proc append base = ul_1 data = ul_&day;
Tumn;

proc append base = ml_i data = ml_&day;
Tun;

fend;
%PUT write &repro file name &fname day &day;
Yend;
data result.&fname;
merge ul_1 ml_1 1l1_1;
by dayno;
run;

YPUT Finish Ekfname;

Ymend simeci;
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e SIMINCIDENCE: To simulate incidence curve

¢ SIMFETPDF: To simulate the probability distributions of FET and
F10ET

SIMEPFET: To simulate expected daily probability distributions of FET
o SIMFETVSM: To simulate FET against different daily rales of travel
s SIMFETVSRO: To simulate FET against different RO

SIMCOUNTLRY: To simulate nuinber of countries received infected cases

by day
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COREFILE

LS r st e p s e e e i R s L S S e
Program name: COREFILE

Version: 1.0

Author: Mare¢, Biostatistician

Study name: HIN1 simnlaton study

Created date: OINOV2010

Purposa: A core file for the study (Chapter 4)

Notes:

HHFHSHHEHEE R R R SRR B SRR R B R R B RR R R R SRR b R
# Amendment history:

§ | --Amended date--|--Amended by--|---------- Description-———--=-=——-=- |

E R R R

HERURGHEHEE R R AR R R B B R R R R ERUR B R R R R ERR SR BERERE R BRI R BB BRI BH SRR 10

R RERREE R R S
### Function of the study ###

### Function of MCMC ###
source ("C:\\MIMCfunction™)

### Function of MCMC Elots 2:34
source ("C:\\MCMCplot"

### Function to validate estimated values ###
source ("C;\\OBSDIFF")

wek Simulation study #

### Simulation testing study ###
source ("C:\\SIMULATION")

RRABR R U B HRRS B4
##4 Case study ###
BRABE ARG RERES B

###t MCMC from epidemic data and sensitivity amalysis ###
source ("C:\\SIRDBS")

# Simulate incidence curve
source ("C;\\SIMINCIDENCE")

# Simulate the probability distributions of FET and F10ET
source ("C:\\SIMFETPDF")

# Simulate expected daily probability distributions of FET
source ("C:\\SIMEPFET")

# Simulate FET ag%%nst different daily rates of travel
source ("C:\\SIMFETVSM")

# Simulate FET againat different RO
source {("C:\\SIMFETVSRO")

# Simulate number of countries received infected cases by day
source ("C:\\SIMCOUNTRY")

MCMC function

S EERERRAEREREEHHERERE R AR R AR R AR S R G S S R R R R R AR
# Program nams: MCMCfunction

# Versiom: 1.0

# Author: Marc, Biostatistician

# Study name: HiIN1 simulaton study

# Created date: OINOV2010

# Purposse: A function for MCMC metropolis random walk to obtain the
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# posterior distribution

# Notes:

H R R RS R R R R HEEHERERARSE S R R 1 R HERGE R R RS RS a0 S N R
# Amendment history: :

# |--Amended date--|--Amended by--|-—-———--~-— Description---—-=~—w—~-—- |

&
HHH NS G B RSB R R R AR SRR R R R R A R AR

HERREERRREERERRRRERRR BB RBERIH AR UG SRR AR RER R HR R A B S
#i## Log likelihood for the Stechastic dynamic model i
S G R AR R R R R R R R R
logpost=function{un,¥,R0ad,TIp,tau,rate){

# stochastic SIR model #

# adapt tau

10=7

datalength=length(ul,11)

sirp=matrix(0,tau+1,7)

sirpf1,1=c(0,N,10,6,0,0,0)

for (i im 1:tam
pi=l-exp{(-1#(ROad+*sirp[i,3]1)/W)
x=round{pi*sirpli,2], 0
S=max(0,sirp[i,2]-x)
y=round(sirpli,3]+TIp,0)
I=max (0,sirp[i,3]+x-¥)
R=max(0,sirpfi,a]+y)
girp(i+1,]=<¢(i,8,I,R,0,x,¥}

Stau=sirp[tau+l, 2]
Itau=sirp[tau+l,3]

sir =matrix(0,datalength+1,7)
sir(1,)=c{tau,Stau,Itau,0,0,0,0)

#likelihood matrix

for (i in 1:datalength){
pi=l-exp(-1*(ROad*sir[i,3])/N)
x=trunc{uli,2] /rate)
S=max (0,sir[i,2]-x}
y=round{=ir[i,3]+TIp,0)
I=max{0,sir[i,3] +zx-y}
R=max{0,siz[i,4]+y)

# likelihood
loglikeli=-log{dbinom(x,sir[i,2],pi,0}}
sir(i+1,}=c(tau+i,s,I,R,leglikeli,x,y)

}
sumlikesir=sum(sir{2: (datalength+1),5])
return (sumlikesir)

MCMCepi=function(u,N,burnin,M){

# Set prior information

# Initial RO, TI, rate, al
ROj=1.5

TI=3

ROadj=R0j/TL
LROad=1/TI
UR0ad=3/T1
TIpj=t-exp(-1#(1/TI))
ratej=0.2

Lrate=0.001
Urate=0.8

tauj=20

Ltau=1

Utau=120

drawe=c(C,R0adj,TIpj,tauj,ratej,0,0,0,0)

173



# time Tecord
system.time(
for {iter in 1:{burpin+M-1)}{

# random walk single move #
# Tules: accept with prob min(l, A) #

# Initiate acceptance rate
Rbadacpt=0

TIpacpt=0

tauacpt=0

rateacpt=0

# random step size
VROad={rmif (1) /30}* (URCad-LR0ad}
Vtau={runif (1) /5}*(Gtau-Ltau)

# update tau, Stan, Itan
taunew=round (rnorm(1, tauj, Vtau) ,0)
if (taunew>Ltau & taunew<Utau){
tand=logpost (u,N,ROadj, TIpj, taunew, rate])
if {is.finite(taud)){
A=exp(-1*(tank-logpost(u,N,R0adj,TIpj, tauj,rataj)))
if (runif(1) < min(1,4)) {
tauj=taunew
tavacpt=1

¥
T

# update RO
ROadnew=rnorm{1,R0adj,VROad)
if (ROadnew>LROad & ﬂoadnew<unoad){
ROadA=logpost (u,N,ROadnew, TIpj, tauj,ratej)
if {is.finite(ROadA)){
A=exp(-1*{(R0adA-logpost (u,N,RGadj,TIpj, tauj,ratej) }}
if (runif(1) < min%?,A)) i
ROadj=RQadnew
ROadacpt=1

¥
X

# store the simulations #
draws = rbind(draws,c(iter,R0adj,TIpj,tauj,rataj,
N ROadacpt,TIpacpt,tanacpt,rateacpt))

return{dravs)

MCMCplot

P

Program pame: MCMCplot

Versiom: 1.0

Author: Marc, Biostatistician

Study name: HIN1 simulaton study

Created date: OINOV2010

Purpose: A function to generate the time series trace plot,
autocorrelation plot, and probability density plot
from simulated data

Notes:

SRR ERRS AR ERRRRHRR R B RE B RS RBRHR R SR SRR R SRR R R RN HREEH R SRR

# Amendment history:

# j-—-Amended date——|--Amended by--|-—-----—-- Description——————~-----~ ]

HHEH R TR

#
REGHLBERRR R BB G QR R A RS 1R R AR AR S R i HREEHARH R R R i

MCMCplot=function{drawsdat){
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# 3 by 3 plots
par(mfrow-c(4 2}

# RO
plot(drawsdat[,2],xlab="",ylab="", main="RO" , type="1" ,axes=F) ;axis (1) ;axis (2}
acf (drawsdat[,2] ,xlab="1ag" ,ylab="" ,pain="R0O" ,axes=F);axis(1);axis(2)
hist(drawsdat[,2],freq = FALSE,breaks =300, main="RO",xlab="" ylab="")
plot(density{drawsdat[,2]} ,main="R0" ,x1ab="",ylab="")

# tau

plot(drawsdat[,4],xlab="",ylab="" main="tan",type="1",axes=F);axis (1) ;axis(2)
act {drawsdat [, 4] xlab—"lag" ylab—“" main="tan",axes=F);axis(1);axis(2)
h1st(drawsdat[ 4] freq = FALSE breaks =300,main="tau",xlab="",ylab="")
Elct(density(drausdat ,4],bu=0.4},main="tau",xlab="“,ylah="")

OBSDIFF

Program name: OBSDIFF

Version:

Author: Mare, Biostatisticlan

Study name: HIN1 simulaton study

Croated date: 01NOV2010

Purpose: 4 function to calculated the absclute difference between
exported days

Notes'h .

Amendment hlstor

|--Amended date-—l——kmended by—-|-———-——-—- Description--—-----————- |

1&%4‘&1&*&%%*&_

n:&:u;

HRBRBRAR BB R AR R R RS R B R R R R R SRR R R R

HERUHRS R RRB A RS SR ERAR R AR BERRH HRH S B SRR RS R R R RS
ﬁ## Function to calculated the absclute differegcg“PccgccgucﬁgcgEcgngﬁgcnfff

cbsd1ff=funct10n(flrstdata,m,N ROad, TIp,tau} {

10=7

datalength=200

sir =matrix(0, datalength+1 6}
sirl1,1=¢c(0,N,I0,0,0,0

# SIR matrix

for (i in i:datalemgth){
pi=l-exp(-1*(R0ad*sir[i,3])/N)
x=round(pit+sir[i,2],
S=nax(0,8ir[i,2]-x)
y=round(sir[i, 3]*TIp,0)
I=max{0,sir[i, 3]+x-y)

=max{0,sir[i, 4]+y)
) sir(i+1,]=¢(i,8,I,R,x.¥)

olength=length{firstdata)
itern=200
arrdaydrawk=NULL

for (iter in 1:itern){
arrdayk=NULL
for (i in 1:mlength){
for (j in 1:datalength}{
#pm=1i-exp((-ROad*m[i]*sir[j+1,3]}/(N)}
pm=1-exp{(-ROad*sir[j+1, 3];/(N
#flrst—rblnom(l i,pm)
first=rbincm(1,m[ij,pm)
if (first>0) {
arrday=girfj+1,1]-tau
braak
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arrday=999
irrdayk = rbind{arrdayk, arrday)
arrdaydrawk=cbind (arrdaydrawk,arrdayk)
arrdaymed=round (apply {arrdaydravk,1,median},0)

diff=abs (arrdaymed-obsfirstdata)
absdiff = sum(diff)
return {abadiff)

}

# Notes: geometric dist can be changed to binomial dist {result is similar)

SIMULATION

HEBH LR HBRRR RSB B R RRERRRHR S B BB R BB R BB LR H R ERHBRR BB RGBSR R R R R R R R0 G
# Program mame: SIMULATION
Version: 1.0
Author: Marc, Biostatistician
Study name: HINi simulaton study
Created date: OINQV2010
gurpose: A simulation to test the MCMC metropelis random walk
otes:

#
#
#
#
#
#
# Amendment history:

# |--Amended date--|--Amended by--|--------—-Description------------- }

ERps s n b prnn s T i n s P s D e r s s s R e b i s e s s e

P b s i bR S R S D S

### Prepars simulation dataset ###
HERERRERR R SRS REBBA MBS S SRR

# stochastic SIR model functien to obtain the simulation data
SIRsim=function(N,TI,R}, tau,rate,datalength, buf ferperiod) {

I0=7
gir =matrix(0,tantdatalengthtbufferperiod+1,6)

# day 0
sir(1,1=¢(0,N,10,0,0,0)

for (i in 1:(tau+datalen§th+buiferperiod)){
pi=1-exp({-RO*sir[i,3])/(TI*N))

# expected incidence
x=round(pi*sir[i,2],0}
S=max{0,sir[i,2]-x)
pr=1-exp(-1#(1/TI})
y=round{pr+sir[i,3],0}
I=max{0,sir[i,3]+z-y)
R=max{0,sir[i,4]+y}
} sir{i+l,]=c(i,8,I,R,x,¥}

# function to gensrate misreported incidence data
u=seq(l,datalength,by=1)
for (i in 1l:datalength){

uli]l=round{sir [tau+i+1,5])*#rate,)

ku-seq(i,datalan§th,by-1)
ndata=cbind (ku,n
return(udata)

1

### Simulation settings: P1, P2, P3 #i##
# Scenario P1 #

Pidatalength=30

Plbufferperiod=60

PiN=1000000
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P1RO=1.2

P1TI=3

Pltau=28

Plrate=0.3
Piu=SIRsim(P1N,P1TI,P1RO,Pitau,Plrate,Pldatalength,Plbufferperiod)

# Scenaric F2 #

P2datalength=30

P2bufferperiod=60

P2N=1000000

P2RO=1.%

PITI=3

P2tau=16

P2rate=0.15

P2u=3IRsim (P28 ,P2TI ,P2R0,P2tau,P2rate,P2datalength,P2bufferperiod)

# Scenaric P3 #

P3datalength=30

P3bufferperied=60

P3N=1000000

P3R0O=1.8

P3TI=3

P3tan=7

P3rate=0.05
P3u=8IRsim{P3N,P3TI,P3R0,P3tau,P3rate,P3datalength,P3bufferperiod}

BREFHHBERBULREHBHG B BR BRI
##% Simulation testing ###
BREFHEAERHHBR B BHRBRE B

#54 P1 da

# Set up burn-in period and iteration pumbers M
Pilburnin=10000

P1M=100000

# 1min for 8000 iterations

system.time ({
;%para=HCMCepi(P1u,1000000,P1burnin,P1M)

# Acceptance rate

acptrates=matrix(0,1,4}

for (i in 1:4X{
§cptrates[,i]=sum(P1para[,(5+i)])/(P1burnin+P1H)

acptrates

# Eliminate burn-in period
Plparab=Plpara[{Piburnin+1}: (Plburnin+P1iM),]

# MCMC statistics

MCMCstat=matrix(0,4,5)

for (i in 1:4){
mean=mean(Plparab[,i+1])
median=median (Plparap[,i+1])
a=table(round(Plparabl,i+1],4))
mode=as .numeric(names{a) [a==max (a)])
sd=sqrt (var (Plparabl[,i+1]1))
L=quantile{Plparab[,i+1],0.025)
U=quantile{Plparabl,i+1],0.975)
MCMCstat [i,]=c{mean,median,sd,L,)

}

MCMCstat (1, ]=Tound (MCHMCstat [1,]1,3)
MCMCstat [2, ]=Tound (MCHMCstat [2,]1,2)
MCMCstat [3, ]=round (MCMCstat [3,],0)
MCMCstat [4,]=round (MCHCstat (4,] ,4)
MCMCstat

# The MCMC diagnostic plots
MCMCplot (Plparab)

# Scatter plot
pairs{“Plparabl,2]+Piparab(,4],labels=c{"RO","tau"J,
main="Scatterplot matrix"}

# Save MCMC data
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save{Plpara,
file = “"C:\\P1.RData")

HER P2 #ER

# Set up burn-in period and iteration numbers M
P2burnin=10000

P2M=100000

# 1nin for 6000 iterations

system.time({
g%para=MCHCepi(P2u,1000000,P2burnin,P2M)

# Acceptance rate

acptrates=matrix{0,1,4)

for (i in t:4)9{
?cptrates[,i]zsum(PQpara[,(5+i)])/(P2burnin+P2H)

acptrates

# Eliminate burn-in peried
P2parab=P2paral(P2burnin+1): (F2burnin+P2M),]

# MCMC statistics

MCMCstat=matrix(0,4,5)

for (1 in 1:4
mean=mean{P2parab[,i+1])
median=median{P2parab{,i+1]}
a=table(round{P2parab[,i+1],4}}
mode=as.numeric{names{a) [a==max(a)])
sd=sqrt(var(P2parabl,i+11))
L=quantile{P2parabl,i+1],0.025)
U=quantile{P2parab[,i+1],0.975)
MCMCstat[i,]=c{mean,median,sd,L, U}

}

MCMCstat [1,]=round (MCMCstat[1,],3)
MCMCstat [2, ] =round (MCMCstat [2,],2)
MCMCstat [3, | =round (MCMCstat [3,),0)
MCMCstat [4, ] =round (MCMCstat [4,],4)
MCMCstat

# The MCMC diagnostic plots
MCMCplot (P2parab)

# Scatter plot
pairs{ P2parabl[,2] +P2parabl[,4],labels=c{"RG", "tau"),
main="Scatterplot matrix")

# Save MUCMC data
save(P2para,
file = "C:\\P2.RData")

#48 P3 ##H

# Set up burn-in period and iteratiorn numbers M
P3burnin=100G0

P3M=1000Q00

# 1min for 6000 iterations

system.time ({
g)para=MCH06pi(P3u,1000000,P3burnin,P3H)

# Acceptance rate

acptrates=matrix(0,1,4)

for {i in 1:4)

?cptrates [,3)=sum{P3paral, (5+1i)1)/(P3burnin+P3M)

acptrates

# Eliminate burm-in period
P3parab=P3para [{P3burnin+1); (P3burnin+P3M),]

# MCMC statistics
MCHMCstat=patrix{0,4,5)
for {i in 1:4){

mean=mean (P3parab(,i+1]}
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median=median(P3parabl,i+i})
a=table{round (P3parabl[,i+11,4))
mode=as.numeric(names{a) [a==max (a)])
sd=zqrt (var{(P3parab[,i+1]))
L=quantile(P3parab(,1+1],0.025)
U=quantile(P3parabl,i+1],0.975)
MCHCstat[1i,]=c(mean,median,ad,L,U)

¥
MCMCatat [1,]=round {MCMCstat[1,],3)

MCMCstat[2,]=round (MCMCstat [2,].2)
MCMCstat [3, ] =round {(MCMCatat [3,],0)
MCMCstat [4, ]=round (MCMCstat [4,] ,4)
MCHMCstat

# Tha MCMC diagnostic plots
MCMCplot (P3parab)

# Scatter plot
pairs (“P3parab[,2]+P3parab[,4] ,labels=c{"R0","tau"},
main="Scatterplot matriz™)

# Bave MCMC data
save(P3para,
file = "C:\\P3.RData")

SIROBS

Program name:; SIROBS

Version: 1.0

Author: Marc, Biostatistician

Study name: HiN1 simnlaton study

Created date: 01NOV2010

Purpose: MCMC from epidemic data and sensitivity analysis

Hotes:

HREZERBBRBEDR SRR BUBIRRBAB BB R G LB B LR BERRBHLBRBRREHRRRRREHG R GHH LSRR BRR BB ERED R
# Amendment history:

§ | --Amended date-—|--Amended by--|---------- Dascription-———---—-——-- |

W H

HALRERABRRERBERBRRRBHRERD BB R GH B S LRERRRHBERRBBBRERBUERREREBHU RSB E BB BB EREDR

HEHRES BB G
##4 Epidemic dataset #&#3#
HRERE R S R

# Mexi gov 14/3-30/4 (48)
u=c(2,1,3,1,2,3,3,4,4,5,7,2,1,2,5,7,4,10,10,9,4,4,11,5,7,
1,3

1, 4,4,4,11,17,
26,20,12,18,26,32,44,107,114, 154,226,280, 318,398,411,304,280

1
80,227)
datalength=length{u)

# corresponding daﬁ
ku=seq(1,datalength,by=1)

udata=cbind {ku,u)

HRHRBH BB RS SRR

##% Arrival data #i##

#HHHER RS

# day 1 = 14/3

# First case arrival day
obsfiratdata=c{46,46,46,47,48,48,449,61,52,65)
# Travel rate

mi=c(101313,85724,20513,16950,35772, 27640, 61960, 24535, 15090, 24609)
obsmdaily=trunc{mi/61}

HEHZELRRRBRUERRRGE SR BER
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#i#8 HOMC estimation ##2

# Set up burn-im periocd and iteration numbers M
burnin=5000

M=20000

system.time ({
;?spara=MCHCepi(udata,106682518,burnin,ﬁ}

# Acceptance rate

acptrates=matrix{0,1,4)

for (i in 1:4){
;cptrates[,i}=sum(ebspara[,(5+i)])/(burnin+M)

acptrates

# Eliminate burn-in period
chsparab=obspara[{burnin+1) : (burnin+¥),]

# MCMC statistics

MCHMCstat=matrix{0,4,5)

for (i in 1:4){
mean=mean (obsparab[,i+1]}
wedian=median (cbaparabl[,i+1])}
a=table{round{cbsparabl[,i+1],4))
mode=as.pumeric{names{a) [a==max(a)])
sdmsqrt (var (ebsparab[,i+1]))
L=quantile{cbsparabl[,i+1],0.025)
Umgquantile{ebsparab[,i+1],0.975)
MCﬁCstat[i,]=c(mean,madian,sd,L,U)

}

McMestat [1,]=round (MCMCstat[1,],3)
MCMGstat [2.]=round (MCMCstat [2.] .2)
MCMCstat [3,]=round (MCMCstat [3,],0)
MCMCstat [4,]=round (MCHCstat [4,] ,4)
MCMCstat

# The MCMC diagnostic plots
MCMCplot {obsparab)

# Save MCMC data
save(cbspara,
file = "G:\\obs.RData")

# Validate the estimated parameters

ROmcme=4

TIpmeme=1-exp(-1+(1/3))

taumeme=20
obsdiff{obsfirstdata,obsmdaily, 106682518, R0mcme , TIpmeme , taumene)

HEHEEHHERERHERE R R R

### Sensitivity analysis ###%
HHEEHHHER R R R R AR

SR

# TI=2.5 #

BHHRERARR

# Set up burn-in period and iteration numbers M
salburnin=10000

5alM=100000

system.time ({
?glpara=HCMCepi(udata,106682518,salburnin,salﬂ)

# Acceptance rate

acptrates=matrix{(0,1,4}

for (i in 1:4){
?cptrates[,i]=aum(sa1para[,(5+i)])/(sa1burnin+salﬁ)
acptrates

# Eliminate burn-in period
salparab=salparal (salburnin+1): (salburnin+salill),]

# MCMC statistics

180



MCMCstat=matrix{0,4,5)

for (i in 1:4)}{
mean=mean{salparab[,i+1])
median=median(salparab[,i+1])
a=table(round(salparab[,it+1],4})
mode=as.numeric(names{a) [a==max{a)])
sd=sqrt{var(saiparabl,i+1]))
L=quantile{salparabl,i+1],0.025)
U=quantile{salparab[,i+1],0.97E)
MCMCstat [i,]=c(mean,median,sd,L,U)

H
MCMCstat [1,]=round (MCMCstat[1,],3)

MCMCstat [2, ]=round (MCMCstat [2,],2)
MCMCstat [3, J=round (MCMCstat[3,],0)
MCMCstat [4, ]=round (MCMCsatat [4,] ,4)
MCHCstat

# The MCMC diagnestic plots
MCMCplot (salparab)

# Save MCMC data
save(salpara,
Eile = "C:\\sal.RData')

R

# TI=3.5 #

R

# 8et up burn—in period and iteration numbers M
sa2burnin=14000

sa2M=100000

system.time({
§?2para=MCMCepi(udata,106682518,532burnin,sa2M)

# Acceptance rate

acptrates=matrix{0,1,4)

for (i in 1:4)9{
icptrates[,i]=sum(sa2para[,(5+i)])/(sa2burnin+sa2M)

acptrates

# Eliminate burn-in psriod
salparab=saZparal{sa2burnin+l): (sa2burnin+s=aZi),]

# MCMC statistics

MCMCstat=matrix(0,4,8)

for (i in 1:4){
mean=mean {saZparabl,i+1])
median=-median{(sa2parabl[,i+1])
a=table{round(saZparabl,i+1],4))
mode=as.numeric {names (a) [a==max{a)])
sd=sqrt{var (saZparab[(,i+1]))
L=quantile{saZparab(,i+1],0.025)
U=quantile{saZparabl,i+1],0.975)
MCMCstat [i,}=c(mean,median,sd,L,U}

}

MCMCstat[1,])~round {MCMCstat[1,],3)
MCMCstat[2, J=round (MCMCstat[2,],2}
MCMCstat [3,]=round (MCMCstat [3,],0)
MCMCetat [4, ] =round (MCMCstat [4,] ,4)
MCMCstat

# The MCMC diagnostic plots
MCMCplot {sa2parab)

# Save MCMC data

save (sa2para,
file = "C:\\sa2.RData"}
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SIMINCIDENCE

FRBRR R R R R R AR S R R R R RS R S EE  R EH G R R AR R R RS R RS B R e 8
# Program name: SIMINCIDEWCE

# Version: 1.0

# Author: Marc, Biostatistician

# Study name: HIN1 simulaton study

# Created date: 01NOV2010

# Purpose: To simulate incidence curve

# Notes:

HARRBHER UG BRR R REFRRBRBBERBEBBRBRRWI B B E RSB RER BB R ER R R GERIPREEHHERE S
# Amendment history:

# |--Amended date--|--Amended by——|-----————- Dagcription-—--——~~-=m-v |

#
HEREHBH PR RER B AR R ERERRERRERREERRR LR BB S R R R R ]

# Load MCMC sémpleé #

Toad(*C: \\obs.RData®)

# Eliminate burn-in peried

burnin=10000

M=100000
obsparab=cbsparal (burnint1} : (burnintM),]

# Epidemic settings
N=106682518
I0=7

[ s B s

# Incidence curve #
GHoHRNREEH SR ERIRR

# Create store file for incidence
datalength=50

btuffer=30

# number of simmlations
itern=1000

zstore=matrix (0,buffer+datalength+?,itern)

# Simulate incidence
for (j in l:itern){

# Random select RO and tan
randnel=trunc{runif (1,1, (M+13))
ROadrand=cbsparab[randnol, 2]
TI=3

TIprand=1-exp(-1%(1/TI})
randno2=trunc{runif{l,1, (H+1})?
taurand=obsparab [randno2,4]

# stochastic SIR model
sirsim=matrix(0,buffer+datalength+1,6}
sirsim[1,]=c(0,N,10,0,0,0)

for (i in 1:{buffert+datalsngth}){
if (i<taurand){
sirsim[i+1,]=c(i,N,I0,0,0,0)

else {
pi=l-exp(-1*(R0adrand*sirsim[i,3]}/N)
#x=rbinom(1,sirsim(i,2],pi)
x=round{pi*sirsim[i,2], 0)
S=max{0,sirsim(i,2]-x)
#y=rbinem{1,sirsim[i, 3], TIprand)
y=round(TIprand*sirsim[1,3?, 03
I=max(0,sirsim{i,3]+x-y)
R=max{0,zirsim{i,4)+y)

x sirsim(i+1,]=c(i,8,I,R,x,y)

}

# =tore the incidence
xstorel, jl=sirsim[,5}
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¥

# incidspce statistics

xdraw = NULL

for (k in 1:(buffer+datalength+1}}{
%x_ll=quantile{zstore(k,],0.025}
x_ml=median{xstorel[k,])
x_ul=U=quantile{xstorelk,],0.975}
xdraw=rbind (xdraw,c(z_11,x_ml,x_ul})

xdraw

# File save
write.csv(xdraw,
file="C:\\xdraw.csv",row.names = FALSE)

SIMFETPDF

FRIHEEE R B R R R R IR R R R R R R R R R
# Program name: SIMFETPDF

# Version: 1.0

# Author: Marc, Biocstatistician

# Study name: HiIN1 simulaton study

# Created date: 01NOV2010Q

# Purpose: To simulate the probability distributions of FET and F10ET

# Notes:

HHERRRBERHREE BRI S AHE S R E AL R RS R G R R SR R R B UR BRBR G R BSRRR R R ER DI
# Amendment history:

# |--imended date~-|--Amended by--|-=w=-——=——n Description
#

REBRE R R RER S BRER LS
# Load MCMC samples #
R R AR B
load("C:\\obs.RData")

# Eliminate burn-in psriod

burnin=10000

M=100000
obsparab=obspara{{burnin+1) ; {burnin+tM),]

# Epidemic settings
H=106682518
I0=7

HERRR R AR R B RS RES RS R R
# Distribution of exported cases #
$UBHH R R R R ER RS R R
simdaydist=function{itern,setm,firstcut){

datalength=240
arrdayk=NULL

# SIR model
for (iter in 1:;itern){

# Random select RO
randnol=trunc{runif (1,1, (M+1}})
ROadrand=¢bsparab[randnoel, 2]
TI=3

TIprand=1-exp(-1+(1/TI)}

sir =matrix(0,datalength+1,7)
sir[1,]1=¢c(0,N,10,0,0,0,0)

# SIR matrix

for (i in 1:datalength){
pi=1l-exp(-1#{ROadrand*sir[i,3]1}/N}
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x=round(pi*sir[i,2], @)
S=max(0,sir[i,2]-x
y=round(sirf[i,3]+TIprand,d)
I=max (0,sirfi, 3)+x-y)
R=max {0, sir[i,4]+y)
nevcase=rbinom{1l,setm,pi)
cumcase=pax{0,sir[i,7]+nevcasa)
sir[i+1,]=¢(1,8,1I,R,x,y,cumcasa}
if (cumcase>firstcut) {

arrday=sirfi+l,1]

braak

arrday=0

# Store the arrival day
grrdayk = rbind{arrdayk, arrday)

# export the simulated exported day
raturn (arrdayk)

)

# distribution of m=300, first case, 10000 iterations #
system.time ({

firstin300=sindaydist (50000,300,0)
first1m300r90=simdaydiss (50000, 30,0)
first1m300r99=simdaydist(50000,3,0)

»n
FET300=cbind(first1m300,first1n200r90,first1m300r99)

# statistics
FETstat=matrix{(0,3,5)

for (k in 1:3){

mean=mean (FET300(,k] )
median=median (FET300[,%]}
sd=sqrt{var (FET300[,ki))
L=quantile (FET300[,k],0.025)
U=quantile(FET300[,k],0.975)
gﬁgstat[k,J-c(mean,median,sd,L,U)

FETstat

# pdf plot

hist(FET300[,1] ,breaks =300, main="",xlab="",ylab="", axes=F)
axis(1}

axis(2,las=1)

box ()

hist(FET300[,2] ,breaks =300, main="",xlab="",ylab="", axes=F)
axis(1}

axis(2,las=1)

box{)

hist(FET300[,3] ,breaks =300, main="",xlab="",ylab="", axes=F)
axis(1}

axis(2,las=1)

box ()

plotEd?nsity(FET300[,13,bw=0.8),xlim=c(0,180),ylim=c(0,0.1),main=““,x1a ="' ylab="" axes=F)
axis(1l

axis(2,las=1)

box()

lines(density(FET300[, 2] ,bw=0.8),1ty=2)

lines{density (FET300[,3],bw=0.6),1ty=3)

# distribution of m=1500, first case, 1000 iterations #
system. time ({

firstinl500=sindaydist (50000, 1500,0)
firstim1500r90=sindaydist (50000, 150,0)
firstin1s00r99=simdaydist (50000,15,0)

)
FET1500=cbind (irst1m1500,first1m1500r90, firstini500r99}

# statistics
FETstat=matrix(0,3,5)
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for {(k in 1:3){

mean=mean (FET1500[,k])
median=median{FET1500[,k])
sd=sqrt (var (FET1500[,k]}}
L=quantile(FET1500[,k],0.025)
U=quantile(FET1500[,k],0.975)
FETstat{k,l=c(mean,median,sd,L,U}

FETztat

# pdf plot

hist (FET1500[,1] ,breaks =300, main="",xlab="",ylab="" axes=F)
azis(l)

axig(2,las=1)

box ()

hist(FET1500[,2] ,breaks =300, main="",xlab="",ylab="", axes=F)
axis{l)

axis(2,las=1)

box ()

hist(FET15800[, 3] ,breaks =300, main="",xlab="",ylab="",6axes=F)
axis(1)

axis(2,las=1)

box ()

plgtgg?nsity(FET1500[,1],bw=0.8),xlim=c(0,180),ylim=c(0,0.1),main="“,xla ="",ylab="", axes=F}
axis

axis(2,las=1)

box{)

lines(density{(FET1500[,2],bw=0.8),1lty=2}

lines(density{(FET1500[,3],bw=0.8) ,1ty=3}

# distribution of m=300, first 10 cases, 50000 iterations #
system.time({

firsti0m300=simdaydist (50000,300,9)
first10m300r90=gimdaydist (50000,30,9)
first10m300r99=sindaydist (50000,3,9)

kD,
F10ET300=cbind (first10m300, first10m300r90, first10n300r99)

# statistics
F10ETstat=matrix{0,3,5)

for (k im 1:3){

mesn=mean {F10ET300 [,k])
median=median (F10ET300(,k])}
sd=sqrt(var (FI0ET300[,k]})
L=quantile (F10ET300[,k],0.025)
U=quantile(F10ET300[,k],0.875)
gigETstat[k,]=c(mean,median,sd,L,U)

Fi0ETsatat

# pdf plot

hist (F10ET300[,1] ,breaks =300, main="",xla] =" ylab="" axes=F}
axis(1)

axis(2,las=1)

box(}

hist(F10ET300[,2] ,breaks =300, main="",xlab="",6ylab="" axes=F}
axis(1)

axis(2,las=1)

box(}

hist(F10ET300[,3] ,breaks =300, main="",xlab="",ylab="", axes=F)
axis(l)

axia(2,las=1)

box ()

plot(density(FiOET300[,13,bw=0.5),xlim=c(0,180),ylim=c(0,1),
main="",xlab="" ylab="", axes=F)

axis(1)

axis(2,las=1)

box ()

lines(density(F10ET300[,2],bw=0.5),1ty=2}
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lines (density(F10ET300[,3],bu=0.4),1ty=3)

# distribution of m=1%00, first 10 cases, 50000 iterations #
systen.time {{

first10m1500=sindaydist (5Q000,1500,9)
firgt10m1500r90=gimdaydist (50000,150,9)
first10m1500r99=simdaydist (50000,15,9)

9]
F10ET1600=cbind (firat10mi500,first10m1500r30, first10m1500reg)

# statistics
F10ETstat=matrix{0,3,5)

for (k in 1:3)4{

mean=mean {F10ET1500[,k]}
median=median (F10ETi500[,k])
sd=sqrt (var (F10ET1600[,Xk])}
L=quantile (F10ET1800[,k] ,0.025)
U=quantile(FlOET1500[,k],0.9?5)
F10ETstat [k,]=c(mean,median,sd,L,U)

F10ETstat

# pdf plot

hist(F10ET1500[, 1] ,breaks =300, main="",xlab="",ylab="" axes=F)
axis(l1)

axis(2,las=1)

box ()

hist(F10ET1500[, 2] ,breaks =300, main="",xlab="",ylab="", axes=F)
axis(1)

axis(2,las=1)

box ()

hist(F10ET1500[, 3] ,breaks =300, main="",xlab="",ylab="", axes=F)
axis(1)

axis(2,las=1)

box ()}

plet{density(F10ET1500[,1] ,bu=0.5) ,x1im=c(0,180) ,ylim=c(0,0.4),
main="",x1lab="",6ylab="",axes=F)

axis{1)

axis{2,las=1)

box ()

lines(density(F10ET1500[,2] ,bw=0.5) , Lty=2)

lines(density{(F10ET1500[, 3] ,bw=0.45),1ty=3)

SIMEPFET

HRBHA B LR BRERLRBRHRB BB R AU B SR EHHREBRRBR BB BUE RS RB LR R B G EUR BB LR RRER R
# Propgram name: SIMEPFET

# Versien: 1.0

# Author: Marc, Bieostatistician

# Study name: HINI simulaton study

# Created date: QINOV20i0

# Purpose: To simulate expected daily probability distributions of FET

# Notes:

HRBHRBERBRURER U BRI U B BB AR RBHH R RRR RGP HERRER R SRR R R R R R
# Amendment history:

# |--Amended date--|--Amended by--l----——----Description———-—-—~————— |

#
BREGHELRRRERRRBS EREH B R AR B R B RSB G SR BRI RERBRR R B R R R S R R 2 B0

# Epidemic settings
N=106682518
10=7

FHERHEHHE AR EAPHEERHHE R AR
# Expected PDF of export > 0 case by day #
REGH RS SRR R R R
Epexp=function(setm){
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datalength=240
arrdayk=NULL

# expected RO

TI=3
TIprand=1-exp(-1%{(1/TI))
ROad=0.411

# SIR model

sir =matrix(0,datalength+1,8)
pbyday =matrix(0,datalength+1,3}
sir[1,]=c(0,N,10,0,0,0,0,0)

# SIR matrix

for (i in 1l:datalength){
pi=i-exp(-1*(ROad+*sir[i,3])/N)
x=round{pi*sir[i,2], ©
S=max(0,sirl[i,2]-x)
y=round{sir[i,3]+TIprand,0)
I=max(0,sir[i,3]+x-¥)
Rmax (0, sir[i,4] +y)
pO=dbinom(0,setm,pi)
pl=1-dbinom{0, setm,pi)
sir[i+1,]=c(i,8,I,R,x,y,p0,pl)

y Pbyda)"[i+1.]=5(i.p0,p1§

# export the probability by day
return {pbyday)

# pdf of export by day for m=300 with restrictions
Ep300r0=Epaxp (300
Ep300rg0=Epexp (30}
Ep300r99=Epexp(3}

Ep300=cbind (Ep300r(,Ep300r90,Ep300ras)

# File savs
write.csv(Ep300,
file="C:\\Ep300.csv",row.names = FALSE)

# pdf of export by day for m=1500 with restrictiomns
Ep1500r0=Epexp {1500}

Ep1500r90=Epexp{150}

Ep1500r99=Epexp{15)

Ep1500=cbind (Ep1500r0,Ep1500r 80, Ep1500r99)

# File =zave
write.csv(Ep1500,
file="C:\\Ep1500.csv" ,row.names = FALSE)

SIMFETVSM

HER B RBRRAEAR FL R R BRI R R R R R R R B R I R AR B AR e AR ]
Program name: SIMFETVSM

Version: 1.0

Author: Marc, Blostatistician

Study name: HINl simulaten study

Created date: O1NDV2010

Purpose: To simulate FET against differemt daily rates of travel

Kotes:

Amendpent history:
|--Amended date--|--Amended by—-|------—-—--- Description---—---—---—-

HREREREERIEIR

# Epidemic settings
N=106682518
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I0=7

# First export day against m #
HHENR SR HR R SRR RS BB YR #
dayvsm=function(itern,lm,un,firstcut, RO} {

datalength=200

# Select RO

I0=7

TI=3
TIprand=1-exp(-1#{1/TI))
ROadrand=R0/TI

mdayiter=NULL
# 5IR model
for {(iter in 1:itern){
mdaydrawk=NULL
for (mlevel in seq(lm,um,by=10)){
sir =matrix(0,datalength+1,7)
sir[1,]1=¢(0,N,10,0,0,0,0)

# SIR matrix
for (i in i:datalength){
pi=1-exp(-1# (RQadrand+sir[i,3]) /1)
z=round(pi*sir[i,2], 0)
S=max{0,sirli,2)-x)
y=round(sir(i, 3)*TIprand,0)
I=max(Q,sirli, 3] +x-y)
Remax{0,sir[i,4)+y)
nevcase=rbinom(l,mlevel,pi)
cumcase=max(0,sirli,7]+newcase)
sir[i+i,]=c(i,5,1I,R,%,y,cumcase)
if (cumcaserfirstcut) {
mdaydraw=sir[i+],1]
break

}
} mdaydraw=0

# Store the arrival day per simulations
?daydrawk = rbind(ndaydravk,ndaydraw)

?dayiter=cbind(mdayiter,mdaydrawk)

# export the simulated exported day
return {mdayiter)

1

# 1000 iterations m against first export day in baseline RO
systen.time ({
?%yvsmdraw-dayvsm(iooo,10,5000,0,1.23)

# export days statistics
dmdraw = NULL
drawiength=length(dayvswdraw[,1])
for {k in 1:{(drawlength)){
dm_ll=quantile(dayvsmdraw(k,],0.025)
dm. ml=median(dayvsmdrawlk,])
dm. ul=U=quantile{dayvsmdraw[k,],0.975)
dndraw=rbind (dedraw,c(dm_11,dm_ml,dm_ul))

}
dmdata=cbind(seq(10,5000,10) , dndraw}
# File save

write.cav{dndata,
file="C:\\dmdata.csv", row.names = FALSE)
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SIMFETVSRO

TR R R R R R R R R R R
Program name: SIMFETVSRO

Version: 1.0

Author: Marc, Bicstatistician

Study name: HIN1 simulaton study

Created date: OINOV2010

Purpese: Te simulate FET against different RO

Notes:

FHERHE R R R R R R HRRERHER R R
# Amendment history:

Ak 3k 3k Ik 3E 36 3¢

HRBLHHNEEEE R R HHE HHBEHEHHE R R PR HEE R

# Epidemic settings
N=106682518
10=7

HHEREE AR R
# First export day against R #
R R R R
ROvsFET=function(itern,R0,firstcut){

datalenpgth=240

# Random select RO

IG=7

TI=3
TIprand=1-exp(-1*{(1/TI}}
RQadrand=R0O/TI

mdayiter=NULL
# S5IR modsel
for {(iter im l:iterm){
mdaydrawk=NULL
for (mlevel in c(3,30,300,1500,3000))1{
sir =matrix{0,datalength+1,7)
sir(1,]=c{(0,¥,10,0,0,0,0}

# S5IR matrix
for (i in l:datalength){
pi=l-exp(-1*{ROadrand*sir[i,3]}/N)
x=round (pi*sir{i,2], ©
S=max{0,sir[i,2)-x)
y=round(sir[i,3])*TIprand,0)
I=max{0,sir[i,3]+x-v)
Remax{0,sir[i,4]+y)
newcase=rbinom(i,mlevel,pi)
cumcase=max(0,sir[i,7]+neucase}
sir[i+i,)=c{i,8,I,R,x,¥,cuncase)
if (cumcase>firstcut) {
mdaydraw=sir[i+1,1]
brealk

ndaydraw=0

)y
# Store the arrival day per simunlations
ndaydrawk = rbind(mdaydrawk,mdaydraw)
}

?dayiter=cbind(mdayiter,mdaydrawk)

# export the simulated exported day
return (mdayitser)

}

# 1000 iterations m against first export day in baseline RO
systen.time({
%?vsFETdraw=R0vsFET{10000.1.23,0)
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# export days statistics

rfdraw = NULL

drawlength=length(ROvsFETdraw[,1])}

for (k in 1:{drawlength)}{
rf_ll=quantile{ROvsFETdraw(k,],0.025)
ri_ml=median{ROvsFETdraw[k,])
ri_ul=U=quantile(ROvsFETdraw[k,],0.975}
ridraw=rbind{rfdraw,c{rf_11,xf_nl,rf_uvl))

cbind{c(3,30,300,1500,3000) ,ridraw)

SIMCOUNTRY

Program mame: SIMCOUNTRY
Vergion: 1.0

Author: Marc, Biostatisticiano
Study name: HINl simulaton study
Created date: OLNOV2010

Purpese: To gimnlate number of countries received infected cases by day
Notes=:

# Amendment history:

# |--Amended date--|--imended by--|---------—- Description
#

3696 3 B B B W

HRHEENERERR R R
# Load MCMC samples #
HHHEEBEREAR R R
load("C:\\obs.RData")

# Eliminate burn-in period

burnin=10000

M=100000
obsparab=cbspara[(burnin+1) : (burnin+i),]

# Epidemic settings
N=106682518
10=7

ﬁﬂﬁaﬁgaf'Bfnéaaht;ies"receiééd infected cases by day #
BRI R R R AR R R R R R R
# Travel rates by 22 countries

msim=c{24608,5240,38749,101313, 18535, 24535, 16950,42802,
15090,61960,3b6772, 39460, 2340, 12060,4675,27640,3101,
48717,15478,656724,20513,9150)

msimdaily=trunc{msim/61}

countrycount=function{itern,pm,firstcut,pR,pRtime}{

datalength=240

kcountdraw=NULL
mlength=length(msimdaily)
psimres=round((1-pm)*msimdaily, 0)

# SIR model
for (iter in 1:iterm){

# Random select RO
randnoi=trunc(runif (1,1, {M+1)))
ROadrand=cbsparab[randnol, 2]
I0=7

TI=3

TIprand=1-exp(-1*{1/TI})

marrive =matrizx(Q,mlength,1)

sir =matrixz(0,datalength+l,7)
kcount=matriz (0,datalength+1,1}
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sir[1,]=c(0,N,10,0,0,0,0)
keount f1,]=0

# S5IR matrix
for (i in 1:datalength){
if (i>pRtime){
ROadinterven=pR*R0adrand

else{
ROadinterven=ROadrand

}
pi=l-exp{-i*(ROadinterven*sir[i,3])/N)
x=round (pi*sir[i,2], 0)
S=max{0,sir(i,2]-x)
y=round(sir[i,3]*TIprand,0}

=max {0, sir[i,3)+x-y)
R=max (0, =ir[i,4])+y)

# aimnlate the arrive timse
for {j in l:mlength){
newcase=rbinom%1,msimres[j],pi)
if (newcaserfirstcut & marrive(j,1]==0}{
marrivelj,1]=1

by

cumcase=sumimarrive)
sir(i+l,]=c(i,8,1,R,%,y,cumcase)
keount [i+1,]=cumcase

¥

# Store the country count per simulations
keountdrav=cbind (kcountdraw,keount}

# export the simulated exported day
return (kcountdraw}

# 10000 iterations m against first export day in baseline RO
system.time ({

kcountrO=countrycount (10000,0,0,1,60)

keountrI0=countrycount (10000,0.9,0,1,60)
?gountrgs-ccuntrycount(10000,0.99,0,1,60)

# export days statistics

kdrawr( = NULL

drawlength=langth(kcountr0[,1])

for (k in 1:{(drawlength)){
k_1l=quantile{kcountr0[k,],0.025)
k_ml=median(kcountrOik,])
k_ul=U=guantile(kcountrd[k,],0.975)
kdrawrO=rbind{kdrawr0,c{k_11,%_ ml,k_ul))

# export days statistics

kdrawr30 = NULL

drawlength=length(kcountr90[,1]}

for (k in 1:{drawlength)){
k_ll=guantile(kcountr90[k,],0.025)
k_ml=median (kcountrs0[k,])
k_ul=U=guantila(kcountr90[k,],0.975}
kdrawr@0=rbind (kdrawr90,c(k_11,k_ml, k_ul))

# export days statistics

kdrawr99 = NULL

drawlength=length(kcountr99[,1])

for (k in 1:{(drawlength)){
k_ll=quantile (kcountr99(k,],C.025)
k_ml=median(kcountr99(k,])
k_ul=U=quantile(kcountr99[k,],0.975}

N kdrawr99=rbind (kdrawr99,c({k_11,k_ml,k_ul)}
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# File save
kdraw=cbind (kdrawr(, kdrawr90,kdrawr99)

write.csv(kdraw,
file="C:\\kdraw.csv",row.names = FALSE)

# 10000 iterations m against first export day in 0.8#RO
system.time({

kcountrOR8=countrycount (10000,0,0,0.8,60)
kcountrSOR8=countrycount (10000,0.9,0,0.8,60)
?gountr99R8=countrycount(10000,0.99,0,0.8,60)

# export days statistics

kdrawrOREG = NULL

drawlength=length{kcountzOR8[,11)

for (k in 1:(drawlength}){
k_1l=guantile{kcountrOR8[k,],0.025)
k_ml=median (kcountrORS[k,])
¥k_ul=U=quantile(kcountrOR3[k,],0.975}

y kdrawrOR8=rbind (kdrawrOR8,c(k_11,k._ml, k_ul))

# export days statistics

kdrawrS0R8 = NULL

drawlength=length(kcountr90RS[, 11}

for (k in 1:(drawlength)){
k_ll=quantile{kcountr90R8[k,],0.025)
k_ml=median{(kcountr20RS[k,]>}
k_ul=U=quantile(kcountr20R8[k,],0.975)
kdrawr90R8=rbind (kdrawr20R8,c{k_11,k_ml,k_ul))}

# export days statistics

kdrawr89R8 = NULL

drawlength=length(keountr99R8[, 1]}

for (k in 1:(drawlength)){
k_ll=quantile(kcountr®9R8[k,] ,0.025}
k_ml=median{kcountr99R8[k,])
k_ul=U=quantile{kcountr99R8[k,] ,0.975)
kdrawr99R8=rbind (kdrawrd9R8,c(k_11,k_ml k_ul})

# File Bave
kdrawR8=cbind{kdrawrOR8, kdrawr$0R8, kdrawr39R3}

write.csv(kdrawRS,
file="C:\\kdrawR8,csv",row.names = FALSE)

# 10000 iterations m against first export day in 0.6+R0
system.time({

kcountrOR6=countryceunt {10000,0,0,0.6,60)
keountr90R6=countrycount (10000,0.9,0,0.6,60)
?gountr99R6=countrycount(10000,0.99,0,0.6,60)

# export days statistics

kdrayrORE = NULL

drawlength=lsngth(kcountroR6[,11)

for (k in 1:{drawlength)}{
k_ll=guantile(kcountrOR6[k,],0.025)
k_ml=madian{kcountTORE[k,])
k_ul=U=quantile(kcountrOR6[k,],0.975)

N kdrawrOR6=rbind (kdrawrOR6, ¢ (k_11,k_ml, k_ul))

# export days statistics

kdrawrS0R6 = HULL

drawlangth=length(kcountr90R6[,1])

for {k in 1:{drawlength))}{
k_1l=quantile (kcountrS0R6[k,],0.025)
k_ml=median Chcountr90R6[k,]1}
k_ul=U=quantile(kcountr90R6[k,],0.975)
kdrawxggﬂﬁ-rbind(kdraUrQORS,c(k_ll,k_ml,k_ul))
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¥

# export days statistics

kdrawr2sR6 = WULL

drawlength=length(kcountrdsRef,1])

for (k in 1:(drawlength)){
k_1l=quantila(kcountr99R6[k,],0.025)
k_ml=median(kcountr99R6{k,])
k_ul=U=quantile(kcountr99R6 [k,],0.975)
kdrawr99R6=rbind {kdrawr%9R6,c(k_11,k_ml ,k_ul})

# File save
kdrawRf=cbind (kdrawrOR6,kdrawrSOR6, kdrawr9ske)

write.csv{kdrawR6,
£11e="C:\\kdrauR6,. csv",row.names = FALSE)
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Appendix C

Cost-effectiveness study of

travel restrictions

Methods

Modeling the Cost-effectiveness Analysis

In the cost-effectiveness analysis (CEA), we compared the costs and the quality-
adjusted life year (QALY) with strategics of no available intervention and im-
posing 99% travel restrictions before the time of the availability of antiviral
and hospitalization in a year. The total cost {Crear) of cach strategy was

calculated by

Crotat =C1 +Cpn +Cp (C.1)

where the cost of travel restrictions, health care, and production were repre-
sented by Cp, Cp, and C'p respectively. The costs and benefils were discounted

at rate of 3% per annnm. All costs are in Hong Kong dollars (HKD$) (2009).
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The incremental cost-effectivencss ratio (ICKER) was the main endpoint of the
study. The numerator of ICER was the ineremental cost which was the dif-
ference of the costs, and the denominators was the difference of QALYs from
imposing travel restrictions. An intervention is 'cost-saving’ if it can reduce
costs and also can raige the QALYs. An intervention is ‘cost-effective’ if its
ICER is less than a determined threshold with increases in QALYs [104, 102].
Median ICERs were obtained from 100 realizations that were simulated from
the epidemic model. The CEA was analyzed using Microsoft Excel, version

2003,

Scenario Design

We analyzed the cost-effectiveness by selecting the time of the availability of
antiviral and hospitalization to 3.5 months, 5 months, and 6.5 months after the
first global onset case. We assumed the virus influenza A-like with the same
lengths of the latent period and infectious period. The Ry was considered in
range of 1.5 to & for all countries in the model. The 99% travel restriction was
imposed from the time of first global case onset to the time of antiviral and
hospitalization being available. The casc-fatality rate was considered in range
of 0.5% to 50%.

Oseltamivir and Zanamivir were selected as the standard antiviral treat-
ment during the pandemic influenza A (HIN1) [33]. Each patient would receive
one course of antiviral treatment. Severe patients who were hospitalized wonld
stay in hospital and wore absent from work for 7.7 days on average -67), We also
assumed 30%, 50% and 20% of the untrcated infections as in asymptomatic,
mild, and moderate status respectively. The mild and moderate cases would

seck medical care as well as secing doctors and taking prescribed medication.
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Moderate cases and the patients who received antiviral would be absent from

work for 1.5 days.

Costs
Costs of Travel Restrictions ()

The direct economic inpact from the travel restrictions is the tourism industry
in Hong Kong. According to the statistics of Hong Kong government [105,
the tourism industry contributed 2.6% (HKD$40,264 wmillion) to Hong Kong’s
Gross Domestic Product (GDP} in 2009. The tourism-related activities such
as accommodation scrvices, retail trade, transport services, and food and bev-
crage services were included into the GDP’s calculation. We assumed the
restricted length of time and scale of travel was direetly proportional to the
local GDP i.c. the 99% travel restrictions brought a monthly IIKD$3,324.75
million loss in Hong Kong’s GDP in 2009.

Health Care Costs (Cy)

Table C.1 presents the cost variables utilized in the CEA. Oscltamivir and
Zanamivir were 3222.7/case for a single course of treatment which included a
brief medical consultation. Individual who sought medical care was required to
spend $335 in total for the medical consultation and the prescribed medication,
Severe subject who was hospitalized spent $16,170 for staying in a Hospital
Authority (HA) hospital. We assumed zero travel costs for seeking trcatments.
The size of the antiviral stockpile was considered as sufficient in one year

periad.
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Table C.1: CEA paramcters and the corresponding valuoes

Parameter Value Remark Reference

Hospitalization 816,170/ casc $2,100/day and stay in hospital [42]
for 7.7 days

Oseltamivir $222.7 fcase EUR21.624 for single treatment  [33]
course; onc EUR converted o
HKDS10.3

Zanamivir 8222.7/case EURZ21.G624 for single treatment  [33)]
course; one EUR converted Lo
HKD$10.3

Medical care $335/casc $127 for wmedical consultation  [12]
and $100 for prescribed medica-
tion with 5% inflation cach year

Lost productivity $2,325.9/hospitalized Average monthly wage was 101

QALY lost

case; $550.5 per mod-
crate case or casc who
received antiviral

0.008 for an untreated
infection;  0.004  for
an individual who re-
celved antiviral: 0.017
for a hospitalized indi-
vidual

$11,000 which divided by 30
days; hospitalized cases absented
from work for 7.7 days; moderate
cases and paticuts who reccived
antiviral absented from work for
1.5 days

[11] and as-
sumption
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Production Costs (Cp)

The monthly salary was assumed to be $11,000 on average for a Hong Kong
resident [101]. Severe subjects would lose their productlivity when staying in
hospitals. It costed $2,825.9 for a hospitalized case. Moderate case or case
who received antiviral lost $550.5 for a 1.5 days absented period. Table C.1

summarizes the production costs in the CEA.

Quality-adjusted Life Year Lost

A QALY is a measure of an individual’s physical health as well as a measure of
discase burden. In our study, previously published QALYs losts of pandemic
influenza A (ITIN1) were used [11]. Individual who received antiviral was

assumed in having half of QALYs lost as an untreated subject (Table C.1).

Results

In our model, the cost-effectiveness was dependent on the interplay between the
casc-fatality rate, the transmission intensity, and the implementation time of
effective interventions. According to the modeling results, the total cost would
be $7,265 million if only antiviral and hospitalization imposed on 3.5 months
after the first global onset case, and the case-fatality rate was assumed in 0.5%
that similar to that of pandemic (HINT) 2009 [1]. The cost of a 3% travel
restriction of all means of transports would be $11,636 million if it was imposed
for 3.5 months. The program would cost $363 million for each QALY gained
in this situation. In views of CEA, it was not rccommended including travel
restrictions in the plan of pandemic (H1N1) 2009 (Figure C.1). By cmploying
per capita GDP $231,600 of Hong Kong in 2009 as the cost-effective threshold
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