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ABSTRACT 

INTRODUCTION 

Bone fracture, especially osteoporotic fracture, has become a major health issue 

due to its increase in morbidity, mortality and the financial burden of medical care. 

More and more attention has been focused on the enhancement of fracture healing and 

new biophysical mechanical stimulation therapies have been given to the study of 

fracture healing in osteoporotic bone. Our previous studies confirmed low magnitude 

high frequency vibration (LMHFV) (magnitude=0.3g, frequency=35Hz), providing 

non-invasive, systemic mechanical stimulation, can promote both normal and 

osteoporotic fracture healing in rats, however, the mechanism of its positive 

osteogenic effect is still unclear. 

It is indicated that a good blood supply is a prerequisite for initiating the fracture 

repair, and angiogenic response is demonstrated to be crucial yet impaired during the 

osteoporotic fracture healing. It was also reported whole body vibration was effective 

in enhancing peripheral blood circulation through increasing the muscle pump 

function. Therefore, we hypothesized LMHFV could enhance the blood flow of hind 

limb and promote the angiogenesis at the fracture site in both normal and osteoporotic 

rats, hence to accelerate the healing process. 

MATERIALS AND METHODOLOGY 

Nine-month-old ovariectomy-induced (OVX) and sham-ovariectomized (Sham) 

rats were created closed fractures on right femoral mid-shaft. Five days after fracture 

• • • 
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surgery, totally 72 rats were randomized into LMHFV (Sham-V, OVX-V) (35Hz, 

0.3g, 20min/day, 5days/week) and control (Sham-C, OVX-C) groups. The external 

callus width (CW) and callus area (CA) were measured by radiography weekly to 

monitor the status of fracture healing. At weeks 2，4 and 8 post-treatment, 

pulsed-wave Doppler ultrasonography was utilized to measure the blood flow velocity 

of injured, femoral artery. Three-dimensional high frequency power Doppler 

ultrasonography (3D-HF-PDU) was adopted for assessing the microcirculation at the 

fracture site. After that, the vascular system of each animal was perfused with 

Microfil contrast agent and the fractured femur was subjected to microCT scanning 

for osseous tissue and microvasculature analysis at the peri-fracture region. 

Immunohistochemistry was performed to evaluate the expression of vascular 

endothelial growth factor (VEGF) in external callus. One-way ANOVA were used for 

comparison among groups. Significance level was set at p<0.05. 

RESULTS 

(1) Vibration groups had larger CW and CA than the corresponding controls, and 

higher CW and CA was also observed in Sham-C than OVX-C. OVX-V had the 

largest CW and CA than other groups in the early phase of fracture healing. 

(2) Pulsed-wave Doppler showed an increasing blood flow velocity of injured 

femoral artery from weeks 2 to 8. At each time point, it indicated a higher blood flow 

velocity in vibration groups than control ones (week 2: OVX-V > OVX-C, p=0.030; 

week 4: Sham-V > Sham-C，p=0.020; OVX-V > OVX-C, p=0.012). A lower flow 
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velocity was found in OVX rats as compared with Sham ones (week 8: Sham-V> 

OVX-V, p=0.006; Sham-C > OVX-C, p=0.005). 

(3) 3D-HF-PDU demonstrated an enhanced blood volume at the fracture site by 

LMHFV treatment compared to the controls during the early phase of fracture healing 

(week 2: Sham-V > Sham-C, p=0.021). The microcircalation of OVX groups was 

inferior to the corresponding Sham ones. 

(4) MicroCT-based microangiography also confirmed increased vascular 

volume (VV) of fracture site in vibration groups (week 2: OVX-V > OVX-C, p=0.009; 

week 4: OVX-V > OVX-C, p=0.034), and an inferior level of angiogenesis was found 

in OVX groups as compared with Sham groups (week 2: Sham-V > OVX-V, p=0.014; 

Sham-C > OVX-C, p=0.014)‘ The ratio of vascular volume to total tissue volume 

(VV/TV) showed a similar trend as above. Quantitative analysis of TV, bone volume 

(BV), high-density bone volume (BVh) and low-density bone volume (BVi), indicated 

better callus formation and mineralization in vibration groups than in control ones. 

The capacity of osteogenesis (by TV, BV, BVh, BVh/TV) was impaired in OVX 

groups as compared with Sham ones. These findings were consistent with 

angiogenesis results. A linear positive correlation between TV and VV was detected, 

as well as BV and BVi. A significant correlation was found between BVi and VV 

(尸0.773 8，p<0.01). Interestingly, A higher percentage of increase in microvasculature 

was observed in OVX groups (week2: +25.7%; week 4: +57.1%) than corresponding 
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Sham groups (week2: +13.2%; week 4: +2.2%). OVX-V also had a higher percentage 

of increase in TV than Sham-V. 

(5) Immunohistocherriistry assessment also indicated higher level of VEGF 

expressions in vibration groups than controls within external callus in the early phase 

of fracture healing, and the OVX groups had lower level of expressions as compared 

with Sham ones. 

DISCUSSION 

Ovariectomy-induced osteoporotic rats had suboptimal femoral blood supply 

than normal rats because estrogen deficiency would increase blood viscosity, thus 

decreased the blood flow velocity. LMHFV could reduce the peripheral resistance by 

widening small vessels in muscles, which resulted in an increase of blood flow 

velocity. Vibration also promoted angiogenesis in both normal and osteoporotic 

fractures. This might be vibration increased the blood flow shear forces at vascular 

endothelium, which augmented the functions of VEGF by up-regulating VEGFR-2. 

The percentage of increase in angiogenesis by LMHFV in OVX groups was higher 

than Sham ones, which suggested osteoporotic bone might have higher sensitivity of 

angiogenic response to mechanical stimulation. With the consistent findings between 

angiogenesis and osteogenesis and the significant positive linear correlation between 

VV and BVi, it indicated angiogenesis was associated with osteogenesis of fracture 

healing process, especially in the early stage, which suggested LMHFV therapy 

should be applied from the early healing phase. 

vi 



CONCLUSION 

LMHFV can augment blood flow of fractured hind limb and enhance 

angiogenesis at the fracture site with different extent in normal and osteoporotic rats, 

which indicates the promotion of both systemic and local blood circulation is one of 

the mechanisms for LMHFV to accelerate the fracture healing. 
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中文摘要 

引言 

鉴于发病率、致死率及其医疗费用的不断增加，骨折，尤其是骨质疏松性 

骨折，已成为当今日益严峻的社会健康问题。幵发促进骨折愈合的方案开始越 

来越多地受到关注。作为新型生物物理治疗，机械刺激己被运用到研究增进骨 

质疏松性骨折的愈合中来。我们的前期研宄证实，低能高频振动（LMHFV)(振 

幅0.3g，振动频率35Hz)可提供非侵入性、全身性机械剌激，促进大鼠普通骨 

折及骨质疏松性骨折的愈合。然而，迄今关于其正性成骨作用的机理尚不明晰。 

前人研宄表明，良好的血供是启动骨折修复的必要条件，血管新生在骨折 

愈合中具有决定性作用。人们发现，骨质疏松性骨折的血管新生能力在一定程 

度上受损。同时，有报道显示全身振动可通过增强肌肉粟功能来促进外周血液 

循环因此，我们提出假设，低能高频振动可以通过增进下岐血供与促进骨折 

段的血管新生，来加速普通骨折及骨廣疏松性骨折的愈合》 

材料与方法 

本实验釆用卵巢切除术来诱导骨质疏松性（O V X )大鼠模型，假切除组 

(Sham)作为正常骨量模型组。至9月龄，对两组大鼠行右侧闭合性股骨干骨 

折造模术。术后5日，将72只大鼠随机分成振动治疗组（Sham-V�OVX-V， 

振幅为0 .3g，频率为35Hz，每日治疗20分钟，每周治疗5日）与假治疗对照 

组（Sham-C�OVX-C)�每周采集X线片，测量股骨骨折段外骨痂宽度（CW) 

及其面积（C A )，观察骨折愈合进展。分别在开展治疗后第 2 � 4 � 8周，采用 

脉冲多普勒超声检测大鼠伤恻股动脉血流速度。应用三维高频能量多普勒超声 

(3D-HF-PDU)评测骨折段微循环状况。随后，向大鼠血管系统灌注Microfi l 
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增强造影剂，取伤侧股骨标本行三维显微CT扫描，以评估骨折段骨组织与微 

血管形成情况。运用免疫组织化学技术测定外骨瘌血管内皮生长因子（VEGF) 

的表达。本研宄采用单向方差分析对各组间差异进行统计学分析，P值小于0.05 

示为有显著性差异。 

结果 

(1)振动治疗组骨痂宽度、面积较对照组增加，假卵巢切除对照组比卵巢切除 

对照组骨痂尺寸大。然而卵巢切除振动组在愈合早期骨痂宽度与面积均大于其 

他组。 

(2)脉冲多普勒超声检查显示从治疗后第2周至第8周，各组大鼠的股动脉血 

流速度逐渐增加。在各时间点，振动治疗组血流速度高于假治疗组（第2周： 

OVX-V> OVX-C, p=0.030;第 4 周：Sham-V�Sham-C，p=0.020； OVX-V> 

OVX-C； p=0.012)�卵巢切除大鼠血流速度低于假切除大鼠（第8周：Sham-V> 

OVX-V, p=0.006; Sham-C > OVX-C, p=0.005)� 

(3)三维高频能量多普勒超声评估显示，振动治疗组在愈合早期骨折段的血容 

量较对照组增高（第2周：Sham-V> Sham-C，p=0.021)�卵巢切除组骨折段微 

循环血量较相应假切除组为低。 

(4 )显微CT微血管造影检查亦证实振动治疗组骨折段血管容积（VV)较对照 

组增加（第 2 周：OVX-V>OVX-C，13=0.009;第 4 周：OVX-V>OVX-C, p=0.034)� 

结果还发现，卵巢切除组骨折段血管新生水平较假切除组低（第 2周： 

Sham-V>OVX-V, p=0.014； Sham-OOVX-C, p=0.014)�血管容积与骨折段组 

织总体积的比率（VV/TV)亦呈类似趋势。骨折段骨组织定量（TV�BV�BVh. 
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BVl)表明，振动治疗对骨痂形成、矿化均较对照组增强，而卵巢切除组较假 

切除组各阶段成骨能力降低。骨组织定量变化与血管新生趋势保持一致。分析 

表明，TV�;BV�BV1与VV均呈线性正相关，且BV1与VV有显著相关性(r=0.7738, 

p<0.01)�我们发现振动治疗后，卵巢切除组大鼠骨折端血管新生的增加比率（第 

2周：+25.7%;第4周：+57.1%)较假切除组（第2周：+13.2%;第4周：+2.2%) 

为高。同时，骨组织定量也有类似发现，卵巢切除组振动治疗后TV增长率比 

非卵巢切除振动组高。 

(5)免疫组织化学染色显示，在骨折愈合前期，振动治疗组骨折段血管内皮生 

长因子（VEGF)的表达较对照组升高，而卵巢切除组大鼠VEGF表达量较假 

切除组为低。 

讨论 

卵巢切除诱导骨质疏松的大鼠股动脉血供较非骨质疏松大鼠为低，可能是 

因为卵巢切除引起雌激素缺乏，导致血液粘稠度增加，从而使得血流速度下降。 

低能高频振动治疗可以通过扩张肌肉微血管，降低外周血管阻力，进而加快血 

流速度。振动治疗对非骨质疏松及骨质疏松性大鼠骨折段微血管新生均有促进 

作用，原因可能是振动剌激增强了血流在血管内皮处的剪切力，从而通过上调 

VEGF-2型受体，增进VEGF的成血管功能。振动治疗后，卵巢切除组血管新 

生增高比率较假切除组高，提示骨质疏松性骨折血管新生反应对机械刺激的敏 

感度可能较正常骨为高<> 鉴于骨折段成血管与成骨定量结果趋势基本一致，且 

新生血管容积与新生低密度骨具有显著正相关性，我们认为血管新生在骨折愈 

合过程中与成骨密切相关，尤其在愈合早期阶段，提示振动治疗应及早施行。 
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结论 

在正常非骨质疏松性及骨质疏松性骨折愈合过程中，低能高频振动可以不 

同程度地增强骨折下肢的血供，并能促进骨折段血管新生本硏宄表明，对全 

身及局部循环的促进作用可能是低能高频振动治疗加速骨折愈合的重要机制之 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 



Bone is characterized physically by the fact that it is a hard, rigid and strong 

tissue, and microscopically by the presence of relatively few cells and much 

intercellular substance composed of collagen fibers and stiffening substances. All 

bones have a mechanical function providing attachment to various muscle groups. In 

addition, in some parts of the body, bones provide a protective function to vital 

structures - skull (brain), ribs (lungs, heart) and pelvis (bladder, pelvic viscera). Some 

bones retain their haematopoietic function in adults - vertebrae，iliac crests, proximal 

parts of femur and humerus. All bones serve as a reservoir of calcium and actively 

participate in calcium homeostasis of the body (1,2). 

A bone fracture is defined as a break in the continuity of the bone. It can be the 

result of high force impact or stress, or trivial injury as a result of certain medical 

conditions that weaken the bones, such as osteoporosis, bone cancer, or osteogenesis 

imperfect (3-6). Both local and systemic variables influence the rate and degree of 

fracture healing. If the healing rate is slower than usual, it will result in delayed union. 

A complete cessation of the healing process, in which fibrous tissue is never replaced 

by bony matrix, is termed non-union. To promote the fracture healing has long been 

one of the major goals for orthopaedic surgeons and scientists. 

In recent decades, with the penetrating scientific understandings on bone 

fractures, advances of managements to accelerate fracture healing have been largely 

developed and improved, concerning biological (7), mechanical (8,9) and biophysical 

(10-12) enhancements. Presented in this thesis are the studies on the effects and the 

probable action mechanisms of low magnitude high frequency vibration (LMHFV), a 



novel noninvasive and systemic biophysical intervention, on normal and osteoporotic 

fracture healing. Introduction and literature review on the crucial concepts are 

provided in the first place, out of which come with the hypotheses and the study plan. 



1.1 Fracture and Fracture Healing 

1.1.1 Structural Types of Bone 

Bone is a specialized type of connective tissue consisting of cells and an 

intercellular matrix. There are three cell types: (1) osteoblasts, the bone forming cells, 

(2) Osteocytes, the most abundant cell in bone, are actively involved in the routine 

turnover of bony matrix. (3) Osteoclasts, removes bone tissue which is known as bone 

resorption. The bone matrix is composed of: (1) organic matter, consisting of type I 

collagen fibres and glycoproteins, and (2) inorganic matter, made up of stiffening 

substances to resist bending and compression. The bone mineral is an analogue of 

crystals of calcium phosphate-hydroxyapatite Cai0(PO4)6(OH)2 (13-16). 

Macroscopically, there are two types of bones: cortical (compact) bone and cancellous 

(spongy or trabecular) bone (13-16). Cortical bone is made up of a structure of 

Haversian systems or Osteons. Cancellous bone consists of a series of interconnecting 

plates of bone - the trabeculae. The surfaces of bone are covered by a layer of 

bone-forming cells and the following connective tissues: periosteum (outer layer) and 

endosteum (inner layer) The periosteum consists of an outer fibrous layer consisting 

of collagen fibers and fibroblasts, as well as an inner cambium layer composed of 

flattened cells - the osteoprogenitor cells. The endosteum lines the internal surface of 

bone. It is composed of osteoprogenitor cells and small amount of connective tissue. 

Bone marrow is the organ of haematopoiesis, containing connective tissue, blood 

vessels and numerous "marrow cells" - myelocytes, erythroblasts, giant cells and 

some fat cells (15). (Figure 1.1.1) 



1.1.2 Blood Supply of Long Bone 

The vascular anatomy of long bones is complex and reorganizes throughout 

growth until closure of the growth plate when it assumes its final form. A given long 

bone is supplied by 6 groups of arteries: (1) proximal epiphyseal arteries; (2) proximal 

metaphyseal arteries; (3) diaphyseal nutrient arteries singly or in pairs; (4) distal 

metaphyseal arteries; (5) distal epiphyseal arteries; and (6) periosteal arteries. (17,18) 

Branches of these are anastomosed so profusely with adjacent groups that they can 

substitute for each other and protect against infarction caused by failure of a single 

arterial pedicle. (Figure 1.1.2) 

Nutrient arteries branch from the major systemic arteries, enter the diaphyseal 

cortex through, the nutrient foramen, and then go into the medullary canal, branching 

into ascending and descending small arteries. These branch into arterioles in the 

endosteal cortex and supply at least the inner 2/3 of the mature diaphyseal cortex via 

vessels in the Haversian system. Metaphyseal-epiphyseal system arises from the 

periarticular vascular plexus. Periosteal system is composed primarily of capillaries 

that supply the outer 1/3 (at most) of the mature diaphyseal cortex. (19-21) 

In bone, the volumetric capacity of the venous system is six- to eightfold greater 

than that of the arterial system. Blood is drained by perforating veins that empty into 

deep veins of the extremities. There are six major veins organized with the groups of 

arteries, and the large central venous sinus and its tributaries are drained by the 

nutrient vein. (17,18) 

The vasculature of bone plays a prominent role in fracture healing. (17,19)Most 



Haversian canals contain a single capillary, as do the cutting cones that mediate the 

remodeling of adult bone. The integrity of the capillary and sinusoidal networks of 

diaphyseal and metaphyseal marrow is essential for the orderly release of the cellular 

components of blood. (22-26) 
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Figure 1.1.1 Sketch of the structure of a long bone (femur). Cortical bone consists of 
tightly packed osteons. Cancellous bone consists of a meshwork of trabeculae. 
Cortical bone resides in the diaphyses, while trabecular bone presents at the 
metaphyses and epiphyses, (From Hayes JV,C ’ 1991 Biomechanics of cortical and 
trabecular hone: implications for assessment offracture risk In: Mow VC, Hayes WC 
Basic Orthopaedic Biomechanics‘ Raven Press, New York, pp 93-142.) 



Nutrient artery 

Emissary vein 

Figure 1.1.2 Blood supply to long bone. Bone receives 5-10% of the cardiac output. 
Long bones receive blood from three systems: (1) nutrient artery; (2) 
metaphyseal-epiphyseal artery; and (3) periosteal artery. (From Brinker MR, Miller 
MD: Fundamentals of Orthopaedics, p4‘ Philadelphia, WB Saunders, 1999.) 



1.1.3 Mechanism of Fracture Healing 

1.1.3.1 Histological and Cellular Changes during Fracture Healing 

Fracture healing is a highly orchestrated process comprising a series of 

biological repair stages intimately linked with one another. 

Primary fracture healing involves anatomic reduction of the fracture fragments, 

optimization of the strain environment, and a biological response in which the cortex 

directly attempts to reestablish its own continuity. These are remodeling units 

consisting of osteoclasts that resorb cortical bone, thereby permitting angiogenesis 

and stem cell deposition into the fracture site, and progenitor cells differentiate into 

osteoblasts that secrete matrix and bridge the fracture gap. This process enlists 

minimal participation from the periosteum, external soft tissues, and the bone marrow 

(3,4). 

If rigid internal fixation is not provided and micromotion exists at the fracture 

site, secondary fracture healing occurs (3,27-31). The response of the periosteum and 

adjacent soft tissues to bony injury forms the basis of secondary fracture healing. It 

involves both intramembranous and endochondral ossification that proceed 

concurrently. 

Within the first 7 days after fracture, an inflammatory response takes place at the 

fracture site as demonstrated by the invasion of macrophages, polymorphonuclear 

leukocytes, and lymphocytic cells (3,4,30,32). These cells secrete proinflammatory 

cytokines including interleukin-1 (32), interleukin-6 (33,34), and tumor necrosis 

factor-a (TNF-a) (35,36). At the same time, peptide signaling molecules such as 



members of the transforming growth factor-beta (37-39) super gene family, including 

all of the bone morphogenetic proteins (BMPs) (40-45), as well as platelet-derived 

growth factor (PDGF), are triggered (4,30,46). (Figure 1.1.3.1-A) 

The first 7 to 10 days of healing involve a process of chondrogenesis in which 

two major biochemical constituents are secreted: type II collagen and a variety of 

proteoglycans. Type II collagen provides the initial structure of the fracture callus 

while the proteoglycans mediate hydration of the newly formed tissue and control the 

rate and physical chemistry of the mineralization process (47,48). By 14 days, protein 

synthesis is complete and hypertrophic chondrocytes release calcium into the 

extracellular matrix in order to precipitate with (49-52). Preliminary fracture callus is 

composed largely of cartilage, and once enough cartilaginous callus is formed, 

mineralization takes place. (Figure 1.1.3.1 -B) 

By 3 to 4 weeks after fracture, the callus is composed mostly of calcified 

cartilage. This tissue becomes a target for chondroclasts, multinucleated cells 

specialized in the resorption of calcified tissues. The chondrocytes undergo apoptosis 

during endochondral fracture healing and this process is identical to that occurred in 

the lower hypertrophic zone of the growth plate (53,54). As chondroclasts remove the 

calcified cartilage, blood vessels penetrate the tissue and bring perivascular 

mesenchymal stem cells that differentiate into osteoprogenitor cells and then 

osteoblasts (55-60). This remodeling of the primary soft callus to woven bone results 

in fracture union by approximately 28 to 35 days (61-65). At this time, osteoclasts 

populate the tissue and remodel the callus, converting it to lamellar bone. (Figure 

10 



.3.1-C) 

1.1.3.2 Molecular Mechanism of Fracture Healing 

The events of fracture healing involve a well-coordinated series of events leading 

to chondrogenesis, the removal of calcified cartilage, its replacement with bone, and 

the remodeling of that bone to a lamellar bone structure with the capacity to support 

mechanical loads. Several growth factors and cytokines are involved in the process of 

bone repair and remodeling. The function of these growth factors is to interact in a 

coordinated fashion and to influence each other's expression. While the molecular 

basis for fracture healing is far from understood, key regulators such as angiogenic 

factors (VEGF and HIF-la) (45,66-70), the chondrogenie and osteogenic factors 

(BMPs and GDFs) (40,43,71-74), and the regulators of bone remodeling (members of 

the TNF-a family) (75) are involved in a coordinated manner. The ability to farther 

elucidate these mechanisms and to develop technologies to control their function 

could play an important role in the future of fracture management. 

11 
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A: Initial events following fracture of a long bone diaphysis (3 days post-fracture), A 
hematoma accumulates beneath the periosteum and between the fracture ends. There 
is necrotic marrow and cortical bone close to the fracture line. 
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B: Early repair of a diaphyseal fracture of a long bone (9 days post-fracture): the 
organization of the hematoma, early woven bone formation in the subperiosteal 
regions, and cartilage formation in inter-fragment region. Periosteal ceils contribute to 
healing this type of injury. 
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C: Progressive fracture healing by fracture callus (21 days post-fracture)', woven or 
fiber bone bridging the fracture gap and uniting the fracture fragments. Cartilage 
remains in the region most distant from ingrowing capillary buds. In many instances, 
the capillaries are surrounded by new bone. Vessels re vascularize the cortical bone at 
the fracture site. 

Figure 1.1.3.1 Histological changes during long bone fracture healing, (From 
Einhorn TA The cell and molecular biology of fracture healing Clin Orthop Relat 
Res 1998,335 SupplS7-2L) 
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1.1.4 Osteoporosis and Osteoporotic Fracture 

1.1.4.1 Epidemiology of Osteoporotic Fracture 

Osteoporosis is a systemic skeletal disease characterized by low bone mass and 

microarchitectural deterioration of bone tissue, with a consequent increase in bone 

fragility and susceptibility to fracture (76-79). 

Worldwide, 100-200 million people are at risk of an osteoporotic fracture each 

year. Statistics predict that by the year 2012, 25% of the European population will be 

over the age of 65 and by the year 2020, 52 million will be over 65-years-old in the 

USA (80,81). In Hong Kong SAR, three typical osteoporotic fractures - fractures of 

hip, distal forearm and vertebral body - presented incidence of 4.59/1000/year (82), 

which was 4.9% in Beijing, China (2000) (83). The combined risk for the three 

typical fractures was reported about 40%, which was almost equivalent to the risk of 

cardiovascular diseases (81,84). Facing so high fracture risk, orthopaedic surgeons are 

coming to understand that treatments of patients with osteoporotic fractures need to 

address the underlying osteoporosis in order to reduce the incidences of further 

fractures. 

1.1.4.2 Osteoporotic Fracture Healing 

Normal fracture healing is a specialized process in which structural integrity is 

restored through the regeneration of bone. Fracture healing traditionally proceeds 

through the stages of intramembranous and endochondral bone formation, which was 

described above (3,4,29,30). The angiogenesis, callus formation, mineralization and 
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remodeling, are clearly susceptible to alteration in osteoporotic patients and animals 

(78,85-88). 

The synthesis of bone and its mineralization depend on the calcium environment. 

Osteoporotic patients have a diminished pool of rapidly soluble calcium, inadequate 

dietary calcium, and a deficient structural calcium bone reserve (79,89-92). Calcium 

mineralization is subject to delay, and the stage of remodeling is prolonged because of 

competition for ionized calcium with the rest of the body. Also, substances that may 

have been mobilized to maintain systemic calcium homeostasis (PTH and vitamin D) 

may compromise the latter stages of fracture repair (79,90,93-96). In addition, up to 

40 percent of elderly patients are mildly to moderately malnourished, and this 

condition compromises bone collagen synthesis (85,97). Bone scans remain positive 

(indicating continued metabolic remodeling) well into the third year after fracture in 

elderly persons, and union cannot be fully ascertained until that time. Studies have 

demonstrated that osteoporotic rats have delayed healing (78,88). It is uncertain 

whether it is the osteoporosis or the estrogen deficiency that compromises fracture 

repair. 

The decline in the capacity for fracture repair has been shown to be age related 

(98-101), Disturbance of the development of strength within fracture calluses in the 

elderly has been shown in experimental rat models, but little is known about the 

causes of osteoporosis and its effect on the ftacture repair process in humans. 

The relationship between fracture healing and osteoporosis is complex. The 

etiology may related to aging (98-101)，hypogonadism (102-105), rheumatism 
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(106,107) and thyroid and parathyroid disorders (108,109), and the therapies 

commonly used for osteoporosis (estrogens, vitamin D, bisphosphonates, exercise and 

passive mechanical stimulation) may all potentially affect fracture healing. 

1.1.5 Enhancement of Fracture Healing and Limitations 

Despite the improvements in surgical tools and technique (lag screws, plates, 

interlocking intramedullary fixation, etc), the healing and recovery of fractures still 

require a long period. In osteoporotic fractures, it takes up even longer time to heal. It 

will take up around 4 � 8 months for an osteoporotic hip fracture healing (110). The 

prolonged healing process not only delays the functional rehabilitation, but also 

lengthens the bed-rest period which may increase the risk of pulmonary embolism or 

decubitus, consequently leads to raise up the fracture mortality (111). 

Facing these problems in delayed fracture healing, the enhancement modalities 

are imminently needed. Currently, the managements for healing enhancement can be 

broadly classified into biological and physical modalities. Biological stimulation 

involves the introduction of osteoinductive, osteoconductive, or osteogenic factors 

into the local environment, whereas biophysical interventions include pulsed 

electromagnetic fields (PEMF) (112,113), ultrasound (9,114-117) and Shockwave 

(118) therapies at the fracture site. 

1.1.5.1 Biological Methods 

The use of bone grafts for the treatment of bone defects is increasing, and the 
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indications are growing with rising numbers of spinal fusions, primary and revision 

arthroplasties, and periprosthetic fractures (7). Autogenous bone graft provides the 

basic components required to stimulate skeletal repair, including osteoinductive 

factors, an osteoconductive extracellular matrix, and osteogenic stem cells present in 

the form of bone marrow elements (119,120). However, the morbidity associated with 

graft harvesting, such as donor site pain, nerve or arterial injury, and infection rates 

(8%~10%) (121,122) have prompted extensive research into alternatives. 

1.1.5.2 Biophysical Enhancement 

The mechanical environment has a direct impact on fracture healing. Direct 

mechanical perturbation as well as biophysical modalities such as electromagnetic, 

ultrasound or Shockwave has been shown to affect fracture healing. 

There are numerous clinical reports to support effectiveness of biophysical 

stimulation on fresh fracture, delayed union, and bone lengthening Several 

prospective, randomized clinical studies have shown the efficacy of low intensity 

pulsed ultrasound (LIPUS) in stimulating bone formation after fracture 

(114,117,123-125), non-union (126-128), and bone lengthening (129,130). Pulsed 

electromagnetic fields (PEMF) stimulation has been in clinical use for nearly 30 years 

on patients with delayed fracture healing and non-union and demonstrated its effect in 

a multitude of clinical case reports (112,113), Double-blinded studies confirmed the 

clinical effectiveness of pulsed electromagnetic fields stimulation on osteotomy 

healing (131-133) and delayed union fractures (134,135). Brighton et al conducted 
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multicenter study of the non-union and reported an 84% clinical healing rate of 

non-union with direct current treatment (136). Schaden et al. reported 76% of 

non-union or delayed union patients treated with one time extracorporeal shock wave 

therapy resulted in bony consolidation with a simultaneous decrease in symptoms 

(137). However, LIPUS, PEMF and shock wave therapy can just provide localized 

osteogenic enhancing effect, and the induction of systemic response to fracture 

healing should be limited. 

The studies in our laboratory had proven that low magnitude high frequency 

vibration (LMHFV), a novel biophysical intervention therapy, could significantly 

accelerate and enhance the fracture healing in both normal and osteoporotic bones 

(10,11). Besides, LMHFV is also effective in improving bone mineral density (BMD) 

(138-142), augmenting blood flow (143-146), enhancing muscle properties (147-153), 

stimulating neuromuscular efficiency (154-161) and increasing the production of 

growth hormones (162), etc 

Based on these findings of LMHFV, it would strongly support the efficacy of 

biophysical stimulation as a systemic therapeutic modality in bone fracture repair and 

tissue regenerate augmentation. However，the mechanism of the beneficial effects of 

LMHFV is still unclear. More investigations need to be performed to consummate our 

knowledge of this novel physiological mechanical therapy 
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1.2 Low Magnitude High Frequency Vibration Therapy 

1.2.1 Wolffs Law 

Wolffs law is a theory developed by a German anatomist/surgeon Julius Wolff 

(1836-1902) in the 19th century that states that bone in a healthy person or animal 

will adapt to the loads it is placed under. If loading on a particular bone increases, the 

bone will remodel itself over time to become stronger to resist that sort of loading. 

The internal architecture of the trabeculae undergoes adaptive changes, followed by 

secondary changes to the external cortical portion of the bone, perhaps becoming 

thicker as a result. The converse is true as well: if the loading on a bone decreases, the 

bone will become weaker due to turnover, it is less metabolically costly to maintain 

and there is no stimulus for continued remodeling that is required to maintain bone 

mass (163-165). 

1.2.2 Low Magnitude High Frequency Vibration (LMHFV) 

Low magnitude, high frequency vibration treatment is a non-invasive biophysical 

intervention that provides whole-body vibration stimulation. It has been reported to be 

effective in maintaining BMD (138-142), enhancing muscle strength (147-153), 

improving the balance capacity (149,166-168), altering blood circulation (143-146), 

and promoting fracture healing (10,11). However, the mechanism of these beneficial 

effects by LMHFV is still poorly understood. 
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1.2,2.1 Effects on Osseous Tissue 

Vibration is reported to be beneficial in maintaining and/or enhancing the bone 

mass in individuals such as the elderly (169), postmenopausal women (170-172), and 

adolescents (173). Rubin et al. demonstrated a significant increase (34%) in femoral 

trabecular bone mass in adult ewes after 1-year vibration treatment (174). Vibration 

applied at increasing accelerations (0.1, 0.3，and l.Og) enhanced trabecular bone 

volume >30% in a non-dose-dependent fashion in the proximal tibia of adult mice 

(12). Trabecular bone formation rate to bone surface ratio (BFRVBS) and mineralizing 

surface to bone surface ratio (MS/BS) were enhanced in female mice following 3 

weeks of vibration. 

The effects of vibration has been examined in ovariectomized (OVX) young 

(175,176) and mature (177,178) animals. Results indicated that hip density, muscle 

strength, and postural control were enhanced in postmenopausal women, following 6 

months of vibration treatment. (172). Another study showed trabecular BFR/BS 

increased 159% following 28 days of vibration in 8-month-old OVX rats (178). 

However, ex vivo cross-sectional pQCT analysis demonstrated that vibration (3.0g) 

augmented total cortical and medullary areas in the tibial diaphysis. It also enhanced 

periosteal and endosteal perimeters (176). Investigations conducted on young women 

with low BMD showed enhanced cancellous bone in the spine and increased cortical 

bone area in the femur following 1 year of vibration treatment (30Hz, 0.3g, 1 Omin/day) 

(179). 

Plenty of studies have shown that low magnitude high frequency vibration 
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stimulated new bone formation in intact bone. Furthermore, Leung KS et al. indicated 

that LMHFV (0.3g, 35Hz, 20min/day, 5days/week) could accelerate the callus 

formation, mineralization in closed femoral shaft fractured rats (10). Shi HF et al. 

found LMHFV could also be beneficial for the osteoporotic fracture healing 

enhancement in adult rats (11). Chow HK et al. confirmed LMHFV could enhance 

bone remodeling, in which LMHFV was shown to partially reverse the inhibition of 

ibandronate on bone remodeling (180). 

1.2.2.2 Effects on Blood Flow 

Investigators have been increasingly intrigued by the physiological response of 

humans to vibration for some time, and recently in relation to its potential as a 

non-pharmacological means to improve peripheral blood flow. 

Kerschan-Schindl et al. examined the circulatory responses of participants who 

stood on a platform vibrating at 26 Hz (3X3 min sets) (145). Despite the brief 

duration of the exposure, mean blood velocity to the quadriceps and gastrocnemius 

muscles was doubled. Further, the resistive index of the popliteal artery was decreased 

compared with resting levels. According to the authors, the imposed vibration 

(amplitude = 3 mm, peak acceleration = 78 m ] s"̂ ) evoked rhythmical muscle 

contractions which caused alterations in peripheral circulation without significant 

cardiovascular changes as indicated by a lack of change in HR and blood pressure. 

Helmkamp et al. acknowledged that the health effects of occupational vibration 

were heavily dependent on the characteristics of the vibration exposure (e.g. vibration 
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frequency, direction and amplitude) (181). Indeed, brief exposure to low-magnitude 

mechanical vibration may have a number of benefits particularly with respect to 

enhancing local muscle blood flow. 

Zhang et al. used a brief (3 min) vibratory stimulus that emitted random 

acceleration of constant power density between 5 and 2000 Hz. Six healthy 

participants rested their foot against a vibrating plate and blood flow to the tibialis 

anterior muscle was quantified using photoplethysmography. Local muscle blood 

flow was increased by an average of 20% as a consequence of the brief vibration 

stimulus (182). 

In a similar study, Stewart et al. provided additional evidence that localized 

vibration could be effective for the augment of leg blood flow in postmenopausal 

women (146). In their study, 18 women, (aged 46-63 years), placed their right foot on 

a vibrating customized foot plate apparatus, whilst in a supine position with a 35° 

upright tilt. The plate was attached to an actuator which delivered sinusoidal vertical 

displacements of up to 2 mm. A vibration frequency of 45 Hz for 5-7 min was 

sufficient to result in significant increases in calf blood flow up to 46% as measured 

by strain gauge plethysmography. It was argued that plantar vibration eiihances 

venous drainage as well as peripheral blood flow and lymphatic flow. 

Plenty of previous studies indicated that vibration had benefit in improving the 

peripheral blood flow. However, the effects of revascularization and blood perfusion 

in fracture callus by vibration have not been studied yet. This investigation may be of 

help to demonstrate the influence of microcirculatory regeneration by LMHFV at the 
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peri-fracture region hence to partially clarify the mechanism of the osteogenic 

promoting effect by vibration. 
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1.3 Angiogenesis and Fracture Healing 

1.3.1 Angiogenesis 

Angiogenesis, the sprouting of new capillaries from the pre-existing vessels, is a 

complex process that encompasses activation, migration, and proliferation of 

endothelial cells (ECs). This process is essential for reproduction, development and 

tissue repair (183-187). 

Angiogenesis requires extensive interactions between a variety of cells and 

molecules and is controlled by various peptides and other modulating factors. In order 

for vascular sprouting to occur, a cascade of events must be completed (Figure. 1.3.1). 

First, basement membrane dissolution must occur, a process that is facilitated by 

proteases. Next, chemoattractants and mitogens are activated in order to facilitate EC 

migration and proliferation, respectively. Finally, tube formation occurs requiring 

inhibitory signals as well as those that facilitate formation of junctional complexes 

and reconstitution of a basement membrane. Formation of the basement membrane, 

which signals the onset of vessel maturation, involves recruitment by EC of pericytes 

(adventitial cells) that embed within the basement membrane (188). If this 

microvessel is to become a larger vessel with a medial layer, then appropriate signals 

are required for the recruitment of smooth muscle. ‘ 

A large number of local and circulating angiogenic factors are known to be 

involved in the angiogenic process, including VEGF, angiopoietins, and basic 

fibroblast growth factor (bFGF) (183-187,189-196). VEGF is the most important 

angiogenic factor induced by local hypoxia. VEGF induces various functions on 
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endothelial cells by interacting with high affinity tyrosine kinase receptors. VEGF and 

VEGF receptors (VEGFR) are therefore considered as potential targets for 

angiogenesis imaging (183-187). 

1.3.2 Angiogenesis in Bone Repair 

Bone fracture results in disruption of the marrow architecture and blood vessels 

within and around the fracture site, which leads to acute necrosis and hypoxia of the 

surrounding tissue. During bone repair, the three components of the normal bone 

blood supply - medullary, periosteal, and osseous - can be enhanced according to 

physiological need (60,197). Increased vascular permeability leads to higher 

exudation of plasma, one of the initial and essential parts of angiogenesis, and the 

subsequent formation of osteogenic matrix. Due to the hypoxia, local VEGF will 

release to herald vessel formation by causing endothelial cells to migrate at the tips of 

capillary sprouts where they proliferate and form tubular structures (198,199), Further 

neovessel maturation with adjacent pericytes and smooth muscle cells alters 

microcirculatory properties such as permeability. Chemoattraction of pericytes and 

smooth muscle cells help to stabilize capillary network formation and arborization by 

a PDGF-BB-controlled process (200-202). After vascularization, osteoblastic cells 

proliferate and with the production of an osteogenic matrix, endocondral bone 

formation can begin. The newly generated blood supply to the callus and cortical bone 

appears to persist until the medullary blood supply is fully regenerated. The 

heterogeneity in vascularity after bone damage could help to explain local differences 
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in bone formation in normal, delayed and non-unions (60,197). (Figure. 1.3.2) 

Many growth factors/cytokines induced in response to injury are believed to 

have a significant role in the process of repair (60,197). These include members of the 

fibroblast growth factor (FGF), transforming growth factor (TGF), bone 

morphogenetic protein (BMP), insulin-like growth factor (IGF) and platelet derived 

growth factor (PDGF) families, as well as vascular endothelial growth factor, VEGF 

(203,204). These factors are produced by and/or responded to by many cell types 

present at the fracture site. Besides recruitment of osteoprohenitor cells and 

osteoblasts, recently, VEGF has also been reported playing an important role in 

promoting osteoclastic bone remodeling by mediating osteoblasts (205-207). Other 

angiogenic (60,197) and anti-angiogenic factors (208), such as those expressed in the 

growth plate of developing bones, might similarly be expressed and active in the 

fracture callus during endochondral ossification. Skeletal injury in humans is 

characterized by local (injury site) and systemic angiogenic responses. Accordingly, 

systemic factors - such as parathyroid hormone (PTH), growth hormone, steroids, 

calcitonin and Vitamin D - can also modulate bone metabolism and vascularity 

(60,197). 

Based on previous findings above, reestablishment of vascularity is a crucial 

event in fracture healing. The applications to promote angiogenesis at the fracture site 

should be considered as an essential strategy on fracture healing enhancement. 

1.3.1 Angio genesis in the Fracture Healing of Elderly 
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Impaired angiogenesis will decrease bone regeneration, regardless of age. 

Changes in angiogenesis that occur with aging have been noted at the molecular, 

cellular, and physiologic levels of regulation. 

A decrease in endothelial cells, the hemostatic cascade, neurochemical mediators, 

and growth factors and their cognate receptors has been observed. Also, alterations in 

the structural and regulatory components of the matrix contiguous to forming vessels 

in aged tissues could influence bone healing in elderly patients (209，210). Age is a 

major limiting factor for mobilization of EPCs. In vitro studies revealed that young 

bone marrow-derived EPCs recapitulated the cardiac myocyte-induced expression of 

PDGF-BB, whereas EPCs from the bone marrow of aging mice did not express 

PDGF-BB when cultured in the presence of cardiac myocytes (209-211). 

Together, the age-related changes provide mechanistic insights into the 

diminished angiogenesis and vasculogenesis in ischemia-reperfusion models. 

Although there is no direct evidence till now, decreased blood vessel formation may 

contribute to the age-related delay of osteoporotic fracture healing. Therapeutics that 

support blood vessel formation will be essential to enhance osteoporotic fracture 

healing in the elderly patients. 

1.3.4 Mechanical Loading and Angiogenesis 

Several clinical and animal model investigations provide evidence that 

angiogenesis is stimulated by mechanical loading (212,213). Exercise training and 

blood volume augment have been linked with coronary microvascular angiogenesis 
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(214). Increased blood flow and pressure could be underlying mechanical stimuli. 

Other possible stimuli are the extravascular stretch stimulus due to forced expansion 

of end diastolic dimensions from volume overload and stretch of the capillary 

albuminal surface (215-218). 

The physical environment of ECs (shear stress, transmural pressure and cyclic 

stretch) can activate mechanotransduction mechanisms mediated by integrins and 

associated GTPases (219,220). The signal transduction pathways stimulated act 

through phosphorylation of kinases. Some studies attempted to unravel the complex 

metabolic and mechanical stimuli inherent in exercise and proposed that elevated 

shear stress resulting from functional hyperaemia and stretch of the endothelium as 

part of the duty cycle may promote angiogenesis in different ways (215-218). It was 

shown that mechanical stimuli may induce capillary growth in normal mature cardiac 

and skeletal muscle. 

In EC cultures, elevated shear stress leads to higher rates of EC division and, in 

vivo, the site and extent of angiogenesis appears to be closely related to the level of 

tissue hyperaemia, i.e. an elevated microvascular shear stress. High shear stress may 

increase ECs production of MMPs in culture. In vivo levels of MMPs are upregulated 

in EC during flow-induced arterial remodeling (215), but not with pharmacologically 

induced hyperaemia, whilst inhibition of their activity during increased muscle 

activity prevented angiogenesis. One important response is the apparent upregulation 

of eNOS mRNA and protein expression, possibly leading to angiogenesis via the 

promotion of VEGF expression. As with signaling induced by high flow in arteries, 
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shear stress induced by adrenoreceptor antagonism (prazosin) elicited increases in 

VEGF associated with capillary angiogenesis, and electrical stimulation led to a rapid 

increase in capillary-located VEGF-A expression that matched ECs proliferation at 

these sites (221). Interestingly, vasodilatation invoked by various vasodilator 

compounds failed to increase the expression of VEGF, FGF-2 or TGFp (222), despite 

similar treatments being effective in inducing angiogenesis. Neither flow-mediated 

increases in VEGF nor angiogenesis was induced in hyperperfused dog muscle in the 

absence of contractions (215,223), which suggests that, for blood flow to induce 

angiogenesis, it must be coupled with other changes, e.g. altered tissue pO〗， 

metabolites, etc. Importantly, imposition of elevated shear stress may induce signaling 

through VEGFR in the absence of ligand binding (224), offering yet another potential 

avenue in the increasingly complex network of angiogenesis control. 

As mentioned above (see chapter 1.2), vibration treatment, providing biophysical 

mechanical stimuli, was also reported augmented blood flow of lower extremities, 

which was supposed to increase the shear stress at the endothelium to stimulate 

angiogenesis. However, whether vibration can enhance flow-induced angiogenesis in 

bone fracture healing is still unknown. 

1.3.5 Assessing Angiogenesis during Fracture Healing 

The ability to image neovascularization is an attractive strategy that represents a 

novel approach to noninvasively monitor angiogenesis and to assess the efficacy of 

therapies directed at modulation of the angiogenic process. Several imaging 
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modalities are currently used or under development. X-ray micro-computed 

tomography (microCT) (225,226) and ultrasound (e.g. power Doppler) 

(227-23O)approaches provide primarily anatomical information at high spatial 

resolution. Recently, efforts have focused on the development of ultrasound probes to 

monitor biochemical processes including angiogenesis. Magnetic resonance (MR) 

imaging is another popular imaging modality that offers superior spatial resolution, 

and penetration depth and provides both anatomical and functional information 

(231-234). In addition, the nuclear imaging techniques based on positron emission 

tomography (PET) (235) or single-photon emission computed tomography (SPECT) 

(225,236) offer favorable sensitivity and resolution for in vivo tomographic imaging. 

Due to the advantages of high imaging resolution and 3D anatomic visualization, 

microCT is attracting more and more attention to be utilized in microvasculature 

assessment. With the development of ultrasound imaging technique, transducers with 

high frequency (> 20 MHz) has been adopted in the evaluation of small vessels with 

low flow velocity. It was indicated that at a center frequency of 50 MHz, the detection 

of vessels by power Doppler could be down to 15-20 in diameter in the mouse ear, 

and a wider range of velocities (1-25 mm/s) of blood flow was able to be assessed in 

superficial tissues or organs (237,238). Given the advantages of non-invasion, 

real-time monitoring, less angle-dependence, and high sensitivity to low velocity flow, 

we tried to develop a three-dimensional (3D) imaging technique by using power 

Doppler to obtain the spatial anatomic and quantitative volumetric information of 

blood perfusion within the callus during fracture healing. 
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Figure 1.3.1 Sequential events in angiogenesis. A. Angiogenesis is initiated by 
release of angiogenic cytokines from platelets, monocytes, and fibroblasts. B. 
Activated endothelial cells (ECs) subsequently disrupt their interactions with 
neighboring ECs, digest the basement membrane, and digest other extracellular matrix 
(ECM) components (by releasing matrix metalloproteinases (MMPs). C. Activated 
ECs and fibroblasts (plus platelets, smooth muscle cells, and monocytes/macrophages) 
subsequently release the necessary angiogenic cytokines that allow the local, resident 
ECs to invade and migrate through the ECM and proliferate, D. These form new 
immature tubules. (From Bauer SM. et at Angiogenesis, Vasculogenesis and 
Induction of Healing in Chronic Wounds. Vase Endovascular Surg 
2005,39(4)-293-306.) 
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Figure 1.3.2 Sketch of the four classic histological stages of secondary fracture 
healing, including hematoma formation and inflammation, angiogenesis, soft callus 
formation, bony callus formation and bone remodeling. (From Human Anatomy & 
Physiology, Benjamin Cummings, 2006) 
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1.4 Hypotheses 

As described above, a good blood supply is a prerequisite for initiating the 

fracture repair, and angiogenic response is reported crucial throughout the fracture 

healing, including hematoma, inflammation, endochondral ossification and 

remodeling (60,197). Our previous studies confirmed LMHFV (0.3g, 35Hz) could 

promote both normal and osteoporotic fracture healing in rats (10,11). Other studies 

reported vibration could promote peripheral blood flow through enhancing the 

functions of muscle pump (143,145,146). Therefore, the first hypothesis of this 

study was that LMHFV (0.3g peak-to-peak, 35Hz) could enhance the blood flow 

of ischemia hind limb and promote angiogenesis at the fracture site in both 

normal and osteoporotic rats, hence to accelerate the healing process. 

In osteoporotic condition, Griffith et al found that ovariectomy could reduce the 

bone perfusion, which was associated with a decreased BMD. They suspected it could 

be caused by the reduction of erythropoetic marrow amount and endothelial 

dysfunction (239). Ding et al. also documented a reduced local blood supply and 

VEGF expression at the tibial metaphysis of ovariectomized rats (240). Due to the 

reduced blood perfusion of bone and poor capacity of vessel formation in osteoporotic 

condition (209-211), the second hypothesis of this study was that the angiogenic 

response in osteoporotic fracture was diminished as compared with 

non-osteoporotic fracture, which might result in the prolonged healing process in 

osteoporotic condition. 
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1.5 Study Plan 

To testify the hypotheses described above, the whole study was designed as 

follows: 

Nine-month-old ovariectomy-induced (OVX) and sham-ovariectomized (Sham) 

rats were created closed femoral fractures according to our established protocol. The 

fractured rats were randomly divided into either treatment or control groups. LMHFV 

at 0.3g，35Hz with 20min/day and 5days/week was provided for treatment groups 5 

days after fracture creation, while control groups underwent the same procedures 

except without vibration. � 

Radiography was taken weekly after treatment to monitor the status of bone 

healing. At weeks 2, 4 and 8 post-treatment, pulsed-wave Doppler ultrasound was 

utilized to measure the blood flow velocity of femoral artery at the fracture side. 

Three-dimensional high frequency power Doppler ultrasonography (3D-HF-DPU) 

was adopted for assessing the microcirculation at the fracture site. After that, the 

vascular system of each animal was perfused with Microfil contrast agent and the 

fractured femur was subjected to microCT seaming for microvasculature analysis of 

fracture site. Immunohistochemistry was performed to evaluate the expression of 

vascular endothelial growth factor (VEGF) signals in external callus. 
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1.6 Objectives 

The objectives of this study are listed as follows: 

1. To investigate the effects of LMHFV treatment on angiogenesis of fracture 

site and the blood flow of hind limb in both normal and osteoporotic rats; 

2. To demonstrate the mechanism of the promoting effect of LMHFV on 

osteogenesis in conjunction with the microcirculation alteration; 

3. To study the differences in angiogenesis and the possible causes of delayed 

fracture healing in osteoporotic bone. 

4. To establish a novel in vivo imaging methodology by 3D Doppler sonography 

for assessing the microvasculature of superficial tissues in small animals. 
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CHAPTER 2 
MATERIALS AND METHODOLOGY 
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2.1 Establishment of Animal Models 

2.1.1 Osteoporotic and Non-osteoporotic Rat Model 

The osteoporotic rats were established in 6-month-old female Sprague-Dawley 

(SD) rats (200 to 250 grams, retired breeders) by bilateral ovariectomy (〇VX), and 

housed to 9-month-old for induction (241,242). After anesthesia (sodium 

pentobarbital, 60 mg/kg，i.p., SIGMA, St. Louis, MO, USA), shaving on the back, and 

asepsis preparation (0.5% Hibitane in 70% ethanol), the rat was in prone position with 

bilateral ovaries approached through two 8 mm dorsal incisions (Figure 2.1.1-1 A). 

After dissection of the posterior abdominal wall, the ovaries were identified. Then the 

ovaries, part of the oviducts, concomitant vessels and some visceral fat were ligated 

(3-0 sutures, Mersilk, Ethicon Ltd., Belgium) and resected following careful stanching 

(Figure 2.1.1-1 B, C). The abdominal wall and the skin were then stitched with 3-0 

sutures. Following surgery, buprenorphine in 0.03 mg/kg, s.c. (Temgesic, 

Schering-Plough, NJ，USA) was given 3 times every 24 hours for analgesia. The rats 

were allowed free cage movement with standard diet during the following 3-month 

induction. The establishment of osteoporosis by OVX was confirmed by bone mineral 

density (BMD) measurement at the 5th lumbar vertebra (L5, 5 sections above iliac 

crest), the right femoral head (RFH, 3 sections) and the right femoral shaft (RPS, 4 

sections superior and distal to ischial tuberosity) by XtremeCT (Scanco Medical, 

Bruttisellen, Switzerland) (Figure 2,1.1-2). 
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Figure 2.1.1-1 The surgical procedure of bilateral ovariectomy in rats. A: Two dorsal 
incisions to approach bilateral ovaries at the posterior abdominal wall. B: Expose and 
resect the ovary (black arrow) surrounded by visceral fat. C: The resected ovaries 
(black arrows) with some visceral fat. 
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Figure 2.1.1-2 BMD measurement to confirm the efficacy of ovariectomy. A: 
Xtreme-CT scanning. B: Use radiograph to locate the regions of interest (ROI) 
including L5 (5 sections above iliac crest), RFH (right femoral head, 3 sections), and 
RPS (right femoral shaft, 8 sections). 
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2.1.2 Closed Femoral Shaft Fracture Model in Rats 

The closed fracture model was performed following our established protocol 

modified from Boimarens's study (10,11,243). Nine-month-old rats were generally 

anesthetized and prepared for intramedullary pinning of the right femur. After shaving 

and cleansing of the right leg, the rat was placed supine on the operating table. The 

right knee was completely fixed and a 8mm longitudinal incision was made just 

medial to the patella. After the dissection of the joint capsule, the patella was 

dislocated laterally, exposing the articular surface of the femoral condyles (Figure 

2.1.2-lA). The canal was reamed with an 18 gauge needle inserted between the 

condyles (Figure 2.1.2-lB). A sterile Kirschner wire (K-wire, 0 1.2 mm, Sanatmetal 

Ltd., Eger, Hungary) was then introduced into the medullary canal through the entry 

point. The K-wire retrograded up the shaft and perforated the proximal femur through 

the piriformis fossa. An incision was made over the greater trochanter to gain access 

to the proximal end of the pin. The tip of K-wire was 180° bended and it was cut so as 

to leave a 3 mm handle, which was subsequently buried beneath muscle to prevent 

distal migration (Figure 2.1.2-1C). The distal end of the K-wire was cut flush with the 

cortex of the patellofemoral groove (Figure 2.1.2-lD) and buried beneath the articular 

surface so as to allow free knee motion. After irrigation, the patella was put back with 

the joint capsule and the skin stitched with 5-0 sutures (Mersilk, Ethicon Ltd., 

Belgium), and a radiograph was taken to confirm the pin placement. 

With the rat supine, the pre-pinned femur was placed in abduction and external 

rotation and the mid-shaft was positioned over the animal support stage of a 
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customized 3-point-bending apparatus (Figure 2.1,2-2 A, B). A metal blade (weighted 

500 grams) was dropped from a height of 35 cm to create mid-shaft transverse 

fracture on the right femur (Figure 2.1.2-2 C). A radiograph was taken to document 

the fracture, configuration and to measure any angulation in the pin. No obvious 

fracture gap (< 0.5 mm) or displacement (< 0.5 mm) was confirmed as a successful 

model by anteroposterior (A-P) and lateral radiographics (Figure 2.1.2-2 D), which 

was done with the rat prone and with both legs fully abducted. 

After waken up, buprenorphine was given during the first 24 hours for analgesia. 

The rats were allowed unrestricted cage activities after surgery. 

2.2 Grouping of Animals 

Seventy-two fractured rats were randomly divided into four groups: normal 

control group (Sham-C), normal vibration group (Sham-V), ovariectomized control 

group (OVX-C) and ovariectomized vibration group (OVX-V). Each group was 

subdivided into three time points (n=6): 2, 4 or 8 weeks after vibration treatment. 

(Table 2.2) The time points for sampling were selected according to our previous 

study which represented 3 stages of fracture healing respectively in in 9-month-old 

ovariectomized rats. The most active changes of callus formation occurred in the first 

4 weeks (11). 
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Figure 2.1.2-1 The surgical procedure of intramedullary fixation. A: To dissect the 
joint capsule of the right knee, then to dislocate the patella laterally to expose the 
articular surface of the femoral condyles. B: Intramedullary drilling and reaming with 
an 18 G needle at the intercondylar notch. C: Insert the K-wire into the medullary 
canal through the entry point of intercondylar notch. The proximal end of K-wire was 
180° bended and buried beneath muscle to prevent distal migration. D: The distal end 
of the K-wire was cut flush with the cortex of the patellofemoral groove. 
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Figure 2.1.2-2 The procedure of closed fracture at the right femoral mid-shaft in rats. 
A: Three-point-bending apparatus for fracture creation with adjustable dropping 
weight and height. B: The detail of the 3-point-bending settings with an arc support 
designed to position the rat thigh. C: The rat was positioned supinely on the apparatus 
to create transverse fracture at the mid-shaft of right femur with the dropping metal 
blade. D: The efficacy of fracture creation was confirmed by radiography after 
surgery. 
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2.3 Low Magnitude High Frequency Vibration Therapy 

Treatment started at 5 days after fracture creation, when the rats were able to 

bear the M l body weight (11). For treatment groups, rats were housed individually in 

standard bottomless, compartmented cage and placed on a custom-designed 

(patent-pending) vibration platform (Figure 2.3 A). Low magnitude high frequency 

vibration (LMHFV) treatments oscillating vertically at 35Hz with a peak-to-peak 

acceleration of 0.3g (g = gravitational acceleration) (Figure 2.3 B, C) was provided 

for 20 minutes/day and 5 days/week. The rats of Sham-C and OVX-C groups stood on 

the vibration platform with power switch off as sham treatment under the same 

regime. 
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Table 2,2-1 Animal Grouping for Fracture Healing Study 

Groups Week 2 Week 4 Weeks 

Non-osteoporotic Control 
(Sham-C) o o o 

Non-osteoporotic Vibration f: fy A 
(Sham-V) o o u 

Osteoporotic Control 
(OVX-C) D u o 

Osteoporotic Vibration c 
(OVX-V) o o o 
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Table 2.2-2 Schedule of the treatment and sampling 

Groups 1st week post-treatment 2nd week post-treatment 3rd week post-tres 

Sham-V F V V V V va V V V V yab V V V 
Sham-C F C c c c c c c c cab c c c 
OVX-V F V V V V V V V V yab V V V 
ovx-c F c c c c ca c c c c cab c c c 
Groups 5th week post-treatment 6th week post-treatment 7th week post-tre 

Sham-V F V V V V va V V V V V V V 
Sham-C F c c c c c c c c c c c c 
OVX-V F V V V V r V V V V va V V V 
OVX-C F c c c c ca c c c c c c c 

F: surgery of fracture creation. ‘ 
V: LMHFV treatment (magnitude=0.3 g, frequency=35 Hz, 20 min/day, 5 days/week). 
C: sham treatment for control (stand on vibration platform with power off, 20 minutes/day, 5 da> 
a: radiography taken for callus size measurement. 
b: six rats were performed pulsed-wave Doppler, 3D high-frequency power Doppler evalua 

micro-CT and immimohistochemistry assessments. 
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Figure 2.3 Calibration of the LMHFV platform. A: Rats were housed individually 
and placed on the vibration platform. B: Calibration of the LMHFV platform with an 
oscilloscope. C: The calibrated vibrational signal - frequency=35 Hz (upper arrow), 
magnitude=0.3 g (lower arrow) - shown on the oscilloscope monitor. 
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2.4 Radiographic Analysis 

Radiography was used to monitor and to assess the status of fracture healing in 

vivo. After general anesthesia, the rat was pronely positioned and both legs were fully 

abducted, radiographics were taken weekly (3 sec exposure time at tube voltage of 

60kVp,) to document the lateral view of rat femur by a cabinet X-ray apparatus 

(Faxitron X-ray system model 43855C, Wheeling, Illinois, USA) (Figure 2.4-1 A). On 

each radiograph, an aluminum wedge calibrator was used as reference (Figure 2.4-1 

B). Fracture healing status was monitored through the measurement of callus width 

(CW) and callus area (CA) from the lateral radiography. 

The x-ray films were digitized with a scanner (Epson Perfection 4990 Photo 

Scanner, Japan) (Figure 2.4-1 C). Callus width was defined as the maximal outer 

diameter of the mineralized callus (d2) minus the outer diameter of the femur (d l ) 

(Figure 2.4-2 A). Callus area was calculated as the sum of the areas of the external 

mineralized callus around the fracture site (Figure 2.4-2 B) (8,10). Images were then 

measured by the software of ImagePro-Plus (Version 5.0, Media Cybernetics, Inc., 

Bethesda, MD, USA), the data of CW and CA were compared among different 

groups. 
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Figure 2.4-1 The procedure of radiography taken. A: The cabinet X-ray apparatus 
(Faxitron X-ray system model 43855C, Wheeling, Illinois, USA) B: Pronated position 
of the rat for lateral radiography. C: Digitalized lateral radiograph of rat femur with 
intramedullary fixation. 
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Figure 2.4-2 External callus width (CW) and callus area (CA) measurements on the 
digitized lateral radiograph. A: CW was defined as the maximal outer diameter of the 
external callus (dl) minus the outer diameter of the femur (d2). B: CA was calculated 
as the sum of the areas of the external callus. 
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2,5 Pulsed-wave Doppler Ultrasonography 

At each time point, blood flow of femoral artery at the fractured side was 

measured in the pulse-wave Doppler mode using Voluson 730 Expert System 

(General Electric Company, USA). After general anesthesia, shaving the hind limb, 

the rat was supinely positioned. Five minutes later, color-Doppler mode was used to 

find the femoral artery and femoral vein at transverse view, then the transducer (center 

frequency: 16MHz) was turned 90° into the longitudinal view (Figure 2.5). The peak 

systolic flow velocity of femoral artery was collected by 5 times within 10 minutes 

5mm downstream to the fracture gap. At each data collection period, the average of 

five blood flow readings was used to measure mean blood flow velocity (244,245). 
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Figure 2.5 Measurement of blood flow velocity of femoral artery by pulsed-wave 
Doppler. The peak systolic flow velocity (white arrow) of femoral artery was 
collected by 5 times within 10 minutes to take average. 
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2.6 Three-dimensional High Frequency Power Doppler Ultrasonography 

(3D-Hr-PDU) 

The rats received three-dimensional high frequency power Doppler 

ultrasonography (3D-HF-PDU) assessment (246-251) at the fracture site using 

Vevo-770 high frequency In-Vivo Micro-Imaging System (VisualSonics, Toronto, 

Ontario, Canada) (Figure 2.6-1 A). The rat was positioned pronely on a flat，heated 

pad with the body temperature maintained at 37°C (Figure 2.6-1 B). The extremities 

were secured and coupling gel was loaded to cover the exposed callus region (Figure 

2.6-2 A). 2D real time B-mode scanning was chosen to visualize the femur and the 

scanning window was centered at the fracture line, with a 7.4 mm x 7.0 mm field of 

view. The ultrasound transducer (center frequency: 55 MHz), held by a hand-free 

stand, was positioned 4.5 mm above the center portion of external callus so as to 

match the focal zone. Then the device was switched to the 3D power Doppler mode 

(gain: 20 dB; pulse repetition frequency: 5 kHz; wall filter: 2.5 mm/s) and the 

scanning was constructed by a linear translation of the transducer along an axis (the 

femur) which is perpendicular to the single plane of 2D imaging. The translation rate 

was set at 0.05 mm/s. A scanning step of 0.05 mm (Figure 2.6-1 C) was used with a 

scanning range of 10.0 mm. After lateral side scanning of the fracture site, the rat was 

turned to the supine position for medial side scanning of the fracture site (Figure 2.6-2 

B), following the same procedures as above. In total, 200 images for each side were 

collected within 30 minutes after induction of anesthesia. A rectangular region of 

interest (ROI) was manually outlined on the 100th slice (Figure 2.6-3 A) by a single 
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investigator. The height of ROI was set from the exterior margin of the external callus 

to the medullary cavity, and the length of ROI was 7.40 mm, i.e. the length of 

scanning window. The same ROI selection was performed automatically in the 

remaining 2D slices by a custom-designed script of Matlab (Version?.0, The 

MathWorks, Inc., Natick, MA, USA). The color voxel (0.016x0.016x0.050 mm') 

number was obtained by counting the color pixels within ROI in each slice. Then we 

calculated the volume of color voxels in each image to represent the vascular volume 

in each slice volume and added them together (Figure 2.6-3 B). Therefore, the total 

vascular volume at the fracture site was the sum of the volume of both lateral and 

medial sides. The customized script was used to discriminate and filter signals from 

large vessels: for an intra-linked region of flow signal displayed in the 2D image, the 

first criterion assessed was the area it covered. I f the area was large than 1.3 mm , a 

second criterion was set by observing the short axis of a regressed oval for this region. 

I f the short axis was also larger than a critical value (0.35 mm), this region was then 

judged as a large vessel and was then excluded in the calculation. Vascular volume at 

the fracture site was then calculated as the sum of the color voxel volumes of both 

lateral and medial sides. Mean signal intensity of blood flow was evaluated as the 

average amplitude of color voxels converted to a relative value from 0 to 255 (Figure 

2.6-4). The relative number of moving erythrocytes around the fracture site was then 

calculated by the formula: relative number of erythrocytes = (number of color voxels 

of lateral side x mean intensity of color signals at the lateral side) + (number of color 

voxels of medial side x mean intensity of color signals at the medial side). 
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Figure 2.6-1 The procedure of 3D-HF-PDU scanning. A: Vevo-770 high frequency 
In-Vivo Micro-Imaging System. B: The rat was 
extremities secured. Coupling gel was loaded to 
linear scanning. C: The step size of scanning was 

prone positioned on a flat with the 
cover the exposed callus region for 
set at 0.05 mm (black arrow). 
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Figure 2.6-2 Positioning the rat for bifacial scannings of the callus region. A: Lateral 
side scanning. B: Medial side scanning. 
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Figure 2.6-3 Region of interest (ROI) selection for blood volume calculation. A: A 
rectangular ROI was manually outlined (in red) on the 100th slice. The height of ROI 
was set from the exterior margin of the external callus to the medullary cavity, and the 
length of ROI was the length of scanning window (7.4 mm). The same ROI selection 
was performed automatically in the remaining 2D slices by a custom-designed script 
of Matlab. B: 200 images for each side with a scanning range of 10.0 mm were 
collected for color pixel volume calculation. 
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Figure 2.6-4 Calculation of blood volume and flow intensity. A custom-designed 
script of Matlab was used to analyze and to present the percentage of color voxels 
(upper arrow) within the volume of interest, thus the blood volume could be 
calculated. Mean signal intensity of blood flow (lower arrow) was evaluated as the 
average amplitude of color voxels converted to a relative value from 0 to 255. 
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2.7 MicroCT-Based Microangiography 

After the measurement of 3D-HR-PDU, the abdomen cavity of the rat was cut 

open and the abdominal aorta was separated carefully from the vessel sheath (Figure 

2.7-1 A). The aorta was then ligated and the distal aorta was gently clamped by a 

bulldog clamp. After that, a scurf-needle with its sharp needlepoint smoothly cut was 

inserted into the aorta between the clamp and ligation points, and the bulldog clamp 

was loosened to make sure that the needle was in the aorta, then the needle was fixed 

with aorta using 3-0 silk (Figure 2.7-1 B). The inferior vena cava was cut to allow 

outflow of the perfusate and 10 mL of pre-wanned heparinized 0.9% saline (50 lU/ml) 

was injected. The vascularity was then flushed continuously by using pre-warmed 

100ml saline at f low speed of 20ml/min until the outflow from the inferior vena cava 

was limpid. 10 ml of pre-wanned formalin was injected to f ix the skeletal specimen. 9 

ml Microf i l contrast agent (MV Diluent-MV 117 Orange-MV Curing Agent, Flow 

Tech, Carver, MA , USA), a radiopaque silicone rubber compound containing lead 

chromate, was rapidly injected as soon as they were mixed. The animals were then 

euthanized with an overdose of pentobarbital. The cadaver was stored at room 

temperature for 1 hour and then at 4°C overnight to ensure polymerization of the 

contrast agent (226,252). The efficacy of Microf i l contrast agent perfusion was then 

preliminarily examined by radiography (Figure 2.7-1 C, D). 

The fractured femur was then dissected from the surrounding musculature 

carefully (Figure 2.7-2 Ci) and a high-resolution (8-36 |j,m isotropic voxel size) 

micro-CT imaging system (VivaCT 40，Scanco Medical, Bassersdorf, Switzerland) 
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(Figure 2.7-2 A) was used to perform osseous tissue scanning and produce 3D 

vasculature images. The scanner was set at a voltage of 70 kVp and a current of 102 

j iA and the resolution was set to medium, which creates a 1024 x 1024 pixel image 

matrix. The femur was fixed in a plastic tube (20.3 mm in diameter) with its long axis 

perpendicular to the bottom of the tube (Figure 2.7-2 B). The scan was initiated 3.7 

mm proximal to the fracture line, with an entire scan length of 7.4 mm (Figure 2.7-2 

Di). 

The scan was carried out with isotropic voxels. The callus was contoured with 

ROI iteration to define the outer surface of the callus and a 3D reconstruction was 

performed using a low-pass Gaussian filter (sigma = 0.8; support =1). 

In the following analysis, to differentiate the newly formed mineralized callus 

from the old cortices, the low- and high-density mineralized tissues were 

reconstructed using different thresholds (high attenuation = 350, low attenuation = 

165) defined in 2-D images according to established evaluation protocols 

(10,11,86,253). The thresholds were further conformed by a series of 2- and 3-D 

evaluations. The high-density tissues represent old cortices and newly formed, highly 

mineralized callus while the low-density tissues represent newly formed callus. To 

compare the morphologic characteristics between groups, the reconstructed fracture 

segments were shown in transparent-view 3-D images. The high-density bone 

(threshold > 350) was shown in dark color, while the low-density bone (threshold 165 

-350) was shown in transparent light color. The unmineralized tissue (threshold < 165) 

was not shown. Quantitative analysis was performed covering the 350 slices of the 

61 



2-D images with the low- and high-density mineralized tissues evaluated separately. 

Morphometric parameters used for evaluation included total tissue volume (TV，nW， 

calculated from the contoured ROI in 2-D images), volume of high-density bone (BVh, 

n W ) , volume of low-density bone (BVi, mm〕)，total bone volume (BV, nW， i.e. 

equivalent to BVh + BVi, or TV - interstitial space) and normalized BV/TV, BVh/TV 

as well as BVi/TV. 

After microCT scanning, the specimens were fixed by 10% neutral buffered 

formalin for 24 hours, and then were decalcified by 9% formic acid for 7 days. 

Anteroposterior-view radiographs were taken to confirm the success of decalcification 

by using the cabinet X-ray system under an exposure condition of 60 kV/3sec. 

The decalcified femur (Figure 2.7-2 C2) underwent a second microCT scanning 

with the same ROI as above, i.e. 3.70 mm proximal and distal to the fracture line 

(Figure 2.7-2 D2). For segmentation of blood vessels from the background, the noise 

was removed using a low-pass Gaussian filter (sigma = 0.8, support = 1 ) and the 

blood vessels were defined at a threshold of >100. The semi-automatically built-in 

contouring program was used to draw contours at each 2D section for an automatic 

reconstruction of 3D vascular images in the decalcified sample. Subsequently, a 

black-white scale to the surface of the 3D images was mapped to produce a visual 

representation of the vessel tree, and total vessel volume (VV, mm)), volume fraction 

(VV/TV, VV/BV) were documented for quantitative analysis (226,252). 
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Figure 2.7-1 The procedure of Microfil perfusion. A: Cut open the abdomen cavity of 
the rat and expose the abdominal aorta (black arrow) and inferior vena cava (white 
arrow). B: Insert a scurf-needle with its sharp needlepoint smoothly cut into the aorta. 
Cut the inferior vena cava to allow outflow of the perfusate. C, D: The efficacy of 
Microfil contrast agent perfusion was preliminarily examined by radiography. The 
radiograph showed a continuous vasoganglion, which represented a well-perfused 
vascularity system by Microfil. 
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Figure 2.7-2 The procedures for the microCT scanning of osseous tissue and 
microvasculature at the fracture site. A: High-resolution micro-CT imaging system 
(VivaCT 40, Scanco Medical, Bassersdorf, Switzerland). B: The femur was fixed in a 
plastic tube (20.3 mm in diameter, white arrow) with its long axis perpendicular to the 
bottom of the tube. Ci： Undecalcified femur for osteogenesis assessment. C2： 

Decalcified femur for angiogenesis assessment. Di，D2： ROI selection for microCT 
scanning pre- and post- decalcification, respectively. Both were 3.7 mm proximal and 
distal to the fracture line with a total range of 7.4 mm. 
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2.8 Immunohistochemistry 

After microCT scanning, the decalcified femurs were embedded in paiaffin. The 

specimens were cut longitudinally into l - \m i thick sections and transferred to 

poly-lysine-coated slides. The mid-sagittal sections were immunostained with specific 

reagents for vascular endothelial growth factor (VEGF) identification at the fracture 

site (59,254). Following deparaffinization and rehydration, the sections were washed 

with phosphate buffered saline (PBS). Endogenous peroxidase activity was blocked 

by immersing sections in 3% hydrogen peroxide in methanol for 20 minutes, and 

rinsing in PBS. Antigens were retrieved with 2mg/ml protease (Merk KGaA, 

Darmstadt, Germany) at 37°C for 1 hour. Nonspecific antigen binding was blocked 

by 5% goat serum (Millipore Corporation, Billerica, MA, USA) in 1% bovine serum 

albumin (Sigma-Aldrich, St. Louis, MO, USA)/PBS (BSA/PBS) solution for 20 

minutes. The sections were then incubated with antibodies against VEGF (1:100, 

Sc-7269, Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) at 4。C overnight. 

After washing in PBS, nonspecific antigen was blocked again with 5% goat serum in 

1% BSA/PBS, and the sections were then incubated with horseradish peroxidase 

(HRP)-conjugated anti-mouse IgG (Millipore Corporation, Billerica, MA, USA) at 

room temperature for 1 hour. For negative controls, primary antibody was replaced by 

blocking solution. Samples from each group were stained in the same batch with the 

same incubation time and conditions. The rat kidney tissue for VEGF 

immunostainings was used as a positive control. The immunoreactivity in specimens 

was demonstrated with diaminobenzidine tetrahydrochloride (DAB, Dako North 
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America Inc, Carpinteria, CA，USA) and the sections were counterstained with 

haematoxylin. The temporal and spatial expression of VEGF in the sections were then 

localized and analyzed using the Leica microscope system (DMRXA2, Leica 

Microsystems GmbH, Wetzlar, Germany). The ROI was evaluated in the slides 

covering 1.5mm proximal and distal to the fracture line in the captured lOOx images. 

The area of external callus (Cl.Ar) involved in the ROI was measured using 

Image-Pro Plus software. Immuno-activities of VEGF were quantified as the area of 

immunohistochemically stained signals (VEGF.Ar) in brown color in each of 10 

sections from the same specimen. The percentage of VEGF expression area 

(VEGF.Ar/ Cl.Ar) in callus area was also calculated for comparison (255). 

2.9 Statistical Analysis 

A l l quantitative data were expressed as mean 士 standard deviation (SD) and 

analyzed with SPSS version 16.0 software (SPSS Inc, Chicago, IL, USA). One-way 

A N O V A was used to compare among different groups at each time point. Significant 

difference was set at a probability level of 95% (p < 0.05). 
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CHAPTER 3 
RESULTS 
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3.1 Establishment of the Animal Models 

3.1.1 Osteoporotic Rat Model 

Totally 43 rats were used to establish the osteoporotic model; 44 rats were 

performed the sham OVX surgery. The average time for the surgical procedures of 

bilateral ovariectomy was around 20 minutes, with no significant bleeding occurred 

during the surgery. After that, no postoperative complications like wound infection or 

abdominal infection were observed. No sudden death occurred during the three 

months of inducement following OVX or sham OVX surgery. BMD dropping was 

observed after three months of inducement in the OVX group. At the 5th lumbar 

vertebra (L5), the right femoral head (RFH) and the right femoral shaft (RFS )�BMD 

dropped by 9.9%, 9.3%, and 7.1% respectively. 

The rats in the OVX group gained 59.1% higher body weight after three months 

of inducement of ovariectomy, while the rats in the sham-OVX group gained only 

28.3% higher body weight. Three months after the inducement, mean body weight of 

OVX group was significantly higher than those in Sham group (p = 0.002). 
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3.1.2 Closed Femoral Shaft Fracture Model 

Al l 87 rats (Sham-OVX, OVX) were used to create the closed mid-shaft fracture 

model at the right femur. The average time for the surgical procedures of internal 

fixation was around 15 minutes, during when no significant bleeding occurred. The 

successful rate to achieve a transverse fracture at the femoral shaft within 0.5 mm 

fracture gap (confirmed by lateral and A-P radiographics) by the 3-point-bending 

fracture-making apparatus was 87.4% (76 out of 87). Those rats (n = 11) with 

non-transverse fractures were excluded from the further study. Single dose of 

buprenorphine (0.03 mg/kg, s.c., Temgesic, Schering-Plough, NJ, USA) was given 

during the first 24 h for analgesia. A l l rats were allowed free cage movement, and ad 

libitum access to standard rat diet and tap water. After fracture, the movements and 

activities of the rats were carefully monitored during the first few days. The rats were 

found to use the fractured limb to bear weight on the next day after surgery. One rat 

got beaten at the wound by others on the next day after the fracture creation, and was 

excluded from our study. Another three rats died unexpectedly due to the anesthetic 

accident during the farther monitoring. 
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3.2 X-ray Radiography 

By weekly radiographic monitoring, external callus around the fracture site was 

observed since week 1 post-treatment in both control and vibration groups. The 

fracture gap fused gradually during the healing process. Compared with the control 

groups, vibration group showed a faster bridging rate of fracture gaps in the digitized 

radiographics than controls. With regard to the quantitative measurements, both callus 

width (CW) (Figure 3.2-1) and callus area (CA) (Figure 3.2-2) increased and reached 

the peak at week 3. After that, the callus size began to decrease gradually. At the early 

phase of fracture healing, the vibration groups had better callus formation than the 

corresponding control groups. Both CW and CA in OVX-C were lower than in 

Sham-C, but this trend reversed at week 8. OVX-V had a comparable callus size with 

the one in Sham-V. For CW, significant increases were demonstrated in OVX-V as 

compared with in OVX-C at week 2 (p=0.019) and week 3 (p=0.001). For CA, 

OVX-V was significantly higher than OVX-C (week 1: p=0.006; week 2; p<0.001; 

week 3: p=0.001). Significantly higher CA was also detected in Sham-C than in 

OVX-C at week 2 (p=0.038) and week 3 (p=0.045). During the stage of callus 

formation, the increased percentage of CW after LMHFV treatment in osteoporotic 

group (week 1: +5.0%; week 2: +6.3%; week 3: +10.6%) was higher than the normal 

group (week 1: +2.3%; week 2: +3.1%; week 3: +4.0%). Similarly, OVX-V showed a 

higher increase rate of CA (week 1: +9.1%; week 2: +11.5%; week 3: +10.7%) as 

compared with Sham-V (week 1: +4.0%; week 2: +4.3%; week 3: +6.9%). 
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Figure 3.2-1 Radiographic analysis of callus width (CW) among 4 groups at different 
time points 
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Figure 3.2-2 Radiographic analysis of callus area (CA) among 4 groups at different 
time points. 
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3.3 Pulsed-wave Doppler Ultrasonography 

The blood flow velocity of injured femoral artery was measured at week 2，4 and 

8 after treatment. In general, the blood flow velocity increased gradually from weeks 

2 to 8 (Figure 3.3). At each time point, higher blood flow velocity was shown in 

vibration groups as compared with control groups. Significant differences were found 

at week 2 and week 4 (week 2: OVX-V > OVX-C, p=0.030; week 4: Sham-V > 

Sham-C, p=0.020; OVX-V > OVX-C, p=0.012). Inferior level of blood flow velocity 

was indicated in osteoporotic rats as compared with corresponding normal ones. 

Difference between the two groups was significant at week 8 post-treatment (Sham-V〉 

OVX-V, p=0.006; Sham-C > OVX-C, p=0.005). 
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Week2 \Veek4 Weeks 

Figure 3.3 The blood flow velocity of injured femoral artery assessed by pulsed-wave 
Doppler among 4 groups at different time points 
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3.4 3D High Frequency Power Doppler Ultrasonography 

In 3D-HR-PDU examinations, blood flow signals (colored in red and yellow) 

were present in the callus, periosteum and peripheral soft tissues (Figure 3.4-1). From 

the blood volume assessment (Figure 3.4-2), in general, a declining trend was found 

from weeks 2 to 8. At week 2 and 4, vibration groups showed a higher level of blood 

volume as compared with the control groups with significant difference at week 2 

(Sham-V > Sham-C, p=0.021; OVX-V > OVX-C, p=0.077). However, the trend 

reversed at week 8 with no significance. The volume values in OVX groups were 

lower than the corresponding Sham ones, yet without significant difference found. 
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f 

Sagittal Horizontal Coronal 

Figure 3.4-1 Images of fractured rat femur in sagittal (a), coronal (b) and horizontal 
(c) planes by 3D-HF-PDU reconstruction. The color signals represented the 
microvasculature at the peri-fracture region. 
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Figure 3.4-2 3D-HF-PDU analysis of the blood volume at the fracture site among 4 
groups at different time points. 
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3.5 MicroCT-based Microangiography 

After 3D reconstruction from microCT-based microangiography, the images 

showed osteoporotic groups had notably less neovasculature within the callus 

compared to non-osteoporotic groups. The angiogenesis in vibration groups was more 

and denser than the corresponding controls, which were more remarkable between 

OVX-V and OVX-C groups. At week 8, the neovasculature regeneration across the 

fracture gap was observed better in OVX-V group than OVX-C group (Figure 3.5-1). 

Quantitative analysis indicated the vessel volume decreased gradually from week 2 

onwards. The vascular volume in the non-osteoporotic group was higher than the 

osteoporotic group at each time point, with significant differences in week 2 

(Sham-V > OVX-V, p二0.014; Sham-C > OVX-C, p=0.014) and week 4 (Sham-C > 

OVX-C, p=0.027). Vibration groups had larger micro vasculature volume than the 

control groups. Statistical significances were found at week 2 (OVX-V > OVX-C, 

p=0.009) and marginally at week 4 (OVX-V > OVX-C, p二0.034) (Figure 3.5-2 A). 

The ratio of vessel volume to total tissue volume (VV/TV) (Figure 3.5-2 B) and the 

ratio of vessel volume to bone volume (VV/BV) (Figure 3.5-2 C) showed similar 

trends as the vessel volume at each time point, with significant difference at week 2 

(VV/TV: Sham-C > OVX-C, p=0.014; OVX-V>OVX-C, p=0.047; VV/BV: Sham-C > 

OVX-C, p=0.050) and week 4 (VV/TV: Sham-OOVX-C, p=0.027; OVX-V>OVX-C, 

p=0.034). Interestingly, the percentage of increase in vessel volume promoted by 

LMHFV on osteoporotic fracture healing was higher than normal rats in week2 (Sham: 

+13.2%; OVX: +25.7%) and week4 (Sham: +2.2%; OVX: +57.1%). 
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Figure 3.5-1 3D reconstruction of the vessels at the fracture site by microCT-based 
microangiography among 4 groups at different time points. 
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Figure 3.5-2 MicroCT analysis of vessel volumes of fracture site among 4 groups at 
different time points 
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3.6 MicroCT Analysis (Osseous Tissue) 

The micro-CT images showed femoral cortices and mineralized calluses in the 

peri-fracture regions from week 2 (Figure 3.6). The vibration groups demonstrated 

more and larger callus formation than the controls. At week 4，the fracture gap in the 

peri-fracture regions started to fuse with smaller gap shown in the vibration groups as 

compared with the controls. The fusion in OVX-C group was slower with larger 

fracture gap than Sham-C group. At week 8，images showed the rats from the 

vibration groups had regular, symmetrical and well-connected calluses around 

fracture site, while the callus gap was still obvious in the controls, especially in the 

OVX group. 

From the quantitative analysis of the osseous tissue at the fracture site (Table 3.6), 

it demonstrated a significant increase in OVX-V than OVX-C group, in terms of TV 

(week 2: p=0.009; week 4: p=0.034), BV (week 2: p=0.016), BVh (week 2: p=0.047) 

and BVi (week 2: p=0.028), however, there was no significant difference detected 

between Sham-V and Sham-C. TV in OVX-V group increased 13.4% at week 2 and 

6.6% at week 4 as compared to OVX-C group, while in Sham-V, it was 9.1% and 3.8% 

higher than Sham-C at week 2 and week 4, respectively. BV/TV and BVh/TV in each 

group increased from weeks 2 to 8. It also indicated higher value in vibration groups 

than in controls. BVi showed a declining trend from week 2 on ward. At week 2, 

vibration groups had larger BVi and BVi/TV as compared to controls. From week 4, 

this trend reversed. BVi and B V / T V in vibration groups were lower than the ones in 

corresponding controls. Significant difference was found in BVi /TV at week 4 
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(OVX-V < OVX-C, p=0.034). 

Compared Sham groups with OVX groups, Sham-C had larger callus size (by 

TV) than OVX-C at week 2 and 4, while it reversed at week 8. TV in Sham-V was 

smaller than the one in OVX-V. However, BV, BVh, BV/TV and BVh/TV in Sham 

groups were always higher than in OVX ones. Significant differences were detected 

in BV (week 4: Sham-C > OVX-C, p=0.020)，BVn (week 2: Sham-C > OVX-C, 

p=0.027; week 4: Sham-V > OVX-V, p二0.033; Sham-C > OVX-C, p=0.020; week 8: 

Sham-V > OVX-V, p二0.030)，BV/TV (week 2: Sham-C > OVX-C, p=0.050; week 8: 

Sham-C > OVX-C, p=0.008), and BVh/TV (week 2: Sham-V > OVX-V, p=0.050， 

Sham-C > OVX-C, p=0.014; week 4: Sham-V > OVX-V, p=0.019, Sham-C > OVX-C, 

p二0.020; week 8: Sham-C > OVX-C, p=0.008). 
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Figure 3.6 3D reconstruction of fracture site by microCT among 4 groups at different 
time points 

83 



T a b l e 3 .6 M i c ro -CT assessments o f osseous tissue compared among 4 groups at di f ferent t i in 

Week 2 Week 4 

Sham-V Sham-C O V X - V ovx-c Sham-V Sham-C O V X - V O V X - C 5 

TV (mm') 194.0+21.0 177.9 士 11.8 198.3±13.9 174.9±6.5' 177.3 土 20.1 170.8+14.8 184.5 士 3.0 173.0 土 6.0a 

BV (mm3) 110,3±9.4 102.7±9.6 107.1 士 9.4 

* J 

93.9±4.r 105.0±8.2 103.4±4.2' 95.7±5.4 92.2±2.4' 1( 

BVh (mmO 53.4±2.4 52.2±3.0 50.5 土 4.6 44.6 士 3. 62.2±5.1 59.1±4.3 53.1±5.7b 46.9 士 4.0= ‘ 

BVi (mm3) 56.9士 7.6 50.5 士 8.5 56.6士5’ 1 49.2±3’2a 42.9 士 3.7 44.3 士 4.6 42,5 士 1.4 45.3 士 2.3 ： 

BV/TV(%) 57.0 土 2.3 57.8+4.4 54.0±2.0 53.7±2.8' 59.6 士 5.0 60.8±4.1 56.9 士 2.5 55.3±1.6 ‘ 

BVh/TV(%) 27,7±1.9 29.4±{).7 25.5±0.7b 25.5±1.7 = 35.3±3.5 34.8±4.4 28.8±2.8b 27.1 士 1.5' 5 

BV,/TV(%) 29.3±2.1 28.4±4.4 28.5±1.6 28.2±2.5 24.3±1.7 26.0士2,0 23.1±0.8 26.2±2.3' 

Note: a: p<0.05 between O V X - V and O V X - C ; 
b: p<0.05 between Sham-V and O V X - V ; 
c: p<0.05 between Sham-C and O V X - C . 
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3.7 Correlation of Angiogenesis and Osteogenesis 

The association of the microvasculature and the osseous tissue at the fracture site 

was analyzed. It was demonstrated that both TV and BV had a positive linear 

correlation to the vessel volume (Figure 3.7 A, B). Significant correlation was found 

between BVi and vessel volume (R=0.7738, p<0.01) (Figure 3.7 D). To the contrary, 

BVh had a negative linear correlation to the vessel volume, yet without significance. 

(Figure 3.7 C) 
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Figure 3.7 Correlation of the volume between osseous tissue and microvasculature at 
the fracture site. There was a linear positive correlation between TV and VV, as well 
as BV and BVi. Significant correlation was indicated between BVi and VV (r=0.7738, 
p<0.01). BVh was negatively correlated to VV without significance. 
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3.8 Immunohistochemistry 

Microscopic images (magnification: x200) showed the features with 

immunohistochemical staining at the frontier of the endochondral ossification in 

external callus (Figure 3.8). VEGF signals could be mostly observed at the boundary 

of endothelial cells, as well as around the woven bone-trapped osteoblasts and 

hypertrophic chondrocytes. The expression of VEGF in OVX groups, in terms of 

immxmostained area, was inferior to normal groups, and an increase of VEGF 

expression was detected in external callus after vibration treatment at week 2 and 4. 

Quantitative analyses were summarized in Table 1. In general, the area of VEGF 

expression at the fracture site declined from weeks 2 to 8. At weeks 2 and 4, the 

vibration groups had a higher ratio of VEGF.Ar/CLAr as compared to controls. 

Statistical difference was noted between OVX-V and OVX-C at week 2 (p=0.034). At 

week 8, VEGF.Ar/Cl.Ar in vibration group was lower than in corresponding control 

group. OVX groups showed lower percentage of VEGF expression than normal ones 

at week 2 and 4, significant difference was found between Sham-C and OVX-C in 

VEGF.Ar/CLAr at week 2 (p=0.031) (Table 3.8). 
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Table 3.8 Immunohistochemistry assessment o fVEGF compared among 4 groups at different 

Week 2 Week 4 

Sham-V Sham-C O V X - V O V X - C Sham-V Sham-C O V X - V O V X - C S 

VEGF Ar 

(mm^) 
〇.5±0.2 0.4±0.1 0.4 士 0.2 0.2±0.1 0 4±0.1 0.3±0.1 0.4±0.2 0 3士0.1 ( 

Ci.Ar 

(mm2) 
9.2士0.8 8.9 士 0.7 9.0 士 1 0 7.8 土 0.9 9 0±0 7 8 6±0 8 8 8±0,8 8 2土 0 6 ( 

VEGF.Ar / 

Cl.Ar (%) 
5 1±0.5 4.5 士 0.4 4.1 士 0.7 2.6 士 0.5 ab 4 3士0.6 3 7±0 5 4 5士 0 6 3 6±0 5 ( 

Note:a: p<0.05 between OVX-V and OVX-C; 
b: p<0.05 between Sham-C and OVX-C. 

VEGF. An the area of positive VEGF stainings within external callus. 
CI Ar: the area of external callus. 
VEGF.Ar / Cl.Ar (%); the ratio of VEGF. Ar to Cl.Ar, 
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3.9 Feasibility and Reproducibility of3D-HF-PDU 

3.9.1 3D-HF-PDU Analysis 

From the vascular volume assessment, in general, a declining trend was found 

from weeks 2 to 8. In each time point. Sham group had a larger vascular volume than 

the corresponding osteoporotic group. Quantitative analysis demonstrated a 

significantly larger value in Sham group than OVX group at week 4 (p = 0.050). 

(Table 3.9-1) 

For reproducibility testing, we calculated the intra- and inter-observer intra-class 

correlation coefficient. Results showed all ICCs > 0.75 (Table 3.9-2), indicating the 

microvasculature assessment by 3D-HF-PDU had good reproducibility. 

3.9.2 MicroCT-based Microangiography 

Results from microCT-based microangiography indicated the vascular volume 

decreased gradually from week 2 onwards. The vascular volume in the Sham group 

was also larger than the OVX group at each time point. Statistical significances were 

found at week 2 and week 4 (p = 0.014 and 0.028, respectively). (Table 3.9-1) 

3.9.3 Correlation 

The images with 3D reconstruction of power Doppler at the fracture site and 

microCT-based microangiography within callus (Figure 3.9-1) confirmed that 

3D-HF-PDU provided accurate assessments into the anatomical structure of 

microvasculature at the fracture site, which was similar as the images from 
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microangiography. Compared the vascular volumes obtained from 3D-HF-PDU and 

the ones from microCT-based microangiography, we found a significant positive 

linear correlation between the outcomes of the two methodologies (r = 0.867, p < 

0.001). (Figure 3.9-2) 
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Table 3,9-1 Vascular volume evaluated by 3D-HF-PDU and microCT-based microangiography at 

Vascular volume 

(nW) 

Week 2 Week 4 

Sham ovx Sham OVX 

3D-HF-PDU 5.48±0.21 4.74±1.28 0.386 4.27±0.93 2.36±0.61 0.050* 

Microangiography 9.10 土 1.13 6.59±0.63 0.014* 4.61+1.21 2.89±0.35 0.028= 

Note: * p < 0.05 between Sham and OVX. 
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Table 3.9-2 Intra- and inter-observer reproducibility of volume acquisition and ROI 
selection. 

Vascularization Volume acquisition ROI selection 
parameters Intra-ICC * Inter-ICC ** Intra-ICC Inter-ICC 

Vascular volume 0.906 0.859 0.985 0.941 

Mean intensity of 

blood signals 
0.859 0.826 0,998 0.963 

Note: 

* Intra-ICC indicates intraobserver intra-class correlation coefficient; 

* * Inter-ICC indicates interobserver intra-class correlation coefficient. 
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Figure 3.9-1 Comparison of 3D images by 3D-HF-PDU and microCT-based 
microangiography, a: The 3D reconstruction of power Doppler images at the fracture 
site (blood vessels colored in red, osseous tissues in green and surrounding soft tissues 

blue), b: MicroCT-based microangiography within callus. Both the two m 
methodologies showed the similar anatomic structures of microvasculature at the 
fracture site. At both proximal and distal sides of peri-fracture region, the neovessels 
regenerated towards the fracture gap. 
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Vascular volnme by mkroCT-based microaagiograpiiy (mm)) 

Figure 3.9-2. Correlation of the vascular volumes between 3D-HF-PDU and 
microCT-based microangiography at the fracture site. A significant positive linear 
correlation was found (r = 0 867, p<0 001). 
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CHAPTER 4 
DISCUSSION 
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Fracture healing is a complex phenomenon that involves a well-characterized 

cascade in chronological order of haematoma formation, inflammation， 

intramembranous bone formation, endochondral ossification and callus modeling 

(256-258). In the population of postmenopausal women and elderly, osteoporosis is a 

major health problem characterized by decreased bone strength that leads to an 

increased risk of fragility fracture (259), which was recognized with an impaired 

capacity and prolonged process to heal (78,260). Poor bone repair status gives a 

pressing need for orthopaedic surgeons to develop effective, safe, convenient and 

economic therapeutic approaches to accelerate the osteoporotic fractures. 

Bone fracture disrupts its blood circulation and leads to hypoxia and acute 

necrosis of bone, marrow and surrounding soft tissue. A n adequate blood supply to 

the fracture site is prerequisite for bone repair, whereas the insufficient blood supply 

is likely to result in delayed, mal-union or non-union (58,60,197). Angiogenesis, or 

neovascularization, was defined as endothelium sprouts from the pre-existing 

vascularity (187,198,199). The neovasculature can recover oxygen homeostasis, 

deliver nutrients, remove metabolic and regenerative wastes, transport necessitous 

mesenchyme cells, growth factors and other biological cytokines to the peri-fracture 

region (60). Blood vessels also provide systemically circulating factors that may 

modify fracture healing such as PTH and Vitamin D (60). Furthermore, angiogenesis 

is pivotal during intramembranous and endocondral ossifications. During 

endochondral ossification, the avascular environment of cartilage is invaded by blood 

vessels fronted by chondroclastic cells with osteoblast progenitors which wi l l deposit 
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new bone on the surface of cartilage islands. Intramembranous bone formation also 

requires vascularization, presumably to provide ingress for osteoblast progenitors (59). 

Ischemia of fracture significantly decreased callus formation (197,261). By using 

inhibitors of angiogenesis, the fracture healing was found completely prevented (208). 

Therefore, angiogenesis plays a pivotal role in multiple stages of fracture healing. 

In osteoporotic condition, blood perfusion of bone is reduced (239). In addition, 

Strehlow et al. indicated the reendothelialization of injured vessel segments by bone 

marrow-derived endothelial progenitor cells (EPCs) was decreased in ovariectomized 

mice (262). In regard to the importance of blood supply in bone repair, it shows that 

the impaired capacity of osteoporotic fracture healing may closely relate to the poor 

revascularization and perfusion at fracture site. 

Low magnitude, high frequency vibration (LMHFV), a biophysical modality that 

provides noninvasive, systemic, cyclic mechanical strain stimulation, has been 

reported to be effective in promoting osteogenesis, maintaining bone mineral density 

(BMD) (142,179,263-266), enhancing muscle strength and augmenting peripheral 

blood circulation in many studies of animals and humans (143,146,267). Our previous 

studies were the first to demonstrate that LMHFV (magnitude=0.3g, frequency =35Hz) 

accelerated fracture healing in both normal and osteoporotic fractures (10,11) and 

enhanced bone remodeling in rat model (180). The mechanism of the beneficial 

effects of LMHFV on fracture healing, however, remains uncertain. 

Currently, the effects of whole body vibration on blood circulation have 

increasingly attracted a major concern. Kerschan-Schindl et al. demonstrated that the 
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mean blood velocity of participants' quadriceps and gastrocnemius muscles was 

doubled after vibration (magnitude=3mm, frequency=26Hz) (145). Stewart et al. 

provided additional evidence that whole body vibration (magnitude=0.2 g, 

frequency=l 5&45Hz) increased blood flow to the lower extremities in 

perimenopausal women (146). Lythgo et al also reported the similar improvement in 

leg blood flow by vibration (magmtude=2.5mm & 4.5nmi, frequency=5-3OHz with 

5Hz increments) (143). An appropriate load to the fracture site was considered 

beneficial for angiogenesis and osteogenesis, because micro-motion actually 

increased blood flow to the fracture site (268,269). 

Based on the scientific supports above, the application of LMHFV may have 

special properties in enhancing revascularization and blood perfusion at the 

peri-fracture region, thus to accelerate the fracture healing {see chapter 1.6). The 

present study was designed to examine the effects of LMHFV treatment 

(magnitude二0.3g, frequency=35Hz) on angiogenesis and blood flow in both 

non-osteoporotic and osteoporotic fractures, whilst to investigate the possible causes 

of delayed fracture healing in osteoporotic bones as compared with non-osteoporotic 

ones. The results shown in chapter 3 demonstrated a few positive findings that would 

be discussed in the following sections. 
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4.1 Blood Flow Changes of Fractured Hind Limb 

The results assessed by pulsed-wave Doppler indicated a gradual increase of 

blood flow velocity of femoral artery from weeks 2 to 8, which represented a recovery 

of blood supply to the distal hind limb. In blunt trauma, the high amount of energy 

that is typically absorbed causes severe damage to skeletal structures and soft tissues, 

and frequently produces almost complete distal ischemia, because of the crushing 

injury and soft tissue swelling (270). The endothelium injury might lead to the 

generation of thrombus and endotheliosis in the femoral artery, which resulted in 

arteriostenosis. Therefore, the distal blood flow of hind limb decreased at the 

beginning of arterial injury. Subsequently, recanalization provided capillary-sized 

channels through the thrombus for continuity of blood flow, and dissolution occured 

when fibrinolytic mechanisms broke up the thrombus and blood flow was then 

restored to the vessel (271,272). 

4.1.1 Beneficial Effect ofLMHFV on Blood Flow 

In this study, LMHFV at 0.3g, 35Hz was confirmed to increase the blood flow 

velocity of hind limb in each time point compared to the control subjects, with 

significant improvements found at week 2 and week 4. This was substantiated by 

Stewart's study that reported a significantly improved leg fluid flow in 18 

peri-menopausal women by plantar vibration at 45Hz, 0.2g point-to-point, as assessed 

by strain-gauge plethysmography (146). Lythgo et al. confirmed a four-fold increase 

of mean blood cell velocity by whole-body vibration (2.5 & 4.5mm magnitude, 
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5-3 OHz with 5Hz increments) (143). McDonald et al. demonstrated that an important 

effect of mechanical loading was the significant alteration of blood flow in bone 

(273). 

The explanation of blood flow enhancing effect might be that the blood had the 

feature of shear thinning that was the effect where the viscosity decreased with 

increase rate of shear stress by vibration (145). Also, vibration could widen small 

vessels in muscles to reduce the peripheral resistance, heighten muscle activity and 

muscle metabolic demand by activating muscle spindle, and hence increase the blood 

flow velocity (274). 

Clinically, combined arterial and skeletal extremity trauma imparts a 

substantially higher risk of limb loss and limb morbidity than do isolated skeletal and 

arterial injuries. The lower extremities are involved in two thirds of all patients with 

vascular injuries. Our results showed an enhanced blood flow of ischemic lower 

extremity after vibration treatment, which might provide a potential modality to help a 

better recovery of blood perfusion and to reduce the clinical amputation rate. 

To the contrary, some studies showed that high-frequency vibration would 

restrict blood flow (275-277) and even caused hypertrophy of the smooth vascular 

muscle cells (278). However, these findings were often encountered by operators of 

power tools with much higher frequency (above 80 Hz). From previous studies and 

our parameter, the frequency of vibration was distributed within a modest range (5-60 

Hz) which indicated no damage to the organism. Therefore, the dosage of 

physiological safety should also be well considered and investigated for vibration 
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treatment. 

4.1.2 Comparison of Blood Flow in Non-osteoporotic and Osteoporotic 

Conditions 

In each time point, the blood flow velocity of femoral artery showed a higher 

level in sham-OVX group than corresponding OVX group, significant differences 

were found at week 8. A number of in vivo studies in animals (279,280) and human 

(281-289) indicated a decreased blood flow and increased peripheral resistance in 

various vascular beds after spontaneous or surgical menopause. It might result from 

the estrogen deficiency after ovariectomy, which increased the blood viscosity, and 

thus decreased the blood flow velocity (290,291). On the other hand, estrogens was 

proven to increase the production of nitric oxide (NO) and to reduce the production of 

reactive oxygen species, which in turn were putatively important for 

growth-stimulatory and antiapoptotic effects on the endothelium (292-294). 

Consequently, experiments in several animal models revealed that estrogen 

accelerated reendothelialization processes after injury (295). Strehlow et al. found that 

estrogen increased EPCs numbers which accelerated the vascular repair and decreased 

neointima formation (262). Combined previous studies with our findings, it was 

presumed the ovariectomized rats had higher peripheral blood viscosity and impaired 

capacity of artery repair due to the estrogen deficiency, which resulted in 

compromised hemodynamics of hind limb as compared with the ones of 

non-osteoporotic rats. "“ 
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4.2 Angiogenesis at the Fracture Site 

From the results of local angiogenesis assessments (microCT-based 

microangiography and 3D-HF-PDU), generally, a decline trend of neovasculature 

volume at the fracture site was shown from week 2 to week 8 post-treatment. Some 

previous studies looking into the neovascularization in bone repair showed similar 

findings. Raines et al. observed a decreasing trend of neovascular volume within the 

marrow cavity from the peak value at 14 days after bone drilling in tibial marrow 

ablation rats (296). Zeng et al.'s study found a high expression of vascular endothelial 

growth factor (VEGF) lasting from days 14 to 28 post femoral fracture in rats, then it 

decreased gradually until week 6 (297). The pathophysiology might be due to the 

changes of local oxygen concentration during fracture healing. Under the hypoxic 

condition after fracture, mesenchymal stem cells increased transcription of the gene 

encoding vascular endothelial growth factor (VEGF) in a HIF- la dependent manner, 

and neovessels consequently sprouted from the pre-existing ones (298,299). 

According to the previous studies in rodents, the VEGF expression started from day 

3-4 post-fracture and rose steadily to its peak concentration at about day 10-21 then 

declined thereafter (68,300). Due to the blood vessels ingrowth, the oxygen tension 

gradually rose, and the hypoxic condition relieved, hence the angiogenic response 

descended. In addition, during the mineralization and remodeling of callus, the 

microvasculature diminished with the callus resorption. Therefore, the amount of 

neovessels at the fracture site declined from week 2 to week 8. 

Our observation showed that angiogenesis could be most important in the early 
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period of fracture healing. The temporal importance of angiogenesis in contributing to 

non-union development is considered by Brownlow et a l , which demonstrated by 

immunocytochemistry that at 8 and 16 weeks post-fracture, established atrophic 

non-unions were well-vascularized in a rabbit tibia non-union model. Earlier time 

points, however, did show a discrepancy in vessel concentration between union and 

non-union groups, particularly at 1 week. (301) The fibrous tissue of non-unions may 

become revascularized eventually, but a critical window for fracture union has been 

missed, and some other manipulation of the fracture biology may be necessary to 

promote union. Our findings suggested that angiogenic stimulatory therapy for 

promoting healing might be required early rather than late. 

4.2.1 Stimulatory Effect of Angiogenesis by LMHFV in Fracture Healing 

The angiogenesis (VV, VV/TV, VV/BV by microangiography, blood volume by 

3D-HF-PDU, YEGRAr./Cl.Ai. by IHC ) at the peri-fracture region in vibration groups 

was demonstrated significantly enhanced as compared with controls, especially in 

week 2. This was consistent with Carvalho's study on mechanical stimulation, which 

reported the expression of angiogenic factors, such as hypoxia-induced factor-la, 

neuropilin 1, and VEGF-A were induced in murine model of tibia distraction 

osteogenesis (302). Many previous reports substantiated that VEGF expression was 

induced in osteoblasts by various stimuli including mechanical loading (203,302,303). 

In turn, VEGF regulated recruitment, survival and activity of osteoclasts, endothelial 

cells and osteoblasts. Strong VEGF expression of osteoprogenitors had been found in 
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early stage of fracture healing (304). Furthermore, VEGF has been shown to play a 

major role in cartilage maturation and resorption, which initiate the endochondral 

ossification cascade by attracting osteoblasts and by recruiting and differentiating 

osteoclastic cells that resorb cartilage (305-310). 

The LMHFV-induced angiogenic stimulatory effect could be explained by the 

reasons shown below: (1) Biomechanical forces generated by blood f low and blood 

pressure can regulate vascular functions. Flowing blood constantly exerts a frictional 

force, shear stress, on the endothelial cells (ECs) lining blood vessel walls, and the 

ECs respond to shear stress by changing their morphology, function, and gene 

expression, including angiogenesis (311), vascular remodeling (312), and 

atherosclerosis (313). Numerous studies have been devoted to clarify the mechanism 

of shear stress mechanotransduction (314-317)，however, it is not yet fully understood. 

Abumiya et al. found increased the blood flow shear force at vascular endothelium, 

due to the inertia of blood, augmented the functions of VEGF by up-regulating 

VEGFR-2 (318). Vibration might enhance the angiogenesis through increasing the 

blood flow shear stress at the ECs underwent the same mechanism. (2) Besides 

around the endothelial cells, we also observed more positive VEGF expression than 

controls in the osteoblasts and hypertrophic chondrocytes, especially at the front of 

endochondral ossification. Osteoblasts were confirmed to synthesize VEGF in 

response to mechanical stimuli such as distraction osteogenesis (319,320) and 

Shockwave (203). Wong et al. indicated cyclic shear stress up-regulated VEGF 

expression of hypertrophic chondrocyte in vitro (321). These studies imply LMHFV 
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might stimulate osseous cells to synthesize VEGF to provide important functions in 

endochondral ossification, which included the breakdown of calcified cartilage matrix, 

inducing invasion of endothelial and osteoblast-regulating mineralization. (3) 

LMHFV could increase skeletal muscle activity, which elevated the muscle blood 

flow several-fold as a result of metabolic vasodilation of resistance arterioles. As a 

consequence, there is enhanced capillary perfusion with significant increases in the 

velocity of red blood cells (322) and increased capillary pressure. It would increase 

the shear stress to which endothelial cells were exposed and hence enhance the 

angiogenesis in the soft tissue surrounding the fracture site. Brown's study partially 

supports our deduction (323). They demonstrated that VEGF protein was elevated at 

capillary sites due to the increase of shear by muscle activity stimulation. It was 

concluded that the most likely stimuli for angiogenesis could be increased blood flow 

and shear forces to vessel supplying the active muscle fibres, probably linked with 

metabolic factors. 

Our osteogenesis results of this study further confirmed that LMHFV had 

positive effects on accelerating both normal and osteoporotic fracture healing. Both 

radiographic and microCT assessments indicated better callus formation and 

mineralization at the fracture site in LMHFV groups than control ones, where the 

enhancements were observed in the early phase at week 2 and 4. With the consistent 

findings between angiogenesis and osteogenesis and the significant correlation 

between neovascular volume and BVi, it is believed angiogenesis plays a critical role 

in osteogenesis of fracture healing process. Colleran et al. also indicated that 
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decreased lower limb perfusion resulted in decreased cancellous bone formation as 

well as reduced periosteal bone (324). Therefore, LMHFV may accelerate the fracture 

healing through enhancing angiogenesis and hence osteogenesis. 

Our results also demonstrated the early phase of healing was the most influential 

period for LMHFV treatment, which suggested that LMHFV should be applied at the 

beginning of fracture healing to obtain better angiogenic and osteogenic effectiveness. 

4.2.2 Comparison of Angiogenesis in Normal and Osteoporotic Fracture Healing 

The findings of the present study confirmed that osteoporotic fractures had lower 

level of angiogenesis at the peri-fracture site than the one of non-osteoporotic 

fractures, as reflected by lower microvascular volume, blood volume and expressions 

of VEGF. Consistently, in terms of osteogenesis, osteoporotic bones demonstrated a 

poorer callus formation, intramembranous ossification and fracture healing than the 

controls, as proven by lower CW, CA, BV and TV at week 2 and week 4. This was 

farther supported by another report that histologically showed a delayed callus 

formation with poor development of mature bone in osteoporotic bone (325). Jesmin 

S et al also found a reduced VEGF expression level in ovariectomized rat model (326). 

Estrogen plays an important role in fracture healing. In animals with estrogen 

deficiency, delayed fracture healing and slowed muscle recovery after inactivity have 

been observed (325,327). As estrogen plays a potential role in angiogenesis (328), it is 

postulated that estrogen deficiency might cause impaired angiogenic capacity in 

osteoporotic bones, resulting in delayed fracture healing. 
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Interestingly, despite the generally lower angiogenic response than 

non-osteoporotic fractures, osteoporotic fractures were more sensitive than 

age-matched non-osteoporotic ones in response to LMHFV by higher percentage 

increase of blood flow and angiogenesis (week 2: Sham-V +13.2% vs. OVX-V 

+25.7%; week 4: Sham-V +2.2% vs. OVX-V +57.1%). This phenomenon was 

consistently observed in osteogenic responses as reported in this and our previous 

study (11), which further justify the close relationship between angiogenesis and 

osteogenesis. Shi et al. demonstrated that the OVX-V rats had a larger percentage of 

callus size increase during fracture healing. In Sham-V group, TV increased 11.2% at 

week 2 and 2.2% at week 4 by LMHFV, while OVX-V group improved 17.5% and 

11.8% at week 2 and 4 respectively (1 l).The higher sensitivity of osteoporotic bones 

to LMHFV than sham-OVX ones might be explained by some evidences that 

ovariectomy induced higher extent of decline in estrogen receptor |3 (ERj3) than in 

ERa mRNA, thus altering the ratio of ERa/ERp (329), where ER is well-known 

mechanosensitive and estrogen acts as a negative modulator of mechanotransduction 

via ER|3 signaling (330-333). However, further investigations are required to verify 

the interactive effects of ERa and ERp on angiogenesis by mechanical stimulation. 
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4.3 Effects of LMHFV on Fracture Healing in Normal and Osteoporotic Bones 

4.3.1 Normal and Osteoporotic Fracture Healing 

OVX-induced osteoporotic and age-matched non-osteoporotic fracture healing 

was compared. From our results, fracture healing in OVX-C group was poorer than 

that in Sham-C ones with less callus formation and slower 

intramembranous/endocondral ossification reflected by lower CW, CA, BVi and BVh. 

Other studies also showed impaired fracture healing in osteoporotic conditions with 

regard to BMD and microarchitecture at different stages (11,334). The reasons might 

include impaired capacity of angiogenesis (335,336), decreased growth hormone 

secretion The effect of growth hormone on fracture healing in old rats and reduced 

osteoinductive capacity of demineralized bone matrix. 

4.3.2 Effect ofLMHFV in Normal and Osteoporotic Fracture Healing 

In our study, LMHFV was proven effective in accelerating fracture healing in 

both normal and OVX bones, especially in the early phase of the healing process, as 

indicated by most of the parameters (CW, CA, TV, BV, BVh, Bh/TV) with 

significantly higher values by radiography and micro-CT analysis. This was 

consistent with previous studies which proved vibration had a positive effect in 

promoting osteogenesis. It also matched with other mechanical stimulation therapies 

like low-intensity pulsed ultrasound, of which the positive effect on fracture healing 

was remarkable in the early stages before mineralization (337). 

Enhanced callus formation was confirmed by increased CW, CA, BVand BVi. 
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Faster mineralization and remodeling were demonstrated respectively by significantly 

increased BVh，BVh/TV and faster decline of CW, BVi in vibration groups as 

compared with controls. These findings revealed that LMHFV enhanced 

intramembranous ossification and endochondral ossification, which might imply the 

positive effects of mechanical stimulations on osteoprogenitor cells differentiation. 

Interestingly, in this study, OVX-V group also showed a higher percentage of 

increase in CW, CA, TV and BV as compared with Sham-V in the early phase of 

fracture healing. It implied that the bones after ovariectomy might be more sensitive 

to mechanical stimuli, which echo with our previous findings (11). This is consistent 

with Rubinacci's study that found ovariectomy could sensitize the cortical bone to 

whole body vibration (176). As mentioned above, our angiogenesis assessments of 

fracture site also showed a more sensitive angiogenic response to LMHFV in 

osteoporotic fractures, which might partially explain why osteoporotic bone had a 

more osteogenic response to mechanical stimulation. 
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4.4 Newly Established in vivo Imaging Methodology for Assessing 

Microvasculature by 3D-HF-PDU 

To understand revascularization and local blood perfusion in both normal and 

osteoporotic fracture healing, 3D high frequency power Doppler ultrasonography 

(3D-HF-PDU) was utilized and compared with microCT-based microangiography that 

is the gold standard to assess angiogenesis in small animals. The aim was to determine 

the application of 3D-HF-PDU imaging. This might serve as an in vivo platform for 

assessing the microcirculation in small animals both qualitatively and quantitatively. 

4.4.1 Similarities with microCT-based microangiography 

From the results, the vascular volume calculated by 3D-HF-PDU showed a 

similar decline as that from microangiography from weeks 2 to 8 in both Sham and 

OVX groups. An impaired angiogenic response in osteoporotic fracture healing was 

detected in our study. Microangiography data and other reports also confirmed 

impaired revascularizaion in osteoporotic fracture healing as compared to normal 

healing (31). 

A significantly positive linear correlation of vascular volumes between 

3D-HF-PDU and microCT-based microangiography was found. A l l the findings 

indicate 3D-HF-PDU is comparable to microCT-based microangiography and the 

results are consistent with other previous studies. Also, it is sensitive in distinguishing 

between normal and impaired angiogenic responses. To our knowledge, this is the 

first study to assess the changes in microvasculature and local blood flow during 
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fracture healing in rats using 3D-HF-PDU. Currently, despite conventional 

microCT-based microangiography being the gold standard assessment for 

microvasculature studies in fracture healing (226), it is not feasible for longitudinal 

analyses in the same animal as the animal need to be euthanized for such purpose. In 

addition，the results cannot provide the f low information and can be affected by the 

quality of capillary perfusion due to fluctuations variables such as blood flush, 

perfusion pressure and threshold value chosen of the vascular tree during CT analysis 

(59). Therefore, it is advantageous to use 3D-HF-PDU imaging because it is 

non-invasive, real-time and can be used for longitudinal follow-up for both 

vascularization and blood f low quantifications. 

4.4.2 Other Parameters of 3D Power Doppler 

The mean signal intensity of blood f low is a mean of amplitude value of the color 

voxels within VOI, which has been demonstrated to be positively correlated to the 

concentration of moving blood cells (338). The relative number of erythrocytes is 

calculated as the product of signal intensity and vascular volume, which combines the 

information of blood vessels and blood cells to evaluate the local circulation (339). 

These parameters can provide us more quantitative information of hemodynamics in 

microcirculation. 

4.4.3 Advantages of Using 3D-HF-PDU 

In other previous in vivo studies, some investigators adopted power Doppler 
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ultrasound to assess neovasculature at the fracture site in humans and large animals, 

i.e. detecting the existence of vascularity, evaluating the vessel area, vessel density or 

blood flow intensity from 2D images (340). However, since each 2D slice would give 

a different percentage of color pixels, it would be necessary to measure many parallel 

slices throughout the total volume in order to reach a reliable result. Since 3D 

geometric evaluation can provide the spatial vascular tree, the value of vascular 

volume and blood flow within VOI, 3D-HF-PDU measurement wi l l certainly improve 

the accuracy, objectivity, and integrity of the microcirculation information. 

Conventional frequency (2-15 MHz) ultrasound in clinical examinations has 

difficulties in detecting small vessels (5-100 |im) and low flow velocities (〜0-50 mm/s) 

of the microcirculation. One possible method is to increase the operating frequency to 

above 20 MHz range (237). Goertz et al.'s in vivo experiments confirmed that, at a 

center frequency of 50 MHz, the detection of vessels could be improved to 15-20p,m 

in diameter in the mouse ear and demonstrated flow imaging in assessing a wide 

range of velocities (1-25 mm/s) present in superficial mouse tumors (238). Therefore, 

we chose the transducer with the center-frequency at 55 MHz, which was sensitive in 

detecting and assessing neovascularization around the fracture site. 

4.4.4 Imaging Optimization and Other Technical Precautions 

There are some technical precautions for 3D-HF-PDU. Firstly, it is necessary to 

reduce and filter the image noises during the scanning. Power Doppler is highly 

sensitive to motion artifacts which can be created by artery pulsations, breathing or 
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muscles contractions, etc. An overly high Doppler gain, increasing the scan speed and 

vibration of the motor used in motor-steered probes, may also generate such 

disturbances. In order to reduce these artifacts, animals should be anesthetized with 

the extremities fixed, and a hand-free stand was utilized to mount the transducer for 

scanning. In addition, it is appropriate to set the gain by up-regulating its value until 

random noise is encountered, then down-regulating until the noise disappears (341). 

The noise and low frequency flash artifacts could also be avoided by means of wall 

filters (342). Low filter settings can improve sensitivity but may easily generate flash 

artifacts, whereas high filters can reduce the artifacts but w i l l filter out f low in low 

levels. In our study, we found wall filter setting at about 2.5 mm/s was suitable for 

scanning around the rat femur. Secondly, when dealing with the signals to assess the 

microcirculation, appropriate imaging programs need to be used to discriminate and 

filter large vessel signals, which has been indicated in the methods section. Finally, 

since anesthesia wi l l affect the peripheral blood circulation, each animal should be 

anesthetized with the same dose strictly according to its body weight and placed at a 

set room temperature and positioned on a warming plate at the set room temperature 

to avoid the variations in anesthesia effect. Complete scanning should be finished 

within a short time. 

In summary，our newly-established technique using 3D-HF-PDU improved 

power Doppler 2D imaging to a 3D spatial view. The results demonstrated the 

feasibility and reproducibility of 3D-HF-PDU for detecting and quantifying 

angiogenesis in fractured femur of rats. Being non-invasive, while offering 
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high-resolution anatomical visualization and allowing objective data analysis, 

3D-HF-PDU provides a robust approach for the evaluation of neovascular networks in 

the fracture healing of small animals, especially for a longitudinal follow up in vivo. 
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4.5 Limitations 

This study has some limitations. Due to the low resolution of pulsed-wave 

Doppler (16MHz) for small animals and the continuous pulsations of the femoral 

artery, it was difficult to measure the internal diameter of the artery (<0.8mm) 

accurately and objectively. We, therefore, used the blood flow velocity to represent 

the blood supply of the hind limb. 

The application of 3D-HF-PDU also has its limitations. The detection of flow 

signals is limited by the penetration depth. With higher Doppler frequency, only lower 

penetration depths can be reached, so researchers need to compromise between the 

accuracy and the detection depth. We measured the muscle thickness at both lateral 

and medial sides of the fracture site in rats, which were shown 2.47 ± 0.33mm and 

4.06 ± 0.42mm respectively. The focal length of our transducer was 4.5 mm from the 

transducer surface in soft tissues of rats. Therefore, both the resolution and the 

penetration depth were adequate for our study. Moreover, most sound waves were 

reflected as soon as it reached hard callus or cortical bone surfaces, so some 

vasculatures in the medullary cavity could not be detected, which explained why the 

absolute volume values detected by 3D-HF-PDU were consistently smaller than those 

of microangiography. 

Due to the advantages of small size (2-3 |im) and high backscatter that enhance 

the intensity of the ultrasound signal, contrast agents have been developed to visualize 

the vasculature at the capillary level, which allow a more sensitive measure of 

microcirculation (343). In this study, we aimed to explore and determine the 
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feasibility of 3D-HF-PDU for assessing the microvasculature, so we did not use 

contrast agents. However, for further improvement of the image quality and more 

precise quantification, contrast agents are recommended for angiogenesis assessment 

at the fracture site in small animals. 

Platelet endothelial cell adhesion molecule-1 (PECAM-1) is a molecule 

expressed on all cells within the vascular compartment, which is good for identifying 

blood vessels in immunohistochemistry assessment. Further investigation on 

PECAM-1 expression at the fracture site should be performed to verify whether the 

results can correlate with the findings demonstrated by microCT-based 

microangiography. 

This study focused on diaphysial fracture healing and the effects of LMHFV on 

fracture repair at metaphysial region is still under investigation now at femoral neck 

in human. Our explanation of ER for impaired angiogenesis has also being studied in 

our laboratory. 
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4.6 Future Study 

The present study has testified, through a translational approach, the stimulatory 

effects of LMHFV on angiogenesis and blood flow to accelerate fracture healing in 

normal and osteoporotic bones, which provides basis and evidences for the future 

studies on upstream mechanisms and downstream clinical applications. 

Mechanical stimuli simultaneously affect other tissues through 

mechanotransduction, and this could be manipulated to improve bone regeneration. 

Indeed, it is feasible to use mechanical stimuli to promote bone regeneration, although 

this wi l l occur only i f there is a timely nutrient supply and waste cleaning. This 

suggests that angiogenesis is needed to facilitate the bone regeneration induced by 

mechanical stimuli. A study of the chorioallantoic membrane revealed mechanical 

strain could elicit angiogenic features (344). Moreover, osteoblasts responded in vitro 

to mechanical stimulation by increasing matrix production and regulating 

angiogenesis (203). Current research hypothesized that induction of matrix 

metalloproteinases after mechanical strain enhances attraction and penetration of 

blood, vessels through which osteoblasts could reach the chondroosseous junction and 

promote ossification (345,346). Future research examining whether mechanical 

stimulus-induced bone regeneration can be improved by simultaneously activating 

mechanotransduction pathways that promote angiogenesis would be of considerable 

clinical interest. 

4.6.1 Hypoxia-inducible Factor-la Signaling Pathway Coupling Angiogenesis 
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and Osteogenesis Associated with LMHFV 

Hypoxia-inducible factors (HIFs), which belong to the Per/Anrt/Sim subfamily of 

basic helix-loop-helix transcription factors (347), are major regulators of the gene 

programs that orchestrate angiogenic-osteogenic coupling. HIF- la protein expression 

is regulated by an oxygen-sensitive proteolytic mechanism. Under normal conditions, 

HIF- la is rapidly degraded, but, when oxygen levels drop below 5%, expression is 

stabilized and its activity progressively increases with additional decreases in the 

oxygen tension (348).When a fracture occurs, the abrupt interruption of oxygen and 

nutrient supply with consequential upregulation of HIF- la has been proposed as a 

primary stimulus for new bone formation (60). Hypoxia is a major driving force for 

angiogenesis during endochondral bone formation. HIF- la stimulates VEGF 

production in this microenvironment to initiate blood vessel invasion into cartilage. It 

is suggested that VEGF production by hypertrophic chondrocytes may be regulated 

by HIF-la-dependent mechanism (349). 

In addition to low oxygen levels, mechanical stimuli can also upregulate HIF- la 

expression. Carvalho et al. found the activation of the distraction device induced the 

expression of H IF- la and VEGF-A which were the major regulators of the angiogenic 

process. Inactivation of HIF- la impairs both angiogenesis and bone regeneration as 

the distraction gap in these animals develop fewer blood vessels and accumulate less 

bone (302). The essential roles of HIF- la during fracture repair suggest that this 

pathway could be targeted in mechanical stimuli interventions to accelerate bone 

healing, which may lead to further investigation on the mechanism of angiogenic— 
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osteogenic effect of LMHFV in cellular and molecular levels. 

4.6.2 Role of LMHFV on Mesenchymal Stem Cells (MSCs) during Fracture 

Healing 

Previous research indicated that low-level whole body vibration had osteogenic 

effect. It was proven angiogenesis could be enhanced as a result of applied 

mechanical load in vitro. Our study also demonstrated LMHFV could enhance both 

angiogenesis and osteogenesis during fracture healing in rats. However, the 

mechanism on the effects of mechanical stimulation (e.g. LMHFV) in a cellular level 

remains poorly understood. 

In fracture and bone defect healing, MSCs largely drive tissue regeneration. 

MSCs have proangiogenie properties and harbor a great expansion potential (350). 

These cells are able to differentiate not only into mesenchymal cells, such as 

osteoblasts and chondrocytes, but also into non-mesenchymal cells, such as 

endothelial cells (ECs) (350). To date, there is clear evidence for a complex interplay 

between MSCs and ECs. MSCs seem to be able to promote angiogenesis, and the 

presence of ECs appears to promote osteogenic differentiation of MSCs (351). 

Mechanical boundary conditions are known to alter the gene expression pattern and 

consequently the functional behavior of MSCs. Osteogenic differentiation and 

proliferation of MSCs can be stimulated by mechanical loading (352). In other 

previous studies, the influence of mechanical loading on the paracrine stimulation of 

angiogenesis by MSCs was investigated. MSCs are capable of angiogenesis induction 
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in an in vivo model (353). Based on these findings, we predict LMHFV may have the 

capacity o f MSCs recruitment through mechanotransductional pathways and can 

promote the differentiation of MSCs into osteoblasts, chondrocytes and endothelial 

cells, hence to accelerate the fracture healing. 

Therefore, further insight into these interactions and the influence of mechanical 

stimulations is vital for an understanding of the physiological coordination of 

angiogenesis, progenitor cell differentiation, and regenerated osseous tissue formation. 

This understanding is in turn the foundation for a rational approach to the design and 

optimization of prevascularized tissue-engineered constructs and essential for 

predicting optimal mechanical stabilization conditions for successful bone 

regeneration. 

4.6.3 Effects of LMHFV on Blood Circulation in Clinical Trials 

4.6.3.1 Haemodynamic responses of Peripheral Circulation to LMHFV 

To date, many effects of whole-body vibration have been reported in the 

literatures, including increased leg power, strength and flexibility (354,355), increased 

BMD and enhanced fracture healing in post-menopausal women (356), and improved 

postural control and mobility in adults with multiple sclerosis (357). However, only 

few studies investigated the effect of whole-body vibration on peripheral blood flow. 

Kerschan-Schindl et a l found vibrations delivered by a rotary type platform with a 

frequency of 26 Hz and amplitude of 3 mm doubled leg blood flow after 9 min of 

vibration (145). Zhang et al. similarly found increased leg blood flow after direct 
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transmission of vibration to the foot of subjects (358). The results suggest that 

vibration serves to significantly enhance peripheral and systemic blood flow, 

peripheral lymphatic flow，and venous drainage. 

Improvements in blood f low by vibration may be beneficial in the bone mass, 

muscle functions, therapeutic alleviation of pain or other symptoms (e.g. hyperlipemia, 

stroke) resulting from acute or chronic musculoskeletal injuries. The clinical goal 

should focus on the effects of different parameters of vibration (magnitude, frequency, 

duration of treatment, etc.) to provide evidence for a more optimized treatment 

regime. 

4,6,3.2 Angiogenic Effect of LMHFV on the Therapy of Wound Healing and 

Avascular Diseases 

The current study has proven positive effects of L M H F V on blood f low and 

angiogenesis in both normal and osteoporotic fractures. Based on these findings, 

clinical trials should be carried out to further testify the efficacy in fractured patients, 

especially in elderly, who may have high fall risk or long-term bedrest, hence have 

difficulty to get early functional exercise. Besides, the angiogenic enhancing effect 

may also be beneficial for the treatment of osteonecrosis, delayed union and 

non-union. 
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CHAPTER 5 
CONCLUSIONS 
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In conclusion, osteoporotic fractures had lower level of blood flow and impaired 

angiogenesis than normal ones. LMHFV could enhance the blood flow velocity of 

hind limb and angiogenesis at the fracture site in both normal and osteoporotic groups, 

particularly in the early phase. Osteoporotic bones were also shown to be more 

sensitive in angiogenic and osteogenic responses to LMHFV than normal ones, which 

might partially explain the different extents of normal and osteoporotic fracture 

healing. Angiogenesis is one of the major mechanisms of LMHFV to accelerate 

fracture healing. The findings of this study help farther understand the role of 

angiogenesis in the enhancement effect of LMHFV on fracture healing and in the 

impaired healing capacity of osteoporotic fracture. LMHFV has a great potential in 

clinical applications for fracture healing, wound healing and some other vascular 

diseases. 
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