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Abstract of thesis entitled 

Computational Analysis of Bacterial Type III Secreted Signal Sequences and In Silico 

Identification of New Type III Secreted Proteins 

Submitted by Wang Yejun 

for the degree of Doctor of Philosophy 

at the Chinese University of Hong Kong in August 2011 

Type III secretion systems (T3SSs) widely exist in a number of human, plant, and 

animal bacteria. Their role is to translocate pathogenic proteins into host cells. These 

pathogenic proteins are called Type III secreted (T3S) effectors, which can cause 

cellular skeleton changes and can assist bacteria to interact or invade into host cells. 

Despite the important function of these pathogenic effectors, how they are specifically 

recognized and secreted by T3SSs is still not clear. Discovery of important features 

which guide the specific host-pathogen recognition and computational identification of 

new T3S effectors are therefore of great significance in understanding the mechanisms 

by which these pathogenic bacteria cause diseases. With these objectives, in this thesis 

research, I have made following accomplishments. First，I identified a novel amino 

acid composition (Aac) profile in the N-terminal signal sequences of experimentally 

validated T3S effectors. These Aac features were adopted in a machine learning model, 

to effectively predict T3S proteins. Second, I integrated the secondary structure (Sse) 

and solvent accessibility (Acc) encoded by T3S signal sequences and established a 

new prediction model with significantly improved prediction performance. Using this 

m 



improved model, new T3S proteins were computationally identified from Salmonella 

and selected candidates were further validated experimentally. Finally, I set up a 

T3SS-related database to integrate all the currently known T3SSs, manually annotated 

T3SS-related genes, and initiated a web server to accommodate the T3S protein 

prediction softwares developed in this study. This is so far the most comprehensive 

database integrated with gene prediction tools for the T3SS research community. 
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摘要 

多種植物、動物以及人體致病菌均表達III型分泌系統，并通過後者將致病蛋白 

轉運至宿主細胞内。經III型分泌系統轉運的致病蛋白稱為m型效應蛋白，它們 

能引起宿主細胞骨架改變進而協助細菌入侵或作用於宿主細胞。III型效應蛋白 

如何被III型分泌系統特異識別、分泌至今尚不清楚。因此，尋找指導III型分泌 

蛋白特異分泌的重要特徵以及計算預測新的III型效應蛋白，對於研究細菌致病 

機理具有重要的意義。圍繞這一目的，在本論文研究中，我進行了以下工作。首 

先，我收集了一組實驗證實的III型效應蛋白，比較這些蛋白序列，發現在其氨 

基端具有一些共有的氧基酸組成特徵。採用一種機器學習的方法來吸收這些氨基 

酸組成特徵，開發出高效的III型分泌蛋白預測軟件。進一步地，爲了探討III 

型分泌信號序列氨基酸特異組成的可能直接動力，我對ni型分泌蛋白信號序列 

肽二級結構、親水性以及三維結構進行了分析並與非III型分泌蛋白加以比較， 

探尋兩者間上述參量的特徵區別。結合二級結構、親水性以及氣基酸組成特徵， 

對前一部份開發的m型分泌蛋白預測模型加以改進，新模型的性能得到顯著改 

善。利用改進后的軟件，對沙門菌全基因組加以掃描，預測出一組新的m型分 

泌蛋白；部份預測蛋白通過實驗進行了驗證。最後，我建立了一個III型分泌系 

統相關的數據庫。在數據庫中，我收集了當前已知的所有III型分泌系統，手工 

對所有in型分泌系統相關基因加以註釋，並為本研究的前兩部份開發的III型分 

泌蛋白預測軟件架設了網絡服務器。 
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CHAPTER 1 

General Introduction 



1.1 Type i n Secretion Systems 

Bacteria can encode at least six types (Type I ~ VI) of protein secretion system, 

among which Type III and Type IV secretion systems are especially important 

because they participate in bacterial pathogenesis and symbiosis (Hayes et al., 2010; 

Galan, 2009; Hueck, 1998; Alvarez-Martinez and Christie, 2009). Many gram 

negative pathogens encode functional Type III secretion systems (T3SSs), via which a 

group of pathogenic effectors enter into host cytoplasm, and consequently cause 

different human, plant or animal diseases, such as plague, typhoid, dysentery, rice 

blast, bacterial leaf streak and so on (Cornelis, 2000; Schroeder and Hilbi, 2008; Ly 

and Casanova, 2007; Alfano and Collmer, 2004; Bonas and Van den Ackerveken, 

1999). 

A typical T3SS contains two sets of proteins, namely, apparatus components and 

substrate proteins (Fig lA) (Galan and Wolf-Watz, 2006; Hueck, 1998). T3SS 

apparatus, which assembles spaiming bacterial cell membranes like a syringe, is 

composed of three contiguous parts: a basal body within bacterial cytoplasm, 

multi-ring structure spanning inner and outer membranes, and a needle-like hollow 

filament outside outer membrane. The needle-like filament can contact and insert 

through host eukaryotic cell membrane (Eiminga and Rosenshine, 2009; Izore, 2011; 

Schraidt and Marlovits, 2011). With assistance of other accessory proteins, the basal 

body can specifically recognize substrate proteins, and then translocate them into 

eukaiyotic cytoplasm via T3SS conduit (Lara-Tejero et al.,2011; Ghosp 2004). 



(A) (B) 

• Effector 

{ Chaperone 
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Type 
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Fig l . 
(A) Diagram of Type TTI Secretion System. Type III Secretion System Apparatus is a needle-like 
structure which spans bacterial inner and outer membrane. It pierces host eukaryotic cell 
membrane and translocate some specific proteins (Effectors) into host cytoplasm, under the help 
of other proteins including chaperones. These effectors can induce host cellular skeleton changes, 
which are beneficial for bacterial invasion. 
(B) Mechanism of Type ITT Secretion. Chaperone can recognize Type ITT Secreted Effectors and 
bind to them at specific sites located at the N-terminal end. The binding leads to unfolding of 
effector and then the effector itself or effector-chaperone complex will be specifically recognized 
by and secreted through Type HI Secretion Conduit. An effector typically contains a signal region 
and an effector region. 



A group of proteins participate in the assembly of T3SSs. These apparatus 

encoding genes (sometimes together with their regulation genes), the substrate genes, 

and the chaperones are located in the same chromosomal or plastidial region 

constituting one or more operons (Galan 1989; Mazurier 2006; Marguerettaz et al， 

2011). More substrate genes are scattered rather than clustered together in genomes 

like apparatus genes (Wood et al., 1996 and 2000; Norris 1998). The T3SS related 

genes in the same operon or cluster are frequently transmitted into other species 

horizontally, and they are often transcribed coordinately (He et al,, 2004; Heuck 1998; 

Deane et al., 2010; McDermott et al, 2009; Wiimen et al., 2008). In different bacteria 

species, T3SS apparatus genes are also more conserved than substrates in their DNA 

or amino acid sequences (He et al., 2004; Heuck 1998). 

1.2 lype m Secreted Proteins 

Type III secreted (T3S) proteins, frequently called effectors or T3S substrates, are a 

variety of proteins that can be specifically secreted by T3SS conduits (Fig IB). 

However, it is yet not clear about the mechanisms by which T3S proteins are 

specifically secreted. Although some groups argued with individual molecular 

evidence that T3S signals were located in mRNA sequences of TBS proteins, most 

lines of evidence from transgenic and mutational analysis in different bacteria support 

that the N-terminal amino acids of T3S proteins contain the signals guiding their 

specific secretion (Anderson and Schneewind, 1997; Ramamurthi and Schneewind 

2003; Karavolos et al., 2005; Lloyd et al.，2001 and 2002; Russmann et al., 2002; 

Schechter et al., 2004; Wang et al.，2008). 



Besides their specific recognition by T3SS apparatus, it is also important for T3S 

proteins to unfold their structure before secretion so that they can be translocated 

through the rather narrow T3SS conduit (Kubori et al, 1998; Marlovits et al.，2004). 

It is widely accepted that T3S proteins achieve this goal by binding to specific 

chanperones (Fig IB) (Stebbins and Galan, 2003). Most T3S proteins own their 

one-to-one specific chaperones, while some chaperone may recognize and bind more 

T3S proteins. Chaperones are proteins located in bacterial cytoplasm and not secreted. 

After bound by specific chaperone, T3SS protein will unfold its tertiary structure to 

become linear from aggregating state, and is consequently equipped into the narrow 

T3SS conduit (Stebbins and Galm, 2001; Akeda and Galan, 2005; Stebbins 2005; 

Lilic et al., 2006). 

1.3 Computational prediction of lype III Secreted Proteins 

Bacterial pathogenesis or interaction with host cells is rather a complex process 

involving a large number of bacterial proteins secreted into host cells. In earlier years 

after the discovery of T3SSs, only a limited number of T3S effectors were 

experimentally identified to be significant for bacterial invasion (Heuck 1998; Ghosp 

2004). With the increased number of identified T3S proteins, it has been recognized 

that an unexpected large number of T3S proteins are encoded by bacterial genomes, 

and the interactions between bacteria and hosts are far more complicated than 

previously expected. 

Due to the low expression abundance and the fine regulation of T3S proteins, as 

well as the limitations of experimental techniques, it is almost impossible to identify 



new T3S proteins solely depending on small-scale experiments. Earlier bioinfonnatic 

analysis on the N-terminal amino acid composition (Aac) patterns, G + C contents in 

their 5’ nucleotide encoding region, and the pairwise co-existance of T3S proteins and 

their chaperones, etc., has led to the identification of a large number of new T3S 

proteins from a variety of bacteria (Panina et al., 2005; Petnicki-Ocwieja et aL, 2002; 

Tobe et aL, 2006). Recently, two groups carefully analyzed different features buried in 

the N-terminal regions of validated T3S proteins. According to the significant features 

discovered respectively, T3S protein prediction softwares were developed based on 

machine learning methods, e.g. Naive Bayes (NB) and Support Vector Machine (SVM) 

(Samudrala et aL, 2009; Arnold et al., 2009). Another group tried to use Artificial 

Neural Network (ANN) to model position-specific Aac profiles of T3 S proteins and 

obtained better classifying performance (Lower et al., 2009). Other features including 

secondary structure (Sse) and solvent accessibility (Acc) were found to contribute to 

the specific recognition of T3S proteins by T3SS (Yang et al., 2010). 

1.4 Project Objectives 

The difficulty in new T3S protein discovery based on pure wet-lab experiments 

requests efficient computational tools for genome-wide in silico T3S prediction. 

Feature identification and extraction are made feasible with the large number of 

validated T3S proteins. However, a variety of drawbacks exist in the currently 

available T3S prediction tools, including low accuracy, low specificity, weak 

inter-species adaptation, etc. Therefore, the major goal of this thesis study is to 

analyze and identify new distinguishing features in T3S proteins, and to develop T3S 



protein prediction software tools with high performance and wide application based 

on these new features. Specific objectives include: 

1. To analyze and extract position-specific features of T3S proteins; 

2. To develop feature-based software tools for efficient computational prediction of 

T3S; 

3. To identify new T3S proteins in model bacteria with experimental validation; 

4. To develop a database to integrate T3SS related molecular information and to 

extend the application of our prediction tools for the research community. 



CHAPTER 2 

High-accuracy Prediction of Bacterial Type III Secreted 

Effectors Based on Position-specific Amino Acid 

Composition Profiles 



2.1 Introduction 

Six types of secretion systems have been identified in Gram-negative bacteria, two of 

which (type T and type II) have been studied extensively (Bingle et al., 2008; Path and 

Kolter, 1993; Fischer et al, 2002; Henderson et al., 2004; Hueck, 1998). The type III 

secretion system (T3SS) has been widely adopted by different bacteria, such as 

animal pathogens Salmonella, Shigella and Vibrio, plant pathogens Pseudomonas, 

Xanthomonas, and Ralstonia, and some symbiotic bacteria such as Rhizobia (Hueck, 

1998). T3SSs play important roles in host-pathogen interactions that are often 

mediated by T3SS effectors specifically secreted into host cells through the type III 

secretion conduits (Galan and Wolf-Watz, 2006). 

Previous studies have shown that the first 100 amino acids at the N-terminal 

region may contain the signal peptides and chaperone-binding sequences needed to 

guide the secretion of T3S proteins (Karavolos et al., 2005; Lloyd et al.’ 2001 and 

2002; Russmann et al., 2002; Sciiechter et al., 2004; Wang et al., 2008). Most known 

T3S proteins have at least one chaperone, which mediates its secretion through the 

extremely narrow T3S conduit (Stebbins and Galan, 2001). Unlike most other signal 

peptides, T3S signals are not cleaved after secretion. Due to low sequence similarity 

and lack of common features among different T3S signal sequences, the established 

prediction methods used for identifying signal peptides do not apply to T3S signals 

(Galan and Wolf-Waltz, 2006; Heuck, 1998). Computational prediction ofTSS protein 

has long been considered to be a particularly difficult challenge. 



Computational approaches have been attempted to predict T3S proteins based on 

sequence features，etc. (Panina et al., 2005; Petnicki-Ocwieja et al,, 2002; Tobe et al., 

2006). Different machine learning algorithms, e.g.. Naive Bayes (NB)，Artificial 

Neural Network (ANN) and Support Vector Machine (SVM) (Arnold et al., 2009; 

Lower and Schneider, 2009; Samudrala et al,, 2009; Yang et al, 2010), have also been 

adopted to identify the general signal features. Some important features, including 

G+C content of the primary DNA sequences, general enrichment and depletion of 

N-terminal amino acid composition, composition frequency of secondary structure 

elements (coils, helices, or strands), and water accessibility states (exposed or buried) 

have been identified and used for in silico prediction (Arnold et al., 2009; Lower and 

Schneider, 2009; Samudrala et al., 2009; Yang et al, 2010). Effective T3, one of the 

earliest softwares developed for T3S protein prediction (Arnold et al, 2009), explores 

possible sequence-based features exhaustively. In Effective T3, the amino acid 

composition and property preference within the signal region (not position specific) 

was represented in two reduced alphabets (Arnold et al., 2009), which may lead to 

loss of signal information buried in individual amino acid. In addition, no 

position-specific features were analyzed in Effective T3. An ANN model proposed by 

Lower et al. adopts a sliding window technique (with a window width of 25) and an 

optimal model is obtained based on the signal sequence located within the first 30 

amino acids at the N-terminal end (Lower and Schneider, 2009). Although this model 

achieved high selectivity (98%), its sensitivity was rather low (74%). Some 

drawbacks of the ANN model should also be pointed out: (1) the training dataset was 
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not validated and it contains wrongly annotated non-T3S proteins, including 

chaperones located in cytoplasm and a number of validated flagella proteins not 

secreted through T3SSs. In addition, some proteins with high homology were not 

excluded; (2) the classifying performance was based on train-reclassiflcation results 

only and no cross-validation was performed; and (3) its complexity makes it difficult 

to interpret the biological implications. Most recently, a SVM model, SSE-ACC, was 

proposed to I earn features using Aac-Sse and Aac-Acc (Aac, Sse and Acc represents 

amino acid composition, secondary structure and solvent accessibility, respectively) 

combination frequencies using SVM (Yang et al.，2010). These features, however, 

was trained from only one plant pathogen genus and then used to predict the T3S 

effectors in Rhizobium. The authors reported a significantly increased specificity 

(91%) with a trade-off of apparently lowered sensitivity (65%). Therefore, new 

features need to be identified and used for more effective T3S protein identification. 

I have developed a computational model based on position-specific Aac features 

for effective T3S protein prediction. I will demonstrate that this model out-performs 

other current implementations in terms of both sensitivity and selectivity. With this 

model, a genome-wide prediciton of T3 S proteins was also conducted in an important 

plant pathogen, Ralstonia solanacearum. 

11 



2.2 Methods and Materials 

2.2.1 Data source 

A list of experimentally validated type 3 secreted (T3S) proteins from animal 

pathogens, plant pathogens, and symbiotic bacteria were manually annotated from a 

literature search. A list of non-T3S proteins were randomly selected from different 

bacteria, followed by removal of the known effectors and their homologs. For T3S 

and non-T3S proteins, only one representative was selected as the training sequence 

for each orthologous or paralogous cluster. JAligner, an alignment tool implementing 

Smith-Waterman algorithm was used to make a pairwise aiigmnent for any two T3S 

or non-T3 S proteins (http://jaligner.sourceforge.net/). The ratio between the pairwise 

score and self score was calculated. A sensitive cutoff, 0.15, was set for identifying 

paraiogs or orthologs (Arnold et al.，2009). In total, 154 non-redundant T3S peptides 

obtained were subsequently used as positive dataset. Because the number of non-T3S 

proteins was much larger than that of positive proteins, 308 peptides were randomly 

selected from the negative peptide pool to form final negative training set, to 

overcome the imbalance between positive and negative datasets (Arnold et al., 2009; 

Kim et al., 2004). Details of these two datasets and the reference for each T3S protein 

can be found in the supplementary materials Text SI in Wang et al, 2011. The 

secondary structure (represented as a combination sequence of 'C', 'H' or 'E' of each 

sequence) was predicted using PSIPRED (McGuffm et al, 2000), and SCRATCH 

(Cheng et al., 2005) was used to predict the solvent accessibility (a combination of 'B' 

and 'E'). For 5-fold cross-validation, the negative and postive training datasets were 

12 
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pooled as the fial training datasets and were split into 5 sub-datasets, each containing 

the same number of positive/negative samples. 

2.2.2 Position-specific profiles and feature extraction 

The unaligned T3S proteins and non-T3S proteins were used for position-specific 

feature vextraction. Let vector S = {sl,s2，s3，..,，sii} denotes a peptide sequence in 

which s represents amino acid or other property while 1,2... or i represents position 

and n represents the total sequence length. For m sequences, the position-specific 

occurrence of a certain amino acid A is described as:/p(Af). =j{A?)lmi, in whichy(A/) 

and m, denotes the frequency of amino acid A at position i and sequence number at 

position i. For each position, the/p(A/) of different amino acids form a position set (or 

profile), and for a sequence S with a length of n, n values (extracted from each 

position set) comprise a composition vector. Similar profiles and feature vectors were 

extracted for corresponding secondary structure and solvent accessibility in T3S or 

non-T3S peptides. WebLogo was adopted to exhibit the position-specific preference 

profiles (Crooks et al., 2004). 

For feature extraction, both the Bi-profile Bayes (BPB) method (Shao et al., 2009) 

and more frequently Single-profile Bayes method (SPB) were adopted as appropriate. 

These two methods are similar except that BPB takes into consideration the features 

of negative training dataset. Simply, given a protein sequence S = {s/,si>，sj,...,s«}， 

where each S/(/ = denotes an amino acid at position and „ denotes the 

sequence length, S can be classified as one of the two classes: Ci (T3S proteins) and 

3 



C-1 (non-T3 S proteins). The posterior probability of both T3S and non-T3S proteins 

can be calculated as the occurence of each amino acid at each position in the training 

dataset. More details about the BPB method can be found in Shao et al, 2009. The 

BPB and SPB signatures were extracted for postion-specific amino acid compositon, 

secondary structure and solvent accessibility. 

R package for SVM, 'elOVT, was used to train and build the SVM models 

(Dimitriadou et al., 2009). Radial basis kernel function was selected for SVM 

prediction. SVM parameters gamma and cost were optimized using grid search based 

on 10-fold cross-validation (Scholkopf and Smola, 2002). 

2.2.4 Performance assessment 

Accuracy (A), Specificity (Sp), Sensitivity (S„), Receiver Operating Characteristic 

(ROC) curve, the area under ROC curve (AUC) and Matthews Correlation Coefficient 

(AfCC) were utilized to assess the predictive performance. In the following formula, A 

denotes the percentage of both positive (T3S) and negative (Non-T3S) proteins 

correctly classified. (true positive rate) and Sp (true negative rate) represent the 

percentage of positive proteins (T3S) and that of negative proteins (Non-T3S) 

correctly classified, respectively. An ROC curve is a plot of Sn versus (1 - S入 while 

AUC gives a measure of classifier performance. MCC takes into account true and 

false positives and negatives, and is generally a balanced measure which can be used 
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even if the sizes vary significantly between classes. 

——2T+T2 、- — — TN — TP 
d = /7>l-77>r/'A' W i fp' r/M /-A ‘ 
广 (fT X / .W (厂.Vx/-?i -V/CC = — — 

V•尸 1 /--A 丨 X (/AM FP) m X r/)v t FA ；，where TP, TK /T^and / d e n o t e s 

the number of true positives, true negatives, false positives and false negatives, 

respectively. 

2.2.5 Amino add position shift and frame shift 

For position shift test, both insertion and deletion datasets were created. For deletion 

test, we generated 5 individual datasets with 1, 2，3, 4 or 5 amino acids deleted 

respectively at the N-terminal end and excluding starting methionine. For insertion 

test, one of the 20 amino acids was inserted before the P̂  or amino acid position 

respectively for each mutated sequence, and in total 40 mutated sequences were 

generated for each T3S or non-T3S protein. These two positions were selected 

because apparent amino acid composition bias was found at P^ position for non-T3S 

proteins and at the position for T3S proteins. For frame shift experiments, DNA 

sequences encoding the first 100 amino acids at the N-temiini excluding the starting 

methionine were obtained. For each sequence, two mutations with -1' and ’+1’ frame 

shift were created respectively. The mutated sequences were translated into peptides, 

with all the encountered stop codons replaced with methionine (Arnold et al., 2009). 

The resulting sequences were re-classified using the optimized BPBAac model. 

2.2.6 Comparison with available methods 
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The original datasets used for Effective T3 (Arnold et al., 2009) and ANN (Lower and 

Schneider, 2009) were collected from the relevant reports. For Effective 13，no 

detailed gene accessions or sequences of negative dataset were available (Arnold et al., 

2009)，so I randomly selected proteins not annotated as T3S from different bacteria 

species as negative training datasets and the ratio of negative to positive samples was 

2:1. I also removed some apparent false positive sequences (e.g., chaperone, flagella 

proteins, etc.) from the ANN training dataset. Effective T3 and ANN were 

implemented with the optimized parameters suggested by their respective authors 

(Arnold et al., 2009; Lower and Schneider, 2009). 

2.2.7 Genome-wide prediction of T3S proteins from Ralstonia solanacearum 

The recently validated T3 S proteins in Ralstonia solanaceanum were annotated from 

Mukailiara et al., 2010. In total, 47 validated T3S proteins were retrieved from 

GMIIOOO and these validated T3S proteins were also included for the final BPBAac 

training. For prediction of T3S proteins from GMIIOOO prteome, 3437 

chromosome-encoding proteins (Genome ID: NC—003295) and 1676 

plasmid-encoding proteins (Genome ID: NC 003296) of Ralstonia solanacearum 

GMIIOOO were downloaded from the NCBI genome database 

(http://www.ncbi.nlm.nih.gov/sites/genome). The first 100 amino acids (excluding 

methionine) from the N-terminal end were retrieved from each protein. The feature 

vectors were constructed and tested using the BPBAac model. The cutoff value of 

BPBAac was set as 0.5, The proteome of Ralstonia was also predicted for TBS protein 

16 
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candidates using Effective T3 and ANN respectively with originally optimized 

parameters. 
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2.3 Results 

2.3.1 Distinct position-specific amino acid composition profiles for T3S effectors 

The N-terminal amino acids from end were retrieved from T3 S and non-T3 S proteins 

respectively and amino acid composition (Aac) was calculated for each position. 

Significantly distinctive Aac profiles were found between these two types of proteins 

(Fig 2A and 2B). For T3S proteins, the 20 types of amino acids were not evenly 

distributed at each amino acid position, especially for the first 50 positions (Fig 2A). 

Consistent with previous observation using sequence-based method (Arnold et al.， 

2009), serine was enriched in most of the first 50 positions. Contrarily, leucine was 

found to be selectively enriched in certain positions, e.g., position 13, 14, 15, etc., but 

not completely 'depleted' as described in an earlier report (Arnold et al., 2009). 

The T3S effectors were further split into an animal-pathogen group and a 

plant-pathogen group (including Rhizobium, a plant symbioint). Both groups showed 

apparent Aac preference profiles different from that of non-T3S proteins (Fig 3A-B). 

For each position, most of the enriched/depleted amino acids were similar between 

two groups, although isoleucine, asparagine, and threonine were more often preferred 

by animal pathogens whereas alanine, proline and arginitie were more enriched in 

plant pathogens (Fig 3A-B). T also manually checked the validated T3S effectors for 

individual genera or species and found that their overall Aac profiles were similar, and 

apparently different from those in non-T3 S proteins (Fig 3C-F). 
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Fig 2. Distinctive N-terminal position-specific Aac feature in T3S proteins. 
Amino acid positions are depicted on the horizontal axis. The heights of characters represent the 
preference or enrichment level, (A) Aac preference for T3S proteins. (B) Aac preference for 
non-T3S proteins. 



- ‘ It-
ikira iiivdk̂Â ^̂ t̂： 
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Fig 3. Position-specific ammo acid composition (Aac) in different bacteria subgroups. 
Horizontal axis: amino acid positions. The heights of characters represent the preference or 
enrichment level. (A)-(F)- T3S protein Aac preference in animal pathogens (A), plant pathogens or 
symbionts (B), representative individual animal pathogens 'including Salmonella (C) and 
Citrobacter (D), and representative plant pathogens including Pseudomonas (E) and Xanthomonas 

(F) 

20 

s驟 _ 
(F) 

L
 >
 

N 



23.2 N-terminal position-specific Aac features can be used to classify T3S and 

II0E1-T3S proteins 

In order to further investigate whether this position-specific Aac preference is a 

general feature for T3S effectors, Support Vector Machine (SVM) models were 

trained for the Aac features (Materials and Methods). Two different SVM models 

were trained: 1) SPBAac model that only considers the Aac profile of positive T3S 

training dataset; 2) BPBAac model considers the Aac profiles of both T3S and 

non-T3S proteins. Table 1 and Fig 4A showed that BPB model outperformed SPB 

model significantly. SPB model achieved high selectivity (94.51%) and an acceptable 

sensitivity (71.61%), while BPB model achieved both high selectivity (97.42%) and 

high sensitivity (90.97%) in a 5-fold cross-validation. The accuracy, AUC of ROC 

curve and MCC value of BPB were all larger than those of SPB (Table 1). The best 

predictive power (sensitivity vs. selectivity) of established feature-based T3S protein 

prediction methods were reported as 71% vs. 85%, 74% vs. 98% and 65% vs. 91% for 

Effective T3, ANN and SSE-ACC respectively (Arnold et al., 2009; Lower and 

Schneider, 2009; Yang et al.，2010), Therefore, the position-specific amino acid 

profiles can serve as independent and effective features for T3S and non-T3S protein 

classification. The fact that BPB model outperformed SPB model indicates the 

important contribution of the negative training data. 

Previous computational modeling studies showed that T3S signals were mainly 

located within the first 30 or 25 amino acid positions (Arnold et al., 2009; Lower and 

Schneider, 2009). In order to optimize the length of signal sequence, BPB models 
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were re-trained and compared using N-terminal sequences containing the first 25，30, 

40, 50 and 100 amino acid positions, respectively (named BPBAac-N25, N30, N50 

and NlOO model, respectively). As shown by the ROC curves, model using 

N-terminal 25 or 30 positions achieved good performance (Fig 4B), although the best 

performance was achieved when the first 100 amino acid were used (Fig 4B). From 

this analysis, I conclude that sequences beyond the first 30 amino acids also contain 

important signals to guide protein secretion. Other optimized parameters, such as 

kernel function, gamma and cost values, were also tested (Table 1). 
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Fig 4. Performance of SVMs based on different feature-extraction 
lengths. 
(A) ROC curves of SVM classifiers based on BPB and SPB models, respectively. The length was 
100 amino acid. (B) ROC curves of BPB SVMs based on different lengths of N-terminal 
sequences. The curves were based on a 5-fold cross-validation results. 
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Table 1. 
on five-fold cross-validation 

Name ModeH Length'' KcrncF 

BPBAac BPB 100 RBF 8)0.002 
SPBAac SPB 100 RBF 2|0.0()1 

Name S// OH versus Spk'k) A (%) AUC MCC 

BPBAac 90.97 ver�ii�97.42 95.27 98.88 0.842<-) 
SPBAac 71.61 versus 94.51 86.88 93.02 0.6979 

a. Mathematic model used for feature extraction. 
b. N-terminal sequence length used for feature extraction. 
c. SVM kernel function. RBF: radial basis function. 
d. O. cost, which was optimized based on 

y: gamma, which was optimized based 
10-fold cross-validation grid search, 
on 10-fold cross-validation grid search. 
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2.3.3 The robustness ofBPBAac model 

The robustness of BPBAac model was examined (1) by randomly selecting 

sub-datasets with different sample sizes from the training data to re-train the model 

and to classify the remaining data; and (2) by using the Leave-One-Out strategy. 

Specifically, T3S and non-T3S proteins from one bacterial genus were eliminated 

from the test dataset as new testing dataset, and then the remaining data were used to 

train the model and to classify the testing dataset. This process was repeated using 

different bacteria genus. The results showed that models trained using different 

sub-datasets also performed equally well, and no apparent reduction in performance 

was observed even when only 40% of the original training data were used (Fig 5A). 

For different genera or subgroups, most of the effectors could be recalled and the 

AUC values did not show significant change (Fig 5B). Taken together, the 

position-specific Aac profiles were important features for T3S protein identification in 

different bacteria species. 
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Fig 5. Performance ofBPBAac models trained with different datasets. 
(A) ROC curves of SVM classifiers trained with different sub-training dataset. 'Training versus 
Test' denotes the 'percentage of training data' versus 'percentage of test data'. The curves and 
performance are based on average 5-fold cross-validation results. (B) The Leave-One-Out test 
results. The positive and negative datasets from representative species or groups were extracted. 
The remaining training datasets were used for model retraining, and the retrained model was used 
to classify the extracted datasets. Pseudomonas and Xanihomonas were adopted as representatives 
of plant pathogens; Shigella, Beta_group and Chlamydophila were adopted as representatives of 
animal pathogens. AUC and sensitivity (recall) values were represented by solid diamond and 
rectangle, respectively. 

n—I
 

U) 
I 

«
.
0
 t
-

 .0
 

X
二
 >
J
二
 

c 



2.3.4 Aac feature alone is enough to distinguish T3S and non-TSS proteins 

The secondary structure element (Sse) and solvent accessibility (Acc) of N-terminal 

amino acids have also been reported as useful features to distinguish T3S proteins 

from non-T3S ones (Yang et al., 2010). In order to examine whether these two 

features can improve the classifying performance of BPBAac, Sse and Acc BPB 

features were extracted and trained individually. In addition, models were re-trained 

using combinations of any two types or ail three types of features, respectively. The 

results showed that neither Sse nor Acc was able to improve the performance (Fig 6). 

Therefore, although T3S proteins contain Sse and Acc profiles different from those of 

non-T3S proteins (data shown in Chapter 3), the Aac feature alone is enough to 

distinguish T3S and non-T3S proteins. 
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Fig 6. Comparison ofROCs based on difTerent type of features. 
All themodels used parameters optimized for BPBAac. 'BPBAll' denotes a model based on the 
combination of all three types of features; 'BPB-Aac' denotes a model based on the other features 
except 'Aac'; 'BPBAac' denotes a model based on 'Aac' feature only. All the curves were 
obtained based ！ 5-fold cross-validation results. 
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2.3.5 Some T3S effectors contain N-terminal position-specific Aac 

can tolerate position shifts and frame shifts 

Some T3S effectors may contain amino acid insertions/deletions, which lead to 

position shift in the signal regions. For example, various forms of amino acid 

deletions or insertions were found in XopO, a T3S protein, form different 

Xanthomonas strains. When the BPBAac model was applied to two XopO homologs 

which bear amino acid position shift, both were correctly classified. To examine 

whether the Aac feature is sensitive to amino acid position shifts, deletions and 

insertions were introduced to T3S or non-T3S proteins respectively. As shown in 

Table 2, after introduction of position shifts (amino acid deletion),�50% of the T3S 

proteins retained their Aac feature, and more T3S proteins lost their Aac feature 

profiles with increased number of position shifts (Table 2). 

Amino acid insertions were also examined by inserting different amino acids 

before the P* or N-terminal amino acid position. For these two types of insertion 

mutaions, similar proportion of proteins were correctly re-classified (53% and 55% 

for and 2nd respectively). (Table 2). The re-classifying perfomiance was also 

influenced by the type of amino acid inserted. Because non-T3S proteins showed 

significant amino acid preference at the P*̂  position, insertion of non-T3S proteins 

preferred amino acid (e.g.，’S' or 'K') resulted in higher selectivity. On the other hand, 

T3S proteins showed significant amino acid preference at the position, and 

insertion of T3S protein preferred amino acid (e.g., T or 'N') resulted in higher 

sensitivity. 



Because some T3S effectors are insensitive to frame shifts, some researchers have 

argued that the signals may located within the mRNA sequences rather than the amino 

acid sequences (Mudgett et al.，2000; Ramamurthi and Schneewind, 2003; Russmann 

et al., 2002). It was recently suggested that few effectors (10%) maintain 

sequence-based amino acid composition profiles when frame shifts occur (Arnold et 

al., 2009). To test whether the position-specific Aac feature is sensitive to frame shift， 

we created frame-shifts (both '+1' and -1' shifts) for both T3S and non-T3S proteins. 

It was found that � 1 3 % and ~93% of frame-shifted T3S and non-T3S proteins were 

correctly classified by BPBAac, respectively (Table 2). Non-T3 S proteins were more 

insensitive to frame shift is likely due to the fact that such proteins contai much fewer 

amino acid preference features (Fig 2B). Some T3S effectors such as AvrBs2 of 

Xanthomonas, that are known to be tolerant to frame shifts in this research have also 

been confirmed by wet-lab experiments (Mudgett et al., 2000). 



Table 2. Effects of position shift and frameshift on reclassification performance 

Mutation Method 
Sn (… 

Sprc) 

N o mutation 100.00 100 00 

Deletions First deletion 53 90 91.88 

First to second deletions 48.05 % 10 
Fiist to thitd deletions 44 16 93.18 

First 10 fourth deletions •Will 97 11 
Fiist to fifth deletions 38.% 97.40 

Insei tions First inseition'̂  52.82 士 3 56 93.69 ±1.36 
Second inse丨 tionb 54 87 士 3 丄3 9199士 1 01 

Fiameshifts +卜〜 12.67 (19/150) 92.67 1278/細) 

一 JC 14.CW3 (21/150) 94.3.M 283/300? 

N/A: re-classify all the original training data using BPBAac model. 
b. The sensitivity and selectivity v 

of amino acids. 
c. The sensitivity and selectivity were both represented 

predicted proteins /total number of proteins)'. 

both represented as mean土SD for insertions with 20 types 

'percentages (number of correctly 
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2.3.6 Performance comparison with current prediction models 

The classification performance was compared among BPBAac, Effective T3 and 

T3SS ANN. First, Effective T3 and ANN were used to re-classify the training datasets 

used in this research ('BPBAac dataset'), and the performance was compared with 

cross-validation rates of BPBAac. Table 3 and Fig 7A clearly demonstrated that 

BPBAac out-performed these two methods in terms of sensitivity, specificity, 

accuracy, MCC value, or AUC value of ROC curve. 

To make a fair comparison among different models, other two strategies were 

adopted: (1) BPBAac was first re-trained using the Effective T3 dataset and ANN 

dataset respectively before it was used to re-classify BPBAac dataset (Table 3 ad Fig 

7B); (2) BPBAac was re-trained using the datasets adopted by Effective T3 and ANN 

respectively, and the new model was used to re-classify those two datasets (Table 3). 

As show in Table 3 and Fig 7, BPBAac model consistently performed better than 

Effective T3 and ANN. 
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Table 3. Performance comparison among different models 

Test Dataset Metbod 彻(％) 分(•/•) A m A U C ( % ) MCC 

BPBAac datasef BPBAac-CV 90.97 97,42 95.27 9S.SS 0.S929 BPBAac datasef 

BPBAac-ANN 83.77 94.81 91.13 97.52 0.7982 

BPBAac datasef 

BPBAac-ET3 93.51 95.45 94.S1 9S.67 0.SS40 

BPBAac datasef 

AXN 71.87 93.23 S5.64 92.57 0-7182 

BPBAac datasef 

Effecrive T3 82.53 86.63 86.69 89.56 0.6S52 

ANN dataset^ BPBAac 99.62 99.85 - - -ANN dataset^ 

ANN 74 98 - - -

Effective T3 datasef BPBAac S2_73 92.73 - - -Effective T3 datasef 

EfFecrive T3 71 85 - - -

a. All the methods were used to re-classify BPBAac dataset. BPBAac-CV, BPBAac-ANN and 
BPBAac-ET3 represent the BPBAac model trained with BPBAac dataset (5-fold 
cross-validation), ANN dataset, and Effective T3 dataset, respectively. ANN and Effective T3 
were trained with their original dataset, respectively. 

b. The models were trained with ANN dataset and used to re-classify ANN dataset. The Sn and Sp 
values for ANN method were retrieved from reference L6wer,M. and Schneider,G. (2009). 

c. The models were trained with Effective T3 dataset and used to classify the same dataset using a 
10-fold cross validation. The Sn and Sp values for Effective T3 method were retrieved from 
reference Aniold,R. etal (2009). 
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BPBAac-ANN 
ANN 
BPBAac-ET3 
Effective T3 

1 - S p e c i f i c i t y 

Fig 7. Comparison of performance using different datasets. 

(A) ROC curves using original training dataset. BPBAac-CV: BPBAac model based on an average 
5-fold cross-validation training and testing result. (B) BPBAac-ANN and BPBAac-ET3 were 
BPBAac models trained with ANN and Effective T3 datasets, respectively. ANN and Effective T3 
were trained with their original datasets, respectively. All the four models were used to reclassify 
BPBAac dataset. 
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2.3.7 Genome-wide prediction ofT3S proteins in Ralstonia solanacearum 

Ralstonia solanacearum is a very important pathogenic bacterium that causes severe 

bacterial wilt to a wide range of potential host plants, including crop and fruit plants. 

Currently, the information about the T3S effectors in this genus is limited. As an 

application of the BPBAac model, proteins encoded by chromosome and plasmid of 

Ralstonia solanacearum GMIIOOO were used for genome-wide prediction of T3S 

proteins. Totally, 1.4% (49/3437) chromosome encoding proteins and 2.9% (48/1676). 

of plasmid encoding proteins were predicted to be T3S proteins (Table S2 in Wang et 

al., 2011). With a higher recall percentage, a much smaller number of putative T3S 

candidates was obtained, making validation work more feasible (Table 4). 

Interestingly, many candidates (38/97, 39.2%) are annotated as 'hypothetical' proteins 

with unJmown function. Some candidates were validated recently (eg., PopFl), 

closely related with T3SS (e.g, NP—522416.1, Hrp pilus submit HRPY protein) or 

originated in bacteriophages (eg., NP—519819.1) (Table S2 in Wang et al.，2011). 
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Model Recall "i： irtAVi Chiomosomal 
gene 广e in!N� 

Phisiiiidial 

gene {i\IN\ 

BPBAac 
Effecrive T3 
ANN 

93.6 {44/47) 
57.4(27/47) 
68.1 (32/47) 

L4 149/3437) 
9.6 (331/3437 J 

lOJ 1368/3437) 

2.9 (48/1676) 
I L4 (191/16761 
l_2 7 (213/1676) 
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2,4 Discussion 

2.4.1 Position-specific amino acid composition features in signal regions of T3S 

proteins 

Previous studies have demonstrated that T3S effectors contain conserved N-terminal 

amino acid composition pattern. For example, Lloyd et al. found that serine and 

isoleucine were enriched at the N-termini of YopE protein (Lloyd et al.，2002), 

Petnicki-Ocwieja et al. reported two consensus patterns (i.e., enrichment and deletion) 

at the N-terminal end of Pseudomonas Hrp-secreted proteins and a group of new T3S 

effectors were identified based on these patterns (Petnicki-Ocwieja et al., 2002). 

Recently, Samudrala et al. examined sequence-based amino acid composition bias and 

concluded that the Aac profiles were largely uninformative' (Samudrala et al, 2009). 

In this study, I carefully examined the position-specific Aac profiles within the 

N-terminal sequences of T3S and non-T3S proteins and identified distinctive amino 

acid enrichment/depletion profiles for T3S proteins (Fig 2A). I found that although 

the first 30 N-terminal amino acid positions are most informative, important signal 

information were also embedded within the sequences beyond the first 30 positions 

(Fig 2A). Using a Bi-profile Bayesian model, I extracted the position-specific Aac 

feature within the first 100 amino acid position and used it as an efficient classifier to 

distinguish T3S from non-T3S proteins (Fig 4A). Our model achieved great predictive 

power, and was superior to previous models using sequence-based Aac features (Fig 

7A-B). Apart from Effective T3 and ANN, I also compared the BPBAac model with 

SIEVE, one of the earliest prediction methods adopting sequence-based features 

37 



(Samudrala et. al.’ 2009) and the BPBAac model also performed better 

(Supplementary Table S3 in Wang et al., 2011). Further exploration of the 

position-based amino acid composition features may provide important clues about 

the nature and evolution of the T3SS signals. 

2.4.2 Possible features other than Aac in signal regions ofT3S proteins 

Apart from Acc, other features may also contribute to the mechanisms underlying T3S 

secretion. Previously, other groups have examined secondary structure (Sse) and 

solvent accessibility (Acc) (Arnold et. al., 2009; Yang et.al, 2010) but no conclusive 

remarks can be drawn so far. Arnold et. al. found that neither Sse, nor Acc could 

improve the classifying performance. Using a combinative feature extraction strategy, 

Yang et. al. found that the combination of Sse and Acc could improve the model 

performance. In the present study, I did find distinctive Sse and Acc profiles between 

positive and negative dataset. However, when individually trained using Sse and Acc, 

the model failed to show good performance (sensitivity vs. selectivity for Sse and Acc 

respectively were: 47% vs. 79%，16% vs. 99%; data not shown). When these two 

features were combined with Aac, the performance was significantly decreased (Fig 

6). Further detailed analysis is being carried out to investigate the possibly 

contribution of Sse and Acc when they are considered as covariables of Aac. Such 

analysis may be more realistic because the three types of features are more likely not 

independent with each other. In this research, however, they were considered 

independent variables. 
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2.4.3 Underlying drawbacks and possible limitations ofBPBAac 

Two methods are frequently adopted for position-specific amino acid composition 

modeling: Hidden Markov Model (HMM) and sliding window technique. Because 

T3S proteins contain a long signal bearing sequence, the sliding-window model may 

become quite complex and sometimes encounter the over-fitting problem (Lower and 

Schneider, 2009). I have also attempted a T3S protein HMM, but found its classifying 

performance inferior. The Bi-profile Bayes model was first proposed by Shao et. al., 

and it has been successfully used to predict protein methylation sites (Shao et al., 

2009). One main advantage of the BPB model is that it considers the features of both 

positive and negative training samples. Compared to sliding windows and HMMs 

concerning amino acid insertion, deletion or match, an underlying drawback of our 

position-based Aac model (BPBAac) is that amino acid insertions or deletions were 

neglected. Unexpectedly, our model performed very effectively despite this potential 

drawback. After a careful examination of homologous T3S effectors fi-om closely 

related bacterial strains, I found that insertions or deletions within the first 100 

N-terminal positions were very rare. Only one protein, XopO from Xanthomonas, was 

found to have two homologs (Genbank accession: AAV74207.1 and CAJ22686.1) 

with 9 amino acids deletions/insertions, and both homologs were correctly classified. 

Interestingly, a large portion (-50%) of T3S proteins exhibit distinct position-specific 

Aac features that can tolerate position shifts (Table 2). I therefore hypothesize that 

position shifts seldom happen within the signal sequences of T3S proteins; and in the 



case that they happen, many T3S proteins manage to maintain the original Aac 

features. This may partially explain the high performance of the BPBAac model 

where position shift was not taken into consideration. Together with the observation in 

this research that some T3S proteins (-13%) couJd resist frame shifts generated in the 

signal region (Table 2), I presume that bacteria may adopt strategies at both protein 

and mRNA levels to resist the negative mutations that may destroy T3S signals during 

the course of evolution. 

2.4.4 Application of BPBAac 

Finally, I applied the BPBAac model to make a genome-wide prediction of T3S 

effectors in an important plant pathogen, Ralstonia solanacearum GMIIOOO. Most of 

the validated T3S effectors were recalled by BPBAac (Table 4). More importantly, far 

fewer candidates were predicted by BPBAac than by other models such as ANN and 

Effective T3 (Table 4). A significant proportion of the predictions overlapped with 

those of ANN and Effective T3, indicating they are most likely true TBS proteins, 

while a large number were 'hypothetical' proteins with unknown function. These 

candidates are especially interesting because they have so far received little attention. 

One candidate, PopFl, had been validated as T3S effector protein but not included in 

our training dataset (Meyer et. al., 2006). Another candidate, NP_522416.1, was a Hrp 

pilus subunit HRPY protein, which could be possibly secreted via T3SS conduit. In 

addition, one of these candidates originated in bacteriophages. It is known that some 

T3S proteins originate from phages, such as SopE in Salmonella. 

The list of newly identified putative T3S candidates may serve as a useful 
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resource for the research community. Because the Aac features were commonly 

identified across genus and species (Fig 3A-F), the BPBAac tool could be widely used 

for efficient T3S effector prediction in various bacteria species. 
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CHAPTER 3 

Identificatioii of New l^pe i n Secreted Proteins Based on 

Position-specific Sequence-Structure Joint Features 
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3.1 Introduction 

Type III secreted (T3S) effectors represent a group of proteins specifically recognized 

by and secreted through type III secretion systems (T3SSs) (Gaian 2009; Lindeberg 

and Collmer 2009). The number of T3S effectors varies greatly among different 

bacterial species with functional T3SSs, while the sequences lack apparent similarity 

between each other (Hueck 1998; Ghosp 2004). This makes it extremely difficult to 

identify new T3S effectors by traditional sequence alignment or phylogenetic 

approaches. 

Some important effector coding genes may be clustered with T3SS apparatus 

elements in the same operon or genomic region (Gal紐 et al., 1989; Jarvis et al., 1995; 

Huang et al., 1995; Hong and Miller, 1998), which faciliate the earlier identification 

of effectors in most species (Jarvis et al., 1995; Noel et al., 2002 and 2003). The weak 

conservation of effectors among closely related species led to slight increase in the 

number of identified effectors (Kaniga et al., 1995; Hardt and Galan, 1997). Other 

common features including distinct G + C content and clustering together with 

chaperones, etc., also help to identify a large number of new effectors genetically 

scattered in the genomes (Panina et al., 2005; Petnicki-Ocwieja et al., 2002; Tobe et 

al., 2006). 

Two grounding discoveries greatly accelerated the progress of finding new 

effectors. One is the discovery that the N-teraiinal peptide sequences of T3S effectors 

contain both necessaiy and enough signal information that guide the specific protein 

secretion (Riissmann et aL, 2002; Lloyd et al., 2001), while the other verified that T3S 
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effectors can be secreted through T3SS conduits of different bacteria (Russmanti et al., 

2001; Girard et al, 2009). Based on these two discoveries, a lot of new common 

features were found in the N-terminal signal sequences of T3S proteins, including 

sequence patterns, amino acid composition frequency, secondary structure 

composition, etc. (Arnold et al, 2009; Samudrala et al., 2009; Lower et al., 2009; 

Yang et al., 2010; Wang et al.，2011). These new features made large-scale 

computational prediction of new T3S proteins possible (Arnold et al., 2009 and 2010; 

Samudrala et al.，2009; Lower et al.，2009; Yang et al, 2010; Wang et al.，2011). 

Although new features may be useful for the identification of more T3S proteins, it is 

still difficult to explain the nature or the exact mechanism by which T3S proteins are 

specifically recognized and secreted. To date, the most important features discovered 

would be the distinct sequence-based or position-based amino acid composition (Aac) 

profiles in N-terminal signal regions of T3S proteins (Arnold et al., 2009; Wang et al., 

2011). The Aac profiles are not so striking, however, and therefore it becomes 

infeasible to find out one or more inter-species or even within-species motifs (Wang et 

al., 2011). The enriched or depleted amino acids in signal sequences do not contain 

apparently common physical and chemical properties either. To directly interpret the 

possible connections between relatively unique Aac features and the specificity of 

protein secretion, several research groups analyzed the second-order structure 

composition encoded by the primary signal peptide sequences, including the 

secondary structure (Sse) and water accessibility states (Acc) (Arnold et al, 2009; 

Samudrala et al., 2009; Wang et al., 2011). Distinctive Sse and Acc features were 
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noted, and yet these features individually seemed not to contribute to the specific 

recognition of T3S proteins (Arnold et al.，2009; Samudrala et al., 2009; Wang et al., 

2011). One group considered the joint distribution of Sse or Acc and Aac，and 

provided limited evidence that the Sse and Acc features contribute to the specific 

secretion of TBS proteins (Yang et al, 2010). Previous tertiary structure studies 

demonstrated that different T3S effectors (or chaperones) often adopted similar 

structure though the primary sequences were apparently not conserved (Stebbins and 

Gal紐 2001; Singer et al., 2004; Birtalan et al., 2002; Lee et al., 2004; Wulf et al.， 

2004; Luo et al.’ 2001). These results provide some clues about the possible 

connection between the shared 3D structure and the similar secretion mechanism of 

T3S proteins with weak sequence similarity. However, those studies emphasized on 

the effector regions rather than the signal regions, and till now most of the 3D 

structure information of T3S signal regions is not available. Consequently, 3D feature 

analysis is impossible although the this feature may be important for understanding 

the basis of T3S protein secretion and the relationship between unique Aac features 

and the specific recognition of T3S proteins. 

According to Aac and other undefined features in the signal regions, T3S proteins 

could be loosely recognized as a unique protein family. Regarding the origin and the 

evolution of T3S proteins, Stavrinides et al. proposed a 'termina] re-assortment' 

hypothesis with genome-wide evidence (Stavrinides et al., 2006). According to this 

model, the T3S proteins contain signal and effector regions，and these two regions 

fuse randomly and evolve independently before fusion. Therefore, the formation of 
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signal sequences may be random and not necessarily present in bacteria, 

gram-negative bacteria, or bacteria with functional T3SSs. Besides, there might be a 

group of proteins with similar signals but in fact they are not true T3S effectors 

although they can be specifically recognized and secreted through functional T3SSs. 

Continuing our previous study, in this part, I further analyzed the underlying 

features that connect distinct Aac profiles and specific recognition of T3S proteins. 

The new features include Sse, Acc and 3D structure of T3S signal sequences. A new 

and more effective prediction model based on these features was proposed. 

Genome-wide T3S prediction was conducted for Salmonella and selected predictions 

were validated experimentally. Finally, based on whole-genome prediction results for 

various bacteria and yeasts, a hypothesis was proposed for the evolution of T3S 

signals. 
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3.2 Materials and methods 

The source of T3S and non-T3S protein datasets, the description of prediction methods 

for secondary structure (Sse) and solvent accessibility (Acc), cross-validation method, 

Bi-profile Bayes (BPB) method. Support Vector Machine (SVM) implementation, and 

model performance assessment methods, were all similar to those described in Section 

2.2 and Wang et al., 2011. The slight difference is that more non-redundant T3S 

proteins validated (189) and non-T3S control (385) proteins were included in the final 

training dataset. Unless specified, the starting methionine is excluded from the 

N-terminal sequences of T3S or non-T3S proteins. 

3^.13D structure prediction and alignment 

I-TASSER was used to make de novo prediction of 3D structure for the first 100 

amino acids at the N-terminal end of T3S and non-T3S proteins (Wu et al., 2007). The 

generated model with highest resolution was used for further analysis. To make 

consequent structure analysis more reliable, two strategies were adopted. Firstly, the 

resolution cutoff value was set to < 10 angstrom. Secondly, another efficient de novo 

protein structure prediction tool, MUFOLD was used to predict the structure of filtered 

protein in parallel (Zhang et al., 2010). The predicted structure was used for further 

clustering and comparison only if two softwares give significantly similar results 

(>75% similarity). MuItiProt was adopted for structure alignment using a sequence 

order dependent or independent mode (Shatsky et al.’ 2004). 

47 



3.2.2 Joint feature extraction and model performance comparison 

Let vector S : {s/,si>,sj,...’s"} denotes a sequence of peptides, in which s represents 

amino acid while 7,2...or , represents position and „ represents total length of the 

sequence. For any j < f< „, has 20 alternatives since it could be any one of the 20 

amino acids. Let Sse[sJ and Acc[s/] represent the secondary structure element (Sse) 

and solvent accessibility state (Acc) that s, takes, respectively. Sse[s/] belongs to set {C, 

H, E} and Acc[s/] belongs to set (B, E}, and consequently for any position , ( /< ,<„) , 

there are 20 x 3 x 2 = 120 types of combination of the three categories of components 

(amino acid, Sse and Acc). The frequency of each type of combination was calculated 

for each position of positive training sequences (T3S) and negative training sequences 

(non-T3S), represented as P+i(s/Sse[s/]Acc[s/]) and P-i(S/Sse[S/]Acc[S/]), respectively. 

For each sequence, a feature vector containing In bi-profile frequencies was obtained 

for n sequential positions (/? was set as 100 in this research): 

{P+i(s7Sse[S7]Acc[sy]), P+1 (Si-Sse[ŝ ]Acc[sj]), P+i(s"Sse[s"]Acc[sJ), 

P-i(sySse[s/]Acc[s/]), P-i(s^Sse[s^]Acc[si']),…，P. 1 (s/̂ Sse [s J Acc [s；,])}. 

The features were trained with a support vector machine, resulting in a mode], namely 

T3SEpre. SSE-ACC and BPBAac were re-trained with the same dataset with prior 

parameters suggested by the original paper and the 10-fold cross-validation grid 

searching results. The performance was compared among T3SEpre, SSE-ACC and 

BPBAac based on a 5-fold cross-validation evaluation. 

3.2.3 Wbole-genome T3S protein prediction 
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Bacteria or yeast whole-genome protein sequences were downloaded from NCBI 

Genome database (http://www.ncbi.nlm.nih.gov/genome/). The N-teminal up to 100 

amino acid position or full-length sequence for peptides with fewer than 100 amino 

acids were extracted for secondary structure prediction using PSIPRED (McGuffin et 

al.’ 2000). The solvent accessibility was predicted using SCRATCH (Cheng et al., 

2005). The amino acid sequence, Sse sequence, and Acc sequence were used together 

for T3 SEpre to predict whether the corresponding peptide contains T3S signals 

(http://biocomputer.bio.culik.edu/softwares/T3SEpre). For more specific results, a 

default cutoff value of 0.5 for T3 SEpre was used. 

3.2.4 Bacteria, plasmids and cell lines 

E.coli DHSalpha and Salmonella typhimurium strain SL1344 were used in this 

research. DH5alpha was commercially available while SL1344 was obtained from 

Salmonella Genetic Stock Centre (SGSC, http://www.ucalgaiy.ca/~kesander). The 

bacteria were cultured on LB plate or in LB broth with or without lOOmg/L ampicilin. 

The plasmids used in this study were summarized in Fig 8 and Table 5. The pMSl07 

plasm id with Bordetella CyaA gene insertion was gifted by Professor Guy R Cornel is 

(Focal Area Infection Biology, Biozentrum, University of Basel, Switzerland). A pair 

of primers (Table 6) were designed to PGR amplify CyaA gene. The pBADB-Myc-His 

plasmid with an L-arabinose-induced promoter and C-terminal Myc and His double 

tags, was ordered from Invitrogen (Cat. No. V440-01). CyaA gene fragment was 

cloned into pBADB-Myc-His plasmid, generating pBADB-CyaA-tag (Fig 8). DNA 
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sequences encoding N-terminal 100 amino acids of candidate T3S proteins were 

amplified and cloned into pBADB-CyaA-tag at the 5' end of CyaA sequence, resulting 

in different constructs (Table 5). 
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X b a l „ . , EcoRI -T3 signal - Xbal T 。 . ..EcoRI -T3 signaH 

Amp 

Xbal^^ • . EcoRI -T3 signal _ 

lBAD promoter 
pBADB-CyaA-Myc -His ^ xbal 

EcoRI 

Xbal T3 signat^ coRI 

Fig 8. Construction ofCya translocation reporter plasmid. 
Plasmid pMS107 containing CyaA fragment was used as template to amplify CyaA gene with 
EcoRI and Xhol restriction sites. The PCR product was further cloned into plasmid 
pBADB-Myc-His to get the resulting pBADB-CyaA-tag reporter plasmid. Interesting candidate 
signal sequences were cloned into pBADB-CyaA-tag plasmid between Xbal and EcoRI sites to 
obtained different testing plasmids, respectively. 
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Table 5. Plasmids used in this study 
Property and usage 

pMS107 

pBADB-Myc-Ks 

pBADB-CyaA-tag 

Gifted by Prof Guy R Cornells 

Ordered from Invitrogen 

Constructed in this study 

pBADB-sipC-CyaA-tag Constructed in this study 

pBADB-slrP-CyaA-tag Constructed in this study 

pBADB-yiiG-CyaA-tag Constructed in this study 

pBADB-yaaA-CyaA-tag Constructed in this study 

pBADB-STMl791 -CyaA- Constructed in this study 

tag 

pBADB-mdoH-CyaA-tag Constructed in this study 

pBADB-STM0281"CyaA- Constructed in this study 

tag 

Containing CyaA gene encoding sequence 

Ainp+; Myc-His double tags; L-arabinose 

inducing expression 

pBADB-Myc-His plasmid inserted with 

CyaA encoding sequence 

pBADB-CyaA-tag inserted with sequence 

encoding N-terminal 100 aa of sipC gene at 

the 5' side of CyaA sequence. 

pBADB-CyaA-tag inserted with sequence 

encoding N-termiaal 100 aa of skP gene at 

the 5' side of CyaA sequence. 

pBADB-CyaA-tag inserted with sequence 

encoding N-terminal 100 aa ofyiiG gene at 

the 5' side of CyaA sequence. 

pBADB-CyaA-tag inserted with sequence 

encoding N-terminal 100 aa of yaaA gene at 

the 5' side of CyaA sequence. 

pBADB-CyaA-tag inserted with sequence 

encoding N-terminal 100 aa of STMi791 

gene at the 5’ side of CyaA. sequence. 

pBADB-CyaA-tag inserted with sequence 

encoding N-terminal 100 aa of mdoH geae 

at the 5' side of CyaA sequence. 

pBADB-CyaA-tag inserted with sequence 

encoding N-terminal 100 aa of STM0281 

gene at the 5' side of CyaA sequence. 
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this study 
Name Sequence 

cyaA-4 5'-GCGAATTCCAGCAATCGCATCAGG-3' 

cyaA-1215 5'-GCTCTAGACTGTCATAGCCGGAAT-3' 

pBADB-5' 5'-ATG CCA TAG CAT TTT TAT CC-3 ‘ 

pBADB-3' 5’-GAT TTA ATC TGT ATC AGG-3' 

sipC-F 5'-GAGCTCGAGATTAATTAGTAATGTGGGAA-3' 

sipC-R 5'-CTGGAATTCAACCTCATTCGCTTTAGT-3' 

slrP-F 5'-GAGCTCGAGATTTAATATTACTAATATACAATCTACG-3 丨 

slrP-R 5'-CTGGAATTCACTATTTTCACTCAAAATACAG-3' 

yuG-F 5'-GAGCTCGAGAACCCTGGGCGCAACAGGA-3' 

yiiG-R 5'-CTGGAATTCCGCGTAACGCGCCAGACT-3' 

yaaA-F 5'-GAGCTCGAGACTGATTCTGATTTCACCTGC-3' 

yaaA-R 5'-CTGGAATTCAAAATCCGCGTCGTTGAACGT-3' 
1791-F 5'-GAGCTCGAGAAGCAACGCCTTTTTTCATCTG-3' 

1791 -R 5'-CTGGAATTCATGCTGAATGCGTACCGAGA-3' 

mdoH-F 5'-GAGCTCGAGAAATAAAACAACTGAGTATATTGACG-3' 

mdoH-R 5'-CTGGAATTCACGGCCAACCGGGTTGGTTC-3' 

0281-F 5'-GAGCTCGAGAAGCTGGAATGACCGCGTAG-3' 

0281-R 5'-CTGGAATTCCGCCAGACAAATCTGCTGG-3' 

To amplify 5' 4-1215nt of 

cyaA gene 

To detect pBADB 

plasmid 

5' 4-300n To amplify 

sipC gene 

To amplify 5' 4-300n 

slrP gene 

To amplify 5' 4-3OOn 

yiiG gene 

To amplify 5’ 4-300n 

yaaAgene 

To amplify 5’ 4-300n 

STM1791 gene 

To amplify 5' 4-3 OOn 

mdoH gene 

To amplify 5' 4-3OOn 

STM0281 

of 

of 

of 

of 

of 

of 

of 
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Human liver cancer HepG2 cells were cultured in DMEM supplemented with 10% 

fetal bovine serum. Cells were grown at37°C in a 5% C02 humidified incubator. 

3.2.5 Western blotting 

SL1344 strains transfected with different constructs were cultured for 12 h in LB-0.3M 

NaCl medium containing 100 mg/L ampicilin. The culture was diluted 1:100 fold 

using fresh LB-03M NaCl medium, and grown for another 3 h under slow agitation to 

obtain an optical density of OD600 0.8�0.9 (Salmonella patliogenecity island 1 (SPI-1) 

inducing conditions). The fiision proteins with pBAD promoter were induced with 

20% L-arabinose during the last 3 hours. Bacterial total proteins were extracted and 

re-suspened in sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE) sample buffer for SDS-PAGE analysis. Protein expression was detected 

using Western blotting with anti-myc antibody (Invitrogen, Cat. No. R950-25). 

3.2.6 Cya Translocation assay 

The mechanism of Cya translocation assay was shown in Fig 9 (Soiy and Comelis, 

1994). HepG2 cells were plated into 24-well tissue culture plates 1 day before 

infection. Each well contains 1ml medium，and after 24h culture, the density of 

adherent cells reached 2 x 10^5 cells per well. HepG2 cells were washed twice, 

replaced with fresh medium, and used to infect Salmonella for 2 hour at a multiplicity 

of infection (MOI) of 20 (Higashide and Zhou, 2006). After infection, the cells were 

washed with ice-cold Phosphate-buffered saline (PBS) for three times, and then lysed 
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in 100 ui of extraction solution (50 mN HCl/0.1% Triton X 100) on ice. The lysate was 

boiled in a water bath for 5 min, followed by neutralization with 6 ul of 0.5 M NaOH. 

cAMP was extracted with ethanol. After centrifugation at 11500 x g for 5 min, the 

supernatant containing cAMP was lyophilized and then quantified using a cAMP 

ELISA kit (R&D, Cat. No. KGE002B). 
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pBADB-s ignal -CyaA-tag 
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N- Signal I tag -c 

ATP CAMP 

Eukaryotic cells 

Fig 9. Principles of CyaA translocation assay. 

CyaA reporter plasmids inserted with N-terminal candidate signal sequences were transformed into 
bacteria of functional T3SSs. Under induction of L-arabinose, the mosaic protein ftised with 
N-terminal candidate 丁3S signals, CyaA polypeptides, and C-terminal Myc-His double tags will be 
expressed. Under T3SS induction conditions, T3SS apparatus genes will be expressed and 
assembled. If the signal sequence cloned in reporter plasmid is true T3S signal, it will be 
specifically recognized by T3SS apparatus, and consequently the fusion protein will be 
translocated into contacting eukaryotic cells. In cytoplasm of eukaryotic cells, with the assistance 
of Calmodulin (CaM) protein, CyaA protein will exert its function to catalyze the reaction by 
which ATP is changed to cAMP. Therefore, the cAMP level will be increased significantly. 
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3.3 Results 

3.3.1 Distinct structure features encoded by N-terminal sequences of T3S 

proteins 

Significantly different Aac profiles were observed between the N-terminal signal 

sequences of T3S and non-T3S proteins, and apparently enriched serines were found 

in T3S sequences (Fig lOA and lOB). Further secondary structure comparison 

suggested significantly enriched coils for most positions in the T3S signal sequences 

(Fig IOC). This pattern was especially apparent within the first 30 positions (Fig IOC). 

In contrast, helices were preferred at ~25 positions of non-T3S sequences (Fig lOD). 

Furtheraiore, fewer strands were present in the signal regions of T3S proteins 

compared to non-T3S proteins (Fig IOC and lOD). Solvent accessibility analysis 

showed that for T3S sequences, most positions were exposed whereas most positions 

were buried insides for non-T3S sequences (Fig lOE and lOF). Taken together, T3S 

signal sequences also contain distinctive secondary structure and water accessibility 

profile apart from Aac. More coils and fewer strands found in the T3S signal regions 

indicated that the sequences may be more flexible. 
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Element positions are depicted on the horizontal axis. The heights of characters represent the 
preference or enrichment level (A), (C) and (E)： Aac, Sse and Acc preference for T3S proteins, 
respectively, (B), (D) and (F)： Aac, Sse and Acc preference foi non-T3S proteins, respectively. 
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The primary sequence of a protein determines its secondary structure, solvent 

accessibility, and other second-order features. These second-order features influence 

the protein function through higher-level features, e.g. the tertiary structure. To 

examine whether T3S signal regions may form certain featured conformation, 3D 

structure was predicted for T3S and non-T3S signal sequences. Among the 189 T3S 

sequences, 41 had high-resolution (<10 angstrom) and confident (similarity > 75% 

between I-TASSER and MUFOLD) prediction results. Supervised (protein types 

being known in the first place) and unsupervised (protein types being unknown in the 

first place) methods were adopted to cluster the T3S and pairwise non-T3S sequences 

according to the multiple structure alignment results in sequence ordered or 

order-independent maimer. However, T3S sequences couldn't be distinguished. 

Therefore, in consequent analysis and model training, 3D structure features were not 

extracted. 
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3.3.2 Distinct joint distribution profiles of Sse,. 

According to the above results, I hypothesize that Sse and Acc may contribute to the 

specificity of Type III secretion. Previous studies suggested that individual Sse or Acc 

features almost made no contribution to the specific recognition of T3S proteins 

(Arnold et al., 2009; Wang et al, 2011). In these studies, however, the authors 

supposed the Sse and Acc variables were independent to Aac. Here, Sse, Acc and Aac 

were considered as covariables dependent on each other, and the joint distribution 

profiles were observed for each position of signal sequences of T3S and non-T3S 

proteins. 

As shown in Fig 11 A, T3S proteins exhibited more apparent joint element 

preference than non-T3 S proteins, since there were significantly fewer elements 

present in each position of T3S N-terminal sequences. For most positions, the 

cumulative presence frequency of top 10 and 20 elements were both significantly 

higher in T3S proteins when compared with non-T3S proteins (Fig IIB). When the 

ratio of non-T3S and T3S sequence number was decreased to 1:1, the difference was 

still significant (Fig IIC and IID), indicating the general joint element preference in 

T3S proteins was not caused by smaller data size. Noii-T3S proteins also showed 

preference for certain element, especially within the first 25 positions, and yet these 

element types were apparently different. For example, 'SCe' ('serine-coil-exposed') was 

most frequently preferred in T3S proteins for most positions, followed by TCe' 

('threonine-coil-exposed'), 'PCe' Cproline-coil-exposed'), 'NCe' 

('asparagine-coil-exposed'), 'GCe' ('glycine-coil-exposed') etc. For non-T3S proteins, 

'AHb' ('alanine-helix-buried'), 'LHb' (leucine-heUx-buried'), and 'VHb' 
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(Valine-helix-buried') were more often found 

(http://biocomputer.cuhk.edu.hk/datasets/Supplemental Table 1). 

The position-specific joint element composition features were extracted using a 

mathematical model adopted previously, namely Bi-profile Bayes (BPB) model, and 

then Support Vector Machine (SVM) was used to train the features. The parameters 

were optimized and shown in Table 7. The new classifier, namely T3SEpre, achieved 

excellent classifying performance (sensitivity of 95.9% and selectivity of 97.7% ) 

according to S-fold cross-validation results (Table 7). BPBAac is one of the best T3S 

protein classification softwares, which takes the AAC features into account only. 

SSE-ACC is another T3S classifier that uses SVM to train sequence-based AAC, SSE 

and ACC features. A comparison was performed between T3SEpre, BPBAac and 

SSE-ACC (Table 7 and Fig 12A). As shown, T3SEpre performed significantly better 

than the other two softwares in terms of sensitivity, specificity, accuracy, MCC and 

AUG of ROC curve. 

The robustness of T3SEpre was further examined using two strategies: (1) 

Sub-datasets with different size were randomly selected from training data to re-train 

the model and to classify the remaining data; (2) Leave-One-Out strategy was adopted. 

Models trained by different sub-datasets performed equally well, and no apparent 

performance reduction was observed even when only 20% of the original training data 

were used (Fig 12B). In Leave-One-Out assessment, for different genera or subgroups, 

almost all the effectors could be recalled and consistently high AUG values were 

obtained (Fig 12C). The worst performance was achieved using the model trained with 
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solely plant pathogen proteins to classify animal pathogen proteins, with a recall value 

of �81%, which in fact was still quite high (Fig 12C). Therefore, the performance of 

T3SEpre was stable and robust, and it can be widely applied for T3S protein prediction 

in different bacteria. 
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Fig 11. Comparison of preference profile for Aac-Ss^Acc joint features 
noii-T3S sequences. 
(A) and (C): Total number of non-zero distributed joint features for each position in T3S or 
non-T3S sequences. Full set of joint features include 120 different elements. The ratio of data size 
between T3S and non-T3S proteins was about 1:2 in (A) and 1:1 in (C). (B) and (D): Cumulative 
frequency of the most enriched 10 (T3S-10 or non-T3S-10) or 20 (T3S-20 or non-T3S-20) joint 
features in T3S or noa-T3S sequences. The ratio of data size between T3S and non-T3S proteins 
was about 1:2 in (B) and 1:1 in (D). Only N-terminal 50 positions of T3S and non-T3S sequences 
were included for analysis. 



Table 7. Optimal parameters and corresponding performance of TSSEpre, 
SSE-ACC based on five-fold cross-validation 

Name Model" Length'' KemeP O ^ 
T3SEpre BPB 
BPBAac BPB 
SSE-ACC SPB 

100 RBF 4 丨 0.001 

100 RBF 8|0.001 
100 RBF 4|0.008 

versus A (%) AUC (%) MCC 
TSSEpre 95.9% versus 97.7% 97.09 
BPBAac 84.4% versus 94.8% 91.33 
SSE-ACC 78.0% versus 95.2% 89.47 

99.50 0.9347 
96.43 0.8031 
94.49 0.7589 

a. Mathematic model used for feature extraction. 
b. N-terminal sequence length used for feature extraction. 
c. SVM kernel function. RBF: radial basis fiinction. 
d. C. cost, which was optimized based on 10-fold cross-validation grid search. 

y; gamma, which was optimized based on 10-fold cross-validation grid search. 



f f/今旁 

Fig 12. Performance of TSSEpre. (A) ROC curves of different T3S protein prediction softwares 
based on 5-fold cross validation. All three softwares were retrained with the same datasets used in 
this research. The parameters were optimized respectively (refer to Table 7). The methods for 
BPBAac and SSE-ACC were respectively referred to the original descriptions in references Wang 
et al., 2011 and Yang et al., 2010. (B) ROC curves for TSSEpre models with different 
training-testing data size ratios. 'Xx% vs. Yy%' meant 'the percentage of training data versus, that 
of testing data'. (C) Inter-species/group robustness of TSSEpre to predict T3S proteins. 
Leave-One-Out strategy was adopted with the exception that, here 'One' meant the data from 'one 
species/group'. 'Animal' and 'Plant' meant 'animal pathogens/sy mbioints' and 'animal 
pathogens/symbioints', respectively. 

一T 3 S 印 re 
—SSE^CC 
一 BPBAac 

-Specificity 

(H C 
1-Specificity 

一 T 3 S E p r e 80®o vs 20^0 
一T3S[pre 50°o vs 50»o 
—T3SLpre 叩〜vs6(Vd 

T3SLpre 30 u vs70 'o 

I t 

w
 c

 .

 t
u

 
边
c
 

(
 a
i
p
j

 a
A
s
s
o
d
 
尝
 J
 

B) 

C) 



3.3.3 Identiflcatioii of new T3S proteins and possible effectors 

A list of Salmonella T3S proteins were predicted using T3SEpre (Table 8). Most 

known T3S effectors were correctly predicted, while some new candidates were also 

identified (Table 8; known SPI-1 effectors were highlighted in red while known SPT-2 

effectors were highlighted in blue). A large percentage of the predicted T3S proteins 

were annotated as 'hypothetical proteins' or with 'unknown function' (Table 8; shown 

in italic). To further evaluate the prediction power of TSSEpre, some new candidates 

were selected for experimental validation (Table 8; shown in bold). Western blotting 

demonstrated that all the fusion proteins were expressed (Fig 13A; protein 

S TM02 81 - CyaA-tag was also expressed, which was not shown in this figure), and Cya 

translocation assay confirmed 4/6 newly identified proteins were true T3S proteins 

(Fig 13B-C). MdoH and YaaA constructs were not found to translocate CyaA protein 

into host cytoplasm (Fig 13B-C). 
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Table 8. Sa/moxeffaTSS proteins predicted with T3SEpre (a strict cutoff，score > = 0.5, 

used) 

SeqID 

S 叫2779 

Seq1359 

Seq1354 
Seq1358 

SVM-Value 

sipC 

sseG 
sIrP 
sseC 
sseF 
yiiG 

SOpA 

sseD 
sopE2 
sopB 
sseB 
sseE 
ssaB 
katE 
sptp 
ftsY 

STM4421 

tonB 
STM0281 

hflK 
pduO 
ydiF 

STM1870 
STM1791 

positive control 

1.83 

.68 

.37 

1.02 

1.00 
1.00 

i.OO 
1.00 

0.99 

Seq2400 
Seq400 

STM2005 
ygbl 

mdoH 
rcsF 
orgC 

STM2486 
nrdR 

0.65 
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Fig 13. Expression and translocation of predicted T3S proteins. 
(A) Western blotting results of candidate fiision proteins in Salmonella. The primary antibody 
against Myc tag was used. Lane 1 and 2 represent pBADB and pBADB-CyaA plasmid, 
respectively. Lane 3-8 represent pBADB-CyaA derived constructs inserted with candidate T3S 
genes sipC, slrP, yiiG, STM1791, yaaA and mdoH, respectively. The expression of STM0281 
construct was also detected but in a separated experiment, for which the result was not shown m 
this picture. Corresponding protein band was indicated by blue (Signal-CyaA-tag) or red arrow 
(CyaA-tag), (B) ELISA coloring results for Cya translocation assays. 2-8 respectively represent 
different constructs indicated in (A), while STM0281 represent the corresponding construct 
inserted with STM0281 signal sequence. 3 biological repeats were included for each construct. 
(C) Quantitative and statistic analysis. Stars indicate statistical significance. PBADB-CyaA 
construct was used as negative control and the construct with sipC was used as positive control. 
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3.3.4 Wide distribution of T3S proteins in different species 

Whole-genome T3S protein prediction was performed to a variety of bacteria and 

yeast. Some new T3S proteins were also identified from species previously reported to 

have no T3SSs, such as Helicobacter and Mycobacterium (Table 9 and website: 

http://biocomputer.bio.cuhk.edu.hk/T3SEpre—candidates). T3SSs have so far been only 

found in gram-negative bacteria, and yet a group of T3S candidates were confidently 

predicted with high scores from gram-positive bacteria and even in yeast (Table 9 and 

website: http://biocomputer.bio.cuhk.edu.hk/T3 SEpre—candidates). Further 

experimental validation of these predicted proteins are needed before any conclusive 

remarks can be made. 
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Table 9. Potential T3S proteins in representative species predicted with TSSEpre (5 with 

highest prediction scores were given for each species; for total sets of prediction and detailed 

sequence annotation, please refer to http://biocomputer.bio.cuhk.edu.hk/T3SEpre—candidates.) 

Species SeqID SVM-Value 

Agrobacterium (NC_003062) 

(Gram -，no reported T3SS) 

Helicobacter (NC_000915) 

(Gram -，no T3SS) 

Mycobacterium (NC_002755) 

(Gram no T3SS) 

Staphylococcus (NC_013450) 

(Gram +,noT3SS) 

Streptococcus (NC_011900) 

(Gram +, no T3SS) 

Yeast (S288c, no T3SS) 

Seq225 1 8262186013 

Seql53 1 8182696817 

Seql738 1 3438005288 

Seq556 1 3053632004 

Seql265 1 1505788212 

Seql414 1 2728691623 

Seql463 0 81876863031 

Seq595 079814466522 

Seq559 076127749423 

Seql438 074734863579 

Seq292 25282200382 

Seq175 21134425698 

Seq4137 2091326393 

Seq2598 1 8061094469 

Seq3425 1 7706735128 

Seq357 1 1964289751 

Seql352 1 1653620221 

Seq946 0 99871685539 

Seq920 0 82115720581 

Seql676 0 70904028709 

Seql084 086992793954 

Seql66 086910627471 

Seq662 073099842015 

Seql625 0 63822324187 

Seq908 0 60030423151 

Seql417 2 9246207038 

Seq5249 2 9232109626 

Seq840 2 7428577459 

Seq2394 26276802073 

Seq3386 2 3665151381 
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3.4 Discussion 

3.4.1 Structural features for T3S protein recognition 

Several lines of evidence suggested that the N-terminal sequences contain signals 

guiding the specific recognition and secretion of T3S proteins (Karavolos et al, 2005; 

Lloyd et al., 2001 and 2002; Russmann et al., 2002; Schechter et al, 2004; Wang et al., 

2008). The molecular basis of this specificity, however, remains to be determined. 

Several groups attempted to find sequence-based specific T3S signal features. 

However, it is difficult to find common domains or motifs within a certain bacterial 

genus or closely related genera due to the high diversity of sequences (Buchko et al., 

2010; Petnicki-Ocwieja et al, 2006). Recently, both sequence-based and 

position-based amino acid enrichment and depletion were noticed in the N-terminal 

region of T3S proteins (Arnold et al.，2009; Wang et al., 2011). Computational models 

based on these primary sequences derived features can well classify the T3S and 

non-T3S proteins, demonstrating amino acid sequences of T3S proteins at least encode 

part of the T3S specificity. Furthermore, some second-order elements including Sse 

and Acc were analyzed to search for more direct and specific features (Arnold et al., 

2009; Wang et al., 2011). Although differences were found between the T3S and 

non-T3S proteins, these features were not considered responsible for the specificity 

because they independently did not improve the performance of T3S protein classifier. 

Most recently, one group attempted to analyze the combinatorial features of Aac and 

Sse/Acc (Yang et al., 2010), but the model did not outperform other models which 

only based on Aac features, therefore not leading to any valuable conclusion. In this 
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research, the Aac, Sse and Acc were considered as inter-dependent co-variables, and I 

analyzed the position-specific joint distribution profiles of three features, and found 

that integrating these new combinatorial features could significantly improve the 

prediction performance. I therefore reasoned that Sse and Acc represent some 

T3S-specific features which are partly encoded by Aac. 

For tertiary structure, although the structure homology was proposed for T3S 

effectors lacking sequence similarity, it was merely suitable for the effector region but 

not for the N-terminal signal region. Typical T3S effector structure studies frequently 

neglected the N-terminal region becuase of its flexibility and it is difficult to resolve 

the structure (Galan and Wolf-Watz, 2006; Stebbins and Galan 2001; Singer et al., 

2004; Birtalan et al., 2002; Lee et al, 2004; Wulf et al, 2004). The 3D structure 

information of the T3S signal region is therefore not available. In this research, I 

computationally modeled and compared the 3D structure of T3S signals. However, the 

overall prediction resolution for T3S sequences were much lower than those for the 

non-T3 S sequences, which indirectly indicate the specificity of T3S signals and the 

lack of resolved structure for similar peptide fragments. Furthermore, difficulty in 

clustering the T3S signal sequences based on 3D structure could partly reflect the 

flexibility of T3S signals (Galan and Wolf-Watz, 2006), which is consistent with the 

observation that coils were apparently enriched in T3S signal sequences (Fig 10). 

Taken together, it seems difficult to explain the specificity of Type 3 secretion based 

on the 3D structure of T3S signals. The 3D structure features were therefore not 

included for the classification. The model, TSSEpre, based on the combinatorial 
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features of Aac, Sse and Acc, serve as an excellent classifier in distinguishing T3S and 

non-T3S proteins. Future advancement in the 3D structure analysis may finally help 

explain the molecular mechanism of T3S signal recognition and specific secretion. 

3.4.2 The formation and evolution of T3S signal sequences 

Apart from the specific features embedded in the T3S signal sequences, how these 

sequences are formed and evolved also remains an enigma. In many bacteria speccies, 

some T3S effectors were obtained together with T3SS apparatus through a horizontal 

transfer event (Heuck 1998). For these effectors, the signal sequences seemed to 

CO-evolve with T3SS apparatus genes. However, more effectors were found to be 

scattered in the bacterial genomes. In model species such as Salmonella, different 

effectors function coordinately in the host-bacteria interactions (Kubori and Galan 

2003). It is interesting to investigate how these scattered effectors can be fme-tuned 

for gene expression, exert necessary function and meanwhile contain the exactly 

T3SS-recognized signals. 

Inspired by the 'terminal re-assortment' hypothesis proposed by Stavrinides et al.’ 

I partitioned a fiill-length T3S protein into 2 parts: the N-terminal signal part and the 

C-terminal function part. Gene expression data under different conditions were 

analyzed to observe whether T3S proteins were co-expressed with known T3SS 

apparatus or other related genes. I found that T3S signals are widely located within 

different bacterial genes (e.g. yiiG, STM1791 and STM0281 genes validated in this 

research, which were not co-regulated with SPI-1 or SPI-2 apparatus genes). Some 
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gram-positive bacteria and even yeasts also encode T3S signal-containing genes (Table 

9). Therefore, T3S signal could be formed randomly and evolve independently with 

T3SS apparatus. A protein with putative T3S signals is not necessarily an effector, 

because T3 S effector must contain a functional domain and must be co-regulated with 

T3SS apparatus as well as other relevant genes for expression. For this reason, the 

candidate T3S proteins predicted from gram-positive bacteria or yeasts should be 

called T3S proteins (or substrates) rather than effectors. 

3.4.3 Application of TSSEpre 

Finally, TSSEpre, a T3S protein prediction software was developed. The source codes 

and R package can be found from the following website: 

http://biocomputer.bio.cuhk.edu.lilc/softwares/T3SEpre. Although this model 

outperformed other softwares as evidenced by both in silico analysis and wet-lab 

experiments, different models may have their own advantages and disadvantages. 

Users are advised to choose the most suitable software for individual needs. 
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CHAPTER 4 

T3DB: an Integrated Database for Bacteria! Type HI 

Secretion System 

75 



4.1 Introduction 

Although T3SSs have been widely identified in many bacteria species, quite limited 

number of T3SSs have been extensively investigated. Till now, T3SSs from only 5 

animal pathogens {Salmonella, Shigella, Yersinia, pathogenic R coli and Citrobactef) 

and 2 plant pathogens {Fseydomonas and Xanthomonai) have been well studied 

(Lara-Tejero et al, 2011; Tree et al., 2009; Ogawa et al.，2008; Shao et al., 2008; 

Mrnidy et al., 2004; Hauseret et al., 2009; Kay et al., 2009). The relatively low 

sequence similarity, and frequent horizontal transfer among bacteria makes it difficult 

to identify T3SS orthologs (Fallen et al, 2005; Desvaux et al.’ 2006). Most 

importantly, different nomenclature and categorization method/terms have created 

confusion and difficulty in literature search as well as in data interpretation using 

relevant information explored in the parallel genera (Fallen et al., 2005; Desvaux et al., 

2006). A unified platform integrating various source of information is needed to 

facilitate the T3SS related research. 

Such an integrated platform has been initiated previously by Fallen MJ et.al, and 

a database (http://3base.bham.ac.uk) has been created, aiming to formulate a taxonomy 

for type-Ill secretion, and to help identify new T3SSs in newly-sequenced bacterial 

genomes (Fallen et al., 2005). However, till recently, the database only contains 

annotated T3SSs from 4 species. In another similar database DTTSS 

(http://sdbi.sdut.edu.cn/ttss), only very limited number of T3SSs have been annotated, 

and a great number of non-T3SS genes have been mis-aimotated as T3SS genes. Other 

databases, such as T3SEdb (http://effectors.bic.niis.edii.sg/T3SEdb) and Effective 
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(http://effectors.org) mainly store subsets of validated and predicted T3SS genes 

(mainly effectors) respectively (Tay et al, 2010; Jehl et a!., 2011). A systematic 

function annotation of individual T3SS effector coding genes, the relationship between 

these effectors and their chaperones, and the structural components and regulators of 

corresponding T3SSs may provide useful multiple-aspects datasets for further studies 

on gene evolution, chaperone-effector interaction, T3SS-related regulatoiy network, 

and bacteria-host interaction, etc. Regretfully, no such information can be found in any 

of the current databases. In addition, none of the current platform implements various 

computational software tools for Type 3 effector prediction. 

In this part, I developed a Type 3 secretion system-related Database (T3DB)， 

aiming to annotate all the T3SS related genes and to set up an integrated platform for 

the T3SS community. In this database, T3SS genes, which include apparatus 

(including accessories), effectors (proteins secreted through T3SS conduit), 

chaperones, and transcription regulators, are collected and classified into one of the 

five phylogenetic types (He et al., 2004). For each gene, its genome coordinate, gene 

accession, gene alias, nucleic acid sequence, protein sequence, and detailed function 

were annotated. The T3 orthologs were also annotated. All these data were manually 

annotated, and experimental evidence was provided for each effector, chaperone or 

transcription regulator. The database can be freely browsed, searched or downloaded. 

Besides, web servers were included for BPBAac and T3SEpre, the two T3SS effector 

prediction tools described in chapter 2 and 3 of this thesis. The links to other T3SS 

effector prediction servers were also provided. 
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4.2 Database construction and implementatioii 

The framework for T3DB construction involves 4 steps: (1) identification of T3SS 

containing bacterial genera and species; (2) T3SS gene identification and 

categorization; (3) T3SS gene annotation; (4) ortholog annotation. 

First, a text based literature search strategy was adopted to obtain a 

comprehensive list of T3SS related publications. Type III Secretion System', 'Type 3 

Secretion System', 'TTSS' and T3SS' were respectively used as key word to search the 

Pubmed database. This search resulted in more than 3000 non-redundant publications. 

The abstract of each publication was scanned manually, and the bacteria genera and 

species were recorded and examined. Some bacteria may contain not yet reported 

candidate T3SSs. Instead of using comprehensive sequence alignments to find these 

candidates, we only included potential T3SS candidates based on literature reviews in 

which the authors presented sequence alignments, genome localization, and 

phylogenetic evidence. This procedure generated a list of 26 bacteria genera from 

different classes, even from different phyla (Fig 14). The phylogenetic relationship 

between these bacterial genera was annotated from Bergey's Manual (Garrity et al., 

2005) (Fig 14). For each genus, the model species and strains with the most adequate 

experimental data and molecular information were further selected. The genomes 

(chromosomes and plasmids) of most of the selected model strains have been 

sequenced, and the current release contains 75 model species. The host type (animal or 

plant) and interaction type (pathogenesis or symbiosis) were annotated for each 

species according to Bergey's Manual (Garrity et al., 2005). 
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I then collected all the T3SS-related genes for each selected model strain. Because 

it is much easier to identify orthologs in bacteria that belong to the same genus, each 

genus was therefore used as key words in combination with either Type III Secretion 

System', Type 3 Secretion System', 'TTSS' , or T3SS' respectively to search relevant 

literature in the Pubmed database. Each literature hit was manually curated and genes 

related to T3SS were collected, together with their bacterial host strain, alias, gene 

accession, and detailed function. Furthermore, the candidate gene sequences and their 

genomic coordinates were tracked and compared, and T3SS orthologs in different 

species or strains were identified. Because a strain may contain more than one T3SS, 

and genes with similar sequence, structural, function and genomic clustering features 

among different T3SSs in the same strain can not be accurately defined as paralogs or 

orthologs, we used a new term T3 orthoiog' to specify this case. Specifically, any 

genes with the above-stated similar features among different T3SSs in the same or 

different strains were collectively termed 'T3 orthologs'. A non-redundant T3SS gene 

set was obtained for each genus after filtering out the redundant orthologs. Each gene 

in the non-redundant T3SS gene set was assigned a unique name, in the form of 

'XXX-YYY', where 'YYY' is the traditional gene name for that gene in most studied 

strains and 'XXX' describes the genus. The genus name was included in the gene name 

so that users can easily distinguish the genus from which the candidate gene originates. 

Even in the same genus, the orthologs in different strains may have different names. 

After a unique nomenclature was set for each ortholog cluster in a genus, the other 

names representing the same gene were considered as alias. For strains with more than 

80 



one T3SS, the nomenclature for genes was in the form of 'XXX-ZZZ-YYY', where 

'XXX' and 'YYY' represent genus and gene name respectively, and 'ZZZ' describes the 

T3SS name. Each T3SS were classified into one of the five putative categories (He et 

al., 2004) according to phylogenetic analysis of the conserved T3SS proteins among 

all bacteria that contain T3SSs. 

The T3SS genes annotated in T3DB are divided into 4 major categories: 

Apparatus (Category I), Chaperone (Category II), Effector (Category III), and 

Transcription Regulator (Category IV). Apparatus genes encode those that assemble 

the needle-like structure as well as accessory genes. Genes in this category are further 

sub-classified into different fiinction clusters (Fig 15). Chaperone genes encode 

proteins serve as chaperones in assisting effector proteins to secrete through T3SS 

conduit. Effectors genes encode proteins specifically secreted through T3SS conduit. 

Some effectors themselves also function as structure proteins, such as those translocon 

proteins (e.g., Sal-SPTl-SipB and SipC). In such cases, they were classified into 

Translocon' in Category I. T3SS transcription regulators were collected as an 

independent category. For categories，chaperone, effector and transcription regulator, 

at least one reference with experimental evidence was required to support the fiinction 

annotation. For category apparatus, sequence similarity and genomic organization 

were used as evidence, for which two conditions must be both met. For bacteria that 

contain multiple-T3SSs, some effectors cannot be precisely classified to a specified 

T3SS; in such case, the name of the orthologous gene cluster adopts 'XXX-YYY' 

instead of'XXX-ZZZ-YYY' system. 
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Fig IS. Categories and sub-categories (or function clusters) ofT3SS genes. 
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For gene annotation, orthologous genes in different strains within the same genus 

adopt the same gene names. To distinguish these genes from different strains, a unique 

ID was assigned to each gene. The ID is represented by T3X, where 'X' is one of the 

four characters (’A': Apparatus; ’C: Chaperotie; 'E': Effector; 'R': Regulator), followed 

by 11 numerical numbers representing different phyla (1), classes (1), orders (1), 

families (1)，genera (2), strains (2)，T3SSs in the same strain (1), and the individual 

genes (2), respectively. It should be noted that when more than T3SSs are presented in 

a single strain and it is not able to determine which T3SS the gene belong to, the 

corresponding number is replaced by a character 'x'. For each gene, the genome type 

(chromosome or plasmid), genome ID and gene coordinates in genome (if available), 

strand direction, nucleic acid and protein sequences, major function category, detailed 

function annotation, structure information, within-genera/strain and inter-genera T3 

ortholog' relationship and reference PMIDs were all annotated. 

In the last step, a ’T3 ortholog' cluster (see previous description) was created for 

each gene. For T3SS proteins, the sequence similarity among orthologs in different 

genera, especially distantly-related genera, was veiy low. Specific alignment strategies 

with less stringent thresholds were adopted. Besides, the within-genome synteny 

information was considered. In the current release of T3DB, the T3 orthologs were 

annotated based on literature using different comparison methods. Some orthologs 

with extremely low sequence similarity were annotated as T3 orthologs' if they share 

high similarity in structure (Structure Orthologs) or in fianction (Function Orthologs) 

based on publication. 
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The database was created and maintained using MySQL, The interactive 

interfaces were written in PHP scripts. Two integrated web servers respectively for 

BPBAac (Wang et al., 2011) and T3SEpre were implemented using PHP and 

Javascript. The local packages for BPBAac and T3SEpre were written and 

implemented with R and Perl. 
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4.3 Database Usage 

The T3DB user interfaces include: (1) browse interface, (2) search interface, (3) 

download interface and (4) software interface. 

In browse interface, bacterial genera with T3SSs and their phylogenetic 

relationship between genera was shown in a tree (Fig 16A). Users can select and click 

any interested genus to browse the genus page (Fig 16B). In each genus page, one can 

skim the basic information about the bacteria genus including host type, interaction 

type, T3SS number, T3SS names, locations, classes, and the representative strains and 

their host species in 'Basic information' field. Besides, two alternative browse routes 

were provided for users to further browse T3SS genes in the genus: by strain and by 

genus-conserved ortholog cluster. In the "browse by strain" mode, clicking the 

interested bacteria strain will bring out a new interface showing the full list of T3SS 

genes in this specified strain (Fig 16C). Users can learn about the gene distribution and 

corresponding molecular information in the selected strain. In the "browse by ortholog 

cluster" mode, a general introduction of the number and the function of non-redundant 

T3SS genes in the genus are provided. Each gene name icon represents a unique 

genus-conserved ortholog cluster. After selecting an interested gene cluster, a list of 

T3DB records of all the annotated orthologs in different strains within this genus will 

appear (Fig 16D). The alternative browsing modes are designed to cater for different 

research interest: either on bacteria or on specific genes. To learn more details about 

the individual gene in a particular strain, one should click the interested accession 

record, which leads to the final annotation page for this gene (Fig 16E). General 
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information includes gene accession, alias, genomic coordinators, sequence and major 

function categoiy. The 3D-structure accession (if any) was also linked. The gene was 

annotated with detailed function, and the references (PMIDs) were included for 

tracking purpose. Finally, the known intra- or inter-genus T3 orthologs were annotated 

and within-database links were provided for efficient accession to these orthologs (Fig 

16E). 
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Fig 16. Browse interfaces of T3DB. (A) Overall browse page. (B) Browse page for individual 
bacterial genus (eg. Rhizobium). (C) or (D) page will be shown up when the corrsponding icon 
indicated within red rectangle in (B) is clicked, respectively. Arrows indicate the relationship 
between pomped out pages and corresponding icons. (E) shows the major items annotated in final 
annotation page for each individual gene. Please Refer to 
http://biQCQmputer.bio.cuhk.edu.hk/T3DB/browse.php for details. 
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As shown in Fig 17A-B, T3DB provides multiple search modes. Users can search 

an interested T3SS gene through its gene accession, T3ID or gene name. A Blast 

program was integrated for the users to input interested nucleic acid or protein 

sequence for similarity search. Users may also download gene list and sequences by 

bacterial genus (or strain), by T3 ortholog cluster, or by function category (Fig 

18A-D). 

Because T3SS effectors play important roles in host-bacteria interactions, it is of 

great significance to identify new genes encoding T3SS effectors. Efficient in silico 

prediction tools with high sensitivity and high specificity have been developed recently. 

Two T3SS prediction softwares, BPBAac and T3SEpre, were integrated into the 

database (Fig 19A-B). For BPBAac, users may input a sequence or upload a FASTA 

file to make prediction. For T3 SEpre, users need to input a sequence, its secondary 

structure, and its solvent accessibility. For both softwares, the specificity and 

sensitivity of the prediction can be freely defined by users. Besides，links to other 

T3SS effector prediction softwares are also provided. 
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Fig 17. Search interfaces ofT3DB. 
(A) Search page. Gene一name (including alias), Gene_ID (including protein access) as well as 
T3SS_ID could be used for searched. A blast program was also integrated for aligning a unknown 
sequence against stored T3SS genes. Circled sequence in (A) is an example; when clicking icon 
'submit', a new page with alignment result will be pompted out, e.g., (B). Please Refer to 
http.//biocomputer.bio.cuhk.edu.hk/T3DB/search.php for details. 
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Fig 18. Download interfaces ofT3DB. 
(A) and (B): Alternative download modes. (C) and (D): example of download manipulatation. 
Please Refer to http://biocomputer.bio,cuhk.edu.hk/T3DB/download.php for details. 
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4.4 Discussion 

T3SS has received continuous high research attention due to the important roles it 

plays in bacterial pathogenesis and symbiosis. An integrated platform for data storage, 

data analysis, and knowledge inter-change may greatly facilitate the T3SS related 

study in the research community. In the current release of T3DB, one can find that the 

function of Rhizobium NopA, NopB and NopX proteins have been well studied and 

annotated (as translocon). These Nop proteins, however, have not yet been identified 

and studied in other genera, e.g. Sinorhizobium, Mesorhizobiimi and Bradyrhizobium. 

Through searching T3DB, Nop orthologs most likely encoding T3SS translocons, 

were identified in these 3 genera. Furthermore, when comparing the T3SS apparatus 

genes in the two Bradyrhizobium model strains, no NopX ortholog was found in strain 

Bradyrhizobium elkanii USDA61. According to published result(Okazaki et al., 2009), 

the T3SS in the USDA61 strain is supposed to be functional. This raises an interesting 

question as to whether NopX is functionally necessary for T3SSs in all rhizobia. Based 

on the ortholog clusters, one may also study the phylogenetic relationship among 

different T3SSs, or the co-evolutionary relationship between different functional 

categories. The manually-curated high quality effector and chaperone data are useful 

for feature study and evolution study of these special protein groups. 

In the future, we plan to extend the T3DB in the following directions: First, to 

analyze more model strains using bioinformatics and comparative genomics strategies, 

and to include the T3SS data from non-model strains as well. Second, a transcription 

regulatory network for different T3SSs will be constructed. Third, two types of 



protein-protein interaction networks will be integrated. One is to describe the 

interactions between T3SS proteins and other bacterial proteins, and the other is to 

describe the interactions between T3SS effectors and host proteins. We hope that 

T3DB can make important contribution to T3SS related research in the future. 



CHAPTERS 

Conclusions and Perspectives 
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5.1 Contribiitions and conclusions from this thesis research 

In summary, I have made the following contributions and conclusions through my 

thesis research: 

1) I developed two high-performance software tools for effective prediction of 

bacterial Type III Secreted proteins. BPBAac only considered position-specific 

amino acid composition features, while TSSEpre also integrated second-order 

structure-based features besides primary sequences. Both softwares outperformed 

other implementations with similar applications. T also constructed a relational 

database, T3DB, to integrate, annotate, and analyze the molecular information of 

T3SS. Besides, two web servers were implemented in for BPBAac and T3SEpre, 

respectively. 

2) With the assistance of T3 SEpre, I identified a list of new T3S proteins in 

Salmonella, and selected candidates were validated experimentally. 

3) The fact that computational models based on composition bias features could 

effectively recognize T3S proteins indicated that the position-based amino acid 

preference at least partly contributes to the specificity of T3S signals. 

4) I demonstrated that second-order structure based features also contribute to the 

specificity of T3S signals. 

5) Nearly half of the validated T3S proteins could still be recognized independent of 

position shift, suggesting that the T3S signals can tolerate position shift to certain 

level. 



5.2 Future perspectives 

Future study will be directed towards understanding the mechanism of T3S signal 

recognition and T3S signal formation. Protein-protein interaction experiments 

combined with molecular modeling will provide new clues about how T3S proteins 

are specifically recognized. As for the formation and evolution of T3S signals, the 

most intriguing question is how the effector genes, which are scattered along the 

genome and far away from T3SS apparatus gene cluster, are co-regulated and 

specifically recognized by T3SS apparatus. Comparative genomics and gene 

regulatory network analysis in model bacteria species are likely helpful in addressing 

this challenging question. 
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