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Neitola, Marko, Characterizing and minimizing spurious responses in Delta-Sigma
modulators
University of Oulu, Faculty of Technology, Department of Electrical Engineering,  P.O. Box
4500, FI-90014 University of Oulu, Finland
Acta Univ. Oul. C 414, 2012
Oulu, Finland

Abstract

Oversampling data converters based on Delta-Sigma modulation are a popular solution for
modern high-resolution applications. In the design of digital-to-analog or analog-to-digital Delta-
sigma converters there are common obstacles due to the difficulties on predicting and verifying
their performance. Being a highly nonlinear system, a Delta-Sigma modulator’s (DSM)
quantization noise and therefore the spurious tones are difficult to analyze and predict. 

Multi-bit DACs can be used to improve the performance and linearize the behavior of DSMs.
However, this will give rise to the need for linearizing the multi-bit DAC. A popular DAC
linearization method, data weighted averaging (DWA) shapes the DAC mismatch noise spectrum.
There are many variants of DWA, for low-pass and band-pass DSMs. This thesis proposes a
generalization which integrates a few published variants into one, broader DWA scheme. The
generalization enables expanding the tone-suppression studies into a larger concept. 

The performance of one- or multibit DSMs is usually verified by simulations. This thesis
proposes a simulation-based qualification (characterization) method that can be used to repeatedly
verify and compare the performance of multibit DSM with a DAC mismatch shaping or
scrambling scheme. 

The last contribution of this thesis is a very simple model for tonal behavior. The model enables
accurate prediction of spurious tones from both DSMs and DWA-DACs. The model emulates the
tone behavior by its true birth-mechanism: frequency modulation. The proposed prediction model
for tone-behavior can be used for developing new tone-cancelation methods. Based on the model,
a DWA linearization method is also proposed. 

Keywords: Delta-Sigma modulation, nonlinear modeling, quantization noise, spurious
tones





Neitola, Marko, Harhatoistojen karaktorisointi ja minimointi Delta-Sigma
muuntimissa 
Oulun yliopisto, Teknillinen tiedekunta, Sähkötekniikan osasto,  PL 4500, 90014 Oulun
yliopisto
Acta Univ. Oul. C 414, 2012
Oulu

Tiivistelmä

Delta-Sigma modulaatio on suosituin tekniikka ylinäytteistävissä datan muuntimissa. Riippu-
matta toteutustarkoituksesta (analogia-digitaali- tai digitaali-analogia-muunnos), Delta-Sigma
(DS) modulaatiossa on yleisesti tunnettuja käyttäytymisen ennustamiseen liittyviä ongelmia.
Nämä ongelmat ovat peräisin modulaattorin luontaisesta epälineaarisuudesta: DS-muunnin on
nimittäin vahvasti epälineaarinen takaisinkytketty systeemi, jonka harhatoistojen ennustaminen
ja analysointi on erittäin hankalaa. 

Yksibittisestä monibittiseen DS-muuntimeen siirryttäessä muuntimen suorituskyky paranee,
ja muuntimen kohinakäyttäytyminen on lineaarisempaa. Tämä kuitenkin kostautuu tarpeena
linearisoida DS-muuntimen digitaali-analogia (D/A) muunnin. Tällä hetkellä tunnetuin lineari-
sointimenetelmä on nimeltään DWA (data weighted averaging) algoritmi. Tässä työssä DWA:lle
ja sen lukuisille varianteille esitellään eräänlainen yleistys, jonka avulla algoritmia voidaan
soveltaa sekä alipäästö- että kaistanpäästö-DS-muuntimelle. 

Kuten tunnettua, DS-modulaattorin analyyttinen tarkastelu on raskasta. Yksi- ja monibittis-
ten DS-muuntimien suunnitellun käyttäytymisen varmistaminen tapahtuukin yleensä simuloin-
tien avulla. Työssä esitetään simulointiperiaate, jolla voidaan kvalifioida (karakterisoida) moni-
bittinen DS-muunnin. Tarkemmin, kvalifioinnin kohteena on DWA:n kaltaiset D/A -muuntimi-
en linearisointimentelmät. Kyseessä on pyrkimys ennen kaikkea toistettavaan menetelmään, jol-
la eri menetelmiä voidaan verrata nopeasti ja luotettavasti. 

Tämän väitöstyön viimeinen kontribuutio on matemaattinen malli harhatoistojen syntymeka-
nismille. Mallilla sekä DS-muunnoksen että DWA-D/A -muunnokseen liittyvät harhatoistot voi-
daan ennustaa tarkasti. Harhatoistot mallinnetaan yksinkertaisella havaintoihin perustuvalla FM-
modulaatiokaavalla. Syntymekanismin mallinnus mahdollistaa DS-muuntimien ennustettavuu-
den ja täten auttaa harhatoiston kumoamismenetelmien kehittämistä. Työssä esitetään yksi mate-
maattisen mallin avulla kehitetty DWA-D/A -muunnoksen linearisointimenetelmä. 

Asiasanat: Delta-Sigma modulaatio, epälineaarinen mallinnus, harhatoisto,
kvantisointikohina
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List of abbreviations and symbols

A/D analog-to-digital
ADC analog-to-digital converter
BNF back-and-forth
D/A digital-to-analog
DAC digital-to-analog converter
dc direct current; zero frequency
DEM dynamic element matching
DNL differential nonlinearity error
DR dynamic range
DS Delta-Sigma
DSM Delta-Sigma modulator
DWA data weighted averaging
ENOB effective number of bits
ETF the transfer function from DAC input to DSM output
FS full scale
FFT fast Fourier transform
ILA individual level averaging
INL integral nonlinearity
LSB least significant bit
LUT lookup-table
MASH multistage noise shaping DSM
mod modulus after division
MSE mean squared error
NTF noise transfer function 
OSR oversampling ratio
pdf probability distribution function 
RAM random access memory
rms root-mean-square
SFDR spurious-free dynamic range
SMNR signal to mismatch noise ratio
SNDR signal to noise and distortion ratio
SQNR signal to quantization noise ratio
STF signal transfer function

A amplitude
B bits
ci Fourier coefficients
D delay in generic DWA
E{x(n)} expected (mean) value of x(n)
e, eq quantizer noise
em unshaped DAC mismatch noise
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f frequency
fb signal bandwidth for low-pass DSM
fc center frequency
fs sampling frequency
i index
k quantizer gain
L DSM order 
L0 input path filtering in a DSM loop filter
L1 feedback path filtering in a DSM loop filter
m order (polynomial, harmonic distortion)
M number of samples in a simulation
n sample index
nq modulation noise
nm DAC mismatch noise
N number of quantizer steps; commonly the number of unit DACs
Ns number of spurious tones modelled
ptr DWA pointer signal
S power spectral density

selection vector for DEM
seq repeating sequence
t time
T sampling interval
u DSM input signal
v DSM output signal
vd DAC output signal
wi weight of unit-DAC element
y DSM quantizer input signal

i attenuation parameter for noise contribution model
 quantizer step
 error
 phase
 standard deviation
 variance
 angular frequency

SEL
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1 Introduction

A Delta-Sigma modulator (DSM) [1-3] is a derivative of an interpolative encoder

i.e. a feedback system with filtering and a quantizer in its feed-forward path.

Contrary to Nyquist-rate data converters, Delta-Sigma (DS) converters are

oversampling and have memory. A DS converter trades speed for a simpler

realization that has more relaxed accuracy requirements for the analog

components. In a data converter application, the quantizer is typically coarse, only

1 to a few bits in word length, which makes a Delta-Sigma (DS) converter very

nonlinear and difficult as a subject of exact analysis [4]. 

In DSM analysis, a classical additive noise model for the quantizer [5] is the

most commonly used modeling tool. Unfortunately, its usage is typically for a

suggestive prediction of the behavior. In a quasi-linear analysis [6], the signal

dependency is typically modelled by nonlinear describing functions of the DSM

input, but does not predict the tone frequencies. An exact analysis, in the other

hand, is complex and the results difficult to generalize [7]. Nevertheless, the

advantages of DS converters surpass the lack of an exact predicting model. 

Extending the DSM output word size improves the predictability of the

system, because the quantization noise behavior will be more randomized. Also,

the performance improves ca 6 decibels per bit [8]. Unfortunately, the increment in

word size introduces nonlinearity in the digital-to-analog converter (DAC), which

needs to be linearized. Options for linearization without trimming are digital error

correction [9] and dynamic element matching (DEM) [10].

This thesis discusses mostly multi-bit DSMs. It consists of four original papers

and a hundred and twelve page summary. Some other related papers by the author

appear as references. 

1.1 Overview and contribution

The contribution of this thesis has a lot of weight on multibit DSM’s DAC

mismatch linearization. This thesis proposes a generalized model for a popular

DEM method, namely data weighted averaging (DWA) [11,12]. The

generalization clarifies the basic functionality of first-order shaping DWA and

expands the existing tone-cancelation methods to band-pass DSMs as well.

Numerous methods to linearize a DWA method evoke a particular problem for

scientists with interest on this field: repeatability. As the achieved performance is

dependent on the properties of the input signal along with the actual mismatch, a
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proper qualification may be an exhaustive and difficult task. This invoked the

author’s interest in the qualification (characterization) of DEM methods. The

proposed qualification approach discusses important issues in reliability and

repeatability when benchmarking DEM methods by simulations. 

A common problem with many mismatch shaping methods and DSMs is the

empirical nature of studying the noise related phenomena. In both cases, the

shaped noise can be prone to produce spurious tones. To understand and even

cancel unwanted tones, a prediction model for both DSM and DWA is needed.

This thesis presents such a time-domain model that is capable of predicting tone

behavior with arbitrary stimuli. The model is simple and accurate, and it also

reveals the similarity between DSM modulation noise and DWA-related mismatch

noise.

The structure of quantization noise is a field that has been studied in numerous

publications beginning with the classical paper by Candy and Benjamin [13] from

1981. As the literary review will suggest, there are similarities in how the spurious

tones are located for DSM and DWA. The spurious tone models for DWA (Paper

III) and DSM (Paper IV) are almost identical and their simplicity and accuracy are

quite convincing.

The structure and contribution of this thesis are as follows:

– Chapter 2 concentrates on methods for analyzing DSM quantization noise.

The emphasis is on reviewing approaches on how to predict the DSM

quantization noise behavior. 

– Chapter 3 is an overview of DAC mismatch cancelation methods in multibit

DS converters. 

– Chapter 4 proposes a DWA generalization (Paper I) that combines several

published variants into one concept. 

– Chapter 5 proposes the DEM qualification method (Paper II). 

– Chapter 6 introduces a simple spurious tone prediction model for DWA (Paper

III) and DSMs (Paper IV)
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2 Methods of Delta-Sigma modulator analysis

2.1 Introduction

The purpose of Delta-Sigma modulator analysis methods is to verify stable

behavior and predict the performance. Generally, a DSM can be presented as a

negative feedback system whose feed-forward path contains linear filtering and a

coarse quantizer. The latter can be categorized as a “hard” nonlinearity; a DSM is a

highly nonlinear system, which is can be very complicated to predict. Robert M.

Gray stated in his classic paper on quantization noise spectra [4]: 

A longstanding problem with the application of feedback quantization systems
has been the difficulty of analyzing and predicting their behavior; the
complications of the nonlinear operation are aggravated by its presence
within a feedback loop.

Gray pointed out [4] a general belief that (for 1-bit DSMs) the higher the order of

the system, the more accurate the white noise assumption is. A recent dissertation

from a former colleague contained a chapter on DS modulators’ tonal behavior.

This chapter contained a rather pessimistic statement [7]: 

It should be noted that many works published on the subject, including very
recent ones, begin by emphasizing our very limited theoretical understanding
of DSMs. Simulation is the basic tool for engineers working with delta-sigma
modulation, and this has been used to determine the stability and noise
performance of a DSM and to gain insight into LC (limit cycle) behavior.

Indeed, a simulator is a pivotal tool for determining the stability and performance

of DSMs. 

Spurious tones affiliated with DSMs are often called pattern noise, limit cycle

and idle channel tones. The first two are synonymous and mostly affiliated with dc

inputs. A limit cycle is a DS converter output sequence that is indefinitely

repeating itself [14]. The spurious tones frequently addressed in this thesis are

assumed to result from stable behavior. In [15], it was stated that a stable idle tone

has an amplitude that does not change with time, but is a complicated function of

the stimulus, as was also concluded in [13]. 

There are pitfalls in empirical observations from simulations [14]: a system

may seem fine with certain initial conditions and stimulus, but may still be

unstable. A certain amount of expertise and an extensive amount of simulation is
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typically needed. Richard Schreier’s empirical study [16] provides groundwork on

the subject. Also in [14] (ch. 4), Adams and Schreier described a Cookbook design

procedure based on empirical methods and observations. Schreier’s contribution to

the field of DS converters is immense and his DS toolbox for MATLAB [15] is a

well-known DSM design and simulation tool. The DS toolbox was often used in

this work.

The use of a multibit quantizer in a DSM improves the performance by ca.

6dB per bit increment [8] and also scrambles the input-dependency of the

quantizer noise. For single-bit DSMs, the elimination of idle channel tones

requires means of whitening the quantizer noise. These methods are dither and

chaos. 

A good example of the need for device-level linearization is in audio

applications, where the idle tones are easily picked up by the human ear. The order

of the DSM noise shaping may also reduce the probability of tones, but in [17] it

was demonstrated that even a fourth order DSM can produce spurious tones with

sinusoid and dc-input. A pseudo-random dither signal added to the quantizer input

is capable of breaking the input signal dependency with a trade-off of increasing

the in-band noise floor. 

Dither can be added either to quantizer input or the actual stimulus. Latter is

more common in the art of digital DSMs, particularly in frequency synthesizers.

Pamarti et al. [18] presented necessary and sufficient asymptotic conditions in

which input LSB-dithering leads to uniform and input-independent quantization

noise. Fitzgibbon et al. [19] proposed higher-order shaped LSB dithering for

digital DSMs, which produces spurious-free quantization noise with dc-inputs.

In [20], it was mentioned that a (pseudo-) random dither signal may impact

DSM stability as the effective quantizer gain is reduced. Another approach to

device-level linearization a 1st order DSM is to use chaotic DSM [20] i.e. DSM

with noise shaping zeroes outside of the unit-circle. 

This Chapter discusses the classical modeling approaches: exact and nonlinear

analysis in Sect. 2.2, approximate analysis in Sect. 2.3 and simulation in Sect. 2.4. 

2.2 Exact and nonlinear analysis

Low-order one-bit DS converters are less prone to stability problems but more

prone to produce limit cycles. This pattern noise is simple to demonstrate using a

first order DSM with dc input signals at various levels. For this case, at rational

fractions of the dc input signal, the entire quantization noise will be concentrated
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on a few tones. 

Candy & Benjamin studied the recurrent 1st order 1-bit DSM patterns [13] for

dc-inputs. The characteristic result is a pattern noise graph i.e. the measured values

of noise in the baseband against dc-input level. An example of such plot is shown

in Fig. 1, with the oversampling ratio (OSR) of 32. The peaks occur adjacent to

rational fractions of the dc-input. 

Fig. 1. The graph of simulated in-band rms modulation noise plotted against the level

of dc input.

Increasing the order of the DS converter tends to scramble the tendency for limit

cycles, but not perfectly; predicting tones becomes more difficult. Exact analysis

refers to exact solutions to the nonlinear difference equations modeling DSMs. 

The quantizer error can be approximated by an input-independent additive

white noise model, if the quantizer noise e has the following properties [14]:

1. Statistically independent on the input signal u

2. Uniformly distributed in [-/2,/2]

3. Stationary noise with flat power spectral density.

In exact analysis, the approach of finding the conditions under which the

quantization noise can be classified as white, is called the characteristic function

method [14]. This approach was criticized in [14] (by R. M. Gray), because it does

not fully characterize the general quantization error. 

The exact analysis of a DSM is not a popular option. In [15], it was mentioned

that the true dynamics of a second and higher order DS converter are intractable,

which often leads to using approximate and/or empirical techniques. For the

published papers on exact analysis, the generality of the results is often lost; the

formulae are rather difficult to apply in practice [7]. 
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In a larger concept, nonlinear analysis methods are namely the methods that

study the phenomena that are not amenable to approximate analysis. Farrell and

Feely [21] collated the main topics in the field of DSM nonlinear analysis:

– By spectral analysis it was shown that the assumption of white quantization

noise was incorrect [4], as there was a strong correlation between the input and

the output bit pattern. In his paper on quantization noise spectra, R. M. Gray

[4] constructed a Fourier-series model for the quantization noise while

retaining the exact nature of his analysis. For a periodic quantizer error (e.g. in

Fig. 5) the model of the quantizer error in [4] is a periodic Bessel function

containing sinusoids. 

– Geometric analysis concentrates on stability analysis with integrator spans.

The range of all possible values for the integrator outputs can be determined

and the existence and stability of limit cycle behavior can be defined.

– Nonlinear dynamics: analyzing a DSM with a state equation to identify the

conditions under which limit cycle behavior arises.

Papers on exact and nonlinear analysis usually discuss basic low-order low-pass

DSMs with dc- or single-tone inputs. Some band-pass DSM analyzes are also

published, e.g. in [22] a second-order DSM with single-tone stimulus exactly at

the DSM center frequency fs/4, where fs is the sampling frequency.

2.3 Approximate1 solutions

At the core of approximate solutions is the assumption of white quantization noise.

The assumption can be valid with a certain choice of DSM and stimuli. For low-

order DSMs and dc-inputs, the quantization noise signal can be periodic, leading

to a limit cycle with a discrete power spectrum. By increasing the order or using a

multibit quantizer, the assumption of white DSM quantizer noise is more justified,

but not necessarily guaranteed. 

In the aspect of exact analysis, the white noise approximation is not justified

mathematically (R. M. Gray in [14]). In [4], Gray concluded that white noise

approximations inaccurately predict the spectral nature of the quantizer noise

process, which is neither continuous nor white; the amplitude of the quantizer

error spectrum depends strongly on the value of the input signal. 

1.Naming convention used in [16]
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However, the analysis methods that can be adapted as general-purpose tools

are usually based on approximations. This means that the methods are mainly

suggestive, perhaps a supporting tool for verifying stability and performance.

Linear and quasi-linear analyzes are such tools. The disadvantage of linear and

quasi-linear analysis is that the validity of the white noise approximation is

system-dependent [15]. 

2.3.1 Linear analysis

In [5] (ref. [14]), Bennett developed the conditions under which the white noise

assumption is valid. Bennett’s asymptotic conditions for a quantizer model are as

follows:

1. The input is in the no-overload region

2. The number of quantizer levels is asymptotically large

3. The quantizer step is asymptotically small

4. The joint probability density function (pdf) of the quantizer input signal at

different sample times is smooth. 

Unfortunately, these conditions are typically violated in DSMs [4]. Nevertheless,

the white noise assumption can be reasonably accurate in some cases and it also

enables deriving the approximate signal to quantizer noise (SQNR) estimate. 

A linearized DSM model is an initial design tool. Linearizing a DSM topology

enables design at a transfer function level, which is pivotal in generating and

scaling the DSM coefficients. The linear performance estimate presented later in

this Section is a tool for choosing the oversampling ratio and the order of the

DSM. For multibit-design, the number of required quantizer levels can also be

estimated. 

Analyzes based on linearization usually incorporate an additive noise model,

which itself is pivotal in explaining the actual noise-shaping properties of a DSM.

The additive noise model presents the coarse quantizer as a linear gain k and a

quantizer error e. With quantizer input y and output v, the model is:

v = ky+e. (1)

The quantizer gain k is a statistical measure of the true quantizer input-output

slope. Using the additive noise model it is possible to calculate the frequency

domain noise transfer function (NTF) i.e. the transfer function from the additive

noise source to the output. For a discrete- or continuous-time NTF, it is possible to
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analyze DSM stability by sweeping the values of k in a root-locus plot [23]. The

true quantizer gain variation can be obtained from a group of simulations by using

an estimation formula presented in Subsection 2.3.2.

The linear model presented in Fig. 2 models the quantizer as an additive noise

model. This enables the DSM design in transfer function level. These functions are

realized by a certain DSM topology (hidden inside the loop filter block in Fig. 2)

with coefficients that match the transfer functions. The white noise assumption is

not invoked in an initial transfer function design, as the noise is modelled as a

separate source. The output of the loop filter in Fig. 2 is given as:

. (2)

The signal and noise transfer functions i.e. STF and NTF respectively, are defined

as:

. (3)

Fig. 2. DSM additive noise model.

In terms of signal and noise transfer functions, the loop filters in Fig. 2 are

accordingly [14]:
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. (4)

With the quantizer gain k=1 in (1) and (2) we get the DSM output as:

. (5)

Of course, the loop filter has to be realizable. A consequence of the rule of

causality (at least one unit delay in the loop) is that the first sample of the NTF’s

impulse response has to be one [16]. 

If the quantizer gain k is not defined as unity, STF and NTF will be reformed

as:

. (6)

The root locus of NTF(k,z) may reveal that the system is unstable at some values of

k. An indication of instability is when the stable input range of the quantizer is

exceeded: a quantizer becomes overloaded and the quantizer’s effective gain

drops. A typical consequence from instability is a low-frequency limit cycle (for

low-pass DSM). 

With signal and noise transfer functions, the quantizer input Y becomes:

. (7)

With (7), the unstable boundary can be stated as: the gain of the NTF can not be

too large. For instance, the famous (empirical) Lee’s rule-of-thumb [24] (ref. [15])
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states, that the maximal out-of-band gain for the NTF should be less than 2 for 1-

bit DSMs. A larger gain (more aggressive NTF) is permitted for multibit DSMs. 

In literature, many performance estimates are based on a linear model with

noise shaping of [14]:

. (8)

This is an Lth order “pure-differentiation” NTF. For (8), the maximal gain

( ) is 2L, which is too great for a one-bit DSM with L>1. To avoid

instability, the loop filter can be modified to accommodate poles DEN(z), making

the NTF into:

, (9)

where the role of DEN(z) is to constrain the maximal gain. A common choice for

DEN(z) is using Butterworth poles [16]. The primary choice of poles is made

according to the assumed maximal NTF gain i.e., the maximal out-of-band gain.

To meet the performance specifications, the zeros of the NTF may also need some

adjustment. Complex zero pairs in the signal band attenuate the in-band

modulation noise, but complicate the circuit realization. 

Fig. 2 hides the topology of the DSM. Some common loop filter topologies are

shown in Fig. 3. A topology is a flow-graph presentation of the loop filter with

input signals (stimulus and the feedback), one or more integrators (or resonators in

the case of band-pass DSM) and some gain coefficients. The integrators “INT”

may be either delaying or non-delaying, given that the system remains causal. 

The topology in Fig. 3a is the so-called error-feedback topology, commonly

used in digital DSMs e.g. for DS-DACs. The filtering is usually realized by a

simple FIR-filter: a delay would result in a first-order DSM.

In Fig. 3b and Fig. 3c we have the two common topologies that enable flexible

NTF design. The coefficients {ai,bi,ci,gi} and the number of integrators with the

chosen topology are designed according to the NTF. These basic topologies

contain a chain of integrators either with one feedback and feed-forward

summation (Fig. 3b) or with multiple feedbacks (Fig. 3c). 
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Fig. 3. DSM loop filter topologies: a) error feedback, b) feed-forward (2nd and 3rd order)

and multiple feedback (2nd and 3rd order).

The topologies in Fig. 3b and Fig. 3c also contain

– additional input paths for designing the STF and

– additional feedbacks (with gains gi) between two integrators for creating NTF

zeros.

If a DSM topology has a unity-STF, the chain of integrators (or resonators) in the

feed-forward path will only have to process shaped quantization noise. This is easy

to conclude [25] by linear analysis by investigating the DSM’s negative feedback

output i.e. the input for the integrator chain:
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(10)

If the STF is unity in (10), the first integrator input is the quantization noise E(z)

shaped by the NTF. A DSM topology with unity-STF has smaller integrator

swings. In [26] this was concluded for the topologies in Fig. 3b and Fig. 3c. 

If the basic topologies in Fig. 3b and Fig. 3c had only one input branch to the

first integrator, the STF would be referred to as the inherent signal transfer

function. The feed-forward topology Fig. 3c has an inherent signal transfer

function of [14]:

. (11)

This STF is inherently flat, i.e. close to unity. Combining (10) and (11) results to a

feedback signal of:

. (12)

It was mentioned in [27] that a feed-forward topology exhibits lower distortion

than a traditional multi-feedback topology. The integrator swings are typically

verified by rigorous simulations. The coefficients realized in the final device are

often truncated versions of the original ones. This truncation can be made

according to a convenient capacitance ratio (discrete-time DS ADC) or a low-

complexity shift and sum operation [15] (digital DSM for DS DAC). 

The white noise model applied to Fig. 2 makes is possible to estimate the

signal to quantization noise ratio (SQNR). Assuming the quantizer error equally

probable and zero-mean between quantizer steps, the quantizer error variance

becomes:

, (13)

where  is the quantizer step. Assuming uniformly distributed noise power, the 2-

sided power spectral density (PSD) is:
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. (14)

Without noise shaping, the in-band noise power for low-pass signals is calculated

as [28]:

, (15)

where fb is the signal bandwidth and OSR is the oversampling ratio. OSR is the

ratio between half the sampling frequency and fb. For a DSM, the quantizer noise

is filtered by the noise transfer function resulting into modulation noise nq. In the

frequency domain, the modulation noise is:

Nq(f) = NTF(f)·E(f). (16)

The power spectral density of the modulation noise Sq(f) can be presented as:

, (17)

and the in-band shaped noise power becomes:

. (18)

The shaped in-band noise power is often approximated by using the pure-

differentiation NTF presented in (8) e.g. in [15] and [28]:

. (19)

The well-known SQNR estimate based on pure-differentiation NTF is presented

as:
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, (20)

where B is the quantizer output wordlength in bits. In a more recent publication

(2010), Løkken et al. [29] presented an SQNR estimate that accommodates the

user-defined NTF:

, (21)

where A is the normalized amplitude of the single-tone stimulus and N is the

number of quantizer steps. 

The white noise approximation is always indicative. The usefulness of the

SQNR estimate is in comparing the simulation results with the predicted white

noise model: it is helpful to have a performance reference. 

2.3.2 Describing functions

Generally, the quantization noise e is a deterministic function of the input signal

[4]. Compared to white noise model, a more accurate quantizer model can be

obtained using describing functions. This is the quasi-linear approach which

approximates the input signal dependency.

The describing function is an approximation method analyzing and predicting

nonlinear behavior. For a specific stimulus (e.g. dc or single-tone) the linear gain k

is chosen to minimize the mean squared error (MSE) between the linear

approximation and the true response. The quasi-linear approach can be used to

predict the occurrence of limit cycles and stability boundaries and it serves as a

useful design guide. 

For DSMs, the quasi-linear model contains both signal and quantizer noise

contributions as does the describing function method. In a classic publication on

quasi-linear technique for 1-bit DS converters by Ardalan & Paulos [6], the signal

dependency is affiliated with the quantizer gain by nonlinear (describing)

functions of the DS converter input. The modulator is split into two linear systems

for both signal and noise, assuming that the noise portion has a Gaussian
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probability density function. The model provides an accurate estimate at the

maximum stable input and maximal SQNR, but is restricted to 1-bit converters and

does not predict the spurious tone frequencies. 

Ardalan & Paulos [6] proposed an analysis based on modeling the nonlinear

quantizer with a linearized gain obtained by minimizing a mean-square-error

criterion. This method was used in [6] to derive the regions of stability for higher

order modulators, including both parameter and signal dependencies. The

linearized gain (i.e. the quantizer gain) for the noise is [6]:

, (22)

where cov and var are the covariance and variance functions, respectively. For

one-bit DSMs, the quantizer output v(n) is the sign of the quantizer input.

A recent (2010) publication by Altinok et al. [30] derived stability boundaries

with a modified describing function for two-tone stimuli and very high-order 1-bit

band-pass DSMs. In their conclusions Altinok et al. discussed of the unfortunate

fact that the quantization noise is not completely Gaussian: for higher DSM orders,

the approximation holds better. 

If the number of quantizer levels is larger that two, the quantization noise can

often be assumed to be white, given that the stimulus 

– exceeds more than two quantizer levels and 

– is not slowly varying.

In [7], Borkowski deduced that for the classical model of quantization (more

generally, approximate analysis), slowly varying inputs are not well-suited. On the

other hand, a spurious response to a slow input is more observable in simulations,

which is utilized in the quantization noise model presented in Ch. 6. 

2.4 Simulation

A reasonable procedure with simulation as a pivotal tool also requires the use of

linear approximate tools and some rules-of-thumb. For instance, the quantizer gain

k
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estimate in (22) can be obtained from simulations. With a group of stimuli (dc,

single-tone etc.), a reasonable span for k can be used for the root-locus analysis of

the noise transfer function. 

Empirical rule-of-thumb criteria are a practical tool based on reflecting

simulation results with the noise transfer function obtained from the linearized

model. None of them are adequate as such [16] (suggestive tool), but simulations

are the only reliable method. The most famous rule-of-thumb is Lee’s criterion for

the maximal allowable out-of-band gain for 1-bit DSMs [24]. 

Verifying a DSM architecture requires linear analysis followed by simulations.

For instance, finding stability bounds require long simulations [14] with various

stimuli. Instability manifests itself as long consecutive sets of the overloaded value

of the quantizer. This may occur after a long simulation and may also occur with a

particular stimulus. Stability should be verified at least with stimuli at fc (dc-

stability in low-pass DSMs) and, to author’s experience, single-tones with

frequencies across the signal band. Moreover, a basic SQNR versus amplitude

simulations should be repeated with a group of single-tone frequencies throughout

the band-of-interest.

Especially for 1-bit DSMs, the limited out-of-band gain naturally restricts the

noise shaping function. Using multibit DSMs enables a more aggressive noise

transfer function i.e. the maximal gain can be increased. For a very aggressive

NTF, the SQNR performance may be maximized, but the stable input level can be

quite restricted. A DSM with an aggressive NTF is also prone to unexpected

behavior that may be found by simulation. A typical NTF usually has the single-

tone stable input level limit at 60-80% of the full scale input signal [14]. 

The fast Fourier transform (FFT) analysis of quantizer noise that contains

short-term phenomena is problematic. A long-term windowed FFT can be used to

evaluate performance, but it tends to average out some important phenomena than

can be non-observable in the spectrum yet can be e.g. audible. This challenges

simulation-based empirical observations because the observation of a tone may

require short-term estimates of the autocorrelation or power spectral density of the

DSM output [14]. The published papers on DSM analysis and dither-like

techniques often contain observation-based assumptions on the magnitudes and

frequencies of the spurious tone. These assumptions are further discussed in Ch. 6.
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2.4.1 Case study - an arising limit cycle

He et al. [31] studied a double-loop (second-order multiple feedback) DSM

topology and concluded conditions under which the quantizer noise can be

considered as white. Unfortunately, their result cannot be extended or used of any

other topology. Here, it will be demonstrated how a simulator may reveal

unexpected behavior.

In Fig. 4, we have a DSM output spectrum split in four consecutive parts. The

DSM is of order 2 with four quantizer levels and a dc-input of 5FS/16, where FS is

the full scale input amplitude. The NTF was optimized for an aggressive NTF with

four quantizer levels and OSR of 16. This optimization was performed by the DS

toolbox [15] by using the synthesis procedure developed by Kenney & Carley

[32].

At the beginning of the simulation (Fig. 4a and Fig. 4b) the modulation noise

looks quite clean, except for a spike at 0.34fs. After 16384 samples, the limit cycle

begins to appear in the modulation noise spectrum (Fig. 4c) and the spectrum turns

completely discrete after 24576 samples (Fig. 4d). As can be seen in Fig. 4, the

white noise assumption can be quite volatile. 
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Fig. 4. A 2nd order DSM dc-response power spectrum divided into four parts: a)

samples [1...8192], a) samples [8193...16384], a) samples [16384...24576], a) samples

[24577...32768].

There are four noteworthy points on how prone this particular DSM is to spurious

tones:

1. The initial tone at 0.34fs is the strongest tone persistent throughout the

simulation. All tone frequencies can be predicted, but the sudden change in

Fig. 4c is hardly predictable. Predicting the tone frequency (prior art and the

author’s contribution) is discussed in Ch. 6.

2. The NTF in this example is aggressive, the input signal level is not allowed to

be more than 0.44FS. Moreover, NTF aggressiveness can make the DSM

more persistent to dither [33]. 

3. The NTF zeros are outside of center frequency. This makes the DSM more

prone to limit cycle as was also concluded in [33].
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4. The nature of the quantizer noise power spectrum depends on NTF zeros in an

obscure manner. Integer division dc-inputs (rational dc inputs with respect to

full scale) are, however, more likely to produce tonal modulation noise [34].

2.4.2 Case study - periodic quantizer error

In [34], first order 1-bit DSM responses for dc-inputs were studied in the time-

domain. Here, the periodicity of the quantizer error depended on whether the dc-

input was rational with respect to the quantizer levels of 1. Regardless of the

rational nature of the input, however, a dc-stimulus always results in discrete

spectrum for 1st order DSM. The periodic sequences are the limit cycles. The

length of a limit cycle can be determined analytically in the case of digital DSMs

with dc inputs [35]. In addition to the stimulus, the limit cycle length depends on

the initial conditions of the integrators [14] (chapter 4 by S.R. Norsworthy) as

well. 

In Fig. 5, we have two quantizer error graphs in the time-domain using two

different quantizers: the mid-rise and the mid-tread quantizer. For the mid-rise

quantizer, the quantizer steps are placed at {..., -3, -1, 1, 3, ...}and for the mid-tread

quantizer: {..., -2, 0, 2, ...}. Here, the quantizer step  is fixed to 2 and the

modulator order is 1. In Fig. 5, the dc-input and the amplitude are small compared

with : 3/516. Small rational dc-input leads to a quantizer error with a long

period.

The average of the DSM output data is the same as the average of the stimulus.

If the small input signal is in the middle of two quantizer levels, the output varies

frequently between the two levels, e.g. ±1. As the sign of the quantizer input is fed

back negatively, the quantizer error in Fig. 5a has to have fluctuation close to fs/2.

For the sinusoidal case with the mid-rise quantizer in Fig. 5b, the tones reside near

dc and fs/2 as well, but they vary as a function of time.

The point in using two different quantizer types is the following: if the small

input is very near the quantizer level, most of the output samples are concentrated

at the same level, and few at the adjacent level. The quantizer error for a mid-tread

quantizer in Fig. 5a lead to a triangular quantizer error for the mid-tread quantizer

in Fig. 5a and its power spectrum would have very low-frequency components.

For Fig. 5b, the quantizer error is sinusoidal for the mid-tread quantizer resulting

in just one low-frequency tone. 
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In Fig. 5, the quantizer error graphs for mid-rise and mid-tread quantizer

would be swapped if the stimulus were offset by half the quantizer step (given that

another quantizer level exists).

Fig. 5. Quantizer error response for 1st order DSM with mid-tread and mid-rise

quantizer: a) dc-input of 3/516 and b) single-tone input with the amplitude of 3/516.

2.5 Summary

The literature review in this Chapter reveals a need for a DSM model which would

allow us to better understand and thus combat the unwanted tones. DSM

nonlinearity prohibits the exact analysis for higher order systems, the emphasis is

typically is on the approximate and simulation-based analyzes. 

The problem of input-dependent quantization noise is heavily alleviated in

multi-bit DSMs, but the tonality is still dependent on the stimulus type; a multibit

DSM can also have a discrete modulation noise spectrum. 

The problem of empiric and linear analysis are also present in linearizing the

D/A converter in the case of multi-bit DSMs, and this will be discussed in the next

chapter.
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3 Multibit DAC mismatch error

3.1 Introduction

By incrementing the DS converter output word length by one bit, we gain more

resolution [8]. Furthermore, more than two quantizer level translates into more

scrambled patterns in the DS loop: the correlation between the signal and quantizer

noise becomes less clear. In fact, the quantizer gain can usually be assumed unity

in the case of multibit DSMs, if all quantizer levels are used. The deviation of

quantizer gain k from its nominal value of 1 is small: at most /|2·y(n)| [15], where

 is the least significant bit (LSB) voltage of the quantizer (the quantizer step) and

y is the quantizer input.

As multibit DS converters promise fewer stability problems and better

performance, another problem emerges: the D/A converter is no longer linear. For

a one-bit DS converter, the DAC is inherently linear as there are just two points in

the DAC input-output slope. For a multibit DS ADC or DAC, the static DAC

mismatch is not noise-shaped like the quantization noise is. This can be depicted in

the linearized scenario for multibit DS ADC and DAC shown in Fig. 6, where eq

and emm are the additive noise models of quantization and mismatch error. 

For DS ADCs (Fig. 6a), the DAC is internal; the mismatch error is injected to

the feedback path of the DSM loop. The transfer function from emm to the output v

is basically the same as the inherent signal transfer function. This filtering will not

cancel the in-band mismatch noise. In case of a DS DAC (Fig. 6b), the mismatch

noise will also remain unshaped, as the DAC is at the output of the digital DS

loop’s output. 



36

Fig. 6. Additive noise model for quantizer noise and mismatch noise: a) DS ADC and b)

DS DAC.

For both cases in Fig. 6, there will be in-band spurious tones caused by the DAC

mismatch noise; the distortion mechanism remains the same. DAC induced out-of-

band tones will be filtered out by the post-filtering (decimation filter or an analog

filter), but the in-band DAC-mismatch related noise will not be attenuated.

The DAC linearity is a measure of how accurately the levels in the internal

DAC are placed. The ultimate linearity of the DS DAC or DS ADC is no better

than the linearity of the DAC [14]. 

The DAC elements are most commonly realized with current-steering or

switched capacitor architectures. Errors either in nominal currents or capacitor

dimensions are the sources of unit-DAC mismatches. These errors are typically

assumed as static and random. [36]

For a DAC with a resolution of B bits, the LSB voltage can be calculated as:

, (23)

where VFS is the full-scale output voltage. Therefore, for a B bit DAC, the DAC

output levels cannot deviate from their ideal values by more than half of VLSB. The

linearity of the DAC should be at least the same as the linearity of the DSM. The

DAC linearity, i.e. its resolution in bits, is often described by the effective number

of bits, ENOB (for a full scale sinusoid):
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, (24)

where SNDR is the signal to noise and distortion power ratio over the frequency

band of interest (dB). For D/A converters used in DS converters, the DAC word

size (the actual number of bits) is typically a lot smaller than the ENOB and the

linearity demand is not usually achievable without DAC linearization [14].

The organization of this Chapter is as follows. Section 3.2 discusses the

problem of static DAC mismatch noise in DSMs and discusses two main

approaches on how to minimize this noise. The first one, Digital error correction,

is briefly discussed in Sect. 3.3. The focus, however, is on presenting various DEM

methods: Sect. 3.4 covers an overview of digital encoders that realize different

DEM approaches. 

3.2 Static DAC mismatch noise

Mismatch errors are considered to be static errors. The unit DAC element selection

can be typecast as in [37] either as static selection or dynamic selection. Dynamic

(element) selection refers to selecting elements as a function of the present code

and of memory of the previous conversions (e.g. an algorithm). In this Section,

static selection is discussed; dynamic selection will be discussed in Sect. 3.4.

For a B-bit DS converter, the number of quantizer steps N is

. (25)

The number of quantizer levels is  i.e. N+1. The focus in this thesis is on

thermometer-coded DACs, that contain N nominally equal unit-elements that are

cumulated according to the code: the analog DAC output is the sum of nominally

equal weights. Another approach would be a binary-weighted DAC, which

contains one resistor or current source for each bit of the DAC connected to a

summing point.

Assuming unity weights, the true weight of a DAC element i is 

, (26)

ENOB
SNDR dB  1,76–

6,02
--------------------------------------------bits=

N 2
B

1–=

2B

wi 1 i+= i 1  N  =
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where i is the differential nonlinearity (DNL) error. Given that the DAC input

range is from 0 to N, the output of the DAC vd is a sum of weights (with the

notations of Fig. 6):

. (27)

The deviation from a straight DAC input-output graph is specified by the integral

nonlinearity (INL) error, i.e. the sum of DNL errors. Therefore, the DAC output vd

is the sum of the digital code v and the corresponding INL error:

. (28)

In a well-designed system, the DAC noise INL(n) is a zero-mean sequence [38]. To

achieve good matching requires careful analog layout techniques, such as the

common centroid method [41]. As (27) suggests, the DAC noise is correlated with

the input: the DAC input contains a clear deterministic element. For instance, if the

DAC input is a pure sinusoid with frequency f, we can expect mismatch-related

harmonics at 2f, 3f, etc. 

Realizing an N-level DAC based on unit-DAC elements requires encoding the

binary DAC input in thermometer code, see Fig. 7. The digital encoder in Fig. 7

contains the thermometer encoder and can also can contain logic for dynamic

element selection.

vd n 
wi

i 1=

v n 

 if i > 0

0  if v(n) = 0





=

vd n  v n  INL n +=



39

Fig. 7. The block diagram of an N-level DAC.

The true shape of the DNL error is not usually known, but the layout technology

sets the limits of the expected mismatch quantity. A common way to grade the

mismatch error is to use standard deviation [41]:

, (29)

where E{} is the expected value of all DNL mismatches in vector , whose length

is N. With static selection, to achieve a high-resolution internal DAC requires

excellent matching. Unfortunately, the integral nonlinearity (INL) that yields a

resolution of more than 12 bits [15] cannot be easily reached without DAC

element trimming. To cancel the mismatch noise in the presence of imprecise

component matching, the DAC mismatch noise can be attenuated with digital error

correction or spectrally shaped with dynamic element matching (DEM). 

For a Delta-Sigma ADC, the limiting factor for word size of the feedback-

DAC is the internal A/D converter. For word sizes larger than 5-bits, the number of

comparators (>25) may result in unacceptable chip area and power consumption.

For DS DAC, the bottleneck is the complexity of the digital circuitry needed for

DAC linearization. The DAC complexity can be alleviated by using
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– DAC segmentation, which alleviates the size limitation by allocating different

DAC weights: the hardware area will be significantly lower in case of the

segmented DAC [43].

– Two-step (or multistep) architecture [44], which divides the A/D-conversion

into a multibit DS-modulator to two time steps. The resulting feedback from

ADC stages has a word length of B1+B2 bits, but the complexity of the ADC

stages is proportional only to B1 or B2.

– The encoder complexity can alleviated by spectral DAC error shaping only

partially within the full-scale range [42].

3.3 Digital error correction

Unlike DEM methods, digital error correction cancels the mismatch noise instead

of shaping the spectrum. In the concept of digital error correction, the element

selection remains static. The correction is based on measuring the mismatches by

the so-called calibration setup.The foreground calibration is a linearization method

introduced in the late 80’s [9]. This approach relies on first measuring the feedback

DAC’s INL errors after which the multibit  ADC can operate. The term

“foreground” [8] refers to a separate mode of operation for digital error

measurement i.e. calibration. The background error correction scheme is capable

of measuring the DAC errors while the multibit DSM is in operation. 

During calibration, the integral nonlinearity (INL) errors are measured by

using a single-bit configuration followed by decimation. In the foreground

approach, the calibration mode configures the convertor as a single-bit DS ADC,

which is inherently insensitive to DAC errors at DC [9]. A digital counter

generates all the possible input codes for the DAC. 

General correction schemes for a DS ADC and DAC are shown in Fig. 8a and

Fig. 8b, respectively. The equivalence in the two models is that for the digital error

correction to work, the feedback data in DSM loop and the DSM output should be

matched i.e. (nearly) identical. 

A digital correction block i.e. the lookup-table (LUT) compensates the

unwanted nonlinearity of the N-bit DAC. The data stored in LUT, , is an

accurate digital equivalent of the DAC integral nonlinearity errors . Since

the DAC INL for a specific digital input value can be measured, the error signal

can be regenerated by using the modulator output as an address to the lookup-

table, where all error voltages are stored in digital form. In each clock period, the

input word to the LUT selects a B2-bit word (B2 >> B1) at the RAM output [14].

INLˆ n 
INL n 
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Fig. 8. Digital error correction for a) DS ADC and b) DS DAC.

For a current-switching DAC, background error correction was introduced in 1988

[45]. Here, a self-calibration technique was used to realize an array of current

sources which are equal to each other within 0.02 percent. The calibration of a

MOS (metal–oxide–semiconductor) current source is accomplished by biasing it

with a reference current. In [46], the static linearity of a current-mode DAC was

obtained by background calibration using an extra DAC element and a 1-bit Delta-

Sigma A/D converter. 
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The idea of background calibration for a single-stage DS ADC is shown in

Fig. 9. The idea is to calibrate feedback DAC unit elements successively using a

parallel 1-bit shadow DSM. There is one additional unit element in this rotational

calibration i.e., while one element is under INL error measurement the others are

used by the multibit DS converter.

Fig. 9. The block diagram of the background error correction.

The element rotation is switched off after calibration, after which the error

correction is equivalent to that of the foreground correction. Since there is only

one additional unit DAC element the correction speed is nearly the same as for

foreground correction. The time required for the calibration (in both correction

methods) depends on the required resolution and hence on the order of calibration

DSM and the following decimator. The main difference is that the one-bit

calibration DSM is now a separate device since the correction is done in parallel. If

needed, background correction can also be restarted after initial correction. 

In both foreground and background approaches, the lookup-table output may

be needed to be filtered (equalized) according to the transfer function from DAC

output to DS ADC output [39,40]. This transfer function is notated as ETF in [15]

and it is the transfer function from the injected mismatch noise to the DSM output

(see Fig. 6). The need for the ETF filtering is dependent on the type of DSM

topology. A feed-forward DSM topology presented in Fig. 3b has inherently

wideband signal transfer function. As a consequence, the inherent ETF is also

wideband and the filtering is not needed in the feed-forward topology. 
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A more complex background calibration scheme for a multistage noise

shaping (MASH) [47-49] DS - ADC was presented by Silva et al. in [39]. This

correction scheme is based on a pseudo-random thermometer output code

scrambling and a correlation algorithm. This approach also contains ETF filtering.

3.4 Dynamic element matching

Dynamic matching of unit-DAC elements refers to scrambling the usage of DAC

elements so that the signal-dependent deterministic mismatch noise is transformed

into a wide-band noise. A basic feature in all dynamic element matching (DEM)

methods is that they do not reduce the error - instead the error is moved from the

signal band. DEM is a common family name for DAC cancelation methods that

average the DAC-induced noise out of the signal band with or without noise

shaping. The latter refers to the randomization of the DAC element usage. The

majority of the reported DEM methods is however affiliated with the spectral

shaping of DAC mismatch noise. 

In Fig. 10, we have a DAC input-output scatter plot, where the DAC unit

elements are scrambled randomly. Each curve for different unit element placing is

non-linear, but the average DAC input transfer curve is close to linear. Indeed, by

simply randomizing the DAC element usage, the distortion induced by the DAC

mismatch can be averaged into a wide-band noise. 

Fig. 10. DAC input-output scatter graph for element scrambling DAC.

To realize a noise shaping DEM, there are many choices with their own trade-offs

between performance and complexity. For instance, the most common DEM
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method called data weighted averaging (DWA) [11],[12], has the least

uncomplicated realization. The problem is that DWA does not remove the input

data dependency: the mismatch noise is still prone to spurious tones. The order of

DEM shaping can be increased, but the complexity trade-off is more expensive in

the case of Delta-Sigma modulators. 

Behavioral similarities between certain mismatch shaping DEMs and a DSM

are quite apparent. Probably the most obvious connection is the context of an

arbitrary noise shaping function in [55], which will be discussed in the Sect 3.4.1. 

Similarly as for DSM, approximate solution can be applied to DEM. For

instance, Nys & Henderson [73] presented a resolution approximation for DWA

as:

, (30)

where  is the standard deviation of the DNL errors and N is the number of unit

DACs. Løkken et al. [29] estimated the signal to mismatch noise ratio (SMNR) for

any DEM method as:

, (31)

where A is the normalized amplitude and H is the mismatch spectral shaping

function of the DEM algorithm. Andersson et al. [56] condensed a general goal of

Dynamic element matching (DEM): 

The dynamic methods can be used during operation and are continuously
compensating for matching errors by manipulating the input signal or the
circuit elements using digital circuitry. DEM modifies the distortion terms,
hence signal-dependent errors, to become signal-independent. Therefore, by
using DEM we try to maximize the SFDR (spurious-free dynamic range).
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Unfortunately DEM methods are not perfect and can be prone to spurious tones.

For instance, the DAC-related distortion in data weighted averaging is signal-

dependent and there are many approaches on how to modify DWA in order to

cancel spurious tones (and thus maximize SFDR). Therefore, approximating the

mismatch noise with signal independent noise is merely indicative for DEM

methods (as is for DSMs). 

This can be illustrated by simulating a DSM with a DWA-DAC, whose SFDR

performance is shown Fig. 11. Here, the stimulus is a single-tone with a fixed

amplitude and frequency, only the standard deviation of the DNL error  is swept

with four different DNL error shapes. In Fig. 11 there are four SFDR graphs for

four different shapes of DNL errors with identical . Here, the DSM is a 3-bit

second order with OSR of 32 and with DWA-DAC. The input single-tone

amplitude is small in this example, ca 0.02 times the full-scale amplitude. It is

apparent, that for a certain value of , the linearity of the DWA-DAC noise will

be below the linearity of the DSM. This breaking point is dependent on the shape

of the DNL error [50] as can be seen in Fig. 11. This cannot be predicted by linear

approximation. 

Fig. 11. SFDR vs. the DNL rms-error with four shapes of DNL errors.

For the record, the DNL error shapes used in simulation results in Fig. 11 were not

generated randomly. Instead, the shapes were generated by using mathematically

defined (hence repeatable) shapes. Shapes 1 to 3 are purely sinusoidal shapes with
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1 to 3 periods, respectively (see Paper III and Sect. 6.4). Shape 4 is a third order

polynomial (see Paper II and Sect. 5.2).

3.4.1 Main classes of DEM

In [51], spectral shaping DEM methods were divided into five main classes. These

include data weighted averaging (DWA) [11], [12], individual level averaging

(ILA) [52], tree structured [53], butterfly shuffler [54] and vector based DEM [55].

A comparison of each DEM-DACs was made in [51] by their complexity,

propagation delay, spurious tones and the order of shaping. 

Data weighted averaging

The DWA algorithm and its spectral shaping property are covered in more detail in

Chapter 4 (Paper I). In Data weighted averaging, all DAC elements are used

equally often by choosing the DAC elements in a rotational (cyclical) manner. The

error average is therefore zeroed as soon as all elements are used. The

unidirectional way of choosing the elements translates to high-pass spectral

shaping with a transfer function of:

. (32)

As the DAC elements are picked according to the input signal, DWA is prone to

unwanted spurious tones. A classic publication on DWA by Baird & Fiez [12]

summarizes the spurious tone problem of DWA by the following: “Each bit-

increase doubles the elements to cycle through before errors average to zero and

thus, the DWA algorithm cannot move distortion as high in frequency”. This limits

the number of DAC elements for low oversampling ratios [57], because of the

increased in-band tones. The spurious tones for DWA are further discussed in

Chapters 5 and 6. 

The majority of DWA’s tone cancelation methods are dither-like solutions with

slight trade-off between reduced spur-levels and in-band noise (e.g. pseudo-DWA

[25] and partitioned DWA [58]). A DWA variant called rotated DWA [59] is

particularly interesting in the light of the tone behavior model presented in Ch. 6.

Rotational DWA contains normal DWA element swapping algorithm and

additionally switches between the DAC usage permutations. Section 6.5 suggests

finding only one favorable permutation in DWA.

H z  1 z 1––=
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Chapter 4 (Paper I) integrates the ideas behind a handful of DWA variations

that alter the spectral shaping function (32), such as Bi-DWA [60], N-path

DWA[61] and 1+z-2 DWA [62]. This generalization also expands the existing

DWA tone cancelation methods for band-pass DSMs.

The reported results for DWA variants are typically quite empirical i.e. based

on simulation. Unfortunately, the performance result is dependent on the stimulus

as well as the shape of the mismatch. Therefore there is a dire need for a

systematic approach to simulation-based DEM-performance reporting. The major

issue is in reliability and repeatability and these will be discussed in Ch. 5.

Individual level averaging

The basic concept of individual level averaging (ILA) [52] is that each unit DAC

element is used with equal probability for each input code. The algorithm has two

variants, but the principle remains the same. The error averaging time is longer

than in DWA, which translates to higher in-band noise. This also results in less

input signal dependency, i.e. fewer spurious tones will occur at the signal band. In

[63], it was concluded that the mismatch noise power spectral density has in-band

shaping of 7dB/dec for ILA and 9db/dec for DWA. 

For ILA, the implementation complexity increases rapidly as a function of

DAC resolution (compared with DWA) [64]. Interestingly, in [64] it was also

mentioned that there are compromises between DWA and ILA that strive for a less

spur-prone DWA with lower complexity. 

Butterfly shuffler

To randomize N possible output elements in a time-varying fashion, the number of

possible permutations is N! [14]. For more than 3-bit DACs, the number of

possible connections is so large that it may be necessary to select a subset of

connections in order to conserve die area [14]. A plausible solution would be to

use a butterfly randomizer [65] (ref. [14]), i.e. a series of butterfly networks (such

as those used in the FFT architecture) coupling the input to the outputs. 

The minimal number of switching stages (that connects any input to the

output) is the same as the number of bits B in the internal DAC. More stages

results for more possible connections. The control sequences for butterfly switches

can be produced by a pseudo-random sequence generator. 
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A butterfly network based mismatch shaping swapper was first introduced by

Adams and Kwan in [54]. The butterfly shuffler approach can also be used in

higher order DEM shaping [66]. The idea is as simple as turning the logic around

the filtering function into a truth-table realized as a butterfly network. 

The complexity, however, cannot be circumvented in the butterfly approach.

The size of the truth table is 2B, where B is the required word-size of the filtered

output. In [66], a second order mismatch shaping function 1+z-2 for band-pass

DSMs was implemented. 

The paper on butterfly shufflers [66] by Haiqing & Schreier presents a model

of the structure which shows how a butterfly shuffler can be endowed with

“arbitrary” noise-shaping characteristics. A 2nd-order band-pass shuffler was

given as an example. Simulations in [66] showed that butterfly shufflers do not

reach the performance of the vector-based DEM (see Page 49), but tend to produce

smaller harmonics by limiting the element usage patterns.

Tree structure and segmentation

The first-order tree structure DAC configuration has similar complexity to the

butterfly network, but offers the advantage that it can be used in conjunction with a

simple dithering technique that suppresses spurious tones [53]. A B-bit digital

encoder consists of B layers of digital devices called switching blocks, each of

which splits its input data into two output signals whose sum equals the input. A

switching block is driven by a switching sequence, whose properties dictate the

possible shaping scheme. A single switching sequence generator resembles a

DSM, whose order is the same as the order of shaping.

Second and higher order shaping is always a much more complex solution

than the basic first-order shaping DEM. It was mentioned in [53] that a tree-

structured DEM can be the least complicated approach in realizing a 2nd order

mismatch shaping algorithm. 

The tree structure approach with spectral shaping can also incorporate DAC

segmentation [67]. Segmentation is a property that truly alleviates the often

“prohibitively large” [68] DAC bank using unit-DACs. Fishov et al. [68]

constructed a first-order tree-structure mismatch noise shaper for a segmented

DAC. As in [53], a dithering scheme was proposed as a remedy for spurious tones

in [68].



49

Vector-based DEM

The algorithm behind arbitrary high order DAC mismatch shaping has existed

since 1996 [69]. The downside of high-order DEM is the required hardware

complexity: it would be preferable to have a DEM scheme that has a minimum

amount of hardware and parallel signal processing. 

If mismatch noise is dominant, a need to consider high-order shaping arises.

This is obvious in the case of low OSR and high order DSMs. In this case, digital

error correction instead of spectral shaping can be a potential solution. A second-

order DWA, i.e. 2DWA [69] is complicated and somewhat impractical as it needs

to operate twice as fast as the input signal rate. Partial second-order DWA

(P2DWA) [70] circumvents the speed problem with a trade-off having slightly

reduced performance, but it seems to involve a lot of parallel computing. The

generic vector-based DEM was first described by Schreier & Zhang in [55].

A general vector-based DEM [55] can implement any shaping function. For a

general Lth order mismatch shaper described in [55], the digital encoder is actually

a Delta-Sigma modulator topology. The topology of the general mismatch shaper

is based on an error feedback DSM structure shown in Fig. 3a. Such a structure is a

common DSM topology choice for the digital loop filter of a DS DAC. 

In Fig. 12, the mismatch noise shaping transfer function is denoted as H. The

output of the vector quantizer sv is a binary vector, with the number of ones

corresponding to the thermometer encoded version of the input v[n], i.e. sv(n) =

v(n). The bold lines in Fig. 12 indicate N parallel data paths i.e. a vector. The

address of ones and zeros in sv are determined by another vector sy(n), which

contains integer weights denoting the desired usage of an element i.e. priority

weight. This requires the use of a sorting algorithm. The desired elements are

chosen according to the input data v by the vector quantizer (VQ), resulting in the

output vector sv. The selection error se in Fig. 12 is filtered, normalized and fed

back to the vector quantizer. The subtraction by the minimum value of filtered data

minimizes the internal word size of the vectorized loop.

By linear analysis, the DAC output vd, defined by input v and the mismatch

shaping transfer function H, becomes [55]:

Vd(z) = V(z) + H(z)(SE(z)·). (33)

Equation (33) illustrates the mismatch error shaping property. In discrete-time

domain, the DAC output is extracted from the vector quantizer output as
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. (34)

Fig. 12. Vector-based DEM.

The vector-based DEM in Fig. 12 has the following undesired properties:

– N parallel signals within a loop, where N = 2B-1

– internal word-sizes that are dependent on the filtering function H

– the system can also be unstable.

The simplest form of vectorized DEM realizes a spectral shaping function H(z) of

. Examining the element selection vector sv reveals a cyclical element

selection, a behavior which is characteristic in DWA. This also confirms a clear

connection between Delta-Sigma modulation and DWA, which will be further

discussed in Ch. 6.

3.5 Summary

This Chapter reviewed the main approaches to cancelling DAC mismatch related

in-band tones. Digital error correction aims to cancel the mismatch noise and

DEM methods convert the narrow-band mismatch noise into wideband noise. 

From the practical implementation point-of-view, the trade-off between

complexity and performance is crucial in Dynamic element matching. This is the

reason why first-order shaping methods with tone cancelation techniques of some

kind are widely published, especially DWA. 

The next Chapter discusses DWA in more detail, aiming to generalize the

DWA algorithm into a more general first-order mismatch noise shaper. Chapter 5
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strives to find a proper solution to this behavioral simulation based problem,

namely with the theme of qualifying a DWA-variation or an arbitrary DEM

method. Comparison may be quite straightforward in a the sense of hardware, but

the actual performance qualification may be a surprisingly complicated task. 
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4 Generalized Data Weighted Averaging 
Shaping Algorithm

4.1 Introduction

In this Chapter, the data weighted averaging (DWA) algorithm [11,12] is presented

in a generalized form (Paper I). In its basic form, the DWA algorithm realizes a

first-order high-pass spectral shaping function of the form:

. (35)

There are publications that have extended the basic high-pass shaping function

(35) into band-stop form [60-62]. An extra notch in the shaping function [60,61]

decorrelates the error from the input signal, resulting in the cancelation of spurious

tones but with a trade-off of an increased mismatch noise floor. A DWA-DAC may

also have an extra unit element [74], which can reduce the in-band spurious tones

at certain amplitudes. A generalized DWA algorithm described in Paper I

integrates the aforementioned DWA versions into one elegantly simple scheme,

that realizes first-order shaping with a mismatch noise shaping transfer function of

the form:

. (36)

The advantage of having a DWA algorithm that realizes the shaping function (36)

is the possibility to study the spurious tones of different DWA shaping functions.

For instance, the algorithm makes it easy to test how different shaping functions

respond to a particular DWA tone-canceling modification.

To define DWA as expanded in (36) requires some justification. What makes a

certain DEM method DWA is that the basic construction contains cyclical element

selection realized by a modulo-N accumulator, a thermometer encoder and a barrel

shifter. In Fig. 13, the implementation scheme for the generalized DWA DAC is

shown. Very little is changed in comparison with a traditional high-pass DWA

DAC implementation (e.g. the one presented  in [38]). 

Further justification on the generalization is the constancy of spurious tone

behavior when changing from low-pass to band-pass DWA. This will be discussed

HDWA1
z  1 z 1––=

HDWA z  1 z D–
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in Sect. 4.5 and utilized in the tone prediction model presented in Ch. 6. The new

blocks brought by the generalization in Fig. 13 are:

– selection of direction control sequence seq

– the multiplier (here: polarity-multiplier) 

– delay term z-D.

In Fig. 13, [I] the delayed accumulator output ptr and the control sequence seq

dictate the amount and direction of the shift in the barrel-shifter, respectively. 

Fig. 13. The implementation scheme for general DWA algorithm. Revised from [I].

©[2010] IEEE.

4.2 Generalized behavioral model

For a DWA-DAC with N unit-DACs, the number of levels from the quantizer

output is N+1. Here, the quantizer output is assumed to be in unsigned integer

format. The number of selected elements is from zero to N elements. Modulo-N

arithmetic inside the DWA algorithm limits the data range in from 0 to N-1. 

The z-domain representation of a basic DWA shaping function (35) is

explained in many publications, e.g. in [64]. Typically the explanation has been

constructed using a pointer function ptr(n) which at sample n, points to the DAC

unit element from which the DAC selection may proceed. In this work, we are

using a different strategy: a selection vector. A selection vector (n) is an

address vector that dictates the order in which the DAC elements are chosen. The

seq

+x z-D

delay

Thermometer
Encoder

Barrel
shifter

1-bit DAC

1-bit DAC

1-bit DAC

+

ptr

shift

DAC
out

B 2B
dir

SEL
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selection order is prioritized i.e. the first index in (n) has the highest priority

and the last one the lowest. The connection to more traditional pointer notation

ptr(n) is 

, where (37)

. (38)

In the aspect of element selection, the behavioral difference between the plus- and

minus-signs in (36) can be depicted by pointer diagrams. Here, the delay term D is

unity. The difference is in the direction of the unit DAC selection pointer. We

begin with a pointer diagram of the high-pass shaping function of (35), as shown

in Fig. 14a: the vertical numbers denote a zero-based index of 7 unit-DAC

elements. Consecutive signal input values v (five samples in all) are ’1’, ’4’, ’0’,

’2’ and ’7’. The beginning of the arrow denotes the actual selection. For the second

sample in Fig. 14a, the last index of the previous sample is 0 and the input signal is

’4’, so the current DAC output is the sum of unit-DACs of indices 1 to 4. The

corresponding selection vector  can be seen in Fig. 14b, where framed areas

highlight the index of chosen unit element.

A pointer behavior for function 1+z-1 is shown in Fig. 14c. The signal values v

are the same ’1’, ’4’, ’0’, ’2’ and ’7’. The element selection pointer changes its

direction at every sample instant, resulting in the selection vectors shown in Fig.

14d. This change in direction led to the naming convention used here: back-and-

forth (BNF) DWA.

SEL

SEL n  ptr n  K+ mod N=

K 0 1  N   T
=

SEL
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Fig. 14. Two DWA pointer functions depicted as pointers and selection vectors: a)

normal DWA, selection pointer, b) normal DWA, selection vector, c) BNF-DWA,

selection pointer, d) BNF DWA, selection vector. Revised from [I]. ©[2010] IEEE.

The DWA algorithm 1-z-D can be expressed using the pointer function:

. (39)

‘1’ ‘4’ ‘0’ ‘2’ ‘7’

0 0 4 3 2

1 6 5 2 3

2 5 6 1 4

3 4 0 0 5

4 3 1 6 6

5 2 2 5 0

6 1 3 4 1

‘1’ ‘4’ ‘0’ ‘2’ ‘7’

0 1 5 5 0

1 2 6 6 1

2 3 0 0 2

3 4 1 1 3

4 5 2 2 4

5 6 3 3 5

6 0 4 4 6

0

1

2

3

4

5

6

‘1’ ‘4’ ‘2’‘0’

Index

v ‘7’

0

1

2

3

4

5

6

‘1’ ‘4’ ‘2’‘0’

Index

v ‘7’

 

a) b)

c) d) 

ptr n  ptr n D–  v n D– + mod N=
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Using the selection vector , (39) can be presented as:

. (40)

The reason for using the selection vector is that the generalized model has to

accommodate the change in direction. To mathematically explain the selection

vector map in Fig. 14c (for D=1), the vector needs to be flipped upside-down at

every sample synchronously with the direction change. In Fig. 14c, the last

element allocated for current DAC output is the first element for the next output.

This requires that the previous element selection vector (n-1) should be flip

upside down and be summed sequentially with either +v(n-1) or -v(n-1), (modulo-

N). Hence, the selection vector for BNF-DWA in Fig. 14d is formed as:

, (41)

where flip{...} operation flips the selection vector upside-down and seq(n) is a

polarity multiplicand for input v. For the algorithm in (41) (Fig. 14d), seq(n) is

{...,1,-1,1,-1,...}. As an example of the agreement between (41) and the example in

Fig. 14d, the selection vector for the second code ‘4’ is formed in Table 1. Here,

v(n-1) and seq(n-1) are both valued 1.

Table 1. Selection vector calculus for input ‘4’ in Fig. 14d.

To proceed with a more general manner, (41) can be expanded to arbitrary delay

D:

(n-1) flip{ (n-1)} flip{ (n-1)}+1 flip{ (n-1)}+1, Modulo-7

0 6 7 0

1 5 6 6

2 4 5 5

3 3 4 4

4 2 3 3

5 1 2 2

6 0 1 1

SEL

SEL n  SEL n D–  v n D– + mod N=

SEL

SEL n  flip SEL n 1–   seq n 1–  v n 1– + mod N=

SEL SEL SEL SEL
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. (42)

The flip-operation and the polarity-multiplicand seq are codependent. Moreover,

the sequence in seq(n) is dependent on the delay term in BNF-DWA. 

By choosing one direction i.e. seq is  or  leads to a very

basic unidirectional DWA (35). To generalize the definition of the control

sequence seq, the main rule is that every Dth sample has the same sign. The

general rule for the pointer direction is:

– For , every Dth sample in seq(n) has the same direction (Fig. 14a).

– For , every Dth sample in seq(n) has the opposite direction (Fig. 14c).

Equations (40) and (42) define the functionality of the DWA algorithm as a

behavioral model. The model that defines both equations is shown in Fig. 15.

Here, the flip operation is performed outside of the loop by summing up the

pointer data ptr with a constant vector 2, which is either  or flip{ }. 

Fig. 15. General DWA as a non-vectorized loop, where the positive value of seq selects

K and the negative selects flip{K}. Revised from [I]. ©[2010] IEEE.

SEL n  flip SEL n D–   seq n D–  v n D– + mod N=

1 1    1– 1–   

 1- z D–

 1+z D–

K K K

seq

+v

flip{ }

+

select

z-D

constant

constant

delay

ptr

2

K

K

K SEL



59

4.3 Generalized DWA algorithm and shaping function

Equations (40) and (42) can be expressed as one unified algorithm with the pointer

notation:

. (43)

The parameter offset in (43) is non-zero only in the case of BNF-DWA; it is zero

for  DWA. In (43), the ‘±’-sign combines both DWA modes: plus is for

 and minus is for 1 + z-D. In order to define the spectral shaping transfer

function for , we need to present the flip operation in (42) mathematically.

In the general case, given that the vector  is modulo-N ascending or

descending, the flip operation can be presented via negation as:

(44)

 is the position of the value zero in vector SEL (zero-based indexing

used). 

The mismatch shaping function can be derived from (43). The input signal is

multiplied by the control sequence seq(n) consisting of plus and/or minus ones.

The ± sign of the product and additional offset are additions for a back-and-forth

pointer. These properties will assimilate to the linear part of the resulting output

signal. The linear and nonlinear part of the DAC (ys and ye, respectively) output

become:

, (45)

The output signal is the sum of the linear and nonlinear parts, which in z-domain

is:

, (46)

ptr n  ptr n D–  seq n D–  v n D–  offset n D– , mod N
·

+ +=

1 z– D–

1 z– D–

1 z+ D–

SEL

flip SEL  SEL 1–  offset, mod N, +=

offset SEL N idx
SEL 0=

–  =

where

and

idx
SEL 0=

ys ptr n  ptr n D–   E  =

ye INL ptr n   INL ptr n D–  ,=

Y z  Ys z  Ye z +=

1 z D–
 PTR z  w 1 z D–

 Z INL ptr n   +=
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where Z{...} stands for z-transform. Clearly, the nonlinear part Ye is shaped by the

generalized mismatch shaping function of (36).

A transfer function for any spectral shaping DEM is based on a linear model

that does not take the input signal dependency into account. Tonality is further

discussed in Sect. 4.5 and Chapters 5 and 6.

4.4 Integration with previously published methods

As mentioned in Ch. 3, the generalized DWA integrates some previously published

methods. Bidirectional DWA (Bi-DWA) [60] offers a tone-free mismatch noise

spectrum, with the trade-off of an increased noise floor. The pointer diagram for

Bi-DWA presented in [60] revealed that the mismatch shaping transfer function

has to be 1-z-2. This means that the spectrum has notches at dc and fs/2. The extra

notch at fs/2 increases the in-band noise floor, but scrambles the spurious tones

effectively. The bi-directionality is a choice that is offered by the switching

sequence choices presented in Sect. 4.2. However, the change in the direction for

Bi-DWA does not offer any advantage. The “legal repeating sequences” presented

in Sect. 4.2 offer 2D candidates for seq.

N-path DWA (1-z-D) by Lindfors et al. [61] consists of D time-multiplexed

DWA blocks. The result for D=2 is equivalent to Bi-DWA and for band-pass

DSMs (with fc=fs/4), D=4 can be used. This leads to three notches at dc, fs/4 and fs/

2. 

Interestingly, Lindfors et al. [61] discarded the 1+z-2 band-pass shaping

function, because it would require element inversion and thus cannot be realized

with a current-steering DAC. In the generic model, an element inversion is not

used thus the digital DWA encoder can be designed to produce the 1+z-2 shaping.

This shaping function of 1+z-2 is accomplished by the DWA algorithm with back-

and-forth element selection rotation published in [62] and it was implemented

using a current-steering DAC.

4.5 Shaping examples and further concerns

The spectral shaping properties of any DEM method are found by linear analysis.

As pointed out in Sect. 3.4, the performance prediction by linear analysis can only

be as a suggestive tool. 

Lindfors et al. [61] pointed out by linear approximation that for 4-path DWA,

the in-band noise power is ca 6dB lower than for 1+z-2 DWA. The extra notches
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(at dc and fs/2) in N-path DWA, however, tend to reduce the correlation between

the error and input signal: the white noise approximation is better for N-path

DWA.

Table 2 contains simulation results from three different DS DACs with three

different forms of DWA shaping, but the same unit-DAC DNL errors. The

performance merits in Table 2 are SNDR (signal to noise and distortion) and

SFDR (spurious-free dynamic range). The mismatch was given in a simulator by

assigning a third order polynomial form of DNL error with  of 0.01 (1%). This

shape assignment is further discussed in the next Chapter.

The corresponding mismatch noise spectra are shown in Fig. 16. The

simulations in Fig. 16b and Fig. 16c are both from a band-pass DS DAC, but the

spectral shaping function is different in each. In Fig. 16b, we have the BNF-DWA

shaping [62] and in Fig. 16c the configuration is the 4-path DWA [61] that has

extra notches at dc and fs/2.

Table 2. Performance simulations of different 3-bit DS DACs with DWA.

What is apparent in Fig. 16a (low-pass DS DAC) and Fig. 16b (band-pass DS

DAC) is that the DWA algorithm is prone to spurious tones in both cases. As

expected, the extra notches in Fig. 16c smoothen the spectrum quite nicely and the

overall in-band noise is elevated by ca. 6dB (see Table 2). 

The first concern is that in Table 2 the spurious level in Fig. 16c is 4dB lower

than in Fig. 16b. Does that mean that the 4-path version does not improve the

SFDR results (at the expense of the elevated noise floor) as may be expected? In

reality, changing the shape of DNL error, input signal amplitude and frequency

may result in a different conclusion. Chapter 5 proposes a qualification approach

that takes these three factors into account.

The second concern can be seen by comparing Fig. 16a and Fig. 16b. The

cluster of spurious tones near fs/2 seem to be very similar: Fig. 16b is mirroring the

Figure DSM order, 
fc

OSR SNDR SFDR DWA transfer 
function

seq(n)

16a 2, dc 32 69dB 82dB {1,1,1,1,...}

16b 4, fs/4 32 70dB 85dB {1,1,-1,-1,...}

16c 4, fs/4 32 64dB 81dB {1,1,1,1,...}

1 z 1–– 

1 z 2–+ 

1 z 4–– 



62

low-pass version at the center frequency fs/4. The frequency range of spurious

tones seems to match and this was achieved by normalizing the input single-tone

frequency f by the corresponding conversion: 

. (47)

Also, for the spurious tone cluster to match between Fig. 16a and Fig. 16b, the

DNL error has to be identical.

Fig. 16. The mismatch noise magnitude spectrum for a) 1-z-1 DWA, b) 1+z-2 DWA and c)

1-z-4 (4-path DWA).

Incremental DWA (IDWA) [74] is a curious DWA variant which will be revisited

in the last two Chapters. The basic idea for IDWA is to increment the number of

unit DACs e.g. by one. In other words, the number of unit-DACs (N) is larger than

the number of quantizer steps in DSM.

Using IDWA will not change the spectral shaping properties or the actual

DWA algorithm. Instead, IDWA shifts the spurious tone frequencies from their

f
f
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typical location. For low-pass DSM with DWA shaping of  and a certain

shape of DNL error, a cluster of spurious tones may be located near dc.

Incrementing the number of unit elements by one, the frequency range of this

cluster of tones is conveniently shifted by fs/N. IDWA was studied in the original

papers II and III. It was concluded in Paper II, that IDWA can perform better, but

only for low-pass DS converters. 

As an example, in Fig. 17, we have the magnitude spectrums for a second

order low-pass DS DAC with an oversampling ratio of 64. The amplitude is 0.126

per full scale and the frequency is fs·249/216. For this particular choice of order,

OSR, amplitude and frequency, IDWA shifted the spurious tone out of the band of

interest. In Fig. 17, the SFDR result is ca. 20 dB better for IDWA.

Fig. 17. The in-band magnitude spectrum for 3-bit low-pass DS DAC output with OSR of

64: a) DWA and b) IDWA.

4.6 Summary

The extension of the DWA algorithm via (36) is justified by the fact that the

realization has the basic components of a high-pass DWA (35). The extended

concept of DWA results in the interesting integration of DWA variants such as Bi-

DWA [60], N-path DWA [61], back-and-forth (1+z-2) DWA [62] and also IDWA

[74]. The generalization may also expand the possibilities of existing DWA tone-

cancelling variants to be used in band-pass DSMs. The model has been published
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at the Matlab Central File Excange2 under the title “Data Weighted Averaging for

Simulink”.

The distortion that manifests itself as spurious tones is linked to the shape of

the differential nonlinearity (DNL) error. The true DNL error variation can be

coarsely predicted by the layout process, but as the number of quantizer levels is

typically low in DSMs, the error shape is random. To qualify and compare

different DWA variants or DEM methods in general, the randomness of the

mismatch can be troublesome: the simulation test bench should be reproducible

and reliable. The next Chapter will propose a solution for qualifying a DEM

method.

2.http://www.mathworks.com/matlabcentral/fileexchange/?term=authorid:17648
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5 Reliable DEM qualification

5.1 Introduction

As in the case of DSMs, the appearance of the spurious tones in the DEM

mismatch noise can be dependent on the DSM stimulus. A typical test stimulus in

simulations is a single-tone, whose amplitude and frequency affect the spurious

tones related to both DSM and DAC. As the shape of the DAC mismatch is not

exactly known, this results in problems related to reliability, repeatability and

simulation time. 

The subject of qualification covered in Paper II, can be expanded to practically

any DEM method. Here, however, the examples are biased toward data weighted

averaging (DWA) for which a proper qualification method is direly needed. The

reason for this is the vast number of tone-cancelation methods proposed for DWA.

As demonstrated in Sect. 3.4, the simulation-based approach can be

troublesome: a performance result from one single-tone simulation may not

provide a reliable conclusion. However, simulation is the pivotal tool in

characterizing the performance, like in the case of DSMs. 

There are two performance merits discussed in this Chapter: SNDR (signal to

noise and distortion) and SFDR (spurious-free dynamic range). The former

includes the integral of all in-band noise content and the latter includes the highest

spurious tone in the signal band. SNDR or SFDR curves are typically shown as a

function of logarithmic amplitude range. Especially for the DWA tone-cancelation

variants, this approach is inadequate: there are pairs of single-tone stimulus’

amplitude and frequency that can be significantly detrimental to the performance

[50]. 

In a typical simulation test bench, the mismatch (DNL error) has a constant

rms-magnitude. Here, it is pointed out that the shape of the unit-DAC DNL error

can be a factor of significance. A DEM method can be insensitive to the shape of

the mismatch, but this is certainly not the case in DWA and other low-order

shaping schemes.

To rely on a single randomly selected DNL error vector is by no means a

reliable approach. Relying on a large group of randomly generated DNL error

shapes is statistically more reliable, but this approach can be very time-consuming

and typically non-repeatable. Of course, a seed number can be provided for

random error vectors but this is hardly practical for a large number of error vectors

(e.g. in a publication).
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Testing a DEM method may become extremely time-consuming with the

stimulus amplitude and frequency, the shape of the mismatch with some extra

parameters affiliated with the algorithm. Comparing the simulation results of

competing techniques in a reliable fashion would require them to be tested with the

similar test bench as well. 

A solution to the issue of repeatability proposed here is to use a extensive

range of amplitudes and frequencies, along with a small group of repeatable unit-

DAC DNL error vector shapes. 

5.2 DNL error test polynomials

In a simulation test bench, a polynomial DNL-error curve can be selected as

opposed to a large group of randomly generated DNL error sets [50]. This speeds

up the evaluation of a specific DEM method, but a skeptic would say that a large

group of randomly generated DNL-errors is more reliable. Some information

about the error distribution can be available, but the actual shape cannot be

predicted. For instance, one can expect random, linear ( 1) or quadratic ( 2) trend

in the DNL error after typical common-centroid [41] layout technique. Possible

error skewness ( 1, 2, etc.) does not remove the random portion of a single unit

DAC error. However, a small group of different polynomial shaped DNLs

provides a repeatability and a small set of errors in DEM evaluation. 

In general, the shape of a DNL test-curve can be other than a polynomial.

Repeatability is the main issue here. For instance, a sinusoidal DNL error shape

reveals a fundamental property of DWA-related tones and this will be discussed in

the next Chapter.

To construct an mth order polynomial curve, we begin by defining a

normalized column vector  also denoted as (i). The vector is linearly spaced

from +1 to -1 and its length is the same as the number of DAC elements. The

vector  is then raised element-wise to mth power:

. (48)

The next step is to scale the vector  curve and the scaling is typically made

according to a user-defined standard deviation value :

, (49)

 

 

1 i
m =

2 
1

stdev 1 
----------------------=
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where stdev() is the standard deviation of . Finally, the mean value of the curve

is normalized to zero and the outcome is the DNL-error curve used in the

behavioral model:

 =  - mean( (50)

where mean() is the average of .
For a group of SNDR or SFDR values from J DNL error curves, the average

performance and noise related values are calculated by the J-sized group of decibel

values, using the following equation: 

, (51)

where (Xi) contains a group of decibel-valued samples and XdBA is the power

averaged decibel value. In our simulations, J equals 4 (four polynomials).

To qualify a DEM method using the repeatable test shapes, it is imperative that

the shapes will not result in an overly optimistic performance results compared to

the results form a large group of random errors.

It has been verified that the average results from 100 randomly generated

DNL sets studied in [50] are slightly more optimistic in comparison with results

from a set of 4 polynomial DNL shapes. These shapes are justified in Sect. 5.4 by

using the performance degradation merit described next. 

5.3 DEM performance degradation merits

The reference point for the performance results is the SNDR and SFDR result with

the same amplitude-frequency points with zero-DNL error. A zero-DNL

performance reference can be justified by the fact that the spurious tone caused by

the DSM is always present in DS-DACs and ADCs.

s the stimulus amplitude and frequency are swept, the magnitude of maximal

in-band spurious tone and the in-band cumulative noise will change. In Fig. 18, S

and N indicate the amount of variation (dB) in maximum in-band spurious tone

and the in-band cumulative noise, respectively. 

To merit the performance, we also need to merit the deterioration of both

SNDR and SFDR. These results are compared with their zero-DNL counterpart

and the deterioration is denoted as SFDR and SNDR. These are defined as:

XdBA 10 log10
1
J
--- 10

Xi 10

i 1=

J


 
 
 
 

=
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 and (52)

, (53)

where the subscript ideal is the result unaffected by the unit DAC. For a simulation

model of a DS DAC, the ideal result can be obtained from the DAC input (digital

DS modulator output). For a DS ADC simulation model, the ideal result can be

obtained from the feedback DAC’s output (given that the DSM remains stable with

a given stimulus and mismatch error).

Fig. 18. An example of the signal band of a DAC output spectrum. Revised from [II].

©[2010] IEEE.

In a broader sense, it would be convenient to have some kind of measure of how

prone an arbitrary DEM method is to spurious tones. This is partly possible by

observing the DAC element usage patterns. This was also studied in Paper II.

A selection (priority) vector concept presented in Ch. 4 can be expanded to

other DEM methods. The priority vector  contains the address of the highest

priority unit-element in its first element, and the lowest priority address in its last

element. By investigating an array of successive index numbers of the highest

priority element, repeating element usage patterns can be found. The repeating

patterns may be an indication of spurious tones without guessing the shape of the

DNL error. 

A simpler way of finding patterns is to observe the spread of the top usage

priority provided by the DEM algorithm. If the highest priority element usage does
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not spread evenly (amongst all elements), it is likely that there will be spurious

tones. 

The characterization based on element usage presented in Paper II correlates

with the signal dependency of the DWA algorithm but unfortunately does not

predict the performance. The key on breaking the inherent tendency to in-band

spurious tones is in the shape of the DNL error, and this will be discussed in the

next chapter.

5.4 DEM fingerprints

As mentioned, characterization based on single-tone simulations should be

obtained from a two-dimensional amplitude and frequency sweep. A sweep

contains equally spaced frequencies throughout the signal band and an extensive

range of logarithmically spaced amplitudes that are within the stable input signal

range.

A graph called as a fingerprint is based on tabulated values of any

performance degradation merit S, N, SFDR or SNDR as a function of

amplitude and frequency. It is presented as a contour plot from which a

discrepancy in a certain amplitude-frequency pair can be spotted. At a glance, it

looks like a spectrogram, but it contains performance information from multiple

simulations. In the examples presented in Paper II, there are 4 shapes of DNL-

curves, 25 amplitudes and 16 signal frequencies, yielding 1600 simulations per

contour plot.

To somehow rationalize a choice of a handful of polynomial DNL-curves, we

tested [II] the performance degradation with polynomial DNL errors of orders m =

{1, 2, 3, 4}. The model is a second order, 3-bit low-pass DS DAC with OSR of 32. 

From the contour-plot in Paper II, it was apparent that for odd orders, the

contour-plots are nearly identical. The same conclusion can be made between the

even order fingerprints. Because of the similarity between odd- and even-order

contour-plots, the polynomial orders should be chosen between even and odd, e.g.

four curves of between orders 2 and 3. A non-integer polynomial order m requires

to modify (48) into: 

, (54)

where Real(...) is the real part of the result. The length of  is the same as the

number of DAC elements. In the cases studied in [II], it was 7, indicating a three-

1 Real i
m =
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bit DAC. Non-scaled shapes of the four sets of polynomial DNL shapes used in

Paper II are shown in Fig. 19.

Fig. 19. Four DNL shapes used in [II].

The next Chapter discusses the mechanism for generating spurious tones. In the

light of this theme, it is appropriate to highlight some supportive findings in Paper

II. For a 1-z-1 (low-pass) and a 1+z-2 (band-pass) DWA, it was found that an

amplitude level of the strongest in-band tones is approximately:

, (55)

where FS is the full scale input signal amplitude. In [II] it was verified that the

amplitude level of the worst-case spurious tones decreases as the OSR increases. 

In Sect. 4.5, the Incremental DWA (IDWA) [74] was briefly introduced.

IDWA was also studied in Paper II and it was found that an 8-level IDWA (one

extra unit-DAC) different yet no that severe “worst-case” amplitude from the

normal, 7-level DWA (55). As mentioned in Sect. 4.5, IDWA shifts the expected

frequency range of spurious tone out of the band of interest. At small amplitudes

this is favorable, but a slight degradation was observed around FS·0.2.

The mechanism for generating spurious tones discussed in Ch. 6 explains how

DWA is dependent on the instantaneous stimulus magnitude. The model presented

in Ch. 6 also incorporates IDWA.
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5.5 Summary

The proposed graphical qualification method, or fingerprinting, provides a

characterization and benchmarking for DAC mismatch shaping methods. The

fingerprinting approach is a transparent way to find performance merits that can

easily be hidden by e.g. simulating with fixed amplitude or frequency. Using a

polynomial-shaped DNL error enables repeatable behavioral simulations and

effectively minimizes the number of required simulations.

The trade-off between complexity and performance is crucial in the spectral

shaping of DAC mismatch noise. This is the reason why first-order shaping

methods with tone cancelation techniques of some kind are widely published,

especially for DWA. The proposed qualification method is an attempt to bring

consensus on how different DEM methods can be benchmarked.

Chapter 6 is the culmination of this work, it proposes a DWA tone mechanism

that can predict the DAC mismatch spurious tone contribution to any stimulus and

DNL error shape. By knowing how the shape of the DNL produces the in-band

spurious tones, a new DWA tone cancelation approach has been discovered.
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6 Model of DSM and DWA-Related Spurious 
Tones

6.1 Introduction

Understanding the mechanism by which spurious tone frequencies move as a

function of stimulus is desirable for the purpose of defining a tone cancelation

methodology. For stimuli other than dc, the tones indeed wander, making the

spurious tones in DSM quantization noise or DWA-DAC mismatch noise very

difficult to predict. 

The nature of DSM quantization noise is troublesome. Limit cycle or spurious

tones can appear with a specific stimulus even if the DSM order is high. For

instance, a high-order DSM may have limit cycles that can be surprisingly

persistent to dither [33]. The use of multibit DSM will reduce the DSM-related

tones, but a D/A converter with DEM can also be tonal. 

Section 6.2 contains behavioral observations that have led to the proposed

models. Section 6.3 contains a literature review of previously published results on

predicting the DSM- and DWA-related idle channel tones. The similarity between

DSM and DWA-DAC tone behavior has been acknowledged in prior publications. 

The uniform model proposed here supports the observations from previous

publications and in Sect. 6.4 expands into a simple the uniform model for both

DSM and DWA-DAC related spurious tones. Section 6.5 contains case-studies on

tone estimation. 

6.2 Observations on tone behavior

Contrary to Gray’s spectral analysis approach [4], the model presented in Sect. 6.4

is a time-domain model that can be excited with an arbitrary stimulus. The

quantization noise model in Sect. 6.4 is, however, in line with Gray’s Bessel

function model. The proposed periodic quantizer model 

– excited by a dc input (for low-pass DSM) results in a group of tones with fixed

frequencies and

– excited by a non-dc input (e.g. single-tone) results in frequency modulation

spectrum with tone frequencies that vary as a function of time. 
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The proposed tone estimation model for both DSM and DWA were found by

simulation results with a slowly changing input signal. With inputs like dc, ramp

and certain single-tones, the spurious tones in the modulation noise become more

observable. The choice of stimulus also contributes to the whiteness of the

quantization noise, as was mentioned in Ch. 2. 

The initial insight for the proposed model was discovered by simulating a

group of DSMs with some special group of stimuli and observing the modulation

or mismatch noise in a spectrogram view. As the spectrogram is based on multiple

discrete Fourier transforms, the stimuli were carefully chosen so that the spurious

tones are observable. In the spectrogram analyzes, the data of interest is 

– the DSM output data that contains the signal and modulation noise

(Subsection 6.2.1) or

– the DWA-shaped DAC mismatch noise (Subsection 6.2.2).

The vertical direction in a spectrogram illustrates how the spectrum varies with the

simulation time. By increasing the dc-magnitude or single-tone amplitude linearly,

the observable tones can be studied as a function of stimulus magnitude. 

The frequency of a single-tone stimulus f can be presented as:

, (56)

where M is the number of samples in a simulation. To emphasize observability, J

has to be small. This also applies to band-pass DSMs, where the center frequency

fc is typically fs/4. Obviously, J = 0 in (56) refers to dc input to low-pass DSMs. 

Interestingly, for band-pass DSMs, J = 0 in (56) results in dc-like tone

behavior. To generalize a the concept of dc-input or “slowly varying input” for

band-pass DSMs as well, the statement in Subsection 2.3.2 should be rephrased as:

“signals close to the DSM center frequency are not suited for the classical model

of quantization”.

6.2.1 DSM modulation noise

In Fig. 20, we have four simulation results as spectrograms of the DSM output. A

spectrogram consists of a number of short-time Fourier transform magnitudes

depicting how the magnitude response changes as a function of time. The result is

f
J fs
M

---------- fc+= J 0 1 2    =
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presented as a surface plot. In each example of Fig. 20, the number of samples M

(56) is 218 and the FFT length is 29. The quantizer step  is 2. The lightest shades

of the color map in Fig. 20 indicate the highest magnitude in decibels. The

magnitude variation in the spectrograms is ca. 100 dB.

In Fig. 20, the input level or amplitude increases linearly with time, which

therefore replaces the vertical time-axis. This enables observing the spurious tones

as a function of instantaneous input level of the stimulus.

All examples were generated using the second order DSM. The order for

band-pass examples in Fig. 20c and Fig. 20d are also 2, but the shaping order is

one. These spectrograms were generated using the mid-rise quantizer type

(Subsection 2.4.2). In each example of Fig. 20, the number of samples M in (56) is

218 and the quantizer step  is 2.

In Fig. 20a, a low-pass DSM output data spectrogram for a ramp input (i.e. a

linearly increasing dc level) is shown. The trajectory of the spurious tones clearly

change as a function of the input level. In Fig. 20b, the spectrogram for sinusoid

input as a function of increasing amplitude is shown. The envelopes of the

spurious tones are the same as the trajectories in Fig. 20a. In Fig. 20a and Fig. 20b,

the frequency parameter J is 3 in (56).

For a band-pass DSM, the spurious tones can also be either trajectories or

envelopes. If the frequency is exactly at the band center fc ( fc = fs/4), the spurious

tones are trajectories similar with low-pass DSM: between dc and fc and also

mirrored between fc and fs/2. In Fig. 20d, the single-tone stimulus’ frequency is

slightly more than fc, which results in envelopes that follow the trajectories in Fig.

20c. In Fig. 20d, the frequency parameter J is also 3 (56).

At a linear transfer function level, transforming the NTF from low-pass to

band-pass (fc: dcfs/4) can be done by first order DSM N-path transformation

(z-z2) [14]. By comparing the upper and lower spectrograms in Fig. 20, the

transformation clearly preserves the tone behavior.
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Fig. 20. DSM output spectrograms: a 1st order low-pass with a) ramp input and b)

sinusoid input, and a 2nd order band-pass with sinusoid input c) at fc and d) near fc.

Revised from [IV]. ©[2011] IEEE.

As mentioned, the quantizer type for the spectrograms Fig. 20 is mid-rise.

Changing the quantizer type to mid-tread changes the spur trajectories or

envelopes. The shape of corresponding spectrograms for mid-tread would look the

same as in Fig. 20 except they would be upside-down. The reason for this is the

signal and amplitude levels in Fig. 20 move from between a quantizer level

towards another quantizer level. For a mid-rise quantizer, the situation is the

opposite. This is in-line with quantization noise observations made in Subsection

2.4.2.
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For the DSM tone frequencies, changing the quantizer type has similar effects

as offsetting the stimulus by /2. However, /2 offset may not be practical due to

DSM output’s limited low word length; quantizer type is more appropriate factor.

6.2.2 DWA mismatch noise

In [14], Carley et al. pointed that for constant inputs, DWA mismatch noise

frequencies will be placed at the frequency fs/N and its harmonics. This is a coarse

assumption that can be can be expanded with a simple behavioral simulation. 

The input signal to the DWA has to be DS-modulated data. If the input data is

a single-tone only truncated to N+1 levels, the spurious tones will be clustered at

frequencies fs·i/N, where i = {1,2,3,...}. This is not realistic as the DSM

modulation noise should be mainly out-of-band. A DS-modulated scenario can be

seen in the DAC mismatch noise spectrogram plot in Fig. 21, where a slowly

increasing dc-stimulus (ramp) has been Delta-sigma modulated by a second order

3-bit (N=7) low-pass DSM with 1-z-1 DWA. As the signal level increases, the are

three moving tones with a linear slope, two of them starting from fs/2 and one

starting from dc. As the faintest slope approaches dc, it will be aliased back to

positive frequencies. 

Fig. 21. The spectrogram of DWA DAC mismatch noise for DS-modulated (3-bit) ramp

input signal.

frequencydc fs/2
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The mismatch noise spectrogram in Fig. 21 looks much like the lower half of the

spectrogram in Fig. 20a. It will be shown that almost the same model corresponds

to the mismatch noise with first-order DWA shaping. 

For DWA, the mechanism on how the trajectories are born has very little to do

with the order and the OSR of the DS modulator. The dominant factors are (in

addition to the stimulus): DWA type (low-pass, band-pass), the number of unit

DAC elements along with the shape and quantity of the DAC mismatch error. 

It will be shown that the shape of the DNL error is the key factor in the

appearance of spurious tone. This information can be utilized to cancel the in-band

spurious tones. 

6.3 Prior publications on spurious tone behavior

6.3.1 DSM spurious tones

Candy & Benjamin [13] proposed a mathematical expression for the dc-response

for the first order DSM output v that lie in the half sample band of frequencies can

be expressed as:

, (57)

where u is the dc-input level and T is the sampling interval. 

Ledzius and Irwin [72] demonstrated that the spurious tone is related to the dc-

stimulus level, from which Dunn and Sandler [76] presented their estimation on

the spurious tone frequencies near dc. Spurious tone frequencies near fs/2 (fs is the

sampling frequency) were anticipated by Risbo [75] as well as Norsworthy [14].

Gray’s classic paper on quantization noise spectra [4] defined the following:

for a first-order LP DSM and dc inputs the quantization error spectrum is discrete,

with tones at 

, (58)

and the amplitude of these tones is

v t  u 2
iu sin
i

--------------------- 2t i u mod 1 
T

--------------------------------------------- 
 cos

i

+=

ftone i
1
2
---

udc


------- 

  mod 1 
  fs , for i = 1,2,...=
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. (59)

De la Rosa et al. [77] presented an extension of (58) into second order band-pass

DSMs with single-tone stimulus exactly at the center of the signal band (fc = fs/4)

and the amplitude is (notated here for the sake of similarity) udc:

(60)

Equations (58) and (60) are restricted to stimuli exactly at fc. For second order

band-pass DSM, the stimulus exactly at the band center results in limit cycle (with

steady frequencies). This setup is equivalent with a first order low-pass DSM with

dc-inputs. 

Single-tone stimuli outside of fc will result in the tone frequencies drifting as a

function of the stimulus level. These tones have the following properties:

1. The frequency span of the drifting (envelope or trajectory) is proportional to

the signal amplitude.

2. The drifting velocity is proportional to the stimulus’ frequency content.

3. The quantizer type (mid-rise or mid-tread) also has great significance.

In the publications mentioned in this Subsection, the quantizer type is mid-rise.

The time-domain model presented in Sect. 6.4 takes the quantizer type into

account.

6.3.2 DWA-related mismatch noise spurious tones

The number of published DWA tone suppression methods is quite large, e.g. [25, 

60-62, 74]. For the publications that actually interpret the mechanism how

(untreated) DWA works, there are quite few eligible publications. Chen and Leung

[57] reported the following on DWA tone behavior using observations from the

FFT magnitude response of the mismatch noise:

1. There is an amplitude dependence of the spurious tones. 

2. Relatively low OpAmp dc gain affects the spurious tones: dc gain should be

over-designed.

Aspur
1

2i 2
---------------=

ftone

fs i
1
4
---

udc

2
------- mod 1 

  and

fs i
1
2
---

udc

2
------- mod 1 

 
                   for i = 1, 2, ...=
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3. For high OSR, dither would be a solution for DWA-related idle tones.

4. The number of DAC elements (N) should be less than 2OSR/(m+1), where m

is the order of the harmonic distortion component.

Point 4 means that for low OSR and a large number of DAC elements, DWA

mismatch noise is detrimental. Therefore, for low OSR it can be expected that the

tones are more likely to drift into the signal band. 

In Sect. 5.4, the approximate amplitude level of the in-band tones was given

by (55). Doubling the DSM output word size doubles the elements to cycle

through before the errors average to zero [12]. As regards of observable tones,

doubling the word size does not change the expected tone frequencies, but

increases the number of new spurious tones two-fold. This will be discussed in

Subsection 6.2.2.

Chen & Kuo [74] deduced that the mismatch noise frequency spectrum is

composed of discrete components of frequencies

(61)

where r is the value of the greatest common denominator between the number of

elements N and the DAC input code v. Being a reasonable accurate prediction,

Chen and Kuo presented a clever spurious tone suppression method (incremental

DWA, or IDWA), which does not alter the DWA algorithm. In IDWA, N is larger

than the number of DSM quantizer steps. IDWA does not change the spectral

shaping properties, but manipulates the DWA-related spurious tones. An IDWA-

DAC with N1 extra elements shifts the tone frequencies in (61) [74] as follows:

(62)

In the next Section, time-domain models for estimating the DSM modulation noise

and DWA mismatch noise are presented. The spurious tones for both cases follow

a simple equation that resembles frequency modulation. Nys & Henderson

observed the similarity in [73] by stating:

For values of DC level close to 1/2, 1/3, 2/3 ,1/4, 3/4, ... of the range, a low
order noise component of high power is folded back into the baseband, and

ftone
r
N
---- fs i,     i=1, 2, 3, ... =

ftone
r

N N1+
---------------- fs i =

ftone
r

2 N N1+ 
------------------------ fs i  =

, for mid-tread quantizer

, for mid-rise quantizer.
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the equivalent resolution is decreased, in a similar way as for the quantization
noise with first order Sigma-Delta modulation.

Nys & Henderson [73] also presented a time-domain estimator for DWA-DAC

mismatch noise. Unlike the model presented here, the model in [73] is only for dc-

inputs and accommodates the DNL error variance (not the actual shape). 

6.4 Noise models for DSM and DWA

The frequency prediction formulae in Sect. 6.3 output a group of frequencies. The

model presented in this Chapter is a time-domain model that can be used to study

the DSM modulation noise and DWA mismatch noise with an arbitrary stimulus u.

The proposed model is also applicable to band-pass DSMs and 1+z-2 DWA.

The time-domain model for both DSM quantization noise and DWA mismatch

noise is denoted by f(u(n)) in Fig. 22. As will be shown, the model has the same

basis for both cases. The model also acquires information about the quantizer type

and step  and, for DWA, the DAC DNL error vector. The center frequency fc in

Fig. 22 affects the stimulus and the model (low-pass or band-pass mode).

The output of the modeling function is the unshaped noise êq for the DSM and

êmm for DWA. The modulation noise and mismatch noise estimates q and mm

are obtained by filtering the unshaped estimates by the corresponding shaping

transfer function.

One of the reasons the proposed model has not been presented before may be

the difficulty in observing the spurious tones (as was discussed in Ch. 2): FFT

analysis tends to hide tones that wander over a band. Observing spectrograms with

slowly changing inputs lead to an accurate model that is also applicable to stimuli

that are more difficult to observe. 

n n



82

Fig. 22. The noise contribution modeling approach as a simple flow graph: a) DSM

modulation noise and b) DWA-DAC mismatch noise.

As concluded in Papers III and IV, the basis of both tone-behavior models is

frequency modulation (FM). In FM, the modulating baseband data signal is

denoted xm(t) and a sinusoidal carrier is defined as

, (63)

where fc is the base frequency of the carrier and Ac is the amplitude. The

modulator combines the carrier with the baseband data signal to produce the

transmitted signal:

, (64)

where the sum fc+f is the instantaneous frequency of the tone. 

The tone mechanism was found by studying slowly changing input signals u

for low-pass configured DSM and 1-z-1 DWA. For a slow ramp input u, it was

found that the instantaneous input level udc results in spurs at instantaneous

frequencies of 

, (65)
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where X is the quantization interval  (DSM) or the number of quantization steps

N (DWA). This same group of tone trajectories can be seen in both the DSM

(X=) output spectrogram and the DWA-DAC mismatch noise spectrogram

(X=N). The frequencies in (65) always alias back to the band from dc to fs/2,

making the slope either ± i/ or ± i/N.

The tone estimator, presented as a discrete-time equation (normalized sample

time) is given by (66). The integral required in FM (64) is represented by

convolution (operation  with function h.

, (66)

where

–  is the non-shaped estimate for quantization or mismatch noise

– i is an attenuation coefficient

– i = {1, 2 , 3, ..}

– X is the quantization interval  (DSM) or the number of quantization steps N

(DWA)

– h is the impulse response of an integrator (low-pass model) or resonator

(band-pass mode)

– u is the input signal

– is an experimental phase term, which can help to find an accurate in-band

noise estimate for a DSM with single-tone stimulus. 

Equation (66) is completely observation-based and will be refined for both DSM

and DWA. The applicable DSM center frequencies fc for the estimator are either dc

or fs/4. For a band-pass DSM or DWA, fs/4 is a typical choice for the center

frequency. The agreement between basic FM equation and the tone-prediction

model are listed in Table 4.

êqm n  i 2 i
X
--- u n  h n   
  + 

 cos=

êqm n 
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Table 3. The equivalent parameters in FM and the proposed noise model.

Looking at a spectrogram as a function of a linearly increasing ramp level reveals

several trajectories that follow the slope of (65) and are all aliased to the band from

dc to fs/2. This can be observed in Fig. 20 and Fig. 21. The modulation or

mismatch noise is, in fact, the sum of several tones at different values of i. This

culminates in the uniform model to a sum of spurious tones:

, (67)

where Ns is the number of estimated spurs. 

Note that the estimation result is not spectrally shaped. To compare the

magnitudes of the simulated and predicted spurious tones, the predicted noise

estimate (67) has to be filtered by the corresponding high-pass or band-stop noise

transfer function. This function is either the NTF (for DSM) or H (for DWA

mismatch shaping transfer function).

6.4.1 Estimator parameters for DSM

For DSMs, the spurious tone estimate accommodates an offset parameter ofand a

phase parameter 

FM (64) Noise model (66)

Ac - carrier amplitude i - attenuation factor

f
instantaneous frequency 

(minus the constant carrier freq.)

fs·u·i/X, 

where i = {1,2,3,...Ns},

X is:  (quantizer step) for DSM 

or N for DWA

xm - baseband data signal u - DSM input signal

Integral discrete convolution

, 

xm   d

0

t


u n  h n 

êqm n  i 2 i
X
--- u n  h n   
  + 

 cos

i 1=

Ns

=
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, (68)

where of is an additional offset that depends on the type of quantizer:

. (69)

A practical value of spurious tone magnitude i has been found for first order

DSM by studying the in-band noise for dc-stimuli with levels between ±0.5. By

comparing the simulated pattern noise graphs [13] with estimation, the matching

value for i was found:

, (70)

where L is the order of the DSM. Obviously, the number of tones (Ns) needed to be

modeled depends on the order L in (68). For L = 1, the attenuation is the smallest,

so Ns needs to be large. 

Basically, a proper number for Ns would be the number of samples in a

simulation, but this is not necessary due to the steep attenuation for increasing i. In

simulations it was found that Ns of 100 is sufficient for L = 1. This is the point

where increasing Ns e.g. 10-fold does not increase the estimated in-band noise

contribution with dc or single-tone stimulus. For a large value of L, a sufficient

value for i was determined experimentally by fixing the minimal difference as

follows:

. (71)

The numerical maximum in (71) was obtained for L = 1 and Ns = 100. The

resulting values for L = {2,3,4} are Ns = {28,13,7}. Finding a proper value ifor L

> 1 is somewhat paradoxical, because i models the magnitude of the ith spurious

tone. The whiteness of the DSM modulation noise power spectral density depends

on the stimulus, the NTF, and the number of quantizer steps. For L > 1, (71) may

not always be a good prediction of the quantizer noise. This is further discussed in

Subsection 6.5.3.

êq n  i 2 i

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 cos

i 1=

Ns
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of
0, for mid-tread quantizer
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= {

i
4

3 i
L

--------------- =
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The model is compatible with bandpass DSM with center frequency of fs/4.

The main difference between (68) and the model presented in Paper IV is the

presence of center frequency fc in the latter. Nevertheless, the models are the same;

in this compendium fc is included in the phase term . Section 6.5 contains case-

studies on band-pass DSM.

6.4.2 Estimator parameters for DWA

As noted in [73], the mismatch noise from DWA-DAC is similar to DSM related

modulation noise with first-order shaping. Indeed, the estimate filtered with the

first-order shaping function results in a very accurate estimate of the true mismatch

noise.

For the general function of the tone estimator in (67) only the attenuation

parameter and the number of tones have to be specified for DWA. The spurious

tone magnitude iwas found in a similar manner as for the DSM: namely in-band

mismatch contribution from a dc-sweep. The magnitudes are:

, (72)

where the coefficient ci refers to expressing the DNL error by its Fourier

coefficients: the magnitudes for the different periodicity of the DNL error vector

are defined by ci (see Paper III). Here, the indexing in coefficient ci is zero-based:

the first value c0 relates to the expected value of , which is disregarded in the

model (expected to be zero).

The model for DWA spurious tones is:

. (73)

The model assumes that the DSM output data is in unsigned integer format. If an

input signal u is normalized to ±1 full scale, it will be scaled as

uN/2·(u + 1). (74)

As can be seen in (73), the number of tones created by the DWA-DAC is limited

by the number of DAC elements N, namely:

i

ci

i 
---------=

êm n  i 2 i
N
---- u n  h n   
  + 

 cos

i 1=

N
2
----

=
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. (75)

The number of tones in (75) were deduced by studying the periodicity of the DNL

error vector. In Paper III, it was found that the periodicity of the DNL error vector

has a straightforward impact on the spurious tone frequency allocation. This is

most easily studied by assigning a sinusoidal DNL error vector shape with i

periods. Sinusoidal shape results to Fourier coefficients ci with only one non-zero

coefficient with the values i limited by (75). In a DWA-DAC, a sinusoidal DNL

error shape results in only one spur trajectory or envelope, depending on i. 

For the sinusoidal DNL error vector shape, there are exactly N/2 (67)

alternatives for DNL error periodicity. For a sinusoidal DNL shape with i periods,

it takes Ni samples for the errors to average out, where 

. (76)

A realistic DNL shape results in all non-zero coefficients ci and Ni=N. In Paper III,

it was concluded that for dc inputs and single-tones with low amplitudes, the

spurious tones will be generated at or near frequencies 0.5fs·i (for the 1-z-1 DWA).

These tones will alias between dc and fs/2, resulting in DSM-like tone behavior.

In [12] it was pointed out that as the word size (or the number of unit-DACs)

increases, it takes longer for the errors to average to zero and the DWA algorithm

cannot move the distortion in higher frequencies. Here, it was pointed that the

number of DWA-DAC related tones is half of N (75). For increasing N, the

congestion of tones will inevitably contribute to the performance. This is also in-

line with the conclusions by Chen and Leung [57] presented in Subsection 6.3.2:

for DWA, N cannot be high for low OSR.

Again, there is a difference in how the effect of center frequency is presented

in (73) and the original Paper III: in this compendium fc is included in the phase

term . Section 6.5 contains a bandpass DWA-DAC example with shaping

function of 1+z-2.

Ns
N
2
----=

Ni
N
i
---- i 1 2  N

2
----  

 
 
 
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6.5 Case studies on tone estimation

6.5.1 In-band tone minimization for DWA

The periodicity of the DNL error vector shape determines the Fourier coefficient ci

in (67). By this observation, it was deduced in Paper III that by finding a proper

DNL error shape, the (DWA-related) in-band spurious tones can be minimized.

Permuting a detrimental DNL-vector into a different shape can result in nearly

spurious-free in-band noise. The key point in the permuting approach is to

minimize ci for even i, as these coefficients are tied to tones around the center

frequency fc (dc in low-pass DSM)

Paper III did not propose any algorithm or a method for the permutation, only

a brute force random permutation was used instead. The permutation can be done

either initially or repeatedly to cope with varying DNL error. This may result in

complicated hardware, but the permutation approach has two important merits:

– It is based on studying the accurate time-domain model DWA.

– As groundwork, the permutation approach is a DWA tone cancelation method

that cancels the tones without increasing the in-band noise power.

The prediction model accommodates incremental DWA (IDWA) [74] as well. As

mentioned, using extra unit-DACs will shift the frequency around which the tones

fluctuate. This frequency shift by (62) is observable by similar spectrogram plots,

as in Fig. 20. This was presented in Paper III.

IDWA is clearly an alternative to the permutation approach but should be

carefully studied for a given N and its increment. This is because increasing the

number of unit DACs increases the number of spurious tones. IDWA with the

permutation method has not been tested by the author, but it may be worthwhile to

compare it with regular DWA with the permutation.

6.5.2 Pattern noise

A stable limit cycle is a result of a repeating pattern in a DSM feedback loop with

a dc-input. The first order DSM-like behavior of a DWA results from the fact that

the mismatch noise also has limit cycle. The pattern noise graph is a result of

sweeping dc-levels and measuring the in-band cumulative (or rms [13]) noise or

maximal spur-levels. The tone estimation model (67) is very accurate in estimating
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the pattern noise magnitudes. The phase modulation term () is not needed for dc-

inputs because this would only add a constant phase in the estimation. 

Estimating DSM Pattern Noise

In Fig. 23a we have a case of a first order low-pass DSM with an OSR of 32. The

quantizer type is mid-rise and two quantizer levels are used. The measure is taken

from the cumulative in-band quantization error power (dB) with the stimulus full

scale levels normalized to ±/2 (normalized here to ±). 

The corresponding estimate is shown in Fig. 23b. With 100 estimated spurs,

the spikes in the estimated in-band cumulative noise are less than one decibel from

the simulated value.

In spectrograms, parameter i in (68) referred to a certain tone (i = 1 pointing to

the strongest spur). As the number of spurs is controllable in the prediction, it is

possible to connect the index number i in (68) to a specific detrimental input dc-

level in Fig. 23b. In a classic publication, Candy and Benjamin [13] pointed out

that the worst-case dc-inputs for a first order DSM are the simplest rational

numbers (normalized to the full scale). With the prediction model, the connection

between rational dc-inputs and spurious tone index i = {1 to 8} has been

summarized in Table 4. Here the full scale input and quantizer levels are both at

1.

Table 4. The connection between pattern noise and the index i in (68).

i 1 2 3 4 5 6 7 8

a peak near rational

dc-level of:

±1 0 ±1/3 ±2/4 ±1/5, ±3/

5

±2/6, 

±4/6

±1/7, 

±3/7, 

±5/7

±2/8, 

±4/8, 

±6/8
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Fig. 23. Pattern noise graph for 1-bit low-pass DSM: a) L=1, simulation and b) L=1,

estimate (Ns = 100), c) L=2, simulation and d) L=2 estimate (Ns = 28). Revised from [IV].

©[2011] IEEE.
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From Table 4 it can be deduced that given an arbitrary i, the corresponding

spurious tone will contribute to increased in-band noise dc-inputs in the vicinity

of:

(77)

Equation (77) assumes that the input u is normalized between ±1. If there are more

than two quantizer levels and N>0, the pattern noise graphs (true and estimated)

follow the same shape as for two quantizer levels. 

As mentioned, for higher order DSMs, the more whitened nature of the

quantizer noise sets an obstacle to noise estimation. Fig. 23c shows the pattern

noise graph for a second order DSM. The estimate in Fig. 23d finds the major

peaks near ±1 and zero, but not the numerous other spikes simulated in Fig. 23c.

This problem will be revisited and discussed in Subsection 6.5.3.

Estimating DWA-Related Pattern Noise

Using dc-stimuli, it is possible to recreate the pattern noise graph for the mismatch

noise as well. Here, it will be shown that for a high number of unit-DACs, the

pattern noise graph will resemble the ones from first order 1-bit DSM.

In Fig. 24a, we have a mismatch pattern noise graph for a system containing a

second order low-pass-DSM with 7 unit-DACs. Here, the DNL standard deviation

was 0.01 and the DNL shape was set to a first order polynomial. The estimation in

Fig. 24b is quite accurate, but only for the three largest pairs of spikes. The number

of spurious tones modeled in (73) is also three. 

The less-dominant portion of the mismatch noise not modeled by (73) is

affiliated with the DSM. For instance, if the multibit DSM has its NTF designed

for 1-bit DSM, the excess noise may also have more observable tones (or dc-

related spikes) than stated in (75). This is a marginal scenario, as the NTF out-of-

band gain is usually customized to the number of DSM quantizer levels. 

The equivalence between DWA-DAC and a first-order 1-bit DSM becomes

more apparent, if the value of N is increased. In Fig. 24c, N is 255 (8-bit DSM

output) and the estimated pattern noise graph in Fig. 24d is almost identical: the

estimated spikes are less than 1 dB from the simulated values.

j
i

----- , where j
{(i-2),(i-4),...,1} for odd i and

{(i-2),(i-4),...,0} for even i
={
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The connection with the one-bit DSM pattern noise graph is apparent. Given

an arbitrary i, the corresponding spurious tone will contribute to increased in-band

noise with dc-inputs in the vicinity of:

. (78)

Equation (78) assumes that the input is normalized between 0 and N; the same

range as the quantizer.

Fig. 24. A mismatch pattern noise graph: a) 3-bit DWA, simulation and b) 3-bit DWA,

estimation, c) 8-bit DWA, simulation and d) 8-bit DWA, estimation.

N
i j

i
--------- 
  j

{(i-2),(i-4),...,1} for odd i and

{(i-2),(i-4),...,0} for even i
={
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Band-pass DSM

For a second order band-pass DSM with an N-path transformation (z -z2), the

pattern graph estimation is just as accurate as it is for first order DSM and DWA.

The difference is that for a band-pass DSM, the corresponding input is a single-

tone exactly at the center frequency of fs/4 (47). With bandpass DSM and this

stimulus, a constant phase modulation term  in (68) and (73) of the value 2/4

was needed to properly match the simulated results.

The pattern noise graphs for band-pass DSM can be seen in Fig. 25. In Fig.

25a, we have the cumulative in-band DSM modulation noise as a function of

amplitude along with the estimate by (68) in Fig. 25b. In Fig. 25c the graph is for

cumulative in-band mismatch noise for a 4th order DSM attached to a DWA-DAC.

As in the previous example, the DNL noise shape was set on a first-order

polynomial. The corresponding estimate by (73) can be seen in Fig. 25d. As the

shaping order is one, L (72) in was set to one as well.
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Fig. 25. Pattern noise graphs for band-pass DSM: a) modulation noise for 1-bit DSM,

simulated, b) modulation noise for 1-bit DSM, estimated, c) mismatch noise for 3-bit

DWA, simulated and d) mismatch noise for 3-bit DWA, estimated.

6.5.3 Performance estimates for DSM and DWA

To estimate SNDR/SFDR versus single-tone amplitude, the quantizer noise

estimate in (68) will be filtered by the corresponding NTF and summed with the

stimulus. Initially, for a first order DSM, it was found that the estimate was not

quite spot-on. Increasing the number of estimated spurs from 100 to 1000 did not

change the estimation results. The experimental phase term  in (68) was found to
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be the key solution. Instinctively, this term has to be attached to both the stimulus

and the DSM. The quantizer gain is a parameter that fits this description.

For this purpose, the quantizer gain estimate is generated with one simulation

by exciting a DSM with a slowly changing input signal. Being a statistical

quantity, the quantizer gain is generated e.g. once every 2048 samples. After

covering the whole input range, the quantizer gain k as a function of instantaneous

input level (Fig. 26) is then fitted to a 6th order polynomial kp. The order 6 was

chosen as a compromise between polynomial simplicity and small residual error.

Fig. 26. The quantizer gain as a function of instantaneous DSM input u.

The polynomial fit kp was then used to obtain a phase modulation term  in (68)

as:

n= (1-kp(n))·2 (79)

For instance, kp varying from 1.3 to 2.3 causes a phase shift of 2. Using the

estimate (79) in (68), the tone prediction model is very precise for a first order

DSM. An example is shown in Fig. 27, where we have two SNDR and two SFDR

graphs along with their estimates. The graphs in Fig. 27 are for single-tone inputs

with the same amplitudes and frequencies but 90° phase difference. These stimuli

are here named as “input 1” and “input 2”. Here, the 1-bit DSM has an OSR of 32

and the frequency is ca fb/16, where fb is the band of interest.
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The subtle difference in stimuli causes clearly observable difference in-band

cumulative noise and maximal spurious level. This difference is remarkably well-

predicted by the time domain estimator (68) with phase modulation (79). The

single-tone frequency is defined by (56) with parameters J and M as 127 and 217,

respectively. 

Fig. 27. Performance graphs for 1st order, 1-bit DSM: a) SNDR for input 1, b) SFDR for

input 1, c) SNDR for input 2 and d) SFDR for input 2. Revised from [IV]. ©[2011] IEEE.

With the aforementioned parameters, the graphs for “input 1” are clearly non-

monotonic. This kind of non-monotonic curve was also presented in the paper by

Candy & Benjamin [13]. For single-tone inputs they concluded the following:
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Complete graphs of the resolution would be tedious to calculate; they are
better obtained by simulation.

The proposed time-domain model enables an accurate computer-aided numerical

solution to the noise and spur contents in the band-of interest. Using this model, an

analytical solution would be very complicated, especially with the phase term . In

the end, the solution would be totally stimulus-dependent.

The prediction results in Fig. 27 are promising. However, the phase

modulation term in (79) is an adequate add-on only for first order DSMs (referring

to the shaping order). To expand the estimation accuracy to higher order DSMs, it

is required that the quantizer noise estimate has to be somehow scrambled

according to the order of the DSM. Some scrambling ideas were tested, e.g. by

iteratively generating more spurious tones by assigning the previous spur estimate

as an input to (68). This method tends to mimic the way the quantizer noise is

mixed with the stimulus in the DSM feedback loop. So far, an accurate method has

not been found. Perhaps the phase modulation term modified for higher order

DSMs is the solution.

For a second order band-pass DSM with N-path transformation (z  -z2), the

tone estimation should be accurate just as it was for a first order DSM. The

problem here is to determine the quantizer gain as the input signal is near fs/4. A

reasonably well in-band spurious tone prediction results were obtained by using

the value of  for low-pass case (with the quantizer gain model) and modifying the

values by following transformation:

. (80)

The results are shown in Fig. 28. As a reference, a linear fit is also included in Fig.

28. Here, the single-tone frequency is defined by (56): {J,M}= {127, 217}. Again,

L in the attenuation factor (70) was set to one.

 n  2 n  2
4

------+
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Fig. 28. Simulated, estimated and fitted performance graphs for 1-bit 2nd order band-

pass DSM: a) SNDR b) SFDR, and the residual errors c) SNDR estimate residual and d)

SFDR estimate residual. Revised from [IV]. ©[2011] IEEE.

For DWA, the performance prediction with a single-tone stimulus also works quite

well. Here, we have a second order low-pass DSM connected to a DWA with 7

unit DACs. The DNL shape is linear (first order polynomial) with  of 1%. Again,

the single-tone frequency is defined by (56): {J,M}= {127, 217}.

The similarity with a first order 1-bit DSM suggests that the phase modulation

term for the DSM is required. As for the DSM, the quantizer gain polynomial

(needed for the phase modulation term ) was used for DWA. The quantizer gain is

not an obtainable parameter for the DWA system, so a first order 1-bit DSM

quantizer gain polynomial was used. 

-40 -30 -20 -10 0
-10

0

10

20

30

40

50

a)
input amplitude level (dB)

S
N

D
R

 (
d
B

)

simulated

estimated
linear fit

-40 -30 -20 -10 0
-3

-2

-1

0

1

2

3

4

span {est/lin}= {4.2,5.7} dB

input amplitude level (dB)

dB

-40 -30 -20 -10 0
0

10

20

30

40

50

60

b)
input amplitude level (dB)

S
F

D
R

 (
dB

)

-40 -30 -20 -10 0
-5

0

5

span {est,lin} = {5.6,8.3} dB

input amplitude level (dB)

dB

linear fit
estimated

linear fit
estimated

c) d)

simulated

estimated
linear fit



99

In Fig. 29, only the mismatch noise contribution was taken into account,. The

term SFDRDWA in Fig. 29b is the signal to maximal in-band DAC-mismatch

spurious tone power ratio. As can be seen in Fig. 29b, the model is very accurate in

predicting the maximal in-band spurious tone.

Here, the time domain model with N = 7 only accommodates three dominant

spurious tones (75) and thus omits the DSM related excess mismatch noise. This

was also apparent in dc-tests (Fig. 24a). Therefore, the signal-to-mismatch-noise

ratio (SMNR) estimate is slightly too optimistic, as shown in Fig. 29a (especially

at larger amplitudes).

Fig. 29. Mismatch noise performance merits: a) SMNR and b) SFDRDWA.

The proper scaling for the input to the polynomial is as follows. If an input signal u

is normalized to ±1 full scale, the scaling of u for the quantizer gain polynomial kp

is:

u(u + 1)/4. (81)

The reasoning for the scaling in (81) is as follows. The input to the DWA

algorithm is in signed integer format: a sinusoid (plus modulation noise) with

offset and maximum magnitude equal to N·0.5. The scaled result by (81) is the

stimulus, whose maximum span is normalized by N: between 0 and 0.5.

As a conclusion to this Section, to estimate the performance of DSM or DWA

very accurately requires phase modulation term . The solution for  (79) has been

determined heuristically. This solution, (including the band-pass and DWA

adaptations) is quite interesting and requires further analytical rationalization. 
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6.6 Summary

This Chapter introduced a frequency modulation based tone prediction model for

both Delta-Sigma modulators and DWA-DAC. In Papers III-IV, the model is used

for tone prediction. This is true, but in a wider sense the model attempts to explain

the quantization noise or unshaped mismatch noise. 

The common model for both systems reveals a profound parallelism between

first order 1-bit DSM and N-level DWA-DAC. This duality has been reported

previously, and it can be discovered e.g. by dc-simulations.

For first order DSMs (and second order band-pass DSMs), the quantizer noise

prediction model is very accurate. Excellent accuracy for non-dc stimuli requires

the use of a phase modulation term, which is related to the instantaneous quantizer

gain of a first order low-pass DSM. This signal-dependent modulation term is

extendable to second order band-pass DSM and the generalized DWA.

For DSMs in general, the expected tone frequencies and magnitudes can be

predicted for any DSM order by the proposed model. The problem of predicting

quantizer noise whiteness, however, still remains. For higher DSM orders, the

model needs a signal-dependent parameter that would properly scramble the

quantizer noise. 

The time-domain model reveals that the DWA-DAC related spurious tones

can be manipulated with the shape of the DAC mismatch error. The even-order

Fourier coefficients of the DAC’s differential nonlinearity error vector are the key

factors in estimating the magnitudes of these tones. The errors are usually

unknown, but by permuting the DAC-elements a favorable error shape can be

found. The permutation approach would be a DWA tone cancelation variant that

does not have the trade-off between the in-band spurious tones and the noise floor.

The realization is discussed in Sect. 7.3.

Both time-domain models are published at the Matlab Central File Excange3,

under the title “Delta Sigma converter spurious tone predictor”.

3.http://www.mathworks.com/matlabcentral/fileexchange/?term=authorid:17648
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7 Conclusions

7.1 Summary

The complexity of spectral shaping DEM logic increases quite rapidly as the order

of shaping is increased: parallel computing may be needed. This is why first-order

shaping is the most common solution in practical applications. Realizations of

DEM methods are prone to spurious tones and therefore dither-like solutions are

quite popular amongst them. The most popular DEM method, DWA, is one of the

main subjects of this thesis.

In Chapter 4 and Paper I, the traditional data weighted averaging technique

was generalized to include the shaping function 1 ± z-D. This is justified by the fact

that such a generic model is realizable and maintains the simple barrel-shifter

based operation for the DWA algorithm. This generalization integrates some

former publications on band-pass DWA variations. In the author’s view, the work

on generalizing DWA is helpful in understanding the variations in DWA spectral

shaping and hopefully in creating new tone-suppression methods.

The qualification approach presented in Chapter 5 and Paper II proposed a

simulation-based methodology for evaluating DAC mismatch shaping logic. The

advantage of the approach is that different methods are more easily comparable

with repeatable and extensive simulation setups. An important point in the

qualification approach is the discussion on the number and types of parameter

sweeps that are required to obtain a reliable result. 

The spurious-tone models from both DSM and DWA were proposed in

Chapter 6 and Papers III-IV. The time-domain models are similar in their behavior

and they also predict the spurious tones quite accurately with any stimulus. For

DWA, the tones are correlated with the input signal just as for DSM, but the shape

of the mismatch (DNL error) is also significant. So far, the noise models are very

accurate for first-order noise shaping (DSM or DWA) functions 1-z-1 and 1+z-2.

7.2 Discussion

The generalization of the DWA algorithm and the qualification method, along with

the time-domain mismatch noise model, provide a convenient set of design tools.

These enable studying existing DWA variants in a broader perspective, also for

both low-pass and band-pass DSMs.
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For qualifying and comparing DAC mismatch shaping methods in necessary

scope, the thesis proposed a reasonably rapid and easily repeatable behavioral

simulation scheme. The point of this work was to clarify (without pointing fingers

to any publication) that to qualify a DEM method is not possible with one fixed

amplitude, frequency or mismatch shape. The challenge addressed in this work

was in the random shape of the static mismatch. Other DAC non-idealities, such as

mismatch based timing errors [78] have been omitted.

The time-domain noise contribution model enables predicting the tonality

with an arbitrary stimulus. A good example of utilizing the model is the proposed

idea of DWA tone cancelation by unit-DAC DNL-shape permutations. 

The thesis also omitted a wide range of behavioral challenges that are apparent

in DS ADCs, where the imprecise parameters for the analog part should be taken

into account. This would require a DSM model with the presence of at least

thermal noise, OpAmp nonlinearities and clock jitter. An example of an impressive

simulator model was provided for SIMULINK by Malcovati, who is also the co-

author of the related publication [79]. The author’s contribution to this field was a

lookup-table based integrator settling error model that can be modeled e.g. in

SIMULINK [80].

7.3 Future work

Tone prediction from the time-domain model needs to be refined to cover different

types of DSM. The following age-old question need to be reflected upon with the

model: How to predict the true nature of the quantization noise? Whether the

quantization noise has a white power spectral density or not depends mainly on

– the stimulus

– the noise shaping properties of the DSM.

Although this work did not find a sufficiently accurate quantizer noise model for

higher order DSMs, the quantizer and mismatch noise models are capable of

predicting the spurious tone frequencies with basically any stimulus. An important

finding was utilizing the phase modulation term  in the prediction. This term is

based on the estimation of instantaneous quantizer gain. So far,  requires

analytical rationalization on why and how it works. The phase term could be key

to developing an accurate time-domain quantizer noise model for higher order
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DSMs (or DEM methods). This would be the long-sought model that is able to

describe DSM quantizer noise behavior. 

The generic DWA was realized on a Xilinx FPGA board in 2009 by Janne A.

Raappana and tested with analytical DNL shapes (not a real DAC). For the

generalized form DWA-DAC algorithm, it was found that the shape of the

mismatch DNL error is essential regardless of the low-pass or band-pass

configuration. With the accurate tone predictor, the tone minimization based on the

permutation method was discovered found quite easily. To realize such a

permutation requires a study of whether it should be done initially or repeatedly to

cope with varying DNL error. The permutation itself can be realized by a simple

butterfly network.

The DEM characterization (referred to “qualification” in Paper II) is a

contribution that proposes a unified approach to benchmarking the performance of

DAC mismatch shaping methods. A convenient evolution would be to find an

optimal small set of DNL error shapes (or even one single shape).
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