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Abstract

In this thesis, we study an isolated vortex in an s-wave superconductor by solving
the Bogoliubov-de Gennes equations self-consistently on a disc. We calculate
the order parameter and supercurrent profiles, as well as the distribution of
quasiparticle states. In contrast to quasi-classical treatments, the ratio ∆∞/EF
between the order parameter and the Fermi energy is not assumed negligible.
We study a regime where this ratio is on the order of 10−1, relevant to high-
temperature superconductors. In this regime, we find a Friedel-like oscillation in
the order parameter profile at low temperatures. This oscillation is attributed
to an increased level spacing of the quasiparticle states, causing a decrease of
the number of states present inside the superconducting energy gap. The results
are in good agreement with previously published works. In future studies, the
method used in this thesis will be generalized to d-wave superconductors.

Sammanfattning

I detta examensarbete studeras en ensam virvel i en s-vågssupraledare genom att
självkonsistent lösa Bogoliubov och de Gennes’ ekvationer på en cylinderskiva.
Vi beräknar ordningsparameter- och superströmsprofiler, samt fördelningen av
kvasipartikeltillstånd. Till skillnad från i kvasiklassiska metoder så antas inte
kvoten ∆∞/EF mellan ordningsparametern och Fermi-energin vara negliger-
bar. Vi studerar en regim där denna kvot är av storleksordningen 10−1, vilket
är fallet i högtemperatur-supraledare. Vid låga temperaturer finner vi i denna
regim en Friedelliknande oscillation i ordningsparameterprofilen. Denna oscilla-
tions förklaras genom att separationen mellan kvasipartikeltillstånd ökar, vilket
får som effekt att färre tillstånd ryms innanför det supraledande energigapet.
Våra resultat överensstämmer väl med tidigare publicerade artikler. I framtida
studier kommer metoden vi använder i detta examensarbete att generaliseras
till d-vågssupraledare.
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1 Introduction

One of today’s major unsolved problems in condensed matter physics is to ex-
plain the mechanism responsible for high temperature superconductivity, first
observed in 1986 [1]. Much effort has been dedicated to determining the symme-
try of the superconducting order parameter, since this would narrow the field
of possible mechanisms [2]. The cuprates have been shown to have a d-wave
symmetry [3, 4].

High-Tc superconductors are type II and thus form vortices. The spectrum of
low-energy excitations in a vortex core has been described by Caroli et al. [5].
However, their predictions do not agree with experiments on cuprates [6]. In
an attempt to theoretically explain the experimental results, it has been quasi-
classically shown [7] that a d+ ip vortex state can stabilize in a high-Tc super-
conductor. However, the angular momentum quantization predicted by Car-
oli et al. [5] cannot be observed in a quasi-classical regime. This means that in
order to quantitatively compare these results to experiments, the same type of
states should be found by solving the Bogoliubov-de Gennes (BdG) equations:
a fully quantum mechanical procedure. To prepare for such a study, in this
thesis we solve the BdG equations in an s-wave superconductor by following
Gygi and Schlüter [8]. We calculate the order parameter and supercurrent pro-
files, and look at the energy and spatial form of some low-lying quasiparticle
states. Finally, we study the low-temperature limit of the system, explained in
section 3.3.2. In future works, the developed model may be generalized to d- [9]
or d+ ip-states.

The structure of the thesis is as follows. Chapter 2 deals with the theoretical
background and introduces all the terminology needed to understand the above
paragraphs. We start with a short review of concepts and superconducting
phenomena relevant to this thesis. A proper discussion of the basics of super-
conductivity can be found in the literature, for example in Tinkham [10]. We
continue with a detailed derivation of the BdG equations from the BCS the-
ory in section 2.2, and the gap equation is derived and explained. Finally, we
take a closer look at quasiparticles and investigate flux quantization. Chap-
ter 3 details the mathematics involved in translating the BdG equations into a
numerical model, and replicates some known results of s-wave superconductors.

The reader is assumed to be familiar with basic solid state physics to the level
of Ashcroft and Mermin [11]. To understand the background and some of the
calculations it is helpful to have some knowledge of mean field methods and
second quantization. We use units in which ~ = kB = 1; temperature, frequency
and energy thus have the same dimensionality.
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2 Superconductivity: an overview

Here, we give the necessary theoretical background. We begin with a very brief
review of superconductivity, primarily intended to introduce terminology and
concepts. The focus here is on properties of superconductors when a magnetic
field is applied. A derivation of the BdG equations and the gap equation follows,
and flux quantization is discussed.

2.1 Basic concepts

A superconductor is a material that, below a certain temperature (the critical
temperature Tc), displays a vanishingly small electrical resistance. Such a ma-
terial was first observed in 1911 by the Dutch physicist Kamerlingh Onnes [12],
when he measured the resistance of a solid mercury wire cooled below 4.2 K.

This phenomenon was not understood until the late 1950’s, when the Bardeen-
Cooper-Schreiffer (BCS) theory [13] explained superconductivity through the
formation of Cooper pairs. At or below the critical temperature, electrons near
the Fermi surface are coupled together into pairs by the lattice vibrations [14]. In
other words, the electron-electron interaction is phonon-mediated. This boson-
like state is called a BCS-condensate and is similar to the superfluid state of an
interacting boson gas; a connection which is explored by Bogoliubov et al. [15].

One central result in the BCS theory is that, as a material transitions into
the superconducting state, a temperature-dependent energy gap 2∆∞(T ) opens
up. Furthermore, for weak interaction superconductivity BCS showed that
∆∞(0) = 1.76 Tc; a quantitative result in good agreement with experimental
data for many different materials.

Before the BCS theory, Landau and Ginzburg argued [16] that the free energy
of a superconductor can be expressed as a function of a complex pseudo-wave
function ψ, related to the density of superconducting electrons as |ψ|2 = ns. The
energy gap is allowed to vary spatially and plays the role of an order parame-
ter [10], proportional to ns. Gor’kov [17] has shown that the two descriptions
of superconductivity are consistent with each other.

The azimuthal quantum number l [18] of the Cooper pair names the “wave”
character of the superconductor [19]; an s-wave superconductor has l = 0,
etc. The spin quantum number S also comes into play; s- and d-wave are
spin singlet states while the p-wave is a spin triplet. We recall that since we
deal with fermions, the two-particle wave function of a Cooper pair has to
be anti-symmetric. There is then only one possibility for S = 0: the state
2−1/2

(
|↑↓〉 − |↓↑〉

)
. This is the spin singlet. In contrast, for S = 1 we have the

3



4 2. Superconductivity: an overview

three possibilities |↑↑〉, 2−1/2
(
|↑↓〉+ |↓↑〉

)
and |↓↓〉 with z-projections Sz = 1, 0

and −1 respectively. Application of a magnetic field lifts the degeneracy of the
triplet; we may think of a p-wave superconductor as having magnetic Cooper
pairs.

Historically, it was believed that Tc could be no higher than ≈ 30 K. Supercon-
ductors whose critical temperature does in fact exceed this are called high-Tc. In
such, Cooper pair formation has to be mediated by some other mechanism than
phonons. Exactly how this mechanism looks is an active field of research. One
possibility is that the electrons are coupled together by spin fluctuations [20].
These can be anti-ferromagnetic, leading to a d-wave order parameter, or ferro-
magnetic, leading to a p-wave order parameter [2].

High-Tc materials include iron-based superconductors with critical temperatures
around 40 − 50 K [21] as well as copper-oxide based materials (cuprates). Be-
cause of their early emergence and high critical temperature – above the boiling
point of nitrogen at atmospheric pressure – much research has been devoted to
cuprates. They have been shown [3, 4] to have predominantly dx2−y2-symmetry,
possibly with s- or p-wave components mixed in.

2.1.1 Applied magnetic field

Below the critical temperature, superconductivity can be destroyed by the ap-
plication of an external magnetic field. This phase transition from the super-
conducting state to the normal state can be either of first or second order. This
gives rise to two types of superconductors, referred to as type I and type II
corresponding to the order of the phase transition. Most pure metals are type I;
all high-Tc superconductors are type II.

A property of type I materials is the Meissner effect [11]; if the superconductor is
placed in a magnetic field smaller than the material-specific critical field Hc(T )
it acts as a near-perfect diamagnet. The magnetic flux inside the superconductor
decreases as e−r/λ where r is radial distance measured from the edge of the solid
and λ is called the penetration depth. If the magnetic field is increased past
Hc(T ), the superconductor transitions into the normal state.

In type II superconductors, the Meissner effect is incomplete and magnetic flux
does penetrate, as investigated by Abrikosov [22]. When a magnetic field below
the lower critical field Hc1(T ) is applied on a type II superconductor, it acts
like a type I material and expels all magnetic flux. If the field in increased
past Hc1(T ), a mixed state is formed. In this state, normal regions which admit
magnetic flux are surrounded by superconducting regions. As the magnetic field
is increased, the fraction of volume occupied by normal regions increases. When
the upper critical field Hc2(T ) is reached, superconductivity is destroyed. As
shown in section 2.2.4, the requirement that the order parameter is single valued
leads to flux quantization; the normal regions in a type II superconductor only
admit certain values of magnetic flux.

One can show [16] that the surface energy of an interface between the super-
conducting and the normal state of a material is positive for type I materials
and negative for type II. In other words, in a type II superconductor it is ener-
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getically preferable to form normal domains which admit magnetic flux, rather
than to expel all magnetic flux. Away from the interface, the superconducting
phase has a lower energy than the normal phase. It follows that the domains
that minimize energy are those with the greatest surface to volume ratio, such
as long, thin cylinders. In analogy with the superfluid case these filaments are
called vortex lines, and form a regular lattice. A triangular lattice has the lowest
energy, but the symmetry can be altered by inhomogeneities in the material.

The Ginzburg-Landau (GL) theory introduced an additional characteristic
length scale: the coherence length ξ. Qualitatively, we may view λ as the length
scale over which the magnetic field in the solid changes appreciably and ξ as
the length scale over which the order parameter changes. Both λ and ξ depend
on temperature in the same way; the temperature-independent ratio κ = λ/ξ is
called the Ginzburg-Landau parameter. Superconductors where κ > 1/

√
2 are

type II [22], and those with κ < 1/
√

2 are type I.

2.2 From BCS to BdG

The BCS theory is not ideally suited for a treatment of type II superconduc-
tors with vortices present. Instead, we will use the Bogoliubov-de Gennes (BdG)
equations, a superconducting analogue of the Schrödinger equation. This deriva-
tion of the BdG equations follows de Gennes [23]. Here, we deal with s-wave
superconductors; for other pairing symmetries the coupling “constant” g carries
a k-dependence.

In pure materials, the wave vector k is a good quantum number. In the BCS
one thus uses the pairing Hamiltonian

HBCS =
∑
kσ

c†kσH
′
0ckσ − g

∑
k,l

c†k↑c
†
−k↓c−l↓cl↑ (2.1)

Here c†kσ (ckσ) are creation (annihilation) operators for electrons with momen-
tum k and spin σ. In all sums over k there is a cut-off implied to prevent
divergence; we sum only over states such that the energy |Ek| < ωc. BCS
chose this cut-off to be the Debye frequency; since the Cooper pair formation is
phonon mediated this is physically motivated. As we shall see in section 3.1.1,
our results do not depend on the exact value of the cut-off frequency, so we will
not specify it further.

We see that the pair interaction term with coupling constant g > 0 scatters a
pair of electrons from the state |l ↑,−l ↓〉 to the state |k ↑,−k ↓〉. H ′0 is the
one-particle Hamiltonian

H ′0 =
1

2m

(
−i∇− e

c
A(r)

)2
− EF (2.2)

with magnetic vector potential A(r). Note that the subtraction of the Fermi
energy EF means that the eigenvalues of this operator are energies measured
relative to EF .
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2.2.1 The Bogoliubov transformation

In a material with impurities or other spatial inhomogeneities, k is not a good
quantum number and we must find another way to model the situation. To in-
clude such effects, we add an external potential U(r) to the one-particle Hamil-
tonian:

H0 =
1

2m

(
−i∇− e

c
A
)2

+ U(r)− EF . (2.3)

Next, we form position-dependent field creation and annihilation operators:

ψ†σ(r) =
∑
k

ζ∗k(r)c†kσ,

ψσ(r) =
∑
k

ζk(r)ckσ. (2.4)

The field operators creates (annihilates) a particle at position r, which has
momentum k with probability |ζk|2. As always, we may view the annihilation
of electrons as creation of holes instead.

De Gennes [23] uses exponential functions eik·r for the coefficients ζk(r), but any
complete, orthonormal set of functions will do, with the added condition that
ζ∗−k(r) = ζk(r). This is because of that annihilating a particle with momentum
k has the same effect on the total momentum of the field as creating a particle
with momentum −k.

Using ζk(r) = 〈r | ζk〉 and the resolution of identity 1 =
∑

k |ζk〉 〈ζk|, it is
straight-forward to show that the field operators satisfy the regular fermion
commutation relations. That is,[

ψ†σ(r), ψτ (r′)
]
+

= δστ δ(r− r′) (2.5)

and all other anticommutators zero. Here, δ is used both for the Kronecker
delta and Dirac’s delta-function; the ambiguity is cleared up by the indicies or
arguments.

We wish to invert the relations (2.4) to enable direct substitution into equa-
tion (2.1). To accomplish this, multiply ψσ(r) with ζ∗k(r) = 〈ζk | r〉 and integrate
over r: ∫

dr ζ∗k(r)ψσ(r) =
∑
k′

∫
dr 〈ζk | r〉 〈r | ζk′〉 ck′σ

=
∑
k′

〈ζk | ζk′〉 ck′σ = ckσ (2.6)

since 1 =
∫

dr |r〉 〈r| and 〈ζk | ζk′〉 = δkk′ . Analogously, we find that

c†kσ =

∫
dr ζk(r)ψ†σ(r). (2.7)

Before substituting we simplify the interaction term

−g
∑
k,l

c†k↑c
†
−k↓c−l↓cl↑ (2.8)
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by a mean field assumption. Instead of scattering a Cooper pair labeled by l into
that labeled by k, we simply destroy the l-pair and create the k-pair, averaging
out the interaction. The sum (2.8) becomes

−g
∑
k,l

[
〈c†k↑c

†
−k↓〉c−l↓cl↑ + c†k↑c

†
−k↓ 〈c−l↓cl↑〉

]
. (2.9)

Since there is no longer any interaction between the annihilated and the created
pair, particle number is not necessarily conserved. We think of the pairs as
coming from or joining a many-particle condensate acting as a reservoir.

We note that 〈c†k↑c
†
−k↓〉 = 〈c−k↓ck↑〉∗, and define

∆(r) = −g
∑
l

〈c−l↓cl↑〉 = −g 〈ψ↓(r)ψ↑(r)〉 = g 〈ψ↑(r)ψ↓(r)〉 . (2.10)

Relabeling the summation indicies k → l and l → k in the first term of (2.9),
we find ∑

k

[
∆∗(r)c−k↓ck↑ + ∆(r)c†k↑c

†
−k↓

]
. (2.11)

Substituting equation (2.4) in equation (2.1) with the second sum replaced by
(2.11), we arrive at the effective Hamiltonian

Heff =

∫
dr
[
ψ†σH0ψσ + ∆ψ†↑ψ

†
↓ + ∆∗ψ↑ψ↓

]
. (2.12)

Summation over repeated spin indicies σ is implied and the r-dependence of
the operators has been suppressed for readability. This is a quadratic form in
ψσ and ψ†σ, and it is a result of elementary linear algebra that any quadratic
form can be diagonalized by performing a unitary transformation [24].

To this end, we write

ψ↑(r) =
∑
n

(
γn↑un(r)− γ†n↓v

∗
n(r)

)
,

ψ↓(r) =
∑
n

(
γn↓un(r) + γ†n↑v

∗
n(r)

)
. (2.13)

γ†nσ and γnσ are creation and annihilation operators for excitations in the super-
conductor, which we call quasiparticles. We shall return to these in section 2.2.2.

We demand that γnσ, γ†nσ satisfy fermionic commutation relations:[
γ†mτ , γnσ

]
+

= δmnδστ , [γnσ, γmτ ]+ =
[
γ†nσ, γ

†
mτ

]
+

= 0. (2.14)

We require that equation (2.13) diagonalizes the Hamiltonian, that is,

Heff = EG +
∑
nσ

Enγ
†
nσγnσ (2.15)

where EG is the ground state energy and En the energy of the n:th excitation.
It is possible to obtain this result by brute force: substitute (2.13) in (2.12),
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simplify the expression using the commutations relations (2.14) and fix un and
vn by requiring that the coefficients of any off-diagonal terms are zero. This is
extremely tedious, and a more elegant solution is the following.

We use equation (2.13) and (2.15) to calculate the commutators

[Heff , γnσ] = −Enγnσ,[
Heff , γ

†
nσ

]
= Enγ

†
nσ. (2.16)

If we instead use Heff in the form (2.12) and the anticommutation properties
of ψσ, we can calculate

[ψ↑(r), Heff ] =

∫
dr ′

([
ψ↑(r), ψ†σ(r′)H0ψσ(r′)

]
+

[ψ↑(r),∆(r′)ψ†↑(r
′)ψ†↓(r

′)] + [ψ↑(r),∆∗(r′)ψ↑(r
′)ψ↓(r

′)]

)

=

∫
dr ′

(
δ(r− r′)H0ψ↑(r

′) + ∆(r′)δ(r− r′)ψ†↓(r
′) + 0

)
= H0ψ↑(r) + ∆(r)ψ†↓(r). (2.17)

Analogously, we find that

[ψ↓(r), Heff ] = H0ψ↓(r)−∆(r)ψ†↑(r). (2.18)

Now we wish to substitute equation (2.13) on both sides of equations (2.17)
and (2.18). However, both equations turn out to give the same end result, so if
suffices to deal with one of them.

With the help of equation (2.16), the left hand side of equation (2.17) becomes

[ψ↑(r), Heff ] =
∑
n

(
[γn↑, Heff ]un(r)− [γ†n↓, Heff ]v∗n(r)

)
=
∑
n

(
Enun(r)γn↑ + Env

∗
n(r)γ†n↓

)
(2.19)

and the right hand side is

H0ψ↑(r)+∆(r)ψ†↓(r) =
∑
n

(
(H0un + ∆vn)γn↑ + (−H0v

∗
n + ∆u∗n)γ†n↓

)
. (2.20)

Equating the coefficients of γn↑ and γ
†
n↓ in equations (2.19) and (2.20), we find

that we have derived the Bogoliubov-de Gennes equations:

H0un(r) + ∆(r)vn(r) = Enun(r)

−H0vn(r) + ∆∗(r)un(r) = Envn(r) (2.21)

where we have conjugated both sides of the second equation, using that H0 is
Hermitian.
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It is instructive to rewrite equation (2.21) in matrix form:(
H0 ∆
∆∗ −H0

)(
un
vn

)
= En

(
un
vn

)
. (2.22)

We see that the coefficient matrix is Hermitian; it follows that the different
eigenvectors (un, vn) can be chosen to be orthonormal [24].

2.2.2 Quasiparticles

We will now look closer at the quantities un(r) and vn(r); it is high time to
consider what these abstract quasiparticles actually are.

From equation (2.13), we form the quantity∫
dr
(
u∗nψ↑ + v∗nψ

†
↓

)
=
∑
m

∫
dr
(

(u∗num + v∗nvm) γm↑ + (v∗nu
∗
m − u∗nv∗m) γ†m↓

)
,

(2.23)
and using the orthogonality relations [25]∫

dr (u∗num + v∗nvm) = δmn∫
dr (v∗nu

∗
m − u∗nv∗m) = 0 (2.24)

we find the inverted definition

γn↑ =

∫
dr
(
u∗nψ↑ + v∗nψ

†
↓

)
. (2.25)

Similarily

γn↓ =

∫
dr
(
u∗nψ↓ − v∗nψ

†
↑

)
. (2.26)

Remembering the definition (2.4) of the field operators, we now see that the
quasiparticles created by γ†nσ are superpositions of c†kσ and ckσ. That is, the
quasiparticles are superpositions of electron and hole states. The amplitude un
(vn) indicate the probability of an excitation being in an electron-like (hole-like)
state.

We will now derive explicit expressions for the quasiparticle amplitudes and the
excitation energies En. We use equation (2.22), and assume zero magnetic field.
The operator H0 is replaced with its eigenvalue ξn: by setting ∆ = 0 we see
that ξn is the energy of the n:th excitation in the normal state. The eigenvalue
problem (2.22) then has the characteristic equation

0 =

∣∣∣∣ ξn − En ∆
∆∗ −ξn − En

∣∣∣∣ = −ξ2n + E2
n − |∆|2, (2.27)

so the eigenvalues are – neglecting the negative root – En =
√
ξ2n + |∆|2.

We recall that in the BCS theory, ∆ is constant: it immediately follows that
Emin = |∆| as expected.
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Figure 2.1: Plot of the amplitudes determined in equation (2.30), illustrating
the different regimes of hole-like and electron-like behaviour.

To find the eigenvectors, we look at the second row in equation (2.21):

−ξnvn + ∆∗un = Envn, (2.28)

or
vn =

∆∗

ξn + En
un. (2.29)

We multiply each side with its complex conjugate, replace |vn|2 with 1 − |un|2
(since the eigenvector (un, vn) was normalized) on the left hand side and solve
for |un|2. In the end, we find

|un|2 =
1

2

(
1 +

ξn
En

)
so |vn|2 =

1

2

(
1− ξn

En

)
, (2.30)

as plotted in figure. 2.1.

We note that En =
√
ξ2n + |∆|2 → |ξn| when |ξn| � |∆|. From equation (2.30)

we then see that, as ξn increases from −∞ through zero and to +∞, the cor-
responding quasiparticle changes from behaving completely like an electron, to
being an equal mixture of an electron and a hole, to behaving completely like
a hole. This means that interactions that change the value of ξ, like scattering
processes, will alter the physical characteristics of the quasiparticle.

Looking again at equation (2.21), by direct substitution we can show that if
(un, vn) is the eigenvector corresponding to the eigenvalue En, (−v∗n, u∗n) is the
eigenvector corresponding to −En. In light of the above discussion, we see that
this transformation means that for every quasiparticle with energy En in an
excited state above the Fermi surface, there is one with the opposite electron-
hole characteristic and energy −En below the Fermi surface. For the extreme
cases where either un or vn are close to zero, this is completely analogous to
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the particle-hole symmetry in a normal metal. We may view the paired ±En-
solutions as “positive” and “negative” quasiparticle excitations. For this reason,
we only consider the positive En from here on - we only look at the excitations
above the Fermi surface and obtain those below with a simple transformation.

2.2.3 The gap equation

From the definition (2.10) we may now explicitly calculate ∆. We will use the
mean value rules [23]

〈γnσγmτ 〉 = 0 and
〈
γ†nσγmτ

〉
= δnmδστf(En), (2.31)

where
f(En) =

1

1 + eEn/T
(2.32)

is the Fermi distribution. Substituting (2.13) in (2.10), we get

∆ = g

〈∑
m,n

(
γn↑un − γ†n↓v

∗
n

)(
γm↓um + γ†m↑v

∗
m

)〉

= g
∑
m,n

(〈
γn↑γ

†
m↑

〉
v∗mun −

〈
γ†n↓γm↓

〉
v∗num

)
= g

∑
m,n

(v∗numδmn(1− f(En))− v∗munδmnf(Em))

= g
∑
n

v∗nun(1− 2f(En))

= g
∑
n

v∗nun tanh

(
En
2T

)
. (2.33)

The factor tanh(En/2T ) is real, so we must have that the phase of ∆ is equal to
the phase of v∗nun. If the un are chosen real and positive, from equation (2.30)
we find

un =
1√
2

(
1 +

ξn
En

)1/2

, vn =
1√
2

(
1− ξn

En

)1/2

eiφ (2.34)

and ∆ = |∆|e−iφ. Then, v∗nun = ∆/2En. This result is general, and is valid
even if un is not chosen real. We thus arrive at the self-consistency equation for
the energy gap:

∆ = g
∑
n

∆

2
√
ξ2n + |∆|2

tanh

(√
ξ2n + |∆|2

2T

)
, (2.35)

or

1 = g
∑
n

1

2
√
ξ2n + |∆|2

tanh

(√
ξ2n + |∆|2

2T

)
. (2.36)
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This is the gap equation, to be solved self-consistently for ∆. In practise
we do this by relaxation; we guess a value of ∆, insert on the right side
of equation (2.35) and calculate a new value. This process is repeated until
∆old = ∆new.

The coupling constant g can be determined as follows: at T = Tc, ∆ = 0 and
En = ξn. We transform the sum in equation (2.36) into an integral, and find

1

g
=

∫ ωc

−ωc

dξ N(ξ)
1

2|ξ|
tanh

(
|ξ|
2Tc

)
.

= N(0)

∫ ωc

0

dξ
1

ξ
tanh

(
ξ

2Tc

)
. (2.37)

We have assumed that the density of states N(ξ) is slowly varying over the
integration interval, and thus factored out the constant N(0) – the density of
states at the Fermi surface. This integral can be solved exactly [10], and yields

1

g
= N(0) ln

(
2eγωc
πTc

)
≈ N(0) ln (1.13ωc/Tc) (2.38)

where γ is Euler’s constant, the three first digits of which are 0.577.

2.2.4 Flux quantization

One rather counter-intuitive phenomenon is the quantization of magnetic flux
inside normal regions surrounded by superconducting regions – which is exactly
what a vortex is. The existence of this phenomenon has been experimentally
verified since the 1960’s [26, 27].

We can understand this by looking at the definition of the magnetic flux through
a surface S:

Φ =

∫∫
S

dS ·B (2.39)

where B is the magnetic field. Using the definition B = ∇ × A and Stokes’
theorem, we may write the magnetic flux as

Φ =

∮
C

d` ·A, (2.40)

where the contour C is the boundary of S.

As is well known [28], the magnetic potential A is not unique: any gauge trans-
formation of the form

A′ = A +∇χ (2.41)

leaves the magentic field unchanged. One can show [23] that the eigenvalues of
the BdG equations (2.21) – and indeed all measurable quantities – are unchanged
by such a transformation, but the quasiparticles wave functions and the pair
potential are not. When replacing A with A′, the new pair potential is

∆′(r) = ∆(r)ei2eχ/~c. (2.42)
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Integration paths in a superconductor

C
1

C
2

vortex

Figure 2.2: The curve C1 shows a path in a region where B = 0. C2 encircles
the vortex but is far enough away from it so that B = 0 on C2.

In this section, we reintroduce ~ for clarity.

Physically, ∆(r) = |∆(r)|eiφ(r) must be single valued. This means that, for any
closed contour C, ∮

C

d` · ∇φ = 2πm, m ∈ Z. (2.43)

That is, the change in φ as we move around C must be an integer multiple of
2π. The gauge transformation (2.42) can also be written as φ→ φ+ 2eχ/~c; it
follows that

2e

~c

∮
C

d` · ∇χ = 2πn, n ∈ Z. (2.44)

Now, assume we place the surface S (in figure 2.2, ∂S = C1) deep inside a
superconductor where B = 0; by equation (2.39) then so is the magnetic flux
through S. If we instead choose S such that it is penetrated by a vortex line
(in figure 2.2, ∂S = C2) , the magnetic field will not be zero in all of S and the
flux is non-zero. We may, however, place the boundary C deep enough in the
superconductor so that B = 0 on C. It is then permissible to write the vector
potential A = ∇χ, and

Φ =

∮
C

d` ·A =

∮
C

d` · ∇χ =
~c
2e

2πn = Φ0n. (2.45)

In the last step we define the quantum of flux:

Φ0 =
2π~c

2e
=
hc

2e
. (2.46)

In real situations, each vortex almost always contains only one flux quantum.

With the theoretical background thus established, we now move on to the actual
solution of the Bogoliubov-de Gennes equation (2.21).
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3 The quasiparticle core states

In this chapter, we develop a numerical method for the solution of the BdG
equations near a vortex line. We work in the extreme type II-limit, in which
κ = λ/ξ � 1. As mentioned in section 2.1.1, the penetration depth λ is the
characteristic length scale for the magnetic field, and ξ is the characteristic
length scale for the order parameter. So if λ � ξ, the magnetic field will vary
very slowly compared to the order parameter. When looking at how the order
parameter changes, the magnetic field will then be a near-constant background
which we can ignore. In practise we drop A(r) from the BdG equations.

For this system, it is natural to work in cylindrical coordinates. We will model
a pure cylindrical superconductor with radius R and a single, isolated vortex
situated at r = 0. As we shall see it will suffice to solve for the r-dependence of
the order parameter and quasiparticle wave functions. The effect of the external
potential U(r) is included by shifting to an effective mass m∗.

3.1 Setting up the problem

To solve the BdG-equations numerically, we first wish to write them in a dimen-
sionless form. The characteristic parameters will be the zero-temperature value
of the superconducting coherence length: ξ0 = vF /∆∞(0), used as the unit of
distance, and the critical temperature Tc, used as the unit of energy. We define

x =
r

ξ0
, ∇2

x = ξ20∇2
r and E =

E

Tc
. (3.1)

Using that

Tc ' ∆∞(0) =
vF
ξ0

=
kF
m∗ξ0

, (3.2)

we get [29] the dimensionless BdG-equations(
−1

2kF ξ0
∇2 − EF

)
uk(x) + ∆(x)vk(x) = Ekuk(x),

−
(
−1

2kF ξ0
∇2 − EF

)
vk(x) + ∆∗(x)uk(x) = Ekvk(x) (3.3)

where the index k denotes all quantum numbers. With some abuse of notation,
∆ is now measured in units of Tc. It is easy to show that EF = kF ξ0/2. Next,

15
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we choose a separable form for the quasiparticle amplitudes:

uk(x) = unµu(r)eiµuθeikzz,

vk(x) = vnµv
(r)eiµvθeikzz (3.4)

where r and z are dimensionless coordinates. Since the quasiparticles are con-
fined to the superconductor, their amplitudes must vanish at the edge of the
superconductor where r = R: unµ(R) = vnµ(R) = 0. The angular momentum
quantum numbers µu and µv will depend on the properties of the superconduc-
tor, since

∆(x) = ∆(r)ei(µu−µv)θ with ∆(r) = |∆(x)|. (3.5)

In choosing the phase µu − µv of the order parameter we thus determine what
category of solutions to the BdG equations we look at. A real order parameter,
µu − µv = 0, describes a bulk superconductor, µu − µv = ±1 describes a vortex
containing one quantum of flux, and so on.

Expanding ∇2 in cylindrical coordinates, the exponentials cancel and we are
left with the following equations for r:[

−1

2kF ξ0

(
∂2

∂2r
+

1

r

∂

∂r
− µ2

u

r2
− k2z

)
− EF

]
unµu

+ ∆vnµv
= Enunµu

,

−
[
−1

2kF ξ0

(
∂2

∂2r
+

1

r

∂

∂r
− µ2

v

r2
− k2z

)
− EF

]
vnµv

+ ∆unµu
= Envnµv

. (3.6)

These equations can be rewritten as a matrix equation with the eigenvalue En
and the eigenvector being the spinor ψ = (unµu , vnµv ). Following Gygi and
Schlüter [8], we assume that the Fermi surface is cylindrical along the kz-axis,
in which case the quasiparticle motion will be in the plane and the k2z-term can
be dropped. This is applicable to, for example, the cuprate superconductors [30].

To solve equation (3.6), we make a series expansion of the quasiparticle ampli-
tudes unµu

and vnµv
:

unµu
(r) =

∑
j

cnjϕjµu
(r),

vnµv
(r) =

∑
j

dnjϕjµv
(r). (3.7)

where j runs from 0 to some N � 1. Since the problem has cylindrical sym-
metry, the natural choice of basis functions is the Bessel functions of the first
kind, normalized in a disc of radius R:

ϕjµ(r) = ϕjµ

(αjµ
R
r
)

=

√
2

RJµ+1(αjµ)
Jµ

(αjµ
R
r
)

(3.8)

where αjµ is the j:th zero of Jµ. Numerical values for these can be found in
Abramowitz and Stegun [31].

We note that the basis functions fulfill the boundary condition unµ(R) = vnµ(R) =
0 by construction. They also form a complete orthonormal set on [0, R]. That
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is, [28]

〈ϕjµ , ϕj′µ〉 =

∫ R

0

dr rϕjµ(r)ϕj′µ(r) = δjj′ . (3.9)

We can easily calculate the derivatives of the basis functions:

∂ϕjµ
∂r

=
αjµ
2R

(
ϕjµ−1

(αjµ
R
r
)
− ϕjµ+1

(αjµ
R
r
))

,

∂2ϕjµ
∂2r

=
(αjµ

2R

)2 (
ϕjµ−2

(αjµ
R
r
)
− 2ϕjµ

(αjµ
R
r
)

+ ϕjµ+2

(αjµ
R
r
))

. (3.10)

Here, we include the full argument of the Bessel function in the definition (3.8)
to emphasize that we will – where derivatives have been taken – encounter basis
functions on the form ϕjν(αjµr/R) where the order µ of the zero in the argument
differs from the order ν of the function.

The recurrence relations for successive Bessel functions [31] allow us to rewrite

ϕjν−1

(αjµ
R
r
)

+ ϕjν+1

(αjµ
R
r
)

=
R

αjµ

2ν

r
ϕjν

(αjµ
R
r
)
. (3.11)

With our collection of mathematical tools complete, we start with the first
equation of (3.6). We substitute the series expansion (3.7) and take the inner
product (as defined in equation (3.9)) with ϕj′µu(r).

We evaluate the integrals one by one. Performing the derivatives in the first one
and rearranging terms, we have

∑
j

cnj

∫ R

0

dr rϕj′µu

[
−1

2kF ξ0

(
∂2

∂2r
+

1

r

∂

∂r
− µ2

u

r2

)
− EF

]
ϕjµu

=

∑
j

cnj

∫ R

0

dr rϕj′µu

[(
1

2kF ξ0

(αjµu

R

)2 1

2
− EF

)
ϕjµu

− 1

2kF ξ0

(αjµu

R

)2
×

1

4

(
ϕjµu−2 + ϕjµu+2 −

R

αjµu

2

r
(ϕjµu−1 − ϕjµu+1)−

(
2R

αjµu

)2
µ2
u

r2
ϕjµu

)]
(3.12)

The first bracketed term is a constant and can be taken outside the integral.
In the second bracket, we remember that all the ϕjν have the same argument
αjµur/R, regardless of their value of ν. We use equation (3.11) to rewrite(

2R

αjµu

)2
µ2
u

r2
ϕjµu

=
R

αjµu

2µu
r

(ϕjµu−1 + ϕjµu+1) . (3.13)

Collecting terms and again making use of (3.11), the second bracket of equa-
tion (3.12) becomes

ϕjµu−2 +ϕjµu+2−
R

αjµu

2

r

(
(µu−1)ϕjµu−1 +(µu+1)ϕjµu+1

)
= −2ϕjµu

(3.14)
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and the whole expression is

∑
j

cnj

(
1

2kF ξ0

(αjµu

R

)2
− EF

)∫ R

0

dr rϕj′µuϕjµu

=
∑
j

cnj

(
1

2kF ξ0

(αjµu

R

)2
− EF

)
δjj′

= cnj′

(
1

2kF ξ0

(αj′µu

R

)2
− EF

)
. (3.15)

The second integral is

∑
j

dnj

∫ R

0

dr rϕj′µu
∆(r)ϕjµv

(3.16)

which cannot be solved without knowing something about ∆(r), and the right-
hand side is ∑

j

cnj

∫ R

0

dr rϕj′µu
Enµϕjµv

= cnj′En. (3.17)

In the same way, only taking the inner product with ϕj′µv (r) this time, the
second equation of (3.6) becomes

−dnj′
(

1

2kF ξ0

(αj′µv

R

)2
− EF

)
+
∑
j

cnj

∫ R

0

dr rϕj′µv
∆∗(r)ϕjµu

= dnj′En.

(3.18)
Since we get similar equations for each value of j′, we may gather the coefficients
in a vector Ψn = (cn,1, . . . , cn,N , dn,1, . . . , dn,N ) (that is, j = 1, 2, . . . , N) and
rewrite equations (3.6) as an eigenvalue problem:(

Tu D
DT −T v

)
Ψn = EnΨn. (3.19)

Tu,v is diagonal with elements

Tu,vjj =
1

2kF ξ0

(αjµu,v

R

)2
− EF , (3.20)

which we realize are the normal state-energies ξjµ, now in units of Tc. D has
elements

Dj′j =

∫ R

0

dr rϕj′µu
(r)∆(r)ϕjµv

,

DT
j′j =

∫ R

0

dr rϕj′µv (r)∆(r)ϕjµu . (3.21)

The eigenvalue equation (3.19) is central to the numerical solution. The process
is described in algorithm 2 in section 3.2.2
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Figure 3.1: Illustration of the divergence of ∆∞ with decreased ωc. The plots
have been shifted vertically for clarity: the dashed lines are the correspondingly
shifted BCS predictions.

3.1.1 Eliminating cut-off dependence

We note that the gap equation (2.35) diverges logarithmically with ωc. This
is undesirable, and we may avoid this difficulty by switching to an effective
coupling constant geff . We rewrite (2.36) as

1

g
−
∑
k

1

2ξk
tanh

(
ξk
2T

)
=
∑
k

1

2Ek
tanh

(
Ek
2T

)
−
∑
k

1

2ξk
tanh

(
ξk
2T

)
. (3.22)

Since Ek → ξk as k goes to infinity, the right-hand side of this expression con-
verges to zero. We transform the sums over ξk to integrals, and evaluate the
one on the left similarily to that in equation (2.37). Using the result (2.38), we
can then define

1

geff
= ln

T

Tc
+

∫ ωc

0

dξ
1

ξ
tanh

(
ξ

2T

)
(3.23)

Here, we have absorbed the factor N(0) in geff so that the coupling constant
is dimensionless. The self-consistency equation becomes

∆ = geff
∑
n

∆

2Ek
tanh

(
Ek
2T

)
, (3.24)

or, from equation (2.33),

∆ = geff
∑
k

ukv
∗
k tanh

(
Ek
2T

)
. (3.25)
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Figure 3.2: Convergence of ∆∞ calculated according to algorithm 1 as a function
of the number of iterations, for initial values ∆in = 1/2 and 2.

We still need to choose a cut-off energy ωc, but the sum over |Ek| ≤ ωc will not
depend on the exact value. We pay for this by limiting our model to tempera-
tures 0 < T/Tc < 1.

This procedure fails for very small values of ωc, since ln(T/Tc) < 0. The sum
in equation (3.23) only runs over |ξk| < ωc, so a small enough ωc might give a
negative effective coupling constant. In figure 3.1, the order parameter magni-
tude as calculated in section 3.2.1 is shown as a function of cut-off frequency.
We see that we do indeed get a divergence where ∆∞ is overestimated if ωc
is chosen too small. For large kF ξ0, reasonable agreement with theory is easy
to obtain by choosing an appropriate ωc. However, since we cannot choose the
cut-off energy to be larger than EF = kF ξ0/2 it is not possible to choose an ωc
which is “large enough” for small kF ξ0. We thus expect the order parameter to
be overestimated in this limit.

3.2 Order parameter in a bulk superconductor

In order to make sure our method does what it is supposed to do, we will start
with a bulk superconductor - a spatially homogenous material where no vortices
are present. In this case, ∆(x) is real. Then, by equation (3.5), µu = µv = µ ∈ Z
and the matrix D reduces to an identity matrix.

We split this problem into two parts. First, we find the magnitude of the gap
in a single point to make sure the numerical solution converges appropriately.
Second, we include the r-dependence and solve the eigenvalue problem described
above, making sure that it returns a constant ∆(r). Henceforth we use R = 100.
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3.2.1 Convergence of magnitude

To begin with, the ξk were chosen to be uniformly distributed between 0 and
ωc; since the integral in equation (3.23) is even in ξn the negative energies
contribute a factor 2. To remove the divergence at ξk = 0 we shift the energies
into the complex plane: ξk → ξk + i0 where i0 denotes an infinitesimally small
imaginary part. The sums were transformed into integrals, and the gap was
calculated with algorithm 1. Initial guesses of ∆in = 0.5 and 2.0 were tried, and
convergence was found within twenty iterations; see figure 3.2.

The next step is to replace the linear energy spectra with that given by equa-
tion (3.20). There are now two indicies labeling the energies, and implemen-
tation of algorithm 1 is not entirely straightforward. We deal with this by
stepping through all the values of µ and collecting those ξjµ that are in the
interval EF ±ωD in a single vector; this replaces line 1 in algorithm 1. The rest
of the calculation is unchanged from before. As expected, the results are similar
to those using the linear spectra.

Algorithm 1: Self-consistent calculation of the magnitude of the order
parameter

Input: initial guess ∆in, cut-off ωc, temperature T
Output: self-consistently calculated ∆out

1Define the spectrum ξ + i0
2Calculate geff with equation (3.23)
3while convergence not found do
4Calculate E =

√
ξ2 + ∆2

in

5Calculate ∆out with equation (3.24)
6if |∆in −<(∆out)| < tolerance then
7convergence found
8else
9∆in ← <(∆out)

10end if
11end while

3.2.2 Radial dependence

Having fixed the magnitude of the order parameter, we wish to solve for the r-
dependence in a bulk superconductor before including the vortex by switching to
a complex ∆. This means employing the full machinery developed in section 3.1.
The process is described in algorithm 2 on page 24, but we replace lines 10–13
with the assignment D = 1.

Since both matrices T and D are diagonal, there are only two non-zero com-
ponents in each eigenvector Ψn: one coefficient cnm and one dnm for some m.
Thus, each unµ, vnµ only contains a single basis function ϕµm and unµv∗nµ ∝ J2

µ.
If we replace µ→ −µ, we have unµv∗nµ ∝ J2

−µ = ((−1)µJµ)2 = J2
µ since we have

chosen µ to be integer. That is, the sum over µ < 0 introduces a degeneracy
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Figure 3.3: Order parameter calculated for different values of µmax. The cut-off
was chosen as ωc = EF /3 = 8/3 , and the overestimation of ∆∞ is exactly as
big as we expect – recall fig. 3.1 and discussion thereof.

factor 2. As we perform the sum in equation (3.24), we thus realize that

∆ ∝ J2
0 + 2

∞∑
µ=1

J2
µ = 1, (3.26)

where the equality is a known Bessel function identity [31]. Of course, we do
not in practice sum over an infinite number of µ, but equation (3.26) gives us
an indication that it is indeed possible to calculate a constant order parameter
in our framework.

As we can see in figure. 3.3, we do indeed succeed in reproducing the constant
order parameter of a bulk superconductor, as well as the expected gapped en-
ergy spectra. For the r-dependence of the order parameter, the number of µ in
the sum is crucial. We understand this by looking at some sample quasiparticle
amplitudes unµ and vnµ, as shown in figure 3.4. We see that higher µ increase
the inner radius for which the wave function is zero. That is, only a comparably
small number of wave functions contribute to the behaviour of the order param-
eter near the origin, and the rest only serve to “fill out” the rest of the domain.
We will make use of this fact when calculating the vortex state in section 3.3.

Two optimization points in algorithm 2 remain to be discussed. First, we explain
why on line 7 we compare the normal state energies rather than the calculated
eigenvalues with ωc and second, we comment on the input variables.

As we have seen in equation (3.21), in general the elements of D require nu-
merical integration – a slow process. It turns out that the total time it takes to
calculateD and solve the 2N×2N eigenvalue problem (3.19) scales asN2. Thus,
by limiting N as much as possible we can cut down significantly on computa-
tion time. This can be done by noting that the condition |ξn| < ωc is equivalent
to |En| <

√
ω2
c + |∆|2; a simple shift in cut-off frequency for the quasiparticle

energies. Since the gap equation is now independent of ωc, this is permissible.

Using |ξn| < ωc instead of |En| < ωc means that we sort out which energies to
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Figure 3.4: Quasiparticle amplitudes for various parameter values. Note how
those corresponding to higher values of µ are zero in a region near the origin.

keep in the sum in equation (2.33) before we solve the eigenvalue problem. In
practice, we calculate the normal state energies

ξjµ =
1

2kF ξ0

(αjµ
R

)2
− EF , (3.27)

and determine how many of these lie within the cut-off frequency. This gives
us the size of the T - and D-matrices. Implementing the cut-off in this way
means that we sum over all the resulting eigenvalues Ejµ. The validity of the
shift in cut-off frequency is supported by figure 3.5. Here, the positive branch
of the eigenvalues calculated in this way are plotted together with the energies
Ejµ =

√
ξ2jµ + |∆|2; the correspondence is indeed very good.

Finally, we note that we rely on calculating and tabulating the basis functions
ϕjµ in advance. This is common sense: typical values are j, µmax ∼ 102 and the
interval [0, R] divided into 500 grid points – we then need to evaluate 104 Bessel
functions in 500 points each. By pre-tabulating these values we can do away
with this step in advance instead of repeating it each time we iterate over line 2,
algorithm 2; a speed-up of a factor 102. The matrix Dconst will be discussed in
section 3.3.

3.3 The vortex phase

We now move on to the main subject of this thesis: the vortex phase of an s-wave
superconductor. A very crude approximation of a vortex is a deep potential
well. From basic quantum mechanics [18] we expect particles to be trapped in
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Algorithm 2: Self-consistent calculation of the r-dependent order param-
eter near a vortex line. Once ∆(r) has been determined, single evaluations
of lines 6–16 for a given µ allow us to extract the energy spectrum and the
wave functions unµ, vnµ of a particular state.

Input: initial guess ∆in, cut-off ωc and µmax, temperature T , tabulated
values for the matrix Dconst and the basis functions ϕjµ

Output: self-consistently calculated ∆out, optional: supercurrent jθ
1Calculate geff with equation (3.23)
2while convergence not found do
3Initialize ∆out ← 0
4Optional: initialize jθ ← 0
5for µu,v = −µmax to µmax do
6Calculate the spectrum ξjµu,v + i0 with equation (3.27)
7Discard all ξjµu,v such that |ξjµu,v | < ωc
8Note the values of j for the remaining ξjµu,v

9Create the matrix Tu,v: Tu,vjj = ξjµu,v

10Pick out the corresponding (same values of µ and j, j′) matrix
11Dconst from the tabulated values
12Calculate Dcorr with equation (3.28)
13Form D = Dconst +Dcorr

14Solve equation (3.19) for the eigenvectors Ψ and the eigenvalues E
15for each eigenvalue En do
16Calculate un and vn with equation (3.7)
17Update ∆out ← ∆out + geff unµv

∗
nµ tanh(En/2T )

18Optional: update jθ ←
19jθ + f(En)|unµ|2(µ− 1/2)−

(
1− f(En)

)
|vnµ|2(µ+ 1/2)

20end for
21end for
22if |∆in −<(∆out)| < tolerance then
23convergence found
24else
25∆in ← <(∆out)
26end if
27end while
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such a well, and that they occupy a set of discrete energy levels. This does
in fact happen in a vortex core, as verified by scanning tunneling microscopy-
experiments [32, 33]. The localized states have been predicted [5] to have a level
spacing of µ∆∞/EF . For a spin singlet superconductor like the s-wave we are
working with, |µ| = 1/2, 3/2, 5/2 . . . , so there is no state at the Fermi energy
with E = 0. The energy of the lowest state is called the minigap.

We will look at four quantities: the order parameter to compare with existing re-
sults, the supercurrent around the vortex as an example of a physical observable
predicted by the model, the spectrum of quasiparticle energies and the spatial
location of the vortex core states. The method is described in algorithm 2. We
are in particular interested in the low temperature-limit where T/Tc � 1, and
thus postpone discussion of the results to section 3.4. For the remainder of this
section, we discuss some matters of implementation.

As we saw in section 3.1, we introduce a vortex in our calculation by choosing
a phase for the order parameter. Here, we set ∆(x) = ∆(r)e−iθ where the
magnitude ∆(r) is real. It follows that µu − µv = −1; for simplicity we set
µu = µ− 1/2 and µv = µ+ 1/2, where |µ| = 1/2, 3/2, 5/2 . . .

As we have seen in section 3.2.2, a large number of angular momentum quantum
numbers µ are required to achieve a constant order parameter in the entire
domain. In principle, µ → ∞. We must choose a maximum value for µ in a
clever way. With a little thought, we realize that we can use our knowledge
of the order parameter to set µmax and in the process decrease the number of
computations required. Namely, we know that the order parameter magnitude
∆(r) = ∆∞ far from the vortex, so it suffices to calculate the deviation from
the constant ∆∞ for small r. This allows us to greatly reduce the number of
µ:s involved.

Recalling figure 3.4, we see that for large µ all unµ(r) and vnµ(r) are zero near
the origin and can be safely excluded without any loss of information regarding
the relevant region. Thus, treating the problem as a matter of corrections at



26 3. The quasiparticle core states

small r rather than a matter of summing to a constant at large r means that
we only include those µ that do give eigenfunctions which are non-zero close to
r = 0. This means a decrease of about a factor 10 in the number of µ:s – and
hence the computation time – required.

In practice, we split the matrix D into two parts: D = Dconst + Dcorr. The
constant part Dconst is calculated with equation (3.21) using ∆(r) = ∆∞: this
calculation can be done once and for all instead of re-calculating D every time
we update ∆(r). The correction

Dcorr
j′j =

∫ a

0

dr rϕj′µu(r)
(
∆(r)−∆∞

)
ϕjµv (r) (3.28)

has to be calculated each iteration. However, the integrand ∆(r) − ∆∞ goes
to zero within a few ξ0, so we may take the upper integration limit a � R. It
follows that µmax is chosen such that unµmax(r) = vnµmax(r) = 0 for 0 < r < a.
In the calculations, we set ∆(r) = ∆(a) for a < r < R.

As mentioned in section 2.2.2, the BdG equations are unchanged when trans-
forming (uk, vk) → (−v∗k, u∗k) and Ek → −Ek simultaneously. From equa-
tion (3.4);

u∗k = unµe
−i(µ−1/2)θ µ→−µ−→ unµe

i(µ+1/2)θ

v∗k = vnµe
−i(µ+1/2)θ µ→−µ−→ vnµe

i(µ−1/2)θ. (3.29)

That is, the corresponding transformation of the r-dependent equations (3.6) is
to change the sign of Ek and switch the roles of µu = µ− 1/2 and µv = µ+ 1/2.
However, this assumes that the states are symmetrically distributed around
the Fermi level and thus enforces a particle-hole symmetry. As we can see in
figure 3.6, this is not always the case. For low kF ξ0, the relevant selection of
energies is no longer uniformly distributed and there will be more states included
below EF than above.

The particle-hole asymmetry can be seen in density of states-calculations and
-experiments [29, 34], but only affects the order parameter marginally. This
is because the uk and vk are paired together when calculating ∆, so the same
oscillatory components are included for µ as for −µ. We make a qualitative
argument by looking at µ = ±1/2.

Using the series expansion (3.7) we find the n:th corresponding quasiparticle
amplitudes

un,0 =
∑
j

cnjϕj,0, un,−1 =
∑
j

cnjϕj,−1,

vn,1 =
∑
j

dnjϕj,1, vn,0 =
∑
j

dnjϕj,0 (3.30)

where the left column correspond to µ = 1/2 and the right to µ = −1/2. All
basis functions with the same second index will be oscillating within an expo-
nentially decreasing envelope function, call it V0. Since un,0 and vn,0 are propor-
tional to the same basis functions they thus look qualitatively the same, possibly
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Figure 3.6: Illustration of the normal-state energies ξjµ for two values of kF ξ0.
The right panels are magnifications of the area where the Fermi energy EF in-
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up to a constant k0. The same is true for un,−1 and vn,1 since J−1 = −J1 (so
k1 < 0). The contribution to ∆ from µ = 1/2 is then

geff un,0vn,1 tanh(En,1/2/2T ) ∝ k0V0V1, (3.31)

and from µ = −1/2

geff un,−1vn,0 tanh(−En,1/2/2T ) ∝ −k1V1V0 (3.32)

where the minus sign comes from tanh(−E) = − tanh(E). With the normaliza-
tion condition |uk|2 + |vk|2 = 1 we find that

k20 =
1− |un,0|2

|un,0|2
=

|vn,0|2

1− |vn,0|2
(3.33)

and similarly for k1. For low energies, |un,0|2 ≈ |vn,0|2 ≈ 1/2 (see figure 2.1), in
which case k0 ≈ −k1 ≈ 1.

We can then neglect particle-hole asymmetry when calculating the order pa-
rameter. A given positive µ then contributes a term

geff unµv
∗
nµ tanh(Enµ/2T ) (3.34)

to the sum in equation (3.25), and the corresponding negative −µ contributes
an identical term:

geff (−v∗nµ)(u∗nµ)∗ tanh(−Enµ/2T ) = geff unµv
∗
nµ tanh(Enµ/2T ). (3.35)

It is clear that we can limit the sum on line 5 of algorithm 2 to non-negative µ
and compensate with a degeneracy factor 2.

3.3.1 Supercurrent density

A theory is no better than its capability to predict experimental results. One
physical observable that we can measure is the current. As mentioned in chap-
ter 2, the density of superconducting electrons is related to the GL wave function
as ns = |ψ|2. It is then natural to identify the supercurrent with the probability
current [18]:

j(r) ∝ −i
(
ψ†∇ψ − (∇ψ†)ψ

)
. (3.36)

This result is easily derived by minimizing the Ginzburg-Landau free energy
with respect to the order parameter [23]. We extend equation (3.36) to our
spinor ψ = (uk(r), vk(r)) as [8]

j(r) ∝ −i
∑
k

[
f(Ek)

(
u∗k(r)∇uk(r)− uk(r)∇u∗k(r)

)

+
(

1− f(Ek)
)(
vk(r)∇v∗k(r)− v∗k(r)∇vk(r)

)]
. (3.37)

This makes intuitive sense; we have the sum of the probability current for uk
and vk, weighted by the Fermi distribution f(Ek) which determines how likely
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it is that a created excitation is electron-like or hole-like. Looking at the jθ-
component (the currents encircling the vortex) and using the separable form
(3.4), we find

jθ(r) ∝
1

r

∑
k

[
f(Ek)|uk|2(µ− 1/2)−

(
1− f(Ek)

)
|vk|2(µ+ 1/2)

]
. (3.38)

Again, k represents all quantum numbers. This is straightforward to implement,
and as we shall see the calculated current shows the expected 1/r-dependence.

3.3.2 Low temperature-limit

We wish to study the level separation of the quasiparticle states in the vortex
core. In order to experimentally observe discrete energy levels, the temperature
must be so low that thermal smearing of energy levels is smaller than the level
spacing. As we have already mentioned, the level spacing of vortex core states in
a superconductor is expected to be of order ∆∞/EF [5] which, up to a constant
of order unity, is equal to 1/kF ξ0. We thus study the regime where

T

Tc
≤ 1

kF ξ0
. (3.39)

This condition is fulfilled at a low enough temperature for any material, but
will be much easier to achieve experimentally for materials where the parameter
kF ξ0 is small: for example the high-Tc compounds. For NbSe2, on which Gygi
and Schlüter [8] base their choice of parameter values, the condition (3.39) is
fulfilled below 50 mK. In contrast, in the cuprate YBCO the corresponding
temperature is about 10 K [29].

Decreasing kF ξ0 means that we move into a regime where ∆∞ is of the same
order as the Fermi energy. This gives us another perspective on the particle-hole
asymmetry discussed above: we imagine the gap as a forbidden region around
the cylindrical Fermi surface in k-space. All states that normally would have
occupied this region are “pushed out” and end up at energies right above or
below the gap. If ∆∞ is much smaller than EF , the surfaces EF + ∆∞ and
EF − ∆∞ are approximately equal and the density of states above and below
the gap is similar. If ∆∞ ∼ EF this is no longer true, and the states which are
being pushed into the Fermi cylinder will be packed together more closely than
those pushed away from it.

We recall that the quasiparticle energies can be written

Ejµ =
√
ξ2jµ + ∆2, (3.40)

so the level spacing of the quasiparticle states will be determined by the spacing
of the normal state levels ξjµ. Using the asymptotic form [28]

αjν ≈ jπ +

(
ν − 1

2

)
π

2
, (3.41)

we can estimate the normal state level spacing:

ξj′µ′ − ξjµ =
π2

2kF ξ0R2

((
j′ +

µ′

2

)2

−
(
j +

µ

2

)2
− 1

4
(µ′ − µ)

)
. (3.42)
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Figure 3.7: Quasiparticle energy as a function of kF ξ0 for different µ and T .
We see the expected increased in level spacing with lowered temperature as well
as with lowered kF ξ0.

In particular, for consecutive indicies – when j′ = j + 1, µ′ = µ and when
j′ = j, µ′ = µ+ 1 – the level spacing is

ξj+1,µ − ξjµ =
π2

2kF ξ0R2
(2j + 1 + µ) (3.43)

respectively

ξj,µ+1 − ξjµ =
π2

2kF ξ0R2

(
j +

1

2
µ

)
. (3.44)

The bracketed term is of order 102, since for low-lying states µ ∼ 100 and
j ∼ 102 (see figure 3.6).

We note that in our formulation of the problem, we pick up an R-dependence of
the level spacing; if R is decreased the level spacing will increase, and we may
resolve discrete energy levels. This is the familiar mesoscopic limit present in
all systems. The complication of this is that we measured R is units of ξ0, so
in decreasing 1/kF ξ0 we do, in effect, shrink the domain size as well. In our
results, then, the present effects are due to a combination of the low T -limit and
the mesoscopic limit.

3.4 Results and discussion

We self-consistently solve the BdG-equations for material parameters kF ξ0 = 4, 8,
and 16: from section 3.2.1 we recall that we may see an overestimation of the
asymptotic value ∆∞. In each case look at temperatures T/Tc = 0.01, 0.2, 0.4, 0.6.
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Figure 3.9: Spatial variation of the lowest core states (real part), given by
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For each set of parameter values calculations were iterated until the change in
∆(r) between iterations was smaller than 10−7 at every point. Here, we look
at some of the results. We mention that the rate of convergence is exponential,
but do not dwell on the matter.

To start with, we have plotted the energy of the three lowest states in figure 3.7,
for T/Tc = 0.01 and 0.4. We see that lowering kF ξ0 increases the level spacing
and the energy eigenvalue, whereas lowering T only increases the energy eigen-
value with roughly the same spacing. The increased minigap – the energy of the
lowest state – means that there will be fewer states located in the vortex core as
we approach the low T -limit. The exact number of vortex core states present at
T = 0 is material dependent: one state for each |µ| = 1/2, 3/2, 5/2 . . . such that
µ∆∞/EF lies within the energy gap [5]. By a “vortex core state” or simply a
“core state” we mean a quasiparticle state whose energy is lower than the BCS
energy gap ∆∞.

The reduction of the number of core states is further supported by figure 3.8,
where we have plotted the positive energy eigenvalues as a function of the angu-
lar momentum at T/Tc = 0.01. We find a branch of core states for low angular
momenta, which eventually joins a band of densely packed energy levels, in
good agreement with previous results [8]. The length of this branch gives us the
number of vortex core states.

Having established that there will be much fewer vortex core states in the low
temperature-limit, we now explore the consequences of this. We know that
the order parameter (equation (3.25)) and the supercurrent (equation (3.38))
are linear combinations of products between quasiparticle amplitudes. These
amplitudes in turn are linear combinations of oscillating Bessel functions. As
we can see in figure 3.9, the lowest core states given by µ = 1/2 oscillate with
a wavelength roughly proportional to 1/kF ξ0. Note also that these states are
spatially very localized; they are indeed core states.

A similar oscillatory behaviour is seen also in the states with higher energy.
However, as we expect from figure 3.4, states with a higher µ – and thus higher
energy – will be zero in a region around the vortex core. It follows that the order
parameter and supercurrent in and near the core primarily depends on the core
states. If there are many such states, the different oscillations will interfere with
each other and we expect that no single quasiparticle states are discernible. On
the other hand, if there are just a few core states, the oscillatory behaviour
might be noticeable in the order parameter or the supercurrent.

This is indeed what happens, as we can see in figure 3.10. Here we have plotted
the order parameter and supercurrent profiles for kF ξ0 = 4, 8, 16 and temper-
atures T/Tc = 0.01, 0.2, 0.4, 0.6, in a region very close to the vortex line. For
the lower values of kF ξ0 we see an overestimation of the asymptotic value ∆∞,
as expected from section 3.1.1. We set the cut-off frequency to ωc = 3; if
EF = kF ξ0/2 < 3 the cut-off ωc = EF was used.

We see several expected features in the order parameter, like the overall shape
similar to ∆(r) = ∆∞ tanh(r) [10] and the shrinkage of the core radius with
decreasing temperature [8]. However, the shrinkage of the core size saturates at
low kF ξ0 and the order parameter loses the dependence on temperature. This
is in agreement with previous results [29]. However, the most striking feature
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Figure 3.10: Order parameter and supercurrent profiles for different tempera-
tures and different values of kF ξ0. As we approach the low temperature-limit, the
order parameter – and to a lesser degree the supercurrent – exhibits oscillations.
The wavelength of these increase as kF ξ0 decreases. We also see a saturation
of the vortex core radius; it is larger for small kF ξ0, and becomes independent
of temperature. These results are in good agreement with previous calculations
by Hayashi et al. [29]; up to the choice of scale the plots for kF ξ0 = 16 are
near-replications of figures 2–3 in their paper.
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Figure 3.11: Order parameter profile together with the two lowest states.

is the appearance of oscillations in the order parameter at low temperature.
The oscillations have a wavelength roughly proportional to 1/kF ξ0, just like the
lowest states. This supports the hypothesis that the source of the oscillations is
the decreasing number of core states.

It is known that impurities in metals or semiconductors cause – at low tem-
peratures – oscillations in the electron density of states. The reason for this
is that the electron gas of the host material is rearranging to screen out the
impurity charge. Since the temperature is low, the electrons of the gas all have
energies in a narrow range around the Fermi surface and their wave functions
have similar wave lengths. Only a few oscillatory modes thus contribute to the
screening, and we see an oscillation in the density of states. This is known as
Friedel oscillations [11]. We realize that the vortex core is an impurity in the
otherwise homogeneous superconductor, so we can identify the oscillation in the
order parameter as a Friedel oscillation in the quasiparticle density of states.

As for the supercurrent density, we are looking at the θ-component; the currents
encircling the vortex line. The qualitative behaviour of this component – zero at
the origin, rising to a peak and then decreasing as 1/r – is what we expect [8, 29].
The peak of the supercurrent becomes lower as kF ξ0 decreases; there are fewer
states near the vortex core capable of carrying current. Friedel oscillations are
present in the supercurrent profile as well, though they are more difficult to see.
We find the reason for this in equation (3.38); the state uj,µ=1/2 – which is the
dominant low-energy state – gives no contribution at all because of the factor
µ− 1/2 = 0. This is reasonable since uj,µ=1/2(r) is symmetric around a peak at
the core center and thus cannot carry angular momentum relative to the vortex;
it follows that this state cannot cause any current that circulate the vortex core.

One way of thinking of superconductivity is that excitations from the ground
state are created by breaking Cooper pairs [35], thus reducing the density of
superconducting electrons. Since the order parameter is proportional to this
density, we should be able to see a correlation between the minima in the order
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parameter oscillation and the local density of states. Figure 3.11 is an indica-
tion that this is indeed the case. There, we have plotted the two lowest states
together with the order parameter profile for T/Tc = 0.01. We see a very good
correspondence between the vortex core radius and the width of the central
peak of the µ = 1/2-state. With a bit of good will, we can correlate the sec-
ond minimum in ∆(r) with the peak in the µ = 3/2-state, but the connection
is tenacious at best. To solidify or reject this connection one would have to
properly calculate the full spectral evolution of the system.
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4 Summary and outlook

In this thesis, we have solved the Bogoliubov-de Gennes equations near a vortex
line in an s-wave superconductor. We have investigated the low-temperature
limit, and been able to well reproduce previously published results. From here,
there are several directions of possible future work.

As mentioned in section 1, we hope to generalize the method to deal with d-
wave and mixed parity superconductors. This involves a number of challenges.
Perhaps the largest one is how to deal with an order parameter with angular
dependencein an efficient way. In the case of superconductors with a p-wave
component, how do we include the effects of spin?
Since the numerical complexity will increase, further optimization is required.
One possible approach is to analytically study the matrix elements (3.21) in
order to a priori determine which ones are significant, and minimize the number
of performed numerical integrations.

Another approach is to remain in the s-wave superconductor and further inves-
tigate the low temperature-limit. Is there some way to determine if the found
Friedel-like oscillation of the order parameter is just a numerical artefact? One
possible path is by relaxing the restriction to a cylindrical Fermi surface, and
keep the k2z-term in equation (3.6), and see if the oscillations remain. What
happens at zero temperature? What happens if we do include a magnetic vec-
tor potential A? How does the full density of states look? These are interesting
questions, but perhaps not as relevant in the big picture as the first approach.

37
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