
Institutionen för datavetenskap
Department of Computer and Information Science

Final thesis

Probability as readability
A new machine learning approach to readability assessment

for written Swedish

by

Johan Sjöholm

LIU-IDA/LITH-EX-A--12/023--SE

 2012-06-05

Linköpings universitet
SE-581 83 Linköping, Sweden

Linköpings universitet
581 83 Linköping

Linköping University
Department of Computer and Information Science

Final Thesis

Probability as readability
A new machine learning approach to readability assessment

for written Swedish

by

Johan Sjöholm

LIU-IDA/LITH-EX-A--12/023--SE

2012-06-05

Supervisor: Katarina Heimann Mühlenbock (Språkbanken, University of Gothenburg)

Christian Smith (IDA, Linköping University)

Examiner: Arne Jönsson (IDA, Linköping University)

Avdelning, Institution
Division, Department

The Human Centered Systems Division
Department of Computer and Information Science
Linköpings universitet
SE-581 83 Linköping, Sweden

Datum
Date

2012-06-05

Språk
Language

� Svenska/Swedish
� Engelska/English

�

�

Rapporttyp
Report category

� Licentiatavhandling
� Examensarbete
� C-uppsats
� D-uppsats
� Övrig rapport
�

�

URL för elektronisk version

ISBN
—

ISRN
LIU-IDA/LITH-EX-A–12/023–SE

Serietitel och serienummer
Title of series, numbering

ISSN
—

Titel
Title

Sannolikhet som läsbarhet
En ny maskininlärningsansats till läsbarhetsmätning för skriven svenska

Probability as readability
A new machine learning approach to readability assessment for written Swedish

Författare
Author

Johan Sjöholm

Sammanfattning
Abstract

This thesis explores the possibility of assessing the degree of readability of written
Swedish using machine learning. An application using four levels of linguistic anal-
ysis has been implemented and tested with four different established algorithms
for machine learning. The new approach has then been compared to established
readability metrics for Swedish. The results indicate that the new method works
significantly better for readability classification of both sentences and documents.
The system has also been tested with so called soft classification which returns a
probability for the degree of readability of a given text. This probability can then
be used to rank texts according to probable degree of readability.

Nyckelord
Keywords Readability, Natural Language Processing, Computational Linguistics, Machine

Learning, Swedish

Abstract
This thesis explores the possibility of assessing the degree of readability of written
Swedish using machine learning. An application using four levels of linguistic anal-
ysis has been implemented and tested with four different established algorithms
for machine learning. The new approach has then been compared to established
readability metrics for Swedish. The results indicate that the new method works
significantly better for readability classification of both sentences and documents.
The system has also been tested with so called soft classification which returns a
probability for the degree of readability of a given text. This probability can then
be used to rank texts according to probable degree of readability.

Sammanfattning
Detta examensarbete utforskar möjligheterna att bedöma svenska texters läs-
barhet med hjälp av maskininlärning. Ett system som använder fyra nivåer av
lingvistisk analys har implementerats och testats med fyra olika etablerade algorit-
mer för maskininlärning. Det nya angreppssättet har sedan jämförts med etabler-
ade läsbarhetsmått för svenska. Resultaten visar att den nya metoden funger-
ar markant bättre för läsbarhetsklassning av både meningar och hela dokument.
Systemet har också testats med så kallad mjuk klassificering som ger ett sanno-
likhetsvärde för en given texts läsbarhetsgrad. Detta sannolikhetsvärde kan an-
vändas för rangordna texter baserad på sannolik läsbarhetsgrad.

v

Acknowledgments

I would like to thank my supervisors Katarina Mühlenbock and Christian Smith
for their continuous support during the writing of this thesis, especially for helping
me with tools, data, reusable code and proof reading. I would also like to thank
my examiner Arne Jönsson for his help and enthusiasm as well as Åsa Wihlborg for
support and patience. I would like to thank Kristoffer Mellberg for proof reading,
Erik Prytz for support and inspiration and lastly my opponent Robin Keskisärkkä
for lots of helpful comments.

vii

Contents

1 Introduction 5
1.1 Background . 6
1.2 Purpose . 6
1.3 Goal . 6
1.4 Expectations and requirements . 6
1.5 Limitations . 7
1.6 Thesis outline . 7

2 Background to readability assessment 9
2.1 The problem of readability assessment 9
2.2 History of readability assessment 10
2.3 Established metrics for Swedish . 11

2.3.1 LIX . 12
2.3.2 OVIX . 12
2.3.3 Nominal ratio . 13
2.3.4 Combining traditional metrics 13

2.4 Recent international developments in research 14

3 Background to machine learning 17
3.1 Relevant approaches to machine learning 17

3.1.1 Ranking . 17
3.1.2 Regression . 18
3.1.3 Classification . 18
3.1.4 Soft classification . 18

3.2 Relevant approaches to classification 19
3.2.1 Statistical approach . 19
3.2.2 Network approach . 19
3.2.3 Algebraic approach . 20
3.2.4 Other approaches . 21

4 Approach 23
4.1 Probability as readability . 23
4.2 Relevant features . 24

4.2.1 Shallow text features . 24
4.2.2 Lexical Features . 24

ix

x Contents

4.2.3 Morpho-syntactic features 26
4.2.4 Syntactic features . 26
4.2.5 Necessary preprocessing . 28

4.3 Classification algorithms in Weka 29
4.3.1 J48 - Decision Tree . 29
4.3.2 ClassificationViaRegression - Regression 29
4.3.3 NaiveBayes - Naive Bayes 30
4.3.4 SMO - Support Vector Machine 30

5 Implementation 31
5.1 Modularity . 31
5.2 Text analysis . 32

5.2.1 Preprocessing . 32
5.2.2 The Korp corpus import tool 32
5.2.3 XML-parsing . 32
5.2.4 Computation of features . 33

5.3 Classification . 34

6 Results 37
6.1 Overview . 37
6.2 Models . 37
6.3 Results for hard sentence evaluation 39

6.3.1 LIX . 39
6.3.2 OVIX . 40
6.3.3 Nominal ratio . 40
6.3.4 Combination of established metrics 41
6.3.5 The Shallow model . 42
6.3.6 The Lexical model . 42
6.3.7 The Morpho-Syntactic model 43
6.3.8 The Syntactic model . 43
6.3.9 The Super model . 44
6.3.10 The NoDep model . 45
6.3.11 Comments on the sentence level evaluation 45

6.4 Results for hard document classification 47
6.4.1 LIX . 47
6.4.2 OVIX . 47
6.4.3 Nominal ratio . 48
6.4.4 Combination of established metrics 49
6.4.5 The Shallow model . 49
6.4.6 The Lexical model . 50
6.4.7 The Morpho-Syntactic model 50
6.4.8 The Syntactic model . 51
6.4.9 The Super model . 52
6.4.10 The NoDep model . 52
6.4.11 Comments on the document level evaluation 53

6.5 Results for the soft document evaluation 57

Contents xi

6.5.1 The Super model . 57
6.5.2 The NoDep model . 58
6.5.3 Comments on soft classification 59

6.6 Comparison to prior research . 61
6.6.1 Sentence classification . 61
6.6.2 Document classification . 61

6.7 Discussion and remaining problems 62
6.7.1 The data set . 62
6.7.2 The models and feature relevance 62
6.7.3 Probability of classification and degree of readability 63

7 Conclusion 65
7.1 Conclusions . 65
7.2 Future work . 66

A XML-example 71

B Examples of wrongly classified documents 73
B.1 Documents . 73

B.1.1 Erroneously classified news texts 73
B.1.2 Erroneously classified easy-to-read texts 76

Contents 3

List of Figures
2.1 The Flesch Reading Ease test. 10
2.2 The Dale-Chall formula. 11
2.3 The LIX formula. 12
2.4 The OVIX formula. 13
2.5 The Nominal ratio formula. 13

3.1 A tree showing survival of passengers on the Titanic ("sibsp" is the
number of spouses or siblings aboard). The figures under the leaves
show the probability of survival and the percentage of observations
in the leaf. Created using the R programming language, Source:
Wikimedia Commons, Author: Stephen Milborrow. 20

3.2 Graphic showing three hyperplanes in 2D. The hyperplane H3 doesn’t
separate the two classes at all. H1 separates them with a small
margin and H2 with a large margin. Created using vector graphics,
Source: Wikimedia Commons, Author: Cyc. 21

4.1 SweVoc: Entries 50 to 67. 25
4.2 A dependency tree for the sentence "De gick inte på bluffen." ("They

were not fooled by the bluff."), to the left are the tokens and to the
right their dependency grammar roles. 28

5.1 Rough system structure, the grey modules are constructed for this
thesis. 31

5.2 The import and classification chain, the grey steps are constructed
for this thesis. 35

6.1 The simplified OVIX formula. 40
6.2 The accuracies for the different models used in the sentence level

evaluation. 46
6.3 Difference in algorithm performance in percentage points for each

model. 54
6.4 The accuracies for the different models used in a document level

evaluation. 55
6.5 The distribution of accuracies of each configuration in the soft doc-

ument evaluation. 59
6.6 The number of equivalence classes resulting from each configuration

in the soft document evaluation. 60

B.1 A news text erroneously classified as easy-to-read. 74
B.2 Another news text erroneously classified as easy-to-read. 75
B.3 An easy-to-read text erroneously classified as news text. 76
B.4 Another easy-to-read text erroneously classified as news text. . . . 76

4 Contents

List of Tables
6.1 LIX for hard sentence classification. 39
6.2 OVIX for hard sentence classification. 40
6.3 Nominal ratio for hard sentence classification. 41
6.4 Combination of established metrics for hard sentence classification. 41
6.5 The Shallow model for hard sentence classification. 42
6.6 The Lexical model for hard sentence classification. 42
6.7 The Morpho-Syntactic model for hard sentence classification. . . . 43
6.8 The Syntactic model for hard sentence classification. 44
6.9 The Super model for hard sentence classification. 44
6.10 The NoDep model for hard sentence classification. 45
6.11 LIX for hard document classification. 47
6.12 OVIX for hard document classification. 48
6.13 Nominal ratio for hard document classification. 48
6.14 Combination of established metrics for hard document classifica-

tion. 49
6.15 The Shallow model for hard document classification. 49
6.16 The Lexical model for hard document classification. 50
6.17 The Morpho-Syntactic model for hard document classification. . . 51
6.18 The Syntactic model for hard document classification. 51
6.19 The Super model for hard document classification. 52
6.20 The NoDep model for hard document classification. 53
6.21 The Super model for soft document classification. 57
6.22 The NoDep model for soft document classification. 58
6.23 Comparison of sentence classification accuracy between READ-IT

and this thesis. 61
6.24 Comparison of document classification accuracy between READ-IT

and this thesis. 62

Chapter 1

Introduction

Automatically assessing the readability of written text has been a research area in
computational linguistics as long as the field has existed. In 1949 Dale and Chall
defined readability as "the sum total (including all the interactions) of all those
elements within a given piece of printed material that affect the success a group of
readers have with it" [Dale and Chall, 1949]. From this follows that readability is a
function of both features of the text and the proficiency of the reader. The actual
features of text which imply degree of readability are under debate and different
features seem to be more or less relevant for different languages. For Swedish
there are a number of formulas for calculating degree of readability but the most
common among them, the LIX formula, is based on surface structure alone.

During the last few years machine learning has been applied to the field of
readability assessment. Different kinds of classifiers have been experimented with
and many different features have been used to train the models. However, most of
these studies have used a relatively small subset of all possibly relevant features,
often based on one of six levels of text structure: surface, lexical, morpho-syntactic,
syntactic, semantic or discourse. The group of people with some kind of reading
difficulties, about 25 % of the Swedish populace [OECD, 1994], is however very
heterogeneous and features which might affect one type of reader’s ability to read
and understand a text might not matter at all to another type.

Studies have shown that the aforementioned LIX formula is overly simplistic
and though it may give a hint about the degree of readability it is not sufficient
to handle this heterogeneousness [Heimann Mühlenbock and Kokkinakis, 2010].
Therefore a system flexible enough to handle the different types of readers should
be developed. Lacking Swedish corpora tagged for readability by different types of
readers it is not possible to do this today. However, it is possible to use a general
"easy-to-read" corpus to develop and test a system which will be easy to adapt
whenever more reader type specific corpora is available.

This study aims to develop and test a proof-of-concept for such a system using
machine learning, more specifically soft classification, and also to investigate the
possibilities to integrate it in a search engine for the Webblättläst project, see the
next section for background to the Webblättläst project.

5

6 Introduction

1.1 Background
This thesis is part of a larger project requested and funded by Internetfonden.

Internetfonden is a Swedish foundation working to promote the use of the
Internet among the Swedish populace. One of their goals is to make the Internet
more accessible to people with reading disabilities and second language learners.
In this vein Internetfonden is funding the Webblättläst project at the Department
of Computer and Information Science at Linköping University. The project aims to
create a search engine capable of ordering relevant websites based on their degree
of readability.

Related to this are a number of sub-projects in usability, interface design and
the development of new ways to assess readability. This thesis is part of this last
sub-project about development of new readability metrics.

1.2 Purpose
The purpose of this thesis is to design and implement a classifier for readability
assessment based on four levels of analysis. This will then be tested and measured
against traditional readability assessment formulas for Swedish. A secondary pur-
pose is to evaluate the possibility of using such a system to sort the results from a
search engine by using soft classification. If this is not possible the system might,
by applying feature selection among the extracted features, be able to provide a
simpler formula which can outperform the ones in current use for general read-
ability.

1.3 Goal
The goal of the thesis is to develop a Java module which can take a Swedish text
as input, analyse it and provide a percentage score of how likely it is that the text
is "easy-to-read". The system will then be evaluated and measured against current
standard formulas such as LIX, OVIX and Nominal ratio.

1.4 Expectations and requirements
This thesis is mainly expected to test the feasibility of a machine learning approach
to readability assessment for Swedish and whether it stands up to traditional met-
rics. It is also expected to lay the groundwork for a readability assessment system
which can be trained for specific user groups with different reading disabilities.
The prototype is not expected to be suitable for production use in a search engine
because of the time consumption of the external pre-processing tools. However,
the thesis should give an inkling about the feasibility of a machine learning based
readability metric for search engines.

1.5 Limitations 7

1.5 Limitations
As the time provided for this thesis is limited a large part of the pre-processing
(POS-tagging, dependency parsing, etc.) will be done using an existing tool. This
tool is designed to be as exact as possible for research purposes and is not optimized
for speed, as a result of this the resulting system will not be fast enough to use in
an actual search engine.

At the time of writing no readability tagged corpora for specific reader types
exist, therefore a general "easy-to-read" corpus, together with a corpus with stan-
dard Swedish news texts will be used to test the feasibility of the approach.

1.6 Thesis outline
Chapter 1 : Introduction

This chapter will elaborate on the goal for this thesis and introduce its approach
and limitations.

Chapter 2 : Background to Readability Assessment

This chapter will elaborate on the background of readability assessment. Some
established metrics and recent developments will be covered.

Chapter 3 : Background to machine learning

This chapter will elaborate on the background of machine learning relevant for
this thesis. Some different approaches and types of algorithms will be covered.

Chapter 4 : Approach

This chapter will elaborate on the approach to readability assessment underlying
this thesis.

Chapter 5 : Implementation

This chapter will explain the inner workings of the actual system implemented for
this thesis.

Chapter 6 : Results

This chapter will present the results from the evaluations as well as some analysis
and discussion of those results.

Chapter 7 : Conclusion

The final chapter will summarize the thesis and the conclusions that can be drawn.
Some future work will also be suggested.

8 Introduction

Appendices

The appendices contain an example of the XML-code generated by the prepro-
cessor (Appendix A) and some examples of erroneously classified documents (Ap-
pendix B).

Chapter 2

Background to readability
assessment

This chapter will elaborate on the background of readability assessment. Some
established metrics and recent developments will be covered.

2.1 The problem of readability assessment
The problem of readability assessment is the problem of mapping from a text to
some unit representing it’s degree of readability. This in itself consists of a number
of problems.

Firstly, what features of a text are relevant for readability assessment? Chall
[Chall, 1958] defined the four general properties vocabulary load, sentence struc-
ture, idea density and human interest but how are these represented in actual
texts? Which features are independent and which are related and are related
features redundant? Are all features as important for all readers?

Secondly, how are these features extracted from the text? Today a large number
of lemmatizers, POS-taggers, grammar parsers and other analysis tools exist but
which of them are suitable when degree of readability is assessed? Some tools
are free, some can be freely licensed for research purposes, and some are purely
commercial. The tools are implemented in a number of different languages using
a number of different algorithms, but which ones fit well together and are easy to
integrate? Are their computational complexity high and what degree of analysis
is reasonable when computation time is taken into account?

Thirdly, how should these features be weighted to provide an actual metric? If a
simple formula can be constructed, how does it relate to the degree of readability?
If a simple formula is not feasible due to the amount of features, how can the
degree of readability be modelled?

Lastly, how is degree of readability represented in an easily comprehensible
way? A numerical value makes comparison simple but might be difficult for a
reader to understand. A genre classification is more understandable for a reader

9

10 Background to readability assessment

but might make comparison hard.

2.2 History of readability assessment

Readability assessment has been a field of study since the 1920’s [Feng et al., 2009].
In the U.S. during the 1920’s and 1930’s a number of studies were published about
how to assess readability of texts for a number of different applications. Vogel
and Washburne described a method for determining grade placement for books
for children in 1928 [Vogel and Washburne, 1928], and as early as 1934 Dale and
Tyler published a study on the text properties relevant for adults with limited
reading ability [Dale and Tyler, 1934].

The field started to gain real momentum in the 1940’s. Among other achieve-
ments, the article "The concept of readability" by Dale and Chall [1949] contained
a definition of readability which is still used. The article defines readability as "the
sum total (including all the interactions) of all those elements within a given piece
of printed material that affect the success a group of readers have with it. The
success is the extent to which they understand it, read it at optimal speed, and
find it interesting."

Also in the 1940’s the first readability metrics still in use were proposed, such
as the Flesch Reading Ease test [Flesch, 1948]. The Flesch Reading Ease test
grades texts on a scale from 0 to 100, the Flesch Reading Ease Score (FRES),
where a lower score implies a more advanced text. In the Flesch Reading Ease
test n(w) is the number of words, n(se) is the number of sentences and n(sy) is
the number of syllables.

FRES = 206.835 − 1.015 n(w)
n(se) − 84.6(n(sy)

n(w))

Figure 2.1 – The Flesch Reading Ease test.

The Flesch Reading Ease test was updated by Kincaid et al. [1975] to give
a score corresponding to a grade level in the U.S. education system. The new
formula is called the Flesch-Kincaid Grade Level.

The Flesch Reading Ease test was soon followed by the Dale-Chall formula
which utilizes a list of "easy" words which is used in the assessment. The Dale-
Chall Readability Score (DCRS) differs from the FRES in several ways. Firstly, a
higher number indicates a more advanced text, secondly, the score is not limited
and can, theoretically, have an infinitely high value (however, to reach infinity
an infinitely long sentence is required). In the Dale-Chall formula n(dw) is the
number of difficult words, n(w) is the number of words and n(s) is the number of
sentences. Difficult words are any words which do not occur on the list of easy
words.

2.3 Established metrics for Swedish 11

DCRS = 0.1579n(dw)
n(w) + 0.0496(n(w)

n(s))

Figure 2.2 – The Dale-Chall formula.

The Dale-Chall formula was updated in 1995 with a new list of simple words
[Chall and Dale, 1995].

Both these metrics spawned a number of related formulas utilizing different
normalizations. Some of the most well known are the Gunning FOG index (1952),
the Coleman-Liau index which was specifically designed for automated assessment
of readability [Coleman and Liau, 1975], the SMOG formula [McLaughlin, 1969],
and the Fry readability formula [Fry, 1968]. All of these scores correspond to the
U.S. grade level thought necessary for full comprehension of the text.

During the 1950’s linguistics started to turn it’s attention to syntax under the
influence of the Chomskyan revolution. At the time syntactic parsing was not an
automated process but the possible influence of syntax on the degree of readability
was investigated by Yngve [1960].

In 1958 Chall concluded that "only four types of elements seem to be significant
for a readability criterion". These were vocabulary load, sentence structure, idea
density and human interest [Chall, 1958]. However, these terms are quite abstract
and not at all trivial to convert to numerical features.

The formulas mentioned above were widely accepted as good enough for prac-
tical use for a long time. Also, the scarcity and price of computational power
might also have hampered the success of metrics utilizing more advanced analysis,
leading to these traditional metrics still being used in most commercial applica-
tions for automatic readability assessment. However, by the early 1980’s studies
questioning the, by then established, approach of grading texts based on surface
structure alone, were being published. Davison and Kantor [1982] showed that
these measures did not always represent the actual complexities of written En-
glish.

2.3 Established metrics for Swedish
As mentioned above, the problem of readability assessment is the problem of map-
ping from a text to some value representing its degree of readability. This can be
done in a number of different ways. One way is the traditional construction of for-
mulas generating a numerical value. This is the way that the traditional Swedish
metrics LIX, OVIX and Nominal ratio works. These numerical values can be used
for ranking texts according to their degree of readability but on their own they
might be harder to interpret. For the formulas there are tables representing a
hierarchy of genres corresponding to ranges of values, however, these ranges might
be shifted for different reader types.

Also, the traditional Swedish readability metrics manage to capture at most
one of the four categories defined by Chall (see previous section) determining the
degree of readability of a text. Vocabulary load in the case of OVIX and idea

12 Background to readability assessment

density in the case of Nominal ratio, while LIX does not really capture any of
the categories except perhaps as a very rough metric of sentence structure. None
of these metrics capture human interest or sentence structure in a deeper sense.
Some research has been done combining and comparing these metrics and also
approximating human interest and sentence structure by the average number of
proper nouns and the average sentence length respectively [Heimann Mühlenbock
and Kokkinakis, 2010].

2.3.1 LIX
The readability metric most commonly used in Swedish is the Läsbarhetsindex
(abbreviated and commonly referred to as LIX and translated as Readability index,
not to be confused with the metric of the same name mentioned below) formula
introduced by Björnsson [1968]. The metric does not fit in any of Chall’s categories
but is related to international metrics such as Flesch-Kincaid readability test and
the Coleman-Liau test which measure similar features. However, LIX differs from
most other metrics in this family by counting the number of letters instead of the
number of syllables when word length is considered. LIX can be interpreted as the
percentage of "long" words added to the average number of words per sentence.
In the LIX formula n(w) is the number of words, n(s) is the number of sentences
and n(w > 6) is the number of words longer than 6 characters.

LIX = n(w)
n(s) + (n(w > 6)

n(w) ∗ 100)

Figure 2.3 – The LIX formula.

A number of variations of LIX has been proposed and tested, such as Readabil-
ity index (RIX) [Anderson, 1983] and Karaktärsindex (KIX, translated as Charac-
ter index, where character refers to the character of the text, not letters) [Larsson,
1987]. In Sweden LIX is used almost exclusively to the detriment of other met-
rics. However, as shown by recent research [Heimann Mühlenbock and Kokkinakis,
2010], it does not capture enough language features to be useful when the hetero-
geneity among groups with reading difficulties is considered.

2.3.2 OVIX
Another proposed readability metric for Swedish is the OVIX - Ordvariationsindex
(translated as Word variation index) formula [Hultman and Westman, 1977]. As a
metric the OVIX formula has not been able to challenge the near total dominance
of the LIX metric and is not in common use. However, it has met some success in
research.

The algorithm is similar to Honoré [1979] in that it is based on logarithmic
variables. However, this has the weakness that if every word is unique a division
by zero occurs. This is generally not a problem with documents but with single

2.3 Established metrics for Swedish 13

sentences it is very common. While LIX does not fit into any of Chall’s cate-
gories OVIX is mainly a vocabulary load metric. Technically OVIX’s approach to
measuring vocabulary load is a matter of calculating the lexical variation. In the
OVIX formula n(w) is the number of words and n(uw) is the number of unique
words.

OV IX = log(n(w))
log(2 − log(n(uw))

log(n(w)))

Figure 2.4 – The OVIX formula.

The OVIX formula measures something very different from LIX but still only
captures one of Chall’s properties. A recent study has also shown that LIX and
OVIX do not, at least on the surface, correlate, and would produce different rank-
ings if used individually to order texts according to their respective degree of
readability [Heimann Mühlenbock and Kokkinakis, 2010].

2.3.3 Nominal ratio
Besides the LIX and OVIX formulas there is one other readability metric for
Swedish which is used to some degree in research. Nominal ratio is mainly a
measure of information density. In this case by comparing the number of nouns,
prepositions and participles to the number of pronouns, adverbs and verbs [Hult-
man and Westman, 1977]. In the Nominal ratio formula n(noun) is the number of
nouns, n(prep) is the number of prepositions, n(pro) is the number of pronouns,
n(adv) is the number of adverbs and n(verb) is the number of verbs.

NR = n(noun) + n(prep) + n(part)
n(pro) + n(adv) + n(verb)

Figure 2.5 – The Nominal ratio formula.

Nominal ratio has the same weaknesses as LIX and OVIX in that it is only a
measure of at most one of Chall’s properties. However, it is also both a linguisti-
cally more involved and a computationally more expensive metric as part-of-speech
tagging is necessary.

2.3.4 Combining traditional metrics
In the last years a few studies have experimented with combining classical metrics
and adding some simple features not covered by these metrics. Heimann Müh-
lenbock and Kokkinakis [2010] showed that a combination of traditional Swedish
metrics and such extra features could make it possible to assign better readability
scores and better fit the grading of texts to different groups of readers.

14 Background to readability assessment

2.4 Recent international developments in research
The years since 2000 have seen quite a few developments in the field of readability
assessment. A large number of studies have taken place trying to find out which
features might be, or are most, relevant for the degree of readability. These studies
are often based on modern methods of text analysis such as automatic part-of-
speech tagging, syntactic parsing and higher levels of analysis on semantic and
discourse level. A number of studies on how these features might be used to train
readability assessing systems have also been published.

The use of language models to assess the degree of readability was introduced
by Collins-Thompson and Callan [2004]. By creating language models for texts
suitable for different U.S grade levels, texts could be analysed for word frequencies
and compared to these language models.

Phrase grammar features have also been used in a number of studies, most
famously the average parse tree height, average number of verb phrases, noun
phrases and SBARs (sub-ordinate clauses, SBAR is used by the Penn Treebank
and a number of related treebanks) per sentence used by Schwarm and Ostendorf
[2005]. Heilman et al. [2008] went further and used patterns of subtrees of different
depths based on application of context-free grammar parsers as features. This
could perhaps be considered a combination of a unigram language model and a
syntactic structure approach, where the unigrams consist of tree patterns rather
than words.

The development of new parsers, such as the dependency parsers generated
by the MaltParser parser-generator [Nivre et al., 2006], makes new metrics based
on dependency grammar analysis available for automated assessment. Liu [2008]
proposed that dependency distance, which can be extracted from such parsed text,
might be a good feature for readability assessment.

An Italian team designed and tested a system, READ-IT, which could identify
easy-to-read texts in Italian using classification and advanced features. The system
performed very well and demonstrated an accuracy of 98 % [Dell’Orletta et al.,
2011]. See Section 6.6 on page 61 for a comparison between some of the READ-
IT results and the results of this thesis. Heilman et al. [2007] have also done a
number of studies using classification and advanced features. It should be noted
that results have varied between studies when it comes to deciding how relevant
grammatical features actually are.

When it comes to suitable U.S. grade level identification the work of Petersen
is highly relevant. Using a combination of statistical language models (n-grams)
and an SVM, detectors (single class classifiers) to detect a text’s corresponding
grade level were constructed [Petersen, 2007]. Feng did something similar but also
included a number of higher level discourse features [Feng, 2010].

A number of recent studies have also analysed higher levels of features such
as Feng’s investigation of discourse features mentioned above. Dufty et al. [2004]
tested a system analysing the cohesion of a text which showed that cohesion might
be a good indication of the degree of readability. Feng et al. [2009] (the same Feng)
also published a comprehensive study of various features for degree of readability
assessment, yet again using suitable grade levels for comparison.

2.4 Recent international developments in research 15

Researchers have also used regression to attempt to calculate the degree of
readability of text by using feature vectors, similar to those used in classification,
paired with the suitable U.S. grade level. However, the results have not yet mea-
sured up to the aforementioned detector approach when it comes to identifying
grade level [Petersen and Ostendorf, 2009].

Chapter 3

Background to machine
learning

This chapter will elaborate on the background of machine learning relevant for
this thesis. Some different approaches and types of algorithms will be covered.
Throughout this chapter, and the rest of the thesis, the term machine learning
will be used rather than the more indistinct term data mining.

3.1 Relevant approaches to machine learning
For the problem at hand three different classes of machine learning algorithms
might be relevant. Machine-learned ranking, regression analysis and classification.
This thesis will focus mainly on classification, however, classification can be im-
plemented by regression and in that "regression-under-the-hood" sense regression
will be somewhat explored.

3.1.1 Ranking
Machine-learned ranking (MLR) is probably the most obvious approach when it
comes to sorting search results. A MLR algorithm trained to assess readability
could take all the search results, represented as a list of feature vectors, and return
the list sorted on the degree of readability of the text. However, this approach has
a number of drawbacks.

Firstly, the available corpora are not list ranked, which means that the most
efficient class of ranking algorithms, the list based approach [Liu, 2009], is not
available. This problem also exists for the pair based approach, which leaves only
the point based approach.

Secondly, the aim of this thesis is to develop a metric which can score a text
based on its degree of readability. MLR does not supply a score but rather a total
ordering of the data points. Also this is not compatible with the Webblättläst
interface which expects a numerical score.

17

18 Background to machine learning

Thirdly, MLR is a relatively new sub-field in machine learning and according
to a recent study MLR might not be a "solved problem" [Chapelle et al., 2011] and
not mature enough for use outside optimized domains.

Because of the reasons mentioned above MLR will not be explored in this
thesis. However, if the aforementioned problems could be solved this might be a
viable approach in future research.

3.1.2 Regression
Regression analysis is the attempt to establish how independent variables influence
dependent variables. For the purposes of this thesis, this can be simplified as
generating a mathematical formula based on the variables in the training data.
This is done by treating data points as equations with the feature vector on the
left side and a numerical value, representing the score of this data point, on the
right side. The resulting formula could then be used for scoring new texts.

Regression on its own would generate a formula which could be used to score
texts, however, since the training data consists only of two classes the training
scores will not be distributed evenly. This is a problem for traditional linear
regression, however, other regression algorithms constructed specifically for clas-
sification, such as logistic regression, performs significantly better under such cir-
cumstances [Witten et al., 2011]. Regression can, as mentioned, be used for clas-
sification purposes, either on its own or combined with other methods, and this is
the main way it will be used in this thesis as the results will be more comparable
with the other classification algorithms.

3.1.3 Classification
The classification problem is one of the oldest problems in machine learning. The
goal is to decide what category a data point belongs to based on its features. A
large number of different algorithms using different mathematical representations
and processing have been developed for classification. This approach is tempting
and has proven useful in similar studies [Dell’Orletta et al., 2011]. However, tra-
ditional, or hard, classification assigns a class and not a numerical value which
can be used for scoring. One solution to this is to use a multiclass classifier with
different score associated with each class, however, just as with regression, graded
training corpora is needed to train such a model. A more feasible approach is soft
classification.

3.1.4 Soft classification
Soft classification, also often called probabilistic or distribution classification, is a
modern sub-field of traditional classification. Instead of returning a class to which
the current data point belongs a soft classifier returns a mapping from each class
to the probability that the data point belongs to that class. Using a soft classifier
trained on "easy-to-read" texts and "normal" texts, the probability that a text is
not "easy-to-read" can be represented as a value between 0 and 1. This value can
then be used as a score where a higher score implies a more advanced text.

3.2 Relevant approaches to classification 19

3.2 Relevant approaches to classification

There are a great number of algorithms in the machine learning field used for
the classification problem. For the purposes of this thesis these can roughly be
divided into four categories. These categories are debatable and do not correlate
to any established taxonomy of classification algorithms. In all categories there
exist algorithms which have versions designed for soft classification.

See Section 4.3 on page 29 for the actual algorithms used in this thesis.

3.2.1 Statistical approach

It should be noted that all machine learning could be considered to be statistical.
However, for the purposes of this thesis this refers to models which use explicitly
learned probabilities to calculate the compound probability of a specific class, and
classifying based on this probability. Two of the most well known methods within
the statistic approach are Naive Bayes and Bayesian Network algorithms.

Bayesian Networks require that there are some prior knowledge about the vari-
ables and their dependency relations. There are ways of discovering such relations
using structure learning [Rebane and Pearl, 1987], but this lies outside the scope
of this thesis.

Naive Bayes however is an approach which naively assumes independence of
all variables. Any actual relationships among the variables are ignored in a way
which could be considered blunt. As such, Naive Bayes is a comparatively simple
algorithm but has been shown to work very well in real applications [Marsland,
2009], especially if feature selection is used [Witten et al., 2011].

Due to its simplicity, Naive Bayes is often used as a baseline when new classi-
fication schemes are evaluated.

3.2.2 Network approach

The network approach to classification utilizes a directed network of choice points
to generate a classification.

Most obvious is the Decision Tree family of algorithms which constructs a tree
structure where every branch node is a choice point, testing some feature and
choosing a path based on the result, and every terminal node is a classification.
Decision Tree is a traditional classification approach which actually existed in man-
ually constructed, expert designed, versions before machine learning was applied
in the generation of trees. It is also one of the most transparent approaches and
is relatively easy to follow for a human user. In Figure 3.1 on page 20 is a sim-
ple example of a decision tree showing the most probable outcome for a Titanic
passenger based on some simple attributes.

20 Background to machine learning

Figure 3.1 – A tree showing survival of passengers on the Titanic ("sibsp"
is the number of spouses or siblings aboard). The figures under the leaves
show the probability of survival and the percentage of observations in the
leaf. Created using the R programming language, Source: Wikimedia
Commons, Author: Stephen Milborrow.

Another family of network algorithms is the Neural Network family which ap-
plies a connectionist perspective to classification [Rosenblatt, 1962]. By using
networks of perceptrons, micro classifiers analysing singular or pairs of features,
with propagation and feedback, relatively exact models can be constructed. How-
ever, unlike Decision Trees these Neural Networks are almost impossible to follow
for a human user and has at times been referred to as a "black box" approach
[Setino et al., 2000].

3.2.3 Algebraic approach
A large number of algebraic algorithms have been developed for classification.
These are based on representing data as points or vectors in feature space and
using matrix methods to calculate the classification. A problem for most algebraic
algorithms is that badly normalized input might lower the precision of the classifier.

Most, if not all, forms of regression, such as linear regression using least squares,
could be considered examples of algorithmic models. A system of equations, usu-
ally overdetermined, is constructed and regression is used to find a formula ap-
proximating the distribution of the data points. Some versions of regression can be
used for classification by representing each class numerically and using these as the
known constant side of the equations. While there are some problems with doing
binary classification using traditional linear regression, such as the aforementioned
least squares method, more advanced methods, such as logistic regression, have
proved efficient for classification [Witten et al., 2011].

The Vector Space Model is a well established tool in computational linguistics
being utilized in the field as early as 1975 [Salton et al., 1975]. By representing

3.2 Relevant approaches to classification 21

documents as vectors in feature space classification becomes a relatively simple
problem of comparing vectors. The features used are often bag-of-word sets where
the vectors represent frequencies of words [Eldén, 2007]. Usually, the distance is
measured by calculating the cosine angular distance.

Related to the Vector Space Model is the traditional Nearest Neighbour (NN)
algorithm. Instead of comparing vectors with the cosine angular distance the NN
algorithm takes a new, unclassified, data point and classifies it according to the
class of the closest classified data point. A popular version is the kNN algorithm
which uses the k nearest data points and classifies according to the majority of
these.

A relatively new approach is the Support Vector Machine (SVM) which has
existed in its modern form since 1995 [Vapnik and Cortes, 1995]. Like the NN
algorithm SVMs view data as points in feature space. In this space a hyperplane
which separates the feature space into two parts, representing two different classes,
is calculated. In Figure 3.2 on page 21 is simple two-dimensional example of a
SVM.

Figure 3.2 – Graphic showing three hyperplanes in 2D. The hyperplane
H3 doesn’t separate the two classes at all. H1 separates them with a
small margin and H2 with a large margin. Created using vector graphics,
Source: Wikimedia Commons, Author: Cyc.

3.2.4 Other approaches
Related to the aforementioned Decision Tree family of algorithms is the Classifi-
cation Rules family of algorithms. While making classifications in Decision Trees
consists of traversing a tree by choosing children based on tests, classification by
rules is done by matching new data points against learned rules, represented as
conjunctions of boolean variables. These variables are generally made up by the
same kinds of tests as would be used in a binary Decision Tree. Whenever a
rule-conjunction holds true the corresponding class is chosen.

Chapter 4

Approach

This chapter will elaborate on the approach to readability assessment underlying
this thesis.

4.1 Probability as readability

As covered in Section 2.4 on page 14 many recent studies within degree of read-
ability assessment in the U.S. have focused on identifying a suitable grade level.
This is in part because many of the established metrics for American English,
such as Flesch-Kincaid, output such a grade level. It is also in part because there
exist an American corpus, Weekly Reader, tagged with precisely such a "suitable
grade"-system.

This means that there are sets of texts ordered by degree of readability on which
regression can be more effectively applied. It also means that detectors (single class
classifiers) can be trained for each level. For Swedish nothing comparable exists.
There are corpora which intuitively should have different degrees of readability
relative to each other but nothing concrete.

As graded corpora does not exist for Swedish in any obvious and accessible
form a substantially different approach will be examined. If the assumption is
made that the degree of readability of a text is proportionate to the probability
that the text is classified as easy-to-read by a, theoretically, perfect classifier the
problem becomes one of constructing such a classifier. At this time there is no easy
way of testing the assumption, but before the assumption can be tested a system
which can at least calculate the probability that a text is easy-to-read must be
constructed. Of course, the system will not constitute a perfect classifier but a
good enough classifier should be able to calculate probabilities in such a way that
texts within a limited span can be ranked by these probabilities. The goal of this
thesis is to implement and test such a limited classifier for Swedish text.

23

24 Approach

4.2 Relevant features
As this is one of the first studies on machine learning based readability assess-
ment for Swedish, possibly relevant features have been cherry-picked from four
categories of features used in recent research on other languages. A large number
of possible features, based on n-gram language models, phrase grammar syntax,
compositional semantics and discourse level features etc., have been left out due
to time constraints.

Besides Chall’s four properties (see Section 2.1 on page 9) it is possible to divide
text analysis into another dimension more suitable for describing data extraction.
This dimension is defined by how the features are represented in the text and what
kind of analysis is required to extract them. These different kinds of analyses
can be divided into four levels of increasing linguistic involvement. The levels are
shallow, or surface, structure, lexical composition, morpho-syntactic structure and
syntactic structure. These categories, and many of the features, are influenced by
prior research covered in Section 2.4 and in particular by Dell’Orletta et al. [2011].

All these features might not be necessary for classifying easy-to-read texts. For
instance, Dell’Orletta et al. [2011] showed that a model only using the first three
levels of analysis, that is, excluding the syntactic structure, actually can perform
better then a full model on Italian texts. However, the features relevant for easy-
to-read classification might differ from the features relevant for deciding degree
of readability for some specific reader group. Therefore, feature selection, based
on these features, should perhaps be performed before training with reader type
specific corpora in future developments.

4.2.1 Shallow text features
The shallow text features are the main features traditionally used for simple read-
ability metrics. They occur in the "shallow" surface structure of the text and can
be extracted after tokenization by simply counting tokens and characters. They
include:

• Word length calculated as the average number of characters per word.

• Word length calculated as the average number of syllables. The number of
syllables is approximated by counting the number of vowels.

• Sentence length calculated as the number of words in the sentence.

Longer sentences, as well as longer words, tend to predict a more difficult text
as exemplified by the success of the LIX metric and related metrics for English.
These types of features have been used in a number of readability studies based
on machine learning [Feng, 2010] and as baseline when evaluating new features
[Pitler and Nenkova, 2008].

4.2.2 Lexical Features
The lexical features are those features based on lexicology, in this case, categorical
word frequencies. The word frequencies can be extracted after lemmatization and

4.2 Relevant features 25

50 DI någon S
51 RG också C
52 S vid C
53 V säga C
54 S under C
55 NCN år C, H
57 V se C, H
58 V gå C, D
60 RG mycket C
61 V ta C
62 RG här C
63 RG nu C
64 PH vad C
65 CC hur C
65 RG hur C
65 RH hur C
66 S mot C
67 S efter C

Figure 4.1 – SweVoc: Entries 50 to 67.

are calculated using a basic Swedish vocabulary developed by Heimann Mühlen-
bock [forthcoming] named SweVoc. SweVoc is comparable to the list used in the
classic Dale-Chall formula [Dale and Chall, 1949] for English and developed for
similar purposes, however special sub-categories have been added. See Figure 4.1
on page 25.

The total vocabulary comprises ≈ 8,000 word lemmas, discounting a large
number of supplementary words (category S) leaves ≈ 4,000. These ≈ 4,000 word
lemmas are subdivided into a core vocabulary of ≈ 2,000 words (category C), ≈
500 words denoting everyday objects and phenomena (category D), 1,000 words
highly frequent and dispersed in a balanced corpus (category H) and additionally
≈ 500 words highly frequent in a corpus from the web (category K, not seen in
Figure 4.1). Some lemmas belong to more than one category, such as word 57 (gå)
in 4.1. In this thesis only the lemmas in the C, D and H categories are treated
individually due to uneven distribution of K and S lemmas in previous research 1.
The following ratios are considered:

• SweVoc lemmas fundamental for communication (category C)

• SweVoc lemmas for everyday use (category D)

• SweVoc other highly frequent lemmas (category H)

1Based on personal correspondence with my advisor Katarina Heimann Mühlenbock who is
the creator of SweVoc

26 Approach

• Unique, per lemma, SweVoc words in the sentence.

A high ratio of SweVoc words should indicate a more easy-to-read text. The
Dale-Chall metric [Chall and Dale, 1995] has been used as a similar feature in a
number of machine learning based studies of text readability for English [Feng,
2010; Pitler and Nenkova, 2008]. The SweVoc metrics are also related to the
language model features introduced by Schwarm and Ostendorf [2005] and used
in a number of studies since [Heilman et al., 2008].

4.2.3 Morpho-syntactic features
The morpho-syntactic features relate to a morphology based analysis of text. For
the purposes of this thesis this analysis consists of part-of-speech tagging. This
part-of-speech tagging is then used as the basis for a number of features. They
consist of:

• Unigram probabilities for the 26 different part-of-speech tags in the docu-
ment, that is, the ratio of each part-of-speech, on a per token basis, as in-
dividual features. Such a unigram language model based on part-of-speech,
and and similar metrics, has shown to be a relevant feature for readability
assessment [Heilman et al., 2007] [Petersen, 2007] [Dell’Orletta et al., 2011].

• Lexical density, calculated as the ratio of content words, on a per token
basis, in the text. Such a metric has been used in a number of related
studies [Alusio et al., 2010]. A related metric is the Nominal ratio metric
which is an established metric for Swedish [Hultman and Westman, 1977].

4.2.4 Syntactic features
The most linguistically advanced category of features are the syntactic features.
These features depend on a syntactic parsing of the text. The syntactic analysis
in this thesis, as in Dell’Orletta et al. [2011], is based on a dependency grammar
view of syntax and extracted by dependency parsing using a MaltParser [Nivre
et al., 2006] generated parser. An example of a sentence parsed with this parser
is found in Figure 4.2 on page 28.

A phrase grammar approach, with a phrase grammar parser, such as the one
proposed in Nenkova et al. [2010], might be also be relevant for future research as
it has been shown to be relevant in many studies [Heilman et al., 2007; Feng et al.,
2010] but is not used in this thesis.

The syntactic feature set is extracted after dependency parsing. They consist
of the following features:

• The average dependency distance in the document, that is, the length of a
dependency link between a dependent token and its head, calculated as the
difference between their positions in a sentence. A longer average dependency
distance could indicate a more complex text. In the sentence in Figure 4.2 the
dependency distance between "gick" and "på" is 2. This has been proposed
as a readability metric by Liu [2008]

4.2 Relevant features 27

• The average total length of dependency links in all sentences in the docu-
ment, also based on Liu [2008]. In the sentence in Figure 4.2 the total length
of dependency links is 5.

• The ratio of right dependencies to total number of dependencies in the doc-
ument. This is calculated by counting the dependency links in which the
head word occur after the dependent word in their sentence. A high ratio
of right dependencies could indicate a more complex text. In the sentence
in Figure 4.2 "De" represents a right dependency as it’s head word, "gick",
occur later in the sentence.

• The average sentence depth. A sentence’s depth is calculated as the depth
of the tree consisting of all dependency links in the sentence. Sentences
with deeper dependency trees could be indicative of a more complex text in
the same way as phrase grammar trees has been shown to be [Petersen and
Ostendorf, 2009]. Parse tree depth was proposed as a feature influencing
degree of readability by Yngve [1960].

• The unigram probabilities for the 63 dependency types resulting from the de-
pendency parsing, on a per token basis. These unigram probabilities are ex-
tracted by calculating the ratios of the different syntactic dependency types,
such as predicate, direct object, etc. to the total number of tokens. In the
sentence in Figure 4.2 the dependency types ROOT, SS, NA, 0A and PA
each have a ratio of 0.2, every other dependency type have a ratio of 0. This
feature is related to the phrase type rate used by for instance Nenkova et al.
[2010].

• The ratio of sentences with a verbal root, that is, the ratio of sentences where
the root word is a verb to the total number of sentences. The sentence in
Figure 4.2 has a verbal root. This is, however, not obvious from the figure as
part-of-speech is not represented. This feature was proposed by Dell’Orletta
et al. [2011].

• The average arity of verbs in the document, calculated as the average num-
ber of dependents per verb. This is calculated by counting the number of
dependency relations where the head word is a verb. In the sentence in Fig-
ure 4.2 the average verbal arity is 3 as the root word, "gick", is the only verb.
This feature was proposed by Dell’Orletta et al. [2011].

• The ratios of verbs with an arity of 0-7, that is, the ratio of verbs with an
arity of 0 as one feature, the ratio of verbs with an arity of 1 as another
feature and so on. This feature was proposed by Dell’Orletta et al. [2011].

• The ratio of subordinated clauses to total number of clauses in the docu-
ment. Subordinated clauses are identified by the UA dependency relation.
The sentence in Figure 4.2 has no subordinated clause. The frequency of
"SBAR"s (subordinated clauses in phrase grammar treebanks such as the
Penn Treebank) has been used as a metric by a number of studies utilising
phrase grammar analysis [Schwarm and Ostendorf, 2005] [Petersen, 2007],

28 Approach

gick

De inte på

bluffen

ROOT

SS NA 0A

PA

Figure 4.2 – A dependency tree for the sentence "De gick inte på bluffen."
("They were not fooled by the bluff."), to the left are the tokens and to
the right their dependency grammar roles.

this feature can be considered a dependency based counterpart to that fea-
ture.

• The ratio of subordinated clauses occurring after the main clause in their
sentences to the total number of subordinated clauses in the document. Sen-
tences with post-main clause subordinated clauses could indicate a more
easy-to-read text [Dell’Orletta et al., 2011].

• The average number of tokens per clause in the document. This is related
to the shallow feature average number of tokens per sentence.

• The average number of nominal pre-modifiers and the average number of
nominal post-modifiers per sentence in the document, as two distinct fea-
tures. Pre- and post-modifiers are identified by the AT and ET dependency
relations respectively.2

• The average number of prepositional complements per sentence in the doc-
ument. Prepositional complements are identified by the PA dependency
relation. The sentence in Figure 4.2 has 1 prepositional complement.3

4.2.5 Necessary preprocessing
Generally, the preprocessing steps necessary to extract the relevant features are
tokenization, lemmatization, part-of-speech tagging and dependency parsing. A
custom preprocessor performing these steps one at a time would be possible and
was done, for instance, in the the CogFLUX project [Rybing and Smith, 2010].
However, for this thesis a tool, not made publicly available at the time of writing4,
from Språkbanken at University of Gothenburg is used. The Korp corpus import
tool performs all preprocessing up to and including dependency parsing and gener-
ation of sentence trees in a custom XML-format. It also does some preprocessing
not relevant for this thesis.

2Introduced after personal correspondence with my advisor Katarina Heimann Mühlenbock.
3Ibid
4I have been allowed to use it as my advisor, Katarina Heimann Mühlenbock, work at Språk-

banken.

4.3 Classification algorithms in Weka 29

4.3 Classification algorithms in Weka

For the Classification task the Waikato Environment for Knowledge Analysis, or
Weka, is used. Weka is a suite of machine learning and data mining tools and
algorithms implemented in Java [Hall et al., 2009]. Weka has been developed at
Waikato University, New Zealand, since 1993 and is distributed under the GNU
General Public Licence. Weka consists of two main parts, a suite of GUI appli-
cations for different applications machine learning and data mining tasks, and a
library of Java classes for including Weka directly into Java applications. Through
this API Weka provides access to classes implementing a large number of popular
machine learning schemes and algorithms as well as filters and other preprocessing
tools. Only the Java API has been used in this thesis.

As the time frame for this study is limited only some cursory research into
the different available algorithms and which of them might be most suited has
been done. For this reason the fact that it is easy to swap classifier in Weka, as
they all share a common interface, is utilized. Four different schemes has been
selected and tested. All schemes below can handle missing values, something that
is necessary as the data extraction at a few points might generate infinity or NaN
(not a number, a value generated by Java when the result of a computation is
not considered an actual number, such as arithmetically undefined values such as
0 divided by 0 or the square root of a negative number) due to bad grammar in
the corpus data. As bad grammar is unavoidable in real applications these bad
examples are not filtered from the training and test sets.

4.3.1 J48 - Decision Tree

There are a number of different tree learning algorithms in Weka. The one used in
this research, the J48 decision tree learner, is a Java implementation of Quinlan’s
C4.5 tree learning algorithm which is one of the most popular algorithms today.

The C4.5 algorithm generates decision trees by finding the attribute with the
highest information gain, creating a decision point for it and splitting the training
data based on that attribute and then recursively doing the same thing for the
resulting sets [Quinlan, 1993]. The leaf nodes of the resulting tree represents
classifications.

4.3.2 ClassificationViaRegression - Regression

Regression is, as mentioned above, not mainly a classification scheme but rather an
analytic tool to find relations among variables. However, Weka contains a number
of so-called meta-learning tools where classifiers are combined with other tools to
create more powerful schemes. The method used is a combination of decision trees
and linear regression called Model Trees, realised in the class ClassificationViaRe-
gression. By placing linear regression functions on the leaf nodes of a traditional
decision tree, a very powerful classifier can be constructed [Frank et al., 1998].

30 Approach

4.3.3 NaiveBayes - Naive Bayes
Naive Bayes is a relatively simple probabilistic algorithm. The naiveté in the name
comes from the Naive Bayes algorithms implicit assumption that all variables are
independent. In the case of readability assessment it is obvious that some variables
are, in fact, conditionally dependent on each other, for instance the two word length
metrics (number of characters and number of syllables). However, the Naive Bayes
algorithm has been shown to provide a good approximation for most applications
[Witten et al., 2011].

Naive Bayes works by training a probability distribution for each feature. When
a new sentence is classified the probabilities for each of its feature values is calcu-
lated, and the average result is used as a basis for classification.

4.3.4 SMO - Support Vector Machine
Support Vector Machines (SVM) is an algebraic approach to machine learning.
Objects with known class is represented as points in a n-dimensional space, where
n is the number of features. The algorithm then attempts to find a maximum
margin hyperplane separating the objects by their class [Witten et al., 2011]. New
objects are classified by calculating on which side of this hyperplane the object’s
corresponding point occurs. Support Vector Machines has been increasingly popu-
lar in Computational Linguistics in recent years and a number of SVM implemen-
tations are available. While Weka has a wrapper for the popular LibSVM C/C++
module this thesis uses the SMO, Sequential Minimal Optimization, algorithm
[Platt, 1998] which is a Java based SVM learner included in the standard Weka
toolkit.

Chapter 5

Implementation

This chapter will explain the inner workings of the actual system implemented for
this thesis.

5.1 Modularity

The system can roughly be divided into two different modules: the analysis mod-
ule and the classification module. These have a single class in common, the Fea-
tureVector class, but are otherwise decoupled. The majority of the work for this
thesis cover the interface between the modules, especially on the analysis side. The
analysis module can further be broken down into a preprocessor, the Korp corpus
import tool, which does all linguistic analysis, and an XML-parser and feature
vector generator which converts the result from this linguistic analysis to statis-
tical data and organises this data into a FeatureVector object. The classification
module can be broken down into the Model module, which controls which features
to use and serves as a data wrapper for Weka, and the ClassifierFacade module
which is just a functional wrapper for Weka.

In Figure 5.2 on page 35 the chain of data transformations through the system
is visualised and in Figure 5.1 the general structure of the system is visualised.

Korp
corpus
import
tool

XML-
parser

Model and
Classifier-
Facade

Weka

Figure 5.1 – Rough system structure, the grey modules are constructed
for this thesis.

31

32 Implementation

5.2 Text analysis
The analysis module extracts the data relevant for classification. This module is
at this time dependent on third party preprocessing which is not optimized for
speed but accuracy. As such this module will have to be redesigned before use in
production. Like the system in general this module is not highly coupled and is
split into two packages, the Preprocessor package and the XMLHandler package.

5.2.1 Preprocessing
As the preprocessing is performed by an external application (described below)
the preprocessor portion of the implemented system will consist only of a class
handling communication with that application. However, due to the infeasibility of
using that application in a production environment and the limited time available,
efficient wrapping will not be a high priority and might not be implemented as it
does not affect the result of the primary study but only the ease-of-use of the test
environment.

The preprocessor generates a lemma- and part-of-speech tagged as well as
dependency parsed version of the text represented as an XML-document.

5.2.2 The Korp corpus import tool
The Korp corpus import tool is used at Språkbanken, University of Gothenburg,
to generate their corpora. It performs a number of preprocessing steps of which
lemmatisation, part-of-speech-tagging and dependency parsing are the ones rele-
vant for this thesis. The result can be output in a number of formats, an XML
representation is used in this thesis. See Appendix A for an example of the XML-
format.

5.2.3 XML-parsing
This section describes the data extraction for the document based analysis. The
sentence based analysis is done by treating each sentence as a one-sentence docu-
ment.

Data extraction from XML is generally performed either by using a SAX-parser
or a DOM-object representing the XML-document. A SAX-parser approach is used
in this thesis.

SAX, or Simple API for XML, is an event-based sequential access parser API.
A SAX-parser traverses a XML-document sequentially and calls a specific handler
method for every "event", that is, when a certain element type, such as a start tag
or an end tag, is reached.

The SAX parser in itself is stateless and unlike DOM, or Document Object
Model, does not need to keep the document in memory. If the parsing can be con-
structed in such a way that a single linear traversal of the XML-code is sufficient,
SAX should be both faster and cheaper, memory wise, than DOM.

While both SAX and DOM could be used to directly generate a feature vector
by creating methods for extracting and calculating features one by one this is

5.2 Text analysis 33

not very efficient. SAX would need to traverse the XML-code at least once, and
sometimes more, for each feature, and DOM would need generation of a DOM
object in which lookup could be done.

Instead a specially designed Document object holding data about the document
is generated by the parser. This Document object (currentDocument) holds all
information about the document relevant for calculating the feature vector but
not the actual values for the feature vector. For example: instead of holding the
average length of sentences currentDocument holds the total number of words and
the total number of sentences. The calculations converting these absolute numbers
to averages and ratios are done by the FeatureVector constructor. The parser also
keeps a Sentence object (currentSentence) holding data about the current sentence
which cannot directly be inserted into the Document object.

For each word the parser reads, currentDocument and currentSentence is up-
dated. The total number of words and the number of occurrences of the word’s
part-of-speech and dependency type are incremented. The lemma is added to a
map of lemmas and the number of occurrences for each lemma for the Document.
If applicable, that is, if the word is not the root of its sentence, the total number
of dependencies is incremented, and the dependency distance is added to the total
dependency distance. Also, a WordNode object is generated and added to a bag of
words in currentSentence. Lastly, the word is checked against SweVoc, see Section
4.2.2 on page 24.

When the end of a sentence is reached the sentence is analysed and current-
Document is updated with sentence specific data. The total number of sentences is
incremented and the total sentence depth and the verb arities are calculated. Also,
if the sentence has a verbal root the total number of verbal roots is incremented.

This process effectively creates a new representation of the document, however
with relatively large loss of information as it only contains statistics about the
document and not any meaningful part of its semantics.

5.2.4 Computation of features
The Document object created during the XML-parsing is used to construct a Fea-
tureVector object. The FeatureVector class represents yet another representation
of the document where the raw numbers extracted from the text are converted to
a number of averages and ratios. The raw numbers could have been used directly,
but that could have made the system dependent on document length, which is not
desirable.

The FeatureVector object is designed for experimental use and as such all fea-
tures are included. In a production version of the system, a class hierarchy of
FeatureVector classes for the different models could be designed to speed up the
process for smaller models.

As FeatureVector is a custom class its objects can not be used directly with
Weka. Weka instead use the class Instance and its specialised container class In-
stances to handle data points and data sets. The system thus includes a number
of custom model classes which serves as an interface between the system’s repre-
sentation of data and Weka’s. Each model class corresponds to one of the models

34 Implementation

introduced in Section 6.2 on page 37 and thus contains only a subset of all fea-
tures in the FeatureVector object. The model objects contain methods for creating
Instance and Instances objects and are used throughout the system whenever the
structure of the data needs to be referred to.

Just as Weka uses Instances to handle data sets the system uses a custom
TestSet class which contains a data set of FeatureVector objects. This is, among
other things, used for the custom n-fold evaluations, where the training and testing
sets need to be regenerated from FeatureVector objects a number of times.

5.3 Classification
Training and classification is done through the ClassifierFacade class. If the afore-
mentioned model classes can be said to wrap Weka’s data types, ClassifierFacade
wraps its functionality. This class is instantiated with a Classifier object from
Weka, for instance J48, a FeatureVector data set (represented by a Java Vector
with FeatureVector objects), and a model object. The constructor stores these
three essential components of the system and also uses the FeatureVectors to train
the Classifier. The ClassifierFacade object is called whenever a data point is to be
classified. There are methods both for hard and soft classification.

For evaluation there is a special static Evaluator class. This class has methods
both for singular test runs as well as n-fold evaluations for both hard and soft
classification. For the n-fold evaluations a new Classifier and ClassifierFacade is
created for each run to make sure that the test runs are independent of one another.
The Evaluator class works with a special TestResults class which handles both
singular test runs as well as n-fold evaluations. TestResults keep track of both
true positives and false positives for both possible classes in order to calculate
precision and recall for each set.

The ClassifierFacade works as an interface to Weka, however, other parts of
the system, such as XML-parsing and FeatureVector generation, are still explicitly
used. A comprehensive API for the full system, as well as pre-trained classifiers
should be included in a production version of the system.

5.3 Classification 35

Text

Korp kor-
pusimport

XML

XML-
parser

FeatureVector

Model

Instance

Classifier

Class or Probability

Figure 5.2 – The import and classification chain, the grey steps are
constructed for this thesis.

Chapter 6

Results

This chapter will present the results from the evaluations as well as some analysis
and discussion of those results.

6.1 Overview
This chapter will give an account of the results from testing the system with
different models and the four algorithms described in Section 4.3 on page 29. Hard
classification is evaluated on both sentence and document level. When it comes
to ranking only documents are relevant, soft classification will therefore only be
evaluated on a document level, and only with the best performing models from
the hard classification evaluation. The hard classification can be considered a test
run to find the most suitable models for soft classification as well as an evaluation
of the new and the established approaches to degree of readability assessment.

6.2 Models
A number of different models, sets of features used for classification, has been used
to evaluate the system. Firstly, the three aforementioned established metrics for
Swedish, LIX, OVIX and Nominal ratio, have one single feature model each. Also,
a model combining them as a three feature model is used to test whether the
new more involved linguistic analysis captures something outside the scope of the
established metrics.

When it comes to the new linguistic analysis models, four different models
have been constructed. The first model contains only shallow text features and is
referred to as the Shallow model (3 features). The second model contains shallow
text and lexical features and is referred to as the Lexical model (7 features). The
third model contains shallow text, lexical and morpho-syntactic features and is
referred to as the Morpho-Syntactic model (34 features). The fourth model con-
tains shallow text, lexical, morpho-syntactic and syntactic features and is referred

37

38 Results

to as the Syntactic model (116 features). The rule is that the models grow incre-
mentally, that is, each model includes all features from the less complex models.
This approach has been chosen to illustrate to what extent each level of linguistic
analysis increase the accuracy of the system.

Also, two additional models were included. The Super model, no pun in-
tended, is a combination of the Syntactic model and all three established Swedish
metrics, that is, every feature extracted by the system. The NoDep model (No
Dependency) is a model combining the Morpho-Syntactic model with all three
established Swedish metrics, that is, every feature extracted by the system except
those requiring dependency parsing.

The term configuration will refer to a combination of an algorithm and a model.
For instance, the SMO algorithm combined with the Super model.

The term feature set will refer to a set of features strictly resulting from a
certain level of linguistic analysis. For instance, the Lexical model consist of the
shallow and the lexical feature sets. While model names are capitalized feature
sets will be written in lower case letters only.

6.3 Results for hard sentence evaluation 39

6.3 Results for hard sentence evaluation

The four different algorithms were evaluated with a data set of 7000 randomly
selected sentences. Half of the sentences were selected from the Easy-to-read
Swedish corpus LäSBarT (translates as "Readable"). The other half were selected
from the news text corpus GP2006, which contain all articles from the Swedish
newspaper Göteborgsposten from 2006. It should be noted that these corpora
are not sentence based but document based, which means that a small number of
relatively complex sentences might appear among the easy-to-read sentences and
vice versa.

The tests have been performed with 7-fold cross-validation to smooth the result
and hopefully eliminate statistical anomalies arising in individual test runs. That
is, the training data has been split into 7 parts, each of which has been used once
to test a classifier trained on the other 6 parts. The average results follow below.

Precision and recall are calculated individually for LäSBarT and GP2006. Two
of the algorithm names are abbreviated in the tables, these abbreviations are
CvR for ClassificationViaRegression and NB for NaiveBayes. The algorithm and
corresponding results with the highest accuracy is highlighted. The accuracy of a
configuration is total percentage of correctly classified data points for both corpora.
The numbers represent percentages which have been rounded off to one decimal.

6.3.1 LIX

To read about the LIX metric, see Section 2.3.1 on page 12. The results of using
LIX for classification can be viewed in Table 6.1.

LäSBarT GP2006
Algorithm Accuracy Precision Recall Precision Recall

J48 61.2 61.0 63.1 61.6 59.3
CvR 60.7 60.0 64.5 61.6 56.9
NB 59.7 57.0 79.1 65.8 40.2
SMO 57.3 56.5 63.7 58.4 50.9

Table 6.1 – LIX for hard sentence classification.

The difference between the best and the worst performing algorithm is 3.9
percentage points of accuracy and the average accuracy is approximately 59.7 %.

As LIX is the most dominant metric in use in Swedish today this result is less
than could have been expected. However, as LIX is not designed for sentences and
some normal difficulty texts might contain easy-to-read-sentences, and vice versa,
the result is understandable.

40 Results

6.3.2 OVIX

As the logarithmic version of OVIX, presented in Figure 2.4 on page 13, is very
error prone when applied to sentences, a simplified version is used. It is defined as

OV IX = n(uw)
n(w)

Figure 6.1 – The simplified OVIX formula.

where n(w) is the number of words and n(uw) is the number of unique words.
To read more about the OVIX metric, see Section 2.3.2 on page 12. The results
of using OVIX for classification can be viewed in Table 6.2.

LäSBarT GP2006
Algorithm Accuracy Precision Recall Precision Recall

J48 50.4 50.2 99.9 93.8 0.9
CvR 50.5 50.3 84.7 51.4 16.3
NB 50.1 50.1 84.1 50.4 16.2
SMO 51.0 51.1 45.8 50.9 56.3

Table 6.2 – OVIX for hard sentence classification.

The difference between the best and the worst performing algorithm is 0.9
percentage points of accuracy and the average accuracy is approximately 50.5 %.

The OVIX-metric seems to be a very weak metric for sentence assessment
as it barely outperforms pure chance. However, this is perhaps to be expected
when it is applied at the sentence level. The high recalls of LäSBarT and low
recalls of GP2006 implies that generally the algorithms tend to classify a majority
of sentences as easy-to-read. The exception is the SMO algorithm which seems
to have a slight opposite tendency, this is also the best performing algorithm,
although not significantly so.

6.3.3 Nominal ratio

To read about the Nominal ratio metric, see Section 2.3.3 on page 13. The results
of using Nominal ratio for classification can be viewed in Table 6.3.

6.3 Results for hard sentence evaluation 41

LäSBarT GP2006
Algorithm Accuracy Precision Recall Precision Recall

J48 54.7 53.4 73.7 57.6 35.8
CvR 62.5 60.7 70.8 65.0 54.2
NB 52.7 51.6 86.6 58.4 18.8
SMO 52.5 51.4 88.6 58.9 16.3

Table 6.3 – Nominal ratio for hard sentence classification.

The difference between the best and the worst performing algorithm is 10.0
percentage points of accuracy and the average accuracy is approximately 55.6 %.

Considering sentence level assessment, Nominal ratio seems to perform best
among the established metrics when it comes to best algorithm accuracy. If the
average is considered though, LIX perform slightly better. However, the same
tendency for over-classifying sentences as easy-to-read noted for OVIX seems to
exist for Nominal ratio as well. Again, though, the best performing algorithm does
not seem to fit this pattern, however, the opposite is not a large problem either.

6.3.4 Combination of established metrics
This model combines the three established metrics LIX, OVIX and Nominal ratio,
read more about these in Section 2.3 on page 11. The result of using the combi-
nation of established metrics for classification can be viewed in Table 6.4.

LäSBarT GP2006
Algorithm Accuracy Precision Recall Precision Recall

J48 61.1 59.5 69.6 63.3 52.6
CvR 65.2 63.6 70.9 67.1 59.5
NB 60.4 57.4 80.1 67.1 40.7
SMO 56.9 54.7 79.5 62.5 34.2

Table 6.4 – Combination of established metrics for hard sentence classi-
fication.

The difference between the best and the worst performing algorithm is 8.3
percentage points of accuracy and the average accuracy is approximately 60.9 %.

The combination is slightly better than Nominal ratio, which is the best per-
forming among the established metrics when best algorithm accuracy is considered.
The combination also outperforms LIX when the average is considered. Naive-
Bayes and SMO seem to have the same tendency to over-classify as easy-to-read
as seen above, while ClassificationViaRegression and J48 are more balanced. The
fact that ClassificationViaRegression is the best performing algorithm again might
be explained by the fact that it was the algorithm in the best performing configu-

42 Results

ration among the one feature models. The two extra features might be considered
an augmentation of this configuration.

6.3.5 The Shallow model
See Section 4.2.1 on page 24 for more information about the shallow feature set.
The result of using the Shallow model for classification can be viewed in Table 6.5.

LäSBarT GP2006
Algorithm Accuracy Precision Recall Precision Recall

J48 63.1 60.8 73.7 66.6 52.6
CvR 63.4 60.2 78.6 69.2 48.1
NB 59.9 56.5 86.0 70.7 33.9
SMO 59.8 56.6 83.4 68.5 36.1

Table 6.5 – The Shallow model for hard sentence classification.

The difference between the best and the worst performing algorithm is 3.6
percentage points of accuracy and the average accuracy is approximately 61.6 %.

Like with the established metrics there is a tendency to over-classify data points
as easy-to-read. The Shallow model analyses the same properties as the LIX
metrics but it seems that the features perform slightly better in raw form than
when they are mathematically compounded by the LIX formula. Interestingly, the
average result is better than for the combination of established metrics, however,
best algorithm accuracy is not better than for the combination.

6.3.6 The Lexical model
The Lexical model includes all features from the Shallow model as well as the
features in the lexical feature set. See section Section 4.2.2 on page 24 for more
information about the lexical feature set. The result of using the Lexical model
for classification can be viewed in Table 6.6.

LäSBarT GP2006
Algorithm Accuracy Precision Recall Precision Recall

J48 68.3 65.0 79.1 73.4 57.5
CvR 68.3 65.5 77.6 72.5 59.1
NB 61.8 57.8 87.5 74.3 36.0
SMO 66.7 63.1 79.9 72.7 53.4

Table 6.6 – The Lexical model for hard sentence classification.

6.3 Results for hard sentence evaluation 43

The difference between the best and the worst performing algorithm is 6.5
percentage points of accuracy and the average accuracy is approximately 66.3 %.

Note that ClassificationViaRegression was slightly better than J48 before round-
ing off.

As expected the addition of lexical features increase the accuracy of all algo-
rithms. The ClassificationViaRegression algorithm performs best again which, as
for the combination of established metrics, might be viewed as an augmentation
of the prior best performing configuration.

6.3.7 The Morpho-Syntactic model

The Morpho-Syntactic model includes all features from the Lexical model as well
as the features in the morpho-syntactic feature set. See section Section 4.2.3 on
page 26 for more information about the morpho-syntactic feature set. The result
of using the Morpho-Syntactic model for classification can be viewed in Table 6.7.

LäSBarT GP2006
Algorithm Accuracy Precision Recall Precision Recall

J48 77.4 75.8 80.4 79.1 74.4
CvR 79.0 76.4 83.8 82.1 74.1
NB 71.8 65.4 92.5 87.3 51.1
SMO 78.2 75.2 84.1 82.0 72.3

Table 6.7 – The Morpho-Syntactic model for hard sentence classification.

The difference between the best and the worst performing algorithm is 7.2
percentage points of accuracy and the average accuracy is approximately 76.6 %.

Again the ClassificationViaRegression is the best performing algorithm.

6.3.8 The Syntactic model

The Syntactic model includes all features from the Morpho-Syntactic model as
well as the features from the extensive syntactic feature set. See section Section
4.2.4 on page 26 for more information about the syntactic feature set. The result
of using the Syntactic model for classification can be viewed in Table 6.8.

44 Results

LäSBarT GP2006
Algorithm Accuracy Precision Recall Precision Recall

J48 78.3 77.0 80.8 79.8 75.9
CvR 82.1 79.2 87.1 85.7 77.1
NB 73.7 67.1 93.1 88.7 54.3
SMO 82.7 80.0 87.3 86.0 78.1

Table 6.8 – The Syntactic model for hard sentence classification.

The difference between the best and the worst performing algorithm is 9.0
percentage points of accuracy and the average accuracy is approximately 79.2 %.

This full new model performs considerably better than the established met-
rics. There is still a small tendency for over-classifying sentences as easy-to-read,
especially for NaiveBayes. However, it is small enough that the assumption can
be made that the relatively low accuracy for the established metrics is caused
to a large extent by the models themselves. SMO is now the best performing
model, which is not consistent with the earlier apparent augmentation behaviour,
however, as SMO is the algorithm most increasing it’s accuracy by addition of
morpho-syntactic features, SMO might actually be the most fitting algorithm for
the syntactic and morpho-syntactic feature sets.

6.3.9 The Super model

The Super model consists of all features from all models above. That is, the Syn-
tactic model with LIX, OVIX and Nominal ratio added. The result of using the
Super model for classification can be viewed in Table 6.9.

LäSBarT GP2006
Algorithm Accuracy Precision Recall Precision Recall

J48 77.6 76.6 79.5 78.7 75.7
CvR 82.4 79.6 87.0 85.7 77.7
NB 73.7 67.1 92.9 88.4 54.5
SMO 83.0 80.1 87.7 86.4 78.2

Table 6.9 – The Super model for hard sentence classification.

The difference between the best and the worst performing algorithm is 9.3
percentage points of accuracy and the average accuracy is approximately 79.2 %.

The Super model slightly improves best algorithm accuracy, however, the av-
erage result does not improve as J48 slightly decrease in accuracy. The increase
in best algorithm accuracy is however enough to declare the Super model as the
best model for sentence level readability assessment.

6.3 Results for hard sentence evaluation 45

6.3.10 The NoDep model
The NoDep model consists of all features from all models above except those from
the syntactic feature set, which require dependency parsing. That is, the Morpho-
Syntactic model with LIX, OVIX and Nominal ratio added. The result of using
the NoDep model for classification can be viewed in Table 6.10.

LäSBarT GP2006
Algorithm Accuracy Precision Recall Precision Recall

J48 77.6 76.6 79.4 78.7 75.8
CvR 79.4 77.2 73.7 82.2 75.2
NB 72.1 65.7 92.1 86.9 52.0
SMO 78.7 76.1 83.8 82.0 73.6

Table 6.10 – The NoDep model for hard sentence classification.

The difference between the best and the worst performing algorithm is 6.6
percentage points of accuracy and the average accuracy is approximately 77.0 %.

The NoDep model relates to the Morpho-Syntactic model in the same way as
the Super model relates to the Syntactic model. The addition of the three es-
tablished metrics only slightly increase accuracy but the increase is big enough to
declare the NoDep model as the best model for sentence level readability assess-
ment not requiring dependency parsing.

6.3.11 Comments on the sentence level evaluation
As expected, different algorithms seem to be suitable for different models. This
is one of the reasons more than one algorithm was evaluated and why the best
algorithm accuracy was used together with the average instead of comparing each
algorithm individually. Some models seem to be more sensitive to choice of algo-
rithm than others. See Figure 6.3 on page 54 for a comparison of the differences
in algorithm accuracy for each model and a comparison between the sentence level
and the document level. See also Section 6.4.11 on page 53 for a discussion of
these differences.

The fact that many configurations seem to favour easy-to-read classifications
might be explained somewhat by the higher probability of an easy-to-read sentence
in a normal document than vice versa. Realistically a news text should be more
heterogeneous when it comes to sentence readability, since it can be assumed that
no great effort has been put into purging easy-to-read sentences which appear
naturally in the writing process. This implies a possible slight overlap in degree
of readability of sentences between the two corpora, however, this should not
be a problem in the document case due to a natural smoothing effect when full
documents are considered.

Interestingly, ClassificationViaRegression is the best performing algorithm for 6
out of 10 models, however, SMO is the algorithm in the best performing configura-

46 Results

LIX OVIX NR COM SHA LEX MOR SYN SUP NOD

50

55

60

65

70

75

80

85

61.2

51

62.5

65.2
63.4

68.3

79

82.7 83

79.4

59.7

50.5

55.6

60.9 61.6

66.3

76.6

79.2 79.2
77

Model

A
cc
ur
ac
y
in

pe
rc
en
t

Best accuracy Average accuracy

Figure 6.2 – The accuracies for the different models used in the sentence
level evaluation.

tion. This might be explained by SMO being most fitting for the Morpho-Syntactic
and Syntactic features. J48 is the best algorithm only in one case and NaiveBayes
is never the best algorithm.

The accuracy increase between the Lexical and Morpho-Syntactic models is the
largest one in the sentence level evaluation both when it comes to best algorithm
accuracy and average accuracy. This implies that morpho-syntactic features are
the most relevant features when it comes to sentence level assessment. Feature
selection shows that 11 of 13 features selected from the Morpho-Syntactic model
and 9 of 14 selected from the Syntactic model belong to the morpho-syntactic
feature set.

A chart showing all best algorithm and average accuracies can be found in
Figure 6.2 on page 46.

6.4 Results for hard document classification 47

6.4 Results for hard document classification

The same 7-fold cross validation method was used for the document level evalu-
ation as for the sentence level evaluation. Instead of GP2006 the slightly newer
GP2007 was used as a source for news texts. The main difference between the
evaluations is the size of the data set. Whereas the sentence level evaluation used
a data set of 7000 data points, the document level evaluation use only 1400 data
points. However, as each data point represent a document instead of a sentence
the actual amount of text processed to generate the data points is in fact larger.

6.4.1 LIX

To read about the LIX metric, see Section 2.3.1 on page 12. The results of using
LIX for classification can be viewed in Table 6.11.

LäSBarT GP2007
Algorithm Accuracy Precision Recall Precision Recall

J48 79.0 74.8 87.7 85.1 70.4
CvR 78.6 72.5 92.0 89.1 65.1
NB 77.1 70.8 92.3 88.9 61.9
SMO 77.4 81.3 71.0 74.3 83.7

Table 6.11 – LIX for hard document classification.

The difference between the best and the worst performing algorithms is 1.9
percentage points of accuracy and the average accuracy is approximately 78.0 %.

Compared to the sentence level evaluation this is a considerably better result
for the LIX metric. But, as LIX is designed for document assessment rather than
sentence assessment this is not surprising. There is still a tendency to over-classify
news texts as easy-to-read. As in the sentence level evaluation J48 seem to be the
most suitable algorithm for use with LIX.

6.4.2 OVIX

For the document level evaluation the logarithmic version of OVIX, presented in
Figure 2.4 on page 13, has been used. To read about the OVIX metric, see Section
2.3.2 on page 12. The results of using OVIX for classification can be viewed in
Table 6.12.

48 Results

LäSBarT GP2007
Algorithm Accuracy Precision Recall Precision Recall

J48 83.6 83.9 83.1 83.3 84.0
CvR 84.6 83.8 85.9 85.5 83.4
NB 84.1 81.3 88.7 87.6 79.6
SMO 84.5 82.0 88.4 87.4 80.6

Table 6.12 – OVIX for hard document classification.

The difference between the best and the worst performing algorithms is 1.0
percentage points of accuracy and the average accuracy is approximately 84.2 %.

OVIX was the worst performing metric when it came to sentence assessment
barely outperforming pure chance. When it comes to document assessment the
OVIX metric performs significantly better. As with the results for LIX, the im-
provement as such is not very surprising.

6.4.3 Nominal ratio
To read about the Nominal ratio metric, see Section 2.3.3 on page 13. The results
of using Nominal ratio for classification can be viewed in Table 6.13.

LäSBarT GP2007
Algorithm Accuracy Precision Recall Precision Recall

J48 72.0 71.4 73.3 72.6 70.7
CvR 73.1 71.2 77.4 75.3 68.7
NB 61.1 74.8 33.6 57.2 88.7
SMO 53.0 51.6 98.9 86.2 7.1

Table 6.13 – Nominal ratio for hard document classification.

The difference between the best and the worst performing algorithms is 20.1
percentage points of accuracy and the average accuracy is approximately 64.8 %.

Both LIX and OVIX experienced significant accuracy increases between the
sentence level and document level analyses for their respective top results. Nominal
ratio on the other hand only experience an improvement of about 8 percentage
points. Nominal ratio thus goes from being the best performing established metric
in the sentence level evaluation to the worst performing established metric for
documents.

The especially bad results for NaiveBayes and SMO should also be noted.
Apparently NaiveBayes has a tendency to underestimate the degree of readability
while SMO has the opposite tendency. Exactly why this happens is hard to explain
due to the black box nature of Weka’s inner workings.

As with LIX the same algorithm perform best for both sentence assessment
and for document assessment.

6.4 Results for hard document classification 49

6.4.4 Combination of established metrics
This model combines the three established metrics LIX, OVIX and Nominal ratio,
read more about these in Section 2.3 on page 11. The result of using the combi-
nation of established metrics for classification can be viewed in Table 6.14.

LäSBarT GP2007
Algorithm Accuracy Precision Recall Precision Recall

J48 90.6 91.7 89.4 89.7 91.9
CvR 90.1 90.5 89.6 89.7 90.6
NB 88.1 85.9 91.1 90.6 85.0
SMO 89.3 87.6 91.6 91.2 87.0

Table 6.14 – Combination of established metrics for hard document clas-
sification.

The difference between the best and the worst performing algorithms is 2.5
percentage points of accuracy and the average accuracy is approximately 89.5 %.

As in the sentence level evaluation the combination of the three established
metrics do perform slightly better than any of them on their own. The best single
value configuration was OVIX and ClassificationViaRegression, however, this is not
the configuration with the highest accuracy using the combination model. This
is especially interesting as ClassificationViaRegression was the best performing
algorithm for both OVIX and Nominal ratio, only LIX performed best with the
J48 algorithm.

6.4.5 The Shallow model
See Section 4.2.1 on page 24 for more information about the shallow feature set.
The result of using the Shallow model for classification can be viewed in Table 6.15.

LäSBarT GP2007
Algorithm Accuracy Precision Recall Precision Recall

J48 84.4 84.1 84.9 84.7 84.0
CvR 87.9 86.6 89.7 89.3 86.1
NB 77.4 71.2 92.1 88.9 62.7
SMO 72.6 76.7 64.9 69.6 80.3

Table 6.15 – The Shallow model for hard document classification.

The difference between the best and the worst performing algorithms is 15.3
percentage points of accuracy and the average accuracy is approximately 80.6 %.

The features used in the Shallow model are more or less the same features
as those used to calculate LIX. However, the mathematical mangling performed

50 Results

by the LIX formula apparently misses something relevant, perhaps the relation
between word length and sentence length. This model actually outperform each
one of the established metrics used on their own and only a combination of them
manages to outperform a simple model such as this one. However, considering the
average accuracy of the algorithms, OVIX performs slightly better.

6.4.6 The Lexical model

The Lexical model includes all features from the Shallow model as well as the
features in the lexical feature set. See section Section 4.2.2 on page 24 for more
information about the lexical feature set. The result of using the Lexical model
for classification can be viewed in Table 6.16.

LäSBarT GP2007
Algorithm Accuracy Precision Recall Precision Recall

J48 89.1 88.1 90.3 90.0 87.9
CvR 92.1 90.3 94.3 94.0 89.9
NB 85.4 79.2 96.1 95.1 74.7
SMO 81.4 81.9 80.7 81.0 82.1

Table 6.16 – The Lexical model for hard document classification.

The difference between the best and the worst performing algorithms is 10.7
percentage points of accuracy and the average accuracy is approximately 87.0 %.

As expected the Lexical model performs better than the Shallow model. The
Lexical model also manages to outperform the combination of established met-
rics when considering best algorithm accuracy. Considering average accuracy the
combination of established metrics still performs better though.

6.4.7 The Morpho-Syntactic model

The Morpho-Syntactic model includes all features from the Lexical model as well
as the features in the morpho-syntactic feature set. See section Section 4.2.3 on
page 26 for more information about the morpho-syntactic feature set. The result
of using the Morpho-Syntactic model for classification can be viewed in Table 6.17.

6.4 Results for hard document classification 51

LäSBarT GP2007
Algorithm Accuracy Precision Recall Precision Recall

J48 94.0 93.4 94.7 94.6 93.3
CvR 94.7 94.1 95.4 95.3 94.0
NB 90.0 86.0 95.6 95.0 84.4
SMO 95.6 94.8 96.6 96.5 94.7

Table 6.17 – The Morpho-Syntactic model for hard document classifica-
tion.

The difference between the best and the worst performing algorithms is 5.6
percentage points of accuracy and the average accuracy is approximately 93.6 %.

In the case of the Morpho-Syntactic model the addition of features have pushed
another algorithm to the top. This could mean that the morpho-syntactic feature
set work better with SMO, which the sentence level results also hinted at. If
this is the case, the new features might increase the accuracy of SMO to such
a degree that SMO surpasses ClassificationViaRegression. A feature selection on
the data set does imply that the features in the morpho-syntactic feature set are
the ones most indicative of degree of readability as 12 of 15 features selected from
the Morpho-Syntactic model are from the morpho-syntactic feature set. As this is
the case the other feature sets can be viewed as augmentations of this set keeping
SMO as the most suitable algorithm.

This model is the best performing so far outperforming all earlier models both
when it comes to average and best algorithm accuracy.

6.4.8 The Syntactic model
The Syntactic model includes all features from the Morpho-Syntactic model as
well as the features from the extensive syntactic feature set. See section Section
4.2.4 on page 26 for more information about the syntactic feature set. The result
of using the Syntactic model for classification can be viewed in Table 6.18.

LäSBarT GP2007
Algorithm Accuracy Precision Recall Precision Recall

J48 93.6 93.7 93.4 93.4 93.7
CvR 93.4 94.3 94.4 94.4 94.3
NB 90.4 86.4 95.9 95.3 84.9
SMO 97.1 97.3 96.9 96.9 97.3

Table 6.18 – The Syntactic model for hard document classification.

The difference between the best and the worst performing algorithms is 6.7
percentage points of accuracy and the average accuracy is approximately 93.6 %.

52 Results

As with other relations between feature sets the fact that SMO performs best
again might result from the syntactic feature set augmenting the morpho-syntactic
set.

Interestingly, J48 and ClassificationViaRegression actually has lower accuracy
for the Syntactic model than for the Morpho-Syntactic model. This is however
not totally surprising as similar results have been reached before, however for the
morphologically more complex Italian language [Dell’Orletta et al., 2011].

6.4.9 The Super model

The Super model consists of all features from all models above. The result of using
the Super model for classification can be viewed in Table 6.19.

LäSBarT GP2007
Algorithm Accuracy Precision Recall Precision Recall

J48 94.1 92.6 96.0 95.8 92.3
CvR 95.4 95.3 95.4 95.4 95.3
NB 90.8 87.0 95.9 95.4 85.7
SMO 97.6 97.7 97.6 97.6 97.7

Table 6.19 – The Super model for hard document classification.

The difference between the best and the worst performing algorithms is 6.8
percentage points of accuracy and the average accuracy is approximately 94.5 %.

The Super model manages to slightly outperform even the Syntactic model
both in best algorithm accuracy and average accuracy. While the averages did not
vary between the Syntactic and the Super model in the sentence level evaluation
the difference here is larger than the difference in best algorithm accuracy. Both
the best algorithm accuracy and the average accuracy here are the highest in the
hard document evaluation.

6.4.10 The NoDep model

The NoDep model consists of all features from all models above except the those
from the syntactic feature set, which require dependency parsing. The result of
using the NoDep model for classification can be viewed in Table 6.20.

6.4 Results for hard document classification 53

LäSBarT GP2007
Algorithm Accuracy Precision Recall Precision Recall

J48 94.2 93.8 94.9 94.8 93.7
CvR 95.1 94.5 95.9 95.8 94.4
NB 91.4 87.9 95.9 95.4 86.9
SMO 97.0 95.7 98.4 98.4 95.6

Table 6.20 – The NoDep model for hard document classification.

The difference between the best and the worst performing algorithms is 5.6
percentage points of accuracy and the average accuracy is approximately 94.4 %.

As expected the NoDep model is slightly less accurate than the Super model.
Interestingly, the average accuracy of the NoDep model is higher than the average
accuracy of the Syntactic model, and the best algorithm accuracy is only 0.1
percentage point lower.

6.4.11 Comments on the document level evaluation
As with the sentence level evaluation some models seem to be more sensitive to
choice of algorithm than others, see Figure 6.3 on page 54 for a comparison of
the difference in algorithm accuracy for each model and a comparison between the
sentence level and the document level.

There does not seem to be any obvious patterns in the comparisons of best and
worst algorithm accuracy, other than that Nominal ratio has the largest difference
between best and worst performing algorithm in both levels of assessment. Inter-
estingly, the level, sentence or document, on which the assessment is done does
not in general seem to affect the difference in accuracy between best and worst
algorithm accuracy. For example, for the model combining established metrics the
difference is more than three times as large for the sentence level evaluation as
for the document level, while for the Shallow model the difference is four times as
large for the document level evaluation as for the sentence level.

The trend in the sentence level evaluation is that many configurations seem to
favour easy-to-read classifications. In the document level evaluation this trend is
not as prominent except for the Nominal ratio. This might be explained by the
fact that the errors in sentence level assessment resulting from incidental easy-
to-read sentences in otherwise standard news text should be eliminated by the
data point smoothing resulting from a document level assessment. The overlap
between easy-to-read texts and news texts seem instead to lead to a more general
confusion where the error rates are more evenly distributed between the two data
sets. However, as the total error rate is generally much smaller in the document
level evaluation this is a sign of improvement.

As in the sentence level evaluation, NaiveBayes is never the best performing
algorithm. ClassificationViaRegression perform best in 6 of 10 cases in the sen-
tence level evaluation but not in the best performing configurations where SMO
has the highest accuracy. In the document level evaluation ClassificationViaRe-

54 Results

LIX OVIX NR COM SHA LEX MOR SYN SUP NOD

0

2

4

6

8

10

12

14

16

18

20

22

3.9

0.9

10

8.3

3.6

6.5
7.2

9 9.3

6.6

1.9
1

20.1

2.5

15.3

10.7

5.6
6.7 6.8

5.6

Model

D
iff
er
en

ce
in

pe
rc
en
ta
ge

po
in
ts

Sentence level Document level

Figure 6.3 – Difference in algorithm performance in percentage points
for each model.

gression only wins out in 4 of 10 cases putting it on a par with SMO in number
of best configurations. However, SMO again wins out in the best performing
configurations.

While OVIX was practically useless for sentence assessment it is the best per-
forming among the established metrics when it comes to document assessment.
This large difference is not surprising as the non-logarithmic OVIX is very sensi-
tive to sample size. The logarithmic version on the other hand breaks down in a
large number of cases when applied to sentences, as division by zero occurs when
all words in a text unit are unique, something very common in sentences while
very rare in full documents. These problems are both eliminated by applying the
logarithmic OVIX to full documents.

The system is implemented in such a way that a document can be interpreted as
the average of its constituent sentences. This results in a positive smoothing where
a few non typical sentences, for instance, easy-to-read sentences in news text, have

6.4 Results for hard document classification 55

a relatively small impact on the total degree of readability of the document.
See Appendix B for some examples of erroneously classified documents. The

documents are written in Swedish.
A chart showing all best algorithm and average accuracies can be found in

Figure 6.4.

LIX OVIX NR COM SHA LEX MOR SYN SUP NOD

65

70

75

80

85

90

95

100

79

84.6

73.1

90.6

87.9

92.1

95.6
97.1 97.6 97

78

84.2

64.8

89.5

80.6

87

93.6 93.6 94.5 94.4

Model

A
cc
ur
ac
y
in

pe
rc
en
t

Best result Average result

Figure 6.4 – The accuracies for the different models used in a document
level evaluation.

56 Results

6.5 Results for the soft document evaluation 57

6.5 Results for the soft document evaluation
The evaluation of soft document classification used the same data set as the hard
document evaluation. Instead of counting precision and recall, the result is split
into 4 parts, Correct, AmbCorr (ambiguous but correct), AmbErr (ambiguous but
erroneous) and Erroneous. As the training data is hard classified, documents from
GP2007 are considered to be 100 % "hard-to-read" and documents from LäSBarT
are considered to be 0 % "hard-to-read". This is a bit of an oversimplification but
a necessary one due to the available training data.

Any soft classification which is at most 25 percentage points off is considered
to be Correct. That is, documents from LäSBarT classified to < 25 % or docu-
ments from GP2007 classified to > 75 % are considered to be correctly classified.
Classifications between 25 and 50 percentage points off are considered to be Amb-
Corr, classifications between 50 and 75 are considered AmbErr and classifications
with errors above 75 percentage points are considered Erroneous. There is also
the sub-category perfect which is calculated as the ratio of perfect, 100 % correct,
classifications. Any perfect classification is obviously also a correct classification.

Lastly, to evaluate the feasibility of using the probability of readability for
ranking, the number of equivalence classes (# ECs in the tables), where two doc-
uments are considered equivalent if they have the same degree of readability, is
also counted. This is counted as the total number for all 7 runs.

Based on the results from the evaluation of hard document classification and
the fact that dependency parsing is infeasible for use in search engines today the
two models to be evaluated with soft classification are the Super model and the
NoDep model. The Super model as it was the best performing model overall,
and the NoDep model as it was the best performing model that did not require
dependency parsing.

The algorithms used below are modified versions of the earlier used algorithms.
Without going into to much detail these modifications are the following: Laplace
smoothing has been activated in J48, kernel estimation has been activated in
NaiveBayes and logistic models has been added to SMO. The last modification is
the only one strictly necessary for soft classification.

6.5.1 The Super model
The Super model consists of all features from all models above. The result of using
the Super model for soft classification can be viewed in Table 6.21.

Algorithm Correct AmbCorr AmbErr Erroneous Perfect # ECs
J48 94.0 0.3 0.6 5.1 0.0 71
CvR 90.5 4.6 2.2 2.6 35.7 901
NB 92.9 1.0 1.1 5.1 29.4 964
SMO 93.6 3.4 1.5 1.4 0.2 1398

Table 6.21 – The Super model for soft document classification.

58 Results

These results are more difficult to interpret than the results from the hard
classifications but some conclusions can be drawn.

The algorithms J48 and NaiveBayes are generally sure of themselves giving
either very high probabilities or very low probabilities even when the result is
incorrect. This is demonstrated by the fact that most classifications are either
within 25 percent margin or outside the 75 percent margin.

ClassificationViaRegression and SMO have a somewhat better curve where an
unambiguous but erroneous classification is less common than an ambiguous but
correct classification. ClassificationViaRegression instead has the problem that
35.7 % of the classifications are perfect. Perfect classifications can not be ordered
into more than two unordered sets, perfectly "easy-to-read", and perfectly not
"easy-to-read".

The reason that J48 seems to have no perfect classifications is that it runs with
Laplace smoothing, with Laplace smoothing inactivated 39.4 % of the classifica-
tions are perfect. This means that even though no perfect classifications exist at
least 39.4 % of the data points cannot be ordered. The fact that there are only 71
equivalence classes is also a considerable problem when it comes to ranking. See
Figure 6.5 on page 59 for a comparison of the accuracies of all configurations used
in the soft document evaluation.

SMO, however, have only 0.2 % perfect classifications as well as a high accuracy
and no large tendency to be too sure of itself. With 1398 equivalence classes
and 0.2 % perfect classifications it can be inferred that except for three perfect
classifications all documents can be ordered. This implies that SMO is the most
fitting algorithm for soft classification in this case. See Figure 6.6 on page 60 for a
comparison of the number of equivalence classes in all configurations used in the
soft document evaluation.

6.5.2 The NoDep model
The NoDep model consists of all features from all models except the those from
the syntactic feature set, which require dependency parsing. The result of using
the NoDep model for soft classification can be viewed in Table 6.22.

Algorithm Correct AmbCorr AmbErr Erroneous Perfect # ECs
J48 93.8 0.4 0.4 5.5 0.0 83
CvR 91.7 3.6 2.4 2.3 32.7 942
NB 93.4 0.3 0.4 5.9 10.1 1252
SMO 95.8 1.9 1.1 1.3 0.2 1398

Table 6.22 – The NoDep model for soft document classification.

The algorithms seem to have more or less the same behaviour for the NoDep
model as for the Super model. Interestingly SMO actually perform better with
the NoDep model than with the Super model with 97.7 % of documents classified

6.5 Results for the soft document evaluation 59

within the 50 percentage point margin (Correct plus AmbCorr). This is actually a
better result than the best result from the hard document evaluation. Also, SMO
still has only 3 equivalent classifications. Again SMO is the most fitting algorithm.
See Figure 6.5 on page 59 for a comparison of the accuracies of, and Figure 6.6 on
page 60 for a comparison of the number of equivalence classes in, all configurations
used in the soft document evaluation.

6.5.3 Comments on soft classification
The results above are indicative of a strong potential for using soft classification as
a basis for ranking texts according to degree of readability. Especially SMO, and
it might be assumed, SVM in general, given logistic models for soft classification,
needs to be explored further.

Corr AmbCorr AmbErr Err

0

20

40

60

80

100
93.6

3.4 1.5 1.4

95.8

1.9 1.1 1.3

Level of "correctness"

Pe
rc
en
ta
ge

SMO+Super SMO+NoDep

Figure 6.5 – The distribution of accuracies of each configuration in the
soft document evaluation.

60 Results

J48 CvR NB SMO

0

200

400

600

800

1,000

1,200

1,400

71

901
964

1,398

83

942

1,252

1,398

Model

#
Eq

ui
va
le
nc
e
C
la
ss
es

Super NoDep

Figure 6.6 – The number of equivalence classes resulting from each con-
figuration in the soft document evaluation.

6.6 Comparison to prior research 61

6.6 Comparison to prior research
In general it is difficult to compare the results from the soft classification with
much of the existing research on readability assessment. This is due to the fact
that much of the publicised research has been done in America for American
English. Unlike for Swedish there exist American corpora tagged with degree of
readability (suitable grade in the U.S. education system). The existence of such
corpora have resulted in much of the research being based on designing detectors
(single class classifiers) for each such grade [Feng, 2010; Petersen, 2007; Heilman
et al., 2008].

As far as the author of this thesis is aware, no comparable research into prob-
ability of easy-to-read as degree of readability has been done.

When it comes to hard classification of easy-to-read text READ-IT [Dell’Orletta
et al., 2011] is the most relevant project for comparison. The features used are
similar and so are the methods. The largest differences are the choice of languages
and algorithms. While READ-IT works with Italian the system designed for this
thesis works with Swedish. Also, while READ-IT only uses LibSVM as a classifier
four different algorithms were used here. However, as SMO and LibSVM both are
Support Vector Machines they are at least theoretically comparable.

6.6.1 Sentence classification
READ-IT’s ability to classify sentences was evaluated with 7000 sentences. Half
of the sentences were selected from the newspaper La Repubblica and half from
the easy-to-read newspaper Due Parole. As with the evaluation in this thesis
1000 sentences, 50 % from each corpus, were used for testing. However, no cross-
validation was done with READ-IT on sentence level [Dell’Orletta et al., 2011].

In Table 6.23 is a comparison between the accuracy of the system implemented
in this thesis and READ-IT.

Model READ-IT This thesis (SMO) This thesis (best)
Base/Shallow 59.6 59.8 63.4 (CvR)

Lexical 61.6 66.7 68.3 (CvR)
MorphoS/NoDep 76.1 78.7 79.4 (CvR)
Syntactic/Super 78.2 83.0 -

Table 6.23 – Comparison of sentence classification accuracy between
READ-IT and this thesis.

6.6.2 Document classification
READ-IT’s ability to classify documents was evaluated with 638 documents gath-
ered evenly from the same sources as for the sentence analysis. A 5-fold cross-
validation was done to smooth out the results [Dell’Orletta et al., 2011].

In Table 6.24 is a comparison between the accuracy of the system implemented
in this thesis and READ-IT.

62 Results

Model READ-IT This thesis (SMO) This thesis (best)
Base/Shallow 76.65 72.6 87.9 (CvR)

Lexical 95.45 81.4 92.1 (CvR)
MorphoS/NoDep 98.12 97.0 -
Syntactic/Super 97.02 97.6 -

Table 6.24 – Comparison of document classification accuracy between
READ-IT and this thesis.

6.7 Discussion and remaining problems
Based on the results above a number of conclusions can be drawn.

6.7.1 The data set
The data set is not perfectly suited for the experiments done in this thesis. A news
text might very well be easy-to-read without the explicit intent of the author. The
LäSBarT corpus also includes some easy-to-read but actual news texts. This
means that there is probably a degree of readability overlap between the corpora
and some similar texts might in reality be both news texts and easy-to-read. This
is reflected in the result and might imply that a 100 % accuracy is practically
impossible.

Another problem is the relatively small span of covered degrees of readability.
One corpus is easy-to-read, the other is news texts. However, on-line there are a
lot of texts with a lower degree of readability, that is, that are harder to read, than
news texts, such as technical manuals, scientific articles, philosophical treatises,
political editorials and so on. This system only cover the span between easy-to-read
and news text, texts more difficult to read would probably all get a score of 100
(100 % assured news text), making them impossible to order among themselves.
This could probably be resolved by using more extreme training data.

6.7.2 The models and feature relevance
The evaluations have shown that not all levels of linguistic analysis are equally
relevant. For instance, there is only a small increase in accuracy when the the Syn-
tactic feature set is added to the NoDep model. This implies that the dependency
grammar features are not as relevant when it comes to easy-to-read classification
as would have been expected.

However, a further analysis implies that this interpretation is overly simplistic.
A feature selection on the Super model on the document level shows that 20 of 29
selected features belong to the syntactic feature set. This implies that the small
increase of accuracy might rather result from a practical maximum performance
based on the imperfection of the data set discussed above.

The feature selection selected only 29 of 119 features existing in the Super
model. However, this does not mean that extracting and including the other 90

6.7 Discussion and remaining problems 63

features is a waste of computation time and memory space. Firstly, the feature
selected model does not perform as well as the full model, the selected features
are just the most relevant features, not the only relevant features. Secondly, the
results only show that these features are the most relevant features when it comes
to distinguishing the general categories easy-to-read and news text. Distinguishing
more general texts with high degree of readability from texts with low degree of
readability for a certain reader type might call for a totally different subset of
features. The same can be said for distinguishing texts of other genres with lower
degrees of readability than either easy-to-read or news text, such as technical
manuals or academic papers.

However, the results do imply that in this case an adequate result can be
achieved without dependency parsing. This means that a significantly faster pre-
processor, quite possibly fast enough to include in a search engine, can be built
with existing tools.

6.7.3 Probability of classification and degree of readability
There is no way of knowing if any ranking returned by the system is actually a
ranking based on degree of readability. These results only show that the soft clas-
sifier with fairly high accuracy can differentiate between two, internally relatively
homogeneous, sets with different degrees of readability, and, using SMO, that al-
most all documents have slightly different probabilities of belonging to either set.

The system might, however, be a blunt tool and there is no way of knowing
that a document, correctly classified as easy-to-read with 99 % certainty, in reality
has a higher degree of readability than another document, correctly classified as
easy-to-read with 98 % certainty. Intuitively there should be a correlation between
the probability of easy-to-read classification and degree of readability, but with the
data available for this thesis it is not possible to test this.

To evaluate this there would have to be a number of ordered sets of documents
which could be experimentally ranked by the system. This ranking could then be
compared to the correct order.

Chapter 7

Conclusion

This final chapter will summarize the thesis and the conclusions that can be drawn.
Some future work will also be suggested.

7.1 Conclusions
There are a number of conclusions which can be drawn from the results in the
previous chapter. The first is perhaps that for sentence level assessment existing
metrics are lacking. For purposes such as text simplification, where assessment of
the degree of readability of individual sentences is an essential component, the ap-
proach presented in this thesis might work significantly better. The new approach
obviously captures a number of text features which affect degree of readability
that traditional metrics misses.

While the existing metrics do seem to be a lot more relevant for document level
assessment than for sentence level, their individual performances do not measure
up to the new approach. Neither does a combination of traditional metrics.

However, as the performance of the NoDep model demonstrated it might not
be necessary to analyse syntactic features of text to better assess the degree of
readability. The loss of accuracy by excluding syntactic features is only about
1 percentage point. This means that more lightweight preprocessing is sufficient
which makes web page ranking in a search engine, based on degree of readability,
a lot more feasible.

Syntactic analysis is however not useless as shown by the feature selection
mentioned in Section 6.7.2 on page 62. For comparative applications of machine
generated, or manipulated, text, such as evaluation of text simplification systems
it might be absolutely essential to analyse syntax. Syntax might also be a lot more
relevant for some reader groups.

SMO, a version of the Support Vector Machine approach to machine-learning,
was the best performing algorithm both when it came to hard classification of
sentences and documents and when it came to soft classification of documents.
The exception is the NoDep model for sentences which works slightly better with
ClassificationViaRegression.

65

66 Conclusion

Using soft classification for ranking would probably be more practical if the
training corpora consisted of very easy-to-read texts and very difficult to read texts.
A problem with using easy-to-read versus news text corpora for both training and
testing is that most soft classifications are clustered close to 100 % and 0 %. A
more normal distribution would probably have been reached with more extreme
training data and more diverse testing data.

7.2 Future work
A system with built in, and more lightweight, preprocessing should be implemented
and tested. A phrase grammar parser and features based on a phrase grammar
approach to syntax might also be relevant. The performance and execution speed
of such a system is highly relevant for future use for web page ranking.

Feature selection from each of the feature sets could result in a relatively small
set of very relevant features. These features could be used with regression to gen-
erate a formula for degree of readability scoring. This approach has the advantage
that it is not bounded in the same way as soft classification which only covers the
span on which it is trained.

Discourse level features of text such as measures of cohesion and coherence
might also be relevant to degree of readability when it comes to documents and
should be experimented with. For instance, the average cosine distance between
pairs of consecutive sentences might be calculated using vector space models.

The soft classification approach presented in this thesis should be further tested
by evaluating it with sets of readability ranked documents. However, no readability
ranked or tagged corpora exist for Swedish at the time of writing. Automated
ranking is an approach that is very relevant and should be explored as soon as
readability ranked corpora exist.

New reader type specific corpora are also necessary for future research into
making readability ranking more adaptive. Perhaps a calibrating set of texts can
be developed which could be used to generate user specific classifiers. However,
this requires a large amount of work with different reader groups.

The algorithms used in this thesis represent only a small part of all algorithms
available for classification. Also, the classification approach most popular for these
purposes, Support Vector Machine, have a lot of variables and training methods
which can be tweaked to increase accuracy further. There are also other ways
to further increase the accuracy of classifiers. One way is to use voting among
a number of classifiers. Algorithm choice and optimization should therefore be
further investigated.

A system trained with more extreme and less clustered training data should
also be evaluated.

Bibliography

Sandra Alusio, Lucia Specia, Caroline Gasperin, and Carolina Scarton. Readability
assessment for text simplification. In Proceedings of the NAACL HLT 2010 Fifth
Workshop on Innovative Use of NLP for Building Educational Applications,
pages 1–9, 2010.

Jonathan Anderson. Lix and rix: variations on a little-known readability index.
Journal of Reading, (26):490–496, 1983.

Carl Hugo Björnsson. Läsbarhet. Liber, Stockholm, 1968.

Jeanne S. Chall. Readability: An appraisal of research and application. Ohio State
University Press, Columbus, OH, 1958.

Jeanne S. Chall and Edgar Dale. Readability revisited: The new Dale–Chall
readability formula. Brookline Books, Cambride, MA, 1995.

Olivier Chapelle, Yi Chang, and Tie-Yan Liu. Future directions in learning to
rank. In JMLR: Workshop and Conference Proceedings, volume 14, 2011.

M. Coleman and T. L. Liau. A computer readability formula designed for machine
scoring. Journal of Applied Psychology, 60:283–284, 1975.

Kevyn Collins-Thompson and Jamie Callan. A language modeling approach to
predicting reading difficulty. In Proceedings of the Human Language Technology
Conference of the North American Chapter of the Association for Computational
Linguistics, 2004.

Edgar Dale and Jeanne S. Chall. The concept of readability. Elementary English,
26(23), 1949.

Edgar Dale and Ralph W. Tyler. A study of the factors influencing the difficulty
of reading materials for adults of limited reading ability. The Library Quarterly,
4(3):384–412, July 1934.

Alice Davison and Robert N. Kantor. On the failure of readability formulas to
define readable texts: A case study from adaptations. Reading Research Quar-
terly, 17(2):187–209, 1982.

67

68 BIBLIOGRAPHY

Felice Dell’Orletta, Simonetta Montemagni, and Giulia Venturi. Read-it: Assess-
ing readability of italian texts with a view to text simplification. In Proceedings
of the 2nd Workshop on Speech and Language Processing for Assistive Tech-
nologies, pages 73–83, July 2011.

David F. Dufty, Danielle McNamara, Max Louwerse, Ziqiang Cai, and Arthur C.
Graesser. Automatic evaluation of aspects of document quality. In Proceedings
of the 22nd annual international conference on Design of communication: The
engineering of quality documentation, pages 14–16, 2004.

Lars Eldén. Matrix Methods in Data Mining and Pattern Recognition. The SIAM
series on Fundamentals of Algorithms. Society for Industrial and Applied Math-
ematics, 2007.

Lijun Feng. Automatic Readability Assessment. PhD thesis, City University of
New York, 2010.

Lijun Feng, Noémie Elhadad, and Matt Huenerfauth. Cognitively motivated fea-
tures for readability assessment. In Proceedings of the 12th Conference of the
European Chapter of the ACL, 2009.

Lijun Feng, Martin Jansche, Matt Huenerfauth, and Noémie Elhadad. A compari-
son of features for automatic readability assessment. In Proceedings of the 23rd
International Conference on Computational Linguistics, 2010.

Rudolph Flesch. A new readibility yardstick. Journal of Applied Psychology, 32
(3):221–233, June 1948.

Eibe Frank, Y. Wang, S. Inglis, G. Holmes, and Ian H. Witten. Using model trees
for classification. Machine Learning, 32(1):63–76, 1998.

Edwad B. Fry. A readability formula that saves time. Journal of Reading, 11:
513–516, 1968.

Mark A. Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. The weka data mining software: An update. SIGKDD
Explorations, 11(1), 2009.

Michael J. Heilman, Kevyn Collins-Thompson, Jamie Callan, and Maxine Eske-
nazi. Combining lexical and grammatical features to improve readability mea-
sures for first and second language texts. In Proceedings of NAACL HLT 2007,
pages 460–467, 2007.

Michael J. Heilman, Kevyn Collins-Thompson, and Maxine Eskenazi. An analysis
of statistical models and features for reading difficulty prediction. In Proceedings
of the Third ACL Workshop on Innovative Use of NLP for Building Educational
Applications, pages 71–79, June 2008.

Katarina Heimann Mühlenbock. Matching text to readers. Assessing readability
for specific target groups. Dissertation, Språkbanken, forthcoming.

BIBLIOGRAPHY 69

Katarina Heimann Mühlenbock and Sofie Johansson Kokkinakis. Lix 68 revisited.
an extended readability measure. Technical report, Department of Swedish,
Gothenburg University, 2010.

A. Honoré. Some simple measures of richness of vocabulary. Association of Literary
and Linguistic Computing Bulletin, pages 172–179, 1979.

Tor G. Hultman and Margareta Westman. Gymnasistsvenska. LiberLäromedel,
Lund, 1977.

J. P. Kincaid, R. P. Fishburne, R. L. Rogers, and B. S. Chissom. Derivation of
new readability formulas (automated readability index, fog count, and flesch
reading ease formula) for navy enlisted personnel. Technical report, U.S. Naval
Air Station, Millington, TN, 1975.

Roland Larsson. Läsbarhetsprogram KIX för IBM PC, XT och AT. Scandinavian
PC Systems AB, Växjö, 1987.

Haitao Liu. Dependency distance as a metric of language comprehension difficulty.
Journal of Cognitive Science, 9(2):169–191, 2008.

Tie-Yan Liu. Learning to rank for information retrieval. Foundations and Trends
in Information Retrieval, 3(3), March 2009.

Stephen Marsland. Machine Learning: An Algorithmic Perspective. Machine
Learning & Pattern Recognition Series. CRC Press, 2009. ISBN 978-1-4200-
6718-7.

G. H. McLaughlin. Smog grading - a new readability formula. Journal of Reading,
22:639–646, 1969.

Ani Nenkova, Jieun Chae, Annie Louis, and Emily Pitler. Structural Features
for Predicting the Linguistic Quality of Text Applications to Machine Trans-
lation, Automatic Summarization and Human–Authored Text., pages 222–241.
Empirical Methods in NLG. Springer-Verlag, 2010.

Joakim Nivre, Johan Hall, and Jens Nilsson. Maltparser: A data-driven parser-
generator for dependency parsing. In Proceedings of the fifth international con-
ference on Language Resources and Evaluation (LREC2006), pages 2216–2219,
May 2006.

OECD. International adult literacy survey, 1994.

Sarah Petersen. Natural language processing tools for reading level assessment
and text simplification for bilingual education. PhD thesis, University of Wash-
ington, Seattle, WA, 2007.

Sarah Petersen and Mari Ostendorf. A machine learning approach toreading level
assessment. Computer Speech and Language, 23:89–106, 2009.

70 BIBLIOGRAPHY

Emily Pitler and Ani Nenkova. Revisiting readability: A unified framework for
predicting text quality. In Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing, pages 186–195, Honolulu, HI, October
2008.

John C. Platt. Sequential minimal optimization: A fast algorithm for training
support vector machines. Technical Report MSR-TR-98-14, Microsoft Research,
April 1998.

J. R. Quinlan. C4.5: Programs for machine learning. Morgan Kaufmann, San
Francisco, 1993.

George Rebane and Judea Pearl. The recovery of causal poly-trees from statistical
data. In Proceedings, 3rd Workshop on Uncertainty in AI, pages 222–228, 1987.

Frank Rosenblatt. Principles of Neurodynamics: Perceptrons and the theory of
brain mechanisms. Spartan Books, New York, 1962.

Jonas Rybing and Christian Smith. Cogflux: Grunden till ett automatiskt
textförenklingssystem för svenska. Bachelor’s Thesis, Linköping University, Au-
gust 2010.

Gerard M. Salton, Andrew K. C. Wong, and Chung-Shu Yang. A vector space
model for automatic indexing. Communications of the ACM, 18(11):613–620,
November 1975.

Sarah E. Schwarm and Mari Ostendorf. Reading level assessment using support
vector machines and statistical language models. In Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics, 2005.

Rudy Setino, Wee Kheng Leow, and James Y. L. Thong. Opening the neural
network black box: an algorithm for extracting rules from function approxi-
mating artificial neural networks. In ICIS ’00 Proceedings of the twenty first
international conference on Information systems, pages 176–186, 2000.

Vladimir Vapnik and Corinna Cortes. Support-vector networks. Machine Learning,
(20):273–297, 1995.

Mabel Vogel and Carleton Washburne. An objective method of determining grade
placement of children’s reading material. Elementary School Journal, 28:373–
381, 1928.

Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical Ma-
chine Learning Tools and Techniques. The Morgan Kaufmann series in data
management system. Morgan Kaufmann Publishers, third edition, 2011. ISBN
978-0-120374856-0.

Victor H. A. Yngve. A model and an hypothesis for language structure. In Pro-
ceedings of the American Philosophical Society, pages 444–466, 1960.

Appendix A

XML-example

Preprocessing using the Korp corpus import tool generates XML-code in the for-
mat exemplified below. The sentence preprocessed is "En politiker i kristdemokra-
terna, kd, har försökt gå med i det socialdemokratiska ungdomsförbundet SSU."

<corpus>
<sentence id=" 0172755−01725d0 ">
<w pos="DT" msd="DT.UTR. SIN . IND" lemma=" | en | " l ex=" | en . . a l

. 1 | " sa ldo=" | den . . 1 | en . . 2 | " p r e f i x=" | " s u f f i x=" | " r e f="
01 " dephead=" 02 " depre l="DT">En</w>

<w pos="NN" msd="NN.UTR. SIN . IND.NOM" lemma=" | p o l i t i k e r | "
l e x=" | p o l i t i k e r . . nn . 1 | " sa ldo=" | p o l i t i k e r . . 1 | " p r e f i x="
| " s u f f i x=" | " r e f=" 02 " dephead=" 08 " depre l="SS ">
p o l i t i k e r</w>

<w pos="PP" msd="PP" lemma=" | i | " l e x=" | i . . pp . 1 | " sa ldo=" | i
. . 2 | " p r e f i x=" | " s u f f i x=" | " r e f=" 03 " dephead=" 02 "
depre l="ET">i</w>

<w pos="NN" msd="NN.UTR.PLU.DEF.NOM" lemma=" | kr i s tdemokrat |
" l e x=" | kr i s tdemokrat . . nn . 1 | " sa ldo=" | kr i s tdemokrat . . 1 |
" p r e f i x=" | " s u f f i x=" | " r e f=" 04 " dephead=" 03 " depre l="
PA">kr i s tdemokraterna</w>

<w pos="MID" msd="MID" lemma=" | " l ex=" | " sa ldo=" | " p r e f i x="
| " s u f f i x=" | " r e f=" 05 " dephead=" 04 " depre l=" IK"> ,</w>

<w pos="NN" msd="NN.UTR. SIN . IND.NOM" lemma=" | " l ex=" | "
sa ldo=" | " p r e f i x=" | " s u f f i x=" | " r e f=" 06 " dephead=" 04 "
depre l="AN">kd</w>

<w pos="MID" msd="MID" lemma=" | " l ex=" | " sa ldo=" | " p r e f i x="
| " s u f f i x=" | " r e f=" 07 " dephead=" 04 " depre l=" IK"> ,</w>

<w pos="VB" msd="VB.PRS.AKT" lemma=" | ha | " l ex=" | ha . . vb . 1 | "
sa ldo=" | ha . . 1 | " p r e f i x=" | " s u f f i x=" | " r e f=" 08 " dephead=
" " depre l="ROOT">har</w>

<w pos="VB" msd="VB.SUP.AKT" lemma=" | f ö r söka | " l ex=" |
f ö r söka . . vb . 1 | " sa ldo=" | f ö r söka . . 1 | " p r e f i x=" | f ö r . . ab

71

72 XML-example

. 2 | f ö r . . nn . 1 | f ö r a . . vb . 1 | " s u f f i x=" | söka . . vb . 1 | " r e f=" 09
" dephead=" 08 " depre l="VG">f ö r s ö k t</w>

<w pos="VB" msd="VB. INF .AKT" lemma=" | gå | gå␣med | " l e x=" | gå . .
vb . 1 | gå_med . . vbm . 1 | " sa ldo=" | gå . . 1 | gå . . 1 0 | gå . . 2 | gå . . 3 |
gå . . 4 | gå . . 5 | gå . . 6 | gå . . 7 | gå . . 8 | gå . . 9 | gå_med . . 1 | " p r e f i x=
" | " s u f f i x=" | " r e f=" 10 " dephead=" 09 " depre l="OO">gå</w>

<w pos="PL" msd="PL" lemma=" |med | gå␣med:10 | " l ex=" |med . . ab
. 2 |med . . ab . 1 | gå_med . . vbm.1 :10 | " sa ldo=" |med . . 5 | med . . 4 |
gå_med . . 1 : 10 | " p r e f i x=" | " s u f f i x=" | " r e f=" 11 " dephead="
10 " depre l="PL">med</w>

<w pos="PP" msd="PP" lemma=" | i | " l e x=" | i . . pp . 1 | " sa ldo=" | i
. . 2 | " p r e f i x=" | " s u f f i x=" | " r e f=" 12 " dephead=" 10 "
depre l="RA">i</w>

<w pos="DT" msd="DT.NEU. SIN .DEF" lemma=" | en | " l e x=" | en . . a l
. 1 | " sa ldo=" | den . . 1 | en . . 2 | " p r e f i x=" | " s u f f i x=" | " r e f="
13 " dephead=" 15 " depre l="DT">det</w>

<w pos=" JJ " msd=" JJ .POS.UTR+NEU. SIN .DEF.NOM" lemma=" |
s o c i a l d emokra t i s k | " l e x=" | s o c i a l d emokra t i s k . . av . 1 | "
sa ldo=" | s o c i a l d emokra t i s k . . 1 | " p r e f i x=" | s o c i a l . . av . 1 | "
s u f f i x=" | demokratisk . . av . 1 | " r e f=" 14 " dephead=" 15 "
depre l="AT">soc i a ldemokra t i ska</w>

<w pos="NN" msd="NN.NEU. SIN .DEF.NOM" lemma=" | ungdomsförbund
| " l e x=" | ungdomsförbund . . nn . 1 | " sa ldo=" | ungdomsförbund
. . 1 | " p r e f i x=" | ungdom . . nn . 1 | " s u f f i x=" | förbund . . nn . 1 | "
r e f=" 15 " dephead=" 16 " depre l="DT">ungdomsförbundet</w>

<w pos="PM" msd="PM.NOM" lemma=" | " l e x=" | " sa ldo=" | " p r e f i x
=" | " s u f f i x=" | " r e f=" 16 " dephead=" 12 " depre l="PA">SSU</
w>

<w pos="MAD" msd="MAD" lemma=" | " l e x=" | " sa ldo=" | " p r e f i x="
| " s u f f i x=" | " r e f=" 17 " dephead=" 08 " depre l=" IP ">.</w>

</ sentence>

Appendix B

Examples of wrongly
classified documents

B.1 Documents
The examples below consist of four erroneously classified documents from a test run
of hard document classification using the NoDep model and the SMO algorithm.
The documents are written in Swedish and formatting irrelevant for this thesis
have been introduced for the sake of readability.

B.1.1 Erroneously classified news texts
In total 31 news text documents were erroneously classified as easy-to-read, in
figures B.1 and B.2 are two of them.

73

74 Examples of wrongly classified documents

Det går att förbereda sig för ekonomisk kris. Men en del månader är svårare än
andra. Ann-Sofie Magnusson, familjeekonom på Ikanobanken, varnar för augusti.
Januari har länge varit en typisk fattigmånad. I regel får man lön innan jul,
därefter följer en rad utgifter och det dröjer till saldot får sig ett lyft. Men även
augusti kan bli en kritisk månad.
- Tidigare kom skatteåterbäringen då. Men de som deklarerar på internet får sina
pengar redan vid midsommar och då är risken stor att semesterpengarna är slut
redan i augusti.
Hur förbereder man sig för en kort ekonomisk kris?
- Man ska göra en budget och utreda hur mycket man har och var man lägger sina
pengar. Då ser man var det går att dra in och vilka utgifter som är onödiga. Sen
får man prioritera; är det viktigt att äta chips en gång i veckan ja, då får man
avstå från läsken.
Vad ska man göra om man plötsligt inte har några pengar?
- Tömma alla skåp; kylen, frysen, skafferiet. Andra tips är att sälja saker man inte
längre behöver. På internet eller genom att sätta upp lappar. I stället för att gå
ut kan man ha knytkalas hemma. Åker man bil eller buss till jobbet är det smart
att börja samåka, cykla eller gå.
HELENE ROTHSTEIN SYLVESTEN 031-62 40 00 ekonomired@gp.se

Figure B.1 – A news text erroneously classified as easy-to-read.

B.1 Documents 75

Vad är sjukersättning?
Hette tidigare förtidspension. Gäller personer mellan 30 och 64 år. För personer
under 30 år är den alltid tillfällig och kallas aktivitetsersättning. Prövning ska ske
senast efter 12 månaders sjukskrivning och görs sällan tidigare. Bedöms man då
inte kunna återgå till arbete inom det närmsta året ska man ha sjukersättning i
stället för sjukpenning
Hur stor är sjukersättningen?
I grunden 64 procent av en antagen inkomst de senaste fem åren. Till det kommer
bostadstillägg som varierar från person till person.
Hur många får sjukersättning efter 12 månaders sjukskrivning?
Det finns ingen statistik på det. Inför reformen granskade man ett mindre urval,
vilket visade att bara 37 procent bedömdes ha grund för sjukersättning efter 12
månaders sjukskrivning.
Vad innebär en sänkning av sjukpenningen från 80 till 75 procent efter
12 månader?
En sjuk medelinkomsttagare får 12000 kronor mindre per år att leva för. I dag
finns 73 000 personer som skulle drabbas. Får man förlängd sjukpenning istället
för sjukersättning kan reformen innebära högre ersättning.
Vad har arbetsgivaren för rätt att säga upp sjuka i dag?
Huvudregeln är att man inte kan sägas upp på grund av sjukdom. Om arbetsgi-
varen fullföljt sitt rehabiliteringsansvar och ändå inte har arbetsuppgifter för den
anställde kan det vara skäl för uppsägning. När sådana fall prövas i Arbetsdom-
stolen brukar arbetsgivaren få rätt i något fler fall än den uppsagda, enligt Svenskt
Näringslivs arbetsrättsjurist Lars Gellner.
Har arbetsgivaren rätt att avskeda mig efter 6 månaders sjukskrivning,
med regeringens nya förslag?
Nej, men de fackliga organisationerna oroar sig för att det kan bli en effekt av
förslaget.
Måste jag gå med på att byta arbetsuppgifter efter tre månaders sjuk-
skrivning?
Ja.
Linus Hugo 031-62 43 76 linus.hugo@gp.se

Figure B.2 – Another news text erroneously classified as easy-to-read.

76 Examples of wrongly classified documents

B.1.2 Erroneously classified easy-to-read texts
In total 12 easy-to-read text documents were erroneously classified as news text,
in figures B.3 and B.4 are two of them.

Sveriges herrlag ställde till med en riktig knall i skidstafetten i OS. Sverige slutade
trea och knep bronsmedaljerna. Bronset kom som en stor överraskning. Det var
länge sedan Sverige lyckades ta medalj i stafett och i vinter har laget inte alls
lyckats bra. Det är faktiskt arton år sedan Sverige tog medalj i en OS-stafett.
Men i den här tävlingen fick alla fyra killarna till det perfekt.
Den som åkte allra bäst var kanske ändå Anders Södergren på den tredje sträckan.
Tillsammans med italienaren Piller Cottrer ryckte Anders ifrån alla de andra lagen.
Han kunde skicka ut Mathias Fredriksson som tvåa i spåret. Mathias hade en hård
kamp om silvret med Tysklands Tobias Angerer. De kampen förlorade Mathias.
Men vad gjorde det? Sverige hade tagit sin första stafett-medalj på arton år. De
fyra skidhjältarna var glada och nöjda.
I laget åkte Mats Larsson, Johan Olsson, Anders Södergren och Mathias Fredriks-
son. Det svenska damlaget åkte också mycket bra i stafetten. Laget var väldigt
nära att ta en medalj. Men Anna Karin Strömstedt orkade inte riktigt i spurten.
Italiens Sabina Valbusa tog sig förbi och Sverige slutade på fjäde plats. Ryssland
vann damstafetten.

Figure B.3 – An easy-to-read text erroneously classified as news text.

Svårt att klara skolans krav. I höstas fick eleverna i åttonde klass nya betyg.
Många blev inte godkända i ett eller flera ämnen. Det är extra svårt för invan-
drarelever som inte kan tillräckligt mycket svenska. I Fittjaskolan i Botkyrka
kommun går många invandrarelever. Cirka 60 procent av eleverna har inte fått
godkänt i matematik och 40 procent har inte fått godkänt i svenska. På skolor runt
om i landet är det också många som inte blivit godkända i bild, slöjd, musik, idrott
och hemkunskap. För att få börja gymnasiet måste man ha godkänt i matematik,
engelska och svenska, när man slutar nionde klass. Den som inte klarar det, har
rätt till särskilt stöd. Skolorna får inga extra pengar till det. - Vi kanske kan ordna
sommarkurser eller ha undervisning på sportlovet, säger Marianne Hellström, ut-
bildningsledare på Fittjaskolan. Man kan också gå om ett år. - Skolan ska se till
att eleverna blir godkända. Men tyvärr tror jag inte att vi kommer att klara det.
Många elever som redan går på gymnasiet har också problem att bli godkända
på kurserna. Därför ska Botvidsgymnasiet i Botkyrka börja med ett fjärde år i
gymnasiet till hösten.

Figure B.4 – Another easy-to-read text erroneously classified as news
text.

På svenska

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –
under en längre tid från publiceringsdatum under förutsättning att inga extra-
ordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för
ickekommersiell forskning och för undervisning. Överföring av upphovsrätten
vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ
art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i
den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se
förlagets hemsida http://www.ep.liu.se/

In English

The publishers will keep this document online on the Internet - or its possible
replacement - for a considerable time from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for your own use and to
use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional on the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be
mentioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its WWW home page: http://www.ep.liu.se/

© Johan Sjöholm

