
 
 

 

 

 

 

 

 

 

SysMon – A framework for monitoring 
and measuring real-time properties 

Master Thesis, Computer Science 

Spring 2012 

 

 

School of Innovation, Design and Engineering 

Mälardalen University 

Västerås, Sweden 

 

 

 

Authors: 

Fredrik Nilsson (fnn05003@student.mdh.se) 

Andreas Pettersson (apn07010@student.mdh.se) 

 

Supervisor: 

Mikael Sjödin (mikael.sjodin@mdh.se) 

Examiner: 

Moris Behnam (moris.behnam@mdh.se) 

mailto:fnn05003@student.mdh.se
mailto:apn07010@student.mdh.se
mailto:mikael.sjodin@mdh.se


 
 

Abstract 

ABB SA Products designs and manufactures complex real-time systems. The real-time properties of the 

system are hard to measure and test especially in the long run, e.g.  monitoring a system for months out 

in the real environment. ABB have started developing their own tool called JobMon for monitoring 

timing requirements, but they needed to measure more properties than time and in a more dynamic 

way than JobMon is constructed today. The tool must be able to measure different kind of data and be 

able to be monitor as long as the system itself. 

This thesis first does a survey and evaluation on existing commercial tools and if there exists a tool that 

can be integrated to the system and fulfill all demands. Different trace recorders and system monitoring 

tools are presented with its properties and functions. The conclusion is that there is no such tool and the 

best solution is to design and develop a new tool. 

The result is SysMon, a dynamic generic framework for measuring any type of data within a real-time 

system. The main focus for measuring during this thesis is time measurements, but no limits or 

assumptions of data types are made, and during late steps of the development new types of 

measurements are integrated. SysMon can also handle limits for measurements and, if required, take 

pre-defined actions e.g. triggering a logging function and saving all information about the measurement 

that passed the limit. 

The new tool is integrated to the system and evaluated thoroughly. It is an important factor to not steal 

too much resource from the system itself, and therefore a measurement of the tool’s intrusiveness is 

evaluated.  

  



 
 

Sammanfattning 

ABB SA Products designar och konstruerar komplexa realtidssystem. Realtidsegenskaperna för systemen 

är svåra att mäta och testa, speciellt under långa tidsperioder, t.ex. under drift i dess riktiga miljö under 

månader av online tid. ABB SA Products har börjat utvecklat ett eget verktyg, JobMon, för att kunna 

övervaka och mäta egenskaper i form av tid. Men behovet är större än att endast mäta tid och alla 

möjliga slags data behöver övervakas och utvärderas. 

Det här examensarbetet gör först en undersökning och utvärdering av existerande kommersiella verktyg 

och om det redan finns ett verktyg som uppfyller alla krav. Olika tracerecorders och 

systemövervakningsverktyg är presenterade med dess egenskaper och funktioner. Slutsatsen är till sist 

att det inte finns något existerande verktyg och att den bästa lösningen är att utveckla ett nytt verktyg. 

Resultatet är SysMon, ett dynamisk generisk ramverk för att mäta vilken form av data som helst. 

Huvudfokus under examensarbetet är tidsmätningar, men inga antaganden om vilka datatyper som kan 

användas görs. Under den senare delen av examensarbetet implementeras också en ny typ av mätning i 

system ticks. SysMon kan också hantera gränser för mätningar och, om nödvändigt, exekvera 

fördefinierade funktioner, t.ex. trigga en loggning och spara nödvändig information om mätningen som 

överskred gränsen. 

Det nya verktyget blir integrerat i systemet och testat noggrant. Det är viktigt att verktyget inte tar för 

mycket resurser från det normala systemet och därför utförs även en utvärdering av hur resurskrävande 

verktyget är. 
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BCET Best Case Execution Time 

EDF Earliest Deadline First 

FPS Fixed Priority Scheduling 

I/O Input/output 

JobMon Job Monitor tool – the tool developed earlier at ABB 

OID Object Identifier 

PCP Priority Ceiling protocol 

PIP Priority Inheritance Protocol 

RTOS Real-time Operating System 

SysMon System Monitor tool – the tool developed during this thesis 
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1 Introduction 
Embedded computers are getting more and more common. Today they are the most common type of 

computers manufactured. Many of these serve important functions in the human society, e.g. a car 

often have tens of embedded computers to control all functions. The usage areas of embedded systems 

are almost ubiquitous and there are still several areas that have not taken the step from analog 

electronics to digital microprocessors. 

Many of the embedded systems are time critical and are often referred to as real-time systems. These 

systems have specific requirements with time aspects. 

A lot of these systems have hard timing requirements and a system that executes too fast or too slow 

will result in a bad, or even dangerous, system. A good and easy understandable example of a time 

critical system is the airbag inflation in a car. It is important that it gets inflated exactly at the right time 

and not too early or too late. 

The problem is that it is not always an easy matter to monitor and measure large complex real-time 

system in respect to their timing behavior when the system consists of a large amount of tasks and 

threads. The systems have also often been developed by several persons during tens of years, which 

often make it hard for one person to have a complete understanding of the whole system.  

This thesis looks into the possibilities for monitoring a large industrial real-time system and gives a 

suggestion of a solution to the analysis problem. 

1.1 Purpose 
Currently there are different types of analysis tools in use at ABB SA Products, referenced to as ABB in 

the report, scaling from the highest to the lowest level. In the highest end there is simple CPU usage and 

the next level is CPU usage division between system tasks. On the lowest, most specific, level there is 

e.g. System Viewer, which is Wind River’s official debug utility for VxWorks.  

 

Figure 1: Grouping of analysis tools 

 

The problem is that there is a gap between simple CPU usage surveillance and System Viewer, shown in 

Figure 1. What is needed is a program that can be used for long term monitoring of a system execution 
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without the need of human interaction. A tool called JobMon has been developed by ABB and is in a 

research state. The tool gives the user possibility to detect errors like deadline misses and jitter of task 

execution. It has a static implementation and today only allows for five time measurements. It does not 

include any alarm functionality and requires that a person is continuously takes manual snapshots of the 

tool output. Even if you can see that errors have occurred, it is impossible to know exactly when it 

happened, since it can be whenever between the manual snapshots.  

The purpose of the thesis is to look into the possibility to either utilize and integrate an existing tool or 

to develop a more advanced version of the existing company developed tool JobMon. The tool should 

be used as a long-term monitoring tool that can run in the background of a system test and warn when 

pre-defined errors in execution have been found.  With the help of this tool, important system 

properties can be monitored and pre-defined error states would be possible to automatically detect. 

This error detecting tool should also be able to write logs over the system execution history or interact 

with a third party trace log writer. 

1.2 Case-study description 
The techniques proposed in this thesis will be demonstrated in a case-study using a protective relay 

developed at ABB. 

Protective relay are used to protect the power transmission systems. The core idea is the same as 

normal household fuses, to protect and maintain as large part of the systems operational as possible 

upon failure. 

Electricity can be transferred for many miles, and it is not unusual that something affects the power 

lines, e.g. trees falling over or hit by lightning. If not treated correctly this might affect the end customer 

and/or the infrastructure of the power lines in a negative way.  
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Figure 2: Protective relay (ABB internal picture) 

Protective relays have secured our power lines since 1903 when ASEA developed the first mechanical 

relay [1]. Over the years the complexity and functions have increased and today they are digital 

intelligent embedded computers. Multiple units can be linked together to increase the ability to detect 

failures and managers of the systems can monitor and set important parameters far from the physical 

position. 

The protective relays must trip the circuit breaker when it detects a possible failure on the power line. 

Detection of failures is e.g. done by measuring the current on two nearby places and calculating if they 

differ or by a simple voltage meter. Since the protective relay only protects a smaller part of the total 

power system it will only take the smaller subsystem out of order. This will maintain the functionality in 

all other parts. The intelligent relay can also, upon failure, notify a predefined technician by e-mail or 

SMS.  When the technician has been alerted he or she can connect to the relay to gather information of 

why and where it occurred [1]. 

Due to the nature of electricity the circuit breaker trip has to be done quickly to avoid damage or 

potential danger for the end customer. This is one function where the real-time system plays an 

important role. Since there are a lot of things going on in the system, e.g. communication and 

measurements it is important to keep track of the system behavior at all times to guarantee the e.g. 

circuit breaker trip timing functionality and communication link timeouts. 
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1.3 Problem formulation 
The problem that the company wants to solve is a gap in the types of system analysis tools that they 

currently have.  

Figure 1 shows a scale of analysis tools stretching from the most basic type to the most advance type of 

analysis. The basic tools measures only pure CPU usage and just shows the amount of CPU used for a 

defined time frame. This gives the user an idea of the total load of the system but no information on 

what is using the system. 

The next step is logging of single tasks and their CPU usage. This could be interesting to spot a task that 

is using a lot of CPU time but still doesn’t tell the user about the actual system execution. On the right 

end of the scale there are analysing tools like System Viewer.  

The information gathered from the right side often has a lot of details. These tools also use a lot more 

resources and are intrusive. Usage of system resources while monitoring can have unknown amount of 

side effect, and the monitored system might not act the same without the monitoring tool. The tools of 

the left side are using less resource but also providing less information. 

Information intensive tools like SystemViewer are often used when you know that you have a problem 

and you also know where it is in the execution trace. This makes it possible to log a few seconds by 

streaming it in real-time to a PC or writing a log file for offline analyzing. The log can then by analyzed by 

using the graphical tool of SystemViewer and to, hopefully, find the root cause of the situation. 

Instead consider a situation where there is an error that shows once every month, it would be 

impossible to use this kind of logging. The logs would be huge and finding the root cause would probably 

be like finding a needle in a haystack. 

What the company wants is to fill the gap between analysing tools like System Viewer and Task log. The 

monitoring tool should be able to guarantee that, during the products uptime, nothing bad have 

happened. It should be active at all times and monitor for system failures. The tool should have the 

possibility to record information on the system continuously in the background and stop recording at 

user defined events (like a deadline miss or a buffer overflow). The log file must then contain enough 

information for a manual offline analyze of what went wrong.  

ABB have also stated that they want to measure and/or evaluate a lot of different parameters. One type 

of measurement, e.g. time between two events, will not be enough. The framework for evaluating and 

measuring the system needs to be easy to extend with custom designed probes and a custom designed 

evaluator to decide whether the probe(s) have good or bad value. 

2 Background 
The background section gives the reader a theoretical base for the rest of the thesis work. It is used for 

introducing important factors of a real-time system and properties to take into consideration when 
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designing a monitoring tool. The section gives both general information regarding real-time systems and 

more specific information about monitoring, measuring and analyzing real-time system behaviors.  

2.1 Real-time systems 
A real-time system has much in common with regular computer system but with one big difference. In a 

real-time system it is not only a correct execution that defines that the system is working but also the 

time frame in which the task is done.  

When working with a real-time system it is important to have timing guarantees so that all tasks are 

done exactly when they are supposed to. If critical tasks are executed with a jitter of just milliseconds, 

the system could be performing so bad that it might be considered useless or in worst case even 

dangerous.  

To understand how problems in these systems can occur, some basic functionality, properties and 

common issues are explained. 

2.1.1 Hard versus soft systems 

Real-time systems are divided into two different types. These are systems with soft timing requirements 

and hard timing requirements.  

In hard real-time systems the timing is of main importance and missed deadlines and jitter is considered 

a malfunctioned system.  A classic example of a hard real-time system is a car airbag. It is not enough 

that the airbag is inflated sometime after a collision; it has to be inflated at exactly the right moment. If 

it is inflated to early or too late, it will not help, or even do more damage than not inflated at all.  

In soft real-time systems the time demands are a bit less. If deadlines are missed the system is 

considered bad, but it is not as critical. One example of this is a DVD-player. If the task that handles a 

video stream misses a deadline it might be a glitch in the video playback. This is irritating for the user 

but the DVD-player will still continue to work. 

2.1.2 Event-triggered versus time-triggered system 

There are two main types of systems; event-triggered and time-triggered [2].  

Event-triggered systems are based on that the system receives different events that starts job in the 

system [3].  An event can e.g. be an I/O that triggers an interrupt routine. Since the scheduling becomes 

dynamic it is impossible to determine the maximum execution time without taking into account 

synchronization and interactions with other tasks. The events are often happening in a non-

deterministic way and it is therefore impossible to calculate the peak load performance [4].  

Testing the system is the only way to get a good estimation of its behavior and high load performance. 

Since events happen randomly it is also often a must to not just test it in the real environment, but also 

in a sort of worst case simulated environment. This is because events that produce the peak loads often 

happen rarely in the real environment [4] and it is mostly the extreme situations of the systems that are 

most important and most interesting.  
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It is also important to determine if the test patterns, used for pushing the system to extreme states, are 

something that actually is possible to happen in the real environment for the system [4].  

When an event happens the system is often supposed to give some kind of response back. The worst 

case execution time from an event to response is an important property of an event triggered system. 

Time-triggered system is based on a clock which triggers interrupts. These interrupts are the only ones 

the system will receive and determines release times for tasks [5]. When a task is released it is placed in 

the ready queue and the scheduling algorithm of the system will determine when the task gets to 

execute. 

It is easier to calculate maximum execution time for tasks for a time triggered system than for an event-

triggered. This is due to that one can predict how the tasks will interact and synchronize beforehand [4]. 

This makes time triggered systems predictable [6] since it will, at all times, execute according to the 

preconfigured schedule. 

Scheduling of the tasks is done offline and it is possible to lookup which task to execute on a clock 

interrupt, according to the predefined schedule placed in a table or similar. Time-triggered scheduling is 

often also called static scheduling [6]. 

2.2 Tasks and priorities 
As systems grow larger it gets more and more complex. When more code is added with different work 

areas, it is a good idea to separate these codes to different tasks that runs in separate threads in the 

system. These different threads can have different time constraints and importance to the system. 

Often there is an outside stimulus to respond to and not only correct answer is needed, but also within 

correct time interval [3]. Because of this it is necessary to be able to design the system with different 

priorities and scheduling so that important threads have the chance to execute in time.  

Priorities are assigned to tasks before system execution. When tasks are ready to execute, the system 

uses the priorities to decide on which task that gets to execute. In what way this decision is taken and 

what criteria’s that is taken into consideration is explained in the sections after this.   

The assignment of priorities to tasks in a system is not an easy matter and there have been much 

research on different algorithms for assigning priorities. Two good strategies commonly used this are 

Rate monotonic and deadline-monotonic. 

Rate monotonic uses the period times of tasks to decide the priorities. The highest priority task is the 

one with the shortest period time, and vice versa. The rate-monotonic algorithm is only used in systems 

where tasks have the same deadline as their period time [7]. An extension to rate monotonic is the 

deadline-monotonic algorithm. This algorithm uses the task deadlines as the base for priorities; the task 

with shortest deadline has the highest priority in the system [8]. This means that the algorithm can be 

used in systems where tasks have different period times and deadlines. 

Rate monotonic and deadline monotonic is mostly good to use in smaller system. For more complex 

system it could be appropriate to use a more advanced priority assignment algorithm. One example of 
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this is Audslyes algorithm [9]. This algorithm presents a way of assigning priorities in system where tasks 

have arbitrary release times, which means that there are no point in the system where all tasks are 

released simultaneously. With the help of the algorithm, systems where tasks have different release 

times can be scheduled at scenarios where rate-monotonic and deadline-monotonic  priority 

assignment would have lead to deadlines being missed, which the author shows with a number of 

examples. 

There is even more complex system then the ones covered by Audsleys algorithm. These are system 

where tasks have probabilistic execution times and an absolute guarantee of no missed deadlines can be 

given. Dorin Maxim et al [10] describe three sub-problems of finding the optimal priority algorithm in 

these types of scenarios where the basis is to find a failure rate as low as possible, i.e. the rate of 

expected deadline misses in the system.    

2.2.1 Scheduling protocols 

To make it easier to decide on execution order for systems with multiple threads, different scheduling 

algorithms has been developed over the years. Scheduling algorithms can work in different way but they 

all have in common that they try to do the scheduling as good as possible with respect to the 

information present at the settings of the system. 

Scheduling algorithms can work as an offline scheduler or an online scheduler. Offline schedulers do the 

scheduling before system startup and stays with this scheduling during execution. Online schedulers use 

information during system execution to decide on the execution order. 

Schedulers can either base its decisions on static priorities or they can use dynamic priorities. When a 

scheduler uses static priorities, all tasks priorities are set before system start. These priorities are used 

for scheduling decisions and all instances of the same tasks have the same priority. Dynamic priority 

based schedulers may have changed priorities for a task during runtime. Different activations of a task 

can have different priorities depending on the situation of the system.  

Another difference between schedulers is if they use preemptive scheduling. When using preemptive 

scheduling, if a higher prioritized task gets ready to execute it gets switched in immediately at the next 

scheduling time. If a system is non-preemptive, all tasks executing gets to finish its execution before any 

new scheduling decisions are made.  

There are a lot of different strategies for scheduling real-time system threads. One commonly used in 

RTOS is FPS [11]. FPS is mostly applied to tasks, and each task has a priority assign to it, which is decided 

before runtime of the system. The method of assigning priority on task-level is also known as 

“generalized rate monotonic”. The task that gets to execute at a given time is the highest priority task 

that is ready to execute at that moment. This concludes to that all jobs within the same task gets the 

same priority [12]. A preemptive FPS is one of the most common ways of scheduling tasks in a RTOS.  

If a system has hard deadlines associated with each task, a scheduling protocol like EDF could be used. 

Instead of using the priority, EDF lets the task with the closest deadline execute first.  



8 
 

Many of the existing more complex scheduling methods are based on either rate monotonic or earliest 

deadline first. Further developments of these were required to handle e.g. resource sharing [13]. John A 

Stankovic et al [13] mentions the need for handling e.g. periodic, aperiodic, preemptive and non-

preemptive tasks in the same system. An aircraft is also mentioned as an example which system has 75 

periodic and 172 aperiodic tasks, all with different requirements, in its control system [13]. 

2.2.2 Hybrid scheduling 

The scheduling decisions aren’t easy as different schedulers have different positive and negative 

aspects. Jukka Mäki-Turja et al [6] describes a way of combining static and dynamic schedulers so that a 

system can get the benefits from both of the schedulers. The technique presented uses a dynamic 

scheduler for event-triggered tasks and a static scheduler for time-triggered event, where hard 

deadlines are preserved for both the dynamic and the static part of the scheduling.  

The authors take up an example where static scheduling is complicated to make. The example consists 

of the following tasks: 
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 If this system is to be scheduled purely static, the developer has two choices. Either make a scheduler 

with a period time of 2000ms, which would make it large and memory consuming, or do a shorter 

scheduling pattern which results in a pessimistic system (T6, T7 and T8 would have to be scheduled 

more than once every 2000ms.  

A better idea, given by the authors, is to schedule tasks T6, T7 and T8 with a dynamic scheduler while 

the other tasks use a static scheduler. The results from this implementation show that the tasks both 

use less total resources from the system and have better responsiveness.  

 

2.2.3 Response time and jitter 

Response time is the time that it takes for the system to produce an output for a given input. Response 

times can often be critical in hard real-time system and therefore of great interest to measure. 

Response times could be both a single task execution and a series of threads executing and working 

together to perform a given task in the system. This type of response time is called end-to-end response 

time. 

It is not only the response time that is interesting when talking about timings in real-time systems. As 

responsiveness and determinism is important factors for a system, the jitter is also a key aspect. Jitter is 

a deviation in time between different instances of a task or an occurrence in the system.  

Jitter could be of different types in the system. Response time jitter is the deviation between the BCET 

and the WCET of a task. Another jitter is the deviation in activation time between instances of a task.  

N. Audsley et al [14] presents formulas and calculations for determining bounds for both response time 

and jitter. Both determined bounds are of great use when scheduling tasks in a system. The authors 

then uses both bounds, amongst other properties, in calculations to schedule tasks for their presented 

scheduling technique, based on Rate Monotonic approach. 

2.3 Common design issues 
In real-time operating systems many problems can occur if not designed correct. Here are a number of 

common design issues that can ruin a whole system or at least make it not operate in a good way. 

Task Period Time Computation time Deadline 

T1 10 2 10 

T2 10 2 5 

T3 50 1 2 

T4 50 6 50 

T5 100 8 100 

T6 2000 7 100 

T7 2000 8 100 

T8 2000 8 2000 

Table 1: Task description for Hybrid scheduling example 
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2.3.1 Task priority errors  

When deciding on priorities for tasks it is important that the internal ordering of the priorities in the 

system corresponds to the actual priority between the tasks in the system. If priorities are set in an 

incorrect way, important tasks may get to little execution time. This may lead to errors in the system.  

2.3.2 Race condition and memory errors 

System consisting of multiple threads often has shared memory resources like static variables, lists and 

so on. These shared memories could be a reason for strange behavior in the system. The problem that 

may occur is so called race conditions [15].  

Race conditions are when two threads, at the same time, are accessing the same memory position and 

try to manipulate it. In these scenarios execution orders decides the final results of the memory.  

 

Figure 3: Race condition 

 

Figure 3 shows a classic race condition. Both A and B are working on variable X at the same time. 

Depending on which order they update the variable, either the work from A or B will be discarded.  

The solution to race conditions and memory errors is to protect all shared variables with e.g. mutexes. If 

a thread wants to use a shared memory, the mutex must be taken prior to the update. If someone else 

is working in the same memory, the thread has to wait for the other work to be finished before it is 

allowed to work on the memory.   

2.3.3 Deadlock 

A serious error that may occur in multi-threaded systems with a bad design is deadlocks. Deadlocks is a 

condition where two tasks have locked a resource and then waits for another resource before 

continuing the execution. If the two threads have locked the resource that the other thread is waiting 

for, none of the threads will finish the execution and release the resource. This means that both threads 

will wait an unlimited time for the resource and a deadlock has occurred [16].  
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2.3.4 Priority inversion 

Priority inversion is a classic design problem in computer systems.  

 

Figure 4: Picture of Priority inversion problem 

Figure 4 shows a typical problem that priority inversion can give which can be really dangerous in a hard 

real-time system. Consider three tasks, T1, T2 and T3, where T1 is lowest priority and T3 highest. When 

T1 is executing it takes a semaphore in the system. It gets preempted by T3 that starts its execution. 

After a while, T3 also wants to get the semaphore and is therefore blocked by T1. T1 continues to 

execute but then T2 is ready to execute. Because that T2 has higher priority than T1, it is allowed to start 

its execution. Now T2 is indirectly blocking T3 to execute even though they have no shared resources 

[16].  

A system behaving like this is highly un-deterministic and can cause serious execution problems.  

The solution to this problem is to use a protocol to handle priorities of tasks in the system [16]. A widely 

use protocol is Priority Ceiling Protocol, PCP. It gives the task having a semaphore the same priority as 

the task with the highest priority that wants the semaphore. The protocol also prevents a task of taking 

a semaphore if another semaphore with a ceiling higher than the task priority is already taken.  

Even though a protocol is implemented for solving priority issues the system can still suffer from bad 

design that makes the priorities in the system behave in a way that high priority tasks get to little 

execution time.  

2.4 WCET analysis 
The execution time for a task is the time it takes for the task to execute from start to end. The start is 

the time when it gets to execute and the end is when it has done its job and does not want the CPU 

anymore. This time will most likely vary with the input for the task. The worst case execution time, 

WCET, is when the task gets the inputs that take the longest time for the task to execute. There is also a 

best case execution time, BCET, which is a measurement of the time from start to end for a task with the 
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input values generating the smallest execution time. The BCET is often not as interesting as the WCET 

when designing real-time systems. 

Unfortunately neither the best case nor the worst case input are known in advance and are often hard 

to derive [17]. There have been a lot of techniques and tools developed during the years for estimating 

the WCET of a program, and many universities still do a lot of research on this area. 

2.4.1 Problems with WCET analysis 

When deriving a measure for the WCET of a system, a number of problems exists, this all must be solved 

to get an accurate result of the calculation. Reinhard Wilhelm et al [17] describes a number of problems 

and requirements that must be fulfilled for an accurate WCET analysis. First of all, all possible paths for 

an execution must be taken into consideration. Different input data and different system states can 

cause an execution to take different paths in the system which results in new execution times. It is 

important to catch all these different execution paths to not miss a execution that might lead to the 

WCET. 

To show all possible execution paths, a Control Flow Graph (CFG) can be constructed. The CFG shows all 

possible paths in the system with the instructions associated with the path. 

The next step is to exclude paths that never will be taken. This is done by doing a Control-Flow Analysis 

(CFA). The CFA examines all paths in the system to find execution patterns that will never be taken due 

to contradictions of the conditions in the statements. By removing infeasible paths, the result is more 

accurate. 

2.4.2 Strategies for evaluating WCET 

There are some common developed methods for deriving the WCET. There are two major interesting 

classes of methods for this purpose. 

 Static Methods 

Some analysis tools don’t use execution traces and analysis during an actual execution to 

evaluate timing on the system but instead the actual source code of the program to do its 

calculations. With the help of the code and annotations the static analysis programs can build up 

flow-graphs that show the possible execution paths with the defined values of parameters in the 

system. Combining these results with an abstract model of the target hardware the tools can 

achieve upper bound calculations for the program [17]. 

 Measurement-based methods 

Measurement-based methods do analysis by executing the actual code on the hardware, either 

the actual hardware or a simulation of it. With the help of the analysis the methods can derive 

timings for the program [17]. 

 Hybrid Methods  

A third method for analyzing a system is to use a hybrid analysis method [18]. The hybrid 

analysis uses measurement for timing information of smaller parts in the system while a static 

analysis tool calculates the final WCET estimations from the source code. As these methods uses 

measurements for parts of the analysis they can both over- and under-estimate the final WCET 
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depending on how the measurement has been made, and are therefore a bit less accurate then a 

pure static method, and are therefore not preferred to use in a real-time system with hard 

deadlines. 

 

 

2.4.3 Methods for solving different tasks of timing analysis 

Wilhelm et al [17] presents a number of currently existing methods to solve the different 

problems. A timing analysis method uses a combination of these to calculate WCET. 

 Static program analysis 

Static program analysis builds on the static method with analysis doing on the program code.  

 Measurement 

Deriving an approximate WCET by doing measurements is a good alternative for giving an 

approximation of the WCET in a system and is best used in non-hard real-time systems. The 

measurement might not be perfect but gives the developer a good picture on how long the task 

execution time is. 

 Simulation 

Simulation based analysis is a good way to measure and analyze a program without using the 

actual hardware. By simulating the hardware and program simulation tools can get good results. 

 Abstract Processor Models 

An Abstract Processor Model can be used when doing a static analysis to take the target 

hardware into account when making the analysis.  

Building a correct abstract model of a processor is not an easy matter. To have correct behavior 

of the model, correct information about the processor must be used in the model. The 

information needed is not always easy to get as manufacturers might not want to give complete 

information about important timings and features of the processor 

 Integer Linear Programming (ILP) 

ILP is a language that is used to describe the system properties with the help of linear 

constraints. This method works best in just small code parts and not for large complex systems.  

 Annotations 

Annotations are given to the analysis tool to describe different criteria’s and settings of a system. 

With the help of annotation it is easier to derive bounds and features of the system in a way that 

makes static analysis possible. Examples of annotations are: 

o Variable bounds 

o Memory layout 

o Information about iteration and loop behaviors that is not explicitly explained by the code. 

2.4.4 WCET calculation 

It is possible to derive estimations of the WCET when combining methods listed above. The different 

methods provide their own set of properties for the derived WCET, and take more or less amount of 

time to execute. 
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Static timing analysis gives a WCET that is not an underestimation of the actual value. It can be called a 

bound calculation and is often an overestimation WCET. The bound can be determined by running an 

abstraction of the task on an abstract model of the target hardware. The abstractions do not contain all 

information and does not emulate the complete system correctly, e.g. cache optimization and other 

functionalities that might speed up the execution. 

A common used method is dynamic timing analysis which tests a subset of all input data. This will derive 

minimal- and maximal observed execution time. Since the test only runs a subset of the data it will most 

likely not run the task with the exact data that gives correct BCET and WCET, and will most likely give a 

higher BCET and a lower WCET than the correct ones [17]. A development of this method is to calculate 

the same information on small parts of the task and then in the end combine the results to a result for 

the whole task. Even if this gives a better result it does not guarantee to find the exact times and it can 

lead to an overestimation of the WCET, if combining all the most pessimistic parts. 

To take an overestimation of the WCET into consideration, when designing the system, is much safer 

than taking the estimation from the subset of input that might differ a lot versus the actual value. 

Although the dynamic result can give a feeling of how long time it takes and can be useful when creating 

a soft real-time system. It is also important to think about what data the task gets as input when doing 

the tests, e.g. if the input values that gives the WCET actually is an input that might happen in its natural 

environment. 

 

2.5 System Debugging 
A great help when debugging a real-time system when an error has happened is to have knowledge on 

the execution pattern and system states before the error state. To make this possible some sort of 

recording software can be used in the system. Hansson and Thane [19] proposed a method for system 

recording that can be used for multi-threaded and even distributed real-time systems. The method was 

to record system states and associate time stamps from a global clock with the stamps. With the help of 

the recorded information the execution could be reproduced again to see what happened prior to the 

error.  

To get a better picture of system performance and execution some form of analyzing tool can be used. 

There are three main things to track and record for task execution [20]: 

 Identifying the task: The first step of the analysis is to give identification for the task that is 

executing with the help of a task ID. 

 Time-stamping: To make analysis of execution possibly, a time stamp needs to be taken on the 

places of the program that timing information is of interest 

 Reason for task switching: Why did the task stop executing? Was it because of preemption by a 

higher priority task, waiting for a semaphore or simply that execution was finished? 
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2.5.1 Relevant system properties to monitor 

An important question to answer is what properties to record in a system. The factors to take into 

consideration for this decision are the system resources used versus the ease of debugging when an 

actual error has occurred. More recorded information often gives the developer a better chance of 

reproducing the states and finding a possible error to a certain execution, but also gives more overhead 

during system execution. A small amount of recorded information on the other hand gives a smaller 

impact on the system but might not be sufficient enough to give the correct results during an off-line 

analysis and debugging. The first thing to think about during the implementation phase is what 

properties that exists that can be interesting to record [11]. 

 Response times 

A key thing to record is response times in the system. This could be response times for a single 

task or end-to-end response time for a series of tasks that work together to do a specific job in 

the system.  

 Jitter 

An important property of a real-time system is jitter. There can be many types of different jitters 

in a system. A common variant is the difference in inter-arrival time for a task. Other jitters 

could be the difference between the BCET and the WCET of the task for example. If a system has 

high jitter the behavior of the system is less deterministic.  

 Usage of system resources 

The usage of different system resources is interesting to have as a basis for evaluation of a 

system. This resources could for example be the CPU usage and usages of a shared 

communication line or similar.  

Variables and logic resources can also be logged. If a variable is accessed and changed globally, it 

could be easier to add some kind of sampling of the variable at specific times; instead of saving 

the value of the probe in each and every place the probe gets a new value. 

Queues and buffer can be monitored by adding a callback or a new function call in the wrappers 

that get and put data on the queues or buffer. It could also be interesting to measure how many 

elements that exist in the buffer or queue and could also be done by adding a simple integer 

probe. 

2.5.1.1 Task switching 

Task switches often occur frequently and is often a major source of information of what went wrong. 

Which task got preempted, why did it get preempted, which got to run instead and how long has the 

task been running are questions that you can get an answer to if incrementing the task switch 

functionality of the operating system. In VxWorks this is done by hooking up a simple callback function 

that gets called with necessary parameters every time a task switch occurs. 
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2.5.2 Probing and the probe effect 

To measure the time between different jobs in the system, measure points needs to be inserted in the 

code. This way of measuring the system is called probing. One probe is placed in the beginning of a job 

and one probe is placed in the end. By measuring the difference in time between the executions of the 

two probe lines a job time is achieved [11].  

If probes are added to a system for measuring its behavior, the system will be affected by these probes. 

First of all, the overall execution time of tasks will increase as more code has to be executed. Task 

switches will take longer time because of the overhead from the recording software. This will also 

increase the interrupt latency on the system as no interrupts can be processed during the context 

switching. What this means is that the system will behave differently when probing then it did before 

the probes were added [2][11]. 

If a system is monitored with probes during development and implementation and then gets its probes 

removed in the final version of the system, the measurements done during implementation will be 

wrong as they measured a different system. It could be the case that the extra code presented from the 

probes made the system work in a different, more correct, way. Because of this, a system evaluated 

with probes should have the probes still running in the code of the final version. In this way the system 

released will be identical to the monitored system and the properties measured in the system are valid 

for the final system also [11]. 

2.6 Analysis tools 
There have been heavy developments of tools for analyzing and visualize scenarios of real-time systems 

during the past few years. Almost all big companies that provide a real-time operating system also 

provide some sort of analyze utility specific for their product. 

2.6.1 Trace recorders 

To collect and save real-time data from a system some sort of trace recorder is used. Trace recorders 

often works with a circular buffer that continuously stores information from present time and 

backwards a specified time. The information stored can later be used to evaluate and investigate a 

system to find parts that doesn’t work as planned.  

There are a number of key factors when deciding on how a trace recorder should work: 

1. What, and how much, information is necessary for the analysis? More information gives better 

analysis possibilities but could interfere more with system execution. 

2. How long time is interested to store in the buffer? More execution time saved allows the user to 

trace executions further back in time but uses more memory of the system. 

3. How easy is the recorder to modify and use? A good feature of a recorder is to easily be able to 

customize the recorder to fit the needs of the system and developer. 

 

A well working trace recorder should be able to run in background of normal execution with just small 

CPU load in the system. The load must be so small that it does not change the behaviour of the system. 
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2.6.2 Offline analyzers 

The information from trace recorders is often just raw data that is hard to understand for a tester. Since 

the nature of these trace recorders is to use as little memory as possible, the traces will be compact and 

hard to read manually. Therefore some kind of interpreter is useful which can present the information 

from trace recorder files in an easy and understandable way. It is important to use this data to present 

relevant information in a way that is easy to draw conclusions from.  

The interpreting software can also include smart algorithms to identify states and give information that 

is not obvious by just studying a log text file. This helps a lot when trying to identify problems and 

erroneous states in the system. 

3 Evaluation of Existing tools 
To decide on further work in during the thesis, a number of analysis tools were examined to find out if 

there are any currently existing tool that fullfills ABB’s requirements. After searching for tools, three 

third party tools and the ABB tool JobMon where chosen for further investigated. The three third party 

tools are Tracealyzer, System Viewer and TraceX. In this chapter a short summary of all tools and their 

features is explained. This information is later used in the selection process in the thesis.  

3.1 Tracealyzer 
Tracealyzer is the name of software package that can record and analyze sequences of events in real-

time operating systems developed by Percepio [21]. It consists of two parts; the embedded recorder and 

the graphic offline analyze tool. 

3.1.1 History 

Tracealyzer was from the start a research project at MDH developed by Johan Kraft. He worked together 

with an industrial company to develop a recorder and a graphical interpreter during his PhD thesis [20]. 

To help understanding Tracealyzer and its advantages better, a meeting with developers at this 

company was made during the thesis.  

3.1.2 Tracealyzer and the company 

The company is using Tracealyzer and its trace-recorder in their products and the recorder is even 

enabled during normal operation at their customers.  In the meeting representatives from the company 

explained how they have implemented and used the recorder online in the system and what help the 

analyzer has been in their work. 

In their complex system, a number of system recorders are used, where one is the Tracealyzer trace-

recorder. All this collected information is supervised with a maintenance-class that takes care of the 

snapshot taking in the system. Snapshots of the system are taken at specific system events defined from 

the company, where the information is stored locally on the product computer. 

When the company personal wants to investigate a log they can download the recording files and open 

them in the Tracealyzer tool. As the company and Tracealyzer developer Johan Kraft cooperated during 

http://tyda.se/search/representative
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development of Tracealyzer they have got the analyzer custom made so that it can open and merge the 

information from both the recorders and the product-specific monitors and recorders. 

3.1.3 Tracealyzer today 

The software has changed a lot since the company implemented the first version. It has been 

commercialized and is now a property of the company Percepio.  

The first part of the software is the recorder.  The recorder is a small program that is open-source for 

the paying customer. It is integrated in the product and continuously records data of the execution with 

the help of ring buffers. The events recorded can be e.g. task switches and semaphore give/take and 

each event includes extended information. For example a task switch event is extended with why the 

task switch event happened, who was running and who runs after and when this happened. All this is 

done during normal system runtime. The time stamped events are put in RAM for later upon system 

failure or other trigger be saved to a file. The recorded data takes around four byte per event. 

 

Figure 5: Tracealyzer graphical tool [21] 

Tracealyzer includes an advanced graphic offline tool for analyzing the files that get written by the 

recorder. An example view from the tool can be seen in Figure 5. The tool can read a file that is dumped 

by the recorder and replay all events in a graphical time lined order. The authors have made a vertical 

time line in difference from the horizontal view used in e.g. System Viewer. The timeline for tasks makes 

the user able to go back in time and see what actually happened and why it happened.  The main view 

of Tracealyzer shows a time line with all the active tasks and how they run and preempt each other with 

additional information to be expanded. There are also lots of different sub views; CPU load, semaphore 

history, kernel calls, user calls and more. 
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The different views and windows of the Tracealyzer are linked together so that selecting one event in 

one window shows the same event in another window. This could be used to see different aspects at 

the same time on a specified event of the system. One useful case would e.g. be when showing CPU load 

at a certain time point. The user can click and it will zoom into the specific point where this happened on 

the task time line. This makes the user able to see what actually happened, task-wise, when e.g. a CPU 

load spike occurs.  

3.2 TraceX 
TraceX is another commercial tool for system analysis [22]. The tool is developed by Express Logic in its 

main focus is on the operating system thread, also developed by Express Logic. 

Features of TraceX: 

 Automatic priority inversion detection and display.  

 Built-in execution profile report that shows system usage of the different threads. 

 Stack usage on a thread level for the threads loaded in the analysis software. 

 Raw trace dump that can be read in for example Notepad. 

 Multi-core support. 

TraceX is built for use on ThreadX’s own real-time operating system, and there is no information if or 

how good it works with VxWorks. 

3.3 System Viewer 
System Viewer is a further development of Wind River’s System Viewer [23]. It comes with all tools 

needed to trace an embedded system both on the run and offline after a log file has been created. In the 

recording mode – for offline analyze - the tool has a lot of functionality in common with Tracealyzer.  

Wind River’s System Viewer can be configured to continuously write events and information into ring 

buffers. It can be triggered by an event to write the buffer either to file or upload the data through one 

of several protocols supported. The collected information is basically the same as Tracealyzer and 

System Viewer also comes with an offline tool to analyze the created log files. 

The user can determine which events and system calls will generate a trace in the log file. System 

Viewer’s recorder hooks into the system and will write all necessary information for context switches, 

semaphore actions, interrupts and more if wanted. The information is often just a timestamp together 

with the involved task(s) and takes a small amount of space. Of course the more information the user 

chooses to save in logs; the more CPU Load on the system and the more memory used by the recorder. 

The recorded files can then be opened in a graphical tool, shown with an example picture in Figure 6. 

The tool presents all information based on a horizontal timeline. It is then easier to get an overview of 

the system than reading plain text in a log file. The graphical tool will display all events logged together 

with the extra information saved on each event. 
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Figure 6: System Viewer graphical tool [23] 

The extra load of the system is not well documented in System Viewer’s manual and therefore 

unknown. 

 Since System Viewer is created specifically for VxWorks it is also able to perform things like creating log 

files after a warm reboot. The VxWorks kernel can be configured to not erase a specific part of the 

memory on a warm reboot. This makes System Viewer recorder able to save the logs in a memory that 

does not get erased and therefore it will be able to write a log file with the system history leading up to 

a crash on next boot [23]. 

3.4 JobMon 
JobMon is an analysis tool currently in development at the company. The idea of JobMon is to monitor 

and give information about current jobs running in the system. It was developed to work as a help when 

analyzing the system and to get timing information for important jobs in the system.  

3.4.1 System events 

Today, JobMon focuses on five events that happen in a job. 
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 Trig event - A trig event is the first event that happens that requires a start of a job. This could 

be an external signal, a time-event for a periodic task etc. and gives the job a signal that it 

should start 

 Schedule event - The schedule event is when detection is done that there is a need to start the 

job processor 

 Wake event – This event marks the start of the job-specific code 

 Response event – The first response from the job, e.g. the first response byte sent 

 Done event – the job-specific code has finished executing 

3.4.2 Job monitoring 

A job is not a specific task but more a series of different events in the system which reacts and response 

to an event. This event could e.g. be an analog input to the system and the response could be a 

triggered break of the line because of an error. The reason to monitor the system on a job-level and not 

a task-level is that the important times in the system is the responses to system events and not how 

long an actual task has executed. 

The primary function of JobMon is to monitor the system on a job level, a form of end-to-end response 

time. A job is a series of actions done in the system to give a response to a specific input. The input could 

e.g. be an analog input to the system and the response could be a triggered brake of the line because of 

an error. The times for the system to respond to inputs are critical and therefore also the time a job 

takes.  

The main information stored in the JobMon object is a number of time spans. These times are measured 

by adding JobMon calls in the system where the specific part of the code has been executed. By 

measuring the time between these events, different times within a job is calculated. The system saves 

seven different time intervals. These are schedule to schedule, schedule to wake, trigger to response, 

trigger to schedule, trigger to trigger, wake to done and finally wake to wake. For each of these, the two 

time stamps, calculated time for last execution, minimum execution time, maximum execution time and 

time variance is saved. No logging is done for older executions except these timings. 

To see the information a dump-command is written in a terminal which triggers a print of all times for 

the different jobs. This requires that an observer is continuously running this command at interesting 

points in the system to get the relevant information from the tool.  

3.4.3 Thread monitoring 

To monitor the system on a thread level, JobMon consists of a thread monitoring part. The thread 

monitor hooks on to tasks and when a context switch happens, a defined method is run. By logging 

which tasks that gets to run and which who got preempted the monitor can give relevant information 

regarding behavior on a system level.  

It is possible to connect one thread monitor object to a specific JobMon object. This could be used to get 

further information about the job, like for example what was the last task that preempted the job. This 

is only useful for the case where one job is just one thread. For cases where jobs have multiple threads it 

might not be as interesting to log just one thread execution. 
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The implementation today doesn’t use any recording so the information that can be given from the 

monitor is number of context switches, last preemptor as well as timing for last execution and 

information about maximum and minimum execution in ticks and time.  

3.5 Selection process 
During the thesis work, a theoretical survey of all three applications has been done. The authors of this 

thesis have met the developers at a company, using Tracealyzer, during the project and they have given 

their view of it and how it helped them. Johan Kraft and a colleague from Percepio have also visited us 

here at ABB for a presentation of what Tracealyzer can do and showed a short demonstration. 

The product looked for is something that can write a log file upon a system error or whenever specified 

by the developer. The log should contain enough information to have a chance to solve the problem and 

a graphical interpreter of the log file is therefore a must. All three, System Viewer, Tracealyzer and 

TraceX, have a smart graphical user interface but Tracealyzer is pushing that they have an even smarter 

interface and easier to use. A small survey among developers at ABB shows that many find System 

Viewer hard to work with and that it has a complicated graphical interface. 

3.5.1 Available options 

After doing a theoretical investigation on current analyzing software and ABB demands, three main 

alternatives for analyzing software has been worked out. The three alternatives are: 

1. Developing and using JobMon only. 

2. Using a new version of JobMon in combination with Tracealyzer or System Viewer. 

3. Using Tracealyzer or System Viewer without JobMon. 

These three alternatives will be compared in the next section to draw a conclusion on which alternative 

that best suites the needs from ABB. There will also be a comparison between Tracealyzer and System 

Viewer to see which of these two tools to choose if the conclusion is to not use JobMon as standalone 

analysis software. 

3.5.2 Options discussion 

The framework ABB want in their products will probably never be found on the existing market. Both 

Tracealyzer and System Viewer are developed for the purpose of monitoring a system and debugging 

either a pre-defined sequence or a sequence where you suspect an error. There is no way to setup limits 

or other features that can trigger a log at specific condition. 

System Viewer offers an online debug view where you can run the system normally and monitor all 

information on the run. This is a good feature, but when you do not know if, when or where an error 

might happen, this way of debugging becomes exhausting. Many developers at ABB who have worked 

with System Viewer think that it has an complicated graphical interface and is hard to use. The tool is 

not used every day and therefore it is a must that it is so easy that you remember all common functions 

between the occasions. 



23 
 

From what Tracealyzer and System Viewer specifies for the public they theoretically fulfill the same 

purpose seen from this thesis work’s perspective. Both System Viewer and Tracealyzer offer system 

logging where all events are logged into a ring buffer and saved to file when something triggers the save 

function.  

The logs made by both tools would probably be enough to find most errors in the system, but it is not 

possible to specify what an error is.  

A large industrial company has, as already stated, implemented Tracealyzer in their product control 

systems. The major difference from our point of view is that there already was functionality to detect 

system failures. This means that the trigger to write the log file already was implemented before they 

even thought of Tracealyzer. 

The framework for specifying a system error is specific to each system, therefore no such 

implementation is made in neither of the tools. Each system has their own set of errors, e.g. buffer 

overflow, deadline miss and/or erroneous sequences of executions.  This concludes to that something 

system specific needs to trigger the write function of the loggers upon a detected system error.  

JobMon, which already have some basic functionality, is developed in the purpose of detecting system 

errors. Today it also has some functionality for logging system and some thread events.  The error 

detection is limited to a monitoring part with time between events. There is no alarm functionality 

implemented and the system logs collected by JobMon are limited with no way of writing them to a file 

or analyzing them in a graphical offline tool. 

Review of the options above: 

1. Developing and using JobMon only. 

Possible, but would take a lot of time. It would not be possible to, during this thesis time, 

develop a fully functional graphical interface to interpret the logs written by a recorder. 

 

2. Using a new version of JobMon in combination with Tracealyzer or System Viewer. 

Possible and would not take too much time. JobMon will serve the functionality of an 

evaluating- and error detecting-framework. Tracealyzer or System Viewer would fill the 

logging and log interpreting functionality. 

 

3. Using Tracealyzer or System Viewer without JobMon 

Not possible without custom designing Tracealyzer or System Viewer. It is impossible for 

the standard tools to recognize error conditions in a specific system. Logging and 

debugging functionality is useless if nothing gets triggered to write the logs from RAM to 

file. 

3.6 Discussion 
The solution to this specific problem could be cooperation with e.g. Percepio (developing company of 

Tracealyzer) to custom design the Tracealyzer recorder to be able to measure several properties that 
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can indicate a system error. Exceptions in time between events, value of a counter, number of elements 

in a buffer, or other developer specified error would trigger Tracealyzer recorder to write a log file for 

debugging offline.  

Another solution, and or suggestion, is to extend JobMon and make it the system-fault trigger 

component - the system that triggers the real system logger to write a log file. This would work with 

both Tracealyzer and System Viewer, whichever the company chooses, it is probably a question of cost 

vs. easiness. Since it is not possible to test Tracealyzer, there is just a possibility to review the specified 

functionality of it. 

It would also be possible to develop an own trace recorder and a graphical interface to interpret the log 

files. But this would take too much time, especially for the graphical interpreter, to fit within this thesis 

timeframe. 

JobMon is already a powerful tool and can with some effort be extended to be able to trigger the log 

writer. This would help the system developers by having a log file of the past seconds leading up to a 

defined state interpreted as a system error. The information in e.g. Tracealyzer is extensive and would 

probably be enough – together with a small JobMon log – to understand the error and debug the 

system. JobMon can also easily be extended to include any information missing in System Viewer’s or 

Tracealyzer’s log. This might be some system specific information. 

The new version of JobMon must a fulfill a couple of requirement to be usable in the future 

 Must not change the behavior of the system in any way 

o Must not increase the CPU load noticeable 

o Must use small amount of memory 

o Must never be able to crash the system – always “passive”. Exceptions in JobMon must 

always be treated and must never interfere with the other system. 

 Must be easy to setup criterions interpreted as system error (e.g. time between specified 

probes). 

 Must be able to take an easily specified action on system error. 

 Could save a little dump of its current information on a user defined error state, e.g. which 

alarm that trigged the dump. 
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4 Case-Study Implementation 

4.1 System architecture 
 

 

Figure 7: System Architecture 

The hardware consists of a lot of binary and analog data inputs, a motherboard with CPU, RAM and flash 

and components for output signals. It is I/O driven and the input data is measured and calculated in a 

long chain of executions. After a lot of calculations on the data, an output is produced to an actuator in 

the end. 

The CPU has a clock frequency in the range of 600MHz and produces around 70 million system ticks per 

second. It is important to know a bit of the CPU when interpreting tick results and other data from our 

measurements. 

4.2 Software setup 
The implemented system consists of over a million lines of C++ code. Therefore the implementation of 

new additions to the system is not so straight forward. It is a must to understand the core functions in 

the system and to reuse already existing optimized classes, e.g. double linked lists. It is also important to 

use the same pattern for writing code as previous authors to make the code easier to understand and 

perhaps extend or change in a later phase by someone else. 

4.2.1 ABB Real-time system execution model 

ABB has developed a complex model for executing many threads and components concurrent in their 

system. They run a normal VxWorks priority based scheduling for the threads, but the system can be 

divided into two types of system execution scenarios.  

In the first scenario there is an internal way of scheduling small parts of the task, called components. 

Each thread that uses this type of execution pattern have components inside that all have inherited 

from a base class. This base class provides an interface to be executed in a structured way within the 

same thread. When the thread gets the CPU it starts to execute components in a pre specified pattern. 

Each component has an integer that specifies when it should be executed within the thread. 
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The other way of executing is a more common way with pure threads that have their code in the body.  

Since each thread is assigned a priority at start, it is important that all code executing within the thread 

are equally important. It is not possible to mix priorities within the threads, since the scheduling of 

threads is done by VxWorks and will interrupt all lower priority threads upon request. The hard part is to 

break up the system and group the code that are equally important and be sure to not mix in something 

that has no time limit or other that can be executed at a lower priority. 

4.2.2 Component inputs and outputs 

Every component executing within a thread automatically inherits properties for using inputs and 

outputs through a complex system specific wrapper. The use of this is to be able to communicate 

between components in a simple way. An output can e.g. be bound to an internal variable and through 

the interface be read by any component. 

There is also a possibility within this complex framework to import settings and parameters from the 

database and bind them to internal variables. This is frequently used to configure different settings 

within the code to avoid hardcoded limits, settings and parameters. 

4.2.3 Lifecycle management 

It is important, for every object in the system, to have lifecycle management. This is due to the target 

system is dynamic and e.g. services and protocols can be taken down during runtime and then get re-

initiated at any time. This puts the same constraints on our implementation; all objects have to be able 

to get created and destroyed properly during runtime.  

The hard part with lifecycle is if an object can get destroyed it must be sure that no one else is 

interested in this object or that it has some kind of reference that it might use later on. Use of a 

reference to a memory address, that is not allocated or allocated to a new object, will most likely end in 

system wide disaster.  

One strategy of solving the issue of lifecycle management is to use reference counts. Reference count is 

a simple integer implemented in an object that increases or decreases when other objects announce 

interest in the particular object. This is a must when e.g. saving a pointer to the object. An object can 

therefore never be deleted until the reference count is zero. The developer can then always be assured 

that the object exists whenever an increase reference count method call has been done and the integer 

inside the object therefore is greater than zero. 

It is also important to always be assured that no objects get to hang loose. This could be the case if 

someone does not decrease reference to a specific object it has increased the reference count of earlier. 

This would make an object live forever, since it will never reach a reference count of zero. 

4.2.4 Locatable objects 

The system today provides a locatable object interface. This means that the whole system has a 

common namespace where every object registered in lookup table is able to be located. This makes 

communication between different objects possible. It does not matter if they are not related in any 
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other way as long as they know each other’s name – or OID, Object Identifier, as they are called in the 

system. 

Locatable objects have a common interface inherited from the base class. The class includes the read 

and writes functions which are the specification of the external interface towards other objects in the 

system. 

4.2.5 Job description  

ABB system is built up around series of executions of threads that combine their calculations and 

functionality to complete a job in the system. A job does not have to be a single thread but can stretch 

across several. This makes thread monitoring not so interesting and the ability to measure properties for 

a job extremely interesting. The error detecting system must therefore support probing and measuring 

this concept. It must be possible to specify start and end points that are separated both in code files and 

in threads. 

5 SysMon Framework 
A new tool will be developed with similar measuring properties as the old JobMon. The problem with 

JobMon is that it is written in a static way, allowing just time measurements. It is also limited in how 

many time measurements it can do, and uses static naming for all measurements. There are static 

functions for calculating time delta and no current functionality for setting alarms or similar warnings 

when time passes a pre-defined limit. There have been thoughts about making warnings or alarms for a 

long time, and by studying the class diagram one can see the functionality has been thought of, but not 

yet implemented.  

The new tool, SysMon, must be able to measure any kind of data. It must be so generic that it should be 

possible to implement measurements later on of data types that are not even known when developing 

the framework. The only data that are known about right now is time and the focus during this thesis 

will be time measuring – without limiting anything to just handle time. 

The thought is to create the basic framework and prove that it works by measuring time, and thereby 

also making the old JobMon redundant. It is also important that the tool and code is easy to understand 

and simple for the developers at the company to start using and develop even further to fit all their 

demands.  

The old JobMon also implemented support for monitoring on thread level, e.g. CPU load for a thread. 

These functions can be included in the new SysMon framework as they are, but will not be a priority 

since there are thoughts to implement an external logging utility that can save logs of the system 

history. These logs should provide enough information of what went wrong, and most likely more useful 

than what JobMon presents on thread level today. 
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5.1 Development plan 
To satisfy all demands from ABB, JobMon will be developed further and the class structure of it will be 

changed. A good implementation way of SysMon is to do it in an incremental way taking and a new step 

when there is time and the last phase is finished. An idea of development steps is: 

1. Setting up a framework that puts as few constraints as possible of what can be measured or 
evaluated. It must be possible to measure and evaluating complex scenarios as well as a simple 
integer counter. The classes created will be one probe class that stores the information at 
specific system events, and one measurement class that can correlate and perform calculations 
on data from probes. From these base classes the developer will be able to derive inherited 
classes can perform any type of probing and any type of correlations between probes in the 
measurement object. 
 

2. Implementing special classes that can be used throughout the system. Example of probe types 
are: 

 Time probe - saves timestamp from specific places or events in the code 

 Tick probe- saves real system tick counter as integer 
 
The probing functionality must be thoroughly tested to make sure that it doesn’t interfere too 
much with the system and also that it doesn’t produce any bugs or errors in the rest of the code. 
Time interference of probes can be tested by probing the probes itself and using time delta 
measurement to evaluate the difference in time. 
 

3. A probe on its own does not provide any useful information. Therefore there will be 
measurement classes for the most common measurements in the system, e.g.: 

 Time delta - measuring time between two probe timestamps 

 Tick delta - measuring ticks between two probe stamps 
 

4. Integrating a framework for setting alarms on the evaluated measurements. This framework 
must not set any unnecessary constraints on what can be seen as a faulty state of the system. It 
must be able to perform simple compares as well as advanced mathematical functions. 
There also must also be a way of populating the alarm framework and set the correct 
parameters for every object in the system. This must be done either through an XML file or by 
using the database directly. 

 

5.2 The framework 
The most important part of the framework is that it must be as general as possible and not obstruct our 

further development. It must also be easy for the people working with development and perhaps using 

our tool to extend and implement specific measurements of the software. Another important factor is 

to make the code slim in a way that it doesn’t bring a lot more CPU load to the system. 

The framework will be built in an object-oriented way with generic base classes that handles the basic 

functionality with possibility to extend the classes to special implementations in an easily. It is focused 

around three main requirements, where each will have its own code part in the system. The three parts 
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is the probing of the system execution, measurements based on the values from the probing and 

evaluations on the measurements.  

The main thought with the framework is that it should build a stable ground for all kinds of 

measurements. The developer should then be able to inherit from the base classes when creating a 

specific measurement and by that only have to implement the special functionality of the specific 

measurement. All other management and functionality is already implemented in the base classes. 

The three base classes are: 

 Probes: Probes stores information gathered from the system. 

 Measurements: Measurements uses one or many probes to calculate a result from the 

information gathered 

 Evaluations: Evaluations uses the results from one or many measurements to decide on possibly 

actions in the system or alarms that the measurements should give 

An analogy to the real world can be done by this comparison: 

 Probes: Giving the current temperature outside. 

 Measurements: Calculate the average temperature, maximum temperature and minimum 

temperature during the day. 

 Evaluations: Decides if it is hot enough to go swimming today or not, depending on the result 

from the temperature calculation. 

 

5.3 Architecture 
To be able to find and use already existing probes and measurements and to handle the memory usage, 

some sort of management-class is needed. It is also necessary to divide information between different 

parts in the system in a way that all monitoring information for one specific part of the system is easy to 

find and edit.  

The start point was to create a class called “Manager” that is supposed to keep track of objects that are 

interested in each other. There will be one instance of the manager for each part of the system, for 

example a transfer link, a runtime thread and so on. To fulfill this, the manager will be a locatable object 

in the system and have a unique name identifier. The different parts of the code that belongs together 

can then connect to the same manager and therefore access the same measurements and probes. 

The manager will keep track of all measurements associated with it, and all probes associated with its 

measurements. It is also from the manager object the developer requests the correct probe pointer for 

setting a value and doing measurements on the probes. 
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5.4 Use cases 
There are a few main use cases that are important for the developer to know about. A use case picture 

is presented with the basic uses of SysMon and shows what possibilities the developer has to interact 

with the tool. A more complex and detailed description of the use cases will follow later in the report. 

 

 

Figure 8: Use Cases 

The use cases are focused of fulfilling three important requirements of the system. These are the 

possibility to take measurements, evaluate them and showing the results to a developer. To take 

measurements there are use cases for creating and initializing managers, probes and measurements, 

and to stamp probes. The evaluation part is the calculation of measurements and running of 
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evaluations. The last two, print data and read output, is to get the information either to a text window 

or by having some sort of output signals from the tool. 

5.5 Conceptual class diagram 
From the class specified, a conceptual class diagram has been constructed. 

 

Figure 9: Conceptual Class diagram 

The main functionality for the design is show in Figure 9. These classes cover the basic functionality 

aimed for in the final products and how they are associated to each other. 

From the system description given earlier one can see that a new class has been constructed, the 

TriggeredAlarms class. This class is used for recording history data regarding results from the evaluator 

that has given an alarm state in the system. 

5.6 Implementation details 
The pattern of coding is taken from the earlier implementation of JobMon. The class methods, naming 

conventions and code style have been adapted to be easier for a regular developer to continue. The 

small details of implementation will be skipped and the continuing parts will explain specific parts in a 

high abstraction level. 

5.6.1 Alarm handling 

The evaluator class task is to evaluate the calculated information in measurement class. These objects 

read from the database in the beginning of system start-up and get a variable. This variable can be of 

any type and contain any information to be used for comparing data in measurement objects against. In 

the simplest case it can be a simple integer which is a limit and the measurement object data may not go 

higher than this value. It can also be more advanced to represent e.g. a percentage for the evaluator 

object to use in its evaluation method. 
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If the evaluator object comes to a conclusion that the limit has been exceeded, it will save current time 

and measurement data in a list of alarms. The triggered alarms list is a circular list and saves a pre-

defined amount of last events per evaluator object. 

The whole framework is generic and so is the triggered alarm list. The base class only contains a 

timestamp and functions for set and print. The developer needs to inherit from the base class and 

create the variables needed for saving the important information about the specific alarm. A triggered 

alarms time class was created for this specific purpose and will serve all functionality needed when 

creating an alarm entry when a time limit was exceeded. 

The purpose was to create a base class that only contains the most important functions and data. A time 

stamp will most likely always be interesting, no matter what kind of measurement and/or evaluator the 

developers continue with. The time alarm class contains a variable for saving the measured time data at 

the exact moment the limit was exceeded. 

The developer will have the possibility to see all triggered alarms by printing them in a terminal. When 

printing alarms the developer gets information regarding what manager and measurement the alarm 

belongs to, what the limit for the alarm was, at what time the alarm happened and what data lead to 

the alarm. This information will help the user when debugging a system by giving information on when a 

system entered a state which gives errors. 

5.6.2 Lifecycle handling 

No deletion of objects is done directly by a developer; all deletion is done with the reference counting, 

e.g. when an object referencing to the manager stops using it, it just does a decrease of the reference 

count. By doing this, the manager knows that this object has no interest in it any more. When the 

number of references to the manager is zero, the manager is not needed any more and could be 

removed. When this happens, all measurements connected to the manager are deleted. 

The probes must not be deleted; it is enough that the manager decreases the reference count to them. 

This is because there might be a pointer cached somewhere in the code that stamps it. The deletion is 

done by returning how many references the probe have each time it gets stamped. By returning it, the 

code snippet will check if the reference count is one or higher. If it is just one, the probe reference count 

can be decreased and the pointer deleted since no one but the stamping section itself is interested in it 

System deleting is of a slightly lazy type. Probes could be removed as fast as no measurement is 

interested in them, but the decision was made that it is better to have a bit more memory usage and 

deleting them less often instead of frequent deletion and recreation of probes, which takes more CPU 

time. 

5.6.3 Communication and component outputs 

Alarms in the system get their configuration from the database and their limits and parameters are 

therefore easily changed by e.g. reading an XML file into the system. It can also be of use to be able to 

read different measurements and results in other components, e.g. the HMI or in a separate test 

environment. As explained earlier, outputs from components can be used for this purpose. Presenting 
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measurement data, alarm status and other important parameters can be great when monitoring the 

system either by hand or by an automatic test environment.  

 

Figure 10: Inputs and outputs to a SysMon Component 

Runtime objects already have their own component for measuring purposes. These components will be 

used for handling the input and outputs for its measurement manager. 

There are several places of the code that is interested to be measured that do not live inside a runtime 

component. One good example is communication protocols. To be able to get output from these 

measurements a new component is created for connecting to the measurement manager of 

measurement that lives outside runtime components.  This component will run within runtime in a 

thread and get its data from a measurement manager, and make this data visible on its outputs. Each 

measurement manager needs their own component so a 1:1 relation of component instances and 

measurement managers outside runtime is needed. 

5.6.4 Version handling 

To reduce the amount of double work in the tool, a system for version handling has been implemented. 

The probe- and measurement-classes has got a version number associated with them, which is a 

counter.  

Each time a probe gets stamped, the version number for it is incremented. When a measurement 

calculation is activated, it checks the version of both probes and if both versions have increased since 

the last time, the calculation is done. The versioning in probes gives two positive aspects for the system. 

Calculations for probes are always just done once for every version, and the versioning guarantees that 

the measurement is consistent in the case that two probe values is compared. Consider a scenario 

where just probe 1 has been updated while probe 2 has not, and these are compared. The result will be 

incorrect. 

To reduce the number of evaluations, the measurements also have version handling. Each new 

complete measurement has a new version and when evaluations are run, the version for the 

measurement is checked to see if it should be evaluated or not.  
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5.7 Class description 
From the conceptual model the methods and variables for the different classes has been constructed. 

The designed system is built up by a number of main classes which is of great importance for the system 

behavior. This section describes the most important classes with respect to the functionality and 

conceptual methods.  

5.7.1 Probe 

 

Figure 11: Probe base class and time probe implementation 

The probe-class is used to create probing-objects that are assigned data from the specific points of the 

code. The information the probes take can be of various types, like a timestamp, size of a buffer, 

number of invocations of a task etc. To make it possible for the numerous of different usage areas, a 

virtual probe-class with the basic functionality is created which then is used with inheritance to make 

new classes for the specific probe. 

All probes will have a name that is unique within the manager it belongs to. With this unique name, 

everyone that has a reference to the manager can find it. An OID, object identifier, is used for the 

naming. The naming convention is a question for later system design but the names of the probes must 

make sense in a way that it is easy to know and find a probe when a measurement is created. 

A probe is instantiated when the need for it exists, e.g. when a measurement needs the probe for its 

measurements. Each probe has a variable that counts the number of references to the object. When a 

new measurement is created and associated to the probe-object it does an increase of the reference 

counter. When the number of references is zero the probe is not used in any measurement or by any 

time stamping in the system and therefore removed. 

To save execution time and to minimize the need of searching in lists, stamping of a probe is done 

directly with a pointer to the stamp. Each probe has a stamp-method that is used to take a stamp from 
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the system. By calling the stamp-method with the data to be stamped, the data is saved in the probe. 

For e.g. timestamps there are methods that take no in parameter and the meaning is to save the current 

timestamp as data. 

5.7.2 Measurement 

 

Figure 12: Measurement base class and specific implementation 

 

The measurement uses probing information to calculate specified measurements for the system. Figure 

12 shows the base class of measurement and an implementation for a measurement that calculates 

time differences between two time-probes.  

The measurements base class has a name of the measurement, an integer ID, and a list of evaluations 

associated with the measurement. It has virtual methods for printing and calculating the measurement, 

which inherited classes’ implements, and also an evaluation-method which calls all the evaluators in the 

measurement to do its evaluations.  
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The specific implementation shown, a measurement for time differences is used for comparing the time 

between two probes in the system.  

5.7.3 Measurement Evaluation 

 

Figure 13: Measurement evaluation base class and time evaluation implementation 

The evaluation class is the one containing the “intelligence” of the system. While probes and 

measurements just gather data and do simple calculations like calculating minimum and maximum 

value, the evaluator processes the data and takes decisions based on the information received from 

measurements. This could be that it compares jitter of executions, maximum execution times with 

deadlines or similar. If certain values of the result as achieved, the evaluator could be configured to 

execute certain code. This could be to stop a recorder and save the current state or more advanced 

functionality like controlling the actual execution flow of the system, e.g. giving the executing task less 

CPU time slots because of too long execution time. 

The base class of the evaluator contains a list of triggered alarms and a variable that tells the system 

where to run the evaluator. The triggered alarms list is a circular buffer which saves the time for a pre-

defined amount of alarms and what data that the alarm is associated with. This could help a developer 

debugging by showing at what exact time an alarm occurred.  

The other variable, the execution place, is used to decide on where to run the evaluator. The thought is 

to have a possibility to configure where the tool evaluates measurements in the future. Either the 

evaluator can run directly at a measurement update, it can run when the user enters the evalAlarms-

method or in a separate thread. Where to run the evaluator depends on the responsiveness required 

and the amount of load an evaluation does. If the evaluator just does simple calculations like comparing 

values, it can run in context of the evalAlarms-method, but if it gets too complicated and time 
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consuming a good idea could be to put the evaluation in the separate thread. When this is done the 

evaluation is activated by a lower priority task that does less interference with the rest of the system. A 

remark is that the developer must take the time it can pass from an actual system error until it is 

evaluated and discovered when running anywhere else than in the current context into consideration. 

This is because the trace-recorder does not save many seconds of history when logging in the ring-

buffer. The evaluation should be run so fast after the error as possible to get a good recording of how 

the system got into the error state. 

The MeasurementEvaluation class also has a debug symbol built into the system standard concept of 

debug symbols. By turning it on, the developer can see live outputs when an alarm is triggered. 

Additional information is also printed for identification of which alarm was triggered and what limit it 

exceeded. 

Figure 10 also shows a specific implementation for a time evaluator. This is a simple example and only 

contains a hard deadline time with the variable m_alarmTime. At evaluation this value is compared to 

the measurements maximum probing time since the last alarm and, if the time is no within defined 

limits, an alarm is produced. Examples of our specific inherited classes are: 

 MeasurementEvalTimeHighLimit - Checks if a calculated time is higher than the set alarm time 

 MeasurementEvalTimeLowLimit -  Checks if a calculated time is lower than the set alarm time 

 MeasurementEvalTimeRelativeLimit - Checks if a calculated time differs in a set percentage 

versus the mean time 

 MeasurementEvalTicksHighLimit – Checks if a calculated amount of ticks is higher than the set 

alarm 

 MeasurementEvalTicksLowLimit – Checks if a calculated amount of ticks is lowwer than the set 

alarm 

 MeasurementEvalTicksRelativeLimit – Checks if a calculated amount of ticks differs in a set 

percentage versus the mean time 

5.7.4 Triggered alarms 

Triggered alarms are used to record and save information about evaluations of measurements that has 

given a result that is breaking the evaluation limits. When an evaluator gets an alarm state, the alarm 

data is saved in a circular buffer of triggered alarms. The information stored in the buffer is the system 

time when the alarm happened and the data which lead to the alarm.  

 

5.7.5 Manager 

The manager is the key object in the developed system. The manager is responsible of keeping track of 

the measurements and probes associated to it and it is used to get pointers to existing probes. It is with 

the help of managers that it is possible to connect different threads and parts of the code to the same 

probes and measurements.  
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Figure 14: Manager Class 

All initiation is done with the static instance-method in the manager class. With the help of the static 

manager-list, the method searches through the existing managers to see if one already exists with the 

specified name.  

There are a number of important variables in the manager where the two most important is the list of 

measurements and list of probes.  
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5.8 Using SysMon 
Most of the communication between system components and the monitoring is done via the manager; 

the only exception is when stamping probes, which is done by addressing the probe directly with a 

pointer. This is because each lookup in the probe list costs execution time and a pointer is the least 

expensive way to assign values to variables.  

To give a better idea on how the framework is thought of using in a real system some examples are 
given in this section. This example uses no external source for the alarm; instead the alarm-object is 
created with a variable that exists in the object creating the measurement. 

5.8.1 Initializing SysMon manager and measurements 

The first step when construction a new monitoring object is to set up the manager. As manager can be 
used on multiple places, an instance-method is used to find an existing manager or create a new 
manager if none exists. 

m_managerPtr = MeasurementMgr::Instance(managerName); 

The next step is to create the probes needed for setting up the wanted measurements 

m_wakeProbePtr = TimeProbe::Instance(m_managerPtr, wakeProbeName); 

m_doneProbePtr = TimeProbe::Instance(m_managerPtr, doneProbeName); 

When probes for a measurement are created, the measurement can be created and added to the 
correct manager. As parameters to the create method is a pointer to the manager, index for 
measurement, name for measurement and pointers to the probes that should be used by the 
measurement. 

TimeDeltaMeasurement::createMeasurement(m_managerPtr,0,"W2D", m_wakeProbePtr, 

m_doneProbePtr ); 

If wanted, add an evaluation to the created measurement. As parameter to the create evaluation 
method is a manager pointer, index of measurement and an alarm value for the evaluator. 

MeasurementEvalTimeHighLimit::createMeasurementEval(m_managerPtr,0, 

m_alarmList[0]); 

The framework is now configured for doing the measurements. The next step is to start the monitoring. 

5.8.2 Setting up probe points and doing calculations and evaluations 

To set up probe points for taking stamps of the system, a reference to the wanted probe must be 

fetched from the manager. If the stamping is done in the same object as the initialization, a reference is 

already present from the previous step. The false-flag tells the instance-method that it shouldn’t create 

the probe if it doesn’t exist. As this object is only responsible of stamping a probe it is not interesting to 

do so if no measurement wants to use it in a measurement, therefore the flag is set to false.  

m_wakeProbePtr = TimeProbe::Instance(m_managerPtr, wakeProbeName, false); 

To stamp the probe, add a stamp-method call at the position in the code where it is suitable. 

m_wakeProbePtr ->stamp(); 

When all information is gathered for the measurements, run the calculation in the manager to do 

calculation on data from probes. 
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m_managerPtr->calcMeasurements(); 

Next step is to evaluate the calculated result from previous method by running the evaluation method. 

m_managerPtr->evalMeasurements(); 

6 Testing 
The tests done on the tool are in two main areas. First the tool itself is tested to see that it works as 

planned. This means both that the tool doesn’t produce any bugs or error and also that the values 

measured are reasonable. The second part of testing is to do actual measurements on the company 

system to see if the tool runs stable, produces correct measurements and lives up to the high standards 

of ABB’s system. 

6.1 Test lab environment 
ABB have a huge testing area for every kind of scenario the system might encounter. In the lab rooms 

there are cabinets which can freeze the system down to under -50°C and also heat it up to over +50°C. 

There are also all kinds of testing equipment for simulating voltage and power as well as 

communication. A few people at the company only work with test scenarios and developing tests for the 

system that might happen in the natural environment and should be handled without problems. The 

binaries for the system are built every night using the newly checked in code from the developers and 

after every build there is an automatic test process. The test process runs a thorough test program and 

gives feedback to the developers if it passed all tests and gives information if a test did not pass.  

The testing is an important part of the development of the product. It is also an important factor to 

recreate problems that have occurred in normal situations and then reported as failures from the 

customers. Sometimes there is little information about the actual failure and how it occurred. 

Recreating the same situation in a lab environment is therefore sometimes a tough job. But it is 

extremely important to try to understand what happened and how it can be prevented since an 

unnecessary power cut is not acceptable. 

6.2 SysMon test process 
The test process has three parts, which is run in an iterative way during the development and testing 

process. Each of the tests has its positive aspects and helps the development by showing bugs and 

errors and giving results from measurements.  

The first step in the test process is to run the executable in Windows environment. This environment 

does not function exactly as the target system, but is always a good first step in testing new code. 

Running the code and being able to set real breakpoints in Visual Studio is a lot easier than compiling 

and running straight on target system without being able to debug more than writing error dumps upon 

failure.  

SysMon was tested a lot in Windows environment, and even though times and real-time properties does 

not function well in Windows, many bugs and errors in the design were discovered in this stage.  
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The next step in the test process is to compile and run the executable in target environment. Since 

VxWorks and Windows handles things different and a few code snippets of the system are different 

whether it is running in Windows or VxWorks this can reveal bugs and unexpected features. This is a 

important step, and running newly written code in Windows only does not prove that it works. 

The final step of testing is to run the tool in lab environment on a test setup where the system gets 

actual inputs and outputs from external hardware. This gives a good picture on how the system behaves 

at a real install and is a good last step for testing SysMon. 

6.3 Tool evaluation and benchmarking 
The first step of evaluating the tool is to expose it to different execution scenarios. It is important for the 

tool to handle all special system specific situations. The tests were designed to cover the most critical 

and important system execution scenarios including warm reboots, normal lifecycle of communication 

links and long time tests. An important test is also to test the system with SysMon disabled by a 

parameter. By setting SysMon enable parameter to false, the system should function as normal and 

SysMon should not run any of its code and therefore not affect the system in any way. 

Another good test is to simulate load on the system to force alarms to trigger. This can be done by 

inserting an extra task that has a simple dummy spin loop and runs with a period so that it will affect a 

pre-defined normal system task. Another way to trigger alarms would be to simply lower the limits and 

making the alarm limits get exceeded each execution, but it is more realistic to simulate load.  

The evaluation tests are executed on a local system with no inputs or outputs. Descriptions and results 

of the tests can be reviewed in Table 3.  

Benchmarking can be described as tests that evaluate the effectiveness and intrusiveness of SysMon. An 

important factor to test is the CPU load of the probing of the system in relation to the probe effect 

described earlier in the thesis. The measuring method used was proposed by Kraft [20]. The first step is 

to evaluate how long time an actual probing in the system takes. To measure this, two probes were 

added in the system that measured system ticks that it takes to do an actual probing. The probes were 

put right after each other, and the difference in time will then be the time it takes for a real probe to 

execute.  

Calculation and evaluation functions are also important to evaluate since they contain the mathematic 

and CPU intense parts of SysMon. By adding two probes to take time stamp before and after calculation 

and the same for evaluation functions, the intrusiveness of these was measured. The scaling of the tool, 

e.g. how the tool behaves when adding more than one evaluator objects to an already existing 

measurement is interesting since measuring just one evaluator can have code that only executes once, 

e.g. locking of shared resources. Scaling tests are done with different amount of measurements, 

evaluators and alarms that triggers. 

A general CPU load test was setup with a standard execution scenario. Ten application threads were 

probed four times during one execution cycle and these four probes were used by six time 

measurements. Each measurement also had one evaluator that did not trigger an alarm. It is important 
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to mention that these threads are not the only threads in the system, but they are the most interesting 

to monitor at the moment. The threads monitored have a schedule scenario as presented in Table 2. 

Thread number Periodicity (s) Executions per second 

1 1 1 

2 1 1 

3 1 1 

4 0,1 10 

5 1 1 

6 0,005 200 

7 0,02 50 

8 1 1 

9 0,2 5 

10 1 1 
Table 2: Thread periods in CPU load analysis 

The tests were executed both on a local system with no input or input signals and also one time during a 

stress test of the system. The stress test is developed at the test department and is a standard test for 

evaluating CPU load.  

6.4 System test 
A number of predefined system tests are available to execute in the lab environment. These will be used 

to measure and evaluate specific system properties and how the system performs under different 

execution scenarios. This is not a test for the tool itself, but for the system. The exact test specifications 

and results from these measurements will not be presented in this report. 

6.5 Test results 
A number of test cases have been constructed to test the parts described in the previous sections. The 

description of the test cases and the results when running them are presented below. Specific tests 

were also done on the company system for evaluating the target system and its properties. These test 

results are only available internally on the company for review. 
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6.5.1 Tool Evaluation 

ID Test description Expected result Result 

T-01 Run system with SysMon disabled Measurements do not get updated and 
no evaluation is allowed to run. 

PASS 

T-02 Disabling and enabling SysMon during 
runtime 

On disable measurements and 
evaluation values remain intact and 
when enabled again, they get updated 
with valid data 

PASS 

T-03 Disabling and enabling system runtime 
while SysMon is enabled 

Measurement data of runtime objects 
does not get updated when runtime is 
down, and then starts to update with 
correct values once runtime is enabled 
again 

PASS 

T-04 Communication links is enabled and 
disabled while SysMon is enabled 

Measurement data does not get 
updated for the specific link 
measurements, and then starts to 
update with correct values once 
enabled again 

PASS 

T-05 Running system for 24h nonstop with 
SysMon enabled 

All measurement gets valid data and no 
exception  occurs 

PASS 

T-06 Simulate load to trigger an alarm Alarm gets triggered, saves correct data 
and sets correct output values for the 
component 

PASS 

Table 3: Tool evaluation results 
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6.5.2 Benchmarking 

ID Benchmark description Result 

B-01 Measure system ticks for one probing event Mean ticks: 12 (~0.18 µs) 
Min ticks: 6 (~0.09 µs) 
Max ticks: 39 (~0.59 µs) 

B-02 Measure system ticks for one lap of measurement 
calculations 
– 1 measurement with updated values that will run its 
calculations 

Mean ticks: 86 (~1.3 µs) 
Min ticks: 50(~0.76 µs) 
Max ticks: 205(~3.1 µs) 

B-03 Measure system ticks for one lap of measurement 
calculations 
– 10 measurement with updated values that will run its 
calculations 

Mean ticks: 714 (~10.83 µs) 
Min ticks: 591(~9.00 µs) 
Max ticks: 1012(~15.33 µs) 

B-04 Measure system ticks for one lap of measurement 
evaluations 
–1 evaluator,  0 alarm that triggers 

Mean ticks: 122 (~1.85 µs) 
Min ticks: 86(~1.30 µs) 
Max ticks: 200(~3.03 µs) 

B-05 Measure system ticks for one lap of measurement 
evaluations 
– 1 evaluator, 1 alarm that triggers 

Mean ticks: 217(~3.29 µs) 
Min ticks: 106(~1.60 µs) 
Max ticks: 330(~5.00 µs) 

B-06 Measure system ticks for one lap of measurement 
evaluations 
– 10 evaluators,  0 alarm that triggers 

Mean ticks: 392 (~5.94 µs) 
Min ticks: 289(~4.38 µs) 
Max ticks: 467(~7.08 µs) 

B-07 Measure system ticks for one lap of measurement 
evaluations 
– 10 evaluator, 10 alarm that triggers 

Mean ticks: 1065 (~16.16 µs) 
Min ticks: 392(~5.94 µs) 
Max ticks: 1153(~17.47 µs) 

B-08 Average CPU load increase with SysMon enabled Avg. CPU load SysMon disabled: 
14.0% 
Avg. CPU load SysMon enabled: 
14.64% 
See Figure 15 for CPU Load 
diagram 

B-09 Average CPU load during stress test with SysMon enabled Avg. CPU load SysMon disabled: 
45.53% 
Avg. CPU load SysMon  enabled: 
46.66% 
See Figure 16 for CPU Load 
diagram 

Table 4: Benchmark results 
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Figure 15: CPU load during idle 

 

 

Figure 16: CPU load during stress test 
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6.6 Test discussion 
Given the results from the tests, what conclusions of the tool can be drawn? First of all, regarding the 

evaluation, the tool runs stable during the scenarios tested. These scenarios should be enough to find 

critical errors like memory leaks and pointer errors. It also shows that the system runs stable during a 

fairly long execution time, around 72 hours. Even though these tests, one can still discuss if the testing is 

thorough enough to guarantee a stable run. The ABB system observed is designed to run for extremely 

long times without interrupts and tests with these long testing times, weeks or maybe even years, is not 

possible within the time frame of the thesis work. This shouldn’t be a problem though as the system 

runs in a cyclic matter and with our one day-test all threads has run for a lot of cycles. 

Another problem with the tests is that they don’t test the system with all different types of stimuli, but 

considering the design of the tool and the type of usage, different stimuli shouldn’t give different results 

for our tool as the tool execution pattern doesn’t change at all with different execution traces of the 

system. The monitored threads will still have the same periodicity; the only difference is that they will 

have more work to do during the execution. The tool only gathers information for probes, does 

measurements on them and evaluates the measurement, no matter what happens in the rest of the 

system.  

To have a possibility to use the tool on an effective and useful way, it must not only do what it is 

supposed to do but also in a fast way with a low CPU load on the system. Therefore the benchmarking 

tests are of high interest. The ticks and times measured for different usage of the system gives a good 

picture on the impact of the system. All times measured must be seen as approximation and not real 

facts, they should be used to give an idea in what range the monitoring code takes. This is because the 

system can sometimes interrupt the measured code and therefore give unrealistic values for the 

measurements. When calculating maximum and mean values, the results that were unrealistically large 

were not taken into account for the results presentation. These were values in the range of 4-10 times 

larger than any other values, and as the code executed were the same for all monitored threads, this 

should not be possible to get without interruption.  

The CPU load test is maybe the most important test as this gives a good picture of the average CPU load 

increase in a scenario that should be fairly standard when using SysMon, regarding the number of 

probes, measurements and evaluation. What the result of this shows is that the load increase of the 

system is in fractions of a percent, the difference between the lowest measured load without SysMon 

and the highest measured with SysMon is only 0.94 %. This CPU load increase should be small enough to 

make the enabling of SysMon possible in system tests without interrupting the normal execution 

pattern in the system in a way that affects the system interactions.  

The CPU load during stress test shows about the same numbers, the average CPU increase is around 

1.1%. Figure 16 shows CPU load during a stress test, and many parameters affect the current CPU load. 

One can see that the figure sometimes show less CPU load with SysMon enabled than disabled. This 

could be because the tests were run one at a time in series, and the curves may not be exactly synced in 

time. The CPU load is also measured as an average per second and reported back to the developer once 

every second. Some variance between where the cutoff for a second is can affect the reported CPU load, 
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since the test software stimulates the system with different signals throughout the test. Peaks and other 

abnormalities in the diagram which do not reflect in both curves are probably coincidences, and may 

differ because of the system itself and most likely have nothing to do with SysMon. The most important 

result from the test is the average CPU load over time, which shows an increase of acceptable level. 
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7 Conclusion 
It has been an extremely interesting and fun thesis with a lot of mixed experiences. The plan has 

changed several times, from integrating an existing tool, to developing a new. 

The target system is huge and it took a lot of time to understand the system, how it is built up and how 

the previous measuring tool, JobMon, was designed. It also took a bit of time to understand what kind 

of tool the company actually wanted and features were added until the very end of this thesis time. 

The outcome of this thesis is a generic framework that can be used for measuring any type of data 

within a system. Measurements can be evaluated against limits set by parameters in a database and 

take desired action depending on the result. 

The framework has been tested thoroughly during the development and two totally different types of 

measurements have been implemented; time and ticks. Even if they both measure time in their 

meaning, the data types are different and show that the framework can handle different types of data 

without problems. 

The possibility to construct measurements with our framework as a base is almost endless. No 

restrictions have been made for what kind of data it can measure and the developers at the company 

can continue develop this software to exactly what they need in the future.  

The tool can run forever in the system since all design is based on ring buffers and the monitoring does 

not infer the system in a noticeable way. Tests show that the tool does not take noticeable amount of 

resources and therefore should not affect other parts of the system. It provides a simple concept of 

saying that a limit e.g. a time limit for a task has not been exceeded since the tool started measuring.  

These types of measurements are extremely important in products that have a huge demand in uptime; 

time without error. The normal commercial debug-utilities presented earlier in this thesis show a short 

trace log. They do not help much if you have one error per month, or even one error per year. Our tool 

provides the features of finding and locating the exact moment of an error. It can measure, evaluate and 

upon failure save logs and/or trigger other utilities at a minimum amount of time after an error. 
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8 Future of SysMon 
As the SysMon implementation done in this thesis is just a first prototype, a number of improvements 

can be done to make the tool work better. This thesis had a limited amount of time, and even if it would 

be good to implement all functions suggested by ABB and the authors ideas it was necessary to cut the 

work somewhere.  

First of all, more testing and evaluation should be done on the tool to further guarantee its correctness. 

The system is designed to run during long sessions and the tool must produce correct results during 

long-time testing and remain stable during the whole execution time.   

The communication to the tool with inputs, outputs and parameters could be improved to make it 

possible to control more of the tool functionality from en external source. Right now the control 

functionality from external sources is more or less limited to just resetting calculations, do a complete 

disable of manager(s) and setting alarm values. More advanced pausing/resuming functionality and 

other control signals could be added in future improvements to make it possible to configure the tool 

more individually.  

Another improvement that was taken up during the thesis is to integrate another system 

recorder/system analyzer together with SysMon, that records information about the system like task 

switches, semaphores and so on. With the help of SysMon evaluations system properties could be set 

up and if these are broken the recorder could be stopped and the log examined to give further 

information regarding errors in the system. This improvement is more about configuring the external 

tool to fit the needs of the developer, more than configuring our tool. Our tool just needs the correct 

function syntax for triggering the external tool at the correct place since everything is prepared for this 

scenario. 

Regarding the CPU load of the tool, some improvement should be possible to do in that aspect as well. If 

the tool is considered too heavy for the system the code could be examined to find time-heavy parts 

and, if possible, make the code faster.  
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