
Security in Smart Object Networks

MOHIT SETHI

Degree project in

Security and Mobile Computing

Second cycle

Stockholm, Sweden 2012

Aalto University

School of Science

Degree Programme of Computer Science and Engineering

Mohit Sethi

Security in Smart Object Networks

Master’s Thesis
Espoo, June 30, 2012

Supervisors: Professor Tuomas Aura, Aalto University, Finland
Professor Markus Hidell, Royal Institute of Technology, Sweden

Instructors: Ari Keränen, NomadicLab, Ericsson Research, Finland
Jari Arkko, NomadicLab, Ericsson Research, Finland

Aalto University
School of Science
Degree Programme of Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Mohit Sethi

Title:
Security in Smart Object Networks

Date: June 30, 2012 Pages: 73

Professorship: Computer Science Code: T-110

Supervisors: Professor Tuomas Aura
Professor Markus Hidell

Instructors: Ari Keränen, M.Sc. (Tech.)
Jari Arkko, Licentiate (Tech.)

Internet of Things (IoT) refers to an inter-connected world where physical devices
are seamlessly integrated into the Internet and become active participants of
business, information and social processes. This involves the inter-connection of
a large number of heterogeneous networked entities and networks. Emergence
of technologies such as Zigbee, Bluetooth low energy and embedded sensors has
transformed simple physical devices into smart objects that can understand and
react to their environment. Such smart objects form the building blocks for the
Internet of Things. The communication infrastructure for these objects is based
on an extension of the Internet protocol stack.

Although the need for security is widely accepted, there is no clear consensus on
how IP-based Internet security protocols can be applied to resource-constrained
smart object networks. In this thesis, we develop a new secure and energy-
efficient communication model for the Constrained Application Protocol (CoAP),
a light-weight communication protocol designed for smart object networks. We
contribute to the standardization of the generic communication architecture by
adding security and delegation components for smart objects that sleep for large
amounts of time during their operational phase. This architecture ensures data
integrity and authenticity over a multi-hop network topology. It also provides a
mirroring mechanism that uses a proxy to serve data on behalf of sleeping smart
objects, thereby allowing them to act as always-online web servers. A working
prototype implementation of the architecture is also developed.

The security features in the architecture presented in this thesis are based on using
strong public-key cryptography. Contrary to popular belief, our performance
evaluation shows that asymmetric public-key cryptography can be implemented
on small 8-bit micro-controllers without modifying the underlying cryptographic
algorithms.

Keywords: IoT, smart objects, security, CoAP, asymmetric cryptography,
integrity, authenticity, mirroring mechanism

Language: English

ii

Aalto-universitetet
Högskolan för teknikvetenskaper
Examensprogram för datateknik

SAMMANDRAG AV
DIPLOMARBETET

Utfört av: Mohit Sethi

Arbetets namn:
Säkerhet i smartobjektnätverk

Datum: Den 30 Juni 2012 Sidantal: 73

Professur: Datateknik Kod: T-110

Övervakare: Professor Tuomas Aura
Professor Markus Hidell

Handledare: Diplomingenjör Ari Keränen
Teknologie Licentiat Jari Arkko

Internet of Things (IoT, “Föremålens Internet”) syftar p̊a en sammankopplad
värld där fysiska apparater är sömlöst integrerade till Internet och blir aktiva
deltagare i affärslivs-, informations- och sociala processer. Detta innefattar sam-
mankopplingen av ett stort antal heterogeniskt nätverkade enheter och nätverk.
Uppkomsten av teknologier som Zigbee, l̊ag energi Bluetooth och inbyggda senso-
rer har förvandlat enkla fysiska apparater till smarta objekt som kan först̊a och re-
agera till sin omgivning. Dessa smarta objekt utgör byggstenarna för Föremålens
Internet. Kommunikationsinfrastrukturen för dessa objekt bygger p̊a en utvidg-
ning av internetprotokollstacken.

Även om behovet av säkerhet är allmänt känt, finns det inget konsensus om hur
IP-baserade internetsäkerhetsprotokoll kan tillämpas i resursbegränsade smartob-
jektnätverk. I denna avhandling utvecklas en ny säker och energisn̊al kommuni-
kationsmodell för Constrained Application Protocol (CoAP, “Begränsat applika-
tionsprotokoll”), ett lätt kommunikationsprotokoll avsett för smartobjektnätverk.
Avhandlingen bidrar till standardiseringen av den generiska kommunikationsar-
kitekturen genom att tillsätta säkerhets- och delegationskomponenter för smarta
objekt som sover under en stor del av sin operativa fas. Denna arkitektur ga-
ranterar dataintegritet och autenticitet över en flerhopps nätverkstopologi. Ar-
kitekturen bidrar ocks̊a med en återspeglingsmekanism som använder sig av en
proxyserver för att erbjuda data för sovande smarta objekts del, vilket l̊ater dem
agera som alltid-online webbservrar. I avhandlingen utvecklas ocks̊a en fungeran-
de prototypimplementation av arkitekturen.

Säkerhetsegenskaperna i den arkitektur som presenteras i denna avhandling är
baserade p̊a användningen av stark publik-nyckel kryptering. I motsatts till den
allmänna förväntningen, visar prestationsbedömningen i denna avhandling att
asymmetrisk kryptering med publik nyckel kan tillämpas i 8-bitars mikrokon-
trollrar utan att ändra p̊a de underliggande kryptografiska algoritmerna.

Nyckelord: IoT, smarta objekt, säkerhet, CoAP, asymmetrisk kryptografi,
integritet, autenticitet, återspeglingsmekanism

Spr̊ak: Engelska

iii

Acknowledgements

I sincerely thank Professor Tuomas Aura at Aalto University for his constant
feedback and for providing the funding to attend the IETF 83 meeting, where
I presented the initial results from the thesis. I am also grateful to Professor
Markus Hidell for supervising the thesis at Royal Institute of Technology.

I owe my gratitute to my instructors Ari Keränen and Jari Arkko at Nomadic-
Lab, Erisson Research for their regular guidance and advice during the course
of my research work. I am indebted to my colleagues at NomadicLab for their
continuous support.

Finally, I would like to thank my family and friends for their moral support
and motivation.

Espoo, June 30, 2012

Mohit Sethi

iv

Abbreviations and Acronyms

CoAP Constrained Application Protocol
CoRE Constrained RESTful Environments
DHCP Dynamic Host Configuration Protocol
DLP Discrete Logarithmic Problem
DNS Domain Name System
DoS Denial of Service
DTLS Datagram Transport Layer Security
EAP Extensible Authentication Protocol
ECC Elliptic Curve Cryptography
ECDLP Elliptic Curve Discrete Logarithmic Problem
ECDSA Elliptic Curve Digital Signature Algorithm
EXI Efficient XML Interchange
GPS Global Positioning System
GSM Global System for Mobile Communications
HIP Host Identity Protocol
HIP-BEX HIP Base EXchange
HIP-DEX HIP Diet EXchange
HTTP Hyper-Text Transfer Protocol
IETF Internet Engineering Task Force
IKEv2 Internet Key Exchange Protocol version 2
IoT Internet of Things
IPSec Internet Protocol Security
JSON JavaScript Object Notation
JOSE JavaScript Object Signing and Encryption
JWK JSON Web Key
JWS JSON Web Signature
LWIG Light Weight Implementation Guidance
MAC Media Access Control
MP Mirror Proxy
M2M Machine to Machine

v

NAT Network Address Translation
nesC Network Embedded Systems C
NIST National Institute of Standards and Technology
NTP Network Time Protocol
PAA PANA Authentication Agent
PANA Protocol for Carrying Authentication for Network Access
PGP Pretty Good Privacy
RD Resource Directory
REST Representational State Transfer
RFID Radio-Frequency Identification
RSA Rivest Shamir Adelman Cryptographic Algorithm
RTT Round Trip Time
SA Security Association
SAAG Security Area Advisory Group
SECG Standards for Efficient Cryptography Group
SenML Sensor Markup Language
SEP Sleeping End-point
SIM Subscriber Identity Module
SRAM Static Random Access Memory
SSH Secure Shell
SSL Secure Sockets Layer
TLS Transport Layer Security
UDP User Datagram Protocol
URI Universal Resource Identifier
URN Universal Resource Name
UTF-8 Universal Character Set Transformation Format 8-bit
WLAN Wireless Local Area Network
XML Extensible Markup Language
6LoWPAN IPv6 based Low-Power Personal Area Networks

vi

Contents

Abbreviations and Acronyms v

1 Introduction 1
1.1 Problem Area . 2
1.2 Research Goals and Methodology 2
1.3 Structure of the thesis . 3

2 Background 4
2.1 Lifecycle of a Smart Object 4
2.2 CoAP . 9
2.3 Link Format . 13
2.4 SenML . 13
2.5 Resource Directory . 15
2.6 Public-key Cryptography . 16

2.6.1 RSA . 16
2.6.1.1 RSA Signatures 17

2.6.2 Elliptic Curve Cryptography 17
2.6.2.1 ECDSA . 20

2.7 Javascript Object Notation (JSON) Object Signing and En-
cryption . 21
2.7.1 JavaScript Object Notation (JSON) Web Key (JWK) . 22
2.7.2 JavaScript Object Notation (JSON) Web Signatures

(JWS) . 22

3 Public-key Cryptography in IoT 24
3.1 Previous Experiments with Asymmetric Cryptography 25
3.2 Available Cryptographic Libraries 26
3.3 Performance Analysis . 28

4 Architecture 36
4.1 Mirror Proxy . 36

vii

4.2 Secure Communication . 38
4.3 Retrieving Data Updates . 39
4.4 Freshness . 40
4.5 Provisioning . 42

5 Implementation 44
5.1 Caching Data Updates . 45
5.2 Retrieving Data Updates . 47
5.3 Summary . 49

6 Discussion 50
6.1 Architecture Overview . 50
6.2 Evaluation of Methodology . 51
6.3 Security Considerations . 52
6.4 Reflections . 54

7 Conclusion 55

A Relic Configurations 70

B IETF 83 and Workshop on Smart Object Security 72

viii

List of Tables

2.1 SenML Parameter entries . 14

3.1 RSA private-key modular exponentiation performance 29
3.2 ECC Curves and their Security Strengths 30
3.3 Energy consumption for TinyECC, Wiselib and Relic 35

A.1 Relic Library Configurations 71

ix

List of Figures

2.1 Lifecycle and Vulnerabilities for Smart Objects 5
2.2 CoAP Abstraction . 10
2.3 CoAP Message Format . 11
2.4 Acknowledgements in CoAP 12
2.5 Resource Directory . 15
2.6 Example of an Elliptic Curve 18
2.7 Point Addition . 19
2.8 Point Doubling . 19

3.1 TinyECC Performance . 31
3.2 Wiselib Performance . 32
3.3 Relic Performance . 33

4.1 Mirror Proxy . 37
4.2 System Architecture . 38

5.1 Arduino SEP . 44
5.2 Registering and Caching Updates 46
5.3 Retrieving Updates . 47
5.4 MP Updating Interested Clients 48

x

Chapter 1

Introduction

The term Internet of Things (IoT) was first coined by the MIT Auto-ID
center [1] which had envisioned a world where every physical object is tagged
with a radio-frequency identification (RFID) tag having a globally unique
identifier. This would not only allow tracking of objects in real-time but also
allow quering of data about them over the Internet. However, since then,
the meaning of the Internet of Things has expanded and now encompasses a
wide variety of technologies, objects and protocols.

With the emergence of technologies such as Bluetooth low energy [5],
Zigbee [6] and embedded sensor technology, the physical objects no longer
act as unresponsive nodes and have transformed into objects that understand
and react to the environment they reside in. Such objects, referred to as
smart objects, form the building blocks of the Internet of Things. As the
computational power of such smart objects increases and their physical size
decreases, they are becoming more productive at cheaper costs. Thus, these
smart objects are on the path to form a pervasive network around us. The
importance of IoT in our future daily lives is further asserted from the fact
that IoT is included by the US National Intelligence Council in the list of
six “Disruptive Civil Technologies” with potential impacts on US national
power [7]. It is not surprising then that the area is attracting the attention
of researchers all over to solve issues that might hinder the seamless adoption
of IoT in our everyday life.

Security is an important consideration in all modern communication sys-
tems. Since a wide variety of actors are involved in the manufacturing,
installation and actual use of smart objects, the security challenges associ-
ated with a network of such objects are more perplexing than those in the
current Internet. Moreover, these devices are extremely constrained in terms
of computational power and memory, which makes it even more arduous to
ensure strong security in these networks.

1

CHAPTER 1. INTRODUCTION 2

To better understand the acute nature of the security issues, consider
the use-case where the lights in a house are automatically controlled by a
sensor that detects the amount of natural light available. An attack in such
a scenario might not just be a prank by a neighbor controlling the lights of the
house but a large-scale coordinated attack that can potentially turn-off the
lights of an entire city. Although the needs for securing the IoT is generally
well understood and accepted, there is a lack of consensus on which Internet
security protocols will be used in the context of IoT and how.

1.1 Problem Area

As illustrated by the previous example, smart objects need to be protected
against a wide variety of attacks during their lifecycle. For example, during
the provisioning of a smart object, an adversary may be able eavesdrop and
obtain keying materials, security parameters, or initial settings if they are
exchanged in the clear over a wireless medium. It can be non-trivial to
perform device authentication since smart objects usually do not have a priori
knowledge of each other and cannot always differentiate malicious network
nodes from innocent neighbors via completely automated mechanisms.

Smart objects should be available at relatively low prices to support their
large-scale deployment. Thus, including additional hardware features to sup-
port secure provisioning or communication may not be possible. Addition-
ally, the smart objects are often deployed in small spaces and inaccessible
areas, which limits the possibility of additional hardware or regular access
for installing software updates and fixing security vulnerabilities.

Another factor that plays an important role while designing security so-
lutions for smart objects is the resource-constrained nature of these devices.
The devices not only have a small amount of memory and computational
power but also a minimalistic energy supply available to them. Therefore,
in many circumstances, the devices need to sleep for long periods in order
to save energy and can wake up only for short periods to report sensor data.
Such smart objects cannot afford to stay online for long durations to be
polled data or support computationally intensive security protocols.

1.2 Research Goals and Methodology

Keeping in mind the above-stated problems, we aim to design a solution
that not only ensures end-to-end data integrity and authenticity but also
allows resource-constrained low-power sensors to delegate to a gateway or

CHAPTER 1. INTRODUCTION 3

proxy the task of serving data to their clients. We believe that extremely
resource-constrained “sleepy” smart objects would form a large part of the
deployment space and need appropriate treatment in terms of security and
delegation mechanisms. The existing Internet security protocols need to be
applied in an adept manner on these small platforms. Thus, we define the
following as the goals of this thesis:

• Designing a security architecture for smart object networks, which in-
cludes an energy-efficient communication model. The architecture will
be based on the Constrained Application Protocol (CoAP) [132].

• Developing a prototype of the new architecture.

• Implementing and evaluating the performance of asymmetric public
key cryptography on 8-bit architectures.

• Contributing to the current standardization of CoAP and JavaScript
Object Notation (JSON) [39] signature representation and transfer.

The architecture presented in this thesis is entirely based on existing
standards for smart object networks. We discuss several secure provisioning
and message-freshness schemes that may used with this architecture. A per-
formance analysis of the cryptographic algorithms used in this architecture
is done on constrained devices. The purpose of our prototype implementa-
tion is to support the standardization of the new secure and energy-efficient
communication model.

1.3 Structure of the thesis

The rest of the thesis is organized as follows. Chapter 2 starts by describing
the lifecycle of a smart object along with the security threats that it faces
at each stage of the lifecycle. It then goes on to discuss the CoAP protocol,
resource discovery mechanisms in smart object networks and the fundamen-
tals of public-key cryptography. It concludes with a brief background of
standard signature and public-key representation formats. Chapter 3 begins
by detailing previous research that has been done to implement public-key
cryptography on constrained platforms. It then documents the libraries that
are publicly available for use and finally evaluates the performance of these
libraries on a 8-bit micro-controller. The entire proposed architecture is eluci-
dated in Chapter 4 and the implemented prototype along with its functioning
is explained in Chapter 5. Chapter 6 discusses some analytical perspectives
and evaluations on the developed architecture. Finally, Chapter 7 provides
a summary of the thesis and examines the potential future work items.

Chapter 2

Background

This chapter begins by describing the lifecycle of a smart object and the
vulnerabilities that it may encounter during each phase of the lifecycle, fol-
lowed by an introduction to the Constrained Application Protocol (CoAP).
Thereafter, the current standardization work for resource representation and
discovery in smart object networks is presented. Since our communication
architecture utilizes public-key cryptography, a summary of common algo-
rithms for asymmetric public-key cryptography is provided. Finally, the
chapter ends with a description of the existing standards for communicating
public keys and signed content.

2.1 Lifecycle of a Smart Object

The lifecycle of a smart object, depicted in Figure 2.1, begins when the object
is manufactured. Smart objects are tailored to perform different tasks such
as temperature measurement, pressure sensing, lighting automation and a
variety of other operations depending on their application area. Thus it is
unlikely that a single manufacturer would be responsible for producing all
the objects that may be used together in a particular use-case. It is therefore
required that objects from different manufacturers not only inter-operate,
but also securely bootstrap with each other.

The object, after its manufacture, is installed and commissioned within
a network by an installer. Depending the deployment scenario, the installer
may be the manufacturer, the end user or some other third party. During this
bootstrapping phase, the object identity and secret keys that would be used
during the operational phase are provided to the object. This bootstrapping
process may not be a discrete event and may extend over a period of time
involving a number of parties.

4

CHAPTER 2. BACKGROUND 5

Once the object has been bootstrapped into the network, it enters the
operational phase and is under the control of the owner of the object. De-
pending on the lifetime of an object, there might be a maintenance phase
where the software or firmware may be upgraded either on site or remotely.
It may be required to re-bootstrap the smart object after maintenance if the
required state information is lost once the maintenance is complete. The ob-
ject continues to loop through this phase of operation and maintenance until
it is finally decommissioned and removed from the network. This marks the
end of the lifecycle of the smart object. However, this does not necessarily
mean that the object has become defective or unusable. It is therefore possi-
ble that the removed device is re-commissioned in a different network under
a different owner starting the lifecycle again.

Figure 2.1: Lifecycle and Vulnerabilities for Smart Objects

During each phase of its lifecycle, a smart object is susceptible to a variety
of security vulnerabilities. These security vulnerabilities include [63]:

1. Cloning during manufacture: At the time of manufacture, an untrusted
manufacturer may clone the security keys of a smart object. Thereafter,
the malicious manufacturer may sell the cloned security keys to a third
party. Depending on its intentions, a manufacturer may also alter the
software or firmware to implement a back-door. However, in this thesis,
it is assumed that a manufacturer can be trusted and any security keys
would not be duplicated for misuse or sale to third parties.

2. Eavesdropping: An adversary may be able eavesdrop during the provi-
sioning of a smart object and obtain keying materials, security pa-
rameters, or initial settings if they are exchanged in clear using a
wireless medium. The adversary could then use this information to
recover the secret keys established, thereby compromising the authen-
ticity and confidentiality of the channel. Additionally, an eavesdropper

CHAPTER 2. BACKGROUND 6

may gain meaningful information from traffic analysis during the op-
erational phase of a smart object. It is also possible for a malicious
eavesdropper to cause a replay attack by recording and replaying pack-
ets if appropriate message freshness mechanisms are not used.

3. Man-in-the-middle attack: The provisioning stage is also susceptible
to man-in-the-middle attacks. For example, if the keying material be-
tween communicating entities is exchanged in the clear and the security
of the keying protocol depends on the assumption that no one is able
to eavesdrop and actively modify the messages between the two com-
municating entities during the execution of this protocol (leap-of-faith
based systems). It can be non-trivial to perform device authentication
since smart objects usually do not have a priori knowledge of each other
and cannot always differentiate malicious nodes from innocent neigh-
bors in the network via completely automated mechanisms. Such an
attack is also possible during the operational phase when a re-keying
is performed.

4. Firmware Replacement: When a smart object is in the maintenance
phase, the manufacturer may update the software or firmware to pro-
vide new functionality and features. An attacker may be able to exploit
such an upgrade by updating the objects with malicious code, thereby
influencing its operational behavior.

5. Extraction of security parameters: A smart object deployed in the
ambient environment is typically physically unprotected and could be
captured by an adversary. Such an adversary may then attempt to
extract security information such as cryptographic keys which may be
printed on the device or try and re-program the device to serve its
needs.

6. Routing attack: As shown by Park et al. [118], routing information in
smart object networks can be spoofed or replayed in order to create
routing loops, extend or shorten paths and hinder the usual routing
behavior of the network. Several other routing attacks that can occur
in such networks are:

• Sinkhole/Blackhole [116]: An attacker pretends to have a high-
quality route to a destination allowing it to lure nearly all the traf-
fic from a particular region in the network. The attacker can then
perform any desired processing on the packets passing through it.

CHAPTER 2. BACKGROUND 7

• Selective forwarding [85]: A compromised node may selectively
forward or drop packets.

• Wormhole attack [74]: An attacker significantly impacts routing
and network statistics by recording packets at one location and
tunneling them to another location.

• Sybil attack [44]: A malicious entity or node presents multiple
identities to other objects in the network, thereby subverting a
reputation system.

However, our communication model uses a simple IP [124] network
and no special emphasis is given to attacks caused by different routing
protocols.

7. Privacy threat: An adversary may track the location or usage behavior
of a smart object and subsequently sell this information to interested
parties for marketing, targeted advertising or spying.

8. Denial-of-Service: Smart objects typically have a small amount of mem-
ory and limited computational power available to them, thus, making
them vulnerable to resource exhaustion. A malicious entity can launch
a DoS attack using several techniques such as jamming the network
with flooding or by continuously sending valid service requests to smart
objects in order to deplete their resources.

9. Implementation vulnerabilities: If the cryptographic implementation
utilizes weak security parameters or incorrectly implements crypto-
graphic algorithms, a malicious entity may be able to extract infor-
mation from the messages or obtain a copy of the cryptographic keys,
thus, making the entire system vulnerable.

Our security architecture focuses on data-object integrity to counter eaves-
dropping and man-in-middle attacks. We design the architecture based on
public-key cryptography and carefully choose the security parameters to pre-
vent brute force attacks. We also discuss some important implementation de-
tails necessary for ensuring security in smart object networks. Additionally,
our architecture also protects constrained devices against denial-of-service
attacks.

There are several different defense mechanisms that have been suggested
for smart object networks. Kivinen [89] discusses an Internet Key Exchange
Protocol (IKEv2) [86] based approach for mutual authentication in M2M net-
works. IKEv2 is a component of Internet Protocol Security (IPSec) [87] that

CHAPTER 2. BACKGROUND 8

is used for performing mutual authentication and maintaining Security Asso-
ciations (SAs) between two nodes. Kivinen argues that IKEv2 includes many
optional features which are not required in a minimal implementation for use
in constrained device networks. He proposes the removal of features such as
Network Address Translation (NAT), support for multiple SAs, Cookies and
several others. However, he fails to discuss numerous policy aspects which
are necessary to implement an inter-operable IPsec in any environment.

Host Identity Protocol (HIP) [112] is an inter-networking architecture
that allows end-hosts to authenticate each other and protect their data flows
with public keys using the HIP Base EXchange (HIP-BEX) [112] procedure.
Urien et al. [139] used a modified version of HIP-BEX to implement privacy
preserving RFID tags for the Internet of Things (IoT). They propose the use
of private identification protocols such as Randomized Hash Lookup [145],
to preserve the identity of a tag communicating with a reader.

HIP Diet Exchange (HIP-DEX) [111], another variant of HIP-BEX, is
designed for use in smart object networks. It utilizes very few cryptographic
primitives along with static elliptic curve Diffie-Hellman key pairs. HIP-
DEX forgoes perfect forward secrecy and use of digital signatures to obtain
a minimalistic implementation suitable for constrained devices. Kuptsov et
al. [92] used HIP-DEX to develop a standards compliant security protocol
for medical sensor networks which provides authentication, data protection
and an access control mechanism.

Jara et al. [78] present a security architecture for medical sensor net-
works. This architecture is based on IPv6 based Low-Power Personal Area
Networks (6LoWPAN) [114] along with a new protocol for mobility support.
They use Subscriber Identity Module (SIM) [31] cards for authentication and
encryption of data in their architecture.

TinySec [84] develops a link-layer security architecture for wireless sen-
sor networks. It argues that unlike the one-to-one traffic pattern observed on
the Internet, wireless sensor networks predominantly use a many-to-one com-
munication model where multiple sensors communicate their readings over
a multi-hop network topology to a central base-station. In order to reduce
the amount of traffic and conserve the energy consumed, these networks use
in-network processing techniques such as aggregation and duplicate elimina-
tion [98, 99], and therefore end-to-end security mechanisms for authenticity,
integrity and confidentiality cannot be used. The authors therefore use a
link-layer security architecture which can detect unauthorized packets at the
point of injection. The architecture supports authenticity and integrity with
optional confidentiality of link-layer messages. It uses block chaining based
encryption techniques and discusses several keying mechanisms.

Extensible Authentication Protocol (EAP) [9] is an authentication frame-

CHAPTER 2. BACKGROUND 9

work that supports multiple authentication methods. EAP runs directly over
the link layer and supports duplicate detection with retransmission but does
not allow fragmentation of packets. Protocol for Carrying Authentication for
Network Access (PANA) [59] is a network-layer protocol with which a node
can authenticate itself to gain access to the network. PANA does not define a
new authentication protocol and rather uses EAP over User Datagram Proto-
col (UDP) [123] for authentication. Colin [38] proposes the use of PANA for
secure bootstrapping of resource constrained devices. He demonstrates how
a 6LowPAN Border Router (PANA Authentication Agent (PAA)) can au-
thenticate the identity of a joining constrained device (PANA Client). Once
the constrained device has been successfully authenticated, the border router
can also provide network and security parameters to the joining device.

Bergmann et al. [20] implement a Datagram Transport Layer Security
(DTLS) [126] based communication model for smart object networks. This
work uses tinyDTLS [19], an open-source minimal DTLS library and re-
places the existing cipher suite with the AES-CCM suite [16] to provide
payload encryption with message authentication. The authors also imple-
ment a secure bootstrapping mechanism without pre-provisioned credentials
using resurrecting-duckling imprinting scheme [136]. This bootstrapping pro-
tocol involves three distinct phases: discover (the duckling node searches for
network nodes that can act as mother node), imprint (the mother node im-
prints a shared secret establishing a secure channel once a positive response
is received for the imprinting request) and configure (additional configura-
tion information such as network prefix and default gateway are configured).
In this model for bootstrapping, a small initial vulnerability window is ac-
ceptable and can be mitigated using techniques such as a Faraday Cage to
protect the environment of the mother and duck nodes, though this may be
inconvenient for the user.

From the variety of defense mechanisms discussed thus far, it is clear
that the problem of security in smart object networks still remains open
and there is no consensus on which of the Internet security protocols (or
a combination of them) would eventually form a predominant part of the
deployment space. Another important observation that can be derived is the
fact that while designing secure systems, considering all the vulnerabilities
during the entire lifecycle of the smart object is critical.

2.2 CoAP

Constrained Application Protocol (CoAP) [132] is an application-layer com-
munication protocol designed for resource constrained devices in M2M and

CHAPTER 2. BACKGROUND 10

smart object networks. It is based on the Representational State Transfer
(REST) [56] architecture and is currently being developed by the Constrained
RESTful Environments (CoRE) working group at the Internet Engineering
Task Force (IETF).

CoAP provides a generic request/response interaction model similar to
the Hyper-Text Transfer Protocol (HTTP) [55] while giving due considera-
tion to the specific requirements of constrained device networks, such as sup-
port for multicasting, asynchronous messaging and low packet parsing over-
head. The messaging model is similar to the client/server model of HTTP.
However, in typical M2M deployments, entities behave as both clients and
servers and are therefore referred to as end points. Unlike HTTP, messages in
CoAP are exchanged asynchronously over the unreliable datagram-oriented
transport such as UDP [123] with optional reliability.

Application

Request/Response

Messaging

UDP

CoAP

Figure 2.2: CoAP Abstraction

CoAP can be visualized with a two layer approach as depicted in Fig-
ure 2.2. The lower messaging layer is responsible for dealing with the asyn-
chronous transport protocol interactions while the upper layer handles the
request/response messaging using Method and Response codes.

CoAP uses a fixed-length binary header which may be followed by com-
pact binary options in the Type-Length-Value (TLV) format and a payload
(if any). The message format is shown in Figure 2.3 and the various header
fields are defined as follows:

1. Version (Ver): 2-bit unsigned integer that specifies the CoAP version
and must be set to 1 by applications. The other possible values are
reserved for future use.

2. Type (T): 2-bit unsigned integer indicating the type of the message.
The different types are: Confirmable, Non-Confirmable, Acknowledge-
ment and Reset.

3. Option Count (OC): 4-bit unsigned integer stating the number of op-
tions following the header (can be from 0-14). When there are no

CHAPTER 2. BACKGROUND 11

Options (if any) ...

Payload (if any) ...

Ver T OC Code Message ID

32 bits

Figure 2.3: CoAP Message Format

options and the payload (if any) directly follows the header, it is set to
0. It is also possible to have an unlimited number of options by setting
the option count to 15 and using the end-of-options marker to indicate
the end of options.

4. Code: 8-bit unsigned integer which distinguishes a request message (1-
31) from a response message (64-191). In case of a request message, the
code field indicates the Request Method (such as GET/PUT/POST);
and in case of a response message it indicates the Response Code (such
as 2.01 Created/4.00 Bad Request).

5. Message ID: 16-bit unsigned integer used for detecting message dupli-
cates or for matching Acknowledgement/Reset and Confirmable/Non-
Confirmable messages.

A CoAP request consists of the Request Method for the resource being
requested, an identifier, a payload and an Internet media type (if any) with
optional meta-data about the request. The basic Request Methods supported
in CoAP are GET, POST, PUT and DELETE. These methods can easily be
mapped to HTTP and have the same safe (retrieval only) and idempotent
(multiple invocations have same result) properties as HTTP.

A CoAP response is identified by the Response Code in the 8-bit Code
field of the CoAP header. It is similar to the Status Code field of the HTTP
header and indicates the result of an attempt to execute the received request.
The upper 3-bits of the Response Code identify the class (2 - Success, 4 -
Client Error and 5 - Server Error) while the remaining bits identify the sub-
category within the class.

The four different message types supported in CoAP are as follows:

1. Confirmable: Messages that require an acknowledgement. These mes-
sages can be a request or a response and cannot be empty. In case no
packets are lost, they elicit only one return acknowledgement message.

CHAPTER 2. BACKGROUND 12

2. Non-Confirmable: Messages that do not require an acknowledgement.
These messages can be a request or a response and cannot be empty.
Such messages are used when an application requires regular repeated
transmissions and eventual delivery (or loss) is acceptable.

3. Acknowledgement: An acknowledgement message acknowledges the re-
ceipt of a confirmable message identified by its Message ID. It does not
indicate the success or failure encountered in processing the encapsu-
lated request. Depending on whether the request can be processed
immediately or not, the response may be piggybacked in the acknowl-
edgement or sent later separately as depicted in Figure 2.4.

(a) Response Piggbacked ACK (b) Empty ACK

Figure 2.4: Acknowledgements in CoAP

4. Reset: This message is sent in response to a confirmable or non-
confirmable message indicating that it cannot be processed because of
some missing context which might be caused when the node is rebooted
and some state required to process the message is lost.

The CoAP base specification [132] provides a description of how DTLS
can be used for securing CoAP. It proposes three different modes for us-
ing DTLS, namely: Presharedkey mode (where nodes have pre-provisioned
keys for initiating a DTLS session with another node), RawPublicKey mode
(where nodes have an asymmetric-key pair(s) but no certificates to verify the
ownership) and Certificate mode (where public keys are signed in certificates
by a certification authority). The specification also provides an alternative
approach for securing CoAP with IPSec. It argues that many constrained

CHAPTER 2. BACKGROUND 13

devices already have support for link layer encryption in hardware which can
be used to make IPSec a viable option in such networks.

2.3 Link Format

M2M and smart object networks are envisioned to work without human
interaction. In such a scenario, automated discovery of resources hosted on
a constrained device is important. The CoRE working group at the IETF
is developing the CoRE link format [131] for supporting resource discovery
and web linking in constrained device networks. It is similar to the concept
of Web Discovery and Web linking [117] defined for HTTP.

The resource discovery mechanism provides a set of Universal Resource
Identifiers (URIs) or links [21] that represent the resources hosted on the
constrained server along with any additional attributes and link relations
between the resources. The link format is carried as payload data and is as-
signed its own internet media type “application/link-format”. A well known
URI “/.well-known/core” is defined as the default entry point for requesting
a list of resources hosted by the constrained server. The following example
shows a typical request and response for resource discovery [131]:

REQ: GET /.well-known/core

RES: 2.0 "Content"

</sensors/temp>;rt="TemperatureC";if="sensor"

</sensors/light>;rt="LightLux";if="sensor"

In this example, the response indicates two resources hosted on the con-
strained device: a temperature sensor and a light intensity sensor. The if
(interface descriptor) here indicates the generic REST methods that can be
requested for this resource. For example, a sensor would typically support
GET requests for obtaining the most recent measured value. The rt (resource
type) attribute associates a semantic type with the resource. The resource
type could be an application specific semantic type such as IndoorTempera-
tureC (indicating that the resource is an indoor temperature sensor reporting
measurements in degree Celsius), a Universal Resource Name (URN) [103]
or a Universal Resource Identifier (URI) [102].

2.4 SenML

While CoAP defines a standard communication protocol for M2M networks,
a format for representing sensor measurements and parameters over CoAP

CHAPTER 2. BACKGROUND 14

is required. Sensor Markup Language (SenML) [79] defines media types for
representing simple sensor measurements and parameters. It has a minimal-
istic design so that constrained devices with limited computational capabili-
ties can easily encode their measurements and at the same time servers can
efficiently collect a large number of measurements. SenML is used to com-
municate dynamic data originating from the constrained device and static
meta-data is communicated out-of-band using the CoRE Link Format. This
reduces the message size and improves the decoding efficiency. For example,
the CoRE Link format can be used to indicate that the resource is available
in the SenML format.

SenML Representations can be defined with JavaScript Object Notation
(JSON) [39], eXtensible Markup Language (XML) [30] or Efficient XML In-
terchange (EXI) [128], all of which share a data model similar to SenML. Our
architecture presented in Chapter 4 uses the JSON syntax and an example
of a SenML measurement in JSON syntax [79] is as follows:

{"e":[{ "n": "urn:dev:ow:10e2073a01080063", "v":43.5,

"u":"degF" }]}

The array elements in the JSON representation are explained in Table 2.1.

SenML JSON Data Type
Measurements e Array: Sensor Measurements
Name n String: Name of the sensor
Units u String: Unit of measurement
Value v Floating point: Value of the entry
String Value sv String: String value of the entry
Boolean
Value

sv String: Boolean value of the entry

Value Sum s Floating Point: Sum of values over
Time

Time t Number: Time when the value was
recorded

Update Time ut Number: Maximum time before which
sensor will update this value

Table 2.1: SenML Parameter entries

Thus the above example represents a temperature measurement from
a sensor named urn:dev:ow:10e2073a01080063 with a temperature of 43.5
degrees Fahrenheit.

CHAPTER 2. BACKGROUND 15

2.5 Resource Directory

In many M2M networks, smart objects are often dispersed and have inter-
mittent reachability either because of network outages or because they sleep
during their operational phase to save energy. In such scenarios, direct dis-
covery of resources hosted on the constrained server might not be possible.
To overcome this barrier, a Resource Directory (RD) [133] can be used. As
shown in Figure 2.5, the Resource Directory is an entity that hosts the de-

Figure 2.5: Resource Directory

scriptions of resources which are located on other nodes. These resource
descriptions are specified as CoRE Link format URIs.

End points (EPs) or constrained servers proactively discover, register and
maintain their resources through the interfaces provided by the RD. It is also
possible for the RD to proactively discover resources from the EPs and add
or validate these entries. A client can use the lookup interface of the RD
to discover Web Links describing resources belonging to different EPs. An
example of an EP named node1 registering two resources with the RD using
its registration interface is as follows [133]:

Req: POST coap://rd.example.com/rd?ep=node1

Etag: 0x3f

Payload:

</sensors/temp>;ct=41;rt="TemperatureC";if="sensor",

</sensors/light>;ct=41;rt="LightLux";if="sensor"

Res: 2.01 Created

Location: /rd/4521

In this example, the ETag option in the registration request is added to allow
the RD to poll the EP and check if the current resource registrations still

CHAPTER 2. BACKGROUND 16

exist. The response message from the RD confirms the creation of an entry
/rd/4521. This entry is specified by the EP when refreshing or deleting its
registrations with the RD.

2.6 Public-key Cryptography

Public-key cryptography relies on the use of two keys: a private key which
is kept secret, and a corresponding public key which is disclosed to every-
one. In public-key cryptography, a plaintext message is encrypted using the
public key, and the encrypted ciphertext is decrypted using the correspond-
ing private key. This establishes a secure communication channel between
users having access to the public key and the owner of the corresponding
private key. Public-key cryptography can also be used in signature schemes
to sign messages. A digital signature of a message is created using the private
key, and the authenticity of this signature can be verified by anyone having
access to the corresponding public key. Since this cryptographic approach
uses asymmetric keys, it is also referred to as asymmetric-key cryptography.
Asymmetric-key cryptographic algorithms have been used in a wide range
protocols such as Transport Layer Security (TLS) [41], Secure Shell (SSH)
[149], Pretty Good Privacy (PGP) [48] and several others.

2.6.1 RSA

RSA is a asymmetric public-key cryptographic algorithm named after its au-
thors Ron Rivest, Adi Shamir and Leonard Adleman who first described the
algorithm in 1978. The security of RSA is based on the fact that factorizing
a large prime number is complex. In RSA, the product of two large prime
numbers, along with an auxiliary value, forms the public key and is disclosed
to the public. The prime factors of this product are however kept a secret.
This public key can now be used by anyone to encrypt a message, but only
the owner of the corresponding private key with the knowledge of the prime
factors can feasibly decode the message. The three steps of key generation,
encryption and decryption in RSA are performed as follows:

1. Key Generation:

• Two large prime numbers p and q are selected such that p 6= q.

• Next, n = pq is computed. For acceptable security, the integer n
should be at least 1024 bits long.

• Euler’s totient function [93] φ is calculated as φ(n) = (p−1)(q−1).

CHAPTER 2. BACKGROUND 17

• An integer e is chosen such that 1 < e < φ and the greatest com-
mon divisor (GCD) of e and φ(n) is 1. This implies that e and φ(n)
are co-primes. The pair n and e form the public key. Although
smaller values of e are more efficient, they can be insecure [27].
The commonly used value of e is 65537 (216 + 1).

• Finally, d is calculated as d = e−1 mod(φ(n)) and the pair d and
e forms the private key.

2. Encryption: Anyone who has a copy of the public key n, e can now
send an encrypted message to the owner of the public-private key pair.
If a message M is to be encrypted, it is first converted to an integer m
such that 0 < m < n using a mutually agreed padding scheme. Next,
the ciphertext is determined as c = me(mod n).

3. Decryption: Once the owner of the public-private key pair receives
the encrypted ciphertext, it determines the integer m according to the
equation m = cd(mod n). From this integer, the original message M is
determined using the reversible padding scheme agreed upon.

2.6.1.1 RSA Signatures

So far we have discussed how RSA can be used for encryption and decryption
of messages. However, RSA can also be used for signing messages which can
be verified by anyone who owns a copy of the public key of the signer. RSA
digital signatures are typically not applied to the whole message but to a hash
of the original message. In this signing scheme, the hash h(m) of the message
to be signed is raised to the power d modulo n and is sent as the signature
along with the original message. The receiver then raises this signature to
the power e modulo n and compares it to the actual hash of the message
received. If the two values are consistent, then the authenticity and integrity
of the message is confirmed to the receiver. Since this scheme requires the
signer to send the original message along with the signature, it is also referred
to as Signature with Appendix. While using the RSA signature scheme, it
is important to pad the plaintext message with structured randomized data
before signing, as defined in the PKCS #1 [82] standard. Failure to do so
can results in security vulnerabilities shown in the attacks documented by
Boneh [27].

2.6.2 Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) was introduced in 1985 separately and in-
dependently by Victor Miller [106] and Neal Koblitz [90]. It can be seen as an

CHAPTER 2. BACKGROUND 18

elliptic curve variant of the older Discrete Logarithmic Problem (DLP) [104].
We describe the Elliptic Curve Discrete Logarithmic Problem (ECDLP) be-
fore discussing the signature scheme based on ECC.

An elliptic curve is represented by the equation:

y2 = x3 + ax+ b

where a, b, x and y are real numbers. Several different elliptic curves can be
obtained for different values of a and b. As an example, a = −5 and b = 0.7
results in an elliptic curve represented by the equation y2 = x3 − 5x + 0.7
which is also illustrated in Figure 2.6. If the curve equation y2 = x3 + ax+ b

x

y

y
2
 = x

3
 −5 x + 0.7

−4 −3 −2 −1 0 1 2 3 4

−8

−6

−4

−2

0

2

4

6

8

Figure 2.6: Example of an Elliptic Curve

satisfies the condition 4a3 + 27b2 6= 0 then it does not contain any repeated
factors and it can be used to form a group. The points that lie on such a
curve along with a special point O, referred to as the point at infinity, form
an elliptic curve group defined over real numbers.

There are two operations defined on this group:

1. Point Addition: To add two distinct points P and Q on the curve (such
that Q 6= -P) a line passing through the two points is drawn. This line
intersects the curve at exactly one more point -R and the reflection of
this point on the x-axis gives R, which denotes the sum of P and Q.
This is elucidated in Figure 2.7. Adding a point P to its negative -P
results in the point at infinity O, and hence -P is the additive identity
of P.

CHAPTER 2. BACKGROUND 19

x

y

y
2
 = x

3
 −7 x

P

−R

R

Q

P(−2.35,−1.86)

Q(−0.1,0.836)

−R(3.89,5.62)

R(3.89,−5.62)

P+Q=R=(3.89,−5.62)

−4 −3 −2 −1 0 1 2 3 4

−8

−6

−4

−2

0

2

4

6

8

Figure 2.7: Point Addition

2. Point Doubling: To add a point P to itself, a tangent line is drawn at
P. This tangent intersects the curve at exactly one other point -R. The
reflection of this point on the x-axis gives R, which denotes the result
of the doubling operation. This is also show in Figure 2.8. If however,
P is on the x-axis, the tangent will always be vertical and therefore
2P = O, the point at infinity.

x

y

y
2
 = x

3
 −3 x+5

P

−R

R

P(2,2.65)

−R(−1.11,−2.64)

R(−1.11,2.64)

2P=R=(−1.11,2.64)

−4 −3 −2 −1 0 1 2 3 4

−8

−6

−4

−2

0

2

4

6

8

Figure 2.8: Point Doubling

Performing these operations of point addition and point doubling over real

CHAPTER 2. BACKGROUND 20

numbers is slow and inaccurate due to rounding errors. Applications, how-
ever, require fast and precise mathematics and therefore, elliptic curve groups
are defined over finite fields such as prime fields (Fp) and binary fields (F2m)).

We have seen that a point P in an elliptic curve group can be doubled to
obtain 2P and then can be added to itself to obtain 3P . Determination of a
point nP in this manner, with repeated doubling and addition operations, is
known as scalar multiplication of P . The Elliptic Curve Discrete Logarithmic
Problem (ECDLP) is defined as: given two points P and Q in an elliptic
curve group, find a number k, such that Pk = Q; where k is referred to as
the discrete logarithm of Q to the base P . Applications based on ECDLP
are designed such that k is very large to make it infeasible for guessing k by
repeated addition and doubling operations. The basis for security of elliptic
curve crypto-systems is the computational complexity of solving ECDLP.
Since this variant is significantly harder than the original DLP, the strength
per key bit is greater in ECC systems than conventional DLP systems. Thus,
smaller parameters are used in ECC for equivalent levels of security. This
is extremely useful for constrained devices and smart object networks where
processing power, bandwidth and power consumption are constrained.

2.6.2.1 ECDSA

Elliptic Curve Digital Signature Algorithm (ECDSA) is an elliptic curve ana-
log of the Digital Signature Algorithm (DSA) [57], first proposed by Scott
Vanstone [142]. The operations of key generation, signature generation and
signature verification over prime field (Fp) is as follows [10]:

1. Key generation:

• An Elliptic Curve E over Fp is selected such that the number of
points in the field is divisible by a large prime number n.

• A point P∈Fp of the order of n is selected.

• A random integer d in the range [1, n− 1] is selected and it forms
the private key.

• Next, Q = dP is computed.

• The set (E,P, n,Q) forms the public key.

2. Signature Generation

• A random integer k in the range [1, n− 1] is chosen.

• (x1, y1) = kP is determined and then used to find r where r =
x1 mod n. If however, r = 0, then the previous step is repeated
by choosing a new value for k.

CHAPTER 2. BACKGROUND 21

• The hash of the message to be signed is computed as h(m) and is
used to determine s, where s = k−1(h(m) + dr) mod n. If s = 0,
then the process is started again from step 1 and a new value for
k is chosen. This because if s is zero then s−1 mod n, which is
needed during signature verification, ceases to exist.

• The pair of integers (r, s) forms the signature and is sent along
with the original message.

3. Signature Verification

• The receiver verifies that r and s are integers in the range [1, n−1].

• The hash of the message received h(m) is computed along with
w, where w = s−1 mod n.

• Next, u1 and u2 are calculated as, u1 = (h(m).w mod n) and
u2 = (r.w mod n).

• Finally, u1P + u2Q = (x0, y0) is computed to determine v, where
v = x0 mod n.

• The signature is accepted as valid only if v = r.

ECDSA is also a Signature with Appendix scheme similar to RSA and
requires the original message to be sent along with the signature. The key
generation operation in both schemes require entropy to generate random
numbers. However, unlike RSA, ECDSA not only requires randomness dur-
ing key generation but also during each signature operation. Thus, it is essen-
tial to provide appropriate entropy for each signature operation in ECDSA.

2.7 Javascript Object Notation (JSON) Ob-

ject Signing and Encryption

Javascript Object Notation (JSON) is a lightweight text representation for-
mat for structured data [39]. It is often used for transmitting serialized
structured data over the network. The JSON Object Signing and Encryption
(JOSE) working group at IETF is developing standards for interoperability
of security features between protocols. The working group is developing a
scheme for encoding public keys as JSON objects. This scheme is known
as JSON Web Key (JWK). It is also developing a JSON representational
format for depicting signed content called as JSON Web Signatures (JWS).
We describe the JWS and JWK formats with examples in the following sub-
sections.

CHAPTER 2. BACKGROUND 22

2.7.1 JavaScript Object Notation (JSON) Web Key
(JWK)

JSON Web Key (JWK) [80] is a data structure used for representing public
keys as JSON objects. The JWK representation of a public key consists of
JSON-object members that describe the characteristics of the key such as
the public-key algorithm used. While some members are common to all the
public keys independent of the cryptographic algorithm used, there are other
members which are specific to the public-key cryptographic algorithm used.
The common members are as follows:

• alg: Identifies the cryptographic algorithm family used with the key.

• use: An optional member which indicates whether the key is used for
signing or for encryption.

• kid: A key identifier responsible for matching keys, and can be used to
identify a key during a key rollover. The kid member is also optional
and can be excluded from JWK.

All integers in this representation are base64url encoded. The following is an
example of a JWK object representing an ECC key [80]:

{"jwk":

[

{"alg":"EC",

"crv":"P-256",

"x":"MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4",

"y":"4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM",

"use":"enc",

"kid":"1"},

]

}

The members crv, x and y are specific to ECC keys and indicate the elliptic
curve used to create the key along with the x and y coordinates of the elliptic
curve point representing the public key.

2.7.2 JavaScript Object Notation (JSON) Web Signa-
tures (JWS)

The JSON Web Signature [81] is a representational format that uses JSON
data structures for depicting content that has been secured with Hash based

CHAPTER 2. BACKGROUND 23

Message Authentication codes (HMACs) or digital signature schemes such as
ECDSA and RSA. This format is independent of the content and therefore
can be used with any arbitrary data.

A JWS representation consists of three parts: the JWS header, the JWS
Payload, and the JWS Signature. A JWS header describes the HMAC or
signature algorithm used. The payload consists of the content that needs
to be secured and the signature is obtained by applying the cryptographic
signature or the HMAC algorithm over the header and payload. The header,
payload and the signature are encoded in base64url and concatenated with
period characters. The following is an example of a JWS header [81] in the
Universal Character Set Transformation Format 8-bit (UTF-8) [148] format:

{"typ":"JWT",

"alg":"HS256"}

Here the alg parameter identifies the cryptographic algorithm used for se-
curing the content of the payload while the typ parameter indicates the type
of content being secured. An example JSON payload which can be secured
with JWS is as follows [81]:

{"iss":"joe",

"exp":1300819380,

"http://example.com/is_root":true}

The HMAC or the cryptographic signature is applied over the header and the
payload concatenated with a period character in UTF-8 representation. The
result is encoded in base64url format and along with the base64url encoding
of the header and payload forms the JWS representation as follows [81]:

eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9

.

eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkz

ODAsDQogImh0dHA6Ly9leGFtcGxlLmNvbS9pc19y

b290Ijp0cnVlfQ

.

dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

Chapter 3

Public-key Cryptography in IoT

There are several proposals that attempt to secure smart object networks
with non-public symmetric-key based authentication and key distribution
mechanisms [84, 96, 119–121]. The underlying assumption in all of them
is that public-key cryptography is far too resource and energy intensive for
actual implementation and deployment on resource constrained devices. In
symmetric-key based approaches, if an individual key is used for every node
in a network of n nodes, then each node is required to store (n − 1) keys.
Although this provides strong resilience against individual node compromise,
it also leads to scalability issues which make this scheme undesirable for
networks with a large number of nodes. In addition, perfect forward secrecy
cannot be guaranteed once the key of a node is compromised. Conversely,
if a single symmetric key is shared among all the nodes in the network, the
memory requirement for each individual node is greatly reduced, but it also
results in lower network resilience to key compromise.

In response to these problems, many probabilistic key distribution schemes
[34, 46, 51] for symmetric cryptographic algorithms have been proposed.
These schemes either need pre-distribution of keys, which requires a more
complex configuration during the provisioning, or larger amount of network
traffic, which results in higher energy consumption. In general, symmetric-
key schemes do not offer the flexibility of not having pre-shared keys which
is provided with public-key asymmetric cryptography. Moreover, there have
been several studies that contradict the aforementioned assumption and we
start the chapter by discussing some of the previous work that has been
done in implementing public-key cryptography on small devices in Section
3.1. We then describe the publicly available code sources that can be used to
implement RSA or ECC based asymmetric cryptography on 8-bit platforms
in Section 3.2. Finally, in Section 3.3, we document the performance of these
publicly available libraries.

24

CHAPTER 3. PUBLIC-KEY CRYPTOGRAPHY IN IOT 25

3.1 Previous Experiments with Asymmetric

Cryptography

Gura et al. [69] carry out a performance comparison of RSA and ECC based
public-key cryptographic schemes on 8-bit micro-controllers. For maximiz-
ing the efficiency of the RSA algorithm, they include several well known
mathematical optimizations such as the Chinese remainder theorem for fast
verification [42], Montgomery multiplication [109] and an optimized squaring
method that takes advantage of partial products [69]. The ECC implemen-
tation incorporates techniques for efficient elliptic curve operations which
include a projective co-ordinate system for inversion [37], the Non-Adjacent
Forms (NAF) method for recording a scalar quantity during point multi-
plication to reduce the number of point additions [110], and recommended
curve specific optimizations for modular reduction [2, 4]. The modular mul-
tiplication algorithm for RSA and ECC uses a hybrid approach compris-
ing of row-wise and column-wise schoolbook multiplication to increase the
performance efficiency while keeping the SRAM consumption small. The au-
thors were able to achieve 1024-bit RSA private key operation with exponent
e = 216 + 1 in 0.43 seconds and 160-bit elliptic curve point multiplication in
0.81 seconds on a 8-bit processor with a clock speed of 8 MHz.

Blaß and Zitterbart [24] implement elliptic curve public-key cryptogra-
phy on an 8-bit ATmega128 micro-controller. Their work argues that 113-
bit elliptic curve fields provide sufficient security for the current hardware
(in 2005). By using optimizations such as pre-computation for faster point
multiplication and loop unrolling they were able to achieve ECDSA based sig-
nature generation in 6.88 seconds. Besides the relatively slow performance,
it is demonstrated that the 112-bit ECDLP can be solved in 3.5 months
using 200 PlayStation 3 game consoles [29], making 113-bit elliptic curves
vulnerable to attacks as well. In general, it is suggested that modern day
applications use 128-bit curves or higher to ensure sufficient security.

The work done by Uhsadel et al. [138] accomplishes a standards-compliant
160-bit curve based signature generation operation in 2881 cycles (0.39 sec-
onds) on an 8-bit 8 MHz micro-controller. This performs faster than the
work by Gura et al. [69] discussed earlier. The entire prime field arithmetic
is implemented in hardware assembly along with an improved modular multi-
plication scheme. The authors claim that the work provides the fastest known
implementation of 160-bit elliptic curve point multiplication (in 2007).

Hassan and Qamar [72] in their thesis evaluate the feasibility of asymmet-

CHAPTER 3. PUBLIC-KEY CRYPTOGRAPHY IN IOT 26

ric public-key cryptography on the Contiki Operating System1. The thesis
provides a comprehensive performance comparison of two libraries, namely
Libtomcrypt [40] and Relic [13] on the MSP430F1612 micro-controller [15]
and on the COOJA simulator [50]. Both libraries implement a fairly large
number of cryptographic algorithms and the authors choose to evaluate ECC
based signature generation and verification performance in terms of execution
time, Static Random Access Memory (SRAM) consumption, flash memory
usage and energy consumption. Although neither MSP430F1612 nor COOJA
are 8-bit platforms, unlike Libtomcrypt, Relic does provide support for 8-bit
platforms.

Sizzle, a standards-based end-to-end security architecture for the em-
bedded internet [68], not only performs public-key cryptography on 8-bit
platforms but implements an entire web stack with a fully functional Secure
Sockets Layer (SSL) [60] suite based on ECC. The implementation can per-
form an entire SSL handshake on 8-bit 8 MHz micro-controller with 4 kB of
SRAM in 1 second and can send 1 kB of application data over SSL in 0.4 sec-
onds. This allows the sensors to be monitored and controlled remotely over
the web without compromising on end-to-end security. The authors claim
that the implementation provides the world’s smallest secure web server (in
2005).

There have been several other works that have measured the energy effi-
ciency of asymmetric cryptography on small platforms [33, 144, 150]. With
all the attempts presented thus far, there is a strong argument against the
assumption that public-key cryptography is too resource intensive for exe-
cution on small platforms without changing the underlying cryptographic
algorithms. However, most of the research work that was presented did not
have its code available online for download and use. Therefore, we set out
to find code sources that are available online and can be easily ported for
use on 8-bit platforms within a short duration of time. We were able to find
four such libraries and evaluate their performance in a period of two working
weeks.

3.2 Available Cryptographic Libraries

We provide a brief description of the libraries which are suitable for such
platforms and are publicly available:

• AvrCryptolib [140] : This library provides a variety of symmetric-key
cryptographic algorithms such as DES, Triple DES, AES and RSA as

1The Contiki OS, http://www.contiki-os.org/

CHAPTER 3. PUBLIC-KEY CRYPTOGRAPHY IN IOT 27

an asymmetric public-key algorithm. We stripped down the library
to use only the required RSA components for our performance analy-
sis. AvrCryptolib only performs modular exponentiation and does not
implement reversible padding schemes as suggested in standards such
as PKCS #1 encryption algorithm version 2.1 [82]. It implements the
modular exponentiation functions in AVR 8-bit assembly language with
C-interfaces to reduce the execution times. The library also provides
an option to store the keys in flash memory and allows direct access
to them, thus saving the amount of SRAM consumed. This feature
takes advantage of the fact that Arduino boards allow the programmer
to directly address the flash memory to access constant data during
execution.

• Relic-Toolkit [13]: This library is entirely written in the C language
and provides a highly customizable implementation of a large vari-
ety of cryptographic algorithms. This not only includes RSA and
ECC, but also pairing based asymmetric cryptography, Boneh-Lynn-
Schacham short signatures [28], Boneh-Boyen short signatures [26] and
many other algorithms. The library provides an option to build and
include only the desired components for the specified platform. While
building the library, it is possible to select a variety mathematical opti-
mizations that can be combined to obtain optimal performance. Relic
implements prime and binary field arithmetic along with preliminary
support for ternary field arithmetic. It includes a multi-precision inte-
ger math module, which can be customized to use different bit-length
words, thus making it easy to compile for a variety of platforms ranging
from 8-bit AVRs to 64-bit x86 machines. There is very little documen-
tation available but it appears to be a very promising library with a
large number of algorithms and optimizations implemented.

• TinyECC [95]: TinyECC was designed for using elliptic curve based
public-key cryptography on constrained devices. It is written in the
Network Embedded Systems C (nesC) programming language [64] and
is designed for use on TinyOS [94]. However, the library can be ported
to standard C99 either with tool-chains or by manually rewriting parts
of the code. This allows the library to be used on platforms that do
not have TinyOS running on them. The library includes a wide variety
of mathematical optimizations such as sliding window [70] and Barrett
reduction for verification [105]. It also has one of the smallest SRAM
consumption among the set of elliptic curve libraries surveyed so far.
However, while Relic implements curves over prime and binary fields,

CHAPTER 3. PUBLIC-KEY CRYPTOGRAPHY IN IOT 28

TinyECC only implements curves over prime fields.

• Wiselib [17]: Wiselib is a generic library written for sensor networks
containing a wide variety of algorithms. While the stable version of the
library contains algorithms for routing only, the test version includes al-
gorithms for cryptography, localization, topology management among
others. The library was designed for smooth integration with operat-
ing systems such as iSense and Contiki. However, since the library is
written entirely in C++ with a template based model similar to the
Computational Geometry Algorithms Library (CGAL) [52], it can be
used on any platform directly without using any of the operating system
interfaces provided. It implements elliptic curves over prime fields only.
In order to make the code platform independent, no assembly level op-
timizations were incorporated. Since efficiency was not an important
goal for the authors of the library while designing, many well known
theoretical performance enhancements were also not incorporated.

3.3 Performance Analysis

For implementing and experimenting with public-key cryptography in re-
source constrained environments, we chose the Arduino Uno board2 as the
test platform. Arduino Uno has a 8-bit ATmega328 micro-controller with a
clock frequency of 16 MHz, 2 kB of SRAM, and 32 kB of flash memory. Al-
though 32-bit platforms such as ARM Cortex-M0+3 are available at roughly
the same cost and consume approximately the same amount of energy, we
intentionally choose an 8-bit platform to demonstrate that our security ar-
chitecture can be implemented even on extremely constrained platforms.

In order to measure the SRAM consumption for our experiments, we use
the Avrora simulator [137]. Since all the libraries and our code use only a
stack based allocation scheme, the stack trace produced by the simulator
gives an accurate value for the SRAM consumption. The execution times
were calculated on Arduino boards using the on-board ATmega internal os-
cillator which provides an accuracy of four microseconds.

We have summarized the results of raw RSA private-key modular ex-
ponentiation operation using the AvrCryptolib library on Arduino Uno in
Table 3.1. In order to perform a comprehensive benchmark of this library,
we perform a number of experiments with different key lengths. We generated

2Arduino Uno, http://arduino.cc/en/Main/arduinoBoardUno
3ARM Cortex-M0+: http://www.arm.com/about/newsroom/worlds-most-energy-

efficient-processor-from-arm-targets-low-cost-mcu-sensor-and-control-markets.php

CHAPTER 3. PUBLIC-KEY CRYPTOGRAPHY IN IOT 29

Key
Length
(bits)

Execution
Time (ms):
Keys in
SRAM

SRAM con-
sumption
(bytes):
Keys in
SRAM

Execution
Time (ms):
Keys in
flash

SRAM con-
sumption
(bytes):
Keys in
flash mem-
ory

64 64 40 69 32
128 434 80 460 64
256 3516 80 3818 64
512 25,076 320 27,348 256
1,024 199,688 640 218,367 512
2,048 1,587,567 1,280 1,740,258 1,024

Table 3.1: RSA private-key modular exponentiation performance

public-private key pairs of lengths ranging from 64 to 2048 bits separately
before using them with the library. The keys were generated with the value
of the public exponent e as three and were hard-coded into the program. We
performed two different sets of experiments for each key size. In the first
case, the keys were copied into the SRAM from the flash memory before be-
ing used by any of the functions. In the second case, the keys were addressed
and used directly from the flash. The execution times were calculated from
the mean of five experiments rounded off to the nearest millisecond. The
SRAM consumption indicated in Table 3.1 only reflects the requirements for
RSA private-key modular exponentiation operation and does not depict the
SRAM consumption of the entire program.

It can be seen in Table 3.1 that the performance of raw RSA private-
key modular exponentiation was faster for smaller keys and we were able
to achieve 64-bit RSA private-key modular exponentiation in 64 ms. With
longer keys, the execution time increased exponentially and, for key lengths
of 1024 bits, the resulting execution time was about three minutes. We also
observed that when the keys were used directly from the flash memory, the
SRAM consumption was reduced as the keys were no longer copied to the
SRAM, but the execution times were significantly longer as reading from flash
memory is considerably slower than reading from the SRAM. Our results for
64-bit and 512-bit raw RSA private-key modular exponentiation execution
times concur with the reported values for a similar 16 Mhz platform [140].
The code size (flash memory consumption) for the experiments approximated
to about 2.6 kilo bytes (kB). We did not focus on reducing the amount of
flash consumed as it is available at a nominal cost and is generally not the

CHAPTER 3. PUBLIC-KEY CRYPTOGRAPHY IN IOT 30

limiting factor for such devices.
It is also worth noting that this implementation performs basic modular

exponentiation and multiplication operations without any of the well-known
mathematical optimizations such as Montgomery multiplication [109], opti-
mized multiplication and squaring [69, 110] used by Gura et al. [69] which en-
hance the performance significantly by consuming marginally larger amounts
of SRAM. If larger SRAM consumption is acceptable, we believe that 1024
and 2048-bit RSA operations can be performed with greater efficiency as has
been previously documented [69, 144]. Nonetheless, if in some scenario a
delay of some tens of minutes is acceptable, 2048-bit RSA is possible with
1 kB of SRAM. Finally, it is important to point out that experiments for
raw RSA public-key modular exponentiation were not performed as our se-
curity architecture presented in the next chapter does not require it to be
implemented on resource constrained devices.

Next, we evaluate the performance of the remaining three libraries that
perform elliptic curve encryption, decryption and signature operations. El-
liptic curve cryptography works on elliptic curve groups defined over elliptic
curves. There are two standardization bodies, namely Standards for Effi-
cient Cryptography Group (SECG) and National Institute of Standards and
Technology (NIST), that recommend curve parameters which are proven to
be secure and efficient. The curves used in our experiments are listed in
Table 3.2.

Curve Strength RSA
SECG Curves

secp128r1, secp128r2 64 704
secp160k1, secp160r1, secp160r2 80 1024
secp192k1, secp192r1 96 1536

NIST Curves
nist k-163, nist b-163 80 1024
nist k-233, nist b-233 112 2048

Table 3.2: ECC Curves and their Security Strengths

In Table 3.2, the second column denotes the approximate number of bits
of security the curve parameter offers, and the third column denotes the
approximate size (in bits) of a RSA modulus with comparable strength [2, 4].
There are two categories of curves defined over binary and prime fields. The
first category comprises of provably random curves which are generated with
a particular seed and a hash function. For binary fields, the second category
comprises of a set of anomalous curves where a and b in the curve equation

CHAPTER 3. PUBLIC-KEY CRYPTOGRAPHY IN IOT 31

y2 + xy = x3 + ax2 + b are chosen such that a, b ∈ {0, 1} . These curves
exhibit especially efficient performance and are referred to as Koblitz curves
[91]. On the other hand, for prime fields, the term Koblitz is generalized
to refer to curves that exhibit efficient endomorphism [61] and comprise the
second category for prime fields.

We only evaluate the performance of ECDSA signature generation opera-
tion for the three libraries as our security architecture, presented in the next
chapter, does not require signature verification on constrained devices. The
default rand() function provided in Arduino for generating random numbers
is used for generating the public-private key pair and each time a message
is signed. We choose to seed the random number generator with a common
seed of 300 for all the experiments so that they can be repeated to reproduce
the results.

E
xe

cu
tio

n
T

im
e(

m
s)

0
20

00
40

00
60

00
80

00
10

00
0

1858

2741
2002

3086

2228

3795

2250

3841

2467

4118
3425

6091

3578

6217

12
8r

1
12

8r
1

12
8r

2
12

8r
2

16
0k

1

16
0k

1
16

0r
1

16
0r

1
16

0r
2

16
0r

2

19
2k

1

19
2k

1
19

2r
1

19
2r

1

Curves

TinyECC
TinyECC(No assembly)

● ● ● ●

● ● ● ● ● ●

● ● ● ●

776 776 776 776

892 892 892 892 892 892

1008 1008 1008 1008

0
20

0
40

0
60

0
80

0
10

00
12

00
R

A
M

 U
se

d(
by

te
s)

● RAM Used

Figure 3.1: TinyECC Performance

Evaluation of TinyECC signature generation with ECDSA is illustrated
in Figure 3.1. We had re-written the nesC code into native C99 for ex-
perimenting it on Arduino Uno. We evaluate a variety of standard SECG
prime-field curves that are supported by TinyECC and provide different lev-
els of security. The library implements several optimizations which include
a projective co-ordinate system [37], Barrett Reduction [105], Shamir Trick
for signature verification [70], sliding window for efficient scalar multiplica-
tion [70], hybrid multiplication and squaring [69], and curve specific opti-
mizations [2, 4]. However in our implementation we only use the projective

CHAPTER 3. PUBLIC-KEY CRYPTOGRAPHY IN IOT 32

coordinate system, sliding window optimization for scalar multiplication and
SECG recommended curve specific optimizations. While Shamir trick was
not implemented as it only increases the efficiency of signature verification,
hybrid multiplication and squaring were omitted because they were written
in assembly language that was incompatible with the Atmega328p micro-
controller. Liu and Ning [95] demonstrate that Barrett reduction is only effi-
cient when used with hybrid multiplication. Since we could not port hybrid
multiplication, we also chose to exclude Barrett reduction from our code.

Figure 3.1 shows two different test cases: one with all the assembly opti-
mizations enabled, and the second with only standard C99 code. It is visible
in the figure that assembly optimizations can increase the efficiency of signa-
ture generation and their effectiveness increases for larger prime fields. We
also observe that curves on larger prime fields perform slower than those de-
fined over smaller prime fields. While 128-bit curves such as 128r1 perform
signature generation in 1858 milliseconds, 192-bit curves such as 192r1 re-
quires 3578 milliseonds. Finally, Koblitz curves (shown as 160k1 and 192k1)
prove to be more efficient than their pseudo-random counterparts (shown as
160r1,160r2 and 192r1) because they exhibit efficient endomorphism [61].

E
xe

cu
tio

n
T

im
e(

m
s)

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

 5615 5615

10957 10972 10971

18814 18825

12
8r

1
12

8r
2

16
0k

1
16

0r
1

16
0r

2

19
2k

1
19

2r
1

Curves

● ●

● ● ●

● ●

732 732

842 842 842

952 952
0

20
0

40
0

60
0

80
0

10
00

12
00

R
A

M
 U

se
d(

by
te

s)

● RAM Used

Figure 3.2: Wiselib Performance

Similar to TinyECC, Wiselib also implements curves over prime-fields
only. The performance of Wiselib is depicted in Figure 3.2. It can be ob-
served from the figure that the efficiency of Wiselib is significantly inferior to

CHAPTER 3. PUBLIC-KEY CRYPTOGRAPHY IN IOT 33

TinyECC for all the curves. While TinyECC can execute 160-bit secp160k1
curve in 2228 milliseconds, wiselib takes 10957 milliseconds for the same
curve. The authors of the library did not implement any of the well-known
mathematical optimizations which leads to inferior performance. However,
since Wiselib is entirely coded in C++, unlike TinyECC, it can easily be
used on a wide variety of sensor platforms.

While experimenting with the Relic library, we were unable to use the
Arduino Uno board because of SRAM constraints. We therefore chose to
analyze its performance on Arduino Mega4 which has a similar 8-bit micro-
controller (ATmega2560) as the Uno but has more SRAM (8 kB) and flash
(128 kB). Although Relic implements curves over binary as well as prime
fields, previous work [11, 83] demonstrates that binary fields are more suited
for Atmel platforms used on Arduino boards. Therefore, we only experiment
with curves over binary fields during our evaluation. In order to thoroughly
benchmark the library, we tested two different configurations of the library
for curves over binary fields: one which resulted in the least execution time
(Relic-fast) and another which consumed the least amount of memory (Relic-
lowmem). The two configurations use different mathematical optimizations
which are detailed in Appendix A.

E
xe

cu
tio

n
T

im
e(

m
s)

0
20

00
40

00
60

00
80

00

 261
 592

 932

2950
2243

3213

1736

6450

4471

6100

k1
63

−a
sm

k1
63

−a
sm

k1
63

k1
63

b1
63

b1
63

k2
33

k2
33

b2
33

b2
33

Curves

Relic−fast
Relic−lowmem

●

●

●

●

●

●

●

●

●

●

2804

2087

2750

2215
2444

2071

3675

2935

3261

2737

0
40

0
12

00
20

00
28

00
36

00
R

A
M

 U
se

d(
by

te
s)

● RAM Used

Figure 3.3: Relic Performance

We examine the performance of four standard NIST curves over binary

4Arduino Mega, http://arduino.cc/en/Main/ArduinoBoardMega

CHAPTER 3. PUBLIC-KEY CRYPTOGRAPHY IN IOT 34

fields (NIST-K163, NIST-B163, NIST-K233 and NIST-B233 shown as k163,
b163, k233 and b233 respectively). While experimenting with Koblitz curves
over binary fields, we tested a special case where the binary arithmetic was
implemented in assembly (shown as k163-asm). Figure 3.3 shows the execu-
tion times and SRAM consumption for all the curves. It can be observed that
relic can provide 80-bit security with the curve labeled as k163-asm in just
261 milliseconds. In Figure 3.3, we observe that Koblitz curves perform much
faster than their pseudo-random counterparts. However, for the curves k233
and b233, we encountered an anomalous behavior where the pseudo-random
curve performed faster than the Koblitz equivalent. On further investiga-
tion, we discovered that this anomalous behavior was encountered because
of an extremely slow implementation of the tau-NAF [134] method for scalar
multiplication which affects Koblitz curves only.

Another important inference that can be derived from these graphs is the
fact that the difference in efficiency of Koblitz curves defined over binary fields
and their pseudo-random counterparts is greater than the difference between
Koblitz and pseudo-random curves over prime fields. Our results for Relic
do not concur with those of Aranha et al. [12] since the math backend used
by them is not part of version 0.3.1 available online.

We did not focus any of the experiments towards the flash memory con-
sumption of the libraries as flash memory is available at a low cost and is
generally not the limiting factor on constrained devices. However, as a rough
estimate Wiselib consumed about 17 kB of ROM and TinyECC about 20 kB
of ROM while relic took 27-40 kB of ROM depending on the configuration.
The results for TinyECC differ from those reported in [95] as we no longer
use the original nesC code and re-wrote the entire library in standard C99.

The energy consumption for the three libraries is depicted in Table 3.3.
The energy consumption was calculated using the formula:

W = U ∗ I ∗ t

where U is the operating voltage (5V), I is the current drawn (0.01A for
Atmega328p and 0.02A for Atmega2560 [147]) and t is the execution time.
This approach was also taken by the authors of TinyECC [95] to measure
the energy consumption on different platforms.

From these results it is evident that software-only public-key cryptogra-
phy is not only possible, but quite efficient on resource constrained devices
with publicly available libraries. There is scope for further performance en-
hancement by using additional optimizations. With Relic, we were also able
to achieve 112-bit (2048-bit RSA) security over binary fields in 1,736 sec-
onds and 3,675 bytes of SRAM. As the computational capacity of these

CHAPTER 3. PUBLIC-KEY CRYPTOGRAPHY IN IOT 35

constrained-devices increases and their cost reduces, achieving public-key
cryptography on such devices would become simpler. In the next chapter we
present our security architecture which is based on using public-key crypto-
graphic signature schemes on constrained devices.

Library Curve Energy Consumption
(mJ)

TinyECC

128r1 92.90
128r2 100.10
160k1 111.40
160r1 112.50
160r2 123.35
192k1 171.25
192r1 178.90

TinyECC (no
assembly)

128r1 137.05
128r2 154.30
160k1 189.75
160r1 192.05
160r2 205.90
192k1 304.55
192r1 310.85

Wiselib

128r1 280.75
128r2 280.75
160k1 547.85
160r1 548.60
160r2 548.55
192k1 940.70
192r1 941.25

Relic-fast

k163-asm 26.10
k163 93.20
b163 224.30
k233 173.60
b233 447.10

Relic-lowmem

k163-asm 59.20
k163 295.00
b163 321.30
k233 645.00
b233 610.00

Table 3.3: Energy consumption for TinyECC, Wiselib and Relic

Chapter 4

Architecture

In this chapter we present our secure and energy-efficient communication ar-
chitecture based on public-key cryptography along with provisioning schemes
and message freshness mechanisms. While designing the architecture, one of
the primary goals at the outset was to ensure that smart objects can sleep for
long durations during the operational phase to save energy. However we did
not want this requirement to be a hindrance for a client that wishes to obtain
the most recent data update sent from the smart object. Thus our intention
was to satisfy two contradicting goals where smart objects can serve updates
while they sleep and appear to be always online.

4.1 Mirror Proxy

In order to achieve these contradicting goals, we use Mirror Proxies [143]
to delegate the task of serving data from smart objects to proxies. The
concept of Mirror Proxy (MP) is illustrated in Figure 4.1. A Mirror Proxy
is an entity responsible for caching and serving data to clients on behalf of
sleeping constrained smart object servers also referred to as Sleeping End-
points (SEPs). A Mirror Proxy is assumed to have sufficient computational
power and energy supply to remain online and serve data collected from
several SEPs. The smart objects no longer operate as servers that serve to
client requests for data and rather act as clients of the MP themselves. A
Sleeping End Point registers its resources with the MP. When the MP receives
a registration request, it adds the resources of the SEP into its own resource
tree as sub-resources. It also updates its /.well-known/core resource to reflect
the additional resources. Once the registration is successfully acknowledged
by the MP, the SEPs can sleep and wake-up at pre-determined intervals to
update the cached content that is continuously served by the MP.

36

CHAPTER 4. ARCHITECTURE 37

Figure 4.1: Mirror Proxy

A Mirror Proxy is similar to a caching reverse proxy except for the fact
that it caches content from an origin client rather than an origin server.
While SEPs can update the cached content with either Confirmable or Non-
Confirmable CoAP messages, it may be desirable to use Non-Confirmable
messages in certain scenarios to allow the SEPs to sleep without waiting for
acknowledgements. Such a communication model might be acceptable when,
for example, the transmission medium is relatively reliable or when the MP
is interested in the mean or average value from a number of reporting SEPs
and an occasional loss of some data updates is tolerable.

A Sleeping End Point can determine the location of the MP using several
different mechanisms. As an example, the IP address or the URL of the
MP may be hard-coded into SEPs at the time of manufacture. However
this approach is not only inflexible but using URLs would also require the
SEPs to support the Domain Name System (DNS) [108]. Alternatively, the
MP location may be configured with Dynamic Host Configuration Protocol
(DHCP) [45] or by placing the MP on the border router in a 6LowPAN [114]
network. Finally, if a SEP knows the location of the Resource Directory
(RD), it can use the RD to contact the MP.

The location of the MP in the network topology can vary depending on
the deployment scenario. While for some deployments a single central MP
could serve all the SEPs, it can be advantageous to have several distributed
MPs in certain scenarios. A number of distributed MPs in the immediate
proximity of the SEPs not only ensures small Round Trip Times (RTT), but
also allows the SEPs to avoid global connectivity. Nonetheless, relying on
local connectivity between the SEPs and the MP can also lead to network
fragility because of device mobility and radio signal propagation variations.

In our architecture, as depicted in Figure 4.2, we deploy a Mirror Proxy

CHAPTER 4. ARCHITECTURE 38

to allow sleeping nodes to serve data through caches maintained in the MP.
Although we use a single centralized MP in our architecture, multiple dis-
tributed MPs can be added with no additional complexity. The entire com-
munication network between the SEPs and the MP relies on using CoAP
over UDP. A sleeping end point can also indicate the duration for which the
MP should cache the updates, and the MP can choose to uphold or ignore
this request.

Figure 4.2: System Architecture

4.2 Secure Communication

In order ensure security in this communication model, our architecture re-
quires each constrained device to have a public-private key pair. The archi-
tecture is independent of the asymmetric cryptographic algorithm chosen for
generating the key pair. However, our results in Chapter 3 and results from
previous work [69] suggest that ECC based cryptography is not only more
efficient than RSA but also results in smaller signatures, thereby reducing
the network traffic. The key pair can be pre-generated and configured into
the constrained device at the time of manufacture or can be created on the
fly during the operational phase.

As seen in Figure 4.2, when a smart object sends a registration request
to the MP, it also adds its public key in the registration message. A Mir-

CHAPTER 4. ARCHITECTURE 39

ror Proxy is responsible for storing the public key of each of the SEP that
it serves. The SEPs wake-up pre-determined intervals and use the corre-
sponding private key to sign all subsequent data updates sent to the MP.
The public keys and the signed content are sent in the standard JSON-based
JWK [80] and JWS [81] formats respectively.

This system essentially provides a SSH-like leap of faith system where, af-
ter an uncompromised initial connection, the data integrity and authenticity
is ensured. Such a system does not require any pre-configuration and allows
the integrity and authenticity of updates to be verified by any node in the
network at any point of time even when the SEP is asleep. However, leap-of-
faith is vulnerable to active man-in-the-middle attacks and, to counter these,
we suggest some secure provisioning methods in Section 4.5. In some deploy-
ments, the network between the SEPs and the MP can be assumed to be
secure and sending messages in plaintext along with signature is acceptable.
However if required, data confidentiality can be assured if the MP also owns
a public-private key pair and performs a Diffie-Hellman exchange with the
SEPs at the time of registration to establish a shared secret. This shared
secret would then be used to encrypt and decrypt the signed updates.

A Mirror Proxy also needs to verify the updates sent from SEPs to pre-
vent itself from caching malicious data. Alternatively, it may also choose to
cache the data only for a limited maximum amount of time or store only
a maximum number of signed data updates to prevent a compromised SEP
from overwhelming it.

4.3 Retrieving Data Updates

When a smart object registers with the MP, the MP adds the resources to its
own resource tree and updates its ./well-know/core to reflect the same. The
MP also registers the new resources as separately in the Resource Directory
(RD). In order to obtain data updates for a resource, a client contacts the
RD to obtain the location of the SEP hosting this resource. On receiving
a request from a client, the RD responds with the location of the resource
requested. Although the location returned by the RD points to the MP, the
client is unaware of this fact and believes it to be the location of the SEP
itself. Thus, the MP serves data from the SEPs to the clients in a transparent
manner. A client can save the location returned and bypass requesting the
RD when it wants to obtain the next data update for the resource.

The client first obtains the public key of a Sleeping End Point and then
retrieves the signed data updates. It can now correctly verify the authenticity
and the integrity of data objects signed by the SEP. This communication

CHAPTER 4. ARCHITECTURE 40

between a client and the MP, as shown in Figure 4.2, occurs over HTTP [55]
or CoAP [132] and is protected with SSL [60] or DTLS [126] respectively.
The MP has sufficient computational power and energy resources to securely
serve this data. Therefore, this architecture securely communicates data-
object integrity and authenticity end to end from the SEP to the client over
a multi-hop network topology. Using SSL [60] or DTLS [126] ensures that
signed updates are protected from a malicious eavesdroppers and man-in-
the-middle modifications. Since the SEPs sleep for long durations and are
never directly contacted with client requests for data, they are also inherently
protected against some denial-of-service attacks.

4.4 Freshness

A replay attack occurs when a malicious entity records a packet (which may
be encrypted) and replays it at a later time. In our architecture, if im-
plemented as described thus far, messages along with their signatures sent
from the SEPs to the MP can be recorded and replayed by an eavesdropper.
The MP has no mechanism to distinguish previously received packets from
those that are retransmitted by the sender or replayed by an eavesdropper.
Therefore, it is essential for the SEPs to ensure that data updates include a
freshness indicator. However, ensuring freshness on constrained devices can
be non-trivial because of several reasons which include:

• Communication is mostly unidirectional to save energy.

• Internal clocks might not be accurate and may be reset several times
during the operational phase of the SEP.

• Network time synchronization protocols such as Network Time Protocol
(NTP) [107] are resource intensive and therefore may be undesirable in
many smart object networks.

There are several different methods that can be used in our architecture for
replay protection. The selection of the appropriate choice depends on the
actual deployment scenario.

Including sequence numbers in signed messages can provide an effective
method of replay protection. The MP should verify the sequence number of
each incoming message and accept it only if it is greater than the highest
previously seen sequence number. The MP drops any packet with a sequence
number that has already been received or if the received sequence number
is greater than the highest previously seen sequence number by an amount
larger than the preset threshold.

CHAPTER 4. ARCHITECTURE 41

Sequence numbers can wrap-around at their maximum value and, there-
fore, it is essential to ensure that sequence numbers are sufficiently long.
However, including long sequence numbers in packets can increase the net-
work traffic originating from the SEP and can thus decrease its energy ef-
ficiency. To overcome the problem of long sequence numbers, we can use a
scheme similar to that of Huang [75], where the sender and receiver maintain
and sign long sequence numbers of equal bit-lengths but they transmit only
the least significant bits.

It is important for the SEP to write the sequence number into the per-
manent flash memory after each increment and before it is included in the
message to be transmitted. This ensures that the SEP can obtain the last
sequence number it had intended to send in case of a reset or a power fail-
ure. However, the SEP and the MP can still end up in a discordant state
where the sequence number received by the MP exceeds the expected se-
quence number by an amount greater than the preset threshold. This may
happen because of a prolonged network outage or if the MP experiences a
power failure for some reason. Therefore it is essential for SEPs that nor-
mally send Non-Confirmable data updates to send some Confirmable updates
and re-synchronize with the MP if a reset message is received. The SEPs re-
synchronize by sending a new registration message with the current sequence
number.

Although sequence numbers protect the system from replay attacks, a MP
has no mechanism to determine the time at which updates were created by the
SEP. Moreover, if sequence numbers are the only freshness indicator used, a
malicious eavesdropper can induce inordinate delays to the communication of
signed updates by buffering messages. It may be important in certain smart
object networks for SEPs to send data updates which include timestamps
to allow the MP to determine the time when the update was created. For
example, when the MP is collecting temperature data, it may be necessary to
know when exactly the temperature measurement was made by the SEP. A
simple solution to this problem is for the MP to assume that the data object
was created when it receives the update. In a relatively reliable network
with low RTT, it can be acceptable to make such an assumption. However
most networks are susceptible to packet loss and hostile attacks making this
assumption unsustainable.

Depending on the hardware used by the SEPs, they may have access
to accurate hardware clocks which can be used to include timestamps in
the signed updates. These timestamps are included in addition to sequence
numbers. The clock time in the SEPs can be set by the manufacturer or
the current time can be communicated by the MP during the registration
phase. However, these approaches require the SEP to either rely on the

CHAPTER 4. ARCHITECTURE 42

long-term accuracy of the clock set by the manufacturer or to trust the MP
thereby increasing the potential vulnerability of the system. The SEPs could
also obtain the current time from NTP, but this may consume additional
energy and give rise to security issues discussed by Mills [107]. The SEPs
could also have access to a GSM [113] network or the Global Positioning
System (GPS) [135], and they can be used obtain the current time. Finally,
if the SEPs need to co-ordinate their sleep cycles, or if the MP computes an
average or mean of updates collected from multiple SEPs, it is important for
the network nodes to synchronize the time among them. This can be done
by using existing synchronization schemes [49, 62, 141].

4.5 Provisioning

We have discussed previously that the leap-of-faith registration mechanism
proposed in our architecture is vulnerable to active man-in-the-middle at-
tacks and it is also possible to overwhelm the MP by sending registration
messages from several malicious SEPs. Therefore it is important to authen-
ticate the SEPs in the network to a Mirror Proxy. However, securely pairing
smart objects to other network entities is difficult because of several reasons
which include:

• Many smart objects lack even the most basic user interface.

• Provisioning should not be resource intensive as otherwise a substantial
amount of battery may be drained even before the smart object enters
the operational phase.

• Cost of providing additional auxiliary interfaces such as a RFID tags
only for provisioning may not be feasible economically.

There are several techniques for secure pairing and device authentication
that have been developed over the years. Gollakota et al. [66] have devel-
oped a secure in-band pairing mechanism for Wireless Local Area Network
(WLAN) [3] devices and it remains to be seen if a similar approach can be
developed for other smart object networking technologies such as Zigbee [6]
and Bluetooth low energy [5]. Work by Cheneau et al. [35] uses Cryptograph-
ically Generated Addresses (CGAs) [14] for secure bootstrapping of devices
in constrained networks. Proximity-based pairing schemes [77, 125] can also
be used in smart object networks if the radio signal propagation is guaranteed
to be confined within a particular area. There are several out-of-band pair-
ing mechanisms [65, 67, 127] that can also be used in smart object networks.

CHAPTER 4. ARCHITECTURE 43

While these pairing mechanisms are easy to implement, they generally tend
to be slow and may sometimes require additional auxiliary user interfaces.

In order to securely authenticate the SEP to the MP, we describe two low-
cost and efficient out-of-band provisioning mechanisms that do not require
any auxiliary user-interfaces on constrained devices.

The first provisioning mechanism is aimed at domestic deployments and
assumes that the MP has a suitable display for indicating a list of securely
authenticated SEPs. As an example, the MP could be a mobile phone or
home computer allowing the owner to view all the paired SEPs. It also
requires the hash of the public key owned by the SEP to be included in a
human-readable format. Farrell et al. [53] describe several methods that can
be used to represent hashes in a human-readable format.

In this provisioning scheme, when a user turns on a previously unpaired
SEP, it sends a HELLO request message containing its public key to register
with a Mirror Proxy. If the location of the MP is already known through one
of the several techniques discussed in Section 4.1, then the register message is
unicasted. If however the location is unknown, then the registration message
is broadcasted over the network. A Mirror Proxy that receives a request
to register displays the hash of the public key received in the registration
message. The user now verifies if the human-readable hash of the public key
provided with the SEP matches the one displayed by the MP. It the two
match, the user approves the pairing to continue and the MP acknowledges
a successful registration to the SEP. However, if the registration message
is received by an incorrect or malicious MP, the user would not notice any
registration requests on its own MP. The user can then reset the device to
re-initialize the authentication process. The only detail that will be revealed
to an unknown or hostile MP in this case would be the public key of the
SEP. Such a provisioning mechanism allows incremental deployment along
with inter-operation of SEPs and MPs from different manufactures.

However, this approach might not be suitable in a large scale industrial
deployment where a large number of SEPs need to be provisioned and in-
stalled within a small time span. In such a scenario, the hash of the public
key can be printed as a barcode and the owner can use a barcode scanner
to feed all the public keys into the MP. Alternatively, at an additional cost,
RIFD tags and scanners can be used to add the public keys to the MP.

It is important to note that both these provisioning schemes only aim
to authenticate the SEPs to a Mirror Proxy. Authenticating the other way
around is not required because, for the subset of the deployment space on
which we focus, the communication between the SEP and the MP is mostly
one-directional.

Chapter 5

Implementation

In this chapter we describe the implementation of the proof-of-concept proto-
type developed for the architecture presented in Chapter 4. In our prototype,
a Sleeping End Point (SEP) was implemented using the Arduino Ethernet
shield1 over an Arduino Mega board as shown in Figure 5.1. Our implemen-
tation uses the standard C99 programming language on the Arduino Mega
board without any operating system.

Figure 5.1: Arduino SEP

In this prototype, the Mirror Proxy (MP) and the Resource Directory
(RD) reside on the same physical host. A 64-bit x86 linux machine serves as
the MP and the RD, while a similar but physically different 64-bit x86 linux
machine serves as the client that requests data from the MP.

We chose the Relic library [13] version 0.3.1 for our sample prototype as it
can be easily compiled for different bit-length processors. Therefore we were
able to use it on the 8-bit ATmega2560 processor of the Arduino Mega board
as well as on the 64-bit processor of the client. The public-private key pair was

1Arduino Ethernet Shield, http://arduino.cc/en/Main/ArduinoEthernetShield

44

CHAPTER 5. IMPLEMENTATION 45

generated on the Arduino board at runtime using the default Arduino pseudo-
random number generator. We used the Elliptic Curve Digital Signature
Algorithm (ECDSA) to sign data updates at the SEP and verify them at the
client. The standard NIST-K163 curve parameters (163-bit Kobltiz curve
over binary field) were used for the ECDSA algorithm. While compiling the
Relic library for our prototype, we used the fast configuration detailed in
Appendix A without any assembly optimizations. The location of the MP
was pre-configured into the SEP by hardcoding the IP address. We used an
IPv4 network for communication over public IP addresses obtained from a
DHCP server running in the network.

We used the Ericsson Gateway [73] running on a x86 linux machine to
model the Mirror Proxy and the Resource Directory. The gateway imple-
ments the CoAP base specification [132] in the Java programming language
and extends it to add the support for Mirror Proxy and Resource Directory
REST interfaces. We developed a minimalistic CoAP C-library for the Ar-
duino SEP and for the client requesting data updates for a resource. This
library was implemented as a team effort at Ericsson Research. The library
has small SRAM requirements and uses stack-based allocation only. It is
inter-operable with the Java implementation of the CoAP protocol running
on the gateway. The C-library was modified by the current author to port
it to the Arduino Mega board modeling the SEP. The current author also
modified the library to add ECDSA signature generation and signature veri-
fication functionality to this library. In the following sections we discuss how
a SEP in our prototype registers and updates content with the MP. We also
discuss how a client in the prototype can retrieve signed data updates.

5.1 Caching Data Updates

The SEP registers with the MP by sending a Confirmable CoAP POST mes-
sage as shown in figure 5.2. This registration message includes a temperature
resource in the CoRE link format along with the public key of the SEP in
the JWK [80] format. The MP adds this resource as a sub-resource in its
own resource tree and also updates its ./well-known/core resource. The MP
then sends a piggybacked CoAP ACK to the SEP to confirm the successful
registration. The piggybacked CoAP ACK contains the location that would
be used by the SEP to update the cache. The MP also stores the public key
of the SEP received in the registration message. Once the ACK from the MP
confirming the registration is received by the SEP, it goes into the energy
saving sleep mode. If however, for some reason the registration message or
the ACK is lost or the entry cannot created by the MP, the SEP would re-

CHAPTER 5. IMPLEMENTATION 46

Figure 5.2: Registering and Caching Updates

transmit the registration message. The MP is responsible for registering the
new resources with the RD and it sends a confirmable CoAP POST message
to add these new resources as shown in Figure 5.2.

The SEP now wakes up at pre-determined intervals to update the cached
data. In our prototype, we use hardcoded temperature values in the SenML
format as sample data. This SenML data is signed with ECDSA algorithm
and sent to the MP in the JWS [81] format with Non-Confirmable CoAP
PUT messages as shown in 5.2. This allows the SEPs to return to the sleep
mode without having to wait for any acknowledgements. However, even
when Non-Confimable CoAP PUTs are used, the MP still sends a success
or failure message as shown in figure 5.2. The SEP in this case remains
in the sleep mode and is unaware of any packets sent to it. Nonetheless,
it may be beneficial to have a CoAP option, as suggested by Vial [143],
for requesting the sender to suppress any response and avoid creation of
unnecessary network traffic.

CHAPTER 5. IMPLEMENTATION 47

5.2 Retrieving Data Updates

A client that wishes to obtain data updates from the SEP first contacts
the RD as shown in Figure 5.3. We assume that the location of the RD is
known to the client through DHCP [45] or through pre-configuration. The
client uses a Confirmable CoAP GET message for the /.well-known/core
resource and specifies the resource type parameter to determine the location
of the temperature resource. The RD responds with a CoAP ACK containing
location of the resource piggybacked in the message. Although this location
points to the MP, the client is not aware of this and believes it to be the
location of the SEP itself. Thus the Mirror Proxy serves data to requesting
clients in a transparent manner.

Figure 5.3: Retrieving Updates

The client then sends a second CoAP GET message to the location re-
turned by the RD for the ./well-known/core resource. The MP returns a pig-
gybacked CoAP ACK containing the location where the data is being cached
along with the public key of the SEP from which the updates were received.
The client stores the public key for this SEP and sends a third CoAP GET
message as shown in Figure 5.3 to obtain the actual signed content in the

CHAPTER 5. IMPLEMENTATION 48

JWS [81] format. The client can use the public key received to verify all sub-
sequent signed data updates. If the signature verifies correctly, the client can
be assured of the integrity and authenticity of these data updates. We use an
unprotected CoAP communication channel between the client and the MP.
However if required, this communication could be secured with DTLS [126]
or by using HTTP [55] over SSL [60].

Hartke [132] discusses an observe mode for CoAP clients. This mode
allows CoAP clients to use the proposed CoAP observe option and register
their interest in a smart object for its current measured value. The smart
objects are responsible for maintaining a list of interested client observers
and pushing updates to the client whenever its state changes and a new
data update is available. However, in this communication model, the smart
objects still need to be online for extended durations to receive and register
interests. This prevents them from sleeping for long durations to save energy.
In our communication model, as discussed by Vial [143], this difficulty can
be overcome by registering an observe interest at the Mirror Proxy. The
MP maintains a list of interested CoAP client and updates them whenever
it receives a new update from the SEP as shown in figure 5.4. The MP sends

Figure 5.4: MP Updating Interested Clients

the public key piggybacked in response to an interest registration message
from the client. It then pushes the signed data updates to the client as and
when it receives them from the SEP. The client can verify the integrity and
authenticity of these subsequent updates using the public key received at the
time of registration.

CHAPTER 5. IMPLEMENTATION 49

5.3 Summary

In our proof-of-concept prototype we used an Arduino board to model a
Sleeping End Point that sent signed temperature updates in the SenML
format. The SenML data updates were signed using the ECDSA signa-
ture algorithm available in the Relic library. In this prototype implemen-
tation, the Arduino board did not transition into the energy-saving sleep
mode after sending a data update. This transition to the energy-saving
sleep mode is platform-specific and can be implemented according to the
resource-constrained device being used. We used only one Arduino board
acting as a single Sleeping End Point. The Arduino SEP used the minimal-
istic CoAP C-library developed for communication with the gateway hosting
the RD and the MP. This library included only the basic functionality to
send Confirmable and Non-Confirmable CoAP POST and PUT messages as
well as receive CoAP ACK messages. Only the required subset of CoAP
options such as LocationPath, UriHost and ContentType were included in
this library and some error conditions were not handled. The prototype used
sequence numbers in the signed updates for preventing replay attacks. A
client requesting data updates for a temperature resource was modeled on
an x86 linux machine. The current author was entirely responsible for im-
plementing the client using the same CoAP C-implementation used on the
SEP. Although, this prototype implementation used the Ethernet MAC-layer
protocol, other protocols such Zigbee [6] and Bluetooth low energy [5] would
work in a similar fashion without requiring any changes to the architecture.

Chapter 6

Discussion

We begin this chapter by presenting a post-implementation analysis of the
communication model and the prototype. We then briefly evaluate the
methodological principles used in thesis. Finally, we discuss the security
considerations associated with the architecture presented in this thesis.

6.1 Architecture Overview

There are several fragmented security solutions for defending smart object
networks. While some of the defense mechanisms focus on provisioning and
secure authentication schemes [25, 89], others focus on data confidential-
ity [32, 88] only. Similarly, as shown in Section 3.1, several authors [24,
72, 138] demonstrate the applicability of using public-key cryptography on
resource constrained devices, but none of them successfully build an archi-
tecture around it for secure communication.

In this thesis, we have developed a secure and energy-efficient communi-
cation model based on asymmetric cryptography that considers the security
challenges encountered by a smart object during its entire lifecycle. We also
implemented a prototype of this communication-model to demonstrate its
feasibility and support its standardization. The architecture is aimed at
smart objects that sleep for long durations during their operational phase to
save energy and form a large subset of the deployment space. It uses the con-
cept of a Mirror Proxy [143] to cache and serve data updates received from
these sleeping smart objects and extends this concept to add security com-
ponents. The entire communication is based on the Constrained Application
Protocol (CoAP) [132] communication protocol over an IP network.

The architecture uses the standard resource representation and resource
discovery mechanisms. Measurements from smart objects are reported in the

50

CHAPTER 6. DISCUSSION 51

standardized SenML [79] format while the public keys and signed data are
communicated in the standard JSON based JWK [80] and JWS [81] formats,
respectively. Since CoAP can easily be mapped to HTTP [55], and we use an
IP network with standardized technologies, our architecture can seamlessly
inter-operate with other devices on the Internet.

The provisioning methods suggested for the architecture in Section 4.5
allow incremental deployment where new smart objects can be added to net-
work as and when required. These modular schemes also allow smart objects
and mirror proxies from different manufactures to inter-operate smoothly.

6.2 Evaluation of Methodology

We reject kings, presidents and voting. We believe in rough con-
sensus and running code

is a famous quote by David Clark [71] describing the standardization process
at IETF. To study the feasibility of the architecture proposed and provide
strong arguments in support of its standardization, we developed a proof-
of-concept implementation in this thesis. Although the results from the
implementation were encouraging, a large scale simulation is also required
to analyze its feasibility with a large number of distributed Mirror Proxies
caching content from several thousand Sleeping End Points.

In this thesis, we use easily accessible libraries for implementing asymmet-
ric cryptography on resource constrained devices within a short span of time.
The performance analysis of these libraries was promising and strongly sup-
ported the argument that public-key cryptography can be implemented on
these devices. However, a more focused implementation effort that includes
all well-known theoretical optimizations and uses platform-specific assembly
instructions can further improve the efficiency of these algorithms. The mea-
surements of SRAM consumption and execution time were performed with
a common seed to the random number generator. Nonetheless, in order to
correctly benchmark the performance, a more thorough analysis is required.
The energy consumption calculated for various curves only gives an estimate
since it does not take into account the amount of SRAM consumed. Accu-
racy of these measurements can be improved by employing a method similar
to the one used by Margi et al. [100].

Our prototype uses the Arduino Ethernet shield as the communication
module. Although it serves the purpose for a proof-of-concept implementa-
tion, we need to analyze the feasibility of the architecture with other, more
efficient and widely deployed smart object MAC-layer protocols such as Zig-
bee [6] and Bluetooth low energy [5]. Finally, in our performance evaluation,

CHAPTER 6. DISCUSSION 52

we only give a rough estimate of the flash memory consumption for the dif-
ferent libraries. A more detailed evaluation is required to obtain accurate
figures.

6.3 Security Considerations

In Chapter 1, we have discussed why ensuring security in smart object net-
works is critical. We also present some of common obstacles for developing a
secure communication model in smart object networks such as limited bat-
tery energy and computational power. In Chapter 4, we have developed a
secure communication model based on public-key cryptography and, in this
section, we analyze the security aspects associated with this architecture.

While evaluating the performance of public-key cryptography and imple-
menting the prototype, we use use the default pseudo-random number gen-
erator available on Arduino boards. However it is important to use strong
cryptographic (pseudo) random number generators such as Fortuna [54] in
real-world deployments. These cryptographic random number generators re-
quire high quality seeds. Eastlake et al. [47] discuss some of the common
pitfalls encountered while generating randomness for seeding material. They
recommend several hardware techniques that may be used as entropy sources
and emphasize the importance of correctly implementing these random num-
ber generators with the following statement

The use of pseudo-random processes to generate secret quantities
can result in pseudo-security

The ECDSA signature algorithm not only requires random numbers dur-
ing key generation, but also during each signature operation. Therefore it is
critical to have sufficient entropy to protect the private key from inadvertent
disclosure. A large scale take down of the Sony PlayStation 3 system [23]
was possible because of an incorrectly implemented random number genera-
tor used for the ECDSA algorithm. Bernstein et al. [22] propose a signature
scheme that only requires entropy during key generation and not during each
signature operation. If implemented correctly, this scheme would provide
the flexibility to generate the keys on a platform with easy access to entropy
sources and then feed them into the smart object at the time of manufacture.

We have used the classical Dolev-Yao [43] intruder model as the threat
model while designing our security architecture. In the Dolev-Yao model,
a malicious entity can eavesdrop, intercept, modify and replay any message
in the network. Our communication model ensures end-to-end data-object
integrity to defend against modification of any data updates sent from the

CHAPTER 6. DISCUSSION 53

Sleeping End Points (SEPs). The message freshness mechanisms discussed in
Section 4.4 protect the architecture from replay attacks by an eavesdropper
in the network. Since the communication between the Mirror Proxy and a
client is protected by SSL [60] or DTLS [126], an attacker cannot obtain
meaningful data from simple eavesdropping.

However, the Dolev-Yao model does not take into account the fact that
smart object networks are also vulnerable to node (in our case a node is the
SEP) capture attacks [115, 146]. In our architecture, a node capture does
not disrupt the security of the communication between other SEPs and the
MP as long as a routing path exists between the two.

Stajano and Anderson [136] introduce the concept of sleep deprivation
torture attack, also referred to as denial-of-sleep attack in wireless sensor
networks. In a denial-of-sleep attack, a malicious entity reduces the oppor-
tunity for a resource constrained device to enter into power-saving sleep mode
by sending legitimate requests for processing. Martin et al. [101] further cat-
egorize denial-of-sleep into three categories

• Service Request Attack : where valid service requests are repeated with
the intention of draining power.

• Benign Service Attack : where a power intensive operation is requested
to drain the battery.

• Malignant Attack : where an adversary penetrates a constrained device
and alters the existing programs to consume more power than needed.

However in our communication model, the SEPs do not serve to client re-
quests directly and a Mirror Proxy (MP) is used to add a level of indirection.
This protects the SEPs from any denial-of-sleep attacks. Moreover, this also
ensures that only the SEPs need to be authenticated to the MP which is
easier than authenticating the other way around.

It is important to note that our communication model uses raw public
keys in an efficient manner and does not require any certificates or certifi-
cation authorities. If leap-of-faith provisioning is acceptable, the communi-
cation model can work without any pre-configuration. However in this leap-
of-faith provisioning, neither the MP nor the SEP securely authenticate the
other end-point. As discussed by Pham and Aura [122], such a bi-directional
leap-of-faith is always susceptible to man-in-middle-attacks.

The architecture allows the MPs to host multiple applications (for ex-
ample, temperature and pressure measurements reported from different sets
of smart objects) which do not have to interact or rely on each other. Fi-
nally, the MPs can have several administrative domains with different access
policies depending on the SEP or the client it is serving.

CHAPTER 6. DISCUSSION 54

6.4 Reflections

Internet of Things (IoT) is on the path to form an ever increasing part of
our physical environment and it is envisioned that there would 50 billion
connected devices by the year 2020 [8]. Liu [97] in his lecture at Harvard
points out that the social influence of IoT will surpass that of the Internet.
As discussed in Chapter 1, the importance of IoT is further asserted from the
fact that IoT is included by the US National Intelligence Council in the list
of six “Disruptive Civil Technologies” with potential impacts on US national
power [7]. The economic importance of IoT can also be inferred from the
study of Fleisch [58], who observed that the most important driving factor for
hundreds of IoT applications was the need to reduce the real-world to virtual-
world transactional costs. It is clearly evident then, that IoT is going to have
a huge impact on future businesses and personal lives. This thesis aims to
support the large-scale acceptance and deployment of IoT by solving critical
security issues associated with a subset of the smart object deployment space.

Brignall [76] argues that Internet can be viewed as a new structure for so-
cial control and is similar to a Panopticon [18], a prison structure that allows
people in authority to monitor inmates who are not aware of the fact that
they are being monitored. Liu [97] warns of the danger that IoT may also
turn into a Panopticon structure if the security and privacy challenges asso-
ciated with it are not addressed. However, in this thesis, we only deal with
the security vulnerabilities associated with a subset of the entire smart object
deployment space and a separate research effort is required to look into how
privacy-preserving architectures can co-exist with such security solutions.

This thesis did not deal with any issues that have direct environmen-
tal impacts. However, our security architecture contains an energy-efficient
communication model and we believe that such energy efficient designs can
increase the life-span of smart objects and thereby reduce the e-waste that
might be created when these smart objects or their batteries are discarded.
This would play an important role in reducing the potential harmful im-
pacts to the environment especially since the number of such smart objects
is increasing at a fast pace.

As such, it is important to understand the political, economic, social and
cultural problems associated with the Internet of Things. Addressing these
challenges along with innovative technical solutions would ensure sustainable
development of IoT. Such a sustainable development can enhance the quality
of our future lives in every sphere.

Chapter 7

Conclusion

The Internet of Things is fast evolving and there are several existing de-
ployment examples such as monitoring of structural defects in bridges with
pressure sensors [36] and tracking of shipments with positioning sensors [129].
With advances in communication technologies and embedded hardware, sim-
ple physical devices have transformed into smart objects that understand and
react to their environment. These smart objects often communicate among
themselves with no human interaction. Even though there has been recent
success in their adoption, there are several challenges that hinder the wide-
scale deployment and acceptance of smart objects. One such critical challenge
is ensuring security in these networks. We have explained in Chapter 1 that
ensuring security in smart object networks is non-trivial because of the en-
ergy and computational constraints of these devices. Previous research also
demonstrated that considering the vulnerabilities in the entire lifecycle of a
smart object is important when designing a new security solution.

In this thesis, we developed a secure and energy-efficient architecture for
a subset of the smart object deployment space. We focused on smart objects
that sleep for long durations in their operational phase to save energy. From
the outset, we decided to use public-key cryptography because of its flexi-
bility over symmetric key cryptography. Although there have been several
past studies which demonstrated the feasibility of public-key cryptography
on constrained devices, we wanted to find public libraries that could be easily
ported for use on 8-bit platforms. We found four such libraries and evalu-
ated their performance in terms of execution time, SRAM consumption and
energy consumption. The results from the evaluation were encouraging and
reinforced our belief that software implementation of public-key cryptogra-
phy on constrained devices is not only possible but can also be efficient.

Our architecture used the concept of Mirror Proxy [143] to cache updates
sent from the “sleepy” smart objects. This delegation mechanism allowed

55

CHAPTER 7. CONCLUSION 56

the smart objects to behave as clients of the Mirror Proxy rather than as
servers that respond to client requests directly. The smart objects no longer
had to stay online for serving requests and were able to save energy by
sleeping for long durations in their operational phase. The resources of a
smart object were represented in the standard CoRE Link format [131]. A
Resource Directory [133] was used to maintain the list of resources hosted
on other distributed smart objects. The communication in this architecture
was based on the standard Constrained Application Protocol (CoAP) [132]
designed for M2M and smart object networks.

The smart objects in the architecture registered their public key with
the Mirror Proxy either using a leap-of-faith mechanism or with the secure
authentication schemes suggested in Section 4.5. Thereafter, the objects
woke up at pre-determined intervals to send signed updates. This allowed
the clients to receive updates even when the smart objects were in sleep
mode. It also allowed them to verify the integrity and authenticity of these
updates end-to-end over a multi-hop network topology. Messages were pro-
tected against replay attacks with the use of freshness schemes such as se-
quence numbers. In this architecture, the public key was communicated in
the standard JWK [80] format while the signatures were communicated in
the standard JWS [81] format.

To the author’s best knowledge, this is one of the first energy-efficient
standards-compliant security architectures to be developed. The implemented
prototype not only provides an insight into the operation of existing stan-
dards but also demonstrates the feasibility of the communication model and
provides strong arguments in support of its standardization. However, this
thesis takes only the first steps in solving the security problems for a subset
of the deployment space. Possible future work items include:

• Performance evaluation of the libraries and a prototype with strong
random number generator.

• Investigate if side-channel attacks are possible in this communication
model.

• Implement a large scale simulation of the architecture to study its per-
formance with a large number of smart objects.

• Evaluate the architecture with other MAC layer protocols such as Zig-
bee [6] and Bluetooth low energy [5].

• Study other provisioning and freshness schemes that may be suitable
for this architecture.

Bibliography

[1] MIT AUTO-ID labs. http://autoid.mit.edu/cs/. Accessed
02.04.2012.

[2] Recommended elliptic curves for federal government use. National In-
stitute of Standards and Technology, July, 1999.

[3] Wireless LAN medium access control (MAC) and physical layer (PHY)
specifications, 1997. IEEE Computer Society LAN MAN Standards
Committee.

[4] SEC 2: Recommended elliptic curve domain parameters. Certicom
Research, 2000.

[5] IEEE std 802.15. 1-2005 part 15.1: Wireless medium access control
(MAC) and physical layer (PHY) specifications for wireless personal
area networks (WPANs). Wireless Personal Area Networks Working
Group White Paper.

[6] ZigBee specification. 344–346. Zigbee Alliance Document 053474r13.

[7] Six technologies with potential impacts on US interests out to 2025.
Conference report CR 2008-07, National Intelligence Council, April
2008.

[8] More than 50 billion connected devices - taking connected devices to
mass market and profitability. Ericsson White Paper.

[9] Aboba, B., Levkowetz, H., Vollbrecht, J., Blunk, L., and
Carlson, J. RFC 3748: Extensible authentication protocol (EAP),
June 2004.

[10] Al-Kayali, A. Elliptic curve cryptography and smart cards. SANS
Institute 17 (2004).

57

http://autoid.mit.edu/cs/

BIBLIOGRAPHY 58

[11] Aranha, D., Dahab, R., López, J., and Oliveira, L. Efficient
implementation of elliptic curve cryptography in wireless sensors. Ad-
vances in Mathematics of Communications 4, 2 (2010), 169–187.

[12] Aranha, D., López, J., Oliveira, L., and Dahab, R. Efficient
implementation of elliptic curves on sensor nodes.

[13] Aranha, D. F., and Gouvêa, C. P. L. RELIC is an efficient
library for cryptography. http://code.google.com/p/relic-toolkit/

Accessed 04.04.2012.

[14] Aura, T. RFC 3972: Cryptographically generated addresses (CGA),
March 2005.

[15] Baar, M., Köppe, E., Liers, A., and Schiller, J. Poster ab-
stract: The scatterweb MSB-430 platform for wireless sensor networks.
In Contiki Workshop (2007).

[16] Bailey, D., and McGrew, D. AES-CCM cipher suites for TLS.
Internet draft, IETF, October 2011.

[17] Baumgartner, T., Chatzigiannakis, I., Fekete, S., Koninis,
C., Kröller, A., and Pyrgelis, A. Wiselib: A generic algorithm
library for heterogeneous sensor networks. In European Conference on
Wireless Sensor Networks (2010), Springer, pp. 162–177.

[18] Bentham, J. Panopticon or the inspection house, vol. 2. 1791.

[19] Bergmann, O. tinyDTLS - a basic DTLS server template. http:

//tinydtls.sourceforge.net/. Accessed 04.04.2012.

[20] Bergmann, O., Gerdes, S., and Bormann, C. Simple Keys for
Simple Smart Objects. In Smart Object Security Workshop, IETF 83
(2012).

[21] Berners-Lee, T., Masinter, L., and McCahill, M. RFC 1738:
Uniform resource locators (URL), December 1994.

[22] Bernstein, D., Duif, N., Lange, T., Schwabe, P., and Yang,
B. High-speed high-security signatures. In Cryptographic Hardware
and Embedded Systems (CHES) (2011), Springer, pp. 124–142.

[23] Bernstein, D. J., Lange, T., and Schwabe, P. The security
impact of a new cryptographic library. In Industry Proceedings of the
10th International Conference on Applied Cryptography and Network
Security (ACNS) (2012 (to appear)).

http://code.google.com/p/relic-toolkit/
http://tinydtls.sourceforge.net/
http://tinydtls.sourceforge.net/

BIBLIOGRAPHY 59

[24] Blaß, E., and Zitterbart, M. Towards acceptable public-key en-
cryption in sensor networks. In ACM 2nd International Workshop on
Ubiquitous Computing (2005), pp. 88–93.

[25] Bohge, M., and Trappe, W. An authentication framework for
hierarchical ad hoc sensor networks. In Proceedings of the 2nd ACM
Workshop on Wireless security (2003), pp. 79–87.

[26] Boneh, D., and Boyen, X. Short signatures without random ora-
cles. Advances in Cryptology (EUROCRYPT) (2004), 56–73.

[27] Boneh, D., et al. Twenty years of attacks on the RSA cryptosystem.
Notices of the AMS 46, 2 (1999), 203–213.

[28] Boneh, D., Lynn, B., and Shacham, H. Short signatures from the
weil pairing. Journal of Cryptology 17, 4 (2004), 297–319.

[29] Bos, J., Kaihara, M., Kleinjung, T., Lenstra, A., and Mont-
gomery, P. Solving a 112–bit prime elliptic curve discrete logarithm
problem on game consoles using sloppy reduction. International Jour-
nal of Applied Cryptography 2, 3 (2012), 212–228.

[30] Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., and
Yergeau, F. Extensible markup language (XML). World Wide Web
Journal 2, 4 (1997), 27–66.

[31] Calvet, J., and Noll, J. Subscriber identity module, 2005. US
Patent App. 10/594,559.

[32] Çam, H., Özdemir, S., Nair, P., Muthuavinashiappan, D.,
and Ozgur Sanli, H. Energy-efficient secure pattern based data
aggregation for wireless sensor networks. Computer Communications
29, 4 (2006), 446–455.

[33] Carman, D., Kruus, P., and Matt, B. Constraints and ap-
proaches for distributed sensor network security (final). DARPA
Project report, (Cryptographic Technologies Group, Trusted Informa-
tion System, NAI Labs) 1 (2000), 1.

[34] Chan, H., Perrig, A., and Song, D. Random key predistribution
schemes for sensor networks. In Symposium on Security and Privacy
(2003), IEEE, pp. 197–213.

BIBLIOGRAPHY 60

[35] Cheneau, T., Sambra, A., and Laurent, M. A trustful authen-
tication and key exchange scheme (TAKES) for ad hoc networks. In
5th International Conference on Network and System Security (NSS)
(2011), IEEE, pp. 249–253.

[36] Cho, S., Spencer Jr, B., Jo, H., Li, J., and Kim, R. Sensing &
measurement bridge monitoring using wireless smart sensors. Intern-
tional society for optics and photonics . http://spie.org/x84931.xml?

highlight=x2406&ArticleID=x84931. Accessed 4.4.2012.

[37] Cohen, H., Miyaji, A., and Ono, T. Efficient elliptic curve ex-
ponentiation using mixed coordinates. Advances in Cryptology (ASI-
ACRYPT) (1998), 51–65.

[38] Colin, O. Initial configuration of resource-constrained devices. Inter-
net draft, IETF, January 2010.

[39] Crockford, D. RFC 4627: The application/json media type for
javascript object notation (JSON), July 2006.

[40] Denis, T. Libtomcrypt. http://libtom.org. Accessed 04.04.2012.

[41] Dierks, T., and Rescorla, E. RFC 5246: The transport layer
security (TLS) protocol version 1.2, August 2008.

[42] Ding, C., Pei, D., and Salomaa, A. Chinese remainder theorem.
World Scientific Singapore, 1996.

[43] Dolev, D., and Yao, A. On the security of public key protocols.
IEEE Transactions on Information Theory 29, 2 (1983), 198–208.

[44] Douceur, J. The sybil attack. In Peer-to-peer Systems (2002),
Springer, pp. 251–260.

[45] Droms, R. RFC 1531: Dynamic host configuration protocol, October
1993.

[46] Du, W., Deng, J., Han, Y., Varshney, P., Katz, J., and
Khalili, A. A pairwise key predistribution scheme for wireless sen-
sor networks. ACM Transactions on Information and System Security
(TISSEC) 8, 2 (2005), 228–258.

[47] Eastlake, D., Crocker, S., and Schiller, J. RFC 1750: Ran-
domness recommendations for security, March 2005.

http://spie.org/x84931.xml?highlight=x2406&ArticleID=x84931
http://spie.org/x84931.xml?highlight=x2406&ArticleID=x84931
http://libtom.org

BIBLIOGRAPHY 61

[48] Elkins, M. RFC 2015: MIME security with pretty good privacy
(PGP), October 1996.

[49] Elson, J. Time synchronization in wireless sensor networks. PhD
thesis, University of California, Los Angeles, 2003.

[50] Eriksson, J., Österlind, F., Finne, N., Tsiftes, N., Dunkels,
A., Voigt, T., Sauter, R., and Marrón, P. COOJA/MSPSim:
Interoperability testing for wireless sensor networks. In Proceedings of
the 2nd International Conference on Simulation Tools and Techniques
(2009), ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering).

[51] Eschenauer, L., and Gligor, V. A key-management scheme for
distributed sensor networks. In Proceedings of the 9th ACM conference
on Computer and communications security (2002), ACM, pp. 41–47.

[52] Fabri, A., and Pion, S. CGAL: the computational geometry algo-
rithms library. In Proceedings of the 17th International Conference on
Advances in Geographic Information Systems (SIGSPATIAL) (2009),
ACM, pp. 538–539.

[53] Farrell, S., Kutscher, D.and Dannewitz, C., Ohlman, B.,
Keranen, A., and Hallam-Baker, P. Naming things with hashes.
Internet draft, IETF, April 2012.

[54] Ferguson, N., and Schneier, B. Practical cryptography, vol. 141.
Wiley New York, 2003.

[55] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,
L., Leach, P., and Berners-Lee, T. RFC 2616: Hypertext trans-
fer protocol – HTTP/1.1, June 1999.

[56] Fielding, R., and Taylor, R. Principled design of the modern web
architecture. ACM Transactions on Internet Technology (TOIT) 2, 2
(2002), 115–150.

[57] FIPS-186. Digital signature standard (DSS). National Institute of
Standards and Technology, US Department of Commerce (1993).

[58] Fleisch, E. What is the internet of things? When Things Add Value.
Auto-ID Labs White Paper WP-BIZAPP-053, Auto-ID Lab St. Gallen,
Switzerland (2010).

BIBLIOGRAPHY 62

[59] Forsberg, D., Ohba, Y., Patil, B., Tschofenig, H., and
Yegin, A. RFC 5191: Protocol for carrying authentication for net-
work access (PANA), March 2006.

[60] Freier, A., Karlton, P., and Kocher, P. The SSL protocol
version 3.0. Internet draft, IETF, November 1996.

[61] Gallant, R., Lambert, R., and Vanstone, S. Faster point mul-
tiplication on elliptic curves with efficient endomorphisms. Advances
in Cryptology (CRYPTO) (2001), 190–200.

[62] Ganeriwal, S., Kumar, R., Adlakha, S., and Srivastava, M.
Network-wide time synchronization in sensor networks. Tech. rep.,
University of California, Dept. of Electrical Engineering, 2002.

[63] Garcia-Morchon, O., Kumar, S., Struik, R., Keoh, S., and
Hummen, R. Security considerations in the IP-based internet of
things. Internet draft, IETF, March 2012.

[64] Gay, D., Levis, P., Von Behren, R., Welsh, M., Brewer,
E., and Culler, D. The nesC language: A holistic approach to
networked embedded systems. ACM Sigplan Notices 38, 5 (2003), 1–
11.

[65] Gehrmann, C., Mitchell, C., and Nyberg, K. Manual authen-
tication for wireless devices. RSA Cryptobytes 7, 1 (2004), 29–37.

[66] Gollakota, S., Ahmed, N., Zeldovich, N., and Katabi, D. Se-
cure in-band wireless pairing. In USENIX Security Symposium (2011).

[67] Goodrich, M., Sirivianos, M., Solis, J., Tsudik, G., and
Uzun, E. Loud and clear: Human-verifiable authentication based
on audio. In 26th IEEE International Conference on Distributed Com-
puting Systems (ICDCS) (2006).

[68] Gupta, V., Wurm, M., Zhu, Y., Millard, M., Fung, S., Gura,
N., Eberle, H., and Chang Shantz, S. Sizzle: A standards-based
end-to-end security architecture for the embedded internet. Pervasive
and Mobile Computing 1, 4 (2005), 425–445.

[69] Gura, N., Patel, A., Wander, A., Eberle, H., and Shantz,
S. Comparing elliptic curve cryptography and RSA on 8-bit CPUs.
Cryptographic Hardware and Embedded Systems (CHES) (2004), 925–
943.

BIBLIOGRAPHY 63

[70] Hankerson, D., Vanstone, S., and Menezes, A. Guide to elliptic
curve cryptography. Springer-Verlag New York Inc, 2004.

[71] Harris, S. RFC 3160: The tao of IETF. a novice’s guide to the
internet engineering task force, August 2001.

[72] Hassan, R., and Qamar, T. Asymmetric-key cryptography for
contiki. Master’s thesis, Chalmers University of Technology, 2010.

[73] Höller, J. Internet of things comes alive
through smart objects interoperability, April 2012.
https://labs.ericsson.com/developer-community/blog/

internet-things-comes-alive-smart-objects-interoperability.

[74] Hu, Y., Perrig, A., and Johnson, D. Wormhole attacks in wireless
networks. IEEE Journal on Selected Areas in Communications 24, 2
(2006), 370–380.

[75] Huang, C. LOFT: Low-overhead freshness transmission in sensor net-
works. In IEEE International Conference on Sensor Networks, Ubiq-
uitous and Trustworthy Computing (SUTC) (2008), pp. 241–248.

[76] III, T. B. The new panopticon: The Internet viewed as a structure
of social control, 2002. http://theoryandscience.icaap.org/content/
vol003.001/brignall.html.

[77] Jansen, W., Gavrila, S., and Korolev, V. Proximity-based
authentication for mobile devices. Security and Management (2005),
398–404.

[78] Jara, A., Zamora, M., and Skarmeta, A. An architecture based
on internet of things to support mobility and security in medical en-
vironments. In 7th IEEE Consumer Communications and Networking
Conference (CCNC) (2010), pp. 1–5.

[79] Jennings, C., Arkko, J., and Shelby, Z. Media types for sensor
markup language (SENML). Internet draft, IETF, January 2012.

[80] Jones, M. JSON web key (JWK). Internet draft, IETF, December
2011.

[81] Jones, M., Bradley, J., and Sakimura, N. JSON web signature
(JWS). Internet draft, IETF, December 2011.

https://labs.ericsson.com/developer-community/blog/internet-things-comes-alive-smart-objects-interoperability
https://labs.ericsson.com/developer-community/blog/internet-things-comes-alive-smart-objects-interoperability
http://theoryandscience.icaap.org/content/vol003.001/brignall.html
http://theoryandscience.icaap.org/content/vol003.001/brignall.html

BIBLIOGRAPHY 64

[82] Jonsson, J., and Kaliski, B. RFC 3447: Public-key cryptography
standards (PKCS) #1: RSA cryptography specifications version 2.1,
February 2003.

[83] Kargl, A., Pyka, S., and Seuschek, H. Fast arithmetic on AT-
mega128 for elliptic curve cryptography. preprint, available online at
http://eprint.iacr.org/2008/442 (2008).

[84] Karlof, C., Sastry, N., and Wagner, D. TinySec: A link layer
security architecture for wireless sensor networks. In Proceedings of the
2nd international conference on Embedded networked sensor systems
(2004), pp. 162–175.

[85] Karlof, C., and Wagner, D. Secure routing in wireless sensor
networks: Attacks and countermeasures. Ad hoc networks 1, 2-3 (2003),
293–315.

[86] Kaufman, C. RFC 4306: Internet key exchange (IKEv2) protocol,
December 2005.

[87] Kent, S., and Seo, K. RFC 4301: Security architecture for the
internet protocol, December 2005.

[88] Kim, D., Shazzad, K., and Park, J. A framework of survivability
model for wireless sensor network. In The First International Confer-
ence on Availability, Reliability and Security (ARES) (2006), IEEE,
p. 8.

[89] Kivinen, T. Minimal IKEv2. Internet draft, IETF, February 2011.

[90] Koblitz, N. Elliptic curve cryptosystems. Mathematics of computa-
tion 48, 177 (1987), 203–209.

[91] Koblitz, N. CM-curves with good cryptographic properties. Ad-
vances in Cryptology (CRYPTO) (1992), 279–287.

[92] Kuptsov, D., Nechaev, B., and Gurtov, A. Securing medical
sensor network with HIP. In 2nd International ICST Conference on
Wireless Mobile Communication and Healthcare (MobiHealth) (2011).

[93] Lehmer, D. On euler’s totient function. Bulletin of American Math-
ematical Society 38 (1932), 745–757.

BIBLIOGRAPHY 65

[94] Levis, P., Madden, S., Polastre, J., Szewczyk, R., White-
house, K., Woo, A., Gay, D., Hill, J., Welsh, M., Brewer,
E., et al. TinyOS: An operating system for sensor networks. Ambient
intelligence 35 (2005).

[95] Liu, A., and Ning, P. TinyECC: A configurable library for elliptic
curve cryptography in wireless sensor networks. In International Con-
ference on Information Processing in Sensor Networks (IPSN) (2008),
IEEE, pp. 245–256.

[96] Liu, D., and Ning, P. Location-based pairwise key establishments
for static sensor networks. In Proceedings of the 1st ACM workshop on
Security of ad hoc and sensor networks (2003), ACM, pp. 72–82.

[97] Liu, Y. Preliminary exploration on social impacts of internet of things
(iot) and countermeasures, 2011. Lecture.

[98] Madden, S., Franklin, M., Hellerstein, J., and Hong, W.
TAG: A tiny aggregation service for ad-hoc sensor networks. ACM
SIGOPS Operating Systems Review 36, SI (2002), 131–146.

[99] Madden, S., Szewczyk, R., Franklin, M., and Culler, D.
Supporting aggregate queries over ad-hoc wireless sensor networks. In
Mobile Computing Systems and Applications (2002), IEEE, pp. 49–58.

[100] Margi, C., Petkov, V., Obraczka, K., and Manduchi, R.
Characterizing energy consumption in a visual sensor network testbed.
In 2nd International Conference on Testbeds and Research Infrastruc-
tures for the Development of Networks and Communities (TRIDENT-
COM) (2006), IEEE.

[101] Martin, T., Hsiao, M., Ha, D., and Krishnaswami, J. Denial-
of-service attacks on battery-powered mobile computers. In Proceedings
of the Second IEEE Annual Conference on Pervasive Computing and
Communications (2004), IEEE, pp. 309–318.

[102] Masinter, L., Berners-Lee, T., and Fielding, R. RFC 3896:
Uniform resource identifier (URI): Generic syntax, January 2005.

[103] Masinter, L., and Sollins, K. RFC 1737: Functional requirements
for uniform resource names, December 1994.

[104] McCurley, K. The discrete logarithm problem. Proceedings of Sym-
posium in Applied Math 42 (1990), 49–74.

BIBLIOGRAPHY 66

[105] Menezes, A., Van Oorschot, P., and Vanstone, S. Handbook
of applied cryptography. CRC, 1997.

[106] Miller, V. Use of elliptic curves in cryptography. Advances in Cryp-
tology (CRYPTO) (1985), 417–426.

[107] Mills, D. RFC 1305: Network time protocol (NTP) version 3, March
1992.

[108] Mockapetris, P. RFC 882: Domain names: Concepts and facilities,
November 1983.

[109] Montgomery, P. Modular multiplication without trial division.
Mathematics of computation 44, 170 (1985), 519–521.

[110] Morain, F., and Olivos, J. Speeding up the computations on an
elliptic curve using addition-subtraction chains. In Theoretical Infor-
matics and Applications (1990).

[111] Moskowitz, R. HIP diet exchange (DEX). Internet draft, IETF,
March 2011.

[112] Moskowitz, R., Nikander, P., Jokela, P., and Henderson,
T. RFC 5201: Security architecture for the internet protocol, February
2004.

[113] Mouly, M., Pautet, M., and Foreword By-Haug, T. The
GSM system for mobile communications. Telecom Publishing, 1992.

[114] Mulligan, G. The 6LoWPAN architecture. In Proceedings of the 4th
workshop on Embedded networked sensors (2007), ACM, pp. 78–82.

[115] Mykletun, E., Girao, J., and Westhoff, D. Public key based
cryptoschemes for data concealment in wireless sensor networks. In
IEEE International Conference on Communications (ICC) (2006),
vol. 5, pp. 2288–2295.

[116] Ngai, E., Liu, J., and Lyu, M. On the intruder detection for
sinkhole attack in wireless sensor networks. In IEEE International
Conference on Communications (ICC) (2006), vol. 8, IEEE, pp. 3383–
3389.

[117] Nottingham, M. RFC 5998: Web linking, October 2010.

BIBLIOGRAPHY 67

[118] Park, S., Kim, K., Haddad, W., Chakrabarti, S., and La-
ganier, J. IPv6 over low power WPAN security analysis. Internet
draft, IETF, March 2006.

[119] Park, T., and Shin, K. LiSP: A lightweight security protocol for
wireless sensor networks. ACM Transactions on Embedded Computing
Systems (TECS) 3, 3 (2004), 634–660.

[120] Perrig, A., Stankovic, J., and Wagner, D. Security in wireless
sensor networks. Communications of the ACM 47, 6 (2004), 53–57.

[121] Perrig, A., Szewczyk, R., Tygar, J., Wen, V., and Culler,
D. SPINS: Security protocols for sensor networks. Wireless networks
8, 5 (2002), 521–534.

[122] Pham, V., and Aura, T. Security analysis of leap-of-faith protocols.
In 7th International Conference on Security and Privacy in Communi-
cation Networks (SecureComm) (2011), ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering).

[123] Postel, J. RFC 768: User datagram protocol, August 1980.

[124] Postel, J. RFC 791: Internet protocol, September 1981.

[125] Rasmussen, K., Castelluccia, C., Heydt-Benjamin, T., and
Capkun, S. Proximity-based access control for implantable medical
devices. In Proceedings of the 16th ACM conference on Computer and
communications security (2009), pp. 410–419.

[126] Rescorla, E. and Modadugu, N. RFC 4347: Datagram transport
layer security (DTLS), April 2006.

[127] Saxena, N., Ekberg, J., Kostiainen, K., and Asokan, N. Se-
cure device pairing based on a visual channel. In IEEE Symposium on
Security and Privacy (2006).

[128] Schneider, J., and Kamiya, T. Efficient XML interchange (EXI)
format 1.0. W3C Working Draft 19 (2008).

[129] Schoeneman, J., and Sorokowski, D. Authenticated tracking
and monitoring system (ATMS) tracking shipments from an australian
uranium mine. In Proceedings of The 31st IEEE Annual International
Carnahan Conference on Security Technology (1997), pp. 231–240.

BIBLIOGRAPHY 68

[130] Sethi, M., Arkko, J., Keranen, A., and Rissanen, H. Prac-
tical considerations and implementation experiences in securing smart
object networks. Internet draft, IETF, March 2012.

[131] Shelby, Z. CoRE link format. Internet draft, IETF, January 2012.

[132] Shelby, Z., Hartke, K., Bormann, C., and Sturek, D. Con-
strained application protocol (CoAP). Internet draft, IETF, March
2012.

[133] Shelby, Z., and S., K. CoRE resource directory. Internet draft,
IETF, November 2011.

[134] Solinas, J. Efficient arithmetic on koblitz curves. Designs, Codes and
Cryptography 19, 2 (2000), 195–249.

[135] Spilker, J. The Global Positioning System: theory and applications,
vol. 2. AIAA, 1996.

[136] Stajano, F., and Anderson, R. The Resurrecting Duckling: Secu-
rity Issues for Ad-hoc Wireless Networks. In Security Protocols (2000),
Springer, pp. 172–182.

[137] Titzer, B., Lee, D., and Palsberg, J. Avrora: Scalable sensor
network simulation with precise timing. In Fourth International Sym-
posium on Information Processing in Sensor Networks (IPSN) (2005),
IEEE, pp. 477–482.

[138] Uhsadel, L., Poschmann, A., and Paar, C. Enabling full-size
public-key algorithms on 8-bit sensor nodes. Security and Privacy in
Ad-hoc and Sensor Networks (2007), 73–86.

[139] Urien, P., Nyami, D., Elrharbi, S., Chabanne, H., Icart, T.,
Pépin, C., Bouet, M., Cunha, D., Guyot, V., Pujolle, G.,
et al. HIP tags privacy architecture. In 3rd International Conference
on Systems and Networks Communications (ICSNC) (2008), IEEE,
pp. 179–184.

[140] van der Laan, E. AVRCryptoLib. http://www.emsign.nl/. Accessed
04.04.2012.

[141] Van Greunen, J., and Rabaey, J. Lightweight time synchroniza-
tion for sensor networks. In Proceedings of the 2nd ACM interna-
tional conference on Wireless sensor networks and applications (2003),
pp. 11–19.

http://www.emsign.nl/

BIBLIOGRAPHY 69

[142] Vanstone, S. Responses to NIST’s proposal. Communications of the
ACM 35 (1992), 50–52. (Communicated by John Anderson).

[143] Vial, M. CoRE mirror proxy. Internet draft, IETF, November 2011.

[144] Wander, A., Gura, N., Eberle, H., Gupta, V., and Shantz,
S. Energy analysis of public-key cryptography for wireless sensor net-
works. In Third IEEE International Conference on Pervasive Comput-
ing and Communications (PerCom) (2005), pp. 324–328.

[145] Weis, S., Sarma, S., Rivest, R., and Engels, D. Security and
privacy aspects of low-cost radio frequency identification systems. Se-
curity in pervasive computing (2004), 50–59.

[146] Westhoff, D., Girao, J., and Acharya, M. Concealed data
aggregation for reverse multicast traffic in sensor networks: Encryption,
key distribution, and routing adaptation. IEEE Transactions on Mobile
Computing 5, 10 (2006), 1417–1431.

[147] Wheat, D. Arduino Internals. Apress, 2011.

[148] Yergeau, F. RFC 3629: UTF-8, a transformation format of ISO
10646, November 2003.

[149] Ylonen, T., and Lonvick, C. RFC 4251: The secure shell (SSH)
protocol architecture, January 2006.

[150] Yuan, L., and Qu, G. Design space exploration for energy-efficient
secure sensor network. In Proceedings. The IEEE International Con-
ference on Application-Specific Systems, Architectures and Processors
(2002), IEEE, pp. 88–97.

Appendix A

Relic Configurations

Relic uses Cross platform make (CMake)1 for selecting the components and
building a binary for a particular platform. The two configurations used
while experimenting with the library are as follows:

Relic Fast Configuration Relic Low-memory Configu-
ration

Multi-precision Arithmetic methods
Comba Multiplication Comba Multiplication
Comba Squaring Comba Squaring
Montgomery Modular Reduction Montgomery Modular Reduction
Sliding window modular expo-
nentiation

Sliding window modular expo-
nentiation

Stein’s binary GCD algorithm Stein’s binary GCD algorithm
Binary Field Arithmetic methods

Integrated modular multiplica-
tion

Integrated modular multiplica-
tion

Integrated modular squaring Integrated modular squaring
Fast polynomial reduction with a
trinomial or pentanomial

Fast polynomial reduction with a
trinomial or pentanomial

Square root by repeated squaring Square root by repeated squaring
Trace computation by repeated
squaring

Trace computation by repeated
squaring

Solving a quadratic equation by
half-trace computation

Solving a quadratic equation by
half-trace computation

Inversion by the Extended Eu-
clidean algorithm

Inversion by the Extended Eu-
clidean algorithm

1Cross Platform Make, http://www.cmake.org/

70

APPENDIX A. RELIC CONFIGURATIONS 71

Binary exponentiation Binary exponentiation
Iterative squaring/square-root
computation by consecutive
squaring/square-root

Iterative squaring/square-root
computation by consecutive
squaring/square-root

Binary Elliptic Curve methods
Projective Coordinates Projective Coordinates
Right-to-left window (T)NAF
method for point multiplication

Binary method for point multipli-
cation

Left-to-right window (T)NAF
method for fixed point multipli-
cation

Left-to-right window (T)NAF
method for fixed point mulitpli-
cation

Interleaving of window (T)NAFs
for simultaneous multiplication
and addition

Simple simultaneous multiplica-
tion and addition

Table A.1: Relic Library Configurations

Appendix B

IETF 83 and Workshop on Smart
Object Security

The preliminary results from this thesis including the performance analysis of
public-key cryptography and implementation experiences from the proof-of-
concept prototype were presented at the Smart Object Security Workshop1

preceding the IETF 83 meeting held in Paris. The results were documented
in an Internet Draft [130] and were also presented at the Light Weight Imple-
mentation Guidance (LWIG) and the Security Area Advisory Group (SAAG)
working groups of the IETF.

The overall feedback from the participants of the workshop and the work-
ing groups was positive and encouraging. Some important observations that
were made during several discussions with the participants include:

• A consensus existed among the participants on the fact that software
implementation of public-key cryptography on resource-constrained de-
vices is possible.

• Existing cryptographic algorithms along with associated mathematical
optimizations can provide acceptable performance. New algorithms
specifically designed for smart object networks may not be needed.
Besides, using existing standard algorithms also ensures easy inter-
operability with other entities on the Internet.

• At the time of this presentation, the energy consumption of the libraries
had not been evaluated. It was pointed out that energy consumption is
an important parameter to report even if it only provides an estimate.

1Workshop on Smart Object Security,
http://www.lix.polytechnique.fr/hipercom/SmartObjectSecurity/

72

APPENDIX B. IETF 83 ANDWORKSHOPON SMARTOBJECT SECURITY73

• A hypothesis was put forth by one of the participants. It suggested
that with the currently available hardware, performing computation
on a smart object is more energy-efficient than transmitting data over
a wireless interface. This hypothesis was broadly accepted by the par-
ticipants, but it was also decided that it requires further investigation
for conclusive evidence.

• This hypothesis supports our architecture which relies on end-to-end
data-object integrity as it creates less network traffic compared to some
of the other security alternatives such as CoAP over DTLS.

• Ensuring end-to-end data-object integrity is critical with intermedi-
aries (such as the Mirror Proxy) in multi-hop network topologies. Our
prototype in this direction was greatly appreciated. It was also ac-
cepted that this communication model fits well for the subset of the
deployment space on which we focus.

• Although signature verification on resource-constrained devices was not
required for our architecture, other participants were interested in a
performance evaluation of signature verification on smart objects. Sig-
nature verification may be required when, for example, software and
firmware updates received over the network need to be verified.

• Minimization of the number of intermediaries is important. Too many
intermediaries make the communication model complex and increase
the overall vulnerability of the system.

• Several Provisioning schemes for smart object networks were discussed.
There were no conclusive results and it was decided that secure provi-
sioning requires further research.

• Another challenging problem that came up during the discussions is
the transfer of ownership in smart object networks. Smart objects that
were previously provisioned with a proxy or a gateway may need to
be transferred to a new owner. This can be non-trivial where there
are several provisioned smart objects that are located in physically in-
accessible areas.

It was also a great learning experience to attend the workshop and the
IETF meeting. It provided an insight to the standardization process and
the working of IETF. Meeting some of the experts from the industry and
academia working in this area and listening to their feedback was enlighten-
ing.

ICT-EX-2012:177

www.kth.se

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

