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Abstract

With commercial processor design tools, a designer can quickly design a C-

programmable ASIP for a specific application domain. There are several such

ASIPs available for both wireless (UWB baseband processing), encryption, and

biomedical processing (particularly for ECG beat detection). In traditional CPUs

and DSPs the impact of the instruction-set definition and the complexity of the

instruction decoder can be substantial, especially in terms of power consumption.

Fully orthogonal VLIW processors, do not incur the cost of an instruction decoder

that severely. Instead the instruction word becomes very large, thereby shifting

the (power-)cost to the program memory or instruction cache. For the purposes

of this thesis a SIMD processor is developed and is compared to a soft-SIMD to

observe its area, performance and energy efficiency for a bioimaging benchmark

and how the processor description in the ASIP language nML, defines the

generated HDL. This SIMD processor is turned into orthogonal and using iterative

experiments it is investigated, what is the impact on power while manipulating the

instruction-set architecture in combination with the program memory size. It is

also investigated how instruction-set re-configuration can be exploited to improve

power efficiency. Using this investigation guidelines for low-power ASIP design

can be produced.





Εκτεταµένη Περίληψη

Με τη σύγχρονη τεχνολογία σχεδιασµού επεξεργαστών, ο σχεδιαστής µπορεί µε

ευκολία να σχεδιάσει ένα προγραµµατιζόµενο Επεξεργαστή Συνόλου Εντολών

Ειδικού Σκοπού (ASIP - Application-Specific Instruction-set Processor) για

ένα συγκεκριµένο εύρος εφαρµογών. Υπάρχουν διάφοροι τέτοιοι επεξεργαστές

διαθέσιµοι για ασύρµατες εφαρµογές, κρυπτογράφηση και ϐιοϊατρικές εφαρµογές

(π.χ. στον αλγόριθµο εντοπισµού χτύπου ηλεκτροκαρδιογραφήµατος). Στους

παραδοσιακούς επεξεργαστές και επεξεργαστές σήµατος (DSP - Digital Signal

Processor) ο ορισµός του συνόλου εντολών και η πολυπλοκότητα έχουν µεγάλη

επίδραση, ειδικά στην κατανάλωση ισχύος. Μία πιθανή λύση σε αυτό το πρόβληµα

είναι οι ορθογώνιοι επεξεργαστές µεγάλου µεγέθους λέξης εντολής (VLIW - Very

Large Instruction Word).

Με τον όρο ορθογώνιο επεξεργαστή, ορίζεται ένας επεξεργαστής οριζόντιου

σύνολου εντολών, άρα ένας επεξεργαστής στον οποίο µπορεί να υπάρξει

κάθε διαθέσιµος συνδυασµός µεταξύ των διαθέσιµων εντολών και των µεθόδων

διευθυνσιοδότησης για πρόσβαση στη µνήµη και το αρχείο καταχωρητών. Οι

ορθογώνιοι επεξεργαστές δεν επιβαρύνουν τόσο τον αποκωδικοποιητή εντολών. Αντί

αυτού το µέγεθος της λέξης της εντολής γίνεται πολύ µεγάλο, και έτσι µετατίθεται

το ενεργειακό κόστος στην µνήµη εντολών προγράµµατος (program memory )ή την

κρυφή µνήµη εντολών προγράµµατος (instruction cache).

Για τους σκοπούς αυτής της διπλωµατικής εργασίας, αναπτύχθηκε ένας

επεξεργαστής SIMD, ο οποίος συγκρίνεται µε έναν soft-SIMD για να µελετηθούν

η απαιτούµενη περιοχή στο ενσωµατωµένο, επιδόσεις και κατανάλωση ενέργειας

για µία ϐιοϊατρική εφαρµογή, καθώς και το πως η περιγραφή ενός επεξεργαστή

στη γλώσσα περιγραφής επεξεργαστών ASIP nML ορίζει την παραγούµενη γλώσσα

περιγραφής υλικού (HDL - Hardware Description Language). Ο επεξεργαστής αυτός

µετατρέπεται σε ορθογώνιο, και µε τη χρήση επαναληπτικών πειραµάτων µελετάται η

επίδραση στην κατανάλωση ενέργειας κατά τη διάρκεια αλλαγών στην αρχιτεκτονική

του συνόλου εντολών και του µεγέθους της µνήµης εντολών προγράµµατος. Ακόµη

µελετάται πως µπορεί να εκµεταλλευτεί ο σχεδιαστής την αναδιάρθρωση του συνόλου

εντολών για να ϐελτιώσει την κατανάλωση ενέργειας (εικόνα 1).

Οι επεξεργαστές ASIP είναι πολύ διαδεδοµένοι τελευταία γιατί µπορούν και

συνδυάζουν επιδόσεις, χαµηλή κατανάλωση ενέργειας και κυρίως ευελιξία. Με

αυτούς µπορούµε πιο εύκολα να ϐρούµε τη χρυσή τοµή ανάµεσα στα διάφορα



Εικόνα 1: Μέση κατανάλωση ισχύος και συχνότητα λειτουργίας επεξεργαστών ανάλογα µε

το επίπεδο ϐελτιστοποίησης του κώδικα σε εµπορικούς επεξεργαστές ASIP

χαρακτηριστικά του επεξεργαστή που ϑέλουµε, µε αποτέλεσµα έναν επεξεργαστή

αρκετά ισχυρό και ενεργειακά αποδοτικό για το εύρος εφαρµογών που ϑέλουµε.

∆εν πρέπει να ξεχνάµε ότι στη σύγχρονη αγορά ενσωµατωµένων συστηµάτων, η

κατανάλωση ενέργειας είναι ένα από τα µεγαλύτερα προβλήµατα. Ωστόσο, καθώς

η τεχνολογία προχωράει µε αλµατώδεις ϱυθµούς, µερικές από τις λύσεις που

έχουν δώσει οι σχεδιαστές σε διάφορα προβλήµατα που αντιµετώπιζαν στο παρελθόν

µελετούνται ξανά, µε σκοπό να ϐρεθεί µία πιο αποτελεσµατική λύση.

Για την ανάπτυξη τους, οι επεξεργαστές ASIP χρησιµοποιούν ένα ειδικό

περιβάλλον ανάπτυξης µε εξελιγµένα εργαλεία ανάπτυξης (εικόνα 2), µε τα οποία

η ανάπτυξη ενός επεξεργαστή ASIP µπορεί να γίνει σε πολύ λιγότερο χρόνου

από όσο χρειάζεται ένας κανονικός επεξεργαστής. Προσφέρουν µία πλήρη

σουίτα για το σχεδιασµό του επεξεργαστή από το σχεδιασµό της αρχιτεκτονικής

του επεξεργαστή, τον ορισµό του συνόλου εντολών και των λειτουργιών

µέχρι την προσοµοίωση εφαρµογών και την παραγωγή γλώσσας περιγραφής

υλικού. Οι διαθέσιµες δυνατότητες προσοµοίωσης µπορούν να συνδυαστούν

µε τις δυνατότητες αναγνώρισης χαρακτηριστικών (profiling)για να ερευνηθούν

διαφορετικές υλοποιήσεις και µέσω επαναληπτικών αλλαγών στον αρχικό κώδικα

να ϐρεθεί η ιδανική υλοποίηση για ένα συγκεκριµένο εύρος εφαρµογών.

Πολλές ϕορές η κατανάλωση ισχύος και η κατανάλωση ενέργειας συγχέονται και

ϑεωρείται ότι είναι το ίδιο. Αυτό είναι λάθος. Η χαµηλή κατανάλωση ισχύος δεν

µας εξασφαλίζει και χαµηλή κατανάλωση ενέργειας. Στα σύγχρονα ενσωµατωµένα

συστήµατα, η ενέργεια είναι ο καθοριστικός παράγοντας που πολλές ϕορές καθορίζει

την επιτυχία ενός επεξεργαστή. Η χαµηλή κατανάλωση ισχύος και η υψηλές



Εικόνα 2: Επισκόπηση των εργαλείων ανάπτυξης επεξεργαστών ASIP της Target που

χρησιµοποιήθηκαν για αυτή την εργασία

επιδόσεις από µόνες τους δεν είναι αρκετές, καθώς αυτά τα δύο πολλές ϕορές

έρχονται σε αντίθεση. ΄Ενας επεξεργαστής που σχεδιάζεται για χαµηλή κατανάλωση

συχνά δεν έχει καλές επιδόσεις ή αναγκάζεται να λειτουργεί σε χαµηλή συχνότητα,

µε αποτέλεσµα να χρειάζεται περισσότερη ενέργεια για να ολοκληρωθεί µία εργασία.

΄Αρα, ένας σχεδιαστής επεξεργαστών πρέπει να κάνει ένα συµβιβασµό και να κρατήσει

µία ισορροπία ανάµεσα στην ισχύ και την επίδοση, ανάλογα µε την εφαρµογή για την

οποία προορίζεται. Ευτυχώς, στους επεξεργαστές ASIP , είναι εύκολο και γρήγορο

να γίνουν αλλαγές που αλλάζουν αυτές τις ισορροπίες.

Υπάρχουν διάφορες τεχνικές για να µειωθεί η κατανάλωση ισχύος, και οι

οποίες µπορούν να εφαρµοστούν σε διαφορετικά επίπεδα της σχεδίασης (επίπεδο

µεταγλωττιστή, αρχιτεκτονικής ή κυκλωµάτων), όπως δυναµική κλιµάκωση τάσης

DVS - Dynamic Voltage Scaling, clock gating , ή κωδικοποίηση δεδοµένων. Κάθε

µία από αυτές έχει τα δικά τις πλεονεκτήµατα και είναι στη διάθεση του σχεδιαστή

να επιλέξει ποια αυτές να χρησιµοποιήσει.

Συνήθως ϑεωρείται δεδοµένο ότι όσο πιο µικρή η µνήµη που χρησιµοποιεί ένας

επεξεργαστής, τόσο καλύτερα. Αλλά αυτό που παραβλέπεται είναι η επιβάρυνση που

έχει η χρήση της µικρής µνήµης στα υπόλοιπα µέρη του σχεδίου. Για ακριβώς

αυτό το λόγο, διερευνάται σε αυτή την εργασία το κατά πόσο µία µεγαλύτερου

µήκους λέξη εντολής µπορεί να αποδώσει καλύτερα για το σύνολο του συστήµατος,

παρά το επιπλέον κόστος στη µνήµη, καθώς αυτή ϑα επέτρεπε στον σχεδιαστή να

χρησιµοποιήσει τα επιπλέον διαθέσιµα ψηφία της λέξης εντολής για να προσαρµόσει

το σύνολο εντολών ακριβώς στην εφαρµογή για την οποία προορίζεται ο επεξεργαστής

και κατόπιν να επανακωδικοποιηθεί µε πιο αποτελεσµατικό τρόπο.



Μελέτες σε διάφορες σύγχρονες εµπορικές SRAM µνήµες δείχνουν ότι παρότι

οι µεγαλύτεροι πίνακες µνηµών (που αποτελούνται από άλλους µικρότερους

υποπίνακες) τείνουν να προσφέρουν περισσότερο αποθηκευτικό χώρο για την

περιοχή που διεκδικούν στο ολοκληρωµένο, η κατανάλωση ισχύος (αναφορικά µε

την συχνότητα λειτουργίας) τείνει να αυξάνεται µε ταχύτερους ϱυθµούς όσο το

µέγεθος της λέξης αποθήκευσης ή ο συνολικός χώρος αποθήκευσης αυξάνεται

(εικόνα 3). Αυτό συνεπάγεται ότι ενώ οι µικρότερες µνήµες είναι καλύτερες

σε κατανάλωση ισχύος, οι µεγαλύτερες µνήµες µπορούν να προσφέρουν πολύ

περισσότερο αποθηκευτικό χώρο για αναλογικά λιγότερη απαιτούµενο χώρο στο

ολοκληρωµένο, το οποίο µε τη σειρά του έχει άµεση επίδραση στην κατανάλωση

ενέργειας. Η καλύτερη λύση είναι µία ενδιάµεση τιµή µεγέθους λέξης και µεγέθους

µνήµης που εγγυάται υπεραρκετό αποθηκευτικό χώρο (ειδικά για τη µνήµη των

εντολών εκτέλεσης) µε αναλογικά µικρότερο ενεργειακό κόστος.

Εικόνα 3: Μέση κατανάλωση ενέργειας µε διαφορετικό µέγεθος λέξης και µνήµης για

εµπορικές SRAM

Η αρχιτεκτονική του συνόλου εντολών είναι ένα από τα κυριότερα και

πιο καθοριστικά χαρακτηριστικά ενός επεξεργαστή. Αυτό ισχύει και για τους

επεξεργαστές ASIP, όπου τα εργαλεία λογισµικού του παράλληλου σχεδιασµού

υλικού και λογισµικού (hardware/software co-design) πρέπει να προσαρµοστούν

σε αυτό το σύνολο εντολών και να το υποστηρίξουν.

Μία από τις πιο σηµαντικές αρχιτεκτονικές επεξεργαστών είναι οι αρχιτεκτονικές

SIMD (Single Instruction Multiple Data). Αυτές επιτρέπουν την καλύτερη

αξιοποίηση παράλληλων εντολών εκτέλεσης (instruction-level parallelism).

Υπάρχουν διάφορες προσεγγίσεις για την υλοποίηση µίας τέτοιας αρχιτεκτονικής,



µε κυριότερες την υλοποίηση της σε υλικό (hardware SIMD) ή λογισµικό (software

SIMD). Η αρχιτεκτονική hard-SIMD στηρίζεται σε πολλαπλές µονάδες εκτέλεσης στο

υλικό ενώ η soft-SIMD µεταφέρει αυτήν την πολυπλοκότητα στον µεταγλωττιστή του

κώδικα εκτέλεσης και τον αποκωδικοποιητή του συνόλου εντολών.

Κατά τη διάρκεια αυτής της διπλωµατικής αναπτύχθηκε ένας επεξεργαστής ASIP

µε αρχιτεκτονική hard-SIMD ο οποίος και συγκρίθηκε µε έναν απλό επεξεργαστή και

έναν soft-SIMD µε σκοπό να διερευνηθούν οι επιδόσεις σε ενέργεια και απαιτούµενο

χώρο σε ολοκληρωµένο. Σαν εφαρµογή ελέγχου της επίδοσης χρησιµοποιείται

µία ϐιοϊατρική εφαρµογή ϐασισµένη σε ένα Γκαουσιανό ϕίλτρο. Τα αποτελέσµατα

δείχνουν ότι και οι δύο υλοποιήσεις επεξεργαστών SIMD έχουν σαφώς καλύτερες

επιδόσεις από τον απλό επεξεργαστή (εικόνα 4). Εφόσον µπορούν να εκτελέσουν την

εφαρµογή πιο γρήγορα µε µικρότερο αναλογία κατανάλωσης ισχύος και συχνότητας

λειτουργίας, έχουν και σαφώς µικρότερο ενεργειακό κόστος.

Εικόνα 4 Συγκρίσεις για τις καταναλώσεις ενέργειας για τις µνήµες, τα µέρη λογικής και

συνολικά για τις τρεις διαφορετικές αρχιτεκτονικές

Η σύγκριση µεταξύ των δύο υλοποιήσεων hard-SIMD και soft-SIMD είναι

κάπως δύσκολη, καθώς διαφέρουν σε πολλά σηµεία, αλλά επικεντρώνεται στην

κατανάλωση ενέργειας γιατί αυτό είναι το σηµείο που µας ενδιαφέρει περισσότερο. Η

αρχιτεκτονική hard-SIMD απαιτεί λίγο µικρότερο ποσό ενέργειας για την ϐιοϊατρική

εφαρµογή, µε µικρότερη περιοχή απαιτούµενων κελιών στο ολοκληρωµένο. Υλοποιεί

στο υλικό της τέσσερις πολλαπλασιαστές των 16 ψηφίων για τον υπολογισµό των

λειτουργιών που χρειάζεται η µονάδα MAC (Multiply-Accumulate), οι οποίοι είναι

πολύ απαιτητικοί τόσο σε χώρο στο ολοκληρωµένο όσο και σε ισχύ. Παρόλα

αυτά έχει ένα συνολικά σχετικά απλό σχεδιασµό. Η αρχιτεκτονική soft-SIMD

έχει αρκετές πολύπλοκες ϐελτιστοποιήσεις µε κυριότερες ένα εξελιγµένο αρχείο



καταχωρητών για αποθήκευση διανυσµατικών δεδοµένων (Vector Vegister File), µία

µονάδα επεξεργασίας διανυσµατικών δεδοµένων µέσω επαναληπτικών ολισθήσεων

και προσθέσεων (vector shift-add unit) που υποκαθιστά τους πολλαπλασιαστές

MAC και λέξη εντολής µήκους 80 ψηφίων που µπορεί να προσαρµοστεί σε

διαφορετικά µεγέθη υπολέξεων. Μελετώντας τα αποτελέσµατα µετρήσεων ενέργειας

για τα διάφορα µέρη της κάθε αρχιτεκτονικής (εικόνα 5), είναι εµφανές ότι

η πολυπλοκότητα που επιβάλλουν οι προσθήκες της αρχιτεκτονικής soft-SIMD

στα υπόλοιπα µέρη του επεξεργαστή και κυρίως στον αποκωδικοποιητή εντολών

(ο οποίος πρέπει να αποκωδικοποιήσει µία πολύ µεγάλη λέξη εντολής των 80

ψηφίων) τα επιβαρύνει πάρα πολύ µε αποτέλεσµα να αυξάνεται δραµατικά η

απαίτηση σε χώρο και κατανάλωση ισχύος. Από αυτά συµπεραίνουµε ότι καθαρά

από την οπτική πλευρά της κατανάλωσης ενέργειας, η αρχιτεκτονική hard-SIMD

µε τον πιο απλό και ξεκάθαρο σχεδιασµό της που εξυπηρετεί στην γρήγορη

ανάπτυξη και αποσφαλµάτωση του επεξεργαστή και παρέχει πολύτιµο χώρο για

ϐελτιώσεις στην σχεδίαση και κυρίως κωδικοποίηση του συνόλου εντολών µέσω

πειραµατικών ϐελτιστοποιήσεων, κάτι που αξιοποιεί πλήρως τις δυνατότητες των

εργαλείων ανάπτυξης επεξεργαστών ASIP.

Εικόνα 5: Συγκρίσεις κατανάλωσης ενέργειας µεταξύ των διαφορετικών τµηµάτων των

αρχιτεκτονικών hard-SIMD και soft-SIMD

Η αρχιτεκτονική hard-SIMD κατόπιν µετατράπηκε σε αρχιτεκτονική µε

ορθογώνιο σύνολο εντολών, και το µήκος της λέξης εντολής από 16 ψηφία έγινε

48. Η αρχική ιδέα ήταν να γίνει η αρχιτεκτονική του συνόλου εντολών όσο γίνεται



µεγαλύτερη και πλήρως ορθογώνια, δίνοντας έτσι τη δυνατότητα πλήρους ελέγχου

στα παραγόµενα σήµατα αλλά αυτό δεν κατέστη δυνατόν λόγω τον περιορισµένων

δυνατοτήτων των τρεχόντων εκδόσεων των εργαλείων ανάπτυξης. Η νέα λέξη εντολών

µήκους 48 ψηφίων (εικόνα 6) περιέχει 17 ψηφία για την επιλογή της εντολής και των

παραµέτρων λειτουργίας της (opcode), 3*3=9 ψηφία για τους τρεις απλούς τελεστές,

3*2=6 ψηφία για τους διανυσµατικούς τελεστές και 16 ψηφία για άµεση εισαγωγή

τιµών(offset).

Η ορθογώνια αρχιτεκτονική συνόλου εντολών µήκους 48 ψηφίων

Η νέα ορθογώνια αρχιτεκτονική, παρά το τέσσερις ϕορές µεγαλύτερο µήκος

λέξης εντολής και άρα και µέγεθος µνήµης εντολών προγράµµατος είναι 10% πιο

αποδοτικό ενεργειακά σε σχέση µε την προηγούµενη αρχιτεκτονική (soft-SIMD),

καθώς µειώνεται κατά πολύ η κατανάλωση ενέργειας του αποκωδικοποιητή εντολών,

της µονάδας MAC και των άλλων τµηµάτων.

∆ιεξήχθησαν διάφοροι πειραµατισµοί για το πως ϑα µπορούσε να µειωθεί

η πολυπλοκότητα του αποκωδικοποιητή µέσω της κωδικοποίησης του συνόλου

εντολών. Αυτό πετυχαίνεται µε τη χρήση των αρκετών ψηφίων στο µήκους 17 ψηφίων

opcode που δεν χρησιµοποιούνται, µε σκοπό να ϐελτιωθεί η γραµµατική nML που

περιγράφει το σύνολο εντολών και µέσω αυτής ο παραγόµενος κώδικας περιγραφής

υλικού και να γίνει πειραµατισµός µε διαφορετικές µεθόδους κωδικοποίησης

και µήκη λέξης εντολής. Τα εργαλεία ανάπτυξης ASIP παρέχουν επιλογές

για παρακολούθηση της εκτέλεσης ενός προγράµµατος και εξαγωγή στατιστικών

στοιχείων, κυρίως για τα ποσοστά εκτέλεσης της κάθε εντολής. Αυτά τα στοιχεία,

σε συνδυασµό µε τη δυνατότητα γρήγορης παραγωγής νέου κώδικα περιγραφής

υλικού που δίνουν τα εργαλεία ανάπτυξης ASIP, επιτρέπουν την εξερεύνηση

διαφορετικών επιλογών χωρικής ή χρονικής τοπικότητας και των επιπτώσεων τους

στην αρχιτεκτονική και την κατανάλωση ενέργειας που αυτή απαιτεί. Το µόνο

πρόβληµα είναι ότι χρειάζεται ένας αυτοµατοποιηµένος τρόπος για να µπορεί

γρήγορα µία νέα περιγραφή nML να περάσει από τα διάφορα στάδια µεταγλωττίσεων,

προσοµοιώσεων και επαληθεύσεων µέχρι την παραγωγή κώδικα περιγραφής υλικούς

και καθώς την σύνθεση του µε στοιχεία ϐιβλιοθηκών ολοκληρωµένων κυκλωµάτων

και την εξαγωγή στοιχείων για την κατανάλωση ενέργειας και την µετατροπή αυτών

σε ϕιλική και ευανάγνωστη για τον χρήστη µορφή. Αυτό λύνεται µε τη χρήση

διαφόρων σεναρίων εκτέλεσης (scripts) ή προγραµµάτων από διάφορες γλώσσες

προγραµµατισµού.

Η τελική υλοποίηση σαν αποτέλεσµα των προαναφερθέντων µεθόδων, διατηρεί

τον ϐασικό περιορισµό ότι δεν πρέπει να γίνουν αλλαγές στην ϐασική

λειτουργικότητα και το πλήθος των εντολών, γιατί παρόλο που αυτό ϑα έδινε πολλές

παραπάνω δυνατότητες, ανοίγει τον ‘ασκό του Αιόλου’ για την πολυπλοκότητα



της αρχιτεκτονικής και των πειραµατισµών. Μέσω της χρήσης διαφορετικής

κωδικοποίησης για τις εντολές που ανήκουν σε ϐρόγχους επαναλήψεων που

εκτελούνται πάνω από το 95% στο σύνολο των εντολών, και των ϐελτιστοποιήσεων

της κωδικοποίησης τους τόσο συνολικά όσο και µεταξύ τους, προκύπτει ότι

υπάρχει τεράστια µείωση στην δραστηριότητα αλλαγής ψηφίων (toggling activity)

του αποκωδικοποιητή εντολών των µνηµών, τα οποία µε τη σειρά τους ϐελτιώνουν

την συνολική κατανάλωση ενέργειας κατά 8% σε σύγκριση µε την αρχική ορθογώνια

αρχιτεκτονική και 15% σε σύγκριση µε την αρχιτεκτονική SIMD (εικόνα 7).

Εικόνα 7: Συνολική κατανάλωση ενέργειας την αρχιτεκτονική SIMD, την αρχική και την

ϐελτιστοποιηµένη αρχιτεκτονική ορθογώνιου συνόλου εντολών

Είναι προφανές ότι η κωδικοποίηση του συνόλου εντολών και του µήκους λέξης

εντολής αποτελεί ένα σηµαντικό παράγοντα στην ενέργεια και τις επιδόσεις ενός

επεξεργαστή. Με την χρήση των εργαλείων σχεδίασης ASIP και των δυνατοτήτων

γρήγορου επανασχεδιαµού που µας παρέχουν µπορούµε να προσαρµόσουµε το

σύνολο εντολών στην εφαρµογή για την οποία προορίζεται, µε αποτέλεσµα να

µειώνεται δραστικά η κατανάλωση ενέργειας χωρίς απώλεια στις επιδόσεις. Το µήκος

της λέξης εντολών ορίζει τη σχέση µεταξύ της πολυπλοκότητας των µνηµών και της

συνολικής αρχιτεκτονικής (µέσω του αποκωδικοποιητή εντολών) (εικόνα 8). Μία

µικρότερου µήκους λέξη εντολής χρειάζεται µικρότερη µνήµη και µεταφέρει την

πολυπλοκότητα στον αποκωδικοποιητή εντολών, ενώ µία µεγαλύτερη λέξη εντολής

προϋποθέτει έναν απλούστερο αποκωδικοποιητή αλλά µεγάλες µνήµες. ΄Οµως,

µερικές ϕορές και ανάλογα το πεδίο εφαρµογών η µείωση της δραστηριότητας

toggling των εντολών είναι πιο σηµαντική από από το µήκος τους.

Συνδυάζοντας τα δεδοµένα από τους πειραµατισµούς στις διαφορετικές

αρχιτεκτονικές ASIP µε τα δεδοµένα από τις µετρήσεις στις µνήµες, προκύπτει το

συµπέρασµα ότι καθώς η ενέργεια είναι καθοριστικός παράγοντας στη σχεδίαση,

ένας επεξεργαστής και κυρίως ένας επεξεργαστής ASIP µπορεί να ωφεληθεί πάρα



Εικόνα 8: Απαιτούµενος χώρος σε ολοκληρωµένο (σε χώρο κελιών) για την αρχιτεκτονική

SIMD και τις δύο αρχιτεκτονικές µε ορθογώνιο σύνολο εντολών

πολύ από ένα µεγαλύτερο σε µήκος λέξης και όχι υπερβολικά συµπιεσµένο σύνολο

εντολών, το οποίο µπορεί να µειώσει την συνολική πολυπλοκότητα σε όλη τα

επιµέρους τµήµατα της αρχιτεκτονικής, άρα και την απαιτούµενη ενέργεια χώρο

σε ολοκληρωµένο, και παρέχει τη δυνατότητα ϐελτιστοποιήσεων για συγκεκριµένες

εφαρµογές χωρίς να επιβαρύνει πολύ τις µνήµες. Πάραυτα, η αύξηση του µήκους

της λέξης εντολών πρέπει να γίνει ελεγχόµενα λόγω της εκθετικά αυξανόµενης

κατανάλωσης ισχύος πάνω από το µήκος λέξης 64 ψηφίων. Είναι στην ευχέρεια του

σχεδιαστή να επιλέξει το κατάλληλο µέγεθος λέξης εντολής για την κάθε περίπτωση.
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Chapter 1

Introduction

1.1 Motivation

Embedded systems have developed a lot the last decade, with a main research

focus on improving performance and cost and secondary on improving power,

flexibility or reliability. However, the same principles do not apply on the market

anymore. Nowadays, one of the features that has come to pose a big problem is

that of power and energy consumption. By rapidly increasing the performance,

we have increased the energy consumption of the system at an even greater rate.

Application Specific Instruction-set Processors were developed and introduced to

SoC design for their unique feature to combine performance, flexibility and power

efficiency. There has been a lot of work in the field of performance, but in the field

of power there is still a lot of space for improvement.

The motivational framework for this study is summarized in the following

sections, including an introduction to embedded systems, processors and

especially ASIPs that provides the reader with essential information for the next

chapters

1.1.1 Embedded systems

Embedded computer systems are computers inside devices designed to perform

certain functions and are one of the most rapidly growing part of the computer

industry. These devices are everyday machines excluding laptops, desktops or

servers (which are by comparison general purpose) and they range from mobile

phones, hand-held digital devices or video consoles to cars and washing machines.

Their purpose is to perform a specific task as efficiently as possible (perceived by

the common user as “fast” or “responsive”) while providing a certain autonomy

on battery or generally low power consumption. They are usually programmed to

perform just a handful of functions or programmable but within small limits. The
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parts of the code that are used most often are heavily optimized. More complicated

systems come with firmware which can be updated for bug corrections or added

functionality. That is how they manage to uphold time-to-market deadlines and

reduce the cost.

Compared to desktops, embedded systems differ in a lot of ways. They

have a much broader range of technical characteristics since each one is

developed for a precise function, from low-end and cheap 8-bit or 16-bit

embedded microprocessors to way high-end, efficient and expensive embedded

microprocessors that provide greater functionality and maximum performance.

Also, unlike desktops, each embedded system is developed with predefined

criteria, usually in performance, area, responsiveness, or energy consumption,

with more narrow limits.

Embedded systems are also used for real-time systems where they are

programmed to meet specific real-time constraints, meaning that the time from

certain events until the proper response of the system cannot exceed a set time

limit. Those real-time systems can be either soft or hard. In hard real-time

systems (e.g. in planes), failing to keep up to the deadline results in a complete

system failure, so the design and standards of those systems are far more strict,

or soft real-time systems where a few failures are tolerated but they reduce the

quality of service.

Typically, the purpose of an embedded system is to process information

in the form of signals, so one of the most common embedded systems are

digital signal processors (DSPs). The term “signal” does not necessarily denote

a telecommunication transmission, but it could also be a video, an image, a

sound or any form of data. DSPs are specialized processors optimized for for

digital signal processing algorithms. These algorithms are from many domains,

from transforms (e.g. Discrete Cosine Transform, Fast Fourier Transform), time-

domain filtering (e.g. finite impulse response or infinite impulse response filters)

or convolution to error correction. But in all those the core unit is common: the

multiply-accumulate operation. A characteristic example is the Finite Impulse

Response (FIR) filter:

Y [n] =
∑

X[n− k]h[h]

whereX[n] is the sampled input, h[k] are the filter coefficients that characterize

the particular filter and Y [n] is the output.

As indicated above, the filter is composed of registers, multipliers and an

adder, therefore the core that is repeated is comprised of subsequent additions of

a product. For the DSP to be effective, this core has a dedicated hardware unit to

perform the multiply-accumulate operation (MAC). So a MAC instruction of “MAC

A,B,C” actually implies “A = A + B * C”. There has been a lot of research in trying

to optimize the MAC unit, because in many cases that is where the bottleneck of

the whole system lies. Another common way used to accelerate communication
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algorithms is by optimizing encoding and decoding forward error correction codes.

Performance versus power consumption

In contrast with the desktop/server market, in the embedded market power

consumption and production cost play a much greater role. Desktop and server

systems have a stable power supply whereas most embedded systems rely on

battery supply. Therefore, embedded systems compared to desktop ones are not

only constrained in terms of cost, physical area and memory size but also in

energy consumption. As a result the designers have to measure carefully the

metrics of their system, weighting performance against energy consumption. For

example, it would be inefficient to produce an embedded system that has great

performance, but drains the battery really fast, or the other way around, one that

has an excellent low power consumption but takes a really long time to perform

its given task.

To measure effectively and accurately the performance and power

consumption, specific benchmarks are used (like EEMBC). Figures 1.1 and

1.2 show the relative performance per watt of typical operating power and raw

performance compared a specific processor respectively. From these two figures

it is very interesting to notice certain points that stand out. For example, the NEC

VR 4122 is probably the best one in terms of performance per watt, especially for

the telecomm benchmark, but is second-last when it comes to raw performance.

On the other hand the PowerPC has the best performance but is draining a lot of

power that makes it unsuitable for battery-powered embedded systems.

Figure 1.1: Relative performance per watt for five embedded processors [Henn06].
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Figure 1.2: Raw performance for five embedded processors, The performance is presented

as relative to that of the AMD ElanSC520 [Henn06].

Embedded multiprocessor systems

Nowadays, mainly in servers but also in desktop systems, using multiprocessors

is a common way to boost performance. Likewise in embedded systems,

multiprocessors are used, with different special-purpose processors. This proves

highly effective, since each specialized processor can handle efficiently specific

functions. A prime example of an embedded multiprocessor is a modern mobile

phone, equipped with one or more ARM cores, several DSPs and even more

dedicated ASIC co-processors for specific tasks, like Viterbi decoding
1
.

There are also two reasons for the popularity of multiprocessors in the

embedded space. The first one is that they make it easier to exploit the parallelism

that already exists is many applications, by assigning parts of the code to different

special-purpose processors. The second is that, as mentioned before, the parts

that are most commonly used are optimized for each embedded processor, and

that eliminates the problem of binary software compatibility that still troubles

many desktop systems.

1.1.2 Processor design and instruction set architecture

Processor designers today face a complex problem. When designing a processor,

they have to determine which attributes are more important, and in general

try to design a processor with as great performance as possible while at the

same time keeping in line with the constraints in area, power and cost. As

1
Viterbi decoding uses the Viterbi algorithm to decode a bitstream that is encoded using forward

error correction based on convolutional code. It is resource-consuming but does maximum

likelihood decoding
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mentioned very precisely on [Catth10], processor design is a game of many trade-

offs, and the designer has to balance the attributes of the processor and many

other aspects including instruction set architecture, organization, logic design

and implementation. The implementation may include integrated circuit design,

packaging, power and cooling. Optimizing the design requires familiarity with a

wide range of technologies, from compilers and operating systems to logic design

and packaging.

The instruction set architecture (ISA) is the most defining part of processor and

what defines the communication between the hardware and the software. The

main characteristics of an ISA[Henn06] are clearly defined as follows:

1. Class of ISA - General or special purpose architecture. Register-memory or

load-store oriented.

2. Memory addressing - All desktop and server computers use byte addressing

to access memory operands. Some ISAs also require that the data has to be

aligned to be read and written correctly.

3. Addressing modes - They specify registers, constant operands and the

address of a memory object.

4. Types and sizes of operands - Common examples for fixed-point are 8-

bit(ASCII character), 16-bit(half-word or unicode character), 32-bit(word or

integer) or 64-bit(double word) and for floating point 32-bit(single precision),

64-bit(double precision) or even 80-bit(extended double precision).

5. Operations - Data transfer, arithmetic, logical, control etc.

6. Control flow instructions - Conditional branches, unconditional jumps,

procedure calls and returns.

7. Encoding an ISA - Usually fixed length or variable length. More about this

on chapter 3.3.

VLIW and vector processors

Very Long Instruction Word (VLIW) processors are multiple-issue processors that

use many, independent functional units to exploit instruction-level parallelism

(ILP). Instead of using multiple instructions for different units, VLIW processors

have a single very long instruction word that contains multiple operation

instructions, one for each of the functional units. Taking full advantage of

a VLIW requires to focus on a wider-issue processor so as to maximize the

issue rate. In order to fully utilize this architecture, the code generated by the

compiler must contain enough parallelism to provide instructions to as many

of the functional units as possible in each cycle. Modern compilers use code
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transformation techniques like loop unrolling or scheduling techniques like local

or global scheduling to detect and enhance the required parallelism.

Explicitly parallel instruction computing (EPIC) processors were introduced by

HP and Intel to address and overcome some of the common problems of VLIW,

mainly in flexibility, code size and improved software speculation. By using

explicit indicators for possible instruction dependencies and multiple instruction

formats instead of the fixed instruction format of VLIW and so is able to express

parallelism more flexibly and reduce the size of the generated code.

Of course, nowadays there is also the choice of vector processors for some

applications. Vector processors offer operations that can process a lot of data

at the same time in special vector functional units, provided that those data are

vector form, linear arrays of numbers. So vector processors can provide faster

results at the same cost but only for specific applications in structured code that

the vectorization can be applied. Otherwise, VLIW are preferred for their ability to

extract parallelism from less structured code and adapt to all forms of application

data.

One of the most common vector architectures used for both desktop and

embedded systems is Single Instruction Multiple Data(SIMD), as it was classified

by Flynn’s taxonomy. SIMD can exploit data-level parallelism, by applying the

same operation to multiple data in parallel (vectorized data). It is most effective

in applications that show great data-level parallelism, like high performance

applications, graphics acceleration and many digital filters.

Orthogonal instruction set

Orthogonal instruction set is a term used in computer engineering to classify

an instruction set architecture where any instruction can use data of any type

through any addressing. The word orthogonal, meaning “right angle” in greek,

is used in a similar way to geometry and mathematics and implies that the ISA

provides the capability to move along the operations axis independently of the

other addressing mode axis and vice versa, thus enabling all possible operation

and addressing mode combinations but forcing a limited set of operational codes

and addressing modes.

Many CISC based computers generally follow the orthogonal instruction set,

by allowing an instruction to access either the register file or the main memory in

several different ways. There are several fully orthogonal computer systems like

PDP-11 and VAX-11 or others that are nearly orthogonal like DEC PDP-11 and

Motorola 68000.

In RISC architectures, orthogonality is also used, but not full orthogonality

because that would lead to a less efficient architecture, and several instruction

bits are used instead for other purposes. So there is a trade-off that is usually

made for each architecture between orthogonality and enabling other techniques
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like virtual addresses, longer immediate data or larger register files.

1.1.3 Application specific instruction-set processors

Traditional ASICs (Application Specific Integrated Circuits) have great

performance and low energy consumption but lack flexibility since they are

designed and optimized to perform a specific task. DSPs (Digital Signal

Processors) are flexible and their performance is very good but they are not energy

efficient at all. And that is the reason why ASIPs are developed. They perform

almost equally well and can also be energy efficient, but their strong point is their

flexibility (fig:1.3). The design effort for mapping code on an ASIP is quite low, but

still higher than that of an ASIC [Catth10]. Thankfully, there are many automated

tools that can help in this and make it less of a challenge.

Figure 1.3: Different design styles target different design metrics [Catth10]

Application Specific Instruction-set Processors (ASIPs) are nowadays used

increasingly in System-on-Chip design to design a programmable processor with

an instruction-set tailored to fit the needs of a specific application domain.

They bridge the architectural gap between general purpose processors and

ASICs (Application Specific Integrated Circuits) combining the advantages of both

"worlds". They are developed using a user-friendly processor description language

called Architecture Description Language (ADL) (see 2.5), an efficient retargetable C

compiler along with accurate simulation and profiling tools, and so considerably

decrease the time needed to develop a new processor.

In the application domains of image and video processing, ASIPs can use a
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combination of VLIW and SIMD along with powerful compilers and other tools

and techniques to maximize efficiency and make optimal architectural trade-offs.

Instruction word size against instruction decoder complexity for energy

efficiency

Recent results on the power dissipation figures of various latest processor cores

show an increasing percentage of the overall consumption is due to the instruction

memory and the decoder. As seen both in the ultra-low power biomedical signal

processor CoolBio of IMEC,Holst Centre and NXP and ICORE[Zhang08], the power

consumption attributed to the decoder takes up 28-42% of the total consumption.

Figure 1.4: Power consumption for different components of CoolBio executing ECG v1.0

code

In commercial processors in the effort to increase their capabilities their

instruction set contains not only a lot of instructions compared to the small

instruction word, but also these instruction often are very complicated in their

structure and addressing modes they have to support.

Concurrently, as noticed on latest commercial SRAM memories, doubling the

size of the memory width does not incur an equal rise in power consumption.

More about that on a later chapter.

As illustrated in figure 1.5, for a commercial ASIP the average power

consumption and the performance required are included in the shaded area

of the triangle. For different code optimization level there is also a different

different performance required, meaning that better optimized code requires a

lower operational frequency, that results to lower power consumption. This
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means that the average power drops while the mW/MHz for a task rises. If the

instruction set is tailored for the functions then the code can be executed faster

and more efficiently. Increasing the supply voltage would increase the power

consumption and thus the lines of the triangle would rise in the Y axis, at a

“steeper” angle. Leakage is omitted for now. Therefore, since bigger frequencies

have a negative impact on power consumption and the aim is not simply a low

power consumption but a smaller energy consumption per task. So instead of

mW/MHz, using J/function is more a accurate metric for energy efficiency.

Figure 1.5: Average power and performance depending on the level of code optimization

for a commercial ASIP

So it needs to be looked into whether the energy gains from having a longer,

simpler and more orthogonal instruction set in an ASIP, or even a fully orthogonal

VLIW processor (see fig.1.6) can compensate for the extra energy incurred by the

bigger memories needed.

It also the purpose of this thesis to explore the capabilities of a commercial ASIP

development tool, like the Target tool suite used for the development of several

ASIP cores, investigate the limits of those capabilities and give suggestions for

future additions that could be added. This study also looks into how the ASIP

tools can be fully utilized to exploit the energy effiency dynamics of a design for a

specific application domain.
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Figure 1.6: VLIW data paths: a) orthogonal b) clustered [Leup00]

1.2 Objectives

The main objectives of this thesis are the following:

• Investigate how different components and overall power consumption are

affected by changes in the width of the instruction.

• Experiment with different encodings for the instruction set of an ASIP and

notice their effect on the instruction decoder.

• Find the best trade-off between the width of the instruction and the memory

size for low power consumption, considering that the former has a very

strong impact on the instruction decoder.

• Benchmark and provide suggestions for improving and extending existing

designs.

• Automate the whole procedure from designing an ASIP processor to

generating the HDL and benchmarking its area and power performance and

provide suggestions and feedback to Target
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1.3 Thesis Outline

The main body of this report is divided as follows.

Chap. 2 provides related work on the fields of ultra-low power processor design,

code compression and encoding and ASIP methodology which are associated with

this thesis as well as the background information and case studies that are needed

to understand it.

Chap. 3 provides the development framework of Target tool flow, analyzing the

way the nML grammar is used to describe an instruction set architecture and

tools along with the basic options that they offer.

Chap. 4 includes the analysis and implementation of a SIMD processor and

another soft-SIMD and the experimental results of their comparison to a scalar

processor and to each other,

Chap. 5 deals with the basic implementation of an orthogonal processor and

the various experiments conducted on it to achieve power efficiency. It also shows

the results of all the implementations during this thesis.

Finally, Chap. 6 summarizes what’s been achieved, provides the conclusions

of this study, the open questions and what could be done next.
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Chapter 2

Background and Related Work

The last fifteen years there has been a lot of work about ASIPs and various low-

power design techniques. This chapter provides an insight to several state of the

art approaches to problems and challenges in the field related to this thesis, but

also slightly older ones that can be revisited.

2.1 Ultra-low power processor design

Having a an power efficient processor is of grave importance in most systems,

but it is difficult goal to achieve because improving power consumption

creates a contradiction with other main characteristics of the processor, like

performance or flexibility. There are various techniques that can be used

for efficient ultra-low power processor design [Piguet06], like CPI (cycles

per instruction) reduction, gated-clock mechanisms, optimal pipeline length,

hardware accelerators, reconfigurable units and techniques for reducing the

leakage power. DSPs are a prime example that helps demonstrate the necessary

tradeoff between flexibility and energy efficiency.

The two main constraints for SoC design are none other than power efficiency

and computation power. When it comes to the portable consumer market, power

efficiency is the defining constraint, particularly in deep submicron technologies,

where designers are coming up against new problems, like very low supply

voltages, high leakage, long wire delays, networks on chip, signal input slopes,

noise and crosstalk effects.

The components that commonly take up a big part of the power pie are

the memories. There are various well-known methods for reducing the power

consumption of memories (more about that on chapter 2.2), but it should be

still kept in mind that the power consumption of the processor itself can also be

improved, and that it is the processor that defines the types and sizes of memories

needed. But coming up with the “ideal” processor, meaning one that is flexible,
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has great computational power and is also power efficient is virtually impossible.

So there has to be a tradeoff between those three, and the best criterion for that

would be to base them on the needs of the application of the processor.

2.1.1 Power dissipation

In order to understand how low power techniques work, it is vital to have in mind

the various factors that make up power dissipation.

Power dissipation is divided itself in dynamic and static components. Dynamic

is attributed to the switching activity caused by temporary current paths

(while pMOS or nMOS stacks are partially ON) and charging or discharging

the capacitors as gates switch, so it is directly proportional to the switching

frequency. The static component is the power dissipated due to static conductive

paths between the supply rails or leakage currents, which is there even if

there is no switching activity. Leakage can be either sub-threshold through

OFF transistors, gate leakage through gate dielectric or junction leakage from

source/drain diffusion.

A chip and thus power can be considered to be in one of three modes at any

time: active, standby or sleep. Active is the power consumed while the chip is

working, and is dominated by the switching power. Standby power is consumed

while the chip is idle, so if the clocks are stopped it is mostly leakage power. Sleep

power is consumed when various components are not needed for a certain time

period and their power is turned off to drastically decrease the leakage. However

there is an extra cost in energy and time needed to put a component to sleep or

wake it up, therefore making this a viable solution only if the component is not

going to be used for a long period.

2.1.2 Energy or power focus

The term power consumption defines the amount of energy consumed per

operation and the heat dissipation of a design, and those two in turn affect several

other aspects of the design, like battery life, cooling, placement and packaging.

Therefore, power dissipation plays an important part in the design.

Many times, the power characteristics of a chip are described with power

for a set frequency, i.e. 10mW @ 1GHz. It is easy to calculate the energy but

reporting an energy number makes things much more clear and helps avoid

misunderstandings.

A common misunderstanding in embedded system design on whether a

designer should aim for energy or power optimization, considering that the two

are relative to each other (Energy = Power x Time). But as shown on figure 2.1,

there is a distinct difference between energy and power, considering that power is

the instantaneous power in the device but it is energy (the area under the curve
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in the figure) that is truly important for portable systems and actually determines

the duration of the battery.

In high performance systems, where the basic focus is performance, there is a

consumption limit set by the technical characteristics of the chip and its cooling

capabilities. However, in portable and embedded systems it is of great importance

to keep a low energy limit, because the focus lies in the maximum number of

computation in the time range between battery charges. So, in portable and

embedded systems having a system with 50% less power consumption that is

compelled to run on 50% its frequency (to keep the power consumption at low

levels) leads to exactly the same energy, since the total energy consumed for the

same task that runs on 50% “low-power” but takes twice the time to complete is

still the same. So low power consumption by itself is clearly not enough.

Figure 2.1: Power versus energy [Keat07]

2.1.3 Low energy metrics

In literature normally the power efficiency of processors is indicated with figures

of merit like mW/MHz or pJ/cycle describing the energy cost of processor cycles.

It is interesting to have a low number since that shows the low-power properties

of a processor core. It shows the power dissipation at a predetermined clock

frequency. Using this figure of merit disguises however the more important

aspects of processors for wireless sensor nodes (and other battery-operated)

devices. The amount of energy to do a certain job is a more important metric.

What really needs to be optimized is the amount of energy a task consumes.

Therefore, an important figure of merit would be Joule per task, irrespective of

the number of clock cycles (or clock frequency) a processor core needs.

Another popular way to calculate the performance to power consumption ratio

is in MIPS/w (Million Instruction per Second per Watt) or w/MIPS respectively.

Using this figure it is relatively easy to estimate the energy consumption for a

given application or task.
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A very important motivation that explains the reason why DSPs and ASIPs

were introduced is due to the large variation in instruction sets. Processors with

large data paths typically need less cycles to complete a task, at a higher J/cycle

cost, but typically consuming less energy for the job. For low energy design this

also is beneficial.

Processor optimization often leads to complicating the instruction set

extensively to keep it small. However the introduced overhead in instruction

decoding can potentially lead to increased area and energy.

2.1.4 The deep sub-micron era

Technology is advancing rapidly, and that has a strong impact on the relative

merits of different circuit techniques, and ultimately the way designers handle

them, with regard to the future. For example, gate delays are improving way

more rapidly than the delays of the interconnecting wiring, and threshold drops

are becoming more dominant of the supply voltage. Also leakage is increasing.

A designer needs to be aware of impending changes like these to ensure the

continuity of his creations.

With the increasing complexity of the digital integrated circuits, it is

anticipated that in future smaller scale technologies the problem of energy

consumption will only get worse. Lower supply voltages are becoming more

attractive, because reducing VDD has a quadratic effect on the dynamic power

consumption, assuming the same clock rate is sustained.

Many nanometer processes have now reached a point where it is no longer

possible to design a high-performance chip without paying attention to its power

consumption, because high power consumption results to high heat output and

that might prove impossible to cool. Thus, in modern systems designed for speed

that use extra logic to be more efficient, a common method is to simplify them.

So, if for example a core can be simplified in order to have 80% of its performance

for only half of the power consumption, then we can use two cores to have 160%

of the performance for the same power consumption.

Another common problem is that many designers are accustomed to focusing

on dynamic power. But leakage in its various forms (see 2.1.1) is becoming

increasingly important in nanometer processes. Failing to account for that can

very well lead to much higher than expected consumption and also functional

failures in the more sensitive components.

2.1.5 Performance to power consumption ratio in different

processor types

As shown on figure 2.2, there are many different architectures that can be used

for the same purpose. The more specialized the architecture, the better the
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performance and power efficiency but less flexible the resulting processor. So for

example we can use a general-purpose microprocessor with reduced performance

but high flexibility or a custom ASIC with high performance and no flexibility

whatsoever. The same task on a processor of different level, can have great

variance in execution time. Therefore the right processor, or co-processor should

be picked to handle each task efficiently. For example, the number of clock cycles

executed for the simple task of a counter can vary from one cycle in a hardware

counter or several instructions with each one requiring many clock cycles each.

Figure 2.2: MOPS/watt versus flexibility [Piguet06]

But apart from those two extremes, there are several solutions in between,

mainly reconfigurable processors and the aforementioned DSPs (chap. 1.1.1)

and ASIPs (chap. 1.1.3). Reconfigurable processors prove to be very useful, as

they allow the configuration of specialized instructions and execution units to the

specified application.

The rest of the parameters that need to be defined is matching the data width

of the processor (and subsequently the memory) to the required data. The required

data does not necessarily need to be the same as the processor, so it is possible

for example to execute 16-bit data on a 8-bit processor, but there is an extra

cost and increased execution time for that. Additionally, each processor performs

considerably better when facing the task it was developed for, and no processor

is best for everything. For example, a DSP processor is much better than a

microcontroller in performing a filter, but the microcontroller can handle control

operations more efficiently. That is why we usually use a microcontroller with

several dedicated co-processors to handle everything properly. This way each

task is executed by the smallest and most energy-efficient component, but rarely

all of them are working at the same time in parallel.
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2.2 Memory efficiency

2.2.1 SRAM

A SRAM is a memory cell array consisted of SRAM cells that are able to read,

store and write data for as long as the power supply is on. A common 6-transistor

SRAM cell(fig2.3) can be an order of magnitude smaller than a flip-flop. This

6T cell is compact, requiring less wiring and so features a small dynamic power

consumption.

Figure 2.3: A typical SRAM cell composed of 6 transistors (6T)[Weste11]

The cell contains a pair of weak cross-coupled inverters holding the state and a

pair of access transistors to read or write it. In order to write in the cell the desired

value and its complement are driven to the bitlines, bit and bit_b and then the

wordline, word is raised. This way bit or bit_b are pulled down to indicate the new

value. The challenge in SRAM design is have as small an area as possible but

ensuring that the state is stong enough to withstand the influence of leakage and

keep the state during a read, but weak enough to be overwritten during a write.

SRAM cells are structured in memory arrays of m address lines and m data

lines. So the size of an SRAM is 2m words, or 2m × n bits. Memory cells can

have one or more ports for access. These ports may be read-only, write-only

or support both, but not simultaneously. For larger SRAM memories, multiple

smaller arrays are combined so that the wordlines and bitlines can be fast, narrow

and low-power.

2.2.2 Memory power efficiency

There are various well-known techniques for low power consumption of memories.

That usually includes cutting the memory in small pieces and only one piece is

addressed to fetch or to store data (cache, hierarchical, divided workline and

divided bitline).

In the quest to optimize processor cores for energy and performance,

somewhere a bandwidth limitation of memory is hampering further optimization.

Therefore often multiple, local scratchpad, memories are used. We have found

that memory consumption may easily become a power dominating component. If
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there is a strongly memory-intensive application, the memory accesses can go over

50% or even 60% of the total power budget of a typical DSP processor. As a result

most DSP processors try to exploit the memory hierarchy and the register file

in an effort to reduce the memory acceses. Pre-fetch techniques are particularly

effective in DSP designed for applications with large data objects. Code density

is also very effective, provided that the overhead of encoding and decoding makes

up for the benefits.

The general guidelines followed to reduce memory consumption are turning

on only the necessary subarrays to minimize the dynamic power, keep the other

subarrays in sleep mode to minimize leakage and reduce the voltage levels to

a the minimum required for the memories to function without loss of data or

vulnerability to interference.

Modern SRAM memories have developed a lot during the last decade. As we

can see in figure 2.4, featuring slightly old generation (2008) SRAM memories at

90nm, larger memory block are more area-efficient than smaller ones[Katev11].

Also, the difference between the different word sizes in area starts with a big

overhead for the smaller word sizes, but become negligible in larger block

capacities.

Figure 2.4: SRAM area needed for different block sizes[Katev11]

Figure 2.5 shows the power to performance ratio for different block capacities.

Power consumpion is proportional to access frequency (µW/MHz). It can be

observed that for every single one of the word sizes, the power to perfomance

ratio rises slowly for the first few block capacities (due to increasing word-line

and bit-line capacitance), but as the block capacities increase the average power

increases at a much faster rate (because at some point more sense amplifiers are
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required). It is also notable that the gap between the power consumpion of each of

the word sizes is getting bigger for larger word sizes and for larger block capacities

as well.

Figure 2.5: SRAM Power consumption for different block sizes[Katev11]

There were several measurements taken on the commercial memories available

(fig.2.6) for different word sizes of 25 to 214 and data width sizes of 16 to 80 bits.

We can see that it is possible to double the memory size (and also the instruction

width) without also having a double power cost per memory access.

This shows that that bigger memories can used and despite the extra power

cost, the total design can benefit if this helps the rest of the components of the

processor.

2.2.3 Memory addressing modes

For specific purpose processors like DSP, there needs to be a well defined set of

special addressing modes. These assist the processor in handling special data

types or large data in less clock cycles, so this results in less energy consumed

for the same application.

The design has to balance the benefits of the extra addressing modes against

the extra complexity they introduce. They can be especially effective when it

comes to FFT and other similar computations, however there needs to be careful

planning of both the addressing and the software stack support if they are to

provide efficient data structures that minimize the use of memory.
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Figure 2.6: Power consumption for different word and block sizes in commercial SRAM

memories

2.2.4 Loopbuffers

Loop buffering[Barat03] is an effective scheme used to reduce the energy

consumed in instruction memories. In many application domains, eg. multimedia,

a great part of execution time is spent in small program segments that repeat.

Loop buffers are employed in that case to store a small number of instructions,

so as to avoid the relatively much more expensive instruction cache.

2.3 Techniques for energy-efficient processors

There are several techniques that can be applied on a design for power reduction,

and each one of them is usually most effective on a certain level [Piguet06].

Most of the gain in dynamic power can be saved at the highest levels (see table

2.1). At the system and architecture levels partition, activity, number of steps,

simplicity, data representation, memory hierarchy (cache, distributed memory or

centralized memory) and locality. But these choices depend to a great extend

on the application. At the circuit level the techniques typically focus on dynamic

power reduction with methods like gated clocks, pipelining, parallelization, very

low Vdd, several Vdd, variable Vdd (DVS or dynamic voltage scaling) and VT ,
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Dynamic Power Static Power

High-level Reduction of the number of

executed tasks, steps and

instructions. Processor

types. Processor versus

random logic.

Reconfigurability

Remove units that do

nothing or nearly nothing

Architecture Asynchronous Encoding,

Parallel Pipeline, Simplicity

Architectures with less

inactive gates

Circuit Layout Gated Clock, Sub 1V, DVS,

Low Vt, Low-power library

and basic cells

Gated Vdd, MTCMOS,

VTCMOS, DTMOS, stacked

transistors

Activity

reduction, Vdd reduction,

Capacitance reduction

Table 2.1: Power reduction techniques [Piguet06]

activity estimation and optimization, low-power libraries, reduced swing. At the

logic and layout levels it is of great importance to choose the right low-power

libraries and the right mapping method. Finally, at the physical level, there is

the choice of layout optimization and technology. Especially in deep submicron

technologies where reducing leakage and static power becomes more difficult, an

effective low-power design has to address all design levels.

For an architectural design strategy for low power to be truly effective, it must

be holistic. Every part of the system needs to be analyzed and designed to be

power efficient and fit to each other perfectly. A careless design could lead to a few

components with greatly reduced power consumption but increased in many of the

other components, therefore a system with an overall worse power consumption.

2.3.1 Low-power techniques in circuit design

There are various techniques that have a beneficial effect to general purpose

processors and consequently to ASIP’s as well. Those techniques cover a great

range from low-level techniques like voltage scaling and clock gating to higher

level ones like code compression algorithms and scheduling optimization.

Since an ASIP is translated in a HDL as a complex finite state machine where

the state transitions are triggered by the input data and the ASIP software, most

of the known techniques for energy efficient hardware design can also be applied

accordingly.

While it is not the purpose of this thesis to analyze extensively low level circuit
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design, the system designer needs to take them into account, so that they can

later be efficiently applied.

Dynamic voltage and frequency scaling

There are many different applications that may execute on a system but each one

of them has different performance requirements. Additionally, when it comes to

embedded systems there are also power requirements. For example, running

Matlab requires much greater performance than playing Minefield. In these

systems a very useful technique is employed called dynamic voltage scaling (DVS)

or dynamic voltage/frequency scaling (DVFS) [Burd00]. The aim of DVS is to

decrease the power consumption by exploiting the time-varying computational

load of different applications in embedded systems and adjusting the performance

of the system to match the needs of each application when that particular one is

being executed (fig 2.7). Then the supply voltage is reduced to the bare minimum

required for the set frequency. As a result, there are significant gains in power

consumption by up to a factor of 10x without sacrificing peak throughput.

Figure 2.7: Measured throughput versus energy consumption [Burd00]

DVS can also prove useful for reducing leakage during periods of low activity,

because sub-threshold and gate leakage are strongly sensitive to the supply

voltage.

Clock gating

Clock gating is a design methodology for reducing ASIC power consumption by

inserting enable signals before the clock signal of a block. This way when the

block is not used it is turned off using the disable and the switching activity of the
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registers is halted. That reduces the dynamic power consumed to zero but incurs

an overhead for the extra logic required. This technique is fairly simple as long as

we don’t add to the critical path of the design, and provides great gain in systems

when we have idle parts of the design for a long time.

Power gating

One of the biggest problems as the CMOS technology scale keeps getting smaller

is the problem of static leakage. A widely used technique to reduce static current

during sleep mode is to turn off the power supply to the sleeping blocks, known

as Power Gating, originally proposed as Multiple Threshold CMOS (MTCMOS)

[Mutoh95]. In order to accomplice this, special sleep transistors (fig 2.8) are

introduced in the design that connect VDD and VDDV when the header switch is

ON or cuts off supply to VDDV through VDD when the header switch is turned

OFF. In the latter case, as VDDV gradually sinks to 0, the output of the block

may go to unwanted voltage levels, so the isolation gates are needed to force the

outputs to a valid level during sleep.

Figure 2.8: Power gating [Weste11]

Activity and optimal total power

In systems with processors that have low or very low activity, the ratio of dynamic

to static power is expected to be really small, because the gates in the system

consume a set amount of static energy while total switching activity is quite low.

Leakage can be considered roughly proportional to the number of gates and the

duration of the clock cycle. Since what we want an optimal total power, there it

is worth looking into whether making better use of a smaller amount of switching

transistors or gates can prove helpful. However, that by itself is not enough.

Because having a smaller architecture has a negative impact on performance in

some cases. so to cope with that the supply voltage is increased and the VT
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decreased, resulting in increased total power. So, to actually accomplice the aim,

one would need to take into account various factors, mainly the speed constraints

and the logical depth (LD). Usually this method can be best applied in pipelined

architectures.

2.3.2 Low-power techniques in architecture level

CPI reduction

Most well-known 8-bit microcontrollers are based on CISC (Complex Instruction

Set Computer) architectures, in which every instruction format contains several

bytes and several memory accesses are required for the execution of a single

instruction. This results in a CPI (clocks per instruction) of values 4-20, and

according to the formula that calculates the performance of a processor in MIPS

(millions of instructions per second), MIPS = f/ CPI, in order to achieve a high

performance the processor would have to be clocked in a high f frequency, because

dynamic power is proportional to the frequency that results in a higher dynamic

power consumption. In contrast, RISC architectures may have a similar amount

of transistors but can offer a CPI of almost 1 (usually a bit higher than 1), therefore

offering greater energy efficiency per instruction executed. CPI reduction is the

technique that can bring most of the improvements in a single processor system.

Gated-clock mechanisms

Clock gating as explained in section 2.3.1, can be applied in various components

of a design (or certain parts of those) in a way that allows the designer to disable

the clock and thus the transitions and switching in those parts. For example

in the 3-stage pipeline CoolRISC core it is used on parts of the ALU and also

for the instruction register. As a result, a branch is only executed in the first

pipeline stage and there are no costly (in energy) transitions in the second and

third stages of the pipeline. It is obvious that gated-clock mechanisms can be

used in conjunction with pipelined architectures for better power results. Many

modern CAD tools support automatic gated-clock mechanism insertion.

DFF versus Latch based design

One of the main problems of today’s processor design is clock skew. It is extremely

difficult to design a clock tree with the smallest possible clock skew while avoiding

possible timing violations. This problem has been augmented in deep submicron

technologies, considering that the smaller the technology the larger the wire delays

as compared to gate delays. Most modern processors make use of a single-phase

clock and are based on D flip-flops, and in deep submicron technologies the
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problems of reliable clock input slopes and clock input capacitance in standard

cell libraries are all parameters that have to be satisfied for a successful design.

A possible solution for these problems could be replacing the conventional

single-phase clock comprised of DFFs with only latches with two non-overlapping

clocks. This clocking scheme proves to be more reliable, more robust to clock skew

and less prone to low voltage timing violations than a DFF based one. In order

to maintain such a clocking scheme, two clocks are needed, each with twice the

frequency intended for the whole system. To ensure there are no timing violations,

the clock skew of each one has to be smaller than half the total period.

This scheme is generally more energy efficient because in DFF-based systems

there is a main clock tree with large costly capacitance while in latch-based there

are two smaller ones with smaller capacitance but more relaxed timing constraints

that more than make up for it, resulting in a smaller total power consumption.

Latch based clocking can also be used to verify the chip functionality and detect

design problems because it eliminates clock skew problems, which are much

harder to accomplice in DFF-based designs. Latch-based design also enables

time borrowing and makes use of timing barriers that stop the propagation of the

clock signal and halt the transitions, thus reducing power consumption. It also

brings a significant reduction in the number of MOS transistors needed and the

total area required because it allows the master part of the registers to be common

for all registers.

Combining latch-based design with clock gating in a pipelined architecture

can greatly reduce the total power consumption, by clock gating each stage

of the pipeline containing a latch register with individual enable signals. This

reduces the number of transitions in the design compared to a DFF-based design

(see figure 2.9), since each DFF is equal to two latches clocked and gated

together. Finally, latch-based design allows for safe clock gating methodology

without glitches in the clock or the need for memory elements (as is in DFFs).

It is estimated that for all of the above reasons, latch-based design bears an

improvement factor of 2 over a similar design with DFFs.

Figure 2.9: Latch-based clock gating [Piguet06]
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Optimal pipeline length

The number of the pipeline stages that can prove ideal for a processor depends

on the type of the processor and the targeted application domain. A pipelined

microprocessor is designed to execute N-cycle instruction overlapped in a N-

stages pipeline. In each cycle a new instruction enters the pipeline, another one

is completed and the rest just move to the next stage. Ideally this would result in

a CPI of 1, if it wasn’t for the hazards that cause pipeline stalls.

The most common and unavoidable type of hazard is branch hazards that

occur when the target instruction after a branch is determined in a later stage of

the pipeline. So the pipeline is filled with NOP bubbles until the address of the next

instruction is settled. There are various methods to work around this problem.

Either using a branch delay slot that always executes the following instruction

after a branch, thus reducing the number of lost cycles by one, using a bypass

technique to forward data to a preceding stage before they would normally be

available or finally using branch prediction techniques that attempt to predict the

verdict of conditional branched. Taking into account that more often than not

computation intensive programs contain a lot of loops, it would be safe to assume

that in those programs the most common case for a branch would be for it to be

taken, so that the instruction address is back to the first instruction of the loop.

Of course there has to be a safety mechanism that prevents the instructions from

committing their changes if the prediction was wrong. Another prediction scheme

based on statistics would be to assume that the branch will behave in the same

way as it did last time.

In general pipeline hazards can be solved in a variety of ways, following

different kinds of approach. In a static approach the compiler is responsible

for reorganizing the code and inserting NOP instructions. In a dynamic approach

the processor hardware is in charge of solving the pipeline bubbles at run-time.

If out-of-order execution is a supported then the code is reorganized dynamically.

Other possible approaches include pipelined multi-thread architectures or a short

pipeline (like CoolRISC) where branch instructions are executed in a single cycle.

Whether or not any of the above approached are needed or can be applied

depends on the depth of the pipeline. The need for increased performance has

increased the depth of pipelines in microprocessors from three to five, six or even

eight stages. The more the stages, the better the performance, but the downside

is that we have to employ several of the aforementioned techniques to keep the

performance to power ratio to a healthy level.

Dedicated DSP cores, multi-core systems and multi-threading

General microprocessors are not very efficient with digital filter code. For that

reason support for special DSP instructions was added to the instruction set

of a processor. But this method is not very effective and causes quite an
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overhead for the processor. Cores having control and DSP instructions result in

lower performance, higher power consumption, approximately a 30% reduction in

maximum frequency and 30% increase in area required. That is why processors

designed and optimized exclusively for DSP tasks were developed. But they in

turn cannot execute control instructions efficiently. The solution for this came

in the form of multi-core system-on-chip, where control instructions are handled

by the microcontroller and DSP instructions but the DSP co-processor. Multi-

core systems claim a better performance to power consumption ratio, less heat

dissipation and smaller area required.

DSP architectures have many advantages. They are dedicated for executing

arithmetic operations and are very energy efficient in DSP algorithms. They can

complete several memory accesses in a single clock. They can fetch an instruction

from the program memory, fetch the operands and store a result in a single

clock cycle. Their memory organization is either the classic load/store used in

processors for increased parallelism or they are designed to fetch directly the data

they need from the memory for a simpler design. Many of them use specialized

addressing modes to address two data RAM through two banks with different

points for the unprocessed and the processed data and circular addressing (for

modulo). This way they can apply a DSP algorithm on arrays of data in an efficient

way. Finally, DSPs can be easily optimized to execute loops with zero overhead.

For all of the above reasons, dedicated DSP cores show increased performance

and can execute a DSP task in a fragment of the time a normal processor would.

To move a step further from multi-core systems, multi-threading is also

employed as a way to enhance the capabilities for parallel execution of instructions

by allowing threads that are independent to each other to execute on different

functional units of the system. Multi-threading is used on high-performance

systems but requires code that supports parallelism for it be fully utilized.

It is yet unclear but a multicore system containing an array of identical

parallel DSP cores could be the answer to leakage increase [Piguet06]. Pushing

frequencies too high implies lowering the VT , which results in increased leakage

power. To counter that, arrays of identical DSP cores with high VT could provide

the same computational power with less leakage. The result is high computational

power whereas the total register count and therefore the leakage is kept small.

VLIW DSP cores

There are also DSP cores in VLIW architectures, e.g. in commercial processors

from Texas Instruments, like the TMS320C6X containing an eight-issue VLIW

16-bit fixed point processor, that also includes two MAC units and six ALU, in

which a maximum of eight instructions can be executed in parallel wth 32-bit

data. Some implementations also include hardware accelerators for Viterbi or

Turbo decoding, which leads to great performance results.

However, the peak performance of these implementations is impossible to
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reach due to the nature of the code that can usually be broken to no more than

three or four parallel instructions, instead of the eight that are needed to fill all of

the execution units. Even if they are indeed filled, the energy required to fetch a

256-bit VLIW instruction word from the program memory is way bigger compared

to the cost of a 32-bit instruction word in a superscalar DSP core.

Superscalar DSP cores

Superscalar DSP cores contain multiple MAC execution units, much like the VLIW

DSP cores, but unlike them they take advantage of their small 32-bit program

data size. The problem in these cores is the increased area size and consumption

of the decoder, because a big number of complicated instructions with different

addressing modes have to fit in the instruction set.

Reconfigurable DSP cores

Reconfigurable DSP cores lay in the area between the large power consuming

FPGAs (Field Programmable Gate Arrays) and the programmable (but not

reconfigurable) DSP cores. They can be reconfigured at the functional level and

their interconnections can also be rearranged. Reconfigurable cores resemble

FPGAs in many ways, but have way less potential for reconfigurability. However,

they can be way more power efficient by allowing the reconfiguration of a small

number of execution and addressing units. This way, the power dissipation of

the operands fetch is minimized and the addressing modes can be optimized for

a given DSP task. As a result, it is only the operators of the functions units in the

architecture that end up taking up most of the power consumption.

It should be taken into consideration that the price to pay for a reconfigurable

DSP is the power consumption of the reconfiguration bits added in the

configuration registers of the special hardware. This reconfigurable hardware

is necessarily more complex in terms of transistor count and thus more power

consuming. Reconfigurable DSP cores also have to deal with software issues as

users can define new instructions or addressing modes but the development tools

cannot always support them in an efficient way.

2.4 Code compression and encoding

Data compression is a cost-effective way to increase the throughput in

communication bandwidth or utilize storage capacity without significant

overhead. It removes redundant information inherent in the original data or

simply uses less bits for the same data, thereby enabling a communication link to

transmit the same amount of data in fewer bits. For storage systems, fewer

bits are actually stored thus increasing the effective storage capacity. There



30 Chapter 2. Background and Related Work

are many compression algorithms, but for better results there are specialized

algorithms that can be used for specific tasks. Several data compression

techniques have been implemented in either software or hardware. However,

software implementations are not able to cope with the high requirements in

high-end systems so hardware implementations are used there. They are fixed

hardware and cannot be customized. As a result, it has to be parameterizable and

take into consideration resource constraints, speed of operation and compression

ratio.

In processors and embedded systems having an effective way to compress code

can prove really helpful, because apart from helping utilize the memory better,

using compressed code and therefore a reduced size executable can also affect

beneficially the size and the power consumption of the system. Furthermore,

having a more compact program compared to a non-compressed one reduces

the cache misses for the same cache or allows the use of a smaller one. That

is particularly important, as in modern systems the gap between processor

and memory responses is growing, making the memory response a bottleneck,

especially in large memories that require longer time to respond.

However, to make sure that using compressed code can truly be beneficial

for the system, the designer has to account for the extra cost of the encoding

and especially the decoding of the code. The decoder of the instructions can

be positioned in different places in the system, thus having a different impact

depending on that place. For example, it can be positioned between the cache

and the main memory or between the cache and the instruction pipeline.

Unlike normal data compression, instruction data compression requires a

different approach. Achieving maximum compression but making the encoding

and decoding schemes really complicated, could sometimes result to making the

decompressing component the bottleneck of the whole system.

There are various methods proposed for efficient instruction code

compression. Some of the most common are Huffman coding, dictionary-

based methods, statistical-based methods or various combinations of those

[Beni02]. There have been also many notable industrial attempts, including

ARM’s Thumb[ARM],[Xu04] and MIPS16 [Kiss97].

There are also methods that can be used for flexible VLIW architectures[Xie07]

or similar with higher compression using LZW-based compression in [Lin04].

Huffman encoding

Huffman encoding [Huff52] is a widely used and very effective technique

for compressing data, with gains of 20% to even 90%, depending on the

characteristics of the code being compressed [Corme01]. Since any data for

compression is considered to be a sequence of characters, Huffman’s greedy

algorithm using a sorted table containing the frequency of occurrences of each
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character, comes up with an optimal way to represent each character as a binary

string.

To solve the problem of optimal binary character coding, where each character

is represented with a unique binary string, the algorithm uses a variable-

length code instead of fixed-length. In that variable length-code, the most

frequent characters have priority and are given short codewords while infrequent

characters are given longer ones.

A simple example of Huffman coding can be seen in fig. 2.10. The first tree

shows the initial data and the second is the final result of the coding. Each leaf

is labeled with a character and its frequency of occurrence. Each internal node

is labeled with the sum of the frequencies of the leaves in its subtree. (a) The

tree corresponding to the fixed-length code a = 000, . . . , f = 101. (b) The tree

corresponding to the optimal prefix code a = 0, b = 101, . . . , f = 1100.

Figure 2.10: Trees showing the initial data and the results of a simple Huffman coding.

[Corme01]

The basic notion of the Huffman code can be successfully applied in

instruction-set encoding, but it is impossible to take full advantage of the variable-

length code in the same way. Nevertheless, it helps a lot in reducing the complexity

of the instruction decoder, by allowing the designer to substitute ’0’s and ’1’s with

don’t care bits (’x’s).

In one of the early Huffman-based encoding schemes [Wolfe92], the CCRP

(Compressed Code RISC Processor) was introduced. The basic aim of this

processor was to compress the code so that the processor sees fixed-size, easily

decoded instruction that can keep the pipeline full and can potentially provide

support for an implementation that enables the execution of multiple instructions

per cycle, with a simple addiction of a new cache design. The researchers

chose Huffman encoding over others for combining simplicity and effectiveness,

providing an optimal encoding for a fixed size input alphabet, but they also

modified it a bit to improve its performance. The results showed considerable
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gains, especially for slower memories. So the processor could benefit from the

dense code, with the cost of a small performance overhead.

Recent implementations using Huffman code[Bonn08] combine it with

statistical or directory schemes for more efficient compression of the data.

Markov modelling

Many mathematical systems have the property that given the present state,

the past states have no influence on the future. This property is called the

Markov property and systems that have it are called Markov chains [Hoel72]. A

Markov chain is the most simple example a Markov model and is characterized by

random variables that satisfy the Markov property and have stationary transition

probabilities. Markov chains are worth looking into because they can model a

large number of mathematical systems, hence have a large number of applications

in many fields.

In [Corma87] a minimum-redundancy code algorithm is used to describe a

message generated by a Markov chain model. Along with an adaptive coding

implementation of Huffman code or Ziv-Lempel, the resulting Dynamic Markov

Compression (DMC) performs quite well compared to earlier techniques.

Other publications[Hatt95],[Leka99],[Maha05] take Markov chains a step

further with Semi-adaptive Markov Compression. In [Leka99] there is a very good

application of an arithmetic coding and instruction compression framework based

on the Markov model. It allows a processor to decompress and use the compressed

code during runtime. The results, as the suggested architecture was tested on

Analog Devices Sharc and ARM’s Thumb show average compression ratios of 41-

48% for Sharc and 56% for ARM (outperforming Thumb’s 68% ratio). Compared

to other implementations, SAMC shows superior compression performance over

all algorithms except Semi-adaptive Dictionary Compression (SADC)[Leka98]. In

terms of speed it cannot match the fast dictionary coding methods, but it can

perform comparably to a Huffman decoder. In area, the requirements are a

bit bigger than a Huffman decoder. So, if the dominant design requirement is

decoding speed, the dictionary methods are preferable. Unless, if it is compression

ratio that we aim for, then SAMC performs best.

ARM’s Thumb

ARM’s Thumb (T32) instruction set [ARM],[Goud99] provides a subset of the most

commonly used 32-bit ARM instructions which have been compressed into 16-

bit wide opcodes. On execution, these 16-bit instructions are decompressed

transparently to full 32-bit ARM instructions in real time without performance

loss. This way it can offer great code-density for minimal system memory size and

cost by having 32-bit performance from an 8 or 16-bit memory.
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Thumb-2 technology, as introduced in 2003, made Thumb a mixed (32-

and 16-bit) length instruction set, and is the instruction set common to all

ARMv7 compliant ARM Cortex implementations. It provides enhanced levels of

performance, energy efficiency, and code density as compared to the first Thumb

for a wide range of embedded applications. Also, the technology is backwards

compatible with earlier ARM and Thumb instruction sets.

There has also been work on improving the Thumb ISA[Xu04], for further size

reduction and timing performance.

MIPS16

MIPS16[Kiss97] is an architecture extension that was introduced to address the

code density and bandwidth issues of MIPS RISC designs. It was classified as an

"architecture extension", because even though it was the standard mechanism

for code compression in next MIPS RISC CPUs, support for it was not mandatory

for all future implementations. MIPS16 was designed to be fully compatible

with existing 32-bit and 64-bit MIPS architectures. MIPS16 instructions can

be mapped and executed on a standard MIPS architecture, because they can be

translated into 64-bit MIPS-III instructions real-time using simple hardware.

In order to achieve the desired compression, the MIPS16 had to cut down on

the MIPS instruction encoding, in all parts. To accomplice that, statistical data

from MIPS applications were gathered, to exploit the frequency of the instructions

used and also the number of registers. The results showed which instructions

were the most important and also that the compiler-generated code rarely used

more than 8 registers. So the size of the opcode and operand parts were reduced,

thus decreasing instruction flexibility and the number of accessible registers from

32 to 8, but the greatest gain due to reducing the size of the immediate values

from 16 bits to 5 (fig 2.11).

Figure 2.11: Mapping of MIPS16 compressed instructions [Kiss97]

To overcome the shortcomings caused by the compressed instruction set,

several specialized mechanisms were developed, mainly aimed at PC and SP
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relative addressing and extra load stores for larger than 5-bit immediate values.

The results from using the MIPS16 instruction set show that even though more

instructions are generated for the same operation and the instructions themselves

are now less flexible and expressive, the net code generated by the compiler for

a range of desktop and embedded applications is decreased by an average of

40%. Furthermore, the higher code density and the smaller instruction memory

contribute to a better hit ratio for the instruction cache and reduced off-chip

bandwidth requirements, that more than make up for the slight increase in the

absolute number of instructions.

2.5 Architecture Description Languages

Architecture Description Languages (ADLs) [Mish08] are used for designing both

hardware and software architectures. Hardware ADLs capture the structure

(hardware components, interconnections) as well as the behavior as it is defined

by the instruction set architecture of a processor. Software ADLs are used to

represent and analyze software architectures. For the purposes of this thesis,

wherever ADLs are mentioned, that refers to hardware ADLs.

ADLs have been used for many years now as a successful way to describe

the specifications and functions of a processor. The ADL description is used

for the generation of several executable models, i.e. the compiler, the hardware

implementation and the simulator. Combining these models enables the designer

to automate tasks like compilation, simulation, synthesis, test generation and

validation. This way the overall time needed for the design is significantly

decreased and the quality of the final output improved.

There are several different kinds of ADLs, each one developed for specific

purposes. They are sorted into three categories, depending on the nature of

the information they describe. Those are: (a) Structural ADLs that capture

the structure in terms of architectural components and their connectivity and

are mostly synthesis and validation oriented, (b) Behavioral ADLs that capture

the behavior of the instruction-set that belongs to a processor architecture

and are compilation and simulation oriented, and finally (c) Mixed ADLs that

capture both the structure and the behavior of the architecture and support all

objective orientations (compilation, simulation, synthesis and validation). Notable

examples of ADLs include MIMOLA (structural), ISDL (behavioral), nML (mixed)

and Lisa (mixed).

2.6 Design methodologies for ASIP

The definition of ASIP as Application Specific Instruction-Set processor was used

since the late 1980’s [Wolfe88], also mentioned as "Application-Specific Integrated
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Processor" in other books. An ASIP is often a Silicon Intellectual Property (SIP),

and many SoC solutions use ASIP IP. The main difference between a general

purpose processor and an ASIP is the target application domain that defines an

ASIP. General purpose processors have to be adequately effective for virtually

all possible applications and that is the reason why they cannot by definition

be optimal for all, unlike ASIPs that are designed for a specific application

domain. The term application domain denotes a set of applications that serve

the same purpose in similar ways or similar purposes altogether. They usually

have the same properties and characteristics and usually benefit equally from

certain optimizations. Video decoding, digital radio baseband, or bio-imaging are

characteristic examples of application domains. So, an ASIP is fine tuned to

be optimal for an application domain, aiming for a higher mix of flexibility, low

power consumption and cost and performance than general purpose processors

can provide.

ASIPs use a sophisticated hardware and software co-design as shown in figure

2.12, that combines the instruction-set and the hardware components of the

processor architecture with the compiler and the application code required for that

particular processor. Before each step of the tool flow, the hardware and software

flows interact to assure compatibility with each other and optimal implementation.

Figure 2.12: ASIP hardware/software co-design flow [Liu08]

One of the very first Application Specific Instruction-Set Processor (ASIP)

design methodologies that came up was “Cathedral II” from IMEC [DeMan86],

[Goos87], [Catth88], [DeMan88]. The innovation of “Cathedral II” was the

development of an application specific silicon compiler for highly complex DSP

algorithms provided that there are defined limitation on the target silicon
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architecture for a restricted application area. Following a "meet in the middle"

design method, Cathedral II enabled design from a high-level behavioural

language called SILAGE (oriented for DSP), then rule-based synthesis for the

target architecture and generation of the microcode for the controllers and

interprocessor communication through heuristic scheduling.

2.6.1 Target IP Designer

The Target tool flow “IP Designer” is one of the most advanced products for ASIP

design. Target Compilers Technology [Target] provides a fully developed tool flow,

equipped with the nML grammar, a mixed ADL with support for compilation,

verification, application simulation and HDL generation tools.

More about the Target tool flow will be analysed extensively on a later chapter.

2.6.2 Tensilica’s Xtensa

Tensilica’s Xtensa [Tensilica] makes use of an ASIP-like methodology named

DPU. Dataplane processors (DPUs) are designed to provide programmability in

the performance-intensive dataplane of the SOC design. They are a combination

of a DSP and a CPU, but can be customized for maximum efficiency for the target

application. Wide datapaths or instructions can be build into a custom DPU.

Tensilica provides SOC designers with everything needed to quickly design

small, low power and high-speed dataplane processors that exactly match

the required application. By using Tensilica’s Xtensa dataplane processing

units (DPUs), design teams can reduce the development and verification time

required by hand-coding RTL blocks in Verilog or VHDL. As these DPUs provide

programmability into the dataplane, changes can be made in firmware after silicon

production that extend the life of the product as standards develop and market

needs change.

All Xtensa customizable processors have two essential features, configurability

and extensibility. This way, designers are offered a menu of checkbox and drop-

down menu options so they can pick just the features they need - including

multiple pre-verified DSP engines. Also they can add their own instructions,

registers, register files, and much more using the Tensilica Instruction Extension

(TIE) methodology. The designer only has to specify the functional behavior of the

new data path elements in the TIE language (Verilog-like) and then the RTL and

whole tool chain is automatically generated.

2.6.3 LISA and Synopsys Processor Designer

LISA was initially developed by LISATek , afterwards owned by CoWare

and finally now integrated in Synopsys Processor Designer [Synopsys]. The
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Synopsys Processor Designer is an automated, application-specific embedded

processor design and optimization environment that can decrease the time

spent on a hardware processor design and the creation of application-specific

software development tools. It is highly automated to enable improved

architectural exploration and application-specific processor development, as well

as consistency checking and individual tool verification. It can be used for the

development of a wide range of processor architectures, including SIMD and VLIW

and can also support DSP and RISC features.

At the “heart” of Processor Designer lies an ADL named LISA 2.0, a Language

of ISAs. LISA 2.0 can use ANSI-C which makes it easy to import existing

C/C++ based models and functionality. It also includes an Instruction Set

Simulator (ISS), and a complete software development suite with assembler,

linker, archiver, C-compiler and synthesizable RTL code. Furthermore, it provides

profiling capabilities in the debugger, rapid analysis and exploration of an ISA.

The instruction set design, the processor’s micro-architecture and the memory

subsystems can be independently optimized.

2.7 ASIP Case studies

There are several case studies published with ASIP being employed to face similar

problems. Some of the most interesting ones due to their innovative ides or

impressive results are analyzed here.

In [Morg07] a code compression technique is used to make a more compact

instruction. During software analysis, the opcodes dispatched to individual

functional units of a VLIW processor are measured (fig. 2.13. Using that

information, a dictionary-like encoding scheme is created at a more fine-grained

level than other approaches (e.g. [Piguet01]). To make sure that the lookup table

will be reasonable, instead of encoding all possible opcodes for each functional

unit, only the frequently used opcodes identified from the profile-based analysis

remain in the LUT.

Figure 2.13: Different design styles target different design metrics [Morg07]
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Each short opcode within the instruction word is split into two sections. The

selector "address" indicating the functional unit and the encoded instruction. A

Huffman-type encoding is used to allocate variable-width addresses in priority

order of FU usage. This way overburdened FUs have more active opcode bits and

need less address bits. Each FU has its own unique LUT decode logic to decode

its short opcode into microcode, as well as an escape code instruction indicating

that a full opcode should be fetched from the instruction word. The short opcode

usually ends up with a width of 8 to 11 bits for optimal results. If more then

it would require large and inefficient decode logic and if less it would be too

restrictive on the available short opcodes. The algorithm employed dynamically

estimates if the cost of increasing the FU short opcode width by a single bit (thus

doubling the number of available short opcodes) is worth the extra cost.

To make this decision the algorithm compares the benefit of energy gain from

the increase in opcodes against the cost of the extra decode logic. The results

from this implementation show considerable cache area decrease in almost all

tests, 18% decrease in the area and a slight increase in performance (due to the

decrease in clock cycles by 8%). In terms of energy the total energy has dropped

by 20

A very interesting framework for optimizing mainly power-wise the instruction

encoding of an already existing ASIP processor is provided in [Chat07], with

[Zhang08] taking the same project one step further by adding a more automated

algorithmic approach. The focus in this implementation is on how to reduce the

power consumption by emphasizing on both the self and coupling capacitance of

the bus lines, separating the different possible bit transitions and calculating as

precisely as possible the cost of these transitions.

Figure 2.14: Overall encoding synthesis flow [Zhang08]

That power model is then used along with the ADL grammar file describing

the instruction-set and with an assembly program in a series of algorithmic

optimizations (figure 2.14). First the opcode itself is changed to minimize
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power consumption with regard to the applications provided by performing the

Opcode Re-Assignment (ORA). The ORA technique breaks down the instruction set,

tracks down the dependencies between the various instructions, simulates the

assembly program and maps the toggling and coupling results to its corresponding

instructions. The directed graphs created this way are then grouped into column

graphs according to each dependent instruction to ensure unique encoding. Also

a hash table is generated from the coupling information between the nodes. To

produce the updated grammar file, first an initial coding is assigned through gray

coding and then a heuristic optimization method is applied attempting to find an

encoding that is most power efficient.

With the updated grammar file the Register Name Adjustment (RNA) is applied

on the application code, rearranging it so that is compatible with the new grammar

and also using the statistics from information extraction to perform a heuristic

approach similar to ORA so that the register file usage is power-efficient as well.

But what happens if instead of a single program there are are more programs,

commonly referred to as an application domain. In that case, as shown on figure

2.15 the columns information is extracted for each different assembly program

and a single set of column graphs and a hash table are created. Those are taken

into account and analyzed with a unique updated grammar file generated through

the ORA technique. That new grammar information is used as the common

grammar information for all the programs. Using that, the RNA technique is

performed for each program individually, and out of each program a register graph

for toggling information and a hash table for coupling information are created for

re-assigning the registers.
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Figure 2.15: Multiple assembly programs optimization flow [Zhang08]



Chapter 3

Development Framework

In this chapter the basic development framework that was used for this thesis is

provided, along with the particular ASIP methodology employed to design different

ASIP processor implementations.

The Tools that were used for the purpose of this thesis were Target’s

retargetable tool-suite “IP Designer” for designing, compiling, programming,

simulation and verification of ASIP cores and their applications.

3.1 nML Grammar

The whole tool flow has at its heart the nML grammar (figure 3.1). nML is a

hierarchical and highly structured ADL. It models a processor in a concise way

for a retargetable processor design and software development tool suite. It has

been designed to contain the right amount of hardware knowledge that is required

by the Target tools for high quality results.

A unique feature of Target’s Chess/Checkers tool suite is its architectural

retargetability, based on the nML processor description language. nML is a high-

level language that captures a programmer’s model of the target processor. This

is the abstraction level commonly found in a programmer’s manual of a processor.

Using nML, an architecture designer can quickly define the instruction-set

architecture of a processor or make any changes without wasting much time.

After reading the nML description, the different tools are automatically targeted

to the specific architecture.

It should be made clear that the term Retargetable is used to describe that the

tools (including the C compiler) are targeted towards the architecture so described

in nML. There is no restriction to the type of ISA that can be modelled: RISC, CISM,

SIMD, VLIW, integer and floating-point architectures are supported. All tools take

the nML model into account. and the retargeting process is very fast, since a few

seconds are more than enough to retarget the compiler, simulator and all other
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Figure 3.1: Outline of Target’s Chess/Checkers tool suite flow

tools.

Below are listed the basic definitions of the nML grammar[Mish08]:

3.1.1 nML Structural Skeleton

• Memory:
mem DM[0..1023,1]<num,addr>;

• Register:
reg X[4]<num,b2u>;

• Constant:
cst c2u<uint2>;

• Enumeration:
enum alu{add, sub, and, or};

• Transitory:
trn A<num>;

• Pipe Register:
pipe F<acc>;

• Functional Unit:
fu alu;
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3.1.2 nML Rule Definition

Example of an ALU definition:

opn alu ( op : alu_op , t : r t , r : rr , s : r s ) {
a c t i o n {

s tage E1 :
a lur = r ;
a lus = s ;
switch ( op ) {

case add : a l u t = add ( alur , a lus ) @alu
case sub : a l u t = sub ( alur , a lus ) @alu
case and : a l u t = and ( alur , a lus ) @alu
case or : a l u t = or ( alur , a lus ) @alu

}
t = a l u t ;

}
syntax : op " " t " , " r " , " s ;
image : op : : t : : r : : s ;

}

We have two kind of rules. OR rules (symbolized by "|") alternatives for an
instruction part. These alternatives are mutually exclusive, meaning that only one
of them can be executed at a time. AND rules (symbolized by "::") are the rules
that describe the composition of instruction parts. The composing instruction
parts are orthogonal, meaning that the concatenation of any legal derivation for
every instruction part forms a legal derivation for the AND rule itself.

In the code above, we should pay attention to three attributes:

• The action attribute describes which register transfer actions are performed
by an instruction or instruction part. Each AND rule must have one action
attribute.

• The syntax attribute specifies the assembler syntax (mnemonics) for the
corresponding instruction (part). It must only be present if the intention
is to derive an assembler or disassembler tool from the nML description.
An AND rule may have multiple syntax attributes if needed.

• The image attribute defines the binary encoding for the corresponding
instruction or instruction part. In some cases, multiple image attributes may
be needed.

It should be noted that while an OR rule does not need any explicitly defined
attributes, it implicitly passes attributes between its left and its right-hand sides.
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3.1.3 Primitives definition and generation language

To keep in line with the need of the ASIP hardware/software co-design, each of
the operations are matched to a primitive function and subsequently a function
in the Primitives Definition and Generation (PDG) language (.p) file. These
functions provide the functional description of the instruction in C language, so
that the software tools can create the compiler for that particular processor, which
in turn compiles the application code meant for this processor in an assembly that
it can process and execute.

3.2 Target tool flow

The tools as shown in figure 3.1 include the following:

3.2.1 Chess

Chess is a retargetable C compiler that translates C source code into machine
code for the target processor. It uses graph-based modelling and optimization
techniques to generate optimized code for specialized architectures exhibiting
peculiarities such as complex instruction pipelines, heterogeneous register
structures, specialized functional units and in-level parallelism.

The compiler also includes a retargetable assembler and disassembler called
Darts and a retargetable linker called Bridge.

3.2.2 Checkers

A retargetable instruction-set simulator (ISS) generator that produces a cycle-accurate
or bit-accurate ISS for the target processor based on the nML description. The
ISS can be run in stand-alone mode or can be embedded in a co-simulation
environment through an application programming interface (API). This allows
the designer to simulate the C code generated by Chess with the instruction-
set architecture. Checkers also includes a graphical debugger that can connect
both to the ISS and to the available processor hardware for on-chip debugging,
through the JTAG interface. Profiling and instruction trace are also supported.

3.2.3 Go

A hardware description language (HDL) generator that produces a synthesisable RTL
(register-transfer-level) HDL model of the target processor core. Through APIs,
users can plug in their own HDL implementations of functional units and of the
memory architecture.
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3.2.4 Risk

A retargetable test-program generator that can generate assembly-level test-
programs for the target processor with a high fault coverage. These test programs
can then be executed both in the ISS and in the HDL model of the processor, to
check for the consistency of both models.

3.3 Instuction set encoding

In an embedded processor, the way an instruction set is encoded affects directly
the way the instructions themselves are encoded in binary and thus executed by
the processor. Therefore this affects likewise not only the size of the executed code
but the way the instruction decoder itself is build so that it can efficiently decode
these binary instructions, with fast access to the operation and the operands. The
first part that refers to the operation is usually referred to as the opcode. The
opcode also includes the information about the addressing modes of the different
operations.

The encoding of the instruction set in a processor has a very strong influence
on the rest of the design. It also defines two important parameters in a processor:
The size of the program memory and the available flexibility. The size of the
program memory is a defining parameter is the overall energy consumption.
So for a smaller instruction width, a smaller program memory is needed, but a
part of the flexibility is sacrificed. Finding a suitable trade-off between flexibility
and code size for an optimal instruction encoding is quite challenging, and also
depends greatly on the application domain.

An option that is especially popular with VLIW processors is the compression
of the instruction set. However, in that case extra area and power is needed to
uncompress and decode the instructions.

When developing an ASIP, some developers tend to overlook the encoding of
the instruction set or simply try to make the instruction set as compact as possible
to reduce the instruction width.

In the Target tool suite, the instruction encoding is defined in the opn rules
of the nML Grammar (sec: 3.1). All of the available encoding schemes can be
applied in the nML, so that they can improve the resulting processor design.
More about that on a later chapter.
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Chapter 4

Development of a SIMD ASIP

In order to validate the motivation of this thesis a SIMD processor was developed,
based on an example processor provided by Target, and then compared to a
scalar processor and a soft-SIMD one. The example processor of target is a small
basic SIMD vector processor which exemplifies the ability of the Target tools to
incorporate SIMD instructions in an ASIP and is typically taken as a starting
point for vector processor design. It is also a good starting point for the main
implementation that follows in the next chapter and to explore the percentage
of energy consumed by each component. The evaluated Soft-SIMD processor is
part of a Master Thesis[Dak11] that was conducted in IMEC/Holst Centre very
recently and is used to get an understanding of the differences in performance
and power consumption of SIMD and Soft-SIMD implementations.

4.1 Hardware SIMD and Software SIMD

Hardware SIMD (Single Instruction Multiple Data), also called hard-SIMD is
a vector architecture that supports operation on several data in parallel or
operations on several narrower data types at the same time by treating a single
register as if it contains multiple data words. For example, four 16-bit data
additions could be executed on a 64-bit ALU in a single cycle in parallel, provided
the carries of the separate additions are isolated. SIMD processors use special
hardware in their data-path for computations on a certain combination of sub-
words of the same lengths. A common example of this would be treating a 32-bit
(word) register as containing two 16-bit (half-word) data or four 8-bit (byte) data,
and then being able to perform an operation on each sub-word. This is what
differentiates SIMD processors from normal vector processors that only support
a single parallel execution mode (e.g. 10 x 32 bits) [Catth10]. This offers new
parallelization options allowing multiple smaller operations to be performed on
each of the smaller data type.
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SIMD operations may require additional hardware but they offer great
performance and can accelerate algorithm operations and applications with
parallel operations or loops that are repeated a lot (e.g. vector operations and
digital filters). Naturally, SIMD processors are ineffective in executing serial code
or code with bad memory locality. Therefore, to enhance the SIMD capabilities
of a processor, extra instructions are needed for packing (or compressing) and
unpacking (or uncompressing) SIMD data in and out of registers (fig. 4.1). The
overhead of this packing and unpacking instructions depends on how many
times the data are used and where they are stored. Even though SIMD operations
increase power consumption, they greatly decrease the number of cycles needed
to perform a task, which depending on the application can sometimes lead to
smaller energy consumption for the same task.

Figure 4.1: SIMD data packing

The reason for the classification between hardware and software SIMD is
because hardware SIMD is performed in hardware level and requires extra
hardware, along with all the extra power and area that requires. A Software
SIMD (Soft-SIMD) processor, unlike a hardware SIMD, attempts to do the same
procedure, but it is instead emulated in software and the application code needs
to be prepared by the compiler. This method is fruitful only if the application
code can be parallelized and the processor data width is big enough to support a
sufficient number of sub-words. For example, applying soft-SIMD to enable the
execution of two 8-bit sub-words in 16-bit ALU is not as beneficial as enabling
the execution of eight 8-bit sub-words in a 64-bit ALU. That is because the
overhead of the soft-SIMD implementation is roughly the same, independently
of the number of sub-words executed in parallel.

Unlike Hardware SIMD, Soft-SIMD implementations do not require extra
hardware and for that reason they can be safely assumed to consume less power.
However, to make up for that they have to support extra operations. Evidently,
there is a trade-off that has to be met, and sometimes the overhead of the
extra operations can surpass the one of the extra hardware. Soft-SIMD has
the advantage of being more adaptive, allowing the execution of a variety of
combinations of different types of data sizes. This increases the potential and
the benefits of a Soft-SIMD but also increases the complexity of the design and
the expected gain.
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4.2 Basic features of the VBase processor

The VBase example core demonstrates the modelling of SIMD instructions. As
mentioned earlier, SIMD stands for single instruction stream, multiple data
streams. SIMD instructions are also known as vector instructions. In SIMD
parallel processing, a vector of data is stored in a vector register. A SIMD
instruction processes the elements of the vector simultaneously. All elements
are processed in a identical way, as specified by the single instruction. By
processing whole vectors of data at once, SIMD provides a fast and efficient way
to manipulate large amounts of data.

A drawback of SIMD is that it requires the computational kernels of the
applications written in a way to efficiently use the SIMD instructions. However
in the Target tool flow, by using the Chess compiler, this can still be done at
C source code level thanks to the availability of an extended type system and
intrinsics. The vector data types can be used in the C code along with vector
intrinsic functions and operators defined for the vector types.

The VBase core contains:

• 16-bit instruction word

• 16-bit data word

• Separate instruction and data memory. The vector memory is mapped and
aligned on the data memory using the alias nML grammar option.

• A 128 bit vector unit.

• A 128 bit vector register file.

• A 128 bit vector memory data port.

VBase supports vectors of 16 elements of one byte each and vectors of 8 elements
of one word each.

4.3 Additions and modifications

For the purposes of this case study, several modifications were made to the VBase
processor:

• The number of elements processed was changed to 4 elements of one word
each (SIMD slots), so the processor is now able to support a vector of 4
elements of 16 bits each.

• New instructions were added that can control a multiply-accumulate
(MAC) functional unit, divided in two stages (fig. 4.3).
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• Also added instruction for initializing or resetting the accumulator, as well
as instructions for extracting the 16-bit MS or 16-bit LS part of an addition
before that is forwarded to the shifter (and then shortened).

• Also, extra units were used to handle the accumulator and the rounding.

• New data types were introduced to handle the inputs, outputs and
intermediate data of the MAC. Mainly the vector types, accumulator type,
and a slightly adjusted instruction word type.

• Changed the memory management to allow for a separate Vector Memory,
instead of mapping and aligning it to the existing Data Memory.

4.4 Gauss loop filtering

To examine and check the performance of an SIMD implementation the MAC unit
analysed before was tailored to execute the filtering of an image in a bio-imaging
application. The same was also used in the Soft-SIMD design.

The focus of the application is on the critical Gauss loop where the majority
of cycles is spent. The loop is what has the maximum number of constant
multiplications in the whole application. That loop applies the Gauss filter to
a frame in a detection algorithm. In the original code, the Gauss filter is applied
through a 3 x 3 matrix that hold the Gauss coefficients (fig. 4.2).

Figure 4.2: Application of Gauss filter through a coefficient square matrix [Psy10]

The result of the application of the Gauss filter for one pixel is calculated in
every iteration using the eight neighbouring pixels. Each neighbouring pixel
and the one in the centre are multiplied with the corresponding coefficient. The
results are summed up and the final value replaces the one in the central pixel.
The aim of this application is to reduce the noise in an image to enhance the
detection algorithm of the application which uses an ellipse to detect the location
and posture of the monitored object.

This application is handled in a bit different way by each implementation, and
so the specifics for its execution will be analyzed independently in a later section.
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4.5 Multiply-accumulate unit

At the heart of any DSP lies the multiply-accumulate unit, commonly referred to
as MAC. By multiply-accumulate we denote the sum of multiplications used
in digital filters, correlations and Fast Fourier Transforms. Ideally the MAC
operation should be executed in a single cycle (so that the CPI is 1) inside a
pipelined architecture. The accumulator should be big enough to accommodate
the expected growth in size of the result. The result of a multiplication of two 16-
bit integers would be 32 bits and adding another 32-bit integer would normally
result to a 33-bit integer. But because of the range of data that is processed there is
not need for the extra overflow bit (more about that later). Otherwise there would
be a need for guard bits in case of arithmetic overflow. Usually for 16-bit data the
accumulators are 40 bits, with 8 guard bits that help save overflow information.

The schematic of the MAC unit designed for the purposes of this thesis can
be seen in figure 4.3. The MAC unit supports a reset and initialization function
for the 32-bit accumulator. Using the two input ports of the accumulator the 16-
bit data are inserted and the result of their multiplication is added to the current
value of the accumulator. The result of the addition is then stored as the new
value of the accumulator. Depending on the instruction being executed there is
also the option of storing the result of the ALU in the vector register file, provided
it is first saturated in a safe way back to the size of 16 bits.

It should be noted that while the two inputs of the multiplier look alike, the
first one comes from a part of the vector register read, so its a 16-bit part of 64-bit
vector register data while the second is the coefficient and is the same for all four
of them.

Figure 4.3: The basic MAC unit introduced
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It should be noted that as mentioned before this is an SIMD processor,
therefore there are four instances of this MAC unit in the design, giving the
capability to process 4 x 16bit = 64 bit of data.

On each iteration the following procedure is followed for the application of
the filter on 4 pixels at the same time:

r e s e t acc
acc = previous_pixe l * c o e f f 1
acc = c u r r e n t _ p i x e l * c o e f f 2 + acc
acc = n e x t _ p i x e l * c o e f f 1 + acc
new_current_pixel = s h i f t ( acc )

4.5.1 Shifter and overflow prevention

The shifter in the design scales the results of the ALU to avoid overflows. DSP
architectures commonly use saturating arithmetic, so if the result is too large to be
stored and represented then it is set to the largest representable number, which
also depends on whether it is signed or unsigned and if it is signed then the sign
of the number.

To calculate which are the most important bits in the result it is first needed
to calculate the maximum number that it might be. Its helpful to know that the
numbers are unsigned. According to the algorithm followed above the following
function comes up: result = (a + c) ∗ coeff1 + b ∗ coeff2, where teach of the
a,b,c is a pixel with a size of 7 bits and the two coefficients have a sign of 10
bits, then the maximum number can fit in 19 bits. The maximum size of the first
multiplication is 18 bits, because (7+7)*10bits = 8*10 = 18 bits) and the one of the
second is (7*10)bits = 17 bits, then 18 bits added with 17 bits need a maximum
size of 19 bits. That means that the rest can be skipped and shift the number 13
bits (since it is unsigned) and keep the MS bits that fit.
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4.5.2 Wrapper and Testbench

The wrapper used used in the testing, as shown in figure 4.4, is connecting the
vbase processor with the three different memories used. This way the processor
can access at any time all of the three memories.

Figure 4.4: The wrapper outline

4.5.3 Additional instructions added

MAC instructions, just as the name implies perform the multiply and accumulate
operations in the dvmac FU. They have to be included in the same opn rule as
is shown below, to keep the pipeline intact. In the E1 stage, the multiply is
performed and the result is stored in the pipe register, and in the E2 stage the
addition is performed using the accumulator and the stored result in the pipeline
register.

opn vec_dvvs ( vreg , reg ) // MAC operat ions
{

a c t i o n {
s tage E1 :

dv_pipe = dv_mul_acc ( vreg , reg ) @dvmac ;
s tage E2 :

acc = dv_add_acc ( dv_pipe , acc ) @dvmac ;
}
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Accumulator instructions use the dvmac FU and either return the MS or LS
16-bit part of the 32-bit accumulator or perform the shift operation as it was
explained before to extract the most important data bits and store them in the
vector register file. Also there is an instruction that resets the content of the
accumulator to ensure it is empty when used and won’t pollute the current
iteration with previous ones.

V[ x ] = acc_ms ( accr ) @dvmac ;
V[ x ] = a c c _ l s ( accr ) @dvmac ;
V[ x ] = v s h i f t ( accr ) @dvmac ;
acc = d v i n i t ( ) @dvmac ;

Packing/Unpacking instructions use the vec FU and allow either the insertion of
a 16-bit data from the register file to a specific one of the four spots in the 64-bit
SIMD data or the extraction of one of them.

V[ x ] = v e c _ i n s e r t ( v e c t o r _ r e g i s t e r , spot , data ) @vec ;
reg = v e c _ e x t r a c t ( v e c t o r _ r e g i s t e r , spot ) @vec ;

Naturally, to keep in line with the need of the ASIP hardware/software
co-design, each of these operations were matched to a primitive function and
subsequently a function in the Primitives Definition and Generation (PDG)
language (.p) file.

4.6 Comparison of the hard-SIMD with a soft-SIMD
implementations

4.6.1 The Soft-SIMD implementation

There have been various Soft-SIMD implementations for a solution to the critical
Gauss loop mentioned above (see sec. 4.4) in a series of theses [Krit09], [Psy10],
[Dak11]. The one used for the comparison that follows is the most recent one by
S. Dakourou.

In this particular Soft-SIMD implementation, the designer is taking advantage
of the adaptive features of Soft-SIMD by using three different subword
combinations to execute the Gauss filter application. 6 x 8 bits, 4 x 12 bits and
3 x 16 bits, as shown in figure 4.5, always keeping a total of 48 bits. It is an
architecture aimed for loop dominated domains, exhibiting sufficient data level
parallelism, with signals of multiple word-lengths and a relatively small number
of multiplications.

The outline of the architecture, as illustrated in fig. 4.6, is using a GSAS FU
(Generic Shift Add Shuffle Function Unit) architecture, consisting of a shifter,
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Figure 4.5: Soft-SIMD sub-words [Dak11]

an adder and a shuffler. The shuffler is used to handle the required masking
operations needed for the Soft-SIMD. The shuffler is also in charge of choosing
an intermediate subword size instead of using by default the worst-case subword
size. Special repacking operations are applied whenever a change in subword
size is decided. To make the critical Gauss loop Soft-SIMD compatible it is
split into two loops. That reduces the total number of multiplications and also
allows efficient scheduling in the data-path. The shuffler is the component that
maintains the functional correctness by handling the subword manipulations.

Instead of costly hardware multipliers this implementation includes a shift-
add functional unit, which uses a number of shift and add operations to implement
the constant multiplications required by the Gauss filtering within the Soft-SIMD
concept.

The architecture is also making use of a novel asymmetric register file
organization called Very Wide Register File (VWR) or foreground memory
organization. It uses asymmetric interfaces: a wide interface with the memory
and a narrow one to the data-path, so it only has a single port per cell and is more
power efficient.

There are special operations added to handle the packing, repacking and
unpacking of the data, and also guard intervals that guarantee that each subword
does not overwrite nearby subwords and avoid data pollution.

The instruction-set used has an instruction word of 80 bits and is divided as
follows:

• Issue slot 1: Target Base core FU, 16 control its

• Issue slot 2: Multiplexers network and vector shift-add FU, 37 control bits

• Issue slot 3: Shuffler FU, 11 control bits

• Issue slot 4: Interaction DM & RF, 16 control bits



56 Chapter 4. Development of a SIMD ASIP

Figure 4.6: Soft-SIMD processor architecture [Dak11]

4.6.2 Comparison and results

The power simulations are performed on a synthesized netlist with a frequency
of 100MHz using the 90nm-LP TSMC libraries. It is not as accurate as a “place
and route” layout would be, but still it can provide the results needed without
going through the trouble and extensive time needed for place and route every
time.

In the wrapper, the Soft-SIMD is using a 1024 x 80-bit program memory, a 1024
x 16-bit data memory and 8 x 1024 x 48-bit vector memories. In the Hard-SIMD
because of the fact that at the time there were no 64-bit memories available for
the vector memory, eight copies of the 1024 x 80-bit memory of the Soft-SIMD
are used instead, and the unused part are set to zeros “0”. For the rest, the 1024
x 80-bit program memory (which is way larger than the 16-bit that should have
been used instead) and the 1024 x 16-bit data memory were kept as they were.
For these reasons, the power consumption of the memories should not be taken
into account, since they are not optimal for each implementation and therefore
not comparable.

The results from the power simulations are shown in the following figures.
Analyzing the figures in a fair way is vital both to understanding the motivation
behind this thesis and also getting an idea of the impact of an architecture on the
synthesized design as it is presented in the ASIP tools.
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Analyzing the results of the Hard-SIMD implementation

Before looking into any numbers or comparisons and in order to support the
motivation it is essential to look into the percentage of power consumption in
each component of the Hard-SIMD implementation (figure 4.7). The memories
are clearly dominant, but for reasons mentioned before the focus is on the logic
and not the memory part of the design. Therefore, by ignoring the memories
which are anyway too big for this design and could be misleading, the decoder
takes up a 12% of the logic components, which is substantial considering this is a
simple design with a much smaller number of instructions and addressing modes
compared to up-to-date commercial ASIP processors. The instruction set of this
processor is nowhere near as complex as that of a commercial ASIP one.

As for the rest of the components, it is evident that the scalar functional units
along with the data memory are used very rarely and most power consumption
comes from the vector MAC unit (containing four multipliers for four parallel
multiplications as well as the pipeline registers) and the accumulator.

Figure 4.7: Hard-SIMD power consumption percentage in login components

The same conclusions can by reached by looking into figure 4.8, where the
switching activity is also accounted for and can it be observed where the dynamic
power is spent and which of components are used the most. As would be
expected, the dynamic power dissipation takes place in the vector mac unit and
the accumulator. As part of the total consumption, the leakage power is only a
small fraction, and mostly concentrated in the vector memory.

From the total power consumption, 69% of it is static (internal), 21% is
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dynamic (switching) and 10% is leakage energy.

Figure 4.8: Hard-SIMD power type per component

Comparing Target’s Base, Hard-SIMD and Soft-SIMD implementations

The results of the simulations of three different processors can be seen in full in
table 4.1. First is the sample scalar processor provided by Target, which is not the
same as the SIMD processor used for the Hard-SIMD implementation and is used
as a reference point to scalar processors. Then comes the Hard-SIMD processor
developed for this case study and last the Soft-SIMD processor as analyzed before
(section 4.6.1). The same results are also illustrated in figure 4.9, with different
bars for the different types of power consumption.

The scalar processor cannot possibly match the execution time and cycles
needed for this task as the SIMD implementation and needs roughly six times
more cycles than the SIMDs. So even though it has a simple small design with an
area half or a quarter smaller to the Hard-SIMD and Soft-SIMD respectively, the
excessive cycle count also leads to an excessive power consumption almost three
times bigger than the SIMDs.

Before jumping to conclusions for the hard and soft-SIMD implementations,
the different factors that lead to their power consumption shown on table 4.1 need
to be analyzed independently.

The energy consumption and area required for the memories according to the
data is virtually the same. As was mentioned before, these two implementations
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Processor Cycles Area
(Cells)

Total
Power (W)

Memory
Energy (J)

Logic
Energy (J)

Total
Energy (J)

Target’s
Base

1972170 7130 2.51E-03 3.80E-05 1.14E-05 4.95E-05

Hard-
SIMD

300438 13332 5.87E-03 1.05E-05 0.71E-05 1.76E-05

Soft-SIMD 334032 21625 5.45E-03 1.14E-05 0.68E-05 1.82E-05

Table 4.1: Target’s Base cycle count, area, power and energy needed for the same filter
application

use almost the same memories, something that proves unfair for the Hard-
SIMD implementation which would normally use much smaller memories and
is therefore ignored for the rest of results.

Looking into the area (in cells) required in each of the two implementations
in figure 4.10, it is evident that the Hard-SIMD with its four 16-bit hardware
multipliers, along with the pipeline registers and the accumulator in the MAC
unit takes up roughly twice the area of the combined area of the vector shift-add
unit and the shuffler of the soft-SIMD implementation. For most of the rest of
the components the area is relatively the same. The surprising results come from
the big difference in the area needed for the decoder and the vector register file.
The decoder of the Hard-SIMD is way smaller than the one of the Hard-SIMD,
because the former is only 16-bits wide whereas the latter is 80-bits wide. The
vector register file of the Hard-SIMD is also much smaller and simpler than the
complicated Soft-SIMD vector register file (VRF). For all these reasons, the total
area of the Hard-SIMD is 13332 cells as compared to the 21625 cells of the Soft-
SIMD. So, the cost (in cells) of the extra hardware multipliers used seems to be
smaller than the cost of the bigger decoder and the bigger and more complicated
vector register file, not taking into account the program memory used that is 5
times larger in the Soft-SIMD. Of course, the cell count is not totally trustworthy,
since modern tools are capable of doing wonders in optimizing area.

Energy consumption, as illustrated in figure 4.11, is the main objective behind
all the comparison. It is of course relative to a certain extend on the area as
explained before. Looking into the main points as they were also explained in
the area analysis before, the four 16-bit hardware multipliers in the Hard-SIMD
MAC unit prove to be way more power-hungry than the Soft-SIMD’s vector shift-
add unit and its shuffler by a factor of 5. But the energy cost of the rest of the
component in the Soft-SIMD, especially the decoder, the register file (in the Hard-
SIMD it is only seldom used) and the vector register file add up to quite a big sum.
This way the total energy consumption of the logic components in the design of
the Hard-SIMD is only a bit larger than that of the Soft-SIMD.
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Figure 4.9: Target’s Base, Hard-SIMD and Soft-SIMD memory, logic and total energy
consumption comparisons

Notes on the comparison from the soft-SIMD development team

Before reaching the conclusions, it is vital to also provide the reasons for these
results according to the development team of the soft-SIMD implementation,
presented by Francky Catthoor and Stefania Dakourou.

The vector register-file (VRF) unit is mimicking the functional behaviour of
the VWR (Very wide register) that should be used in the SoftSIMD processor
datapath. As the VWR cannot currently be modelled in the Target environment,
instead a very simple to model but energy-inefficient register file has been used,
with 6 ports (5R + 1W), 48 bit and 16 words. Every access to such a large multi-
port RF consumes a very large energy [Ragh09]. That explains why it consumes
8% of the total softSIMD power [Dak11]. However, with the use of the VWR the
energy can be reduced by at least a factor 10 [Ragh07]. That will remove the vector
VRF contribution from the current power pie results for the SoftSIMD processor.

The register file (RF) for this version of the data-path is a normal register
file, since no special grouping of data is needed. The scalar data-path, needs to
provide only a very limited performance since the instructions are not executed
on multiple data and the frequency of activation is very low. So also the energy
contribution is not critical at all. In particular, even with such an unoptimized
design the scalar RF uses only 2% of the total power [Dak11]. With some
optimization effort on the mapping and scheduling part of the architecture that
can easily be reduced further. It currently uses a 3-port register-file with 16 words
of 16 bit which is also an overkill in size but which allows an easy scheduling in
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Figure 4.10: Hard-SIMD and Soft-SIMD area comparison per component

the Target environment.

To sum up there are several possible reasons that can explain the results of the
comparison, apart from the apparent differences in the architecture:

• The Hard-SIMD handles 64-bit in a 4-way SIMD where the Soft-SIMD 48-
bit data in a seemingly 3-way SIMD, but due to the nature of Soft-SIMD it
is more flexible and can be also used in different ways.

• Slightly different tool versions used for synthesis

• Soft-SIMD needs Loopbuffers to match SIMD

• Simulated at 100MHz, where the Soft-SIMD could take advantage of a
better suited frequency.

• No set limit containing the total critical path in the Soft-SIMD.

The purpose of these comparisons is not to prove one method better than the
other, but to observe the impact of the different implementations in energy and
power consumption.
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Figure 4.11: Hard-SIMD and Soft-SIMD energy comparison per component



Chapter 5

Modifying the Instruction Set for
Energy-Efficiency

A big part of the main focus also includes a series of experimental simulations
on the SIMD implementation presented and analysed in the previous chapter
(chap. 4). This methodology enables the designer to fully exploit some of greatest
advantages of ASIP design, retargetability and easy architectural exploration
through iterative simulations. The designer can use the profiling data along
with the simulation and power analysis results to come up with several possible
solutions and through the automation of ASIPs he also has the capability to try
all of them and choose the best suited one.

For the following experimentation, one of the basic architectural design
constraints is that there should be no change in the basic functionality of the
instructions or their total number. Even though techniques that change, merge
or remove instructions could prove to the benefit of the design, it is a parameter
that would rapidly increase the complexity of the experimentations, and for the
purposes of this thesis is deemed unnecessary.

5.1 Analysing the generated control signals for full
orthogonality

Before making any changes to the nML code, it is first essential to have an
understanding of how the nML code that describes the instruction set of a
processor is translated as the decoder into HDL code. One of the initial ideas
for potential approaches was to create a very large instruction word divided in
different parts for the different functional units (or instruction “families”). This
would allow the designer to keep a main control over that family and keep it
separate from the rest of the instructions. The extremely compact format exists
already, so it is worth going to the other extreme and then trying from scratch to
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encode and compress the instruction set with various different methods. This
data can be used as a basis for a fully orthogonal instruction set, where the
designer is able to have full and direct access to the SIMD datapath (see figure
5.1) but as it turns out, that may be promising in theory but impossible to achieve
with the current capabilities of the ASIP tools.

Figure 5.1: A very wide instruction word divided in different parts, each one containing
the control bits for a functional unit

Having an instruction word comprised of control bits would virtually remove
the need for decoding or at least a great part of it, as the control bits would simply
have to be forwarded to the right signals, thus transferring the complexity of
the decoder to the compiler that produces the instruction words for the specific
processor. Shutting down a functional unit could be as easy as sending an all
zeros (“0"s) signal or in some other way that would make use of the don’t care
conditions to shut down the functional unit temporarily and additionally reduce
the toggling caused by that part of the instruction word.

Analysing the instruction set of the newly developed SIMD processor shows
that in the decoder the 16-bit instruction uses 137 control bits to control the
memories and the datapath. Naturally, most of the control bits are controlling
the execution E1 stage of the pipeline, and around 28 of them the decode stage.
Very few bits are used for the E2 stage of the pipeline, since that is only used in
the MAC unit and does not require a lot of control bits in the instruction word.

The control bits are analysed and grouped depending on the functional unit
or the purpose they served. Controlling their exact encoding in a very wide
instruction could prove greatly beneficial for a truly energy efficient instruction
set and the experimentation with different encoding.

The instruction control bits are grouped depending on the instruction family
that they serve. For example, for an add instruction it is obvious which signals
the decoder is driving and to exactly what bit sequence they are matches, since
they are generated as a result of an opn rule. The designer can also change that bit
sequence in a way that reduces the toggling between subsequent instructions or
group them for avoiding having to pay multiple times the same area for similar
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decoders.

However, as it turns out, at the current version the Target tools may support
orthogonality on a subword level but not full orthogonality, in a way that the
designer can have complete and direct control over the generated control signals
through the instruction bits. The Target tools do not support that degree of
freedom in the definition of an instruction set. In case of an orthogonal instruction
format the tools allow the construction of different orthogonal sub-classes for the
instruction word.

The root cause of the problem lies in the inability of the nML to describe the
actual control signals. The tools still consider the instruction as encoded and treat
different control signal areas as a single and so they produce the same control
signals all over again. They cannot detect that only certain signals are meant
to drive certain functional units and ignore the rest. There are transitories that
define the inputs and outputs of the functional units in the opn definitions of
the nML. Their use is not compulsory, but defining and using them typically
results to a more robust design and less errors in compiling the code describing
the processor. The whole point of ASIP design is to assist the designer in such
matters, and therefore the designer cannot have full control over the generated
design, but can always intervene manually on the HDL code generated.

Even though this part of the experiments cannot prove as fruitful as
initially expected, the analysis of the control signals assists in getting a better
understanding of how the ASIP tools create the decoder and the control signals
for each processor design, and how the definition of each instruction encoding
can play a small but important part to that. It remains to be seen if such a scheme
could actually be energy-effective, since full orthogonality, and subsequently
a vast number of control signals can either prove favourable or potentially
interfere in a bad way with different components on power-gated or power-
downed regions. It might add implementation and verification challenges and
overcomplicate the design on later stages of the production.

5.2 Creating a wider instruction

Considering that full orthogonality is not within the potential of the tools, the best
approach is to take it step by step in an attempt to widen the instruction width as
possible and see the impact of that on energy consumption.

As a first step towards an orthogonal instruction set, the opcode, the operands
and the immediate value are rearranged and grouped so that each one has its own
specific bit area in the instruction word. That should allow to work more easily
and focus on the opcode part. Additionally, it should drastically decrease the
complexity of the addressing modes in the decoder, since the operand address or
the data has a specified spot in the instruction set.
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The resulting instruction word of this idea is shown in figure 5.2 and has a
total size of 48 bits:

Figure 5.2: The 48-bit orthogonal instruction set

• 17 bits for all of the the opcodes.

• 3x3=9 bits for the three scalar operands.

• 3x2=6 bits for the three vector operands.

• 16 bits for the immediate value.

The new design might be bigger but provides more freedom for various
favourable changes and optimizations.

To make sure that the generated decoder would be as simple as possible the
unused parts are filled with don’t care ’X’s to ensure the decoder would not take
them into account. Additionally, the opcode part that is common in several
instructions is rearranged in order to occupy the same part of the instruction
word. That is especially important for the instructions controlling the MAC unit,
as it is those instructions that are repeated the most.

5.2.1 Power Results

The results of this implementation are surprisingly good. Even though size of the
instruction word used is now three times bigger, the total power consumption is
almost 10% reduced compared to the original implementation. As illustrated in
figure 5.3, there is significant drop both in internal and switching power.

The total number of toggles throughout the simulation for the same
application has a great reduction of 30%. In the individual components the
greatest drop comes from the MAC unit, which features a drop of around 30%
and the MAC unit is now consuming 32% less power for the same task. Even
though the decoder now has a substantially lower toggling activity, it still has
roughly the same power consumption.

5.2.2 Area Results

Looking into the area there is an increase of 20% in the area the decoder takes
up, which is a very good result considering that the instruction word is now 48
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Figure 5.3: Comparison of the average power consumption in uW of the original SIMD
(blue) and the orthogonal version (red).

bits long instead of 16 bits, but there is a decrease in other parts of the design,
mainly the MAC unit that features a drop of 38%. This leads to an overall area
consumption virtually the same between the two implementations. It should be
noted that these results are the cell area of the rtl compiler, meaning that they are
only an estimation and by no means the final results of the area that the design
would require.

5.3 Optimizing the encoding of the instruction set

The 17-bit opcode of the new orthogonal instruction set in many of the
instructions includes bits that are unused and can be used for the reducing the
decoding of the decoder.

5.3.1 Reducing decoder complexity

The decoder of a processor is defined by the encoding of the instruction set, so the
way each of the instructions are defined, grouped and assigned to bit sequences
has a great influence on the area and power of the decoder and through that on
the whole design. The designer needs to take into account that a sophisticated,
complicated instruction set with many instructions compressed into it can be
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very potent in the tasks it can perform and the available instructions it provides,
however a simpler instruction set reduces the complexity of the decoder leading
to a smaller hardware footprint that consumes less energy. A simpler instruction
set also helps the designer and the retargetability purposes of ASIPs because it
allows for fast compiling and test and simulation and additionally makes it easier
to update the instruction set to meet the needs of a new task.

Simplifying the decoder

To achieve the goal of a simple effective instruction set there are several ways but
not all of them can be combined and they don’t always lead to good results. The
method followed should be one that matches the target application domain of the
processor.

There are various ways to reduce decoder complexity[Target nML]. But to
reduce it one first needs to comprehend what it actually is that builds up the
complexity of an instruction set. To follow a common example, assume there are
three operations on an ALU with the following patterns:

add→ 000xxxxx00xx
sub → 000xxxxx01xx
or → 000xxxxx10xx

All the units that work in parallel with the ALU (like a multiplexer connecting
the output of the ALU to a bus or a memory) are only enabled for the instructions
that obey the following pattern:

000xxxxx0xxx
000xxxxxx0xx

The same procedure needs to be followed to create patterns for all the
potential parallel functions that would need to make use of the ALU and the
same method has to be applied for all the rest of the modules in the design. So if
another ALU operation would require the two rightmost bits of the instruction to
be enabled then the new enabling conditions would be:

000xxxxx0x00
000xxxxxx000

The problem arises when the compiling tools for the decoder are trying to
match the enabling conditions for a lot of instructions that would require enabling
control to that functional unit. With each new instruction being introduced, the
complexity of the decoder rises at an exponential rate until it virtually explodes,
resulting in a big or even unmanageable hardware footprint. Therefore the
designer needs to apply optimal encoding in the bit sequences of the instruction
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set encoded to keep the complexity at affordable levels.

nML Complete Image Option

Target also provides the complete_image option. This helps to indicate that an nML
AND rule specifies a complete encoding, and that its fields are orthogonal. For
example:

opn my_rule ( a : A, b : B ) complete_image
{

a c t i o n { a ; b ; }
image : " 0 0 0 " : : a : : b ;

}

This option helps to point out to the nML front-end tools that there
is orthogonality between the instruction parts that specify complete register
transfers (from either the register file or the memories to again either the register
file or the memories as explained in section 1.1.2).

When this rule is active, only the first part of the opcode “000” is checked,
even if A and B do not have complete encodings. Therefore all the bits that are not
opcode bits are treated as don’t care for rules higher in the nML hierarchy. ..which
unfortunately did not seem to make any difference at all in the design, and during
the decoding of A the nML tool will consider B to have a complete encoding and
vice versa. This can assist the developer reduce the decoder complexity when
there are incomplete definitions, especially when designing a VLIW processor.

Nonetheless, despite the various attempts to employ this option in our
experiments with the processor, the generated rtl code is the same and the tools
are still considering the instruction set to be a non-orthogonal one.

nML code quality

The processor designer should be fully aware of the impact that the way in which
he chooses to describe the instruction encoding has in the transition from nML
grammar to the generated HDL code. Even though the nML grammar provides
a plenty of options that are syntactically correct, the repercussions of a a badly
structured instruction encoding can be severe on the area and power budgets of
the decoder and subsequently to the whole design.

The nML code quality has to be optimal to the match the targeted processor
specifications. Any arbitrary additions to the nML code should be strongly
avoided and the designer by following the methodology previously explained
can quickly develop the required skills through trial and error to avoid the
common pitfalls.
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5.3.2 Exploiting methods for energy efficient architectural
design with ASIP tools

When introducing ASIPs, it was mentioned that one of their key features is
the capability to make quick adjustments to the design and that in each of the
stages of the ASIP design the developer has the choice to generate debugging
information. Using these data can prove vital for the full utilization of the design
for a specific application or application domain.

As analysed on an earlier chapter, Chess is a retargetable C compiler that
translates C source code into machine code for the target processor. The Target
tool-suite also includes Checkers, a retargetable instruction-set simulator (ISS)
that produces a cycle and bit accurate simulator for the target processor.

By combining the Chess tool to produce the machine code of the targeted
application and Checkers tool for simulating and debugging the execution, the
designer is able is to extract various useful data about the statistical usage of the
instructions and the critical functions that will need to run on the processor, and
therefore can focus and experiment with them. It should be noted that for typical
DSP applications, the code is usually characterized with a 20/80 rule, meaning
that 80% of the processor clock cycles are spent on a specific 20% part of the code,
consisting of DSP kernels [Goos04].

Profiling and execution tracing instructions and data accesses

Using the Checkers ISS tool, profiling and execution tracing data can be
extracted for a particular application. These profile data contain information
about which are the parts of the program where most of the cycles are spent.
There are additional profiling options available for instruction classes, primitive
operations, functional units and storage accesses that can be very helpful in
focusing and pointing out the bottleneck of the design.

The execution trace shows the call and return history during the simulation.
That can be really useful in investigating the overall execution of the program,
along with which functions are used in an application and how many times each
function is called. The storage profiling provides information about the access
history of the memories and the register file.

Spatial and temporal locality exploitation

The nML language combined with the Chess and Checkers tools are ideal for
power-conscious architectural design, as they offer an architectural scope wide
enough to allow for experimentation with many different techniques for low
power consumption. A simple and common way to reduce the total energy
consumed for a task would be to reduce the total number of processor cycles
required for the execution. That can be managed by exploiting instruction-level
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parallelism, bundling several instructions into a single one, employing special
purpose registers or highly encoded instruction sets.

By taking advantage of the ASIP tools, the designer can make changes in the
nML code and then very soon have the new HDL code and the profiling results
of simulating the new design. So by using the available profiling and execution
trace data the designer can experiment in many different directions and find the
changes that can lead to an optimal instruction encoding and an overall energy
efficient design.

As explained on chapter 2.4, Huffman encoding can be used to take advantage
of the temporal locality of the instructions in order to minimize the cost of
subsequent instructions used in the most common loops. In a loop that is
executed repeatedly hundreds or even million of times in a single application
reducing the toggle of subsequent instructions can prove greatly beneficial.

In a similar way the spatial locality of the memories can be investigated, and the
nML code can be build to suit the needs of the targeted application in a way that
the memory hierarchy can be used to its fullest especially in the most common
loops without repeating the same memory transfers for different iterations over
and over again. Apart from changing the instruction mechanics, the instruction
and data memories along with the register file can also be changed to match the
application.

5.4 Final implementation

The aforementioned methods are employed to the orthogonal processor that was
developed. According to the profiling results, from the 47 instructions that the
filter program was compiled into, 9 of them are used 96,5% of the time. These
instructions are mostly comprised of vector load/store instructions and vector
MAC instructions. In more detail there are 3 vector loads, 1 vector store, 3
multiply-accumulate instructions, 1 accumulator initializing instruction and 1
accumulator shift instruction for storing the right part of the final result.

By making full use of the available ASIP tools, there are many different
experimental changes that can be conducted. There are many attempts to
simplify the decoding procedure of the instructions in an effort to use the spare
bits of the instruction word in a way that would help decrease the decoder
component cost, but that proves only slightly favourable for the whole design at
best. It should not be forgotten that improving the decoder can sometimes lead
to an overhead for other components thus leading to an overall greater energy
cost for the whole design.

On the other hand, what proves evidently fruitful is the attempts to apply
different encodings to the instruction set, to reconstruct it in a way that reduces
both the power consumption of the most commonly used instructions and the
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power consumed due to the toggling between the subsequent instructions of the
main loop.

In order to have a metric on the toggling from one instruction to another,
Hamming distance is introduced. The Hamming distance between two bit vectors
is simply the number of bits that are different between the two bit vectors. So
the aim of the encoding to reduce the toggling would be to reduce the Hamming
distance of each instruction as much as possible with the one that follows it, or
do the same procedure for all the most commonly used instructions to any of the
others.

A simple encoding following the principles of Huffman encoding is employed
to the instruction set with a focus on the instructions that make up for the
main loop of instructions, but always avoiding any encoding that might lead to
problematic HDL. The ASIP tools are very strict in this part, and do not allow the
designer to the make any mistakes or clerical errors in the encoding.

5.4.1 Final results

The results from this final implementation as shown on the following figures, are
very good. Without any major changes to the instructions themselves, only the bit
encoding of the instruction grouping hierarchy and the instructions themselves,
the power consumption of the decoder features a drop of 12% as compared to the
previous orthogonal design and the whole design has a 8% drop.

Figure 5.4: Decoder component power consumption of the SIMD, first and final
orthogonal implementations

Compared to the first SIMD design, as shown in figures 5.4 and 5.5 there is
now an 8% drop in the power consumption of the decoder and 15% drop in
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Figure 5.5: Total power consumption of the SIMD, first and final orthogonal
implementations

the power consumption of the total design. Which is more than was expected,
especially considering that the changes made are exclusively on the encoding of
the instruction set.

Looking into the drop in the toggling activity, as a means to reduce the energy
consumption there is a significant 18% drop in the decoder as compared the first
orthogonal implementation and a 65% drop as compared to the original SIMD
implementation, even though in the SIMD the instruction word is only 16 bits
long.

The component comparison chart (figure 5.6) shows the statistics in the first
and the final orthogonal implementation are quite different from the ones in
the CoolBio or the SIMD implementation. Once again the power consumption
of the memories -that would be dominant- is left out, in order to focus on the
components of the core. Despite the aforementioned drop in the power consumed
by the decoder and the whole design, there is only little change in the decoder
as compared to the other components, with the vector MAC unit taking up the
largest part of the power consumption of the core.

In terms of area, as illustrated in figure 5.7, there is little difference between the
two orthogonal versions, however there is a small drop in the cell area required
for the final orthogonal design and there is also a similar drop in the net area.

There are also other experiments conducted with different instruction word
sizes or more radical changes. But the code generated cannot always be properly
checked and synthesized by the HDL compiler tools due to timing violations or
compiling errors. Especially when using arbitrary bit lengths for the instruction
word other than the usual ones in powers of two.
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5.4.2 Conclusions

To sum up, as analysed on this chapter there is a lot to gain in the research that
of how the length of the instruction word can be changed to suit the application
domain. The ASIP tools offer retargetability and easy architectural exploration
that be used for iterative modifications and simulations on a design, in an attempt
to find the best solution for the targeted application domain.

According to the initial assumption, an orthogonal instruction word with a
width of 48 bits instead of the original 16 bits is build and experimented on to
find the capabilities it can offer. By taking into account all of the parameters
(area, performance, energy consumption, available hardware), the design can be
changed according to the respective needs of the time with great gain and little
effort, as long as certain guidelines are followed.

The results, as shown in the previous figures, reveal a substantial gain in
energy consumption, thus proving that the original idea was a success. Having
a larger instruction word provides the essential space for optimizations in the
instruction encoding that can greatly reduce the energy consumption of the
decoder and the whole design.
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Figure 5.6: Power consumption for every component in the two orthogonal
implementations
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Figure 5.7: Cell area required for the SIMD and the two orthogonal implementations



Chapter 6

Conclusions

The purpose of this study is to find a method that can utilize the available
advanced ASIP tools -like Target’s tool flow- to produce a low-energy processor
for a specific application domain. For that purpose, ASIPs are developed and
used for their distinctive ability to combine energy efficiency, flexibility and
performance. It should not be forgotten that in today’s embedded systems
energy consumption is one of the greatest problems. However, since technology
advances rapidly, some of the solutions to problems that designers used to face
have to be revisited to assess if they can be solved in a move effective way.

The available ASIP tools offer sophisticated tools that enable the development
of an ASIP processor in only a fragment of the time that would be required for the
design of a normal processor. They offer a full suite from processor architecture
design, instruction set description and operation definitions, to application
simulation and HDL generation. The available simulation capabilities can be
combined with the profiling to investigate different implementations through
iterative changes to the original code with the aim to achieve the optimal for the
targeted application domain.

6.1 The quest for the golden ratio

As mentioned before, processor design is a game of many trade-offs. So in order to
achieve the so-called golden ratio, the ideal balance for a processor architecture,
a designer would need to figure out the influence of the different parameters
(i.e. energy, power, performance, flexibility) on each of the components and the
interconnections of a processor and choose the trade-offs that make it as efficient
as possible within the technical characteristics defined.

It is a usual mistake to think that power and energy consumption are one
and the same. Power efficiency does not necessarily guarantee energy efficiency.
In embedded systems nowadays, energy is the decisive factor that can actually
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make a processor successful. Low power consumption or high performance alone
are not enough, since the two seem to be in contrast to the other. A processor with
very low power consumption is commonly the goal of the design, however this
usually leads to very low performance (or vice versa), so it takes up more energy
for the processor to perform a task. Therefore, the designer of a processor has
to make a compromise and keep the balance between power and performance,
depending on the application at hand. Thankfully, applying modifications on
ASIPs is much easier and faster compared to normal processor design.

There are several techniques for ultra low-power processor design that be
effectively applied on different levels (compiler, architectural or circuit), like
dynamic voltage scaling, clock gating or encoding. Each one has its own
advantages and disadvantages and does not always lead to energy efficient
design.

6.2 Memory efficiency

It is usually taken for granted that the smaller the memory in a processor, the
better. But what about the overhead that has on the rest of the components in
a design. It is exactly for this reason, that it is investigated whether a larger
instruction word can actually be better for the design, allowing the designer
to use the extra bits of the instruction word to tailor the instruction set to the
application domain and then encode it once again in a more effective way, despite
the extra overhead that the program memory would need.

Studies on the different commercial SRAM memories that are available show
that while bigger memory arrays (comprised of smaller subarrays) tend to offer
more storage for the area that they require, their power consumption (relative
to performance) tends to increase at a faster rate as the word size and the block
capacity increases. That means that while smaller memories may be best in power
efficiency, larger memories can offer multiple times more memory storage for
relatively smaller area, which in turn has a direct impact on power. So the answer
to the energy efficiency problem lies somewhere in between.

A designer can take advantage of these findings, and use relatively larger
(but not too large) memories with word sizes of up to 64-bits that can offer more
storage with relatively smaller power cost.

6.3 ASIP instruction-set architecture

The instruction-set architecture is the most important characteristic and what
defines a processor. That is even more the case in ASIPs where the software
part of the hardware/software co-design tools have to functionally adapt to this
instruction-set and support it.
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6.3.1 Hard-SIMD and Soft-SIMD

One of the most important processor architectures of last decades is SIMD.
It allows the exploitation of instruction-level parallelism. There are several
different approaches to implementing an SIMD, mainly in hardware or software.
Hardware SIMD relies on multiple functional units in hardware while software
SIMD transfers that complexity to the compiler software and the decoder.

A hardware SIMD developed for this thesis is compared to a simple scalar
processor and a software SIMD implementation with the aim to investigate their
energy and area efficiency. A bioimaging application based on a Gauss filter is
used as the benchmark. The results show that both SIMD implementations fare
much better than the scalar processor, mainly in terms of performance. Getting
the job done faster with low power to performance ratio, results to smaller overall
energy consumption.

Comparing the hard and soft-SIMD proves more tricky, as they are
totally different implementations, but what is the main focus here is energy
consumption. The hard-SIMD requires slightly less energy for the biotechnology
benchmark, with a lower cell count as well. The hard-SIMD features four power
and area costly multipliers to perform MAC operations with a 16-bit instruction-
set and an overall simple design, while the soft-SIMD is heavily optimized with
a sophisticated vector register file, a vector shift-add unit (substituting a MAC
with less energy) and an 80-bit instruction word that can adapt to different
subword sizes. Looking into the energy component breakdown (figure 4.11),
it is obvious that the complexity derived from the additions in the soft-SIMD
is also transferred to the rest of the components of the processor, especially the
decoder which is overburdened with the task of decoding an 80-bit word. So from
the energy efficiency perspective, the hard-SIMD with its simpler and cleaner
design, seems to be preferable as it is much faster to develop and debug, and
also provides space for taking advantage of the ASIP tools through experimental
optimization.

6.3.2 Orthogonality and optimal word size

The hard-SIMD implementation had its instruction-set modified from 16-bits
to 48-bits with an orthogonal approach in mind. The initial idea was for the
instruction-set to be much wider and fully orthogonal, being able to fully control
the generated signals and have an instruction-set that provides all operations to
addressing mode combinations, but that is rendered impossible by the ASIP tools
available. Instead a 48-bit orthogonal instruction-set is developed. This includes
a 17-bit opcode, 9 bits for the three scalar operands, 6 bits for the three vector
operands and 16 bits for offsets and immediate values.

This design, even though it requires a four times bigger program memory,
proves to be 10% more energy efficient than the original hard-SIMD design, due
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to reducing the power consumption of the decoder, the MAC unit and the rest of
the components.

There are also several experiments conducted on how to reduce the
complexity of the decoder through the instruction-set encoding. That is achieved
by using unused bits in the 17-bit opcode, fine tuning the nML to improve
the quality of the HDL generated and experimenting with different encoding
schemes or instruction word sizes. The ASIP tools provide various instruction
trace and profiling tools that can prove very helpful in combination with the
relatively small time required, in order to exploit the different options in spatial
or temporal and find the best suited for the design. The only problem here is that
there needs to be an automated way to do this and verify the design on each of
the stages from processor nML design to synthesis and power benchmarks, as
well as extracting the results in a user friendly way. This is solved with the use of
several scripts in various programming or scripting languages.

The final implementation is a result of a combination of these methods,
keeping the main constraint of maintaining the instruction functionality and
number the same. It shows that mostly by using a different encoding for the
instructions in the loop kernels which are the ones that are executed the majority
of the time, there can be a major drop in the toggling activity of the decoder and
the memories, which in turn contributes to a drop of 8% as compared to the initial
orthogonal design and 15% compared to the SIMD design.

It is obvious that the instruction-set encoding and its width can have a major
role on the energy and performance of a processor. By using the ASIP tools
and their retargetability, the design can be tailored to perform effectively in an
application domain. The size of the instruction word defines the relation of the
complexity between the memories and the design. A smaller instruction word
requires a small memory and transfers the complexity to the decoder, while a
larger word has a simpler decoder but requires a larger memory. However, there
are times when reducing the toggling activity of the instructions can be more
important than the size of the instruction word.

Combining the results from this experiments on the ASIP implementations
along with the data from memory efficiency, it is suggested that since energy is
now one of the most defining features of a design, a processor and especially
an ASIP can profit from having a larger instruction word size (that is not
highly compressed), which reduces the complexity (and thus the area and
power required) by the decoder and provides the option of many possible
optimizations without incurring a big overhead on the memories and the
processor components. Nevertheless, the increase in the size of the instruction
word should be kept to manageable levels because of the power required by
memories above 64 bits. It is up to the designer to choose the instruction word
size that is the ideal for every situation.
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6.4 Future work

The ASIP tools are ideal for the design of DSP co-processors for Multiprocessor
System-on-Chip (MPSoC). Application domains including audio/video
processing, biotechnology, encryption or baseband systems for next-generation
wireless modems are good candidates for an ASIP implementation, where having
a dedicated co-processor with great performance and low energy cost per task
is crucial for the success of the system. It is in these cases that reconfigurable
architectures like ASIPs are most effective, because of their ability to adapt with
new instructions to new demands.

There should also be an automated procedure that can help use the potential
of iterative experiments for the investigation of ASIP design, in order to find the
optimal conditions (i.e. instruction-set encoding).

Even though the Target tool flow is still developing at a fast rate, Target should
try to emphasize some features which are essential for designers to have more
control over their design as their processor description goes through the various
stages of ASIP flow and is simulated, until it is finally translated into hardware.



82 Chapter 6. Conclusions



Bibliography

[ARM] ARM Holdings plc, November 2011,
www.arm.com

[Artes10] A. Artés García, “Energy Impact of Loop Buffer Schemes for
Embedded Systems”, Master Thesis, Universidad Complutense de
Madrid, 2010.

[Barat03] F. Barat, M. Jayapala, T. Aa, R. Lauwereins, G. Deconinck, and H.
Corporaal, “Low power coarse-grained reconfigurable instruction set
processor”, Field-programmable logic and applications, 2003.

[Beni02] L. Benini, D. Bruni, a Macii, and E. Macii, “Hardware-assisted
data compression for energy minimization in systems with embedded
processors”, Proceedings 2002 Design, Automation and Test in Europe
Conference and Exhibition, 2002.

[Bonn08] T. Bonny, J. Henkel, “Efficient code compression for embedded
processors”, Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 16, 2008.

[Braun04] G. Braun, A. Nohl, W. Sheng, J. Ceng, M. Hohenauer, H. Scharwächter,
R. Leupers, and H. Meyr, “A novel approach for flexible and consistent
ADL-driven ASIP design”, Proceedings of the 41st annual conference on
Design automation - DAC, 2004.

[Burd00] T. Burd, T. Pering, and A. Stratakos, “A dynamic voltage scaled
microprocessor system”, Solid-State Circuits„ vol. 35, 2000.

[Catth88] F. Catthoor, J. Rabaey, G. Goossens et al, “Architectural strategies
for an application-specific synchronous multiprocessor environment”,
Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 36,
1988

[Catth10] F. Catthoor, P. Raghavan, A. Lambrechts, M. Jayapala, A. Kritikakou,
and J. Absar, "Ultra-Low Energy Domain-Specific Instruction-Set
Processors", Springer, 2010.



84 Bibliography

[Chat07] A. Chattopadhyay, D. Zhang, D. Kammler, and E. Witte, “Power-
efficient Instruction Encoding Optimization for Embedded Processors",
20th International Conference on VLSI Design held jointly with 6th
International Conference on Embedded Systems (VLSID ’07), Jan. 2007.

[Corma87] G. V. Cormack and R. Horspool, “Data compression using dynamic
Markov modelling”, The Computer Journal, vol. 30, 1987.

[Corme01] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. “Introduction
to algorithms”. The MIT press. 2001.

[Dak11] S. Dakourou, “Optimized SIMD architecture exploration and imple-
mentation for ultra-low energy processor architectures”, Master Thesis,
Dept. of Computer Eng. and Informatics, Univ. of Patras and IMEC/Holst
Centre, 2011

[DeMan86] H. De Man, J. Rabaey, P. Six, and L. Claesen, “Cathedral-II: A Silicon
Compiler for Digital Signal Processing”, Design Test of Computers IEEE,
1986.

[DeMan88] H. De Man, J. Rabaey, J. Vanhoof, G. Goossens, P. Six, and L. Claesen,
“CATHEDRAL-II-a computer-aided synthesis system for digital signal
processing VLSI systems”, Computer-Aided Engineering Journal, vol. 5
, 1988.

[Emmet00] F. Emnett, "Power reduction through RTL clock gating ", Synopsis
User Group (SNUG) Conference, 2000.

[Geur05] W. Geurts, G. Goossens, D. Lanneer, and J. Van Praet, “Design of
application-specific instruction-set processors for multi-media, using a
retargetable compilation flow”, Proceedings of Global Signal Processing
(GSPx) Conference, Target Compiler Technologies, Citeseer, 2005.

[Glok04] T. Glökler and H. Meyr, “Design of energy-efficient application-specific
instruction set processors”, Springer Netherlands, 2004.

[Goos87] G. Goossens, J. Rabaey, J. Vanderwalle, and H. De Man, “An efficient
microcode-compiler for custom DSP-processors”, IMEC Laboratory, B-
3030 Leuven, Belgium, 1987.

[Goos04] G. Goossens, D. Lanneer, and P. Dyrtrych, “Design of Low Power
Processor Cores using a Retargetable Tool Flow”, retarget.com, 2004.

[Goud99] L. Goudge and S. Segars, “Thumb: reducing the cost of 32-bit RISC
performance in portable and consumer applications”, COMPCON 1996.
Technologies for the Information Superhighway Digest of Papers. IEEE
Comput. Soc. Press, 1999.



Bibliography 85

[Hatt95] E. Hatton, “SAMC-efficient semi-adaptive data compression”,
Proceedings of the 1995 conference of the Centre for Advanced Studies
on Collaborative research, p. 29, 1995.

[Henn06] J. L. Hennessy and D. A. Patterson, “Computer Architecture: A
Quantitative Approarch”, 4th Edition, Morgan Kaufmann, 2006.

[Hoel72] P. G. Hoel, S. C. Port and C. J. Stone, “Introduction to stochastic
processes”, Houghton Mifflin Company, 1972.

[Huff52] D. Huffman, “A Method for the Construction of Minimum-
Redundancy Codes”, Proceedings of the IRE, 1952.

[Katev11] M. Katevenis, G. Passas, CS-534 Lecture Slides, Computer Science
Department, University of Crete

[Kaxir08] S. Kaxiras, M. Martonosi, “Computer Architecture Techniques for
Power-Efficiency”, Synthesis Lectures on Computer Architecture, Morgan
& Claypool Publishers, 2008.

[Keat07] M. Keating, D. Flynn, and R. Aitken, “Low power methodology
manual: for system-on-chip design”, Springer, 2007.

[Kiss97] K. D. Kissell, “MIPS16: High-density MIPS for the Embedded Market”.
Silicon Graphics MIPS Group, 1997.

[Krit09] A. Kritikakou, “Low cost low energy embedded processor for
online biotechnology monitoring applications”, Master’s thesis, Dept. of
Computer Eng. and Informatics, Univ. of Patras and IMEC, 2009.

[Leka98] H. Lekatsas and W. Wolf, “Code compression for embedded systems”,
Proceedings of the 35th annual Design, 1998.

[Leka99] H. Lekatsas and W. Wolf, “SAMC: a code compression algorithm for
embedded processors”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 18, 1999.

[Leka00] H. Lekatsas and W. Wolf, “Arithmetic coding for low power embedded
system design”, DCC, 2000.

[Leup00] R. Leupers “Code optimization techniques for embedded processors:
methods, algorithms, and tools”, Springer, 2000

[Lin04] C. H. Lin, X. Yuan, and W. Wolf, “LZW-based code compression for
VLIW embedded systems”, Proceedings Design, Automation and Test in
Europe Conference and Exhibition, 2004.

[Liu08] D. Liu, “Embedded DSP processor design: application specific
instruction set processors”, Morgan Kaufmann, 2008.



86 Bibliography

[Maha05] N. Mahapatra, J. Liu, and K. Sundaresan, “A limit study on the
potential of compression for improving memory system performance,
power consumption, and cost”, J. Instruction-Level, vol. 7, 2005.

[Mare06]
H. Maréchal, “ASIP design methodology with Target’s Chess/Checkers
retargetable tools”, Proc. Intl. Signal Processing Conference, Santa Clara,
2006.

[Mish08] P. Mishra and N. Dutt, “Processor description languages: applications
and methodologies”, Morgan Kaufmann, 2008

[Morg07] P. Morgan, R. Taylor, “ASIP Instruction Encoding for Energy and Area
Reduction”, 44th ACM/IEEE Design Automation Conference, 2007.

[Mutoh95] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J.
Yamada, “1-V power supply high-speed digital circuit technology with
multithreshold-voltage CMOS”, Solid-State Circuits, IEEE Journal of, vol.
30, 1995.

[Parhi99] K. Parhi, “VLSI digital signal processing systems: design and
implementation”. Wiley-India, 1999.

[Piguet01] C. Piguet, P. Volet, J. M. Masgonty, F. Rampogna, and P. Marchal,
“Code memory compression with online decompression”, Solid-State
Circuits Conference, 2001. ESSCIRC 2001, 2001.

[Piguet06] C. Piguet, “Ultra-low power processor design”, High-performance
energy-efficient microprocessor design, Springer, 2006.

[Psy10] G. Psychou, “Optimized SIMD scheduling and
architecture implementation for ultra-low energy bioimaging processor”,
Master’s thesis, Dept. of Computer Eng. and Informatics, Univ. of Patras
and IMEC, 2010.

[Raba03] J. Rabaey, “Digital Integrated circuits: a design perspective”, Prentice-
Hall, 2003.

[Ragh07] P.Raghavan, A.Lambrechts, M.Jayapala,
F.Catthoor, D.Verkest, H.Corporaal, “Very wide register: an asymmetric
register file organisation for low power embedded processors”, Proc. 10th
ACM/IEEE Design and Test in Europe Conf., Nice, France, April 2007.

[Ragh09] P.Raghavan, A.Lambrechts, M.Jayapala, F.Catthoor,
D.Verkest, “EMPIRE: Empirical Power/Area/Timing Models for Register
Files”, Microprocessors and Microsystems J. Feb. 2009.



Bibliography 87

[Roev04] H. Roeven, J. Coninx, and M. Ade, “CoolFlux DSP-The embedded
ultra low power C-programmable DSP core”, in Proc. Intl. Signal Proc.
Conf.GSPx, 2004

[Synopsys] Synopsys, November 2011
www.synopsys.com

[Target] Target Compiler Technologies, November 2011
www.retarget.com

[Target nML] The nML Processor Description Language 11R1, Target Compiler
Technologies, March 2011.

[Tensilica] Tensilica, November 2011
www.tensilica.com

[Weste11] N. Weste and D. Harris, “CMOS VLSI Design: A Circuits and Systems
Perspective”, Addison-Wesley, 2011.

[Wolfe88] A. Wolfe et al., “The white dwarf: a high-performance application-
specific processor”, ACM SIGARCH Computer Architecture News, vol.
16, 1988.

[Wolfe92] A. Wolfe and A. Chanin, “Executing compressed programs on an
embedded RISC architecture”, ACM SIGMICRO Newsletter, vol. 23, 1992.

[Xie07] Y. Xie, W. Wolf, and H. Lekatsas, “Code Decompression Unit Design
for VLIW Embedded Processors”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 15 2007.

[Xu04] Xu, X., Clarke, C. T., and Jones, S. R. “High performance code
compression architecture for the embedded ARM/THUMB processor”.
Proceedings of the 1st Conference on Computing Frontiers. ACM. 2004.

[Zhang08] D. Zhang, A. Chattopadhyay, D. Kammler et al., “Power-efficient
Instruction Encoding Optimization for Various Architecture Classes”,
Journal of Computers, vol. 3 2008.


	Acknowledgements
	Euqarist'iec
	Abstract
	Ektetam'enh Per'ilhyh
	Introduction
	Motivation
	Embedded systems
	Processor design and instruction set architecture
	Application specific instruction-set processors

	Objectives
	Thesis Outline

	Background and Related Work
	Ultra-low power processor design
	Power dissipation
	Energy or power focus
	Low energy metrics
	The deep sub-micron era
	Performance to power consumption ratio in different processor types

	Memory efficiency
	SRAM
	Memory power efficiency
	Memory addressing modes
	Loopbuffers

	Techniques for energy-efficient processors
	Low-power techniques in circuit design
	Low-power techniques in architecture level

	Code compression and encoding
	Architecture Description Languages
	Design methodologies for ASIP
	Target IP Designer
	Tensilica's Xtensa
	LISA and Synopsys Processor Designer

	ASIP Case studies

	Development Framework
	nML Grammar
	nML Structural Skeleton
	nML Rule Definition
	Primitives definition and generation language

	Target tool flow
	Chess
	Checkers
	Go
	Risk

	Instuction set encoding

	Development of a SIMD ASIP
	Hardware SIMD and Software SIMD
	Basic features of the VBase processor
	Additions and modifications
	Gauss loop filtering
	Multiply-accumulate unit
	Shifter and overflow prevention
	Wrapper and Testbench
	Additional instructions added

	Comparison of the hard-SIMD with a soft-SIMD implementations
	The Soft-SIMD implementation
	Comparison and results


	Modifying the Instruction Set for Energy-Efficiency
	Analysing the generated control signals for full orthogonality
	Creating a wider instruction
	Power Results
	Area Results

	Optimizing the encoding of the instruction set
	Reducing decoder complexity
	Exploiting methods for energy efficient architectural design with ASIP tools

	Final implementation
	Final results
	Conclusions


	Conclusions
	The quest for the golden ratio
	Memory efficiency
	ASIP instruction-set architecture
	Hard-SIMD and Soft-SIMD
	Orthogonality and optimal word size

	Future work

	Bibliography

