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Abstract

The various capabilities provided by the Internet have attracted a large
amount of Internet-based applications over the last decades. Many ser-
vices that previously only used other means of communication are now also
deployed on the Internet. As the content in the communication becomes
richer, the bandwidth required to communicate it increases. In the case
of delivering audiovisual content over the Internet, a significant amount
of bandwidth is required to send the content to a single recipient, and
increases rapidly for each additional recipient. To be able to provide scal-
able, Internet-based systems for video content delivery, researchers and
companies have begun to focus on peer-to-peer-based approaches, mean-
ing participants collaborating and contributing their bandwidth to assure
content delivery to all others.

This thesis proposes a design for a peer-to-peer system for delivery
of live video, and provides simulation results for an implementation of
the design. The design targets some of the current issues of peer-to-peer
systems — mainly that of providing friendliness towards Internet Service
Providers (ISPs). Peer-to-peer systems generate considerable amounts of
traffic, which is often sent between peers located in different ISPs; even
when data is available at a peer in the same ISP as the recipient. This
creates problems for ISPs as they often have to pay other ISPs for data
sent over cross-ISP connections, and because congestion can occur in the
ISPs gateways to the rest of the Internet — the problems increasing with
the number of ISPs that the traffic has to go through. This has forced
some ISPs to limit or block peer-to-peer traffic completely.

The system designed in this thesis uses a gossip-based peer-to-peer
protocol for content dissemination, and to minimize cross-ISP traffic, the
thesis proposes that peers should choose peers closer in the network topol-
ogy to connect to. This can be achieved by creating a database composed
of ISPs and the distance between them, which is consulted every time a
new connection is to be created. The database is small enough to be stored
locally at each peer. As long as a peer is able to deliver a clear stream it
will only connect to close peers, however should the close peers not be able
to provide data at a sufficient rate, the peer will request random peers in
the system to also provide it with data.

Evaluation of the system in various simulation scenarios shows that
it operates well in a constrained environment as well as during peer fail-
ures. The evaluation also shows that it is possible to have high clustering
of peers and still deliver a clear stream to all of them, as long as a few
random connections are allowed to be created when close neighbors can’t
provide a sufficient download rate. Comparing the use of biased neighbor
selection to random selection, traffic between ISPs is efficiently reduced in
the overall system, the portion of traffic exchanged between peers in the
same ISP experience a ten times increase or more in most scenarios, and
in larger ISPs that contain many peers, 75% of all traffic is exchanged
between peers within the ISP. Thus the design presented in this thesis
can be recommended to developers and content providers that are look-
ing to increase ISP friendliness in their existing or future peer-to-peer
applications.



Sammanfattning

De manga mojligheter som Internet medfér har gett upphov till ett
stort antal Internet-baserade tjanster de senaste decennierna. Flertalet
tjanster som tidigare endast fanns tillgdngliga via andra kommunikations-
kanaler dr numera ocksa mdjliga att na via Internet. I och med att in-
formationen som skall skickas via olika tjanster 6kar s& Okar ocksé kraven
pa bandbredd, och foér att kunna leverera video krédvs en ansenlig band-
bredd. Bandbredden som kravs av den som levererar videon Skar dess-
utom snabbt i takt med antalet mottagare av den. For att kunna skapa
Internet-baserade tjanster for video som tillater ett stérre antal anvéndare
har forskare och foretag borjat anvdnda peer- to-peer-baserade 16sningar,
dar anvindarna av tjansten samarbetar och bidrar med deras egen band-
bredd for att géra det mojligt for samtliga anvindare att ta emot videon.

Detta arbete beskriver hur ett peer-to-peer-system for live-video kan
utformas, och tillhandahaller resultat fran simulationer med en imple-
mentation av systemet. Det huvudsakliga malet med systemets design &r
att minska bordan som peer-to-peer-system vanligen utgor for internet-
leverantorer. Denna typ av system genererar ofta stora méngder data,
som i de flesta fall skickas mellan anvéndare som befinner sig i nitverk
tillhérande olika internetleverantorer, trots att samma data ofta finns till-
génglig pa narmare hall — det vill sdga hos anvidndare som tillhor samma
internetleverantér som mottagaren. Detta &r ett problem for internetle-
verantorerna eftersom de ofta behéver betala for trafik som ldmnar eller
gar till deras natverk. Utover detta sa kan de anslutningar som existerar
mellan dessa nétverk inte alltid klara sddana méngder trafik, vilket gor att
alla anvéindare av de anslutningarna blir lidande. Detta har lett till att
vissa internetleverantérer begrinsar eller inte tillater peer-to-peer-trafik
overhuvudtaget.

Systemet som utformats i detta arbete bygger pa gossiping (ryktes-
spridning) for att forse anvindare med videostrommen. For att minimera
méngden trafik som skickas mellan anvéindare hos olika internetleveran-
torer s& jamfér anvindarna avstandet i natverkstopologin till andra an-
vandare och skapar bara anslutningar till de som befinner sig nérmast.
Avstandet mellan tva internetleverantorer utgdrs av antalet anslutningar
mellan tva internetleverantdrers nétverk som maste passeras pa vigen.
Dessa avstand ar lagrade i en databas som finns lokalt hos varje anvanda-
re. Sa ldnge en anvéindare kan se en videostrom utan storningar sa laddas
den endast ner fran nérbeldgna anvindare, men skulle dessa inte kun-
na tillgodose anvandaren med tillrdcklig datahastighet sa kommer andra,
slumpméssigt utvalda, ocksa att kontaktas for att bidra med delar av
videostrémmen till denna anvéndare.

I den utvérdering av systemet som gjorts s& har det visat sig fungera val
nér tillgdngliga resurser som bandbredd och tillforlitligheten i det fysiska
nitverket dr begrénsade, samt under svara forhallanden som nér en stor
del av anvindarna ldmnar systemet samtidigt. Utviarderingen visar ocksa
att anvindarupplevelsen inte paverkas av fordndringen som det innebér
att foredra kommunikation med nirbeldgna anviandare, sa linge nagra fa
slumpméssiga anslutningar ar tillatna i de fall d& anvindare i nérheten



inte kan tillhandahélla tillrdcklig datahastighet. Jamfort med att vélja al-
la kommunikationspartners slumpmassigt s& minskar tillvigagangssattet i
detta arbete effektivt trafiken mellan olika internetleverantérer bade sett
till hela systemet och i enskilda ndtverk—andelen trafik som utbyts mel-
lan anvéndare tillhérande samma internetleverantor blir i de flesta fall tio
ganger storre—och i stora nitverk som innehaller manga anvéndare sa
utgor trafik mellan dess anvindare 75 % av all systemets trafik i detta
ndtverk. Den design som utformats i detta arbete kan darfér rekommen-
deras till utvecklare och tillhandahallare av bade existerande och framtida
tjanster som anvinder peer-to-peer-teknik, och som &r intresserade av att
minska belastningen som deras system utgor for internetleverantorer.

Keywords: gossip, isp friendly, live streaming, peer-to-peer, p2p, video
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1 Introduction
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having faith in me.

1.2 Background

The wide deployment and good extensibility support of the Internet and the
TCP/IP model has attracted a large amount of applications and services over
the last decades. Media that traditionally belonged to the category of analog
telecommunications, such as radio, telephony and TV broadcasts, are becom-
ing digital through deployment over the Internet. This type of media content
requires significantly more resources compared to the text-based content that
were dominating the Internet in its youth; the resources required to deliver
video content—a movie, a seminar, a sport event, or similar—over the Internet
increases quickly with the number of clients that are receiving the content, since
the supplier has to send an individual copy of the content to each of its clients.
The main constraint of such systems is therefor the upload bandwidth capacity
of the server. As a result, it is impossible to deliver video content of good quality
using a server with an ADSL connection, even to a small number of clients.

A popular solution used to lower the upload bandwidth requirements for
a server, in this case a media server, is the peer-to-peer architecture. This
approach leverages the upload bandwidth of all participants in the media content
distribution, by equipping receivers of the content with the same capabilities as
the initial sender. The term peer refers to the participants in the system all
having the same role; every participant is in a sense both a client and a server.
As soon as a peer has received some content it acts as a server for peers that
have not yet received the same content. This solution is most widely used in
file sharing applications such as BitTorrent.

Using the peer-to-peer approach other issues arise, as even though the peers
in a system are equal in their interface, they are very much heterogeneous in
terms of bandwidth, reachability, geographical and network location, and more.
To further increase the complexity of designing a peer-to-peer system, peers are
often joining and leaving the system at a varying rate, risking system quality to
decrease if appropriate action is not taken when such events occur.

1.3 Objective

This thesis focuses on current topics in peer-to-peer-based live video streaming
research. The objective is to design a peer-to-peer system for large-scale live



video streaming that

e maximizes throughput and stream quality, provides resistance to churn
and message loss, while minimizing overhead

e is friendly towards Internet Service Providers (ISPs)
e is able to traverse most Network Address Translator (NAT) types
e provides easy-access monitoring through common interfaces

and the main contributions of the thesis being the development of a network-
biased Peer Sampling Service (PSS), and then, partly by using this new PSS,
enhancing an existing protocol for live video streaming with ISP friendliness.
NAT traversal is not a contribution of this thesis, but a property of the system
developed which is gained through already existing tools in the framework used.

1.4 Limitation
The system designed in this thesis will not

e provide any decentralized protection against freeriders

1.5 Motivation

The main benefit of using a peer-to-peer system for live content delivery, com-
pared to a client-server solution, is the lower requirements on the provider,
primarily of the upload bandwidth capacity. These lowered requirements pro-
vide a large amount of Internet users with the possibility to stream content to
almost any number of receivers, provided a scalable system. Instead of having
to pay for gigabit links and advanced server solutions an upload rate of a few
hundred kilobytes to a few megabytes, depending on video bitrate and quality, is
sufficient. This can heavily reduce the cost for companies interested in sending
live video over the Internet, and is enough to allow video streaming even from
residential connections.|27, 18]

The motivation for ISP friendliness of peer-to-peer systems is to decrease the
cost for ISPs. Peer-to-peer systems generate at least as much traffic as those
that use the client-server model to provide the same service, but while the latter
often uses dedicated links that are designed and paid for with the single purpose
of the system in mind, most peer-to-peer systems use multi-purpose consumer
links and connect users without respecting the underlying network design. For
example, over 70% of content present in nearby peers showed to be downloaded
from distant peers in a study of the popular peer-to-peer file-sharing system
BitTorrent[14]. This ignorance of peers’ location is costly for ISPs for two types
of reasons;

i) infrastructure constraints: long-distance traffic consumes more network
capacity and causes congestion at gateways between ISPs[27].



i1) business decisions: the Internet is mainly formed by ISPs having provider-
subscriber agreements with eachother, and thus an ISP often has to pay for
incoming and outgoing traffic[13, 27].

In the end this affects all involved parties—connection providers (ISPs), con-
tent providers, and content recipients—since due to this increased cost ISPs have
begun to block or limit peer-to-peer traffic[27], resulting in decreased quality in
affected systems. The service (delivery of content) thus becomes less appealing
to users, causing the provider to lose viewers, customers, fans, and advertise-
ment possibilities. Several peer-to-peer video streaming systems that attempt
to achieve ISP friendliness already exist, some of them with millions of users,
but most of them do so inefliciently.[5, 27]

Monitoring and diagnosing of peer-to-peer systems have become more im-
portant as the amount of services that use peer-to-peer based solutions, and
the traffic they generate, increases. It is of interest to service providers and
consumers to know which system that has the most suitable properties for their
needs. System operators must be able to monitor system health and clients’ per-
formance in real-time, and also in aggregation over time. Finally, researchers
may want to gain further knowledge about systems’ behavior by analyzing them
in simulations and experiments.|[27]

To summarize, this thesis is motivated by current issues and developments
in peer-to-peer systems, particularly ISP friendliness and live video streaming.
With this in mind, the thesis aims at finding possible solutions and new designs
and implementations.

1.6 Outline

This thesis is structured as follows:

Section 2 provides a background to the thesis work, focusing on core concepts
of peer-to-peer live streaming and ISP friendliness.

Section 3 presents related work; research on network awareness and ISP
friendliness, and evaluations of the ISP friendliness provided by current, widely
used peer-to-peer live streaming systems.

Sections 4 and 5 describes the system design and implementation, respec-
tively.

Section 6 provides an evaluation of the system.

Finally, Sections 7 and 8 give a conclusion and outline future work.



2 Core Concepts and Current Issues

2.1 Peer-to-Peer Live Video Streaming

Live streaming in peer-to-peer systems is the task of broadcasting data from a
single source to a large number of clients, the data being produced at system
runtime and the size of it unbounded, meaning that its size is not known until
the end of the data dissemination. Most, if not all, live video streaming falls
into the category of high-bandwidth content dissemination, in which the dissem-
inated data represents a significant amount of the available bandwidth among
dissemination participants.[18]

For the clients to be able to experience a smooth playback, it is important
that data is received within certain timing constraints. In addition to the above,
the notion of live means that there should be little delay between the initial
generation of data at the source and the playback at each client. Therefor a
client will quickly notice if the download rate drops below the stream rate —
the rate at which data is produced at the source. Loss of more than 1% of the
streamed data can be shown to have a large negative effect on user experience[3].

2.1.1 Comparison to File Sharing

Compared to live video streaming, file sharing is the task of copying data that
is static and thus bounded in size. In peer-to-peer systems, file-sharing proto-
cols like BitTorrent can use the fact that all data is available at the start of
dissemination to effectively maximize use of the total upload capacity of the
system, using the rarest first principle: by having the source send out different
parts of the file to different peers, the peers can then exchange those parts with
each other, effectively offloading the source in that task and instead sending out
parts that were not sent yet. By extension, this means that pieces that are rare
in the system will be sent first.[15]

Live video streaming cannot use this principle as content is produced on the
go, meaning that the source can only disseminate data in a certain order, and as
peers should deliver smooth, near-live playback of the video, they are all inter-
ested in roughly the same part of the content at the same time. Therefor peers
have to download the stream at an average speed equal to that of the stream
rate, with very little variance allowed. The nature of content dissemination in
live streaming also makes the successful incentive mechanism tit-for-tat/25] used
in file-sharing protocols troublesome to implement in a live streaming system.
In tit-for-tat a peer is encouraged to upload data to peers which it wants to
download from, otherwise risking to be denied the download in favor for other
peers which offer more upload. When all peers want the same data and no rarest
first policy is applicable, the peers have no leverage on this kind of market.

Table 1 contains a summary of the comparison.



Table 1: Comparison between live streaming systems and file sharing

Live File sharing
Content dynamic, unbounded static, bounded
Download pattern linear rarest first
Content access continuous at dissemination end
Bandwidth sensitivity high none

2.1.2 Comparison to Video on Demand

Video on Demand (VoD) can be described as the task of file sharing, where
clients want to start the download at a certain position, sequentially download
parts from that position, and start accessing the content as soon as possible. It
differs form live video streaming in that considerable buffering may be allowed'
as there is no requirement on the content being live. As stated, clients in a VoD
system may choose to start the download at an arbitrary position in the video,
resulting in two characteristic challenges in the development and deployment of
distributed VoD systems: a client has to store some parts of the downloaded
content to be able to serve other clients which are viewing the same video but
not at the same position, and the system has to effectively support clients in the
lookup of such content at other clients, preferably in a distributed manner.[27]
A summary of this comparison is available in Table 2.

Table 2: Comparison between live streaming and Video on Demand (VoD)

Live VoD
Starting position same arbitrary
Content dynamic, unbounded static, bounded
Download pattern linear linear
Content access continuous continous
Bandwidth sensitivity high low /high

1Users still probably want to view the video as soon as possible, but it is not a functional
requirement of the system as it is in the case of live video streaming,.
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2.1.3 Challenges in Live Video Streaming

The following are considerable challenges in live streaming systems formulated
by Monod [18]:

o Minimize the overhead of the protocol: design the system so that the
average upload of the clients is as close to the stream rate as possible

o Mazximize the stream quality: provide clients with a stream that is as close
to the original stream produced by the source as possible

o Minimize the buffering delay: let clients start watching the stream as soon
as possible after they start receiving data

o Minimize the stream lag?: provide a stream that is as live as possible to
all clients

o Mazimize simplicity: aim to provide simple protocols to ease implemen-
tation and deployment over large-scale systems

It is apparent that the challenges in live video streaming, and one of the reasons
why they are difficult to solve, are in conflict with each other. For example, to
provide constant high stream quality it may be necessary to use a significant
buffer size, which causes high stream lag and long startup delay.[20]

2.2 System View and Overlay Classifications

An important task in getting a peer-to-peer system to scale with the number
of participants in the system is keeping all peers connected. A single peer
can’t keep track of all peers currently in the system, considering most systems
having a non-negligible amount of churn—nodes joining and leaving for valid
(application- or user-imposed), or invalid (crash, failures) reasons—why the task
of monitoring them all would become too costly in large systems, both in terms
of memory resources and communication overhead. Instead each peer has its
own view of the system; a subset of the system’s peers. Which peers a certain
peer includes in its view depends on the overlay used.[18§]

2.2.1 Structured and Unstructured Overlays

In general, an overlay is a network that is built on top of another network. Peer-
to-peer overlays, from here on referred to as just overlays, are built on top of the
Internet. These are commonly categorized as being structured, unstructured,
or a hybrid of the two. In structured overlays the views of the peers follow
certain rules, and connections between nodes follow certain semantics, in other
words they have a certain meaning. Because connections are created according
to these rules, structured overlays typically only change in case of churn, i.e.
they are static and reactive.

2Stream lag is defined as the time difference between the moment at which the stream is
sent from the source and the moment at which it is played on the client.
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Unstructured overlays can be either static or dynamic. The views and con-
nections in unstructured overlays are fairly random and there is no hierarchical
relationship between connected peers. Systems that use a static unstructured
overlay are referred to as mesh-based. Peers in dynamic unstructured overlays
update their views periodically, making them proactive to churn. Gossip-based
overlays falls into this category, and will be discussed further in Section 4 . [18]

Table 3 summarizes the classification of overlay types.

Table 3: Classification of overlay types

Static, reactive Dynamic, proactive
DHT-based, Ring
Structured ’ ’
ructure Trees, Multitrees
Unstructured Mesh-based Gossip-based

A visualization of some overlay structures is available in Figure 1, which
in addition to the basic structures contains some structures that has interest-
ing properties related to Internet applications; scale-free and small-world. The
distribution of connections in a scale-free overlay follows the power law—the
probability that any node is connected to k other nodes is proportional to k™",
where n typically is between 2 and 3—meaning few nodes have many connec-
tions, and many nodes have few connections. The small-world structure depicts
an overlay where nodes mainly are connected in clusters, each node with a
number of connections significantly smaller than the number of nodes in the
system, but can reach any other node with just a few hops, thanks to a small
number of random, longer links. Figure 1 visualizes scale-free and small-world
topologies with the purpose of showing their characteristics, however when the
number of connections each node has can be chosen freely, systems often in-
corporate the properties of both of them. Examples of such systems are the
hyperlinks composing the World Wide Web, router connections in the Inter-
net, and the collaborations between scientists in research papers, all of them
exhibiting clustering but with some random links, and the connections in them
following power-law distributions.|[30]
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a) b) <)
&% i ; \ﬁ %(
d) e)
Figure 1: Visualization of overlay structures. a) shows a tree structure where
most nodes have one parent and two children, b) a ring structure where all
nodes have exactly two neighbors, ¢) a random structure (unstructured overlay),

d) a scale-free structure with minimum of one connection, and e) a small-world
structure with four connections per node.

2.2.2 Overlays and Content Dissemination

There are mainly two types of content dissemination used in peer-to-peer live
streaming systems; either data is sent directly to other peers using a push model,
or sent on request from other peers in a pull model. The former is commonly used
when peers are connected in a structured tree overlay, the basic design being a
peer having a single parent and a fixed number of children. The source is at
the top of the tree and is the only node that doesn’t have a parent. The video
stream is propagated down the tree by having parents replicating data to their
children. In this setting there is little overhead after connection establishment
between child and parent, and the stream lag is strictly bounded by the path
between source and most distant child in the overlay. Disadvantages are the high
complexity of maintaining a stable tree in presence of churn and the large portion
of nodes without children that are not contributing any upload bandwidth.
When peers are unstructured it is common to do pull-based dissemination
of media. Peers send information about which data they have, and other peers
can then request that data. Content dissemination using unstructured overlays
is in comparison to structured overlays more resilient to churn, thanks to the
proactiveness and elimination of hierarchical roles; from a design perspective no
node is more important than another to the system, in contrast to tree struc-

13



tures where parents higher up in the tree have more children depending on them
to provide data. In addition, thanks to the random nature and lack of rules for
neighbor connections, the maintenance complexity of unstructured overlays is
low, however for the same reasons content dissemination paths become sub-
optimal and additional communication is required to coordinate what content
should be sent between peers. Moreover, when relying on randomness there is
no bound on the delay of the dissemination, as the path for delivery to a certain
peer can be arbitrarily long.[27]

2.3 Need for ISP Friendliness

The Internet is composed of several interconnected domains, called Autonomous
Systems (ASes), which are owned by Internet Service Providers (ISPs). The
ASes are connected through gateways, and the topology in which they are con-
nected is hierarchical, and not for technical or performance reasons such as the
tree structure for content dissemination, but for business reasons — the hierarchy
is formed from commercial contractual relationships between ISPs[12]. Thus an
AS and its connections can be thought of as the technical instance of an ISPs
commercial contracts.

There are mainly three types of ISPs; those that provide connectivity to other
ISPs, those that provide connectivity to home users and smaller companies,
and those who do both. In the AS infrastructure, the most typical relationship
between two ASes is the customer-to-provider relationship, wherein the provided
service is connectivity to the rest of the Internet, and the customer pays its
provider for any traffic sent between the two. Other relationships are the peer-
to-peer relationship (which has nothing to do with peer-to-peer systems), where
two ASes agree to exchange traffic between their customers free of charge for
each other, and the sibling-to-sibling relationship, which depicts two ASes being
under the same administration.[8] An AS that provides connectivity for other
ASes, either their provider or their sibling, is said to transit their traffic. An
AS that is only connected to its providers, i.e. does not transit any traffic, is
called a stub AS. Figure 2 shows an example of a possible AS topology.

14



provider

customer customer

customer customer

Stub ASes

Figure 2: Example of an AS topology and the relationships between ASes.

Returning to peer-to-peer applications, they are known to generate large
amounts of traffic—according to recent studies at least 50% of all traffic on
the Internet|25, 22]—and most of the time they are unaware of the underlying
network topology; despite data being available in topologically close peers it is
downloaded from peers far away. A study on this issue, monitoring peer behavior
in BitTorrent, shows that its peers does so for 70% of closely available data[14],
and perhaps this shouldn’t come as a surprise since BitTorrent organizes peers in
an unstructured overlay. Studies on peer-to-peer live streaming systems using
unstructured overlays show that the same ratio applies in those[5]. Still, the
problem is present in systems using structured overlays too; many of these
systems are not structured with respect to the network topology.[27, 22, 5]
Traffic that passes between at least two ASes is referred to as inter-AS traffic
or cross-ISP traffic.

This results in heavily increased costs for customer ASes since they have
to pay their providers for all this long-distance traffic, most of it unnecessary.
Another problem that applies to all types of AS connections is the risk of con-
gestion and delays at the ASes gateways, which may harm the overall Internet
experience for everyone using those gateways. The adverse effects of inter-AS
traffic on finances and operability of ISPs have caused some of them to limit,
shape, or completely block peer-to-peer traffic.[13, 27|

For a non-hostile networking environment, peer-to-peer applications have to
respect the desires among all parties involved in the exchange of data: users,
content providers, and service providers. This adds a sixth challenge for peer-
to-peer live streaming systems in addition to the ones mentioned in Section
2.1.3:

o Minimize inter-AS traffic: design the system so that communication be-

15



tween peers as close as possible in the network topology is preferred.

Finally, it is worth mentioning that ISPs without any providers, tier I ISPs,
with globally spanning networks, prefer more inter-AS traffic as their customer
ASes have to pay them for the transit traffic, while the tier 1 ISP itself does not
pay any provider.[21].

2.4 The NAT Problem

The existence of peers behind firewalls and NATs—private or guarded peers—
and the issues which arise in their presence have been frequently discussed in
peer-to-peer system research[18, 20, 7]. Firewalls and NATs are usually present
between a single or a group of end-hosts and the Internet. Firewalls are used to
filter unwanted traffic, possibly in both directions, while NATSs are used to allow
a group of end-hosts with private addresses to share a single public address, and
thereby allowing communication with other hosts on the Internet using various
translation techniques, thereby the name Network Address Translator. Due to
increased security requirements and the shortage of public IPv4 addresses the
use of these devices is rapidly increasing. [7]

Neither of these technologies is any hindrance to peer-to-peer systems by
design; a private peer behind a correctly implemented and configured firewall or
NAT will have the same capabilities as a public peer. The issues arise because
i) most users do not have the knowledge to do the necessary configurations,
and ii) in the many NATs that are implementing more cumbersome policies,
each connection has to be configured separately by the user, an impossible task
in peer-to-peer systems that often create new connections frequently. Therefor
these peers may be hard to reach or not be reachable at all, limiting or preventing
their collaboration with other peers in a system. [7]

To tackle these issues, the Internet Engineering Task Force (IETF) promotes
a set of requirements and rules that these devices should follow in order to
ease the communication with private peers in peer-to-peer systems. As the
classifications of NAT types regarding policy and filtering for UDP traffic shows
(Table 4), one can see that there is a lack of standardization, i.e. agreement
among vendors, for NAT operation. NATs have to implement three different
kinds of policies: port mapping, that describes whether to create a new private
peer to port mapping or to use and old, port assignment, describing which port
to use when a new mapping has to be created, and port filtering, which describes
how to filter incoming packets depending on their source[20].
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Table 4: NAT policies

Policy category Policy

Description

Endpoint-independent

Port mapping
rules for when to
reuse port mappings

Host-dependent

Port-dependent

The same port on the NAT is
reused for all outgoing messages

from the same private peer to any

destination.

The same port on the NAT is
reused for all outgoing messages
from the same private peer to any
port on a certain host.

The same port on the NAT is
reused for all outgoing messages
from the same private peer to a

certain IP address-port pair.

Port-preservation

Port assignment
rules for how to
create new mappings

Port-contiguity

Random

The same port used by the
private peer is used on the public
interface of the NAT.

The NAT maps ports according
to an internal value, which is
incremented for each new
mapping.

The NAT uses a random port on
the public interface for each new
mapping.

Endpoint-independent

Port filtering
rules for which
incoming packets to
forward to private
nodes

Host-dependent

Port-dependent

All incoming packets on a certain
port is forwarded to the private
peer’s port mapped to that public
port, i.e. the peer has previously
sent a message, using this
mapping, to any host.

A packet is only forwarded if the
mapped private peer has
previously sent a packet with
destination address being the
same as the source address for the
incoming packet.

A packet is only forwarded if the
mapped private peer has
previously sent a packet with
destination address and port
being the same as the source
address and port for the incoming

packet.
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The combination of these policies present in a NAT tells how difficult it will
be to connect to a peer behind it, i.e. traverse the NAT. For some combinations
simple heuristics suffice, for others assistance from a server is required, and some
are not possible to traverse under any circumstances.[24] To greatly simplify the
process of NAT traversal, the Internet Gateway Device (IGD) protocol[11] was
devised to allow an application running on a private host to automatically create
port mappings in their NAT. As IGP is implemented via Universal Plug and
Play (UPnP), devices supporting this mechanism is commonly referred to as
UPnP devices, and peers behind them UPnP peers. With applications utilizing
UPnP capabilities when present, UPnP peers essentially become public peers.

Measurements have shown that only about 20-30% of participants in peer-
to-peer systems belong to the categories public or UPnP[16, 32]. As a small
comfort, and fortunately for the well-being of many currently deployed systems,
these peers make up a significantly larger portion of the total upload bandwidth
in the system[32]. Many peer-to-peer systems fail to account for the presence of
these devices[7], and for these and future systems to gain wider deployment and
provide better user experience, given today’s status of the global networking
environment, they will have to start implementing NAT traversing capabilities.
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3 Related Work

In this section important research that discusses or attempts to solve the cur-
rent issues of peer-to-peer live streaming mentioned in this thesis is presented.
Focus lies on research that has influenced the system design. First there is a
summary of some existing peer-to-peer live streaming systems that are widely
deployed and their achievements to be ISP friendly, then recent research tar-
geted at providing tools or solutions for increased ISP friendliness in peer-to-peer
applications is presented.

3.1 Studies on Peer-to-Peer Live Streaming Systems

Measurement and monitoring studies on peer-to-peer live streaming systems
are mainly focused on those that have gained a large user base, some of them
with millions of users, considering the effects on the network increases with the
number of clients running the system.

Ali et al. provide measurements on SopCast and PPLive from 2005. Their
conclusions are that the two applications incorporate none or little network
awareness. The study also analyses how the two protocols behaves in the pres-
ence of private peers (behind NAT) and see that these peers can receive data
but do not contribute any data back to the system.|1]

A study by Ciullo et al. with measurements from 2008 examines network
awareness in the popular live streaming systems PPLive, SopCast and TVAnts.
The study also measures peers’ transmission rates, number of contacted peers,
and contribution rates among contacted peers. All three applications were re-
leased in the period 2004-2005 and have since gained much popularity. They
are all proprietary and closed, meaning that they are not offering any insights
or monitoring of their behavior. Therefor the study deploys about 40 peers in
different locations and monitors the communication between them while they
are watching the same stream. The study concludes that these systems are not
particularly network aware. When content is available in the same AS, it is
still mainly downloaded from outside the AS; this is the case for 68% of such
data in TVAnts, 87% in PPLive and 96% for SopCast. Some of these results
can be explained by looking at the neighbors of each peer, and which of those
neighbors that were chosen to download data from. As the results hint, SopCast
shows no preference for closer peers, and TVAnts and PPlive show some. The
measurement also shows that none of the systems exhibit any subnet or router
hop count awareness other than that inferred by the AS awareness. Finally,
it is pointed out that there is no sign of any of the systems implementing an
incentive mechanism.|[5]

One study made by Wu et al. explores topological properties of UUSee, using
traces from 2006 provided by UUSee Inc., focusing on ISPs in China. According
to their analysis UUSee does not take ISP membership into consideration when
doing peer selection (this is both the case when retrieving peers from a tracker
server used in UUSee, and when exchanging peers with neighbors). As other
systems do, it does achieve some clustering of nodes with respect to ISPs since
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connections with high bandwidth and low delay are preferred, which is more
likely if the connection is kept within one AS.[31]

3.2 ISP Friendliness

There have been many different suggestions on how to achieve ISP friendliness,
and the various research on the topic is mostly divided into two categories: what
data that is most suitable to use for overlay construction—i.e. which model of
the network to use—and how should this data be used. These topics will therefor
be discussed in two separate sections.

3.2.1 Modeling the Network

A system that honors the network underlay and infrastructure can either use an
AS-based model[13, 22], respecting business decisions and policies, or a metric-
based, the metric being delay or network coordinates, which estimates the net-
work design and thus the ISPs’ infrastructure, but not necessarily their policies.

Hsu and Hefeeda [13] proposes in detail a way of minimizing inter-ISP traffic
by using AS hop count, and how to construct a storage of hop counts between
ASes that is small enough to store in each peer, thereby giving a solution that
eliminates the need for any central online storage or ISP collaboration. The
storage is constructed by using public BGP data, as that provided by Route
Views3. The article further suggests two algorithms to minimize the cost on
ISPs: 1SPF and ISPF-Lite. The two algorithms differ in how they break ties
when multiple AS pairs have the same hop count, which is often the case.
In addition to AS hop count, ISPF uses geolocation to determine the distance
between peers, while ISPF-Lite compares the length of the shared IP prefixes
of the peers. The results show that ISPF and ISPF-Lite are great improvements
over random peer selection such as in BitTorrent, and that doing peer selection
by only using shared IP prefix provides significant reduction of inter-ISP traffic
at very little cost. Another important part of the results is that they show that
an algorithm sorting peers on ISP distance is much better than just separating
same-AS peers and outside-AS peers, i.e. to really minimize inter-ISP traffic it
is important to know the distance to neighbor peers, not just whether they are
inside our outside the own AS.[13]

A metric-based model typically uses measurements in some way: round trip
times (RTT), network coordinates, or DNS redirects.

Choffnes et al. provide a thorough empirical study of the effectiveness of
metric-based network models in peer-to-peer systems[4]. Approaches studied are
network positioning systems using Vivaldi, direct measurement using Meridian
(a lookup framework for close nodes using a ring-structure), and relative posi-
tioning using the infrastructures of Content Delivery Networks (CDNs). The
network positioning approach usually measures round trip times (RTT), either
to a set of neighbors or some designated nodes called landmarks, and uses that
data to map itself to some geometric coordinates. Vivaldi is the most popular

3University of Oregon Route Views Project . http://www.routeviews.org/
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network positioning system, and is often called a network coordinate system.
Any node that has mapped itself to these coordinates can then find out its
distance to other mapped nodes by comparing their coordinates to get an ap-
proximation, without the need for further RTT measurements (doing end-to-end
delay measurements between nodes on demand has been proven to be too costly,
too time-consuming and does not scale with system size[9]). The CDN-based
approach, CDN-based Relative Positioning (CRP), leverages the existing CDN
infrastructures which uses DNS to redirect clients to their closest (low-latency)
server; peers with similar DNS redirection in a CDN infrastructure are assumed
to be close to each other. This approach may also reflect network design choices
of ISPs. Their conclusion based on the results is that existing network posi-
tioning systems not only exhibit large errors in predictions, but those errors
significantly impact application performance in large-scale peer-to-peer envi-
ronments. Meridian and CRP achieve relatively good performance; on average
the systems locate close nodes most of the time, with CRP being the most
accurate. [4]

Another evaluation of the network coordinate system Vivaldi by Steiner and
Biersack [28], that also compares both version 1 and 2 of Vivaldi, comes to
the same conclusion: Vivaldi coordinates are not suitable for selecting close-by
peers, neither with respect to geographical location, nor in the network topology.
However, in the defense of Vivaldi’s potential, it is pointed out that Vivaldi
coordinates can be very useful for estimating RTTs.

On Inferring AS Relationships It should be mentioned that most AS-
aware models use several algorithms and heuristics to infer AS relationships
into the model. In peer-to-peer systems research, the reasoning behind this is
that peer-to-peer and sibling-to-sibling links are cost-free should be preferred
to customer-to-provider links. However, recent research[8] has shown that most
peer-to-peer relationships (60%) are not known to any other ASes than those
part of the relationship (and neither should they be from a routing perspective).
Peer-to-peer relationships are also the hardest to guess, 80% are found using
recently provided heuristics. Sibling-to-sibling relationships make up a small
part of all relationships — about 1%. It may not be bad to use relationships in
the model, however it will increase the storage cost to include them, for little
gain in ISP friendliness. As implementation of ISP friendliness can heavily affect
the traffic in the network, the data for doing so should be as reliable as possible.

3.2.2 Leveraging the Network Model to Achieve ISP Friendliness

Two types of approaches have been proposed to minimize cross-ISP traffic in a
peer-to-peer live streaming system given known distances to other peers. One is
focusing on chunk or piece scheduling, which means changing the dissemination
protocol, and the other on neighbor selection, meaning structuring the overlay
so that it reflects the underlay network.

Picconi and Massoulie suggest a model belonging to the former category,
in which peers keep two sets of neighbors; one set containing close peers and
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the other containing random peers. During normal operation, when the peer
receiving a good stream rate, only close peers are used as sources. If chunks
are not received according to a certain rate an early starvation signal (ESS) is
generated, triggering an increase in requests to the random peers. Evaluations
show that this approach dramatically reduces inter-ISP traffic and provides good
reactivity to churn.[22]

Another model for chunk scheduling by Magharei et al. called OLIVES[17]
uses a two-tier overlay-aware block scheduling scheme. In each ISP, there exist
external peers and internal peers — external peers, or edge peers, establish con-
nections to external peers in other ASes. The external peers are then responsible
for disseminating the stream to the internal peers. A local tracker within each
ISP decides which peers that should be external peers and elects a new one when
any of them leaves, and a session level tracker helps external peers in discovering
each other. OLIVES uses shortest-path scheduling for scheduling chunks both
between ISPs and in them. The stream is divided into substreams, and each
block contains information about how many peers it has passed (a hop count).
According to shortest-path scheduling each peer then pulls a certain substream
from the peer that advertises it with the lowest hop count, effectively creating
content delivery trees with minimum depth.

Focusing on overlay topology construction, Shen and Zimmermann [26] pro-
pose a network biased, adaptive peer selection algorithm where peers exchange
information about their neighbors and learn about new ones through gossiping.
They specify the main problems that can affect a peer’s streaming rate nega-
tively when using pure biased peer selection, i.e. selection only based on the
underlying network: (1) local clustering peers may suffer from congestion due to
the heavy local traffic; (2) local neighbors of a peer may provide a lower uplink
bandwidth while farther participants could potentially provide a higher uplink
bandwidth; (3) a peer and its local neighbors may have similar data availability
so that the peer can obtain little streaming data that does not already exist
in its data buffer. To avoid these problems the algorithm uses some probabil-
ity distribution function (PDF) with a tunable parameter « (for example the
geometric PDF (1 — a)*~'a) that affects which peers are chosen as neighbors.
Before each gossip round, a peer orders its neighbor set of size n according to
topological closeness by using an Oracle, a service provided by the ISP, and uses
the PDF to choose a gossip partner. Through tuning of «, either close or distant
peers can have a higher probability of being chosen. After the peers have ex-
changed their neighbor sets (or a subset of it) the PDF is used a second time to
filter which n neighbors to retain in the set. An adaptive algorithm is achieved
by storing neighbors’ streaming contributions between two gossip rounds, and
before choosing gossip partners the subset of close neighbors is compared to the
subset of distant peers with respect to their contribution to decide if there can
be an increase in biasing, or if a decrease is necessary. How large each of these
subsets is is decided by the PDF each round.
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4 System Design

The following section explains the design choices made to achieve the thesis’
objective. First an overview of the system is presented, then the video dissem-
ination protocol Gossip++ is introduced, and finally this thesis’ suggestion on
how to achieve ISP friendliness is described.

4.1 Overview

The system uses a gossip-based pull model for content dissemination together
with a local database of AS distances, and a network-biased peer sampling ser-
vice to provide ISP friendliness. The system is mainly built upon Gossip++, a
gossip-based protocol for live streaming by Monod [18], for content dissemina-
tion, the ISPF-Lite algorithm provided by Hsu and Hefeeda [13] for constructing
the locality database, and the neighbor selection approach by Shen and Zimmer-
mann [26] to introduce a mechanism for reducing inter-AS traffic while keeping
a good stream rate.

4.2 Content Dissemination Protocol: Gossip+-+

This section, including the protocol used for content dissemination, is based on
the thesis Monod [18], which introduces Gossip++, a gossip-based dissemination
protocol for live streaming in large-scale systems. Being a gossip-based protocol,
it has the advantage of being simple to its structure and handles churn well
thanks to its random, proactive nature. First, a background to gossip for high-
bandwidth content dissemination is presented, then follows an outline of the
core gossip protocol used in Gossip++, and improvements to this protocol, also
depicted in [18].

Gossip-based protocols execute in rounds, commonly involving two phases:
(i) a communication phase where a node choses a subset of its neighbors to ex-
change some information with, specified by the application, and (ii) a processing
phase, where the node applies a state transition function on its current state and
the data received during the last communication phase. When broadcasting, e.g.
gossiping some content, the processing phase will evaluate if new content was
received and what information should be gossiped in the next round.|[18]

A consequence of disseminating data using gossip is that many nodes may
receive duplicate messages due to the randomness of gossiping; as neighbors are
chosen randomly when gossiping, there is always a probability that some node
does not receive a certain message, and to make this probability small enough
(according to system requirements) there is often a need for some redundancy of
data, thus some nodes will receive the same information multiple times. When
the information to disseminate becomes large, as in media applications, this may
have negative impact on system performance. A protocol that addresses this
issue is the three-phase gossip protocol, inspired by mesh-based protocols: only
small messages containing metadata are gossiped as in the above description of
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the communication phase. The actual data has to be requested by the recipient
of the metadata.

p1 p2

adVert,'S
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Figure 3: Three-phase gossip protocol. The first round shows how peer p2 re-
cetves an advertisement from pl, and requests pieces 14 and 17 (it has previ-
ously received 13). In the next round, the IDs of the pieces received from pl
are advertised to a random subset of p2’s neighbors. It is then illustrated how
D2 receives responses from some other peer(s) (advertisements and requests not
shown), and advertises the received pieces’ IDs together at the beginning of the
following round.

The typical scenario when doing live streaming using Gossip+- is to have
a source node that is fed a stream of video data that the node repackages, or
just adds metadata to, and then gossips an advertisement that new pieces are
available to a subset of its neighbors. The stream can be produced by VLC?,
an input device, or similar, and be of any chosen quality. When a node receives
an advertisement from the source it requests the pieces advertised immediately,
and the source responds with a message containing the piece. By choosing
a new subset of the neighbors for each new piece, they will each take different
dissemination paths. A node that received any pieces since the last gossip round
will advertise them to a subset of its neighbors in the coming round. When the
protocol is executed between two regular nodes the exchange of messages is
the same, except that the nodes then may already have some of the advertised
pieces, and thus will not request those. By doing so requesting nodes make

4VideoLAN - VLC: Official site . http://www.videolan.org/
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sure that they do not receive any duplicate pieces, and thus do not put any
unnecessary strain on the advertising node.[18]

The gossiping protocol in Gossip++ follows the infect-and-die model—the
name inspired by the term epidemic protocol, a common nickname for gossiping
protocols—meaning that a certain advertisement is sent only once. To be able
to gossip all advertisements to all nodes with high probability in this model,
research have shown that the fanout, the number of neighbors to gossip with,
has to be chosen as In(n) + ¢, where n is the system size and ¢ a constant that

defines the probability of the protocol to result in a connected graph as e™¢

4.2.1 Core Protocol: Three-Phase Gossip with Retransmission

As informally described above, the phases in three-phase gossip are the follow-
ing:

o Advertisement phase: every gossip period, each node picks and advertises
newly received pieces to a set of f other nodes uniformly at random.

e Request phase: upon receipt of an advertisement for a set of pieces identi-
fiers, a node evaluates the set and its already received pieces, and requests
any pieces that it’s missing.

e Response phase: as a node receives a request for a set of pieces, it sends a
response containing the pieces.

An outline of the core functionality of the protocol is given in Algorithm 1.
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Algorithm 1 Three-Phase Gossip with Retransmission

Initialization:
1: f:=In(n)+ec
2: piecesToAdvertise := piecesDelivered := requestedPieces := ()

3: start(GossipTimer)

Phase 1 — Gossip piece ids

procedure publish(c) is
4: deliverPiece(c)
5: gossip({c.id})
upon (GossipTimer mod gossipPeriod) = 0 do
6: gossip(piecesToAdvertise)
7: piecesToAdvertise =

Phase 2 — Request chunks

upon receive [ADVERTISEMENT, piecesAdvertised| do
8: wantedPieces = ()
9: for all id € piecesAdvertised do
10:  if ((id ¢ requestedPieces) or (isBeingRetransmitted(id)) then
11: wantedPieces := wantedPieces U id
12: requestedPieces := requestedPieces U wantedPieces
13: reply [REQUEST, wantedPieces]|
14: if (id requested less than r times) then

15:  start(RetTimer(piecesAdvertised))

Phase 3 — Push payload

upon receive [REQUEST, wantedPieces| do

16: askedPieces := ()

17: for all id € wantedPieces do

18:  askedPieces := askedPieces U getPiece(id)

19: reply [RESPONSE, askedPieces|

upon receive [RESPONSE, pieces| do

20: for all p € pieces do

21: if (p ¢ piecesDelivered) then

22: piecesToAdvertise := piecesToAdvertise U p.id
23: deliverPiece(p)

24: cancel(RetTimer(pieces))

Retransmission

upon (RetTimer(piecesAdvertised) mod retPeriod) = 0 do
25: receive [ADVERTISEMENT, piecesAdvertised|
function isBeingRetransmitted(id) returns boolean is

26: return true if a timer is scheduled with piece id id, false otherwise

Miscellaneous

function selectNodes(f) returns set of nodes is

27: return f uniformly random chosen nodes in the set of all nodes
function getPiece(id) returns piece is

28: return the piece corresponding to the id

procedure deliverPiece(p) is

29: deliveredPieces := deliveredPieces U p

30: deliver(p)

procedure gossip(ids) is

31: communicationPartners := selectNodes(f)

32: for all node € communicationPartners do

33:  send(node) [ADVERTISEMENT, ids|
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By evaluating the key parameters of this algorithm, namely those regarding
fanout and proactiveness, Monod [18] concludes that, when gossiping 700 — 2000
kbps between 230 nodes:

e In contrast with theoretical evaluations of fanout values, a too high fanout
impacts performance negatively — a fanout value between 7 and 10 is
preferred in this setting.

e To minimize stream lag and impact of churn, a new set of nodes should
be chosen as recipients for advertisement each round.

4.2.2 Improvements to Three-phase Gossip with Retransmission

Some issues still remain that can affect the performance of the protocol depicted
in Algorithm 1. Since a peer receives advertisements only with a high proba-
bility, there is a risk of a peer not seeing some advertisements even when no
message loss occurs. Moreover, if a response is not received for a certain period
after sending a request, the peer has to resend the request, which, if not done
with care, may exhaust the advertisers’ upload capacity, or create significant
communication overhead. To deal with these issues, Monod [18] proposes the
two mechanisms Codec, an erasure coding scheme, and Claim, a retransmission
scheme that leverages the duplication of advertisements in the system. In the
following paragraphs, these two mechanisms are briefly described.

Codec uses erasure codes, a block-based forward error correction (FEC)
mechanism. FEC operates by adding redundant data to the original stream
data. Both are then sent together and the added data can then be used by the
receiver to check and possibly correct the original data. Consider the usage of
FEC at the source node: before dissemination of the video stream to the rest of
the system, each group of k pieces is used to create ¢ additional encoded pieces.
These are disseminated as any original piece using gossip . When a node has
received at least k pieces, which can be any mix of original and encoded pieces,
from a certain group it can decode them to retrieve the original k pieces. Figure
4 shows a graphical representation of the encoding/decoding process.
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Figure 4: An example of FEC behavior. Data is encoded, sent over an unreliable
channel (some data is lost), and decoded at the receiver.

Using three-phase gossip together with erasure codes has several benefits:

e As stated, all peers may not receive all advertisements even under ideal
network conditions. Using FEC, it is possible to reconstruct video data
that was never even requested from another peer.

e Message loss can occur in any of the three phases, and the data content
of lost messages may still be recovered, eliminating the need for retrans-
mission of those pieces, which would take longer time than the decoding.

e As the encoding procedure is deterministic, every node that has retrieved
a group of pieces can encode it with the same result. By doing so and
advertising the newly encoded pieces together with the rest of the pieces
received in the last round, each node in the system can disseminate more
information (although redundant) than it downloaded.

Regarding the added overhead when using FEC, given a group of k + ¢ encoded
pieces, the overhead will be kj_c. However, having peers to stop requesting
pieces belonging to a certain group when k pieces of that group are received
minimizes this overhead.

Claim implements a sophisticated retransmission scheme that uses the du-
plication of advertisements created by the gossiping protocol to its advantage.
Typically, Claim is used to resend requests when more than c pieces in a group
are lost (not delivered within a certain time). In this case, for each piece that
is missing, requests are sent in a round-robin manner to the advertisers of the
pieces, until the maximum number of retries r is reached. This increases load
balancing, and minimizes the risk of sending requests to a peer that may have
become unavailable, which could be the reason to the missing response. Each
time a certain piece is detected as missing, the time after which the piece is
considered missing is lowered by half, until it reaches some minimum value. An
example of the retransmission mechanism is depicted in Figure 5.
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Figure 5: An example of requests and timeout scheduling. While p4d waits for
the piece with ID 17 two more advertisements for this piece are received. The
reponse from p3 that contains the piece fails to be delivered, so when a request
timeout is triggered a request for the piece is sent to the next advertiser, p2. This
request fails to be delivered, and a mew request timeout is triggered. The next
advertiser, pl, is then requested to send the piece, which it does successfully.

4.3 ISP Friendliness

To achieve ISP friendliness this thesis suggests using locality-biased (network-
biased) neighbor selection to construct a clustered topology that reflects the
network underlay, but using random, long-range, connections when close peers
are not able to provide good stream quality. Intuitively this means construct-
ing a small-world topology, meaning high clustering of peers and with small
shortest path lengths, which can facilitate quick and stable data distribution
through the entire topology[31]. In this section, a method for constructing the
locality database is outlined, followed by a description of the NAT-aware PSS
Croupier[10], and how to implement a network-biased PSS using Croupier.

4.3.1 A Network Model for AS Distance Lookup

The preferred solution for modelling the AS topology in this thesis is storing a
database of distances between ASes locally at each peer. This approach provides
a more accurate view and faster lookup than using round-trip times, or an
approximation of the same, and is fully distributed, and again provides faster
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lookup, compared to using a central service or collaborating with an ISP. The
database also includes IP address to AS mapping for quick lookup of which AS a
certain peer belongs to, and to prevent peers from reporting a false AS number,
which could increase the amount of inter-AS traffic. The size of the database
is not an issue — using efficient design and compression such a database takes
between 5 and 10 MBs on disk. The main issue when using an AS topology
model is instead how to accurately infer the topology from available data.

The network model and the algorithm to infer the AS topology into the
model in this thesis is mainly based on [13] and their ISPF-Lite algorithm. Us-
ing public BGP data, the lengths of the shortest paths between all transit ASes
are calculated — since the public data currently available contains roughly 40,000
ASes, storing the distance between all of them (assuming 1 B per pair of ASes)
would require more than 1 GB. To reduce the size of the storage significantly,
Hsu and Hefeeda suggest to only calculate the distances between transit ASes,
and store parent relations for stub ASes separately. This approach reduces a
large portion of the storage size thanks to the topology of ASes being scale-free
— stub AS composes 83% of all ASes and only have 1.76 parents on average. To
lookup the distance from a transit AS AS; (can also be a stub AS) to a stub AS
AS,, first the parents of AS, are retrieved from the database, followed by the
distances from AS; to AS’s parents, and finally the distance to the closest par-
ent is incremented by 1. A graphical representation of this is shown in Figure 6.
Calculating the shortest paths between all transit ASes when only knowing their
neighbor connections is an all-pairs shortest path problem, which is solved using
the Floyd-Warshall algorithm[6]. Due to the uncertainty of AS relationship in-
ference, only the distances between peers are considered. As inference methods
become better, their usefulness in peer-to-peer systems will increase. This would
however require considerable collaboration with ISPs, especially when inferring
peer-to-peer relationships. Finally, according to ISPF-Lite, when the distance
to two ASes is the same from a given reference AS, the one that shares the
longest IP prefix with the reference AS is considered to be closer.
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Figure 6: Graphical representation of AS distance lookup. To find the shortest
distance between AS1 and AS4, the distances to AS4’s parent ASes are com-
pared, and the shortest distance is incremented by 1. A distance of 2 means that
traffic has to pass through one AS between AS1 and AS2 (4 means three ASes
between AS1 and AS3). The shortest path between AS1 and AS4 is therefor
through the parent AS2, and its length is 3.

4.3.2 A Network-biased Peer Sampling Service

To provide peers with close neighbors a Network-biased PSS (NPSS) is used.
It is implemented by using an existing PSS, Croupier[10], which serves the
NPSS with random peers. Croupier is a gossip-based PSS that provides uniform
random samples of peers even in the presence of NATS in the network, without
using relaying or hole punching. It is thus more robust and has lower overhead
than existing protocols with similar properties—which all do either relaying or
hole punching—especially when the percentage of peers behind NATS is high.

NPSS is implemented in a similar fashion to the ISP-friendly peer selection
algorithm by Shen and Zimmermann [26]. However, as Croupier provides ran-
dom peers there is no risk of partitioning, and thus no need for using a PDF.
Instead the NPSS has as its single goal to provide the closest peers possible in
the system. Using gossip, and given a certain view size n, NPSS peers com-
municate all or a subset of their view to a randomly selected peer in the view,
or occasionally from Croupier to find new peers. In the following processing
phase, a peer uses the AS distances lookup tool to decide which n peers of its
current and the newly received to keep, in other words which n peers that are
closest. This results in the NPSS peers quickly converging into a very clustered
topology.
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4.3.3 ISP-Friendly Neighbor Selection

To achieve ISP friendliness the system implements a neighbor selection algo-
rithm that aims at minimizing the average AS distance to the neighbors in each
peer’s view, provided that a sufficient download rate is preserved, that is, a
download rate on average equal to the stream rate, plus overhead. The main
motivation for using ISP-friendly neighbor selection over ISP-friendly chunk
scheduling is that the former require no modification of the dissemination al-
gorithm. The neighbor selection approach can therefor fairly easy be used by
many peer-to-peer systems, including currently deployed.

Close peers are provided by the NPSS, but in the case that the stream
rate becomes insufficient, or too few close peers are available, Croupier also
provides random peers. This implies that some structure is introduced into the
system’s overlay, intuitively a small-world structure, where peers are clustered
according to the underlying network topology, but have some random, possibly
long-distance, connections.

A peer’s view consists of neighbors that the peer either has a close or a
random connection with, referred to as close and random neighbors, respectively.
When sending advertisements to neighbors, there is not distinction between close
and random neighbors, meaning that the probability of a random neighbor being
chosen as a recipient is the same as for a close neighbor.

A close connection is connection that is established as a result of (i) one
peer finding another through the NPSS, sends a connection request, and (ii)
upon receiving the request, the other peer evaluates its current view and sees
that the sender of the request is closer than the peer farthest away of its current
close neighbors. Since these connections compose a structured overlay, without
proactiveness, close neighbors will not be removed from the view unless explicitly
disconnected, why it is advisable to use some timer or heartbeat mechanism to
deal with failing peers.

To establish a random connection, a peer sends a connection request that is
explicitly defined as a request for a random connection. The purpose of random
connections is to provide peers with insufficient download rate from close peers
with additional resources. Each peer has a few dedicated slots for outgoing
random connections, and requests for random connections are always accepted.
If all slots should be occupied when a new random connection is requested, one
of the current random connections is disconnected in favor for the new request.
Therefor, as long as a peer is experiencing an insufficient download rate it should
continue to request random connections at a regular interval, and a peer that
has outgoing random connections should disconnect them after a certain time.
Doing so helps to prevent against churn, and respects the design decisions of
Gossip+-+, while also minimizing inter-AS traffic.

The introduction of an additional neighbor set and the task of managing
connections to achieve ISP friendliness while delivering a clear stream to all peers
mean that the maximum number of connections of the two types is important.
With too few close connections allowed, peers in the same AS won’t be able to
connect to each other effectively, and with too many the number of peers outside
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the AS included in the set of close neighbors will increase for peers in smaller
ASes. Random connections will always have an adverse effect on network-biased
topology construction, however using only close connections may not be enough
to provide all peers with enough connections to deliver a clear stream. The
effect of varying the number of allowed connections to close and random peers
is evaluated in Section 6.
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5 System Implementation

This section provides implementation specific details about the system presented
in this thesis. The system is implemented in Java and uses the Kompics P2P
Framework|[29]. It uses HTTP Live Streaming[19] (HLS), currently an Internet-
Draft, for input and output of data. This section will first give an introduction
to Kompics, and then present the system architecture, followed by the messages
used by the components in the system. Finally, I/O and FEC handling, and the
monitoring capabilities are described.

5.1 Implementation Framework: Kompics

Kompics is composed of a component model and a programming framework im-
plemented in Java[2]. The components are reactive, event-driven state machines
that execute in parallel. They communicate by passing events carrying data
through bidirectional ports, connected by channels. This section will describe
the Kompics abstraction model, followed by an introduction to the runtime en-
vironment, and finally present an overview of the provided network interface
and the NAT traversal capabilities of Kompics.

5.1.1 Model

The fundamental conceptual entities in Kompics are components, events, ports,
channels, event handlers, and subscriptions. Events are passive and immutable
typed objects that have some attribtues. In the Java implementation of Kompics
all events extend the root event type Event. For example, the Message type is an
event with attributes source and destination addresses. A port is a bidirectional
component interface that allows only a certain set of event types to pass through.
Ports are provided by the component that implements the protocol that the port
interfaces. A channel is a connection between two ports of the same type, one on
a providing component and the other on the using component, i.e. the channel
represents the possibility for the components to trigger messages to each other.
To make it possible for an event handler to receive events there has to exist a
subscription to the appropriate port.

All Kompics components provide a control port, which is used to initiate,
start, and stop the component, and to trigger fault events in the case of un-
caught exceptions in the component. Figure 7 shows a simplified diagram of
the Network-biased PSS. The solid arrows represent subscriptions, the dashed
arrows triggering of events, and the provider side of a port is denoted by a minus

sign (-).
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Figure 7: An example of a Kompics component — the Network-biased Peer Sam-
pling Service with its ports and handlers. The CroupierSample contains ran-
dom peers provided by Croupier. A timer component triggers scheduled peri-
odic CycleEvents to the handleCycle handler, which triggers a RequestMes-
sage to another peer on the Network port, and may trigger a NPSSSample
of close peers on the NPSSPort. The RequestMessage contains a set of the
sender’s neighbors. When a RequestMessage is received at a peer, the han-
dleGossipRequestMsg handler will respond with neighbors from its own view by
triggering a ResponseMessage on the Network port. The two peers participating
in the exchange will then evaluate which peers to keep in their views.

5.1.2 Runtime Environment and Scheduling

During execution, a Kompics component is either marked as idle, ready, or busy,
indicating whether it has no events, has events waiting to be processed, or is
currently executing an event, respectively. To execute the events, Kompics uses
a pool of worker threads that each has a queue of components that are ready.
A worker only executes one component at a time, and a component can be
executed by at most one worker at any given time. If a worker’s queue becomes
empty it uses work stealing to steal half of the ready components in the queue
of the worker with most ready components.

Kompics provides a deterministic simulation mode, which implements a spe-
cial scheduler that guarantees deterministic execution, provided that no threads
are created in the components themselves. This thesis uses this scheduler in the
evaluation in Section 6.

5.1.3 Network and NAT traversal

To send messages between components Kompics provides implementations of
UDP and TCP. UDP is used between all components implemented in this the-
sis. The reasons for using UDP instead of TCP are several; faster connection
establishment, no cost for keeping connections open, and the possibility of NAT
traversal. As seen in Section 6, FEC and the retransmission mechanism of the
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system provide strong protection against loss of messages when using unreliable
channels.

The NAT traversal component of Kompics is implemented according to the
hole punching techniques provided by Roverso et al. [24].

5.2 System Architecture

The core components composing the system described in this thesis are shown
in Figure 8. The following sections will describe implementation specific details
about these components.

Piece

messages

I/0 and Coding

Three-phase gossip
> HTTP
client Ajed Advertisement
RISCes recipients

Connection
messages

HLS FEC

HTTP -
server A Neighbor
Playback management - —

information
Close Random
peers peers

NPSS | _g—| Croupier

Random
|:| Kompics component @ peers
|:| Java class AS distances

View exchange
messages

Figure 8: System diagram of the core components and their communication in
the system. For example, typical operation at the source is that the I/O com-
ponent reads data from an HLS stream, encodes the video data into pieces, and
sends advertisements to peers provided by the neighbor management component.
Upon receiving a request with a certain piece identifier, the source will send
a response containing the corresponding piece. The diagram also includes the
Croupier component.

5.3 Messages

The messages implemented in the system belongs to three different groups: view
exchange messages used in the NPSS, messages used to establish connections
between peers, and messages used in the content dissemination protocol.
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5.3.1 View Exchange Messages

The NPSS component uses two messages, both used in the communication phase
when gossiping information about neighbors:

GossipRequestMessage The message used to request an exchange of views with
the recipient of the request. The payload of the message is a subset
of the requesting peer’s view.

GossipResponseMessage The message sent in response to a GossipRequestMes-
sage. Its payload consists of a subset of the responding peer’s view.

5.3.2 Connection Messages

Three types of messages are used to manage connections:

ConnectionRequestMessage A request to another peer to be be inserted into its
view. A flag indicates whether it is a request for a random or a close
connection.

ConnectionResponseMessage Sent in response to a request. The response mes-
sage is only sent if the connection request was accepted.

DisconnectionMessage Sent to a peer that was removed from the sender’s view.
A disconnection message is triggered when an old connection is re-
placed with a new one, or when a timer associated with the connec-
tion experies, for example after that the connection has been inactive
for a while.

5.3.3 Piece Messages

Piece messages are used in the content dissemination. Each sub-piece carries
1316 bytes video data, and is identified by an integer that is unique in the video
stream.

PieceAdvertisementMessage A message sent to inform a subset of the peers in the
sender’s view that new pieces are available. The message contains a
set of piece identifiers.

PieceRequestMessage A message sent to request pieces from a peer that previ-
ously advertised them. The request message contains a set of piece
identifiers corresponding to the desired pieces.

PieceResponseMessage The message which contains the actual piece data. A
response message contains a single piece, to keep the message’s size
below the maximum transmission unit (MTU) of 1500 bytes, which
is imposed by the underlying network layer. A message larger than
1500 bytes has to be fragmented, which would increase the overhead
in the video dissemination.
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5.4 1I/0 and Piece Coding

The main task of the I/O component is to convert an HLS stream into encoded
pieces and vice versa.

The source node in the system reads an HLS stream, for example from
VLC, and stores the stream into pieces. These pieces are then encoded using
FEC. The encoded pieces have an identifier, a group identifier that indicates
which pieces that were encoded together, and a payload of 1316 bytes. The
encoded pieces are then advertised by the dissemination component to some
peers that are provided by the neighbor management component. When the
peers receive the advertisements they request the pieces, and the source sends
responses containing the pieces.

When a peer receives a response message it will advertise the piece to a
subset of its own neighbors. As soon as enough encoded pieces from a certain
group are received the I/O component decodes them, encodes the group again,
and the dissemination component will then advertise the pieces in this group
that were not already advertised. The I/O component uses the HTTP server to
send the content of the decoded pieces as an HLS stream.

The main advantage of using HLS is the codec transparency — the system
does not need to know how the video is encoded and encapsulated. At the
source, the I/O component only reads some content from an HTTP server and
does not have to analyze it further. The same applies when the I/O component
has decoded a piece and it is streamed through the local HTTP server. Thereby,
it is up to the users of the system to provide software that supports the codecs
used in the stream, that is, can perform decompression the video data. This
means that any compression mechanism can be used, including those that do
not exist yet, without any altering of the system.

5.5 Monitoring

In addition to the core components, the system also implements monitoring ca-
pabilities for local and remote monitoring. The monitoring information includes
the number of different messages sent, and whether they were sent to a close
or a random peer, current connections, upload and download rate, stream lag,
buffer length, and more.

Local monitoring is available using Java Management Extensions® (JMX).
The jconsole application for monitoring of JMX enabled applications is part of
the Java platform since version J2SE 5.0, released in 2004, and thus present on
many systems.

Remote monitoring is implemented using REpresentational State Transfer®
(REST). The same data that is exposed for local monitoring can also be sent
to a RESTful web service, where it is possible to monitor the overall system
execution in real time or analyze the collected data after dissemination end.

5 Java Management Extensions (JMX) . http://www.oracle.com /technetwork/java/javase/tech /javamanagement-
140525.html
6Representational State Transfer (REST) . http://www.ics.uci.edu/~fielding/pubs/dissertation /rest _arch _style.htm

38


http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Remote monitoring is mainly intended for aggregate monitoring of the system,
but it is also possible to look at a single peer or a subset of the peers, such as
peers from a certain AS. Remote monitoring has to be enabled by the user.

By using these fairly ubiquitous technologies for monitoring, it becomes pos-
sible for anyone interested in the system’s behavior to get information about it
through the use of common tools and interfaces.
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6 Experiments and Evaluation

In this section, the system is evaluated with respect to this thesis’ objectives.
Section 6.1 gives an overview of the simulation framework is given, including
network environment and locality, and Section 6.2 presents the simulations sce-
narios and their results.

6.1 Environment and Configuration
6.1.1 The Kompics Simulator

The system is evaluated by running scenarios using the Kompics simulator. This
simulator executes the whole system deterministically, including the Network
and Timer abstractions. The simulator intercepts all calls for current time and
returns the simulated time. Thread creation calls are also intercepted, and
causes the simulator to halt the simulation since deterministic execution can’t
be guaranteed.|2]

6.1.2 Network Model and Stream Dissemination

In the following scenarios, if not otherwise specified, 200 nodes are run with a
fanout of 8, except the source, which have a fanout of 5. Each round the source
advertises newly received data from a video stream, e.g. fed by VLC, to the
system, the stream consisting of 70 encoded sub-pieces per round, 744 kbps,
on average. When bandwidth is constrained, the source has the capability of
serving the stream to 5 peers per round, and other nodes have a token bucket
of 200 kB. Any packet sent after reaching an upload of 200 kB in one round is
dropped. In the scenarios the FEC implementation handles sub-pieces in groups
of 100 and uses 5 redundant pieces, meaning that k¥ = 100 and ¢ = 5 according
the notation from Section 4.2.2. Link latency is roughly between 0 ms and 500
ms according to King’s Latency Model”, and 1% of all messages are dropped to
simulate unreliable links.

6.1.3 Locality

Joining peers are assigned to an AS according the distribution of public BGP
data available. This means that the distribution of peers in ASes follows that
of the Internet topology, that is, a power law distribution. For example, in a
simulation with 100 peers there are roughly 50 ASes populated — 3 of them
containing 10 peers or more, and 30 of them containing only 1 peer.

"King : A tool to estimate latency between any two Internet hosts, from any other Internet
host. . http://www.mpi-sws.org/~ gummadi/king/
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6.2 Evaluation
6.2.1 1Ideal Scenario

In the ideal scenario, no message loss occur and all peers have unlimited band-
width. The peers gossip advertisements with a fanout of 8. The ideal scenario
evaluates the system’s ability to broadcast enough advertisements to all peers
in the system, which is a prerequisite for content delivery in a more constrained
environment. Figure 9 shows that in an ideal setting, all 200 nodes receive a
clear stream with a stream lag of at most 3 seconds.

Percentage of peers receiving a clear stream under ideal conditions
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Figure 9: In an ideal setting, all peers receive a clear stream.
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6.2.2 Message Loss Scenario

This scenario evaluates the system’s behavior when upload bandwidth is
limited and message loss occurs for 1% of all messages on average. In
Figure 10, the two mechanisms used to prevent and recover from message
loss, FEC and retransmission, are evaluated both separately and in combination.

Percentage of peers receiving a clear stream (limited bandwidth and unreliable links)
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fec 5%+retransmission ---%--

Percentage of peers (cumulative distribution)

Stream lag (s)

Figure 10: Percentage of peers receiwing a clear stream. Using FEC or the
retransmission mechanism separately is not enough, however using them together
achieves delivery of a clear stream to all peers.

When only using FEC, the system is unable to leverage the duplication of
advertisements in the gossiping process, and suffers greatly from the bandwidth
constraints and message loss. When solely relying on retransmission instead,
peers have to receive all pieces since reconstruction of any missed pieces is not
possible. Only a few peers receive enough advertisements and responses to
deliver a clear stream in this case.

The combined use of FEC and retransmission do however let the system
deliver a clear stream to all peers. This combination allows peers to resend re-
quests to any peer which they received an advertisement from, and FEC enables
reconstruction of pieces that were not received.
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6.2.3 Churn Scenario

In the churn scenario, the system’s ability to cope with various churn rates is
evaluated. The simulation environment is the same as in the limited bandwidth
and message loss scenario, with the addition that each round there is N peers
currently present in the system that fails, and N new ones join.

Percentage of all peers in the system receiving a clear stream during churn
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Figure 11: Percentage of all peers currently in the system at a certain time that
receives a clear stream.

In Figure 11 the churn occurs roughly between 10 and 20 seconds, a total
of 10 rounds. For example, with a system size of 100 peers and N = 2%, a
total of 20 peers will have failed, and 20 new ones joined after 10 seconds. The
figure shows the percentage of peers that receive a clear stream at a certain time
when 1%, 2%, and 5% of churn is experienced, respectively. Both peers present
in the system before the churn events and new peers are included in the data.
There is a notable effect on the system for roughly 30 seconds. Figure 12 shows
the percentage of peers that are unaffected by the churn. Most of the peers are
unaffected—that is, does not miss any piece—by 1% and 2% of churn, however
a significant portion is when the system experiences 5% churn.
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Percentage of surviving peers unaffected by churn
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Figure 12: Percentage of surviving peers that received a clear stream during and
after 10 seconds of churn.

6.2.4 Crash Scenario

To evaluate how the system handles a large portion of the peers failing simulta-
neously, for example due to the failure of a physical link that provides connection
to a large network, this section evaluates how peers’ stream rates are affected
when 20% and 50% of the peers in the system fails at the same time, respectively.
Figure 13 shows the percentage of peers initially in the system that receive a
clear stream. The effects on the surviving peers when a certain portion of the
peers crashes only last for a short period of time.
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Figure 13: Percentage of peers that receives a clear stream after a portion of the
peers have failed.

45



6.2.5 ISP Friendliness

In this section, the ISP friendliness achieved by the implementation of network-
biased neighbor selection is evaluated. The importance of number of connections
to close and random peers is evaluated in Tables 5 and 6. Table 5 shows the
percentage of peers in a system of 500 peers that receive a clear stream for var-
ious combinations of maximum close and random connections allowed. Table 6
shows the average AS distance (hop count) to neighbors for all peers, and the
percentage of intra-AS traffic exchanged in the system for the same combina-
tions.

Random
0 1 2 3
10 | 85% | 99% | 100% | 100%
Close 20 | 96% | 99% | 100% | 100%
30| 97% | 99% | 100% | 100%

Table 5: Percentage of peers in a system of 500 peers that receive a clear stream
for various combinations of maximum allowed close and random connections.

Random
0 1 2 3
10| 1.8 | 45% || 1.9 | 38% || 1.9 | 33% || 2.1 | 28%
Close 20|09 | 48% || 1.0 | 40% || 1.2 | 39% || 1.8 | 36%
30| 1.0 | 43% || 1.2 | 40% || 1.2 | 38% || 2.3 | 34%

Table 6: Average AS distance to neighbors and percentage of intra-AS traffic in
a system of 500 peers for various combinations of maximum allowed close and
random connections.

The evaluation of number of connections has two notable properties. First,
the number of random connection greatly affects system performance. Using
only close connections is not enough to provide all peers with a clear stream,
and introducing a single random connection increases the percentage of peers
that do significantly. Second, the percentage of intra-AS traffic does not always
correlate with the average AS distance to neighbors. The explanation to this
could be that if a peer has 10 close neighbors in the same AS and one random
neighbor 2 hops away, the peer will receive the same amount of intra-AS traffic
as a peer with the same number of close neighbors, but with one random neigh-
bor 4 hops away, however their average neighbor distance will differ. The same
reasoning can be applied to different distributions of close neighbors. Finally, it
is also pointed out that 10 close connections seem insufficient to connect peers
in the same AS to each other effectively, as there is less intra-AS traffic in that
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case compared to that when allowing 20 close connections.

The evaluation shows that in a system of 500 peers, a combination of 20 close
neighbors and 2 random neighbors provide the highest percentage of intra-AS
traffic among the combinations that are able to deliver a clear stream to all
peers. This is therefor the setting used in these experiments.

To measure the clustering effect on the topology when introducing an ISP-
friendly neighbor selection mechanism, the average distance to neighbors, mean-
ing the average number of hops between all connected peers in the system, is
recorded for different system sizes when using random (unbiased) neighbor se-
lection and ISP-friendly neighbor selection, respectively. The results are shown
in Figure 14; the ISP-friendly approach is labeled ispf. The ISP-friendly struc-
turing of peers lowers the average AS distance by 1/3 in a system of 100 peers,
and by almost 1/2 in a system of 1000 peers, compared to the random neighbor
selection.

Average AS distance to neighbors for different systems sizes

5 T T T T
‘random C—J
ispf 2300
T R -
= :
=
< :
3 |
Q H
o | H
o3 R —
o
S I e T B! I S —— :
) o
o
c
©
L
R
©
[}
T e I e S I S :
i
(9] —~— SN
2 Ko v
© IX] N
R K50 325
g 1o %
2 o 598
L \r:A;X\ ,,,,,,,,,,,,,,,,, A
L/‘Qd SO
N OA
LN %
{2
No<a A~
KON XK
L(x}><\ WS¢
v, N\
12 \J‘ N
b3 O
O L L Z

100 200 500
System size (peers)

Figure 14: The average AS distance to neighbors indicates the amount of clus-
tering in the system.

In Figure 15 the distribution of traffic in the system is presented, categorized
as intra-AS traffic, neighbor traffic, or other traffic, meaning traffic between
peers that have an AS distance of 0, 1 or above 1, respectively. As the system
size increases, there is a clear trend of increasing intra-AS traffic when using the
[SP-friendly neighbor selection. Random neighbor selection results in at most
4% of intra-AS traffic — in a system of 200 peers, the ISP-friendly approach
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achieves 10 times more intra-AS traffic compared to a random one. In addition
to increasing the intra-AS traffic, the evaluation shows that neighbor traffic
also benefits from the topology-aware neighbor selection, meaning that inter-
AS traffic is minimized further.

Traffic distribution for different system sizes
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Figure 15: Traffic distribution for different system sizes — intra-AS traffic is
traffic between peers with an AS distance of 0, neighbor traffic between peers
with a distance of 1, and other traffic between peers with a distance of at least
2 hops.

While Figure 15 shows that there is an increase of intra-AS traffic propor-
tional to the system size, there is a lower increase per additional peer as the
system grows larger. This is because the power law relationship of AS sizes,
meaning that there are many ASes with few peers. In large ASes, which are
populated by many peers, the percentage of intra-AS traffic becomes higher.
For example, in a system of size 500, the peers in the largest AS, which contain
56 peers, experience 75% intra-AS traffic.

Finally, Figure 16 illustrates how the average AS distance between all con-
nected peers converges in a sytem of 500 peers.
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Average AS distance to neighbors for all peers over time
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Figure 16: Average AS distance of connected peers over time for the first 60
seconds in a stream. Peers are joining the system during the first 5 seconds.

6.2.6 Summary

In this section the implementation of the system design presented in this thesis
was evaluated by running simulations using the Kompics simulator. The exper-
iments show that the system is able to provide all peers with a clear stream in
a constrained environment, thanks to the combination of the FEC and retrans-
mission mechanisms, and provides robustness in cases of churn or a significant
number of peers crashing.

The introduction of a network-biased peer sampling service creates a more
clustered topology and achieves a considerable increase of intra-AS traffic com-
pared to random neighbor selection. The evaluation also shows the importance
of allowing peers to create a some random connections when peers provided by
the network-biased PSS is not enough to deliver a clear stream. Moreover, the
increase of traffic between neighboring ASes shows the importance of always
minimizing the distance to neighbors, regardless of whether they are inside or
outside the own AS.
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7 Conclusion

In this thesis, a peer-to-peer live streaming system was designed with the main
goal of being ISP friendly. The design uses a gossip-based protocol for content
dissemination, and biases neighbor selection towards closer peers to achieve ISP
friendliness. A network-aware peer sampling service was implemented to provide
the system with close peers, and to evaluate which peers that are closer the
service consults a database of AS distances that is constructed from public BGP
data and stored locally at each peer. Implementing biased neighbor selection in
a system does not require any modification of the dissemination protocol, and
can therefor be applied to a wide range of peer-to-peer systems.

The system was evaluated in various simulation scenarios, and proved to
operate well in a constrained environment as well as during peer failures. The
thesis also investigates to what extent peers can be clustered and still be able
to deliver a clear stream, and the number of random, long-range connections is
observed to be especially important. It is possible to have high clustering as
long as a few random connections are allowed to be created when close neighbors
can’t provide a sufficient download rate. Comparing the ISP-friendly neighbor
selection to random selection, inter-AS traffic is efficiently reduced in the overall
system, and in larger ASes most traffic is exchanged within the AS.

Moreover, the system implements ubiquitous monitoring capabilities using
JMX and REST. These techniques are available on all modern systems, provided
a Java runtime environment for using JMX. This allows users, researchers, sys-
tem operators, and others who are interested to monitor the application locally
or remotely.

To summarize, the system design proposed in this thesis successfully provides
ISP friendliness, and this or similar designs should be considered by content
providers and developers of all large-scale peer-to-peer applications. By doing
so, the cost for ISPs to allow peer-to-peer applications to exchange traffic in
their networks is lowered, and thus so is the risk of ISPs limiting or blocking
peer-to-peer traffic completely.
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8 Future Work

Neighbor selection at the source This thesis does not incorporate or evalu-
ate any special dissemination protocol or neighbor selection for the source.
Considering clustered topologies, it may be beneficial to let the source have
mainly random connections, which could accelerate propagation of infor-
mation in the overall system, and in the case of video streaming minimize
stream lag.

Distributed incentive mechanism In the design depicted in this thesis there
is no incentive mechanism to prevent free riding. If a too large portion
of peers are free riders none of the peers will be able to deliver a clear
stream, since the total upload capacity of the system becomes to low. To
design an effective incentive mechanism is therefor a key issue for many
peer-to-peer systems. Monod [18] provides such a mechanism, however
it assumes a random, non-biased, neighbor selection — peers that show
signs of biasing their neighbor selection, sending of advertisements, or
responses, are assumed to not follow the protocol correctly, and possibly
collaborating with other free riders. This design would therefor not work
in a system that biases its neighbor selection, unless some modification to
account for the clustering of peers is introduced.

Inferring AS relationships This thesis’ notion of ISP friendliness only re-
gards the closeness of peers, meaning any traffic leaving the AS is bad,
increasingly so with the number of other ASes it has to pass through.
In reality ISPs can have different agreements on the traffic passing be-
tween ASes, some worse than others and some not bad at all. Thus, when
choosing peers to exchange data with in an ISP-friendly way the system
could benefit from taking these relationships into account. Algorithms
and thoughts on inferring these relationships from public BGP data (the
source for calculating distances in this thesis) is provided by Gao [12] and
Dimitropoulos et al. [8].

Piece scheduling To further minimize inter-AS traffic, modifications of the
gossiping protocol should be considered. One possibility is for peers to
sort advertisements on AS distance to the advertiser. Doing so, peers
would resend timed out requests to closer peers first, and they could also
wait for a short period of time before requesting a piece for the first time,
to see if any more advertisements, possibly from closer peers, are received.
The latter would however result in some increase of stream lag.
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