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Abstract 

 

South African water service providers experience major problems with providing adequate water 

services to consumers. Water service providers in South African urban areas rely on traditional 

centralised infrastructure, such as bulk supply networks, to provide water services. Alternative 

supply and stormwater drainage methods should be encouraged to help mitigate these problems. 

The researcher thus aims to quantify the potential impact that three alternative methods may have 

on a given dwelling in terms of its dependence on traditional bulk water services. The three 

alternatives considered in this thesis are the construction of green roofs, rainwater harvesting and 

greywater re-use. 

 

An efficiency of dwelling water use index (EDWI) was developed during this research project. It 

was designed in such a way as to show what portion of municipal water services could be 

replaced within the given dwelling by using the proposed techniques. The final EDWI-rating is 

obtained by using the EDWI-software tool developed as a part of this research. The derived 

EDWI-rating ranges from 0 to 100, with a rating of 100 indicating a dwelling requiring only the 

removal of a portion of sewage by a municipality, but no external water supply. Such a dwelling 

would also not require any water from a municipal network to meet domestic demand and all 

stormwater from its roof would be utilised within the plot boundaries. Results presented in this 

thesis illustrate how different geographical regions require different system specifications to 

obtain optimal EDWI-ratings, thereby lowering their dependence on the respective municipal 

water services. 

 

Validation of the EDWI-system proved difficult as no similar index could be found during the 

literature review. It was therefore decided to benchmark the EDWI-system using three model 

dwellings with nine configurations producing a total of 27 analyses. The EDWI-system provides 

a conceptual foundation for sustainable water services to South African households in serviced 

urban areas. Future work could further improve the EDWI-system by testing its practical 

application so that it may be extended to act as a national barometer, used to compare 

decentralised water services in terms of sustainability.  
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Opsomming 

 

Suid-Afrikaanse waterdiensverskaffers ondervind groot probleme met die voorsiening van 

voldoende waterdienste aan verbruikers. Waterdiensverskaffers in Suid-Afrikaanse stedelike 

gebiede maak staat op tradisionele gesentraliseerde infrastruktuur, soos grootmaatvoorsienings 

netwerke, om waterdienste te verskaf. Alternatiewe voorsienings- en stormwater 

dreineringsmetodes moet aangemoedig word om hierdie probleme aan te spreek. Die studie poog 

dus om die potensiële impak wat drie alternatiewe moontlikhede kan hê op 'n gegewe woning in 

terme van sy afhanklikheid van die tradisionele waterdienste te kwantifiseer. Die drie 

alternatiewe moontlikhede wat in hierdie studie ingesluit word is die konstruksie van groendakke, 

reënwater oes en grys water hergebruik. 

 

'n Huishoudelike water gebruik doeltreffendheids indeks (EDWI) is ontwikkel gedurende hierdie 

navorsingsprojek. Die indeks is ontwerp om aan te dui watter gedeelte van munisipale 

waterdienste deur die voorgestelde tegnieke vervang kan word. Die finale EDWI-gradering is 

verkry deur gebruik te maak van die EDWI-programmatuur wat ontwikkel is gedurende die 

navorsing. Die afgeleide EDWI- gradering wissel tussen 0 en 100, met 'n telling van 100 wat ’n 

woning voorstel wat slegs die verwydering van 'n gedeelte van die riool deur die munisipaliteit 

vereis, maar wat geen eksterne watervoorsiening benodig nie. So 'n woning vereis dus geen water 

van ‘n munisipale netwerk nie, en alle stormwater van die dak word binne die erf gebruik. 

Resultate wat in hierdie studie voorgelê word illustreer hoe verskillende geografiese streke ander 

stelsel spesifikasies vereis om optimale EDWI-gradering te verkry. 

 

Die navorser kon geen indeks kry wat soortgelyk is aan die EDWI-stelsel om dit mee te vergelyk 

nie. Dit was gevolglik besluit om die indeks te standardiseer deur gebruik te maak van drie model 

huise met nege samestellings van alternatiewe, waardeur 27 ontledings ontwikkel was. Die 

EDWI-stelsel bied 'n konseptuele grondslag vir volhoubare waterdienste vir Suid-Afrikaanse 

huishoudings in gedienste stedelike gebiede. Toekomstige navorsing kan die EDWI-stelsel verder 

verbeter deur die praktiese toepassing te toets. Die stelsel kan uitgebrei word om ‘n nationale 

barometer vorm wat gebruik kan word om desentralisasie van waterdienste te meet in konteks 

van volhoubaarheid.   
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Glossary  

 

Blackwater: 

Blackwater is the portion of return flow from a dwelling that has been contaminated to 

such an extent that intensive treatment would be required for safe disposal or re-use, such 

as water from a toilet. 

 

Critical period: 

The time required by a reservoir at full capacity to empty with no spillage in the given 

time period, thus from full to the first failure (McMahon & Mein, 1978). 

 

Combined system: 

A combined system refers to an alternative water system utilising grey- and rainwater in a 

single storage combined system. 

 

Dwelling:  

Dwellings are defined as a place where people live. In this document the word dwelling 

refers to houses, town houses, apartments, traditional houses or shacks (Meyer, 2000). 

 

EDWI retaled terms: 

The EDWI-system produces an EDWI-rating by using the EDWI-software tool. The 

EDWI-rating composes of three EDWI-coefficients that in turn depend on the 

performance and implementation of the three EDWI-components, which are rainwater 

harvesting, greywater re-use and green roofs. 

 

FLL guidelines: 

The “Richtlinie für die Planung, Ausführung und Pflege von Dachbegrünungen” or 

‚”Dachbegrünungsrichtlinie” is issued by the Forschungsgesellschaft 

Landschaftsentwicklung Landschaftsbau. These guidelines, commonly referred to as the 

FLL guidelines, are the most widely accepted green roof guidelines available today.  
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Green roof: 

A green roof is in the most basic of definitions is defined as a roof with plants on it. These 

multi layered structures can also be referred to as planted, eco, vegetated or brown roofs.  

 

Greywater: 

Greywater is defined as the return flow from processes such as bathing, showering, 

bathroom basins, kitchen sinks, washing machines and dishwashers. The greywater 

portion of sewage is also seen as less contaminated than blackwater and can therefore be 

re-used for selected applications.  

  

Rainwater Harvesting: 

The collection, storage and use of rainwater for any purpose 

 

User form: 

A user form is a popup window used in Excels via Visual Basic for Applications (VBA). 

In the software developed for this thesis user forms are used to simplify data input and for 

error checking.  

 

Visual Basic for Applications: 

VBA is a programming language used to control any Microsoft office program such as 

Excel or Word. VBA is based on the more well-known Visual Basic programming 

language. 

 

Watershed: 

A watershed is an area where all the water that drains from it or falls on it goes to the 

same point of discharge, thus forming a bounded hydrological system. 

 

Xeriscaping: 

The practice of planting a landscape to minimise water requirement. This often includes 

the use of plants native to the specific region. 
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1. Introduction 

 

1.1 Background 

 

In the last few centuries the world has experienced an extreme rise in urbanisation, with the last 

two centuries seeing the portion of the world’s population in large towns or cities grow from 5 % 

to 50 %. Demographers estimate that this proportion will increase to two-thirds of the population 

by 2030, with Africa currently being the least urbanised and showing the largest rate of 

urbanisation of all major regions (McMichael, 2000). 

 

Rapid urbanisation has led to the creation of major cities and towns replacing previously green 

space with what can best be described as “concrete jungles”. This causes, amongst other things, 

heat to rise through a process called the urban heat island effect (UHI). The UHI can cause the 

mean annual temperature to rise with between 1 to 3 ℃ and as much as 12℃ at night compared to 

adjacent areas (US EPA, 2008). When this happens a chain reaction is set in motion. Electricity 

demand rises as air-conditioners become over utilised causing more carbon emissions in an 

attempt to meet demand.  

 

The creation of these “concrete jungles” also affects the overall permeability of the area. As 

green spaces are replaced by impervious spaces such as roads, parking lots and roofs greater 

portions of rain now converts to run-off. This has been documented as being as much as five 

times as great as would be observed in surrounding woodland (Downs, 2002). With increased 

stormwater volumes the risk of flooding also rises. Stormwater, being in larger quantities, now 

tends to transport more contaminants collected while in transit to its point of discharge (often the 

closest waterway). This causes the waterway to be eroded at the point of discharge, as well as 

polluting it. 

 

The loss of green space has more physiological effects than might be imagined. Numerous 

publications focus on the link between the presence of plants and human well-being (McMichael, 

2000; Lewis, 1995; Maller et al., 2005). The presence of plants has been linked to reduction in 

discomfort and reduced recovery time for surgery patients (Lohr & Pearson-Mims, 2000). 
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Increasing greenery in urban centres shows great potential to improve the day to day lives of the 

inhabitants. The introduction of greenery has been seen to improve the communities’ image 

amongst its inhabitancy and especially of the creators (Lewis, 1995). 

  

1.2 Aim with the research 

 

The aim with this research is to develop an index which indicates how effectively a given 

dwelling can incorporate alternative water resources and green roofs towards a level of 

decentralisation from municipal water services. The efficiency of dwellings’ water use index 

(EDWI) incorporates the use of greywater, rainwater and green roofs. By estimating normal 

water usage patterns, associated return flows can be found. When a dwellings’ water usage is 

known, alternative sources of water can be assigned to specific applications. The amount of water 

harvested from the alternative sources is then seen as an automatic reduction in municipal 

demand. Further the benefits associated with the incorporation of green roofs are assessed. This is 

done by estimating the effects seen on water services because of the effects green roofs have on 

stormwater volumes, peaks and urban greenery. The beneficial effects of the three components 

are incorporated into the final rating, symbolising what portion of total domestic demand can be 

met without relying on municipal water services.  

 

1.3 Thesis layout 

 

Investigation 

 

This thesis starts with an investigation of published literature covering sustainability, green roofs, 

rainwater and greywater. Relevant literature is analysed to show how they have been used, what 

their advantages are and the potential pitfalls that exist. The literature review is then followed by 

more practical chapters in which the intention is to show how and why these techniques should 

be implemented.  
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Index concept and scope 

 

The concept of the EDWI-system is then explored. This starts by defining the dwelling’s the 

EDWI-system applies to, how to estimate usage patterns and demand is discussed, followed by 

general water quality classifications. The methods and assumptions used in the EDWI-system, 

and used to incorporate the components, are then discussed.  The process whereby all practical 

contributions of components are quantified to show the maximum effect their incorporation can 

provide, is then described.  

 

Software development, index calculation and analysis 

 

The following chapter describes the development of software tool used to produce the final 

EDWI-rating. Excel was used in combination with Visual Basic for Applications (VBA) by the 

author to develop the previously mentioned software solution. The developed software is 

intended as a user-friendly platform to facilitate the analysis and optimisation of any dwelling in 

South Africa that falls within the predefined boundaries. This chapter further provides all 

equations used in the calculation procedure of the final rating. In the subsequent chapter four 

example analyses for a dwelling with the same general characteristics in different cities and 

geographical regions are provided, followed by the benchmarking procedure. 

 

Discussion 

 

In the final chapter the results are discussed and recommendations are made regarding future 

work that could improve on the understanding of index or similar concepts.  

 

1.4 Motivation for research 

 

Numerous indexes have been developed to help decision makers understand and analyse the state 

of water services. These indicators such as the sustainability index for urban water services 

(SIUWM) are able to form a holistic profile of a city’s water situation. There is however no index 

to quantify how, on a detailed spatial level, the dependence on water services can be reduced by 

implementing alternative water sources and water management strategies. The spatial scale of 
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this study considers individual residential plots (households). While every dwelling requires 

access to fresh drinking water, sewage systems and the removal of excess stormwater, there is no 

reason why all these services should be provided by centralised infrastructure. This is where the 

EDWI-system comes in. The EDWI-system allows a user to assess how much of its required 

water services could be provided by using the alternative techniques proposed in this study, thus 

lowering the dwelling’s dependence on centralised infrastructure. The following aspects were 

assessed in detail and are seen as being of critical importance to the EDWI-system: 

 

 Understand the effects of green roofs and the potentially beneficial impacts they could 

have in terms of stormwater management and the reduction of impervious roof spaces. 

 Assess how much of domestic water demand could be supplied by using alternative water 

sources instead of municipally supplied water. 

 Quantify the potential applications of alternative water resources not adhering to potable 

standards. 

 Assess what portion of return flows as greywater from dwellings could be re-used, taking 

account of health and safety implications. 

 Test the effect of operational algorithms for greywater re-use systems’ efficiencies. 

 Develop a tool to simplify the process of obtaining an EDWI-rating by means of an 

uncomplicated software system (called the EDWI-software tool). 

 Due to the wide range of climatic conditions that occur in South Africa it was deemed 

important to assess their impacts on any alternative water system.   This would help with 

the design of specification for these systems in different regions in order for maximum 

benefits to be obtained from their installation. 

 Benchmarking the EDWI-system using three model dwellings with nine configurations. 
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1.5 Scope and limitations of the study 

 

The EDWI-system developed in this thesis includes rainwater harvesting, greywater re-use and 

the construction of green roofs. Groundwater is excluded from the scope of this study. 

 

Dwellings that are analysed with the developed index have to have access to a roof and a garden, 

thus excluding apartment buildings. 

 

In this study water quality is classified in terms of three quality classes in order to focus the work 

on assessing the sustainability and development of a novel conceptual index. The minimum water 

treatment required for each application is thus not included. 

 

The rainwater system included in this study refers to permanently installed tank system. The 

disconnecting of gutters for irrigation is not included in the scope of this study.  
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2. Literature review 

 

The scope of is chapter covers a review of relevant literature concerning the sustainability in 

urban water systems, rainwater harvesting, greywater re-use and green roofs. 

 

2.1 Water sensitive urban design and other urban water design philosophies 

 

The terms used to describe urban water design philosophies can be quite vague. Three of these 

are selected and defined in an attempt to clarify the confusion. They are: 

 

 Water sensitive urban design (WSUD) 

 Sustainable urban drainage (SUD) 

 Integrated urban water management (IUWM). 

 

IUWM is an emerging approach to managing the entire urban water cycle in an integrated way, 

which is the key to achieving sustainability of urban water resources and services (Mays, 2009). 

IUWM incorporates factors that would influence various dimensions of the water sector. These 

include sources of water, water quality and quantity as well as wider dimensions examining the 

influence of other sectors on water such as social and economic development. The IUWM 

philosophy thus aims to view water management as an interdependent entity functioning in a 

much bigger environment. 

 

WSUD and SUD are similar to IUWM in the sense that they are design philosophies concerned 

with urban water management, but unlike IUWM the considerations for these two do not include 

factors outside the water sector. SUD or source control is a design philosophy concerned with 

controlling surface run-off in ways that do not cause the same or similar problems as those 

caused by more traditional solutions. WSUD is very similar to SUD and is explained in great 

detail in the rest of this section. 

 

WSUD is a set of principles or design philosophies that aim to improve the way urban 

environments are designed. When an area is transformed from a natural environment to an urban 
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one the characteristics of the water cycle change with it. These changes can be seen in the 

characteristics of floods, run-off volumes as well as their pollutant loads. Excessive stormwater 

volumes with high pollutant loads are then discharged in the nearest receiving water body, like a 

lake, dam or river. These sensitive environments can then be completely “washed out” or in the 

best case scenario, only damaged. Excessive stormwater volumes also increase the risk of 

flooding and damage to infrastructure. The change in percentage rainfall that translates to run-off 

caused by the addition of impervious areas is shown in Figure 1. 

 

 

Figure 1: Change in run-off characteristics with urbanisation  

(Adapted from Dunnett & Clayden (2007)) 

 

WSUD aims to lower these impacts from urbanisation by decreasing impervious spaces, apply 

natural treatment and protect natural water ways. These measures can include, but are not limited 
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to, the use of detention basins, infiltration basins, constructed wetlands, grass swales, porous 

pavements and infiltration trenches (Downs, 2002). 

 

The WSUD design philosophy encourages the use of alternative water resources such as 

rainwater harvesting, groundwater and greywater re-use. The impacts of these techniques might 

seem small as they normally only lower domestic dependence on a municipal water supply, but 

when these techniques are implemented on a large scale their effects become much larger. 

 

The overall goals of WSUD are (Downs, 2002): 

 

 To preserve existing topographic and natural features 

 To protect surface and groundwater resources 

 To integrate public open space with stormwater drainage corridors, maximising public 

access, passive recreation activities and visual amenities.  

 

These goals are achieved by using a variety of techniques that are softer than traditional drainage 

systems such as pipes and concrete channels. These WSUD principles could also be a cheaper 

alternative, in some cases, to the more traditional stormwater management solutions (Dunnett & 

Clayden, 2007).     

 

WSUD attempts to (Downs, 2002): 

 

 Minimise impervious surfaces 

 Minimise the use of formal drainage infrastructure (pipes)  

 Encourage infiltration 

 Protecting existing vegetation  

 Encourage the re-use of stormwater. 

 

In a system designed according to WSUD principles water is seen as a precious resource. 

Stormwater is now seen as a potential resource and not only as a problem that needs to be 

removed as quickly as possible. Natural waterways are protected and incorporated in urban 

design, not just replaced by formal infrastructure. These principles allow for a softer, natural 
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urban environment as opposed to the hard impersonal “concrete jungle” that many of the world’s 

large cities have inadvertently become. 

 

2.2 Sustainability and sustainability indexes 

 

The concept of sustainability is ambiguous and not well understood by many. Sustainability is 

not about the promise or striving for factors like integration of ecological, social and economic 

issues or improving quality of life (Sutton, 2000). If a system or society moves towards a more 

sustainable style or operation it’s not to improve the given system or society, but to assure that it 

can be sustained, thus enabling the current level of for example production to remain where it is, 

and not to increase or decrease.   

 

Often the definitions of sustainability and also sustainable development only refer to an element 

of the true all encompassing definition, the whole concept (Mebratu, 1998). Sustainability can be 

applied to (Sutton, 2000): 

 

 the environment (ecological sustainability )   

 society (social sustainability) 

 the economy (economic sustainability)   

 an organisation (organisational sustainability)   

 people within an organisation (human sustainability - in a corporate context). 

 

The Brundtland Commission (1987) gave the most widely used definition of sustainable 

development (WCED, 1987):  

 

“Sustainable development is development that meets the needs of the present without 

compromising the ability of future generations to meet their own”  

 

This definition highlights strong links between poverty alleviation, environmental improvement, 

and social equitability through sustainable economic growth (Mebratu, 1998).   
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Sustainability and sustainable development are context bound. Before sustainability can be 

understood it is important to know what it applies to. According to Robèrt et al. (2002) a 

sustainable society does not systematically increase the production of substances, or subject 

nature to increasing concentrations of substances taken from the earth’s crust. 

2.2.1 Sustainability indexes and indicators 

 

Sustainability indexes are used to measure sustainability by incorporating a range of parameters 

and indicators that highlight aspects of sustainability. In the following sections a brief 

explanation of some well known sustainability indicators is provided.  

 

2.2.1.1 Canadian water sustainability index 

 

The Canadian Water Sustainability Index (CWSI) was developed by the Canadian Policy 

Research Initiative (PRI). The CWSI uses a range of water related data and translates them into a 

series of indicators. These indicators are divided into five components. With these components a 

holistic profile is created which represents a given community’s water issues (PRI, 2007). CWSI 

then allows for an intra- and inter-community comparison and analysis. 

 

As mentioned the CWSI comprises of five components, they are (PRI, 2007): 

 

 Resource 

 Ecosystem health  

 Infrastructure 

 Human health and well-being 

 Capacity. 

 

These five components each have three indicators. The indicators are each allocated a score 

between 0 and 100. The average of the three is then used to score the specific component. CWSI 

is then derived by calculating the average of the five components as shown in Figure 2. 
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Figure 2: CWSI Components and Indicators 

 

Communities with higher CWSI are in a better position reap the socio-economic, ecological and 

health benefits associated with a fresh water source (PRI, 2007). 

 

The use of 15 indicators in the CWSI allows an authority to assess a watershed’s overall holistic 

profile. However the final CWSI rating, because of the numerous factors taken into account, 

might not highlight any area requiring immediate attention. This is not necessarily a problem 

because one needs only to also take one step back and first assess the five component’s 

contributions to the final rating to gain a deeper understanding of a given watershed’s health and 

where attention is needed.  
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2.2.1.2 Energy barometer 

 

The Energy Barometer developed by Energy Cybernetics aims to benchmark energy usage in 

buildings (Grobler, 2010). This is done by comparing these buildings with buildings used for 

similar purposes, thereby comparing apples with apples. The evaluation process takes into 

account factors such as climatic conditions, occupancy and floor area. Industry average energy 

usage is calculated and normlised to a score of 100 and has been used to form a comprehensive 

data base to evaluate any other building (Grobler, 2010). The owner of any building being 

audited is able to compare the energy consumption of his or her building with industry standards 

for this particular type of building. 

 

This energy barometer serves as a very useful tool to asses if energy is being used efficiently. 

Although not taking water or green roofs into account directly the concept is of great use to aid in 

the development of similar scales for water usage and re-use. 

 

2.2.1.3 Water footprint 

 

A water footprint is the amount of water required annually by the inhabitants of a given country 

to meet their direct needs, as well as the water required to produce the goods and services used.  

The water footprint has two basic components, the first relating to domestic water withdrawals 

and the second, the external water coefficient, is the water used in other countries to produce the 

goods and services imported by the inhabitants of the country in question (Hoekstra & 

Chapagain, 2006). 

 

The ecological footprint is another indicator similar to the water footprint but which differs in 

that it takes a larger scope into consideration. This ecological footprint, developed by Rees 

(1992), is the total area required by a discrete urban environment to meet its needs. It is argued by 

Rees (1992) that modern societies rely heavily on goods and services not produced or rendered in 

their own areas but imported either locally or internationally. For this reason the total area 

required to sustain a given city will normally be larger than the physical area occupied by the 

given city.  
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2.2.1.4 Watershed sustainability index  

 

The water shed sustainability index (WSI) is a single index that incorporates the HELP index 

developed by UNESCO. WSI thus integrates the hydrology (H), environment (E), life (L) and 

policy (P) of a given watershed (Catano et al., 2009). Each of these indicators is first assessed 

with the three parameters: Pressure, State and Response. The use of this Pressure-State-Response 

parameter then allows the incorporation of cause-effect relationships providing a broader scope 

than can be obtained by taking only one into consideration.   

 

Pressure : Assessment of the extent of human activities on the watershed 

State  : Assessment of the quality of watershed in the beginning the study 

Response : Assessment of the willingness of the society to solve ecological problems in the 

watershed. 

 

The WSI incorporates basic parameters that are normally easily acquired for any basin, 

parameters such as the Human Development Index, Biological Oxygen Demand over a five day 

period (BOD5) and the Environmental Pressure Index. WSI can be derived with equation 2.1 

(Catano et al., 2009): 

 

     
       

 
 

 

Equation 2-1 

 

The indicators work with an operational scale between 0 (worst) and 1 (excellent). Quantitative 

and qualitative parameters are divided into five groups (0, 0.25, 0.5, 0.75 and 1). Each indicator is 

then assigned a Pressure-State-Response parameter (Catano et al., 2009). The average of the 

Pressure-State-Response parameter and its corresponding indicator is then calculated to obtain 

the score of each indicator. The WSI is then acquired by means of the general equation above, 

thus the average of all indicators  
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2.2.1.5 Sustainability index for integrated urban water management 

 

The SIUWM is an index that attempts to quantify a town or city’s potential to be sustainable. 

This index developed by De Carvalho et al. (2009) is based on five main components: 

 

 Social and cultural – social fairness and equitable resource distribution 

 Economic – economically sound principles, economic growth and cost returns 

 Environmental – environmental protection and preservation of ecological systems 

 Political – support and international stewardship 

 Institutional and technological – capacity and progress 

 

These five components are disaggregated into 20 indicators and ultimately into 64 variables 

(Carvalho et al., 2009).  

 

The SIUWM provides a very comprehensive picture of the condition and sustainability of urban 

water. By including components that are not directly linked to the water sector, such as political 

and social and cultural components, a broader scope is attained. SIUWM has been tested in two 

cities in South Africa where it was seen that this index is able to highlight areas of concern.   
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2.3 Green Roofs 

 

2.3.1 Introduction to green roofs 

 

The concept of a green roof entails, in the most basic sense, that a given roof has plants on it. 

These types of roofs are very popular in Europe, especially in Germany where it is estimated that 

14% of flat roofs are now equipped with a green roof system (Köhler & Keeley, 2005). This is no 

surprise as Germany is known as the modern birthplace of green roofs and currently has the best 

developed green roof guidelines, FLL (2002), available. Green roofs are not a new idea, perhaps 

the best known example of an ancient green roof and one of the seven wonders of the ancient 

world are the gardens of Babylon (Osmundson, 1999). The rebirth of green roofs in modern times 

took place in Germany in the 1880s with the arrival of the increased industrialisation and 

urbanisation. At this time flammable tar was often used as a form of inexpensive roofing 

material. A roofer named H. Koch developed a method of adding sand or gravel to these tar roofs 

to lower fire risk. Over time seeds naturally colonised these roofs forming meadows over time. In 

1980 fifty of these roofs were still intact and completely water proof (Köhler & Keeley, 2005) 

 

Green roof can also be referred to as planted, brown, living and eco or vegetated roofs. Green 

roofs have two main classifications which are intensive and extensive.  An intensive green roof is 

defined by a thicker substrate depth (> 150 mm) while the depth of extensive green roofs 

normally range from 40 to 150mm. While both these types of green roofs have many advantages 

regarding their installation it is commonly accepted that extensive green roofs are more 

economically viable because of their lower imposed loads requiring less structural reinforcement. 

Intensive green roofs can support a much greater variety of plants compared to extensive green 

roofs because of the greater substrate depth. These green roofs, sometimes referred to as roof top 

gardens, require intensive maintenance and irrigation to keep them aesthetically pleasing and 

functioning correctly. This is in contrast with extensive green roofs which are normally designed 

to have lower substrate depths, less load, and to operate with minimal maintenance and, if 

possible, without irrigation. The retro fitting of extensive green roofs is also often possible 

without additional structural reinforcement, minimal maintenance considerations and do not 

require such a high level of accessibility when compared to intensive green roof system, making 

them the economically preferable choice (Dunnett & Kingsbury, 2004). 
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Green roofs have numerous benefits associated with the upkeep and running costs of the building 

as well as the area in which it has been built.  

 

Green roofs have many advantages; these are (Snodgrass & McIntyre, 2010):  

 

 Storm water retention 

 Lower energy costs  

 Improved aesthetics and marketability   

 Mitigation of the urban heat island effect 

 Improvement of air quality  

 Novel quality improvement of rainwater 

 Increased lifespan of roofing membrane 

 Habitat for urban wildlife. 

 

The numerous advantages associated with green roofs make them an attractive alternative to 

conventional roofing systems. These advantages can be seen as directly influencing the owner of 

the building or being beneficial to the area. The problem with some of the greatest advantages of 

a green roof system is that they are really observed only when a specific area implements green 

roofs on a large scale. These are advantages like stormwater retention and the mitigation of the 

UHI, while the lowering of energy consumption and extension of roof life has a far greater effect 

on the choice of the building owner. 

  

Stormwater retention is seen as the main advantage associated with green roofs. This however is 

not very important to building owners who are not responsible for the treatment and management 

of stormwater generated by their buildings. In the United States many communities have 

implemented a “stormwater treatment tax” to accommodate the additional load added to the 

sewer network.  These fees are currently too low to reflect the actual cost caused by the extra 

infrastructure required for the treatment and management of the additional stormwater. But in 

time this tax may very well improve the feasibility of green roof projects (Luckett, 2009). Appl & 

Ansel (2004) also reported the important role that green roofs play in Germany as part of a storm 

water management system.  
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2.3.2 Types of green roofs 

 

Green roofs can be broadly classified as either extensive or intensive green roofs. While this 

basic classification is valid there are some more detailed descriptions and classifications of green 

roofs made according to commonly accepted guidelines. In the FLL guidelines (2002) green 

roofs can be either: 

  

 Intensive 

 Simple intensive 

 Extensive. 

 

Whereas the Austrian green roof guidelines mention four types of green roofs (Waldbaum, n.d.): 

 

 Intensive 

 Reduced intensive 

 Extensive 

 Reduced extensive. 

 

The Swiss green roof guidelines only refer to extensive green roofs and refer back to the FLL 

(2002) guidelines for intensive green roofs (Waldbaum, n.d.). 

 

The FFL (2002) guidelines are by far the most comprehensive green roof guidelines. In terms of 

classification of green roof types the FLL uses the types of plants used, their irrigation and the 

maintenance requirements in order to distinguish between them. As an example the main 

differences between an intensive and a simple intensive green roof is the range of plants used, 

and the watering, feeding and maintenance requirements (FLL, 2002).  
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2.3.3 Stormwater retention 

 

Extended urbanisation has led to increased run-off from these areas. This is caused by the large 

impervious surfaces that replace previously pervious surfaces resulting in much greater surface 

run-off. It follows logically that more green space is required to retain larger portions of 

rainwater. Vacant plots can be utilised to retain rainwater but because of economical reasons this 

is often not feasible. An alternative way to manage this problem is the utilisation of bare and 

unused roof space as green roofs. Green roofs have been documented to have a significant impact 

on run-off volumes. In Brussels simulated results showed the effect that would be seen if 10 % of 

roofs were installed with extensive green roofs. This simulation showed that this additional urban 

greenery would result in a run-off reduction of 2.7 % (Mentens et al., 2006). A field study 

conducted in North California quantified the reduction in storm water peaks over a period of 

eight months. In this study it was found that approximately the first 15 mm of rainfall was 

retained. For the two test sites used it was also reported that 62 and 63 % respectively of rainfall 

was retained which resulted in an average peak flow reduction of 78% and 87 % (Moran et al., 

2004). 

 

Green roofs lower stormwater peaks in three ways (Mentens et al., 2006): 

 

 Delaying start of run-off due to absorption in the green roof system  

 Retaining a part of the rainfall event 

 Releasing the retained water over a period of time. 

 

When estimating stormwater peak retentions obtained by given green roof systems there are a 

few factors that should be considered. Stormwater retention depends on the substrate depth, the 

moisture content of the substrate just before the rainfall event and the angle of the roof. The type 

of plants can potentially influence retention but this has been noted to be to a lesser extent 

(VanWoert et al., 2005). It was found that the main factor influencing retention has been noted in 

literature as being substrate depth. This finding is supported by results from a study conducted by 

VanWoert et al. (2005) where the influence of roof slope and substrate depth was tested. This 

study concluded that a smaller slope combined with a deeper substrate depth increases the 

amount of rainfall retained and thus reduces the run-off (VanWoert et al., 2005). A statistical 
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analysis performed by Mentens et al. (2005) produced some arbitrary equations to estimate water 

retention, these equations are however limited to a particular rainfall range and are season 

specific.  

 

The FLL (2002) guidelines describe the water retention of green roofs. In these guidelines it is 

stated that the water retention of a green roof is influenced by a few reference values (FLL, 

2002:35): 

 

 Maximum water capacity 

 Water permeability 

 Coefficient of discharge 

 Slowing down of water run-off 

 Annual coefficient of discharge. 

 

The FLL (2002) guidelines also contain a table of reference values for green roofs stormwater 

retention based on a mean annual precipitation (MAP) of between 650-800 mm shown in Table 

1. This table shows that the portion of stormwater retained by a green roof depends on substrate 

depth and vegetation type. It is also important to note that regions with an MAP lower than 650 

mm have higher stormwater retention portions than those presented in Table 1, and regions with 

an MAP higher than 800 mm have water retention lower than those specified in the FLL 

guidelines (FLL, 2002:37). 

 

Type of 

greening 

Course 

depth in 

cm 

Form of vegetation Water retention 

- annual average 

in % 

Annual coefficient 

of discharge Ψa/ 

sealing coefficient 

  2 - 4 Moss-sedum greening 40 0.60 

Extensive > 4 - 6 Sedum-moss greening 45 0.55 

greening > 6 - 10 Sedum-moss-herbaceous plants 50 0.50 

 > 10 - 15 Sedum-herbaceous-grass plants 55 0.45 

 > 15 - 20 Grass-herbaceous plants 60 0.40 

Intensive  15 - 25 Lawn, shrubs, coppices 60 0.40 

greening > 25 - 50 Lawn, shrubs, coppices 70 0.30 

 > 50 Lawn, shrubs, coppices, trees > 90 0.10 

Table 1: Green roof reference stormwater retention values (FFL, 2002: 35) 
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2.3.4 Thermal benefits of green roofs 

 

In order to understand the effects that green roofs have on the thermal properties of a roof better 

it is necessary to start with how heat enters a building. This characteristic of buildings is well 

known and documented but quantified changes in heat transfer caused by the installation of green 

roofs are not. It is evident that green roofs do insulate building roofs, but the extent of this and 

quantified changes in roof characteristics are not that well understood.  

 

2.3.4.1 How heat entering a building is quantified 

 

In recent years greater emphasis has been placed on the economical design of buildings. Amongst 

the regulations concerned with economical design are the new guidelines on energy efficient 

design for air-conditioned buildings. In a seminar organised by the Building and Construction 

Authority (BAC) and held in Singapore (2001) new regulations were laid out and first published 

and implemented in 2004. These regulations are mainly concerned with the transfer rate of heat 

in a building. The envelope thermal transfer value or ETTV for short is the parameter quantifying 

the building. More seasoned professionals will remember its predecessor the OTTV or overall 

thermal transfer value. This OTTV parameter has however been replaced by the previously 

mentioned ETTV, which is basically a modification of the OTTV, because it estimates the three 

elements of heat gain better.  

 

In South-Africa new regulations dealing with the energy efficiency of buildings, SANS 204, have 

been developed (SANS, 2010). These regulations are currently non-compulsory but this is poised 

to change at a time when these regulations are seen as practical. The SANS 204 identifies six 

climate zones throughout South-Africa and identifies applicable thermal resistance (R or R- 

Value) for them, both in and out of the building. The meaning of the R- Value is explained later 

in this section. Heat entering or leaving a building has three components. They are (BAC, 2004): 

  

 heat conduction through opaque walls 

 heat conduction through glass windows 

 solar radiation through glass windows. 
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This ETTV can estimate the heat gains of a building through the external walls and windows. 

The formula for ETTV is presented in equation 2.2 (BAC, 2004). 

 

       (     )      (   )      (   )(  )(  ) 

 

Equation 2-2 

 

where: 

 

ETTV  is the envelope thermal transfer value (W/m
2
) 

WWR is the window to wall ratio (fenestration area / gross area of exterior wall) 

Uw is the thermal transmittance of opaque wall 

Uf  is thermal transmittance of fenestration 

CF is correction factor for solar heat gain and  

SC is the shading coefficients of fenestration  

 

The formula for ETTV is further modified to account for the use of different materials being used 

on the same building as well as to take the orientation of the wall into account. This is fully 

discussed in the Guidelines for Envelope Thermal Transfer Value for buildings (2004).  

 

The same equation can be applied to a roof with a skylight. To avoid confusion the parameter is 

then called the Roof Thermal Transfer Value or RTTV for short. Similar to the ETTV the RTTV 

also estimates all three element of heat gain, namely (BAC, 2004):    

 

 heat conduction through opaque roof 

 heat conduction through skylight 

 solar radiation through skylight. 

 

RTTV is calculated with equation 2.3 (BAC, 2004). 

 

         (     )      (   )      (   )(  )(  ) 

 

Equation 2-3 
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where: 

 

SKR for Skylight ratio of roof (skylight area / gross area of roof) 

Ur for thermal transmittance by opaque roof 

Us  for thermal energy transmittance by skylight area 

CF for solar correction factor for roof and  

SC for shading coefficients of skylight portion of the roof. 

 

2.3.4.2 Thermal transmittance 

 

To determine the thermal transmittance a few other parameters will first be required. 

 

Thermal conductivity (K) is the given material’s ability to transmit heat. This value is measured 

as the amount of heat that passes through a unit area of unit thickness, in unit time under steady-

state conditions when unit temperature difference exists between opposite surfaces. This value is 

measured in W/m 
o 

K. The reciprocal of the thermal conductivity is the thermal resistivity (r). 

Thermal resistivity is measured in m 
o 

K/W and calculated with equation 2.4. 

 

     
 

 
 

 

Equation 2-4 

 

Thermal conductance (C) refers to the specific thickness of a material or construction. It is 

defined as the thermal transmission through a unit area of material per unit temperature 

difference between hot and cold faces and is calculated using equation 2.5 and is expressed in 

W/m
2 o

 K. The reciprocal of the thermal conductance is the thermal resistance (R) derived using 

equation 2.6. This value is measured in m
2
 
o 
K/W. 

 

   
 

 
 

 

Equation 2-5 

 

Where b is the thickness of the material (m). 
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Equation 2-6 

 

Thermal transmittance (U) is the quantity of heat that passes through a unit area of building under 

steady state conditions. This happens in unit time per unit temperature difference of the air on 

either side of the section. This value is measured in W/m
2
 
o 

K and obtained using equation 2.7. 

 

   
 

  
 

 

Equation 2-7 

 

RT is the total thermal resistance calculated with equation 2.8. 

 

       
  
  
 
  
  
      

  
  
      

 

Equation 2-8 

 

where: 

 

       is air film resistance of external surface (m
2
 
o 

K/W) 

     is air film resistance of internal surface (m
2
 
o 

K/W) 

          is thickness of basic material (m) 

          is thermal conductivity of basic material (W/m 
o 

K). 

 

2.3.4.3 Thermal properties and performance of a green roof system 

 

There is a substantial body of literature reporting the possible thermal benefits of green roofs (Del 

Barrio, 1997; Köhler et al., 2002; Castleton et al., 2010). Because of local climate conditions it is 

very difficult to generalise the effects of similar green roofs in different parts of the world. The 

plants used in the tropics further differ from those used in Europe, for example, and since the leaf 

area index (LAI) of each plant is different so will the effect of the plants on cooling. It is 

important to note the cooling effect of evaporation. This effect is greater in warmer conditions as 

more evaporation would occur, provided that water is available. That being said literature from 

different geographical areas can still be extremely useful as they serve as a benchmark and can 

highlight potential pitfalls. 
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When the thermal properties of green roofs are examined it is important to verify the contribution 

of both the substrate and the plant cover (Liu & Minor, 2005; Wong et al., 2003a; Köhler et al., 

2002). This was observed in a study performed in Toronto which quantified the thermal effect of 

two green roofs with different substrate depths. The two roofs did not have adequate green cover 

and thus the study’s results can, to an extent, be seen as only the effect of the substrate. This 

study found that these two green roofs both insulated the building in question. The insulating 

effect can clearly be seen when the results of green roofs are compared with the reference roof. 

The following results were found on a typical summer’s day. In the case of the reference roof the 

membrane temperature rose to 66 
o
C at around 14:00, while the green roofs both lowered and 

delayed the peak. The first green roof, substrate depth of 75 mm, had a peak of 38 
o
C at 18:30 

while the second green roof, substrate depth of 100 mm, had a peak of 36 C at 19:30. In the 

conventional roof heat started to enter the building quite early, around 06:00, while the green 

roofs were able to delay this process until the afternoon. The maximum heat transfer observed in 

the conventional roof was 15 W/m
2
 while the green roofs lowered this to 2.5 W/m

2
. This study 

showed the great potential of green roofs to reduce and delay heat transfer through a roof (Liu & 

Minor, 2005).  

 

2.3.4.4 The effect of green roofs on roofing membrane  

 

Green roofs actively lower temperature peaks when compared to traditional roofs (Snodgrass & 

McIntyre, 2010; Liu & Minor, 2005). Temperature peaks in combination with quicker heat loss 

creates large changes between the lowest and highest temperatures on a roof each day. With a 

green roof system these peaks are lowered, and there is less difference between the warmest and 

coldest time of day on the green roof. This effect lowers the thermal stress on the roof membrane, 

thereby extending roof life as it is well known that the most important factor influencing 

degradation is temperature (Björk, 2004).  
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2.3.4.5 The role of evaporation in the cooling process 

 

The ability of green roofs to retain rainwater is one of the system’s biggest benefits. Although 

this helps prevent excessive flooding and rainwater infiltration into sewer systems it also plays a 

big part in the cooling process of a green roof. As water is retained in the substrate and taken up 

by the plants, it eventually evaporates. This can take place as evaporation from the roof surface or 

as transpiration through the plants (evapotranspiration). This process of evapotranspiration (ET) 

is an endothermic process, called evaporation cooling, which requires 2450 J of energy per gram 

of water that evaporates (Köhler et al., 2002). This required energy for evaporation is then 

obtained from the surrounding area, thus cooling the given roof. As large volumes of water are 

evaporated in this way, this effect becomes very beneficial and leads to a lowered energy 

requirement for air-conditioned buildings. This effect has been seen to be very effective in 

German summers and will be even more so in the tropics where the benefits can be enjoyed all 

year. 

 

Literature clearly indicates that ET rates affect the cooling effect of green roof. It is further 

known that different species of plants have different ET rates making this value difficult to 

generalise. The process is further complicated as can be seen by the results obtained in a field 

study conducted in Auckland, New Zealand by Voyde et al. (2010). In this field study which 

quantified ET rates it was seen that plant species react differently to drought periods. When 

plants experience a period of drought they become stressed. This stressed state leads to the plant 

“holding on” to the moisture that it has available. Plants in such a state are thus less effective in 

terms of potential cooling ability, as ET rates lower. The extent of this is clear when the results 

are observed. In this trial two species of plants were tested. In unstressed conditions the ET for 

both was 0.29 mm/h while in stressed it was 0.05 and 0.02 mm/h respectively (Voyde et al., 

2010). 

 

In traditional concrete buildings the effectiveness of evaporation is clearly visible when steam is 

observed rising from a traditional roof after a storm. With a green roof system this effect is not as 

visually dramatic, but lasts a lot longer as water is retained by the plants and substrate. This 

allows the evaporation cooling effect to be beneficial for a lot longer.  
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2.3.4.6 Energy savings  

 

Many studies concerned with the potential energy savings that green roofs can offer by lowering 

heat transfer through the roofs of buildings, have been conducted. These results often lack 

definitive data on the roofs’ thermal properties and U-values. Because of this they are only 

applicable to the situation in question (Castleton et al., 2010).  

 

In Singapore a study that quantifies the energy savings and thermal properties of green roofs was 

conducted by Wong et al. (2003b). This study showed that a five storey commercial building in 

Singapore would have an energy reduction of up to 15% when installed with a green roof. The 

study also detailed the change in U and R - Values the roof would have after installation of a 

green roof. R- Values rose with the addition of substrate, the deeper the higher, and the addition 

of plants. For the different plant types tested, trees and shrubs, it was concluded that shrubs had 

the greater effect on the R- Value. The rise in the R-Value of the roof leads to an increase in 

thermal resistance, and thus to energy savings on cooling in summer an on heating in winter 

(Wong et al., 2003b). These types of energy savings may not be enough to justify the use of 

green roofs on their own in newer generation buildings. This is due to new construction 

regulations like the 2006 UK building regulations which require new buildings to be better 

insulated. In these buildings green roofs would save very little, if any, energy. Older buildings 

however are not usually built with adequate insulation, and these types of buildings would benefit 

greatly in terms of energy consumption by the retro-fitting of a green roof (Castleton et al., 2010).  

 

2.3.5 Green roofs as urban ecosystems 

 

Green roofs offer the potential for re-establishment of formerly lost green space in urban 

environments. These green spaces are now being investigated to see to what extent they can help 

improve not only the bio diversity of flora, but also of fauna. Green roofs designed for the 

purpose of establishing bio diversity are commonly referred to as brown roofs. These roofs are 

designed to serve as urban habitats for varies species of invertebrates and other animals. A brown 

roof generally has a varying substrate depth and drainage regimes that allow for the creation of a 

mosaic of micro habitats. The roof then has the potential to host a far greater range of fauna and 

flora allowing a far greater bio-diverse ecology to develop. 
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In London it has also been seen that even extensive sedum covered green roofs can function as 

sustainable urban environments to those animals that are able to adapt to this harsh environment 

(Brenneisen, 2006). Another study conducted in London focused on invertebrates colonising 

sedum and brown roofs. It was observed that a surprisingly large number of invertebrates were 

found on these roofs, especially the sedum roofs. It was further discovered that at least 10 % of 

all collected species were considered rare and scarce (Kadas, 2006). This shows the potential 

these green and brown roofs have in the preservation of these rare species. 

 

In Switzerland ground nesting birds have been seen to move onto flat green roofs. These species, 

little ringed plover and northern lapwing, are under extreme pressure as their natural habitats give 

way to urbanisation. It was found in a preliminary study conducted on this “migration” of these 

birds that many birds nested on green roofs and that eggs hatched, but that no chicks have been 

documented surviving to adulthood. This could be, according to Baumann (2006), because of the 

lack of food and extreme environment. These chicks are very dependent on their environment as 

they are not fed by their parents and require food such as insects, spiders, and other small animals 

(Baumann, 2006). On brown roofs where a more diverse ecosystem is established food might not 

be such a great concern.  

 

2.3.6 Disadvantages associated with green roofs 

 

Green roofs are extremely expensive, have a labour intensive as well as complex installation 

process and require additional structural considerations when compared to traditional roofs. In a 

country such as South Africa where green roofs have recently entered the market concerns such 

as these would be more prevalent. South Africa, having only recently been introduced to green 

roofs, will not have access to a vast range of specialist designers, experienced installation 

companies or access to engineered substrates at reasonable prices, if at all. Maintenance concerns 

also arise caused by what is seen by some as the biggest benefit associated with green roofs, 

which is the retention of stormwater. Green roofs are always installed with a waterproofing layer. 

Plant roots, amongst other possibilities, may damage this layer allowing water from a saturated 

substrate layer access to the roofing deck. Damage to the waterproofing layer of a green roof will 

be a costly problem to solve as the entire roofing system would likely need to be removed for 

repairs. Run-off from green roofs can further cause the substrate to erode. A Green roof is 
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especially susceptible to this phenomenon when installed at larger angles and in its establishment 

phase. Although green roofs are generally designed to require little to no irrigation they may not 

survive arid regions without it (Luckett, 2009). This point is especially valid with intensive green 

roofs or rooftop gardens due to their larger verity plants associated with higher and more frequent 

irrigation demands. In water stressed countries like South Africa this irrigation demand will most 

likely occur at times of droughts stressing the already limited water supply. 
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2.4 Rainwater harvesting 

 

2.4.1 Introduction 

 

Rainwater harvesting is the collection, storage and use of rainwater. The most widespread form 

of rainwater harvesting is by the use of roofs. In addition to roofs, rock and treated earth are also 

used to harvest rainwater (Gould & Nissen-Peterson, 1999). Harvested rainwater can then be used 

as a water supply for a variety of applications. Perhaps the most beneficial aspect of rainwater 

harvesting systems is that they can be built exactly where the water is needed. This advantage is 

reflected in the popularity of these systems in rural areas where there is no access to municipal 

networks. This is reflected in the frequent occurrence of rainwater systems intended to meet full 

domestic consumption in coastal and other small towns in South Africa where no reticulation 

network exists (Jacobs et al., 2010). Even in areas where access to municipal networks exist 

rainwater harvesting is still extremely beneficial as it can substantially lower municipal demand 

while simultaneously lowering effluent generated by pre-existing impervious surfaces.  

 

2.4.2 Domestic rainwater harvesting 

 

Domestic rainwater harvesting (DRWH) systems can take many forms.  They all have a few 

things in common: they have a catchment area, some form of storage and some way of getting the 

water from collection to storage. Typically a roof is used as collection surface and either an above 

or below ground water tank as storage. Typical DRWH systems contain: 

 

 Gutters and downpipes 

 A first flush diverter 

 A tank 

 A catchment area. 

 

In places where access to a municipal network exists collected rainwater is often used as a 

secondary or supplementary source of water. Often rainwater is collected to supply water for 

Stellenbosch University  http://scholar.sun.ac.za



30 

purposes that do not require water at a potable level. Variables that could potentially influence 

the operational efficiency of a rainwater system include (Jacobs et al., 2010): 

 

 The MAP of the area 

 Rainfall pattern (Monthly distribution) 

 Collection surface (roof in the case of DRWH)  

 Storage capacity 

 The demand imposed on the system 

 Alternative water sources (Cheaper alternatives sometimes exist, such as groundwater) 

 Cost (The Installation and maintenance costs versus financial benefits). 

 

2.4.3 Quality of rainwater  

 

In general rainwater is of a fair quality. It is well known that rainwater is very “soft”, meaning 

that it has very little to no calcium, magnesium or dissolved salts and it’s also sodium free.  

However as rainwater falls it acquires a slight acidity as it dissolves carbon dioxide and nitrogen 

on its way to earth (Hari & Krishna, 2005). Accordingly the quality of rainwater can be highly 

dependent on the area in which it falls, as levels of pollution vary, and therefore the level of 

dissolved contaminants. Another big factor influencing the quality of collected rainwater is the 

catchment surface, normally a roof in the case of DRWH. Debris that are deposited on roofs such 

as dust, deposits from small mammals and birds, leaves  and sticks greatly influence the quality 

of the collected rainwater (Mendez et al., 2011). For this reason first flush diverters are often 

installed as they divert the first rain that falls during a rain event giving time for contaminants to 

be “rinsed off” before water is harvested. This is a widely used technique but there is some 

controversy about the amount that should be spilled. According to Hari & Krishna (2005) a 

minimum of 38 l for every 93 m
2
 of collection area should be diverted. Although this may serve 

as an adequate “rule of thumb” it has also been seen that the rainfall intensity as well as the 

number of dry days between rainfall events affects the amount of water required to clean the roof 

(Yanizi et al., 1989). 

 

The type of material that a roof is made of also affects the quality of harvested rainwater. This is 

reflected in the results from a study conducted by Mendez et al. (2011). In this study asphalt, 
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fibreglass shingle, galvalume metal, concrete tile, cool and green roofs were examined. After the 

first flush diversion, as prescribed by Hari & Krishna (2005), it was found that water collected by 

the asphalt fibreglass shingle, metal, concrete tile, and cool roofs would need treatment for total 

coliform (TC), fecal coliform (FC), turbidity, aluminium, and iron to meet potable use standards 

(Mendez et al., 2011). Whereas rainwater harvested from the green roof required treatment for 

TC, FC, turbidity and aluminium to meet the same drinking water standards.  

 

During a study conducted in the city of New Castle, Australia by Evans et al. (2006) the possible 

effects that wind speed and rain intensity could have on the microbial composition of roof run-off 

and roof-harvested rainwater was investigated. This study concluded that weather patterns and 

relative position to a source can greatly influence the bacterial load of run-off. Wind speed was 

also shown to have a large effect at the tested sites (Evans et al., 2006). Interesting results have 

been seen in another study done across eastern Australia, on the bacterial diversity in rainwater 

tanks. This study was conducted by Evans et al. (2009). The results of this study present evidence 

that shows the presence of a wide range of bacterial diversity. Because of the cultivated 

populations and scope of diversity found, functional ecosystems of complex communities of 

environmental bacteria can be supported in rainwater tanks. These communities could have 

beneficial impacts on the quality of the harvested rainwater (Evans et al., 2009). 

 

2.4.4 Rainwater harvesting from green roofs 

 

When considering a green roof as catchment surface for rainwater harvesting there are a few 

aspects that needs to be considered. The aspect of most concern is the effluent originating from 

green roofs. It is difficult to generalise green roof effluent in terms of nutrient load, pH, hardness 

and other contaminants. This is partially due to the wide range of green roof designs, substrate 

types, depths and plants in use. It has however been seen that green roofs tend to increase 

phosphate and total nitrogen loads (Moran et al., 2004). While Berghage et al. (2009) commented 

on the increase seen in pH, hardness and phosphate loads seen in the first of two data sets 

observed. The second, smaller data set showed similar or greater nutrient (phosphate and 

potassium) and hardness (magnesium and calcium) loads in the run-off from the control asphalt 

roof. They further hypothesised that green roofs appeared to lower atmospheric nitrates 
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(Berghage et al., 2009). Green roof effluent has also been noticed to have a slightly yellow colour 

(Berghage et al., 2009).  

 

Another aspect that needs to be considered is the run-off volumes from green roofs. Green roofs 

are known to lower run-offs from roofs, so logically the optimal size of a tank would be smaller 

than for the same size roof of a traditional roofing material. The problem now becomes the 

estimation, to an adequate degree of certainty, of how much water will run off the green roof. 

While run-off coefficients have been developed for green roofs (Fewkes & Warm, 2000; FLL, 

2002) these are assumed to be constant. This assumption is quite simply not adequate as it is well 

known that a given green roof’s run-off volume depends on such things as the number of dry 

days before a given rain event, the pitch of the roof as well as substrate depth and composition 

and even the given season (VanWoert et al., 2005). It might be argued that this approach would 

result in an over complication of the process, but if these aspects are not adequately addressed, 

systems of this kind could become very inefficient.   
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2.5 Greywater 

 

2.5.1 Introduction 

 

All dwellings generate return flow, commonly referred to as wastewater. The wastewater can be 

divided into two distinct groups; black- and greywater. Greywater is defined as the portion of 

wastewater generated by showers, baths, kitchen sinks, dishwashers, bathroom basins and 

washing machines. These processes contribute as much as 50 % to the total wastewater generated 

by most dwellings (Jacobs & Van Staden, 2008). Unlike blackwater, greywater can be seen as 

relatively unpolluted, although it contains chemicals and micro organisms that can be harmful to 

humans and the surrounding environment (Jeppesen, 1996).  The strategic use of this 

underutilised resource shows great potential to reduce domestic water demands for functions such 

as watering gardens and toilet flushing. The use of greywater is not a new idea. Greywater has 

been used in dry periods by urban gardeners and to water food crops in low income areas (Rodda 

et al., 2010). Large scale implementation of this technique can be seen in Berlin where advanced 

systems have been installed, one serving 70 people, boasting with the creation of a risk free 

service by means of biological treatment (Nolde, 1999).  

 

2.5.2 Greywater characteristics 

 

The characteristics of contaminants found in greywater are highly variable. They depend on an 

array of factors such as the use of detergents, soaps and other specific habits the occupants of the 

dwelling might have.  

 

Physical pollutants are usually found in greywater in varying concentrations and sizes. This can 

be attributed to the many different methods that are used to control suspended solids. These 

methods range from coarse filters that can be found at inlets such as sinks or showers, or filters 

that prevent hair from entering the greywater stream. Jefferson et al. (2004) reported on the wide 

range of concentrations of suspended solids found in their study. They reported suspended solids 

concentrations of between 24 to 202, 12 to 104 and 73 to 379 mg.L
–1

 for the shower, bath and 

hand basins respectively. 
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The chemical compounds and characteristics of importance normally found in greywater are 

(Morel & Diener, 2006): 

 

 pH 

 Alkalinity as CaCO3  

 Electrical conductivity (EC) 

 Sodium absorption ratio (SAR) 

 Biological oxygen demand (BOD) and chemical oxygen demand (COD)  

 Nutrient content (nitrogen, phosphorous) 

 Heavy metals 

 Organic pollutants in detergents. 

 

Normally the pH of greywater ranges between 6.5 and 8.4 (US EPA, 2004). But the use of 

sodium hydroxide-based soaps and bleach could raise pH to between 9.3 and 10 as observed by 

Christova-Boal et al. (1996). EC is an indication of salt content of greywater. The EC of 

greywater could originate from sodium chloride (table salt) or from other sources such as salts 

found in sodium based soaps or nitrates and phosphates present in detergents and washing 

powders (Morel & Diener, 2006). Greywater usually has an EC of 300 to 1,500 µS/cm (Morel & 

Diener, 2006). The SAR of greywater is an indication of sodium hazard that quantifies the 

portion of sodium to calcium to calcium (Morel & Diener, 2006). Gross et al. (2005) found the 

SAR of greywater range to be between 2.8 and 6.0.  

 

COD and BOD are indicators that show the level of organic pollutants in water. COD indicates 

the amount of oxygen required to oxidise all organic matter and BOD reflects oxygen demand of 

bacteria thought through biological oxidation in a given time frame (Morel & Diener, 2006). 

Gross et al. (2005) found that household greywater would have COD and BOD concentrations of 

an average of 686 and 270 mg.L
-1

 with standard deviations of 60 and 21 respectively. 

 

The biodegradability of greywater can be indicated by using the COD/BOD ratio. Greywater is 

considered as easily biodegradable when it has a COD/BOD ratio of between 2 and 2.5. As 

mentioned earlier greywater characteristics are very dependent on the types of contaminants that 

are added during the processes that generate greywater. This is also the case with the 
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biodegradability of greywater as it is primarily dependent on synthetic surfactants  found in 

detergents and on the quantity of oil and fat present (Morel & Diener, 2006).   

 

The presence of FC in greywater sends a clear sign of a risk of pathogens being present. Gross at 

al. (2005) found the average FC in their study to be 106 FCU g
-1

. 

 

2.5.3 Risks associated with the use of greywater 

 

Greywater contains many contaminants, potentially dangerous micro organisms and viruses. The 

quality of greywater is also extremely varied depending on the source and for instance the 

amount and type of soap and washing detergent used. This can be expected resulting from 

cultural, lifestyle and habitual differences between different people and communities. Greywater 

can be classified as medium strength sewage in terms of its highly variable organic contents 

(Jefferson et al., 2004). The composition of greywater is of such a nature that it is highly 

recommended that humans should minimise or, if at all possible, avoid contact with it (Jeppesen, 

1996). These fears are further expressed in terms of the method of application of greywater. 

Greywater that has not been treated should not be stored for more than 24 hours and if at all 

possible, not for more than a few hours (Carden et al., 2007b).  

 

The risks associated with irrigation by means of greywater are also of great concern. The 

literature clearly indicates the potential for the contamination of food crops (WHO, 2006). This 

risk is greater for crops that are normally eaten raw. In the rural areas where these techniques 

could bring the greatest benefits in terms of food security and poverty alleviation, the potential 

risk is greatest. People who live in these areas often do not wash these corps sufficiently, mainly 

because of a lack of fresh water, so the condition they are harvested in often needs to be 

acceptable for human consumption (Jackson et al., 2006). Possible concerns arise as some 

pathogens are known to survive in the soil and on crop surfaces for extended periods of time, 

such as Helminth eggs which, in extreme cases, can survive in soils for several years (WHO, 

2006).  Concerns have also been raised over the long term effects on the soil because of the levels 

of phosphate, sodium and chloride found in greywater (Christov-Boal et al., 1996). 
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Treatment of greywater could overcome health concerns associated with human contact with 

greywater (Christov-Boal et al., 1996). With the application of an adequate treatment system 

greywater can now be stored and used in applications such as toilet flushing with minimal fears 

of health risks (Jeppesen, 1996).   

 

2.5.4 Greywater for irrigation  

 

The idea of using greywater for irrigation has been studied by a number of authors (Christov-

Boal et al., 1996; Rodda et al., 2010; Faruqui, 2002; Jacobs & Van Staden, 2008; Pinto et al., 

2010). Christov-Boal et al. (1996) and Jacobs & Van Staden (2008) investigated the effects of 

greywater irrigation on garden beds and lawns, while Rodda et al. (2010) and Pinto et al. (2010) 

investigated the effects on greywater irrigation on food crops. From the literature presented it can 

clearly be seen that no consensus has been reached. While some authors approve of the regulated 

use of greywater (Jacobs & Van Staden, 2008) for irrigation, others discourage this (WHO, 

2006). Greywater contains “contaminants” which have a negative effect on the environment if 

discharged into a water way, but in the right concentration they are beneficial to plants. 

 

As reported by Rodda et al. (2010) greywater contains nutrients such as nitrogen and phosphorus 

which can help plants to grow optimally and the soapy nature of greywater can act as an insect 

repellent. It was also reported by Jacobs & Standers (2008) that extremely satisfactory plant 

growth was observed with no real implications to the soil when greywater was used to water a 

lawn. A rise in sodium levels was however observed. Faruqui (2002) conducted experiments on 

the impacts of growing food crops with greywater in rural Jordan to help create food security and 

generate additional income. His research showed this method to hold great potential. It was 

reported that the women who participated in this experiment said that they felt empowered by 

these new skills they had acquired and the ability to better provide for their families. The study 

did not report any significant adverse effects on the soil, this was partly attributed to the low 

volumes applied and to the physical properties of the soil (Faruqui, 2002). In glasshouse 

experiments conducted by Pinto et al. (2010) the effect irrigating silverbeet plants with greywater 

only, potable water only and a mixture of grey- and potable water, with a ratio of 1:1, was tested 

to see the effects on soil properties and plant growth. It was found that although greywater 

irrigation had no significant effect on the soil’s total nitrates or total phosphates levels, changes 
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were observed with respect to the soil’s pH and EC (Pinto et al., 2010). Despite these promising 

results the author does not recommend the unrestricted use of greywater in this way. Other 

authors have also commented positively about the results obtained from greywater irrigation of 

food crops (Jackson et al., 2006; Salukazana et al., 2005). Possible negative effects are however 

highlighted by other researchers and guidelines such as decreased crop yields and possible 

contamination of crop, implying health risks to its consumers (Rodda et al., 2010; WHO, 2006).   

 

2.5.5 Greywater in high density non-sewered areas 

 

The University of Cape Town has conducted a study on greywater management in non-sewered 

areas in South-Africa. This study used data obtained from 36 settlements in six provinces. In this 

study it was found that the greywater is generally disposed of by discarding it onto the ground 

(Carden et al., 2007b). This method seems to have minimal effects as long as the settlement is not 

too densely populated. These types of disposal techniques are acceptable as long as the following 

are prevented (Carden et al., 2007b): 

 

 Pooling of greywater 

 Greywater entering  surface water systems   

 Build up in soil to the extent that damage to soil occurs or pollution of ground water. 

 

In rural communities nuisance factors such as odour and insects breeding, especially mosquitoes, 

have led to some communities finding their own solutions. It has been seen that in some more 

densely populated settlements or in areas with poorly draining soil people discard greywater in 

selected areas, such as the closest stormwater drains or channels (Carden et al., 2007b).  

 

Research revealed that the re-use of greywater is generally not advised in non-sewered areas 

unless it is done under controlled conditions (Carden et al., 2007b). Additional findings have also 

shown that for settlement densities above 50 dwellings per hectare (du/ha) greywater re-use poses 

unacceptable risks to the occupants and alternative means of disposal need to be found. Carden et 

al. (2007a) also noted that the characteristics of greywater in non-sewered areas differs 

significantly to that found in higher income sewered areas in that it has much higher 

concentrations of pollutants and could even be classified as hazards.  
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The following chapter provides practical information about green roof design and structure. 

Further information is provided about the possible role green roofs can play in sustainable cities 

and green roof projects in South Africa.   
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3. Green roofs and their place in South Africa 

 

This chapter provides a more practical approach to green roofs in terms of construction 

principles, recognised guidelines and their incorporation to South African building regulations. 

 

3.1 Green roof construction basics  

 

A green roof consists of a few basic parts or components. The extent of their use and manner in 

which they are used are normally determined by the type and function of the green roof. Most 

types of green roof have the following components in common, refer to Figure 3: 

 

 Plants 

 Growing medium 

 Filter layer 

 Drainage layer 

 Root protection layer  

 Water proofing layer. 

 

Green roofs can be installed modularly or “build in place”. The choice between these two is made 

by the intended function or feature that the roof is designed to serve. For example a green roof 

designed to function as a rooftop garden would require different considerations when compared 

to a system designed to optimize stormwater retention or energy savings. 
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Figure 3: Green roof layers 

3.1.1 Modular design 

 

Modular type of green roof construction consists of planters, essentially trays, that the growing 

medium and plants are placed in (Luckett, 2009). The planters are simply placed on the roof to 

create a green roof. Damage to the roof can easily be repaired in this type of project as the 

modules can simply be moved. The planters can be constructed from rigid materials or they can 

be fabric modules. The rigid planters have the advantage that they can be grown off site and 

when installed form an instant green roof, while fabric modules have to be grown in place 

(Snodgrass & McIntyre, 2010). The rigid modules can however be difficult to place in irregular 

areas. Different modules, in terms of plants and substrate depth can be used in combination with 

walkways and seating areas to create simple rooftop gardens. If accessibility is not a concern 

gardens of this type could make a welcome addition to any building by offering a previously lost 

green space where the occupants of the building can relax.  

 

Modular design, while an attractive option, is not always advisable. These units are for example 

less than ideal when an intensive green roof is considered. By definition intensive green roofs 

have deeper growing medium (> 150 mm) to accommodate the larger variety of plant species 

with which they are associated. This extra load, because of the deeper layer, then makes these 

modules hard to move or even immobile, defeating their main purpose (Luckett, 2009).  
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This modular design construction is best suited for an extensive green roof project which makes 

the planters lighter and more mobile. When a smaller project is considered in an area of a roof 

which is not easily accessible modules are often also a good choice as their self-contained nature 

makes accessibility less of a problem. Planters are often a good design consideration when a 

small part of a building is to be retro-fitted (Snodgrass & McIntyre, 2010).  These modules are 

also a preferred choice by researchers conducting green roof research as they can be set up almost 

anywhere (Luckett, 2009).  

 

3.1.2 “Build in place” green roofs 

 

A “build in place” green roof is the more traditional approach to green roof construction. This 

method consists of layering the different elements of a green roof directly on the support 

structure, the roof. By using a “build in place” design the designer has the advantage of obtaining 

uninterrupted planting space.  When an intensive green roof project is proposed “build in place” 

is the best design option. This method allows the designer to customise his design better as the 

uninterrupted plant space makes variations in substrate dept possible, and hence a greater pallet 

of plant species, easer.  

 

Large scale projects which use extensive systems are normally “build in place”. This method 

often produces the most economically viable option as a modular design would require numerous 

planters to be placed which would only add to the costs. The built in place option will be the most 

cost effective option in projects where stormwater management is the main consideration 

(Snodgrass & McIntyre, 2010). 

 

By incorporation additional components such as treated wood bracing of plastic products 

modelled in a honeycomb shape allows green roofs to be installed at significantly larger angels. 

The additional components helps keep the substrate from eroding or being blown out of place 

while plants are still in the establishment phase.  
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3.2 Green roof construction, a more technical approach 

 

The most comprehensive green roof guidelines known as the German “Richtlinie für die Planung, 

Ausführung und Pflege von Dachbegrünungen” or ‚”Dachbegrünungsricplace’phtlinie” are 

issued by the Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau (FFL). The 2002 

version of these guidelines was translated to English in 2004 and is now simply referred to as the 

FLL guidelines. The FLL guidelines have since been adopted by numerous other countries and 

form a general basis for other guidelines such as the Swiss and Austrian green roof guidelines 

(Waldbaum, n.d.). 

 

To date there are no official green roof guidelines in the United Kingdom. The Green roof 

Organisation has however produced a document intituled “Guidelines to green roofing”, but this 

refers to the FLL guidelines on most technical points (GRO, 2011).  

 

In North America the FLL (2002) guidelines are also normally used. Although the city of 

Toronto has launched green roofing standards, these standards also refer to the FLL guidelines 

(Borooah, 2006).  

 

3.2.1 The German guidelines 

 

The FLL guidelines were first published in 1982 under the title of “Principles for Green Roofs” 

and were renamed “Directive” in 1990 (Waldaum, n.d.). After the first version of the FLL 

guidelines was published, many revisions have been made incorporating the experience gained 

during numerous green roof projects. Being of German origin, the FLL has always been 

published in German, making it difficult for non-German speaking nations to benefit from their 

wealth of experience. In 2004 the 2002 version of the FLL was translated into English and since 

then has been incorporated by, to the best of the author’s knowledge, all non-German guidelines 

either partially or entirely.   

  

The FLL was developed to set out basic principles and requirements relating to the planning, 

execution and maintenance of green roof projects utilising all available knowledge and the latest 

technology.  These guidelines deal with additional basic principles relating to planning and 
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construction with a special emphasis on technical requirements in respect to construction and 

vegetation (FLL, 2002). The FLL (2002) as technical guidelines, are intended to be used by 

professionals and craftsmen functioning in the roof-greening sectors and trade. 

 

3.2.2 South-African building regulations 

 

The South-African Bureau of Standards (SABS) 0400: “National building regulations” is used as 

basis for the design of roofs in South Africa. The SABS 0400 does however not refer to green 

roofs and therefore also not on their construction. Although not directly specifying green roof 

construction there are a few general requirements that needs to be adhered to. According to the 

general requirements set out by SABS 0400 a roof should (SABS, 1990): 

 

 Resist the forces that the roof will be subjected to 

 Be durable and waterproof 

 Not allow the pooling of rainwater 

 Assure that the roof ceiling setup leaves enough space for the floor directly under it. 

 

Because green roofs retain rainwater their loads vary depending on whether the roof is dry or 

saturated. The least load exerted by the green roof will be in its dry state and the maximum will 

be when it is completely saturated, this excluding all other applicable live loads. 

 

The loads imposed by a given green roof are categorised in two groups, live and dead loads. Live 

loads refer to loads that are not necessarily applied, or in a certain combination, and dead loads 

are always imposed on the structure. These two loads are then used in combination to obtain the 

maximum design load that should be resisted by the building. In the case of green roofs 

additional considerations should be taken into account such as (FFL, 2002): 

 

 The thermal insulation and damp proof lining of the green roof must have an adequate 

compressive strength where spot loads are being considered 

 In a layered superstructure care should be taken to assure that any substance used as an 

intermediate layer does not push the load above the design limit 
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 Special consideration is required when vegetation is to serve as protection against 

negative pressures created by wind. 

 

Green roofs are far more complex structures than traditional roofing methods. In the SABS 0400 

there is no mention of these structures, so in the absence of adequate local standards or guidelines 

it is proposed that the most comprehensive international guidelines be used, called the FLL 

(2002) guidelines. 

 

3.3 The role of green roofs in sustainable cities  

 

To truly appreciate the role green roofs could play in developing sustainable cities one needs to 

look far beyond the well known and quantifiable advantages they could provide. Instead of 

viewing green roofs as a way to receive a “check” in a box on a form to acquire some sort of 

green rating they should rather be viewed as the environmentally friendly alternative to regular 

roofs. This is not to say that their well known and quantifiable advantages are to be ignored, but 

rather that all the small contributions that seem minute will add up, over time and as more are 

built, to make a valued contribution towards creating sustainable cities.  

 

With the increase of world populations and rapid expansion of urban centres localised greenery 

has taken a backseat to the demands imposed on these areas. Rapid urbanisation has caused large 

impervious areas to be created in the form of roads, paving, parking lots and roofs, replacing 

previously green spaces. These impervious spaces cause problems not only to the city’s 

infrastructure and operation, but also to the mental welfare of its inhabitants.  

 

Buildings and other infrastructure have an adverse effect on the climate, and in turn the climate 

on them. This effect is commonly referred to as the UHI. In an urban environment radiation from 

the sun is absorbed by impervious surfaces such as roads and roofs. In woodlands this absorbed 

radiation is used for the evaporation and transpiration of moisture. But in urban areas, the 

radiation is stored and is released during the night causing urban temperatures to rise (Golden, 

2004). The UHI is greater in areas with higher urbanisation and less vegetation. Green roofs, by 

bringing back these lost green spaces, can help manage this effect of urbanisation. 
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Perhaps the best known effect of urbanisation and increase of impervious spaces is the effect seen 

on the stormwater volumes and flood characteristics of these areas. There are a few techniques 

that can be implemented in order to improve stormwater management in these urban centres. 

Technologies such as pervious pavements, infiltration basins and rainwater harvesting can all 

bring similar, equivalent or even greater benefits when compared to green roofs. They can also be 

more cost effective than green roofs. However this in no way means that these alternatives should 

always be implemented instead of green roofs, but rather that they all should be incorporated as 

small parts in a much bigger system. Furthermore the choice whether or not to implement a green 

roof should not be made for one single reason, but should be considered as an attractive 

alternative that has the potential not only to serve its design purposes, but also to give back 

previously lost green space and the beauty associated with it. 

 

While modern living has doubled our life expectancy, it has created disparities between our 

ancient origins and modern ways of living that may have caused the emergence of new serious 

diseases (Maller et al., 2005). Maller et al. (2005) further show that urban green space, such as 

parks or possibly green roofs, not only play a vital part in protecting the essential systems of life 

and biodiversity, but also provide a setting for health promotion and the creation of well-being. 

The requirement for “contact with nature” is as ingrained in us as any of our other primal desires 

and is universal across all cultures and nations. This point is best illustrated in the words of C.A. 

Lewis (1995) who said: 

 

“The response of humans to plants is not a function of country of culture, but rather is a 

function of our humanness... Plants could survive without people, but people would perish 

without plants.”   

 

Literature clearly indicates a strong link between the presence of plants and human well-being. 

However this does not necessarily imply that these same people would prefer having these plants 

on their roofs opposed to having them in their general environment.  White & Gatersleben (2011) 

found that people in the United Kingdom seem to prefer certain types of vegetation either as 

living walls or green roofs to regular roofs and walls. It concluded that people tend to prefer 

vegetation that depicts a natural environment, natural meadow roof, when compared to neat 

vegetation showing human maintenance such as a turf roof. 
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3.4 South African green roofs 

 

Green roofs have only recently been introduced to the South African market. To the best of the 

author’s knowledge there are currently two green roof initiatives active in South Africa, the first 

being the eThekwini Municipality’s green roof pilot project in Durban as part of the city’s 

Climate Protection Programme. The second is a rooftop vegetable garden in the inner city limits 

of the city of Johannesburg intended to improve inner city food security (Mabotja, 2011).  

 

The eThekwini Municipality’s pilot green roof was built on top of one of the city’s engineering 

complex buildings. The 550 m
2
 test site now tests different construction methods, substrate 

mixtures, variety of indigenous plant species and different watering rates (Greenstone, 2009). In 

2004, as a response to higher temperatures and increased frequency of severe floods and 

droughts, the Climate Protection Programme was initiated, and focused on the effects of climate 

change that the city would experience. The future of green roofs looks good as a team has been 

selected to continue the research as well as to implement green roofs on all municipal buildings 

where they are deemed sustainable (Greenstone, 2009).  

 

The Johannesburg rooftop vegetable garden is a joint initiative of the Johannesburg Development 

Agency (JDA) and the Affordable Housing Company (AFHCO). This garden is the first of its 

kind in Johannesburg and is intended to increase urban food security and sustainability in a city 

where it is estimated that 42 % of households are food insecure (Rudolph et al., 2009). The 

tenants of this building now have access to a cheap source of fresh vegetables, and plans are 

underway to grant access to this source to all who live in the inner city of Johannesburg 

(Mabotja, 2011).  

 

The next chapter provided information about rainwater harvesting system design and analysis. 

Possible methods of incorporating rainwater harvesting into the EDWI-system is discussed. 

.  
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4. Rainwater harvesting 

 

This chapter details practical considerations, assumptions and specifications for rainwater 

harvesting systems. Some of the theory presented in this chapter will be incorporated in the 

EDWI-index. 

 

4.1 Domestic rainwater harvesting 

 

As population growth puts increasing pressure on South African fresh water resources failures in 

conventional water distribution systems are becoming more frequent. Water originating from a 

dam is first put through a purification process after which it is pumped through a municipal 

distribution network to where it is required. Along this path many losses occur. These can include 

leaks as well as water theft. With DRWH water is not transported but rather used at the point of 

source; it is used where it is harvested. Even in provinces or regions where rainfall patterns are 

not exactly suited to DRWH it should be noted that every drop that is harvested in this manner 

does not have to be taken from a municipal network. DRWH systems are defined in this thesis as 

having gutters and downpipes transporting rainwater from the connected roof area to a 

permanently installed tank. 

 

4.2 Different incorporations of domestic rain water harvesting  

 

DRWH systems come in many forms; from a simple rain barrel under a downpipe for irrigation 

to complex systems with underground tanks for primary supply. These complex systems intended 

as the primary supply of potable water are normally only really cost effective where no access to 

a municipal network exists. Large portions of the population in urban environments are 

connected to a municipal network. For these people it might not be worth while to introduce a 

large and complex system to meet total domestic demand, but there are cheaper and easier ways 

to reap the benefits of this technique. Water buds (also called cisterns or rain barrels) can be very 

effective collection systems. For example, if you were to use a system of four rain barrels of 250 
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L each connected to a traditional pitched tile roof with a projected size of 100 m
2
 you would be 

able to fill all of them in one rain event of about 15mm.  

4.3 Rain water harvesting calculations 

 

In the following section recognised procedures used for the design of rainwater harvesting 

systems are described.  

 

4.3.1 Estimating demand 

 

The design of any rainwater system depends on the demand imposed upon it. South African is 

classified as a semi-arid region with a below average MAP. Thus it is unlikely that a rainwater 

system will be able to meet total domestic demand. However when only some uses are 

considered for harvested rainwater a system could prove to be an effective way of lowering 

demand imposed on a municipal network. A detailed description on demand estimation is 

included in this thesis in section 6.4. 

 

4.3.2 Catchment area 

 

In general roofs are used as catchment areas for DRWH systems. When selecting a catchment 

surface it is important to remember that some roofing materials produce undesirable effects.  

Metal roofs for example can cause dissolution of metal ions (Memon & Butler, 2006). It is worth 

noting that the roof area used in these calculations does not refer to the true area, but rather the 

projected area. This implies the area that would be seen if the roof was viewed from above, not 

accounting for roof angle in any way. Refer to Figure 4 for details. 

 

Stellenbosch University  http://scholar.sun.ac.za



49 

 

Figure 4: Projected roof area 

 

4.3.3 Roof run-off coefficients and system efficiency 

 

Run-off coefficients are used to estimate how much of the rainfall will be translated into run-off 

(Hari & Krishna, 2005). The losses that occur because of the type of roof used as collection 

surface to capture rainwater can be quite large. This is especially noticeable on flat roofs where 

pooling takes place as water is now able to evaporate prior to reaching the reservoir (Gould & 

Nissen-Petersen, 1999). Approximate values of run-off coefficients are listed in Table 2 below 

(Fewkes & Warm, 2000).  

 

Roof run-off coefficients for different roofs (Fewkes & Warm, 2000) 

Roof/system type Run-off coefficient 

Pitched roof covered with tiles or slates (Total flow type) 0.90 - 1.00 

Pitched roof covered with tiles or slates (Diverter flow type) 0.75 - 0.95 

Flat roof covered with impervious membrane 0.00 - 0.50 

Flat green roof  0.00 - 0.50 

Table 2: Roof run-off coefficients 
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Almost all rainwater harvesting systems experience secondary losses. These can be attributed to 

either spillage as water is transported to the tank, high intensity rainfall events causing flow rates 

greater than that which can be accommodated by the gutters, or many others. For this reason a 

“system efficiency constant” is used to estimate efficiency of a rainwater harvesting system. The 

efficiency of a rainwater harvesting system has been found to be between 75 and 90% (Hari & 

Krishna, 2005).  

 

The efficiency of a rainwater harvesting system is influenced by its design. Gould & Nissen-

Petersen (1999) highlights some of the more commonly seen design mistakes that can occur in a 

rainwater harvesting system: 

 

 Gutters that are horizontal or sloping away from tanks 

 Overflow pipes below  top of tank 

 Outlet tap above bottom of tank 

 Not utilising the entire available roof area. 

 

These mistakes lower system efficiency and ultimately lead to a lower system yield and the 

system being less cost effective that it could be. The hydraulic capacity of gutters used should 

also be considered as a large catchment area can cause accumulated flow to exceed capacity. 

 

4.3.4 Yield before or after spillage 

 

The process used to calculate the potential of rainwater harvesting systems boils down to quite a 

simple mass balance equation. But the assumptions used to determine in and outflows during this 

balance could impact heavily on its accuracy. Fewkes & Butler (2000) detail two possible 

algorithms, yield before spillage (YBS) and yield after spillage (YAS). In the YBS algorithm 

yield is subtracted before the water has spilled and, as the name implies, in YAS the water first 

spills and then the yield is taken from the volume in storage. The two main operating algorithms 

that could be adopted to calculate yield and storage volume for YBS and YAS are shown in 

equations 4.1 to 4.4 (Fewkes & Butler, 2000): 
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YBS: 

 

      (            ) 

 

Equation 4-1 

 

      (              ) 

 

Equation 4-2 

 

YAS: 

 

      (        ) 

 

Equation 4-3 

 

      (                 ) 

 

Equation 4-4 

 

where: 

 

  : Demand at time t 

  : Yield at time t 

    Storage capacity of tank/s 

  : Storage at beginning of time t 

  : Inflow during t
th

 time interval 

 

The choice between using an YBS or YAS operation algorithm depends on a mixture of factors 

and can be significantly influenced by the ratio of supply to demand (Liaw & Tsai, 2004).  

Fewkes & Butler (2000) found that YAS produces a conservative estimate of the overall 

rainwater collecting system while being independent of the selected time interval.  

 

Latham (1983) defined these operating algorithms in a general form by the addition of a θ 

parameter. The general form can be either YBS (θ = 0) or YAS (θ = 1). This general form is 

given in equation 4.5 and 4.6. 

 

      (              ) 

 

Equation 4-5 

 

      (    (     )     (             )    (    )   )  Equation 4-6 
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The general form of these operating algorithms as described by Latham (1983) was implemented 

into the software developed in this thesis. It should be mentioned that both grey- and rainwater 

systems are simulated using a behavioural model implementing the before mentioned operating 

algorithm (equation 4.5 and 4.6). This implies that yield in the first time interval is assumed to be 

zero as yield depends on the capacity in storage in the previous time interval and in the case of 

the first day this value does  not exist. 

 

4.3.5 Reliability of supply 

 

The performance of a rainwater harvesting system is normally associated with the reliability of 

supply. Two basic methods are available to derive reliability of supply. Reliability can either be 

expressed volumetrically (Rv) or as a fraction the time that demand could not be met (Re).  

 

These are presented by Liaw & Tsai (2004) and are shown in equations 4.7 and 4.8: 

 

Rv = actual supply/ demand 

 

Equation 4-7: 

 

Re = 1 – n/N 

 

Equation 4-8: 

 

where: 

 

N = Number of time units under observation 

n = Number of failures in observed time 

 

In a study specific to Taiwan it was observed by Liaw & Tsai (2004) that small storage capacities 

accompanied by large water demands produces inadequate results. It is also mentioned by the 

authors that this will not be the case with a high water demand and storage. Thus the use of Rv is 

preferable as it is applicable in all situations (Liaw & Tsai, 2004).   
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4.3.6 Water saving efficiency 

 

The water saving efficiency (ET) is a measure of a rainwater collection system’s performance. ET 

represents the portion of demand that is met by a rainwater system in a given period of time 

(Dixon et al., 1999). ET is calculated by equation 4.9, shown below: . 

 

    
∑   
 
     

∑   
 
      

        

 

Equation 4-9: 

 

where: 

 

YT: Demand met by rainwater system over time T 

DT: Actual demand imposed by on the system over time T. 

 

Although water saving efficiency is a parameter primarily intended to be used to describe the 

water saving efficiency of a rainwater system it was decided also to use Et to describe the water 

saving efficiency of greywater and combined systems as well. 

 

4.4 Reservoir sizing 

 

The optimal size of a reservoir depends on the average and distribution of rainfall in the region, 

as well as the catchment size and the demand imposed on the system. Further the system’s 

characteristics such as run-off coefficients and the system’s efficiency dictate how much of the 

potential rainwater will be harvested. There are many methods that can be used to estimate the 

optimal reservoir size.  These vary in complexity, accuracy and data requirements. Some of these 

methods are described in this section. 

 

4.4.1 Demand side method 

 

The demand side approach gives an estimated storage capacity required for a rainwater 

harvesting system. This method does not take into account parameters such as average, median or 
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monthly distribution of rainfall. The system is sized to meet a quaternary demand without any 

significant rainfall. It has been reported that this method, popular with installers, could cause 

unnecessarily high storage requirements which will be reflected in the system cost (Hari & 

Krishna, 2005). Methods that only take one side, demand or supply, into account are inherently 

“weaker” at estimating a system’s total performance and reliability of supply and should only be 

used in areas where no rainfall data exists.   

 

A dry season analysis can also be used. The principle is the same, but with a dry season analysis 

the size of the tank is determined by the length of the dry season and not by quaternary demand. 

This method is however only applicable in regions where there is a distinct dry season and has 

the added advantage that no explicit rainfall data are required (Gould & Nissen-Petersen, 1999). 

 

4.4.2 Graphical method 

 

This method optimises storage capacity by representing roof run-off and water demand 

graphically. Reasonable estimates can be obtained by using this simple method, but it is 

important to use small time intervals such as daily or weekly records to obtain more accurate 

estimates (Gould & Nissen-Petersen, 1999).   

 

The first step is to draw a bar graph of the cumulative mean monthly run-offs, that is to say the 

amount of water collected from the catchment. Next a line representing the cumulative monthly 

demand is drawn (Gould & Nissen-Petersen, 1999). The maximum difference between the bar 

graph, supply, and the line, demand, then represents the approximate required storage capacity. 

Figure 5 shows a graphical representation of this method.  

 

This graphical method presented by Gould & Nissen-Petersen (1999) is very similar to the mass 

curve method first proposed by Rippl (1883), described later in section 4.4.3.1, in the sense that 

they both use a graphical representation of demand and supply to obtain a adequate storage 

volume. However the graphical method has some not worthy differences from the mass curve 

method. Where the graphical method requires mean monthly roof run-offs, thus 12 months, the 

mass curve method would normally be either use a period of years of either historical or 

stochastic data. Also the graphical method described here is specifically intended to be applied to 
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rainwater harvesting systems and not large scale supply reservoirs as is the case with the mass 

curve method. 

 

 

Figure 5: Graphical method 

 

The graphical method provides more information about the average year of operation than just 

tank size. The difference between supply and demand, if positive, at the end of the dry season 

indicates the residual rainwater that will be in storage at the beginning of the next dry season 

(Gould & Nissen-Petersen, 1999). Figure 5 presents  an example, where B represents  the residual 

storage at the end of the dry season and C the “carry over” from the end of the dry season to the 

next wet season and A, rounded up to the first available tank size commonly in use, the required 

storage capacity. 

 

Due to the use of average monthly roof run-offs the graphical method does not take droughts or 

floods into account. This implies that for any given year with significantly different rainfall than 

the average used to draw the bar graph, as shown in Figure 5, could result the system being either 

be too large or small for that year. 
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4.4.3  Critical period methods 

 

A critical period is generally defined as the time required by a reservoir at full capacity to empty 

with no spillage in the given time period (McMahon & Mein, 1978). This definition of a critical 

period implies that only one failure can occur in any given critical period. As mentioned by 

McManon & Main (1978) critical period methods can be classified in two groups: 

 

 The use of historical rainfall data and estimated demand to simulate volumetric behave of 

the reservoir 

  The use of only periods with low flows (droughts). 

 

Depending on the specific method some critical period methods will determine the reservoir size 

that will not fail for the given series of historical data, while the rest enables the user to select a 

reservoir size with a certain probability of failure (McMahon & Mein, 1978).  Using a broad 

definition for critical period methods such as that low flows dictate required storage all these 

types of methods can be seen as critical period methods.  

 

4.4.3.1 Mass curve method 

 

This technique, first proposed by Rippl (1883), is credited as being the first rational method for 

estimating required storage capacity to meet demand. The mass curve method uses a cumulative 

historical inflow line with a cumulative demand line over a series of years to determine the 

required storage capacity. This is done by first plotting the cumulative inflow line and then 

superimposing cumulative demand lines at a tangent to each hump on the inflow line. Monthly 

flows are usually used in this method (McMahon & Mein, 1978). The required storage capacity 

of the reservoir will then be the greatest difference between the cumulative flow graph and a draft 

line.  

 

The use of historical data in the mass curve method implies that it is assumed that no drought 

greater than one found in the given time series will occur. This further implies that if the analysis 

period is extended to cover these more severe droughts the storage capacity obtained will be 

larger than previously obtained to accommodate the previously mentioned more severe droughts. 
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The product of this procedure could then produce storage capacities that might not be 

economically feasible and too large for normal operation when applied to rainwater systems. 

However the mass curve does take seasonality, serial correlation and other flow parameters 

which are included in the historical series used from the analysis (McMahon & Mein, 1978) into 

consideration. The mass curve method is explained in greater detail by McMahon & Mein 

(1978).  

 

4.4.3.2 Variations on the mass curve method 

 

There are quite a few variations on the standard mass curve method as first described by Rippl 

(1883). These include the semi-infinite reservoir and residual mass curve method. Although 

based on the principles of the mass curve method these variations have procedural difference 

worth noting. 

 

Instead of using cumulative flows the residual mass curve method uses residual flows. 

Accordingly flow is now expressed as the flow with the mean flow subtracted. This method is 

more complicated than the straight forward mass curve method, but does give a better graphical 

representation because of scale in certain circumstances (McMahon & Mein, 1978).  
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4.4.3.3 Behavioral models 

 

Behavioural models use simulated mass flows through an operational algorithm to simulate a 

reservoir (Fewkes & Butler, 2000). These models simulate operations with respect to time; either 

minutes, hours, days or monthly time intervals can be used, over a period of years. In behavioural 

models withdrawals, losses and inflows, within the selected time step, are subtracted and added 

to the storage volume at the beginning of the time step. The result of this forms the new storage 

volume at the end of this time step, which then becomes the storage volume at the beginning of 

the next time step. This procedure is repeated until the desired analysis period is achieved.  

 

This method has two key points (Hari & Krishna, 2005): 

 

 Catchment area and rainfall determine supply 

 Demand dictates required storage capacity. 

 

The general form for this procedure is shown in equation 4.10 (McMahon & Mein, 1978). But for 

the purpose of a rainwater system a simplified version could be used as shown in equation 4.11, 

as no leakage or evaporation would be assumed. 

 

                            

 

Equation 4-10 

 

                   

 

Equation 4-11 

 

where: 

 

t : Selected time interval 

St + 1 : Storage at the end of the t
th 

time interval or at the beginning of the (t + 1)
th

 time interval 

St : Storage at the beginning of the t
th 

time interval 

Qt : Inflow during the t
th 

time interval 

Dt : Draft during the t
th 

time interval 

Lt : Other losses during the t
th 

time interval 

ΔEt : Evaporation losses during the t
th 

time interval 
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This chapter dealt with rainwater system design and simulation. After the review of relevant 

literature included in this chapter it was decided to simulate rainwater systems using a YAS 

algorithm implemented in a behavioural model. The following chapter provides information 

about greywater system simulation, concerns and treatment. The system that will be used to 

analyse greywater systems is also described.   
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5. Greywater and re-use 

 

For the purpose of this thesis the end-uses considered as producing greywater are baths, showers, 

washing machines and bathroom basins. The water from a pool’s backwash cycle can also be re-

used if the right processes are followed, but this topic is not covered in this thesis. Water from 

dishwashers and the kitchen sink are excluded from the greywater sources as defined in this 

thesis as they are known to have high quantities of oil and grease (Fewkes & Ferris, 1982). Oil 

and grease contaminated greywater is undesirable as extra processes, such as grease traps, would 

be required to re-use it safely.  

 

5.1 Controlling grey water quality and safe implementation  

 

The cost and vulnerability of any greywater treatment system is directly linked to the nature and 

concentrations of contaminants added by end-uses (Morel & Diener, 2006). For this reason 

source control of quantities and characteristics of cleaning products, soaps, and detergents etc is 

of extreme importance. Morel & Diener (2006) list four source control measures that should be 

adopted by all who live in a dwelling where greywater is used. : 

 

 Minimise water use 

 Optimise use of common cleaning products 

 Avoid disposal of problematic substances such as oil, fats, bleach and solvents 

 Substitute hazardous products with environmentally friendly ones. 

 

Products that contain high levels of phosphates such as many types of washing powders, or 

contain any sodium hypochlorite, such as bleach, should not be used when greywater is re-used 

(Morel & Diener, 2006). The use of phosphate rich washing powders will, over time, lead to 

poisoning of soil and for this reason phosphate free products should be used (Water Rhapsody, 

n.d.).  It is important to remember that the choice of cleaning products and quantities have a 

strong influence on the impact greywater has on the environment (Morel & Diener, 2006). 
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Pumped greywater systems should always be operated at low heads, not higher than 6 m head at 

sprinkler (Water Rhapsody, n.d.). Low pressures will help prevent atomising of greywater 

particles. To minimise the risk of clogs, amongst other reasons, it is also advised that suspended 

solids that might be found in greywater are removed as close as possible to its source. Screens, 

water traps and filters can be used for this purpose. 

 

Without treatment greywater should newer by stored. Some authors disagree with this statement 

rather imposing a time limit of 24 hours but also state that a few hours is preferable (Carden et 

al., 2007b). Water Rhapsody (n.d.), South African greywater system installer, states that 

greywater should never be stored (no direct reference to treatment is made) and lists this point as 

one of their golden rules for greywater re-use. This extreme statement could however be 

attributed to the fact that greywater systems can produce unwanted odours which are more 

noticeable in systems that incorporate storage. These odours may impact negatively on the firm’s 

image and that could cause potential clients to reconsider implementing a greywater system. The 

point is however valid as public perception is important in technologies of this type. Accordingly 

it is further advised that if greywater is considered for re-use it should only be done with low 

storage capacities similar to , or not much larger than the average amount of greywater produced 

by end-uses considered for greywater re-use. This measure will insure that re-used greywater 

does not stay in storage for more than a few hours, and at most 24, as proposed by Carden et al. 

(2007b). 

 

Greywater has a relatively high temperature and contains nutrients beneficial to bacterial growth 

(WHO, 2006). A system that does not incorporate adequate treatment or where no treatment is 

applied along with storage can create the perfect environment for aerobic bacteria to flourish. As 

a by-product the bacteria produces methane and hydrogen sulphate resulting in offensive odours 

(Water Rhapsody, n.d.). 

 

5.2 Greywater treatment 

 

Filtration systems can increase greywater quality to an adequate level for re-use purposes 

(Christova-Boal et al., 1996). As is well known greywater contains suspended solids which could 

cause blockages when pumped through an irrigation system. Christova-Boal et al. (1996) 
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proposed a simple three stage filter system that can remove enough suspended solids to make the 

water safe for such a system. The first stage calls for the installation of strainers at shower- and 

bath outlets and the laundry trough. This removes all large matter. Secondly, a mess filter is 

installed in the collection tank that catches all incoming soap particles, hair and lint. Finally a fine 

filter is installed at the supply line to the intended use. It was further reported by Christova-Boal 

et al. (1996) that geotextile sock filters worked well for this purpose. Figure 6 shows a very 

simple configuration only comprising a filter to remove suspended solids, and a pump used to 

pump the greywater to where it is required. The system presented in Figure 6 does not 

incorporate storage explicitly but some storage does take place as the greywater is pumped to an 

irrigation system only if the pump chamber is filled (Water Rhapsody, n.d.). 

 

 

Figure 6: Simple greywater irrigation system without storage 

 

Gross et al. (2007) developed and tested a recycled vertical flow bioreactor (RVFB) for the 

purpose of greywater recycling.  This process was able to lower concentrations of NO3-N, total 

ammonia nitrogen, NO2-N, total suspended solids, anionic surfactants and boron below 

maximum allowable levels for recreation and irrigation (Gross et al., 2007). However an increase 

in heterotrophic bacteria and surfactant-degrading bacteria was observed in the RVFB. The 

RVFB comprises four modules (Gross et al., 2007): 
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 Organic soil module 

 Trickling module 

 Lime pebble module 

 Reservoir and recirculation module. 

 

As greywater is produced it enters the organic soil module where a large negatively charged 

surface enables the adsorption of contaminants. After this the greywater flows to the trickling 

module, similar to a trickling filter, which allows for aeration and re-aeration. The trickling 

module may also prevent odour generation associated with anaerobic processes (Gross et al., 

2007). Greywater then enters the lime pebble module where additional filtration takes place as 

well as the buffering of potential losses in alkalinity due to nitrification processes producing 

acidity. Finally the greywater enters the reservoir and recirculation module which functions as a 

flow equaliser. This function is important as greywater is constantly re-circulated from the back 

to the front of the system. In a single household this is an important function as processes such as 

laundry washing cause rapid short term changes in greywater generation rates (Gross et al., 

2007).   

 

The use of wetlands has also shown great potential to treat greywater. Wetlands are effective at 

reducing BOD, phosphates, nitrogen, suspended solids and reducing concentrations of organic 

chemicals, pathogens and metals (Gross et al., 2007). The creation of wetlands can also serve as a 

habitat for a variety of species and be aesthetically pleasing.  

 

The treatment of greywater can improve the quality to such an extent that it can be used for 

flushing toilets. Nolde (1999) states that there is enough proof that all the water needed for toilet 

flushing can be substituted with treated greywater without hygienic risks or loss of comfort. It 

should be mentioned that the treatment applied to the greywater in the case Nolde (1999) was 

referring to was quite extensive. These systems are not likely to be cost effective on a private 

scale as suggested by Jeppesen (1996) but have proved to be effective on large scale projects in 

Germany such as hotels (Nolde, 1999). Domestic re- use of greywater has however been shown 

to be economically feasible if the system does not incorporate treatment (Jacobs et al., 2010). 
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In Japan population densities and low space has forced the implementation of greywater re-use 

schemes to meet demands (Dixon et al., 1999). Recovered greywater is used in Japan for toilet 

flushing, environmental water, in-stream flow augmentation and industrial re- use (Ogoshi et al., 

2000). Many major Japanese cities have mandated dual distribution systems for all new buildings 

constructed (Ogoshi et al., 2000).  

 

5.3 Simulating greywater flows and operating algorithms  

 

The inherent randomness associated with water end-use patterns is directly linked to their 

associated wastewater flows. This implies that a greywater stream in a dwelling would be 

governed by the same factors governing demand. Given the random nature of water use in a 

dwelling Fewkes & Ferris (1982) used a Monte Carlo analysis to develop a usage pattern to 

simulate greywater volumes with respect to time. While this method undoubtedly produces 

representative results this is not in the scope of this thesis. 

 

For the purpose of this thesis it was decided to estimate greywater streams by means of a simple 

deterministic method. Greywater streams are developed in this thesis by using data describing the 

demand for end-uses considered for re-use and consequently their associated greywater return 

flows are then obtained. The data used for this purpose is described in detail in section 6.4. 

 

As described in section 4.3.4 a rainwater system can be simulated by either YBS or YAS 

operational algorithms. It was further found in literature that for a rainwater system YAS is the 

preferable operating algorithm as this produces conservative answers (Fewkes & Butler, 2000). 

However, as mentioned, rainwater systems, because of the random nature of rainfall events, 

require large storage capacities to obtain optimal efficiencies (Fewkes, 1996). Greywater systems 

on the other hand have a much more regular supply pattern, and thus require lower storage 

capacities to achieve optimal system operation. It was therefore decided to test and compare a 

greywater system with YBS and with YAS algorithms to see the effect on the system’s 

efficiency. Further, because the YAS algorithm can, at most, produce a yield equivalent to the 

storage capacity, it was decided to test this effect on the system’s efficiency. It logically follows 

that if a system has a larger supply and demand than its storage capacity, even when supply is 

much larger than demand, the YAS algorithm will only produce a maximum yield equal to the 
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system capacity. The starting capacity of the following time interval will then be the volume in 

storage from the previous time interval plus the greywater harvested during the time interval in 

question, to a maximum equivalent to tank size, minus the yield in the time interval in question. 

 

The proposed analysis is based on a greywater system which supplies the toilet flushing 

requirement supplied by water from a bath, shower and washing machine in a dwelling occupied 

by 4 people. This setup produced an AADD of 212 L/day with an average of 286 L/day of 

greywater available for re-use. The results are presented in Figure 7. 

 

 

Figure 7: The effect of the operational algorithm on system performance 

 

The system specifications used for this analysis are very similar to those used by Dixon et al. 

(1999), the main differences being the time interval, Dixon et al. (1999) used hours, and, as 

proposed by Fewkes & Ferris (1982), the use of a Mote Carlo simulation to produce a greywater 

flow sequence. Ghisi & de Oliveira (2007) used a deterministic method similar to the one used in 

this thesis to produce average greywater supply and demand with a daily time interval using an 

YBS operational algorithm. In both cases mentioned above, as with the analysis presented in this 

section, supply exceeded demand.  
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Fewkes & Ferris (1982) analysed factors influencing storage requirements. They found that the 

storage capacity is relatively insensitive to time series (daily, hourly or minutes) and usage 

patterns within a day. However, it was found that weekly usage patterns and occupancy has a 

large effect on the Et. The greywater stream proposed in this thesis does not take weekly usage 

patterns into account. It was therefore expected that the results from the method proposed in this 

thesis would produce lower Et than were found by Dixon et al. (1999). This was confirmed as 

Dixon et al. (1999) found that a system similar to the one analysed in Figure 7 could produce an 

Et of over 90 % with a storage volume of between 100 to 200 L, whereas according to this 

method, a capacity of 350 L using a YAS algorithm, and with a YBS no storage capacity would 

be required. It was decided to simulate the greywater system with a YAS algorithm, such as used 

by Fewkes & Ferris (1982). 

 

5.4 Problems with greywater reuse 

 

Greywater contains many contaminants depending on the origin. Greywater that originates from a 

washing machine for example could contain a lot of lint and other fibres as well large quantities 

of sodium and other substances associated with washing powder. These fibres found in greywater 

could cause problems such as clogging when greywater is being pumped through an irrigation 

system.   

 

Odours can originate from a greywater re-use scheme. Systems that incorporate storage are 

especially susceptible to this problem as greywater characteristics are greatly affected by 

residence time in a re-use system (Al-Jayyousi, 2003). Greywater contains microbiological 

organisms (Jeppesen, 1996). To minimize growth of these organisms greywater should be used as 

it is captured or with minimal retention time. Regular maintenance of a greywater system will 

reduce odours from the system. Local greywater installer, Water Rhapsody (n.d.), notes that with 

their maintenance plan only a faint odour is generated while the system is spraying greywater. 

Other sources discourage the use of greywater through spray systems in favour of subsurface 

irrigation that can be up to 60 % more effective because of minimal to no evaporation losses and 

lower health risks (Jeppesen, 1996), however plants are known to sprout roots towards the closest 
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source of water. For this reason subsurface irrigation piping would need to be moved from time 

to time to assure that roots don’t block the outlets along the pipe. 

 

5.5 Combining grey and rainwater 

 

The benefits associated with grey and rainwater in a single storage system have been investigated 

by a few authors (Dixon et al., 1999; Ghisi & de Oliveira, 2007). Dixon et al. (1999) showed that 

up to 80 % of toilet demand can be met by using grey and rainwater with a 50 litre storage tank. 

However it is also pointed out that in this application the addition of rainwater offers no real 

improvement to the Et (Dixon et al., 1999). This could be caused by the fact that most, if not all, 

dwellings would produce significantly more greywater than the potential rainwater that could be 

harvested. Ghisi & de Oliveira (2007) tested two houses with greywater only, rainwater only and 

grey and rainwater in separate systems. They found that in both cases these separate grey and 

rainwater systems would produce potable water savings between 6 and 9 % higher when 

compared to the potable water savings with a greywater only system. The two systems working 

separately would however result in a dwelling now having to install and maintain two systems 

that could lead to high initial costs. In rainfall regions with characteristically low MAP’s this 

point will most likely be more prominent. However, rainwater being of much better quality than 

greywater could balance service water quality as well as quantity (Dixon et al., 1999). 

 

In the next chapter the concept of the EDWI-index is explored and developed. Fundamental 

assumptions required by the EDWI-system are reported and explained as well as incorporating 

the three EDWI-components is described.   
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6. Concept of South African sustainability index  

 

The EDWI-system is a scale that attempts to quantify firstly the dependence of a given dwelling 

on a municipal water network and secondly the effect the dwelling can have on the local 

hydrological cycle by implementing green roofs, rainwater harvesting and greywater re-use.  

 

When developing an index to rate water usage at such a low level as proposed in this thesis, it is 

important to identify the factors that will influence this. At domestic level water is normally 

obtained through a bulk water network provided proper access is possible. Alternatives may not 

be able to completely decentralise a dwelling from a large system but by incorporating 

alternatives in the most feasible way a level of decentralisation can be achieved. In this thesis 

three alternatives are examined and incorporated to rate the efficiency of water use. These were 

selected because they are, for the most part, accessible to all. As an example the use of 

groundwater, while a vast and underutilised resource, is not available to users without access to a 

well. Figure 8 depicts the in- and return flows from a traditional dwelling. 

 

 

Figure 8: Most common in and return flows of a dwelling 
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One of the EDWI-system’s goals is to estimate to what extent return flows can be minimised and 

utilising these return flows to lower municipal water demand. The feasibility of these alternative 

techniques depends on factors unique to every type of dwelling such as roof area, usage patterns 

within the dwelling, outdoor water use and demand. 

 

Figure 8 illustrates the most basic in- and return flows associated with a typical dwelling. The 

EDWI-system aims not only to show the effects of efficient use in terms of demand reduction but 

also to incorporate the reduction in nuisance factors such as stormwater volumes and sewage 

effluents. The use of rainwater in effect causes firstly the reduction in water demand for selected 

uses such as toilet flushing, pool filling and irrigation. Secondly, the quantity of stormwater 

originating from the given dwelling is lowered, further improving the water efficiency of the 

dwelling by lowering the stormwater volumes that needs to be transported elsewhere. With the 

implementation of a greywater re-use system, return flows will also be lowered causing lower 

flows to treatment plants and reduced demands for the selected uses of greywater re-use as 

municipal input will no longer be required for these uses.  

 

The EDWI-rating, in the simplest terms, represents the change in efficiency of water use from a 

dwelling with a traditional design as shown in Figure 8, to the same dwelling now incorporating 

the alternative water sources and control measures. It follows that when a given dwelling 

achieves a rating of 50 % with the use of systems selected for the analysis, the dwelling’s water 

efficiency will be improved by 50%, thus the dwelling will require less input from traditional 

water services. 

 

To produce a final rating a few assumptions about dwellings needed to be made. All assumptions 

are listed below. 

 

It is assumed that any dwelling analysed with the EDWI-software tool utilise the following 

indoor end-uses: 

 

 Washing machine (with either a low, typical or high water requirement) 

 Bath 

 Shower 
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 Dish washer (with either a low, typical or high water requirement) 

 Kitchen sink 

 Toilet (either dual flush or traditional) 

 Bathroom basin. 

 

Irrigation demand is assumed as the amount of water for optimal plant growth, described in 

greater detail in section 7.2.1. Further outdoor demand as defined in this thesis only represents 

irrigation demand. 

 

The reduction in stormwater volumes represents only the reduction of stormwater volume from 

the roof and does not include other impervious surfaces. 

 

6.1 Water quality classification 

 

For the purpose of this thesis water quality will be classified in such a way as to simplify 

allowable applications. Water quality is defined as follows: 

 

 Class 1: Potable use 

 Class 2: Bathing standards 

 Class 3: Contaminated but can be used for selected applications. 

 

Grey and rainwater would require some form of treatment such as filtration to avoid blockages 

that could be caused by suspended solids and debris. With this minimum treatment greywater is 

classified as a class 3 resource and rainwater as a class 2. The exception to this rule would be 

rainwater harvested from a green roof, which is classified as class 3. Green roof effluent tends to 

have higher nutrient loads, pH, hardness and other contaminants than harvested rainwater from 

traditional roofing materials. The characteristics of green roof effluent was described in greater 

detail in section 2.4.4. It is further suggested that water of class 2 should adhere to the UK’s 

bathing water standards as proposed by Jackson & Ord (2000). If treated greywater adheres to the 

UK’s bathing water standards there would be minimal fears of adverse health effects. As part of 
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future work the minimum water treatment required for each application should be included, since 

it would impact the developed EDWI-index by integrating it to the model. 

 

These classifications allows demand to be separated into different streams according to the water 

quality required for a specific end-uses. Thus total demand will not have to be met in full by 

water adhering to potable standards, but could be met as a combination of water of class 1, class 

2 and class 3. 

 

6.2 Defining dwellings 

 

Meyer (2000) defines dwellings as houses, town houses, apartments, traditional houses or shacks. 

They are quite simply a place where people live. In terms of the EDWI-system dwellings can 

only be assessed when they have access to a roof, serve a single family unit and have a garden 

area.  

 

For the purpose of this thesis informal settlements, shacks and low cost housing are excluded 

from the general definition of dwellings. This exclusion is justified due to the fact that these 

settlements are not know to use all of the water end-uses assumed by the EDWI-system, refer to 

section 6.3 for details. 

 

The term dwelling it terms of this thesis thus includes houses, town houses and traditional houses 

and incorporate all indoor end-uses as listed at the beginning of this chapter. 

 

6.3 Water usage at a domestic level 

 

Figure 9 shows the most common uses of water at a domestic level, possible sources of water as 

well as expected return flows. The water end-uses listed in Figure 9 are assumed to be used by 

dwellings analyses with the EDWI-system. 
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Figure 9: Water sources, uses and return flows (Jacobs, 2011) 

 

These uses can be divided into groups according to the water quality they require. While uses 

such as the kitchen sink and shower require water at potable standards, the garden or pool do not. 

Minimum quality requirements are given in Table 3 as well as the quality of their return flows. 

 

 In Out 

Garden Class  3 None 

Pool Class 2 Black 

Outside Tap Class 1 None 

Toilet Class 2 Black 

Bath Class 1 Grey 

Shower Class 1 Grey 

Washing machine Class 1 Grey 

Dishwasher Class 1 Black 

Kitchen Sink Class 1 Black 

Bathroom Basin Class 1 Grey 

Table 3: In and out flow classes for water uses 

 

When examining Table 3 it is clear that very few water applications can function without water at 

potable standards. However the water used for toilet flushing can be up to 30 % of total indoor 
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water demand (Fewkes & Ferris, 1982). The use of greywater in toilets is however problematic as 

it is not possible to guarantee that the water will not come into contact with human skin. 

Applying treatment to greywater can solve this problem, but rainwater could be a simpler 

alternative. 

 

Outdoor water demand is very difficult to estimate as this is too dependent on factors which can 

vary considerably even between plots in the same street. If no treatment is applied to greywater it 

is still possible to use it for irrigation purposes (Jacobs & Van Staden, 2008), preferably by 

means of sub surface irrigation (Jeppesen, 1996). For outdoor applications such as pool filling, 

greywater should not be considered unless adequate treatment has been applied. Greywater could 

contain impurities that are detrimental to the filtering system of a pool. Pool filling could be done 

with rain water with minimal fear of adverse effects. 

 

6.4 Estimating demand and end use distribution   

 

A few papers referring to demand estimation (Jacobs et al., 2004; Mayer et al., 1999) have been 

written. Specifics on what is being done with the water are however harder to find. Jacobs et al. 

(2006) estimated the water demand by means of surveys and Mayer et al. (1999) used pattern 

recognition to log uses electronically and compared them with survey data. To improve the 

accuracy of the EDWI-system it is of utmost importance to know firstly how much water is being 

used and secondly for what purpose.  

 

In South Africa the method used for demand estimation is normally linking usage with stand size 

(CSIR, 1983). This traditional area based method has however been shown to overestimate 

demand, resulting in possible overdesign of services (Jacobs et al., 2004; Van Zyl et al., 2008). 

While a simple area based equation would simplify demand estimation it is traditionally not 

applied to a specific dwelling, but rather to an entire area composed of many plots for the purpose 

of designing bulk water supply networks. Nevertheless the method as described by Van Zyl et al. 

(2008) can be a good indication of expected demand. This method of estimating annual average 

daily demand (AADD) with stand size and its equation is shown in Figure 10. 
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Figure 10: AADD versus. Stand size 

 (Van Zyl et al., 2008) 

 

Mayer et al. (1999) conducted an extensive study on residential end uses of water. The patterns 

that were found in this study serve as a good approximation of what can be expected in an 

average middle to upper class South African dwelling. The residential indoor uses by category as 

found by Mayer et al. (1999) are shown in Figure 11. Taps are then further divided into outdoor 

and indoor tap use which is 58 and 42 % respectively (Mayer et al., 1999).  

 

 

Figure 11: Residential indoor water uses by category  

(Mayer et al., 1999) 
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The end-use distribution derived by Mayer et al. (1999) is an adequate approximation of an 

average user’s water usage. But this approximation can be more accurate if the user specifies a 

few key inputs. This would include factors like occupancy, specifying components in use and the 

amount of water used for a given event, such as toilet flushing. Frequency of use of different end-

uses as found by Mayer et al. (1999) is shown in Table 4 and compared to what was found by 

Jacobs & Haarhoff (2004a).   

 

Frequency of use per capita (events/person/day) 

From Jacobs & Haarhoff (2004a) Mayer et al. (1999) 

Bath 0.24 - 

Shower 0.31 *0.64 

Shower and Bath - 0.75 

Bathroom basin 3.60 - 

Kitchen sink 1.00 - 

All Faucets (min/person/day) - 8.10 

Dishwasher 0.25 0.10 

Toilet 3.70 5.05 

Washing machine 0.30 0.96 

Notes: * indicates a calculated value  

Table 4: Frequency of use per capita 

 

Events also have different water requirements. Table 5 lists the amount of water required for each 

event as set out by Jacobs & Haarhoff (2004a) and Mayer et al. (1999).  

 

Event Water usage per event (L) 

Jacobs & Haarhoff (2004a) Mayer et al. (1999) 

Low Typical High Mean Std. Dev. 

Bath 39.00 80.00 189.00 - - 

Shower 7.60 59.10 303.00 65.12 40.12 

Bathroom basin 0.30 3.80 60.00 - - 

Kitchen sink 0.60 6.70 73.00 - - 

Dishwasher 15.10 25.00 43.00 - - 

Toilet - standard 8.00 14.30 26.50 13.17 4.50 

Toilet - dual flush (low) 2.00 3.00 4.00 - - 

Toilet - dual flush (high) 4.00 6.00 6.10 - - 

Washing machine 60.00 113.60 200.00 154.80 46.20 

Table 5: Water usage per event 
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The data in Table 5 obtained from the study conducted by Mayer et al. (1999), shows the average 

water per event as calculated from flow gage readings, collected from more than 1000 dwellings 

over an extended period of time. 

 

Data in Table 4 and Table 5 can be used to estimate indoor demand if the user is willing to 

specify a few characteristics of his dwelling and end-uses. This method can result in a more 

specific approximation than would be achieved by using only plot area, as proposed by Van Zyl 

et al. (2008).  

 

To estimate outdoor water demand presents considerably more challenges. This is due to the fact 

that outdoor water demand is highly dependent on factors that are not so easily quantified. These 

include behaviour of occupants, time of year, type of plants in the garden and size of the 

irrigation area. The simplest way to estimate outdoor water demand is to subtract the average 

winter consumption (AWC) from metered readings in summer. With this method it is assumed 

that no water is used outdoors in winter as outdoor water demand is normally associated with 

summer. While this method could serve as a fair estimate of outdoor demand in certain regions, it 

will not account for water used in dry winter months (Mayer et al., 1999). 

 

It was decided to estimate outdoor demand by assuming that a garden under irrigation comprises 

of two distinctly different plant types each having its own irrigation requirement varying 

monthly. In the EDWI-system a garden is seen as having a lawn and beds portion. The lawn 

portion is assumed as being kikuyu grass and the beds as being representative of the local 

region’s natural veld type as described by Midgley et al. (1994). This assumption is valid in 

gardens where Xeriscaping principles are in use. 

 

Monthly variation in outdoor water demand is caused by the plants own monthly requirement, by 

the region’s contribution to demand as monthly rainfall and water lost due to evaporation and ET. 

The governing equation for irrigation requirement is presented in 7.2.1 along with a table of 

natural veld and kikuyu grass type crop factors along with evaporation rates for four South 

African cities.  

 

Monthly rainfall is assumed to be the same as the average monthly rainfall obtained by analysing 

the five-year stochastic sequence used to simulate the rainwater system. Rainwater harvesting 
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systems are generally analysed over a period of years, as noted by Fewkes & Butler (2000). The 

time of simulation of five years was selected accordingly based on the subjective discretion of the 

author to illustrate seasonal variation. In months where rainfall exceeds irrigation demand, no 

irrigation demand will exist. Refer to section 7.2.1 for a detailed discussion. 

 

The crop factors that are used in this thesis are the natural veld type crop factors as proposed by 

Midgley et al. (1994), and the crop factor for kikuyu grass as presented by Short & Colmer 

(1999). 

 

6.5 Incorporating greywater 

 

Greywater originates from processes that don’t contaminate the water to such an extent that it 

cannot be re-used. These processes traditionally include water from baths, showers, tap use, 

washing machines and dish washers. Precisely which processes should be included in a greywater 

re-use system depends upon the discretion of designer and could include all processes mentioned 

above. For the purpose of this thesis greywater sources considered for re-use are as follows: 

 

 Bath 

 Shower 

 Washing machine 

 Bathroom basin. 

 

All water from kitchen use is excluded because of oils and grease that are often present in the 

effluent (Al-Jayyousi, 2003). These contaminants can clog certain filtration systems. 

 

Untreated greywater is classified as being of class 3 quality. This implies that it can only be used 

for garden irrigation. This limitation can be lifted by applying additional treatment as described in 

section 5.2. If a user chooses to elevate the greywater quality to class 2, the potential applications 

increase. It is possible to improve the quality of greywater to class 1 by applying additional 

treatment, but this requires complex treatment systems that are costly. The three water uses that 

could be considered for greywater re-use and their minimum required water quality are presented 

in Table 6.  
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 Greywater applications 

 Class 2 Class 3 

Toilet X  

Washing machine X  

Irrigation  X 

Table 6: Greywater applications 

 

Even when greywater is only applied as a class 3 resource, some filtration is still advisable. This 

is because of possible clogging problems that could arise in the system from lint, hair and other 

fibres that could be found in greywater (Christov-Boal et al., 1996). 

 

Greywater systems can incorporate storage, or the water can be used as it is generated. When 

storage is incorporated the system operates in the same manner as a rainwater harvesting system, 

the main differences being the source of water utilised, treatment considerations, inflow patterns 

and optimal storage capacity.  

 

When it is decided to incorporate greywater re-use in a given dwelling the EDWI-rating is 

affected in two ways. Firstly there will be a direct reduction in municipal demand associated with 

the selected applications for greywater re-use and secondly there will be a reduction in return 

flow as the greywater portion will now be partially or completely removed and re-used. 

 

6.6 Incorporating green roofs  

 

Green roofs offer numerous benefits to the occupants of a dwelling. Some of these beneficial 

effects are however not easy to quantify. In terms of evaluating the contribution that a green roof 

will bring to the EDWI-system there are however a few benefits that can be assumed. They are 

stormwater retention, reduction and the decrease of impervious surfaces.  

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



79 

6.6.1 Stormwater retention 

 

The amount of stormwater that a given green roof will reduce is very difficult to predict, as 

discussed in section 2.3.3. By means of an extensive data comparison of the work of many green 

roof researchers Mentens et al. (2005) was able to obtain equations that predict water retention. 

These equations are however only applicable to a 100 mm substrate and under a range of MAP’s 

that are not comparable with South African conditions. The FFL (2002) guidelines contain a table 

that generalises stormwater retention portions but, as with the equations from Mentens et al. 

(2005), they are not representative of South African conditions. 

 

To estimate the stormwater retention caused by a green roof it is however important to assume a 

portion retained and the accompanying run-off coefficient. For lack of better data the table 

presented by the FLL (2002:37) guidelines is used for this purpose. The table presented in FFL 

(2002:37) is assumed instead of the equations developed by Mentens et al. (2005) because it is 

based on a larger body of kwnology and caters for a larger range of green roof substrate depths, 

not just green roofs with a substrate depth of 100 mm. Due to the lower rainfall and higher 

temperatures in South Africa these values can be seen as conservative, refer to Table 1.  

 

6.6.2 Increasing green space 

 

As mentioned in section 3.3 loss of green space in urban environments has very negative side 

effects. Thus increasing green space can be seen as a benefit for any water body or river receiving 

run-off from these areas.  

 

The decrease in impervious surfaces is calculating by firstly obtaining the total impervious 

surface before the green roof, or without, and then the area of the green roof and by dividing the 

green roof area with the total roof area and multiplying by 100. The product will then indicate the 

percentage reduction obtained by the installation of the green roof. It should be mentioned that 

impervious surface as defined in this thesis only includes the total projected roof area of a 

dwelling.  
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6.7 Incorporating rainwater harvesting 

 

When a dwelling incorporates rainwater harvesting, the harvested rainwater can be seen as a 

direct reduction in municipal demand. The effectiveness of such a system depends on factors 

such as roof area, roof type, and roof pitch, efficiency of the system, volume of tank and rainfall 

amount and distribution. Depending on the level of application of harvested rainwater, portable or 

not, additional considerations could arise.  

 

After all required parameters have been obtained, it is then possible to simulate the system 

performance for a five year period using stochastic daily rainfall data. The rainfall data can be 

obtained through a website which allows its user to click on the approximate area in South Africa 

where he or she lives. With the specific GPS coordinates known the user can then navigate to the 

nearest rainfall station. The historic rainfall data from this station is then used to generate the 

five-year stochastic data series by means of the simulator incorporated in the South African 

rainfall atlas developed by the Water Research Commission of South Africa (WRC, n.d.). The 

site also contains data for the neighbouring countries, Lesotho and Swaziland. 

 

It is then possible to estimate the average water savings and efficiency of the system. The system 

can then be calibrated to collect as much rainwater as possible, maximise yield, by increasing 

storage capacity or to assure that the selected demands are met with higher Et’s.  

 

6.8 Potential constraints  

 

Of the three EDWI-components greywater is perhaps the most controversial. The EDWI-software 

tool has been developed in such a way as to allow the user to analyse greywater systems with any 

storage capacity. It has however been mentioned earlier in this document that low storage 

capacities are preferred for greywater systems. While this is a sound assumption in terms of 

supply and demand, it however does imply that the system has been developed with adequate 

treatment to assure that greywater can be safely re- used and not produce unwanted odours and 

that the system will not require excessive maintenance. 
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Greywater production in any dwelling is inherently stochastic. This inherent stochastic nature of 

greywater production is not reflected in the daily time step used by the EDWI-system. The effect 

of time interval selection has however been shown not to have a major effect on results (Fewkes 

& Ferris, 1982). Also, as mentioned earlier, the simulated greywater stream is modelled as a 

discrete stream developed by using frequency of use and volume per use of end-uses obtained 

from Jacobs & Haarhoff (2004a), implying that each day’s simulated greywater volume will be 

the same as the next and previous day’s volume. This implies that there would be no fluctuations 

in daily greywater production in a given week. Weekly fluctuations are however known to exist, 

and as reported by Fewkes & Ferris (1982), these fluctuations within a week have a significant 

impact on results. These fluctuations can be attributed people doing mutable loads of washing in 

a relatively short period of time, not 0.3 events/person/day as assumed by the EDWI-system.  

 

The following chapter further develops the EDWI-system to the point where the conceptual 

equations are obtained. The reader is introduced to the EDWI-software tool developed by the 

author as a part of the research that allows for the calculation of the final rating. The meaning of 

the final rating is also clarified. 
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7. Development of a novel sustainability index  

 

7.1 Introduction 

 

The EDWI-software tool that was developed by the author is explained in this chapter. This user- 

friendly platform consists of an “input sheet”, “output sheet”, “behavioural model sheet”, 

“demand estimation sheet” and a sheet for each of the techniques included in the EDWI-system. 

The sheets for the three different EDWI-components display all assumed data for their 

incorporation such as sources of greywater, uses of grey and rainwater and general assumptions 

used to determine the effect of a green roof. The “demand estimation sheet” contains the user-

defined characteristics of the dwelling’s water use and the assumed distribution, according to user 

input of end-uses in the specific dwelling. 

 

The three sheets, one for each of the EDWI-components, show the user-specified level of 

implementation. These specifications are then be used to simulate a five-year period of operation 

to obtain the average reduction or change in municipal water demand and the effect on the local 

environment in respect to aspects such as stormwater volumes and return flows. Data from these 

simulations is then used to calculate several factors quantifying system operations, refer to 

section 7.5. These factors allow for the calculation of the three EDWI-coefficients, which are 

used to obtain the final EDWI-rating as described in section 7.6. 

 

Figure 12 shows a flow diagram of the process to obtain all data and calculate the EDWI-rating. 

All data required by EDWI-software tool is obtained via excel user forms, this is done for data 

validation purposes. 
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Figure 12: EDWI-software tool process 
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There are seven steps that need to be completed in the EDWI-software tool to obtain the EDWI-

rating of a dwelling. The sequence which needs to be completed depends on the type of stream 

selected as can be seen in Figure 12. For more detail on the EDWI-software tool refer to the user 

manual in Appendix A. 

 

7.2 A brief overview of the final rating and its meaning 

 

When a user has completed all the steps in the EDWI-software tool they receive the final EDWI-

rating for the dwelling. This EDWI-rating ranges from 0 to 100. An EDWI-rating of 100 is the 

maximum rating any dwelling can receive. If a dwelling receives an EDWI-rating of 100, the 

dwelling will then: 

 

 Require no input from a municipal water network (All water used will originate from 

alternative sources). 

 All greywater produced by end-uses included in the EDWI-system, is utilised. 

 The dwelling will require removal of blackwater only (Reduced return flow from 

dwelling). 

 All stormwater originating from the dwelling’s roof will be utilised (no stormwater 

removal will be required). 

 All roofs are green roofs (no impervious roof spaces are created by the dwelling). 

 

On the other end of the spectrum are dwellings that receive an EDWI-rating of zero. These 

dwellings will then: 

 

 Require all water services to be provided from an external source (e.g. local municipality) 

 No green roof (All roofs will be traditional impervious roofs) 

 No rainwater harvesting  

 No greywater re-use 

 All return flows from dwelling will be discharged into a sewage network. 
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Higher EDWI-ratings indicate dwellings that are less dependent on water services supplied from 

outside sources like a local municipality. Thus a dwelling with an EDWI-rating of 20 will require 

double the external input as water services, when compared to a dwelling that obtained an EDWI-

rating of 40. In the simplest of terms, the higher the EDWI-rating of a dwelling, the less input it 

will require from external sources such as a municipality. 

 

The final EDWI-rating composes of three EDWI-coefficients. These are: 

 

 The return flow reduction (Er) 

 The green space improvement (Eg) 

 The reduction on municipal water demand (Ed). 

 

These EDWI-coefficients are further elaborated upon in section 7.6. Figure 13 shows how the 

EDWI-components affect the different EDWI-coefficients that form the final EDWI-rating of a 

dwelling. 

 

 

Figure 13: EDWI-rating composition 
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Formulas for all EDWI-coefficients and how they form the final EDWI-rating are included in 

section 7.6. Each of the EDWI-components affects at least two of the three EDWI-coefficients, as 

can be seen when Figure 13 is examined, thus ensuring that they are incorporated as evenly as 

possible. 

 

7.3 Rain and greywater streams 

 

When a user selects a grey- and rainwater system he or she might want to combine the two 

systems into one. This idea is described in section 5.5, but it is important to realise that if a class 

2 and 3 resource were to be combined the quality of the combination would be that of the lower 

of the two streams, thus class 3. This limitation would severely limit the possible applications, 

but with additional treatment the greywater, and thus the combination of the two, could be 

improved to a class 2 resource. For this reason if grey and rainwater are to be combined in a 

single stream it is assumed as being the same as a greywater system, minimal treatment will thus 

produce a class 3 resource. The EDWI-software tool automatically shows a behavioural model of 

grey-, rain- or the combined streams, but the combination is only used for the model if indicated 

by the user. 

 

7.3.1 Simulated greywater stream 

 

Greywater streams are by definition extremely random and thus difficult to simulate. As 

described in section 5.3 a greywater stream can be developed by using a Monte Carlo analysis as 

demonstrated by Fewkes & Ferris (1982).  For the purpose of this thesis it was however decided 

to use a deterministic method. 

 

As with water demand estimation, greywater streams depend on the applicable end-uses, their 

specific water requirements, frequencies of use per capita as well as their associated return flows. 

Accordingly the EDWI-software tool estimates greywater volumes by using the same data used 

for demand estimation. Table 4 shows these assumed frequencies of use and associated volumes 

per event. Table 5 provides different volumes per end-use data. 
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7.3.2 Tank sizing 

 

The final tank size for a system is user-defined after the initial trial run with an initial tank size 

also selected by the user. After this initial analysis the model produces the system efficiency and 

associated water savings. Using trial and error the user is then able to see what effect changing 

the tank size will have on the system’s performance. This procedure will need to be repeated for 

every system. It is also worth mentioning that when running the behavioural model for a given 

stream the associated tank size should be selected, and if satisfactory the data will then be added 

to the “results sheet” automatically after completing that section. 

 

7.4 Model assumptions 

 

7.4.1 Demand estimation 

 

Indoor water demand is estimated as described in section 6.4. The end-uses used to estimate 

indoor water demand each have three possible water requirements as low, typical or high. 

Deciding which requirement to apply at what frequency of use for each end-use is a complex 

problem due to the extreme variation of human habits and lifestyles. This topic falls well outside 

the scope of this thesis. With this in mind it was decided to assume that all end-uses excluding 

washing machines and dishwashers, which are user-defined, have a typical demand, refer to 

Table 5. 

 

Toilet flushing was assumed as having a typical water requirement, but a distinction between 

normal and dual flush toilets are made in the EDWI-software tool by the user. 

 

Outdoor demand is estimated by using a method presented by Jacobs & Haarhoff (2004b). After 

obtaining the size of each of the two assumed parts of the garden, lawn and beds, their individual 

water requirements can be obtained and combined to produce an annual monthly daily demand 

(AMDD) by using equation 7.1. 
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Equation 7-1 

 

where: 

 

Sl, Sb  is area of lawn and beds 

kl,m ,kb,m is corp factor from lawn and bed for month m respectively 

pm  is the A-pan evaporation for month m 

    is the total number of days in month m 

rm  is rainfall in month m. 

 

Crop factors for the eleven generalised veld types found in South Africa and kikuyu grass are 

listed in Table 7 along with the mean annual evaporation (MAE) and monthly distributions for 

four South African cities. 
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Vegetation Type Average 

Value 

Monthly crop factor 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Kikuyu (grass / lawn) 0.46 0.68 0.68 0.60 0.47 0.31 0.22 0.22 0.22 0.30 0.47 0.61 0.68 

Coastal tropical forest 0.64 0.75 0.75 0.74 0.69 0.61 0.56 0.40 0.51 0.60 0.67 0.69 0.75 

Inland tropical forest 0.67 0.78 0.78 0.75 0.70 0.65 0.50 0.40 0.55 0.65 0.73 0.78 0.78 

Tropical bushveld 0.48 0.59 0.59 0.58 0.50 0.44 0.32 0.27 0.35 0.45 0.51 0.56 0.59 

Karoo and karroid 0.39 0.50 0.50 0.48 0.46 0.37 0.25 0.20 0.22 0.33 0.41 0.46 0.50 

Pure grassveld 0.42 0.62 0.62 0.55 0.43 0.28 0.20 0.20 0.20 0.27 0.43 0.56 0.62 

Fynbos 0.50 0.60 0.55 0.55 0.55 0.45 0.40 0.20 0.35 0.50 0.60 0.60 0.60 

False fynbos 0.46 0.55 0.55 0.50 0.50 0.40 0.35 0.20 0.35 0.50 0.55 0.55 0.55 

False Bushveld 0.45 0.62 0.62 0.58 0.53 0.38 0.25 0.20 0.23 0.35 0.48 0.58 0.60 

Forest and scrub 0.51 0.61 0.60 0.60 0.57 0.46 0.36 0.29 0.36 0.48 0.58 0.61 0.61 

False Karoo 0.36 0.50 0.50 0.46 0.36 0.26 0.21 0.20 0.20 0.27 0.36 0.45 0.50 

False grassveld 0.52 0.73 0.73 0.67 0.61 0.43 0.24 0.20 0.27 0.41 0.53 0.65 0.73 

Location / Town MAE 

(mm/yr) 

Monthly A-Pan Evaporation  (mm/month) 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Bloemfontein 2428.0 328.0 246.4 213.9 144.2 106.1 76.7 90.8 134.0 200.6 259.3 292.6 335.3 

Cape Town 2004.0 295.2 249.1 217.6 135.5 78.2 60.1 66.5 78.2 114.8 175.6 245.1 288.2 

Durban 1674.5 201.2 172.5 167.2 120.6 97.4 80.0 86.3 103.2 124.9 149.5 177.5 194.2 

Johannesburg 2228.0 249.5 205.0 189.4 142.1 113.0 88.9 102.9 151.1 208.1 256.7 257.1 264.2 

Table 7: Crop factors and evaporation data (Midgley et al., 1994; Short & Colmer, 1999) 
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The upper terms in equation 7.1, (kl,m·pl,m– rm) and (kb,m·pb,m – rm), can become negative when 

rainfall is greater than plant requirement. This happens in months with a higher rainfall than 

irrigation requirement. Irrigation is not needed during these months due to ET being smaller than 

irrigation requirement, and accordingly outdoor demand is set to zero. Thus in winter rainfall 

regions such as the Western Cape irrigation may not be required during all the winter months. 

However it was decided not to assume a zero winter demand but to verify monthly demand by 

verifying that the calculated demand, obtained with equation 7.1, is larger than zero. This 

proposed method produces demands that will decrease as rainfall increases and not just be 

assumed to be nonexistent for the entire rainfall season. 

 

7.4.2 System simulation 

 

All systems in the EDWI-software tool are simulated using a behavioural model. To create easy-

to-understand software and to simplify the code it was further decided only to simulate one water 

stream at a time. The results from this analysis are added to the “results sheet” as the user accepts 

them and a different stream can then be analysed if required. There are four possible streams that 

could be used. These streams are: 

 

 Rainwater only 

 Greywater only 

 Rain and greywater systems (separate) 

 Combined rain and greywater system. 

 

It is advised that greywater is seen as a single stream or in combination with rainwater. 

Greywater should not be divided into different streams as this will produce complex systems that 

are unlikely to be cost effective, and this concept is not incorporated in the EDWI-software tool. 

 

The behavioural model’s rainfall component is based on a five-year stochastic daily rainfall 

series. The model calculates the “average” efficiency and associated water savings of the 

dwelling over the previously mentioned five-year simulation period. To produce an accurate 

representation of the system it was decided to use daily rainfall records and associated daily 
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demands. The system efficiency of greywater re-use is calculated in the same manner as with 

rainwater and expressed as the system’s Et.  

 

7.5 Factors for the final rating 

 

The three EDWI-coefficients comprises of factors that are obtained while completing the seven 

steps of the EDWI-software tool, refer to Figure 12. 

 

The first two factors benchmark the “state” of the dwelling without any EDWI-components. They 

are the total roof run-off without green roof and rainwater harvesting (TRW) and the total 

greywater produced by end-uses considered for re-use (TGW). These two factors are measured in 

average L/day. 

 

TRW is calculated with equation 7.2. 

 

            
   

   
 

Equation 7-2 

 

TGW is calculated with equation 7.3. 

 

     ∑     

 

   

 
Equation 7-3 

 

 

The rainwater utilised (RWU), greywater utilised (GWU) and green roof reduction in run-off 

(GRRR) are factors used to incorporate the change experienced by the dwelling due to the 

EDWI-components incorporated in terms of return flow. These factors are measured in average 

L/day. 

 

RWU is calculated with equation 7.4. 

 

              Equation 7-4 

 

GWU is calculated with equation 7.5. 
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              Equation 7-5 

 

In the case of a combined system the combined system water utilised (CWU) will be used and 

it’s calculated with Equation 7.6. 

 

            Equation 7-6 

 

Green roof reduction in run-off (GRRR) is calculated with equation 7.7. 

 

      
(    )         

   
 

Equation 7-7 

 

 

The last two factors express the portion of total domestic water demand met by the alternative 

water sources. The final two factors are expressed as the percentage of total domestic demand 

they are expected to supply. 

 

Equation 7.8 and 7.9 are used to calculate the portion of total domestic demand met by a rain- 

and greywater system respectively.  

 

         
    
    

 
Equation 7-8 

 

         
    
    

 
Equation 7-9 

 

where: 

 

ATroof, Agreen  is the total roof area and green roof area 

DtRW, DtGW, DtC is the average daily draft from a rain-, greywater and combined system 

during time t (daily) 

EtRW, EtGW  is the systems water savings efficiency for rain and greywater system 

YtRW,YtGW  is the average daily yield from the rain- and greywater system 

Ψa   is the annual coefficient of discharge from a green roof. 
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7.6 The final rating 

 

After completion of the steps required by the developed EDWI-software tool a final rating is 

assigned to the dwelling. This EDWI-rating and how it is calculated is explained in this section.  

 

The EDWI-rating is calculated with equation 7.10 show below. 

 

             
         

 
 

 

Equation 7-10 

 

The three EDWI-coefficients (Er, Eg and Ed), as with the EDWI-rating, range from 0 to 100%. 

These coefficients are calculated using factors described in section 7.5. 

 

Eg is the coefficient that expresses the increase of green space obtained by the addition of a green 

roof. Eg is calculated using equation 7.11.  

 

       
               

               
  

 

Equation 7-11 

 

Ed expresses what percentage of the dwelling’s demand can be met by the alternative water 

resources from the systems selected by the user. The specific equation used to calculate can 

change depending on user specifications. Equation 7.12 shows the general form. 

  

               

 

Equation 7-12 

 

In the case where a combined system was selected Ed would be equal to only the portion of 

domestic demand met by the combined system (DnC).  

 

The last coefficient, Er, expresses the fraction of reduction on the dwelling’s return flow because 

of the techniques incorporated. Er depends on the reduction in roof run-off (due to a green roof 

and rainwater harvesting) and the reduction in return flows (caused by the re-use of greywater). 

Because of the four types of system combinations available in the EDWI-system there are four 

formulas for Er, each for a different system setup. 
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The most general system selection is a grey- and rainwater systems not combined and it is 

calculated with equation 7.13. 

 

     (
   

   ⁄ )     (
(        )

   
)  

 

Equation 7-13 

 

A grey- and rainwater system combined uses equation 7.14. 

 

      ( 
        

       
 ) 

 

Equation 7-14 

 

Two possible single systems can be utilised, grey- or rainwater only. Their equations are given in 

equation 7.15 and 7.16 respectively. 

 

     (
   

   ⁄ )     (        ⁄  ) 

 

Equation 7-15 

 

      (
        

       
 )  

 

Equation 7-16 

 

7.7 How to simulate a dwelling using the developed software 

 

In section 7.7.1 to 7.7.2 a step by step process will be presented that details the data requirements, 

it is worth mentioning that the model can only be as accurate as the data provided by the user. 

Screenshots of the EDWI-software tool are included in this section. For easy reference detailed 

an explanation of the EDWI-software tool is available as a user guide in Appendix A. 

 

7.7.1 Data requirements 

 

All data inputs are managed by the “input sheet” via user forms (Excel name for windows) 

activated by buttons. The ““input sheet” contains seven steps which guides the user through the 

data input process.  
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These steps are: 

 

 Load rainfall data 

 Demand estimation 

 System and tank specifications 

 System or systems uses and sources 

 Green roof (defined before rainwater system if green roof run-off is harvested) 

 System balance and optimisation 

 View results and obtain EDWI-rating. 

 

All steps are controlled using user forms initiated by clicking on a button. The buttons are set as 

invisible when the procedure is first initiated and as the user completes a section, the next 

section’s button is enabled and the completed section’s button’s colour changes from grey to 

blue. This procedure assures that sections are completed in a logical order which simplifies the 

data validation process. 

 

7.7.1.1 Rainfall data 

 

The rainfall data required for the EDWI-software tool is a five-year stochastic series of daily 

rainfall in millimetres. The data can be obtained by any means but leap years should not be 

included. Section 6.7 describes where the data can be obtained easily. 

 

The rainfall data is imported through a “.csv” file (a simplified format similar to a single excel 

sheet without any formulas). It is important that the csv file’s name should be typed including the 

extension, thus if the file is named “rainfall” the user needs to type “rainfall.csv”. The location of 

this file is also required, and needs to be specified in the applicable text box. 

 

All rainfall data imported into the EDWI-software tool needs to comply to a specific format. 

When entering rainfall data, start with the first day in January’s rainfall, in cell A1, followed by 

the second day’s in the adjacent column, ext. This is then repeated for the entire first year. The 

second year’s data is inserted in the same manner, only starting at cell A2. All five years’ data 

have to be included in this form to avoid mistakes. It is also important to ignore leap years and to 
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remember that the rainfall should be in millimetres. Refer to the user manual in Appendix A for 

details on how to load rainfall data into the EDWI-software tool.  

 

7.7.1.2 Demand estimation 

 

Demand estimation is done by using two user forms. In the first form indoor water demand is 

calculated and in the second form, outdoor, assumed as only including irrigation.  

 

The “indoor demand estimation” user form is shown with the outdoor demand user form in 

Figure 14. The indoor demand user form contains four fields that need to be specified. These 

inputs then allow indoor demand to be estimated and accordingly the distribution of end-uses and 

associated water requirements and return flows. 

 

 

Figure 14: Demand estimation user form 
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The “outdoor demand” user form requires the user to specify the dwelling’s location, the 

corresponding veld type and the areas of lawn and beds under irrigation. These values then allow 

the EDWI-software tool to calculate an AMDD. For the cities shown in Figure 14 the 

corresponding veld types are automatically selected as they are. If the “other” location is selected 

the user will need to specify the respective veld type manually.   

 

7.7.1.3 System and tank specifications 

 

The system and tank specification user form allows the user to specify what type or types of 

system or systems he or she would like to incorporate. The choices are a rain- or greywater 

system only, a combined system or rain- and greywater systems separately. After specifying the 

type of system the user form prompts the user to specify the quality classification the water will 

be treated to. This quality classification will dictate possible end-uses for the stream. Initial tank 

sizes are also specified but can be changed when the system is analysed. Figure 15 shows the 

system and tank specification user form. 
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Figure 15: Streams, treatment and tank user form 

 

When the stream or streams are defined the buttons controlling these specific stream or streams 

are enabled on the “input sheet”. For the example shown in Figure 15 the buttons controlling rain 

and greywater specifications and uses will then be enabled. 

 

7.7.1.4 Specify applications 

 

There are three user forms linked to three different buttons controlling this step. These user forms 

collect parameters such as run-off coefficients, system efficiency, roof area and uses for rainwater 

and sources and uses for greywater, but only when a given dwelling incorporates them. As an 

example the user form for rainwater is shown in Figure 16. 
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Figure 16: Rainwater uses and characteristics user form 

 

In the example shown in Figure 16 it can be seen that all potential uses are enabled. This implies 

that the harvested rainwater has been selected as being of class 1. This would not have been the 

case if class 1 treatment was not selected as the software only shows possible uses according to 

water quality classifications.  

 

7.7.1.5 Green roof 

 

The green roof user form is shown in Figure 17. This user form is used to obtain parameters 

relating to the physical characteristics of the green roof and parameters that allow the EDWI-

software tool to calculate the theoretical effect that the green roof might have on its direct 

environment.   
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Figure 17: Green roof user form 

 

The “Specify green roof characteristics” button prompts the “Substrate depth” user form. This 

user form allows the user to specify a substrate depth and according to the user selection the 

associated stormwater retention and run-off coefficient is then set. The theoretical values of these 

retentions and run-off coefficients are obtained by using a table presented in the FFL guidelines 

(2002:37). The “Substrate depth” user form is shown in Figure 18.   
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Figure 18: Substrate depth user form 

 

7.7.1.6 System balance 

 

Figure 19 shows the version of the system analysis user form that will be displayed if the user 

chooses a grey and rainwater system separately. The user now selects the first system analysed. 

The system’s Et and the Dn is then calculated by the “behavioural model sheet” and reflected on 

this user form. The system tank size can then be changed by clicking on the “change tank size” 

button. This button then prompts a user form that allows the user to specify different tank sizes 

and observe the effect that this change will have on the system’s performance. 
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Figure 19: System analysis user form 

 

The other system can then be analysed in the same manner. If only one system remains, the “Next 

System” button will become an “Add and Close” button, allowing the final system to be analysed 

and specified. 

 

7.7.1.7 View results 

 

All results are displayed in the “results sheet”. This sheet can either be accessed by selecting the 

tab itself or by clicking on the results button on the “input sheet”. The results button 

automatically activates and displays the “results sheet”. 

 

The “results sheet” contains all results of the analysis including a final EDWI-rating, the three 

EDWI-coefficients which results into the final EDWI-rating and other general parameters and 

characteristics. 
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7.7.2 Data validation and optimisation 

 

When a dwelling incorporates rain and greywater systems separately it is important that the same 

use is not assigned to both. This potential problem is solved by disabling the selection of uses 

selected by the one system in the options list in the other.  

 

Most of the user forms developed in the EDWI-software tool contains at least one text box. These 

are used to allow users to type in data such as roof area. Validation of data inserted by the user 

now becomes important to prevent text being entered in an area requiring numbers. This required 

validation was not done, but if the analysis is completed it will become clear if all data was not 

correctly inserted due to faulty results on the “results sheet”. 

 

In next chapter the EDWI-rating is explored. This chapter provides the benchmarking procedure 

which reveals the inner workings of the index and shows how components affect the final EDWI-

rating. 
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8. Results and interpretation 

 

In order to validate the accuracy of the EDWI-system it is important to compare results from the 

EDWI-software tool with other published results found in literature. Ideally the index is best 

validated by comparing the EDWI-rating, and changes caused by certain factors, with a similar 

index. This however proved difficult because a similar index, taking the same factors into 

account, could not be found. For this reason parts of the model will be tested and compared to 

published results thereby validating the mathematical validity of the EDWI-software tool. 

Further, the EDWI-system was benchmarked using three model dwellings with nine 

configurations producing a total of 27 analyses. 

 

8.1 Greywater only versus combined systems 

 

This section shows the improvement, if any, that can be expected when a greywater only system 

adds rainwater, thus forming a combined system. Combined systems of this kind are subject to 

the same limitations as greywater only systems in respect to the low storage capacities that 

should be used. However, it was decided to test the effect of increasing storage capacity although 

this would cause greywater to be stored for longer periods of time, which could produce 

unwanted consequences. This is described in greater detail in section 5.4 and 5.5. 

 

Table 8 lists the dwelling and system characteristics as well as greywater sources and uses for 

grey- and rainwater systems.  
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Location: Johannesburg 

Roof and rainwater harvesting Value Imposed demand by greywater system Value 

Total roof area (m
2
) 400 Garden irrigation  

Green roof area (m
2
) 50 Sources of greywater  

Roof Area (connected to tank in m
2
): 200 Bath  

Green roof substrate depth (cm): 4-6 Shower  

Run-off Coefficient: 0.8 Bathroom basin  

System Efficiency: 0.8 Washing machine  

  Imposed demand by rainwater system  

Demand estimation  Toilet flushing  

Occupancy: 4 Washing machine  

Dual flush toilets: No Garden characteristics  

Washing machine requirement: Typical Lawn (m
2
) 100 

Dishwasher requirement: High Beds (m
2
) 35 

Table 8: Johannesburg grey and combined system analysis 

 

It was decided to simulate the dwelling with a greywater tank size of 350 L, followed by a 

combined system with a tank of the same size to see if the addition of rainwater leads to any 

improvement. This procedure was repeated with storage capacities of 500, 750 and 1000 L.  

 

Capacity (L) Combined (%)  Greywater (%) Change (%) 

350.00 48.93 48.93 0.00 

500.00 68.64 68.64 0.00 

750.00 86.55 85.05 1.73 

1000.00 90.95 85.28 6.24 

Table 9: Results of grey and combined system analysis 

 

According to the results presented in Table 9 there is no improvement to system performance 

when low volume storage in used. These results are confirmed by similar findings by Dixon et al. 

(1999). However as the storage capacity rises an improvement is seen. These large storage 

capacities are however undesirable as greywater will now be retained for extended periods of 

time. It is possible to implement a combined system successfully with such large capacities but 

this will result in complex treatment systems.  
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8.2 Comparison between Johannesburg, Cape Town and Durban 

 

In this section a “sample” dwelling is analysed in three different South African cities. It is worth 

mentioning that the “sample” dwelling’s systems analysed in this section is in no way an 

optimised solution for any of the cities. This analysis is intended to show how factors such as 

MAP, MAE, natural veld type and their distributions affect the EDWI-rating and accordingly the 

selection of an optimised solution. 

 

It was decided to use the same dwelling characteristics such as roof area, and the same system 

types for all locations. The dwelling and system characteristics are identical to those used in 

section 8.1, refer to Table 8. It was further decided to simulate grey and rainwater systems 

separately with tank sizes of 300 and 5000 L respectively. The greywater tank size of 300 L was 

selected so that the greywater system’s retention time would be less than 24 hours as proposed by 

Carden et al. (2007b). Retention time will be less than 24 hours because supply and demand both 

exceeds 300 L/day. The rainwater tank size of 5000 L was selected as tanks larger than 5000 L 

are considered inappropriate for a residential stands (Jacobs et al., 2010), as they are seen as 

being visually unappealing. It was also decided to apply only minimal treatment to the systems, 

producing greywater of class 3 and rainwater of class 2. 

 

It was decided to compare dwellings in Durban, Johannesburg and Cape Town. These locations 

differ in MAP, MAE and natural veld type, as well as Cape Town being a winter rainfall area, 

Johannesburg a summer rainfall are, and Durban having all year rainfall. The results of these 

analyses are presented in Appendix B and the EDWI-ratings and component contributions are 

presented in Figure 20. Note that the values of all EDWI-coefficients in Figure 20 are listed as 

their contribution towards the final EDWI-rating. 
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Figure 20: EDWI-rating location comparison 

 

The Johannesburg dwelling achieved the highest EDWI-rating and the Cape Town dwelling the 

lowest. Eg is, as expected, constant across all locations as this coefficient is not affected by 

location. 

 

Of the three selected locations Durban enjoys the highest and best distributed rainfall. This is 

reflected in the Et of the rainwater system 10 % higher than Johannesburg and 20 % higher than 

Cape Town. Refer to Table 11 for details. Accordingly this allows the Durban rainwater system 

to provide 31 % of total water demand whereas Johannesburg and Cape Town systems achieve 

23 and 15 % respectively. The Cape Town dwelling has the least efficient rainwater system. This 

is caused by the relatively low rainfall the region receives. However, if the inner parameters are 

examined it can be seen that 40 % of total roof run-off is utilised in Cape Town, which is more 

than in Durban and Johannesburg, where 34 and 37 % are achieved respectively. Refer to Figure 

B 1 to 3. 
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Irrigation demand was assigned to the greywater systems. Of the three selected locations the 

Johannesburg system was able to utilise the highest portion of available greywater, followed by 

Cape Town and then Durban. The Durban greywater system utilised the lowest portion of 

greywater because of the low irrigation requirement expected in this region which is the result of 

a combination the region’s veld type and rainfall. See Table 10 for monthly irrigation demands 

for all locations.  

 

Irrigation demand (AAMD) in L 

 Cape Town Johannesburg Durban 

Jan 668.57 160.53 49.52 

Feb 581.63 226.78 78.97 

Mar 420.88 102.10 0.00 

Apr 123.86 40.79 0.00 

May 0.00 54.42 0.00 

Jun 0.00 0.00 62.96 

Jul 0.00 93.38 0.00 

Aug 0.00 21.76 0.00 

Sep 58.20 181.05 0.00 

Oct 416.31 214.25 0.00 

Nov 635.51 264.08 109.81 

Dec 738.20 395.48 162.24 

Table 10: Irrigation demand 

 

The Cape Town greywater system achieved the lowest water savings efficiency because of the 

large irrigation demand in summer. These larger irrigation demands, especially in January and 

December, are larger than the storage capacity of the system and the supply of greywater, making 

them impossible to meet. The Durban greywater system reaches the highest Et, but this only 

makes up 5.2 % of total annual demand. This is because of the characteristic high rainfall 

experienced by the region. See Table 11 for details. From these results it can clearly be seen that 

during the selection of systems and system characteristics, as well as what they will be used for, 

local climate conditions should be taken into account.  

 

Table 11 presents the rain and greywater system efficiencies and the portion of domestic demand 

they are able to meet, Dn, for all locations. 
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Location Rainwater Greywater 

 Et (%) Dn(%) Et (%) Dn(%) 

Johannesburg 53.53 22.80 69.09 12.33 

Durban 63.64 31.22 97.30 5.25 

Cape Town 43.85 15.38 26.78 8.63 

Table 11: Grey and rainwater systems performance 

 

Of the three EDWI-coefficients two are geographically dependent. These two are the Er and Ed 

coefficients. As expected, the Durban dwelling has the lowest Er.  This is the result of the high 

volumes of roof run-off and the low irrigation requirement which causes irrigation to account for 

a very low portion of total demand compared to that in the other locations analysed, refer to 

Table 11.  

 

To improve the efficiency of the Cape Town dwelling, and the final EDWI-rating, it is 

recommended that the irrigation demand be met by another source of water or in combination 

with another, or to quite simply reduce the area under irrigation. Even if it was decided to utilise 

the Cape Town rainwater system to meet irrigation demand, system efficiency is unlikely to 

improve by much. This is because of the characteristic winter rainfall experienced in the Western 

Cape region causing large volumes of water to be available when there is no irrigation required. 

In contrast the Durban dwelling might consider utilising the greywater system towards a demand 

with a higher year round requirement, such as toilet flushing, and utilising rainwater for the small 

irrigation demand and other end-uses for which class 2 quality water is suitable.  

 

The highest EDWI-rating was obtained by the Johannesburg dwelling. Because of the 

characteristics of the area, the Johannesburg dwelling has the most evenly distributed irrigation 

demand, making greywater re-use ideal for this region. Further, as seen in this example, there is 

only one month in an average year that will impose a daily irrigation demand higher that the 

storage capacity and greywater supply. The rainwater system can however be improved by 

increasing storage capacity. This will result in an increase in the Er and Ed EDWI-coefficients and 

accordingly the EDWI-rating. 
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8.3 Benchmarking the sustainability index 

 

In the literature review preceding the development of the EDWI-system no similar index could be 

found to compare its results to. It was therefore decided to benchmark the EDWI-system using 

three model dwellings. The model dwellings are intended to represent a low (type 1), medium 

(type 2) and high (type 3) cost dwelling. These three model dwellings where analysed using nine 

configurations of the three EDWI-components. The benchmarking process produced a total of 27 

analyses. 

 

Table 12 shows the characteristics of the three model dwellings used in the benchmarking 

procedure. 

 

House types and specifications 

 Roof size 

(m
2
) 

Tank size 

in L 

(DRWH) 

Tank size in 

L 

(Greywater) 

Roof run-off 

coefficient * 

System 

efficiency 

(%) 

Green roof 

substrate 

depth (cm) 

Type 1 50 2000 350 0.8 0.8 >  2- 4 

Type 2 200 5000 350 0.8 0.8 >  2- 4 

Type 3 400 10000 350 0.8 0.8 >  2- 4 

 Beds  

(m
2
) 

Lawn 

(m
2
) 

Dishwasher 

requirement 

Washing 

machine 

requirement 

Dual flush 

toilets? 

Occupancy 

Type 1 5 5 Typical  Typical  No 4 

Type 2 10 20 Typical  Typical  No 4 

Type 3 30 100 Typical  Typical  No 4 

* In the cases where the green roof and rainwater harvesting systems both utilise the entire roof the roof 
run-off coefficient changes to that of the green roof  

       

Table 12: House types and specifications 

 

The nine configurations used in the benchmarking procedure are presented in Table 13. 
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Configurations 

 % of roof as green 

roof 

% of roof used 

for rainwater 

harvesting 

End-uses used for 

greywater re-use 

End uses for DRWH End-uses for 

greywater re-use 

I No green roof No DRWH No re-use - - 

II 50 50 Bathroom basin and 

bath 

Toilet flushing and 

washing machine 

Irrigation 

III 100 100 All sources All class 1 end-uses All class 2 and 3 

end-uses 

IV No green roof 100 No re-use Total domestic demand - 

V 100 No DRWH No re-use - - 

VI No green roof No DRWH All sources - All class 2 and 3 

end-uses 

VII 100 100 No re-use Total domestic demand - 

VIII No green roof 100 All sources All class 1 end-uses All class 2 and 3 

end-uses 

IX 100 No DRWH All sources - All class 2 and 3 

end-uses 

Table 13: Configurations 
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Configurations were selected with different combinations of components and levels of 

implementation. The configurations were selected in this manner as to reveal the affect of 

individual components on the final rating. Some of the results from the benchmarking process are 

presented in Figure 21. All benchmarking results are included in this thesis in Appendix C. 

 

 

Figure 21: Benchmarking results 

 

Configuration III produces the highest EDWI-rating for all dwelling types, as expected due to 

this configuration implementing all components to their fullest extent. The lowest single 

component configuration was found to be configuration IV that only implements rainwater 

harvesting. Configuration V produces the highest EDWI-ratings of all single component 

configurations. Green roofs are fully implemented in configuration V. Further, configuration IX 

(full green roof and greywater re-use) produces the highest average ratings of all configurations 

implementing two components fully. The highest rating for dwelling type 3 implementing two 

components fully is obtained with configuration VII which implements rainwater harvesting and 

a green roof fully. 
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The final chapter provides a discussion on the results presented in this chapter. Conclusions are 

drawn and recommendations for future work are provided. 
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9. Discussions and conclusion 

9.1 Discussion 

 

9.1.1 The sustainability index examined 

 

It is the subjective opinion of the author that the EDWI-system forms a tangible base for dwelling 

owners to decide to what extent to incorporate the EDWI-components and further provides a 

better understanding of the possible effects of doing so. Dwelling owners are now able to test 

different levels of implementation and observe the change to the EDWI-rating quickly and easily. 

Municipalities can use the EDWI-system to assess the effects of the proposed techniques and 

advise residents to the most effective solution for their given area in order to lower domestic 

demand. If successful this will relieve some of the stress experienced by their water services. 

 

From the comparative analysis presented in section 8.2 it can be concluded that the region that 

the dwelling is located in has a large effect on the final optimised solution. The analysis indicates 

the strong link between supply and the demand that needs to be considered when selecting 

systems and their uses. This point is emphasised by the results obtained in the Durban dwelling’s 

greywater system’s characteristics. The Durban dwelling’s greywater system obtained an water 

savings efficiency of 97.30 %, but the system only supplies 5.25 % of total domestic demand. 

This indicates that the demand imposed on the greywater system is too low to justify the large 

resource (greywater) used to satisfy it. In the case of the Durban dwelling it can therefore be 

concluded that the greywater system should be used to meet more than just irrigation demand so 

that the resource is better utilised. The Cape Town dwelling shows the other end of the scale. In 

the case of the Cape Town dwelling’s demand which is too varied and high to be met with the 

greywater system alone as its greywater system achieves an water savings efficiency of 26.78 % 

while providing 8.63 % of total domestic demand.  

 

The benchmarking procedure reported in section 8.3 produced model EDWI-ratings for three 

broadly defined dwelling types. The selection of configurations used further allows for the 

evaluation of the effect of each of the EDWI-components. The benchmarked results reported in 
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this thesis can be used to evaluate and be compared to any similar index that may be developed in 

future.  

 

9.1.2 Shortcomings of the developed index  

 

The EDWI-system, being a sustainability index, attempts to reflect all areas of sustainability. 

Perhaps one of the most important components of sustainability not included in the EDWI-

system is the cost of these components. This shortcoming is reflected in results obtained with the 

benchmarking process presented in section 8.3. When the results for configuration V are 

examined, refer to Table 14, it is clear that green roofs have the largest effect on the final rating 

of all components. This point is reflected when examining the configurations implementing one 

component fully (configuration IV, V and VI), the green roofs option produce the highest EDWI-

ratings for all dwelling types. These results are likely to change if the large construction costs 

associated with green roofs were to be included in the calculation of an EDWI-rating. 

 

The minimum water treatment requirements for specific end-uses are not included in the scope of 

this study. Currently the EDWI-index classifies water quality requirements in general groups. 

This method may produce a rating that does not reflect all complexities at the required depth. 

 

Leaks are not included in the EDWI-system. In dwellings where leaks occur this assumption is 

likely to produce demand estimates that will be lower than measured data at the dwelling. The 

more leaks a given dwelling has, the more severe the consequences to the demand estimated by 

the system and accordingly to the EDWI-rating.  

 

9.2 Future work 

 

9.2.1 Incorporating cost into the rating system 

 

The EDWI-system, as is, makes no mention of the potential cost, savings or a payback period 

that will be incurred. This limitation implies that the final rating depends on the system’s physical 
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performance and the efficiency of the system. While these results will, as first intended, show 

how dependence on municipal water services can be reduced, adding the element of cost 

associated with the installation and maintenance of a system will produce a more realistic rating 

for practical application. For this reason it is proposed that these costs should be included in the 

EDWI-system. This can be achieved by firstly estimating the construction costs. The next step is 

to relate water savings associated with municipal bills to physical rates that are applied by the 

municipality. Annual operational and maintenance costs will then be required. By means of a cost 

analysis it will then be possible to add a monetary component to the EDWI-rating. This improved 

rating will then allow an efficient and cost effective decision making process. 

 

9.2.2 Green roof test site 

 

The table used to obtain retention and run-off coefficients in the EDWI-system are adopted from 

the FLL (2002) guidelines. While these values, associated with substrate depths, can be 

considered as conservative, the EDWI-rating would be greatly benefited if this table was replaced 

with a similar one based on South African green roof data. For this reason it is proposed that 

green roof test sites should be created to obtain data of this nature for local conditions. 

 

However, because of the noticeable differences between different geographical regions in South 

Africa one test site, while a step in the right direction, will not be an accurate representation for 

all regions. It is therefore further proposed that different regions should be used for green roof 

test sites, perhaps according to the MAE and MAP. 

 

9.2.3 Incorporating minimum quality classifications for end-uses 

 

The EDWI-index, as is, uses a very simplified water quality classification. Assigning individual 

quality requirements for each of the end-uses will produce a model that could represent reality 

with more accuracy. As part of future work the minimum water treatment required for each 

application should be included, since it would impact the developed EDWI-index by integrating it 

to the model.  
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9.3 Conclusion  

 

The EDWI-system provides a conceptual foundation for evaluating sustainable water services to 

South African households in serviced urban areas. This novel index was developed as a part of 

this research project. Subsequent benchmarking values were presented as a basis for future work. 

With further development of the index its practical application could be extended to act as a 

national barometer, used to compare decentralised water services in terms of sustainability. 
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Appendix A: User manual  

 

This user manual contains all the steps required to analyse a dwelling in the EDWI-software tool 

developed in conjunction with the thesis. Before any dwelling is assessed it is important that 

some attention be given to a few technical details. 

 

Leaks 

 

Leaks are not included in the EDWI-software tool and in accordance with this the software 

assumes there are no leaks. For this reason it is recommended that before a dwelling is simulated, 

some attention should be paid to the areas which are known to produce leaks.  

 

The two main causes of leaks are (Mayer et al., 1999): 

 

 Bib leaks caused by faulty facets  

 Leaks originating due to faulty toilet flaps. 

 

To verify that no leaks are present in a dwelling the user can perform a simple test. This is done 

by closing all taps and verifying that all toilet bowls and water heaters are full, not being filled. If 

this is done correctly there should be no water demand from the dwelling. The user can then 

verify that there are no leaks by seeing if any flow is being logged by the plots water meter, 

normally located close to the street. 

 

Definition of irrigation area 

 

Irrigation areas can either be beds or lawns. The EDWI-software tool assumes that all lawns are 

planted with Kikuyu grass and all beds are representative of the region’s natural veld type as 

described by Midgley et al (1994). To validate the use of natural veld types it is important to 

apply Xeriscaping principles to all irrigated beds. 
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Storage volumes for greywater and combined systems 

 

To assure that a grey- or combined system functions correctly and without unwanted odours it is 

important to minimise retention time. For this reason it is proposed that greywater systems should 

be sized relative to the average daily greywater produced by end-uses considered for re-use. 

When a system receives 300 L a day on average of greywater it is recommended that a tank size 

not smaller than 300 L or larger than 350 L be selected. Refer to section 5.3 in the thesis for a 

detailed discussion on this topic. 

 

Combined systems can be seen as being very similar to greywater systems. It is therefore 

proposed that the same approach be used for the selection of tank size. However, if adequate 

treatment is applied, larger storage volumes can be selected but this might result in complicated 

and expensive treatment systems. As shown in section 8.1 in the thesis no improvement is seen 

after adding rainwater to a greywater system at low storage volumes. 

 

Modelling a dwelling with the EDWI-software tool 

 

The EDWI-software tool contains a total of seven sheets. They are the “input sheet”, “results 

sheet”, “behavioural model sheet”, “demand estimation sheet” and sheets for each of the three 

EDWI-components. The “input sheet” is the first sheet and controls all the steps required to 

perform an analysis, refer to Figure A 1. 

 

After an analysis has been completed all results are summarised in the “results sheet”, refer to 

Figure A 17. The sheets for each of the three EDWI-components contain characteristics such as 

sources of greywater, roof sizes and user defined data such as run-off coefficients and system 

efficiency. 

 

There are seven steps that need to be completed in order to analyse a dwelling using the EDWI-

software tool. All of these steps have to be completed in the correct order, from one to seven. The 

exception to this rule is in the case where the user indicated the intention to harvest rainwater 

from a green roof. This is explained in greater detail in a later section. Figure A 1 shows the 

“input sheet” with all buttons visible.  
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Figure A 1: Input sheet 
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When the user starts the EDWI-software tool, or resets a previous analysis, only the button for 

step 1 will be visible. On completion of step 1, step 1’s button will change colour from grey to 

blue and the button for step 2 will become visible. Then when step 2 has been completed, its 

button will also turn from grey to blue and the next step’s button will become visible, and so on 

for all steps.  

 

Step 1: Rainfall data 

 

The EDWI-software tool uses a five year stochastic daily rainfall data series to simulate the 

operation of rainwater collectors. The rainfall data is imported with a “.csv” file. This “.csv” file 

needs to adhere to the following specifications: 

 

 Data starts at cell A1 in the csv file 

 Each row in the csv file contains one year of rainfall data(Thus there will  be five rows) 

 The data is assumed to start in January (Cell A1 will represent the rainfall on 1 January) 

 Daily rainfall must be in millimetres 

 Leap years are not included.  

 

When the user opens the EDWI-software tool for the first time, only two buttons will be visible. 

These are the “Reset” and “Import rainfall data” buttons. 

 

To start the analysis the user first needs to click on the “Import rainfall data” button prompting a 

user form asking the user if he or she would like to choose from the four rainfall data files 

included in the “Data” folder included in the CD. These cities are Bloemfontein, Cape Town, 

Durban and Johannesburg. If the user wishes to use an alternative file he or she needs to click on 

the “No” option on the form prompted by clicking on the “Import rainfall data” button. This form 

is presented in Figure A 2. This action will prompt the user form shown in Figure A 4. 

Alternatively, if the “Yes” option was selected, refer Figure A 3, the user can select one of the 

four cities previously mentioned. After choosing a city and specifying the root folder location, the 

rainfall data file can be loaded by clicking on the “Add and Close” button on the user form, 

Figure A 3. 
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Figure A 2: Rainfall data user form 

 

If the user chooses to use one of the rainfall files included in the Data folder, the form shown in 

Figure A 3 will pop up. After specifying the location of the data folder and selecting a city the 

user can click on the “Add and Close” button to load the data file, refer to Figure A 3. 

 

 

Figure A 3: User form to load included rainfall data 
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It is important to specify the root directory of the folder where the data files are located, as this 

may not be the same as the predefined location. 

 

Alternatively the user could choose to use data he or she obtained through some other means. If 

this option is selected the user form shown in Figure A 4 will pop up. 

 

 

Figure A 4: User specific data user form 

 

As before it is extremely important to make sure that both the file name and root folder location 

are entered correctly. 
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Step 2: Demand estimation 

 

After successfully loading the rainfall data file the next step becomes available. This can be seen 

as the next button will become visible. The now visible “Demand estimation” button has two 

parts. First the “Demand estimation (Indoor)” user form will pop up, shown in Figure A 5. 

 

 

Figure A 5: Indoor demand user form 

 

After the indoor user form has been completed, the “Demand estimation (Outdoor)” user form 

will become visible. This is shown in Figure A 6. 
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Figure A 6: Outdoor demand user form 

 

If the user chooses to specify a different location to those shown in Figure A 6, he or she will also 

need to specify monthly and MAE for the specific location and select the appropriate natural veld 

type. In the case of any of the locations included in Figure A 6, evaporation data is automatically 

provided and the correct veld type selected. Figure A 7 shows the user form that will pop up 

when the user selects the “Other location” option in Figure A 6.  
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Figure A 7: New evaporation data user form 

 

Step 3: Specifying streams, tank sizes and quality classifications 

 

With the completion of the demand estimation section the next section (specifying streams, tank 

sizes and quality classes) becomes available. 

 

As seen in Figure A 8 there are four options of streams that could be selected. The quality 

classifications of the streams are defined in section 6.1 of the thesis and depending on the users 

selections different applications of these streams will become available.  
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Figure A 8: Streams, treatment and tank size user form 

 

Step 4: Specifying system uses and characteristics 

 

The systems now need to be specified. The systems and types of characteristics that will be 

required will depend on user’s selection as shown in Figure A 8. As an example of this the user 

forms for rain and greywater systems are presented in Figure A 10 and A 11 respectively. 

 

For a stream selection such as shown in Figure A 8, the user will need to specify the rainwater 

system before specifying the greywater system. When the user clicks on the “Rainwater” button 

on the “input sheet”, a user form similar to Figure A 2 pops up which asks the user if he or she 

intends to harvest rainwater from a green roof. If the user selects the “Yes” option he or she will 

have to redefine the water quality class (refer to Figure A 9) as green roof effluent is not 

automatically classified as being the same as normal roof effluent. This topic is discussed in great 

detail in section 2.4.4 of the thesis.  
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Figure A 9: Rainwater harvesting from green roofs quality user form 

 

After the water quality classification has been verified, the green roof user form pops up. This 

user form is described later in this document. After completing the green roof user form (see 

Figure A 13) the rainwater user form (refer to Figure A 10) pops up and will then need to be 

completed. If the user indicates that he or she does not intend to harvest rainwater from a green 

roof, the rainwater user form (refer to Figure A 10) will pop up and the green roof will be 

specified at a later stage. 

 

Figure A 10: Rainwater harvesting characteristics user form 
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After completing the rainwater user form, Figure A 10, the greywater system can be specified (in 

the case where greywater is selected as a stream). Figure A 11 shows the user form for specifying 

a greywater system.  

 

 

Figure A 11: Greywater sources and applications user form 

 

If the user selects the “Grey and rainwater (combined)” option on Figure A 8, only a combined 

system will need to be specified. In this case only the “Combined” button will be visible on the 

“input sheet” and as for any other stream will need to be specified. Figure A 12 shows the 

combined system user form. 

Stellenbosch University  http://scholar.sun.ac.za



140 

 

Figure A 12: Combined systems user form 

 

Step 5: Specify green roof 

 

After step 4 has been completed, the button controlling step 5 becomes visible, the exception to 

this rule being the case where user indicates the intention to harvest rainwater from a green roof. 

In this case the green roof section (step 5) would have been completed before completing step 4. 

When the user clicks on the green roof button on the “input sheet”, the green roof user form pops 

up. This is shown in Figure A 13. 
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Figure A 13: Green roof user form 

 

Before analysing the effect of the green roof it t is necessary to specify substrate depth. Substrate 

depth is specified by clicking on the “Specify green roof characteristics” button. See Figure A 13. 

The “Substrate depth user form” shown in Figure A 14, will then appear.  

 

 

Figure A 14: Substrate depth user form 
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When the user clicks on a predefined substrate depth rang, the characteristics that will be 

assumed are shown in the bottom portion. See Figure A 14. 

 

After completing Figure A 14 the user can calculate the effect of the green roof by clicking on the 

“calculate” button. See Figure A 13. After doing the calculation, the user should use the “Add 

and Close” button to add the specified data and close the user form. 

 

Step 6: Analyse and finalise system 

 

After the user has specified the green roof, step 5, the systems can be analysed. When the user 

clicks on the “Analyse system” button, the user form presented in Figure A 15, appears. The user 

then selects the system with which he or she wants to start, if there is more than one system in 

use. When the system is selected, the data entered in previous sections are loaded automatically. 

After this selection the user clicks on the “Analyse” button to run the analysis. When the analysis 

has been completed, the “Water savings efficiency” and “Dependency on municipal network 

reduction” characteristics are shown, as can be seen in Figure A 15. 

 

 

Figure A 15: Analyses user form 
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If the user is not satisfied with the results he or she can opt to change the tank size and rerun the 

analysis. This is done by clicking on the “Change tank size” button. See Figure A 15. This 

reveals the user form shown in Figure A 16. The user can now enter a new tank size and run the 

analysis. It should be mentioned that when the user clicks on the “Add and Close” button the data 

in the new analysis section is used. 

 

 

Figure A 16: Change tank size user form 

 

Step 7: View results 

 

Step 7 requires no data inputs. Step 7 activates the “results sheet” which displays all results after 

completion of the first 6 steps. Figure A 17 shows an example of what the output sheet looks like. 
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Figure A 17: Results sheet 
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Appendix B: Comparative analysis data 

 

 

Figure B 1: Johannesburg 
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Figure B 2: Durban 
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Figure B 3: Cape Town 
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Appendix C: Benchmarking results 

The results from configuration I are not included as all dwellings produce an EDWI-rating of 

zero. 

 

 

Stellenbosch University  http://scholar.sun.ac.za



149 

 

 

Stellenbosch University  http://scholar.sun.ac.za



150 

 

 

Stellenbosch University  http://scholar.sun.ac.za



151 

 

 

Stellenbosch University  http://scholar.sun.ac.za



152 

 

 

Stellenbosch University  http://scholar.sun.ac.za



153 

 

 

Stellenbosch University  http://scholar.sun.ac.za



154 

 

 

Stellenbosch University  http://scholar.sun.ac.za



155 

 

 

Stellenbosch University  http://scholar.sun.ac.za



156 

 

 

Stellenbosch University  http://scholar.sun.ac.za



157 

 

 

Stellenbosch University  http://scholar.sun.ac.za



158 

 

 

Stellenbosch University  http://scholar.sun.ac.za



159 

 

 

Stellenbosch University  http://scholar.sun.ac.za



160 

 

 

Stellenbosch University  http://scholar.sun.ac.za



161 

 

 

Stellenbosch University  http://scholar.sun.ac.za



162 

 

 

Stellenbosch University  http://scholar.sun.ac.za



163 

 

 

Stellenbosch University  http://scholar.sun.ac.za



164 

 

 

Stellenbosch University  http://scholar.sun.ac.za



165 

 

 

Stellenbosch University  http://scholar.sun.ac.za



166 

 

 

Stellenbosch University  http://scholar.sun.ac.za



167 

 

 

Stellenbosch University  http://scholar.sun.ac.za



168 

 

 

Stellenbosch University  http://scholar.sun.ac.za



169 

 

 

Stellenbosch University  http://scholar.sun.ac.za



170 

 

 

Stellenbosch University  http://scholar.sun.ac.za



171 

 

 

Stellenbosch University  http://scholar.sun.ac.za




