
A
B
C
D
E
F
G

UNIVERS ITY OF OULU P.O.B . 7500 F I -90014 UNIVERS ITY OF OULU F INLAND

A C T A U N I V E R S I T A T I S O U L U E N S I S

S E R I E S E D I T O R S

SCIENTIAE RERUM NATURALIUM

HUMANIORA

TECHNICA

MEDICA

SCIENTIAE RERUM SOCIALIUM

SCRIPTA ACADEMICA

OECONOMICA

EDITOR IN CHIEF

PUBLICATIONS EDITOR

Senior Assistant Jorma Arhippainen

University Lecturer Santeri Palviainen

Professor Hannu Heusala

Professor Olli Vuolteenaho

University Lecturer Hannu Heikkinen

Director Sinikka Eskelinen

Professor Jari Juga

Professor Olli Vuolteenaho

Publications Editor Kirsti Nurkkala

ISBN 978-951-42-9989-6 (Paperback)
ISBN 978-951-42-9990-2 (PDF)
ISSN 0355-3213 (Print)
ISSN 1796-2226 (Online)

U N I V E R S I TAT I S O U L U E N S I SACTA
C

TECHNICA

U N I V E R S I TAT I S O U L U E N S I SACTA
C

TECHNICA

OULU 2012

C 435

Jari Kreku

EARLY-PHASE
PERFORMANCE
EVALUATION OF COMPUTER
SYSTEMS USING WORKLOAD
MODELS AND SystemC

UNIVERSITY OF OULU GRADUATE SCHOOL;
UNIVERSITY OF OULU,
FACULTY OF TECHNOLOGY,
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

C
 435

AC
TA

Jari K
reku

C435.etukansi.kesken.fm Page 1 Monday, November 12, 2012 1:55 PM

A C T A U N I V E R S I T A T I S O U L U E N S I S
C Te c h n i c a 4 3 5

JARI KREKU

EARLY-PHASE PERFORMANCE
EVALUATION OF COMPUTER
SYSTEMS USING WORKLOAD
MODELS AND SystemC

Academic dissertation to be presented with the assent
of the Doctoral Training Committee of Technology and
Natural Sciences of the University of Oulu for public
defence in Auditorium TS101, Linnanmaa, on 14
December 2012, at 12 noon

UNIVERSITY OF OULU, OULU 2012

Copyright © 2012
Acta Univ. Oul. C 435, 2012

Supervised by
Professor Juha Röning

Reviewed by
Associate Professor Antonio Pimentel
Professor Eugenio Villar

ISBN 978-951-42-9989-6 (Paperback)
ISBN 978-951-42-9990-2 (PDF)

ISSN 0355-3213 (Printed)
ISSN 1796-2226 (Online)

Cover Design
Raimo Ahonen

JUVENES PRINT
TAMPERE 2012

Kreku, Jari, Early-phase performance evaluation of computer systems using
workload models and SystemC.
University of Oulu Graduate School; University of Oulu, Faculty of Technology, Department of
Computer Science and Engineering, P.O. Box 4500, FI-90014 University of Oulu, Finland
Acta Univ. Oul. C 435, 2012
Oulu, Finland

Abstract

Novel methods and tools are needed for the performance evaluation of future embedded systems
due to the increasing system complexity. Systems accommodate a large number of on-terminal
and or downloadable applications offering the users with numerous services related to
telecommunication, audio and video, digital television, internet and navigation. More flexibility,
scalability and modularity is expected from execution platforms to support applications. Digital
processing architectures will evolve from the current system-on-chips to massively parallel
computers consisting of heterogeneous subsystems connected by a network-on-chip. As a
consequence, the overall complexity of system evaluation will increase by orders of magnitude.

The ABSOLUT performance simulation approach presented in this thesis combats evaluation
complexity by abstracting the functionality of the applications with workload models consisting
of instruction-like primitives. Workload models can be created from application specifications,
measurement results, execution traces, or the source code. Complexity of execution platform
models is also reduced since the data paths of processing elements need not be modelled in detail
and data transfers and storage are simulated only from the performance point of view. The
modelling approach enables early evaluation since mature hardware or software is not required for
the modelling or simulation of complete systems.

ABSOLUT is applied to a number of case studies including mobile phone usage, MP3
playback, MPEG4 encoding and decoding, 3D gaming, virtual network computing, and parallel
software-defined radio applications. The platforms used in the studies represent both embedded
systems and personal computers, and at the same time both currently existing platforms and future
designs. The results obtained from simulations are compared to measurements from real
platforms, which reveals an average difference of 12% in the results. This exceeds the accuracy
requirements expected from virtual system-based simulation approaches intended for early
evaluation.

Keywords: application, architecture, capacity, computer, embedded, evaluation,
hardware, modelling, performance, simulation, software, system, workload

Kreku, Jari, Tietokonejärjestelmien varhaisen vaiheen suorituskykyevaluointi
käyttäen työkuormamalleja ja SystemC:tä.
Oulun yliopiston tutkijakoulu; Oulun yliopisto, Teknillinen tiedekunta, Tietotekniikan osasto, PL
4500, 90014 Oulun yliopisto
Acta Univ. Oul. C 435, 2012
Oulu

Tiivistelmä

Sulautettujen tietokonejärjestelmien suorituskyvyn arviointi muuttuu yhä haastavammaksi jär-
jestelmien kasvavan kompleksisuuden vuoksi. Järjestelmissä on suuri määrä sovelluksia, jotka
tarjoavat käyttäjälle palveluita liittyen esimerkiksi telekommunikaatioon, äänen ja videokuvan
toistoon, internet-selaukseen ja navigaatioon. Tästä johtuen suoritusalustoilta edellytetään yhä
enemmän joustavuutta, skaalautuvuutta ja modulaarisuutta. Suoritusarkkitehtuurit kehittyvät
nykyisistä System-on-Chip (SoC) -ratkaisuista Network-on-Chip (NoC) -rinnakkaistietokoneik-
si, jotka koostuvat heterogeenisistä alijärjestelmistä. Sovellusten ja suoritusalustan muodosta-
man järjestelmän suorituskyvyn arviointiin tarvitaan uusia menetelmiä ja työkaluja, joilla komp-
leksisuutta voidaan hallita.

Tässä väitöskirjassa esitettävä ABSOLUT-simulointimenetelmä pienentää suorituskyvyn
arvioinnin kompleksisuutta abstrahoimalla sovelluksen toiminnallisuutta työkuormamalleilla,
jotka koostuvat kuormaprimitiiveistä suorittimen käskyjen sijaan. Työkuormamalleja voidaan
luoda sovellusten spesifikaatioista, mittaustuloksista, suoritusjäljistä tai sovellusten lähdekoo-
deista. Suoritusalustoista ABSOLUT-menetelmä käyttää yksinkertaisia kapasiteettimalleja toi-
minnallisten mallien sijaan: suoritinarkkitehtuurit mallinnetaan korkealla tasolla ja tiedonsiirto ja
tiedon varastointi mallinnetaan vain suorituskyvyn näkökulmasta. Menetelmä mahdollistaa
aikaisen suorituskyvyn arvioinnin, koska malleja voidaan luoda ja simuloida jo ennen valmiin
sovelluksen tai suoritusalustan olemassaoloa.

ABSOLUT-menetelmää on käytetty useissa erilaisissa kokeiluissa, jotka sisälsivät esimerkik-
si matkapuhelimen käyttöä, äänen ja videokuvan toistoa ja tallennusta, 3D-pelin pelaamista ja
digitaalista tiedonsiirtoa. Esimerkeissä käytetiin tyypillisiä suoritusalustoja sekä kotitietokonei-
den että sulautettujen järjestelmien maailmasta. Lisäksi osa esimerkeistä pohjautui tuleviin tai
keksittyihin suoritusalustoihin. Osa simuloinneista on varmennettu vertaamalla simulointitulok-
sia todellisista järjestelmistä saatuihin mittaustuloksiin. Niiden välillä huomattiin keskimäärin 12
prosentin poikkeama, mikä ylittää aikaisen vaiheen suorituskyvyn simulointimenetelmiltä vaa-
dittavan tarkkuuden.

Asiasanat: arviointi, järjestelmä, kapasiteetti, mallinnus, ohjelmisto, simulointi,
sovellus, sulautettu, suorituskyky, tietokone, tietokonearkkitehtuuri, työkuorma

Dedicated to my grandparents

8

Preface

The research for this thesis was performed at VTT technical research centre of Finland
since 2003. The work was started in the BAPPEA2 project and since then has involved
several others, namely ASTERIX, WIMPAIN, MARTES and MOSART in the past.
The development of the ABSOLUT approach continues in the SMECY and PRESTO
projects even after the writing of the thesis. The writing of this thesis was started with
the literature review in Chapter 2 in summer 2010 and continued intensively with the
other parts during spring and summer 2011.

Several people have provided a considerable amount of assistance during the research
work. Research Professor Juha-Pekka Soininen and Mr. Kari Tiensyrjä deserve a special
thank you for all the encouragement, guidance and general help they have given me
since I started at VTT as a research trainee in 1999. Docent Martti Forsell has steered
me to the correct direction during the early phases of the work. Research Professor
Aarne Mämmelä has provided invaluable advice on good scientific habits during his
lectures in the internal meetings at VTT.

I would like to thank all the scientists that have contributed to ABSOLUT in one
way or another: Mr. Matti Eteläperä, Mr. Mika Hoppari, Ms. Tarja Kauppi, Mr. Tuomo
Kestilä, Mr. Jani Penttilä, Dr. Yang Qu, Mr. Jukka Saastamoinen and Mr. Tommi
Salminen. Without your support in the development of the modelling approach and / or
validation of the case studies this thesis would not be complete. I would like to further
thank the co-authors of the original papers not yet mentioned: Mr. Janne Kangas and Mr.
Geert Vanmeerbeeck.

I would like to thank Professor Juha Röning for supervising this thesis and assisting
with the completion of my dissertation. I greatly appreciate the work of the reviewers,
Assistant Professor Antonio Pimentel and Professor Eugenio Villar, for providing helpful
advice on improving the thesis and giving me ideas for future research work.

VTT has provided me with the research facilities and work environment for the
research and has supported me by allowing me to go on a writing leave for the completion
of the thesis. I would like to thank everyone involved. Nokia Foundation has provided
me with financial support, which has been important for encouragement and motivation.

9

I would especially like to thank Anu Peräniemi for all the encouragement, love and
support and understanding. Finally, I wish to thank my parents, sister and all the other
family members for support through the years.

And now for something completely different.

Oulu, 10 August 2012 Jari Kreku

10

Abbreviations

ABSOLUT Abstract Instruction Workload and Execution Platform-based perfor-

mance simulation

ABSINTH ABStract INstruction exTraction Helper

ALE ABSOLUT Library of Existing models

ARCHER ARCHitecture ExploRation of heterogeneous embedded systems

Artemis Architectures and Methods for Embedded Media Systems

API Application Programming Interface

ARTS Abstract system-level modelling and simulation framework

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction-Set Processor

AV Architect’s View

BCET Best-Case Execution Time

BEER Binary pErformance EvaluatoR

CAG Communication Analysis Graph

COGNAC COnfiguration GeNerator for ABSOLUT performanCe simulation

CPI Cycles Per Instruction

CPU Central Processing Unit

DCT Discrete Cosine Transform

DESERT Design space exploration tool

DMA Direct Memory Access

DME Distributed shared Memory Engine

DRAM Dynamic RAM

DSP Digital Signal Processor

FIFO First In, First Out

FPS Frames Per Second

FV Functional View

GCC GNU Compiler Collection

GIPS Giga Instructions Per Second

GNU GNU’s Not Unix

GPRS General Packet Radio Service

GPS Global Positioning System

11

GSM Global System for Mobile communications

HDL Hardware Description Language

HiPerE High-level Performance Evaluator

HW Hardware

I/O Input / Output

IP Intellectual Property

ISS Instruction Set Simulation

JPEG Joint Picture Experts Group

LAN Local Area Network

MBD Model-Based Design

MCU MicroController Unit

MESH Modelling Environment for Software and Hardware

MILAN Model-based integrated simulation framework

MMS Multimedia Messaging Service

MP3 MPEG1 audio layer 3

MPA MPSoC Parallelization Assist

MPEG Moving Picture Experts Group

MPEG1 MPEG phase 1

MPEG4 MPEG phase 4

MPSoC Multiprocessor SoC

MVP Mobile Video Player

NoC Network-on-Chip

NoTA Network on Terminal Architecture

OCP Open Core Protocol

OMAP Open Multimedia Application Platform

OS Operating System

OSCI Open SystemC Initiative

OSK OMAP Starter Kit

PC Personal Computer

PHY PHYsical layer

PDA Personal Digital Assistant

PV Programmer’s View

QN Queuing Networks

RAM Random Access Memory

ReSP Reflective Simulation Platform

12

RISC Reduced Instruction Set Computer

RTL Register-Transfer Level

RTL Register-Transfer Language

RTOS Real-Time Operating System

SA System Architecting

SAD Sum of Absolute Differences

SAKE abStract externAl library worKload Extractor

SD Secure Digital

SDL Specification and Description Language

SDR Software-Defined Radio

SDRAM Synchronous DRAM

SESAME Simulation of Embedded System Architectures for Multilevel Exploration

SMS Short Message Service

SoC System-on-Chip

SPADE System-level Performance Analysis and Design space Exploration

SPU Symbolic Program Unit

SRAM Static RAM

SW Software

TAPES Trace-based Architecture Performance Evaluation with SystemC

TBM Timed Behavioural Modelling

TLM Transaction-Level Modelling

UI User Interface

UML Unified Modelling Language

USB Universal Serial Bus

VHDL VHSIC HDL

VHSIC Very High Speed Integrated Circuit

VNC Virtual Network Computing

VODKA Viewer Of collecteD Key information for Analysis

VPU Virtual Processing Unit

VV Verification View

WCET Worst-Case Execution Time

WiMAX Worldwide Interoperability for Microwave Access

WLAN Wireless LAN

XML eXtensible Markup Language

13

14

List of original articles

I Kreku J, Hoppari M, Kestilä T, Qu Y, Soininen J-P, Andersson P & Tiensyrjä K (2008)
Combining UML2 Application and SystemC Platform Modelling for Performance Evalua-
tion of Real-Time Embedded Systems. EURASIP Journal on Embedded Systems. DOI:
10.1155/2008/712329.

II Kreku J, Hoppari M, Kestilä T, Qu Y, Soininen J-P & Tiensyrjä K (2009) Application
Workload and SystemC Platform Modeling for Performance Evaluation. Best of FDL 2009
book.

III Kreku J & Tiensyrjä K (2011) Scalable Multi-core Architectures: Design Methodologies
and Tools, chapter System exploration. Springer.

IV Kreku J, Penttilä J, Kangas J & Soininen J-P (2004) Workload simulation method for
evaluation of application feasibility in a mobile multiprocessor platform. Proceedings of the
Euromicro Symposium on Digital System Design. Rennes, 31 Aug.–3 Sept. 2004 . IEEE
Computer Society: 532–539. DOI: 10.1109/DSD.2004.1333322.

V Kreku J, Kauppi T & Soininen J-P (2004) Evaluation of platform architecture performance
using abstract instruction-level workload models. International Symposium on System-on-
Chip. Tampere, 16–18 Nov. 2004. Tampere University of Technology: 43–48.

VI Kreku J, Tiensyrjä K & Vanmeerbeeck G (2010) Automatic workload generation for
system-level exploration based on modified GCC compiler. Proc. Design, Automation and
Test in Europe conference and exhibition.

VII Kreku, Eteläperä M & Soininen J-P (2005) Exploitation of UML 2.0-based platform service
model and systemC workload simulation in MPEG-4 partitioning. International Symposium
on System-on-Chip. Tampere, 15–17 Nov. 2005. Tampere University of Technology:
167–170.

VIII Kreku J, Hoppari M, Tiensyrjä K & Andersson P (2007) SystemC workload model
generation from UML for performance simulation. Forum on Specification and Design
Languages. FDL, Barcelona, Spain, 15–18 Sep. 2007. ECSI, Grenoble.

IX Kreku J, Hoppari M, Kestilä T, Qu Y, Soininen J-P & Tiensyrjä K (2008) Application –
Platform Performance Modeling and Evaluation. Forum on Specification, Verification and
Design Languages, 2008. FDL 2008. 23–25 Sept. 2008: 43–48.

15

16

Contents

Abstract
Tiivistelmä
Preface 9
Abbreviations 11
List of original articles 15
Contents 17
1 Introduction 21

1.1 Problem definition . 23

1.2 Research hypothesis .25

1.3 Research methods .26

1.4 Original papers . 26

2 System-level performance evaluation 29
2.1 Virtual system, virtual platform and virtual prototype approaches 30

2.2 Transaction-level modelling use cases . 31

2.3 Simulation approaches in research . 33

2.4 Commercial system-level simulation tools . 44

2.5 Summary . 46

3 ABSOLUT 49
3.1 Application modelling . 50

3.1.1 Layers . 51

3.1.2 Load extraction for application models . 52

3.2 Platform modelling . 56

3.2.1 Layers .58

3.2.2 Services . 60

3.2.3 Operating system . 60

3.2.4 Model library . 61

3.2.5 Allocation of workloads on the platform . 62

3.3 Performance simulation . 63

3.3.1 Performance probes . 63

3.3.2 Simulation environment . 64

17

4 Case studies 67
4.1 OMAP1-based platforms . 67

4.1.1 Mobile phone usage scenarios . 67
4.1.2 MP3 playback. .68
4.1.3 Partitioning of MPEG4 encoding . 69

4.2 OMAP2-based platforms . 71
4.2.1 Quake 2 gameplay . 71
4.2.2 Virtual network computing . 72

4.3 Intel Core i7-based personal computer platforms . 73
4.4 Future platforms . 74

4.4.1 Distributed mobile video player . 74
4.4.2 Parallel WiMax SDR . 75
4.4.3 Parallel SDR sensing application . 77

5 Discussion 79
5.1 Analysis of results . 79
5.2 Theoretical and practical implications . 82

5.3 Reliability and validity . 84
5.4 Recommendations for future work . 85

6 Introduction to papers 87
6.1 Combining UML2 Application and SystemC Platform Modelling for

Performance Evaluation of Real-Time Embedded Systems 88

6.2 Application Workload and SystemC Platform Modeling for
Performance Evaluation . 89

6.3 Scalable Multi-core Architectures: Design Methodologies and Tools,
chapter System Exploration . 90

6.4 Workload simulation method for evaluation of application feasibility
in a mobile multiprocessor platform . 91

6.5 Evaluation of Platform Architecture Performance using Abstract
Instruction-level Workload Models .91

6.6 Automatic workload generation for system-level exploration based on
modified GCC compiler . 92

6.7 Exploitation of UML 2.0-Based Platform Service Model and SystemC
Workload Simulation in MPEG-4 Partitioning . 92

6.8 SystemC Workload Model Generation from UML for Performance
Simulation . 93

18

6.9 Application–Platform Performance Modeling and Evaluation.94
7 Conclusions 95
References 97
Original articles 103

19

20

1 Introduction

Only ten years ago, services provided by mobile devices were much more restricted
than now. A mobile phone was used to call other people, a portable music player to
listen to music, and perhaps a separate PDA was used for electronic calendar and notes.
Many of the current smartphones and other embedded mobile devices offer, for example,
telephony, music and movie playing, digital television, internet browsing, and GPS
navigation capabilities.

The applications in embedded systems are not fixed on system design time any-
more. Instead, they accommodate a large number of on-terminal and/or downloadable
applications, which offer the user numerous services. The service contents may be
provided by servers anywhere on Earth. The sets and types of applications running on
the terminal are dependent on the context of the user. To deliver the requested services
to the user, some of the applications run sequentially and independently, while many
others execute concurrently and interact with each other. The converging functionality
trend will continue and bring more and more features from desktops and other home
devices to battery-powered handheld devices. These features can include, for example,
live TV functionality, 3D surround sound, and electronic money (Weber (2007)).

The increasing complexity and diversification in applications introduces new
requirements for execution platforms, including flexibility, scalability and modularity
(Suoranta (2006)). The digital processing architectures of terminals will evolve from the
current system-on-chips (SoCs) and multiprocessor-SoCs with a few processor cores to
massively parallel computers that consist mostly of heterogeneous subsystems but may
also contain homogeneous computing subsystems. Some subsystems will be designed by
the device vendor, whereas others will be provided by third parties. The network-on-chip
(NoC) communication paradigm will replace the bus-based communication to allow
scalability, but it will increase uncertainties due to latencies in case large centralised or
external memories are required.

The application and platform development trends will increase the overall complexity
of system development by orders of magnitude especially from system-level exploration
and performance evaluation point of views. Performance, energy consumption and cost
of the battery-powered devices must be optimised while not forgetting the expectations
of users. The costs, risks, and time of system development requires flexibility, which will

21

be achieved through programmable and adaptable computing resources, configurable
memory and communication architecture, and a design methodology approach. Tools
that span from application use cases to implementation design will be needed.

Design methodology approaches for mobile devices have evolved from the application-
specific integrated circuit (ASIC) style in the 1980s to platform-based design in late
1990s. During the 2000s model-based design (MBD) has been introduced. In the
ASIC style, designers take an architectural specification and create a microarchitecture
description. It will be synthesised and optimised for speed (clock frequency), area (gate
count), and power (e.g., modes and clock gating).

Platform-based design addresses the challenges of increasing design complexity of
SoCs that consist typically of a few processor cores, hardware accelerators, memories,
and I/O peripherals communicating through a shared bus. While the emphasis is on
intellectual property (IP) design and integration, the function–architecture co-design and
microarchitecture exploration already pave the way for the model-based approach that is
the research direction today. To alleviate the scalability problems of the shared bus, the
NoC architecture paradigm proposes a communication-centric approach for systems
requiring multiple processors or integration of multiple SoCs.

Model-based approaches extend the separation of the application and execution
platform modelling further. Usually, the specify–explore–refine paradigm following the
principles of the Y-chart model (Kienhuis et al. (1997)) is applied. In other words, a
model of application is mapped onto a model of platform, and the resulting allocated
model is analysed. The computation and communication modelling are separated on
both the application and platform sides. Service orientation is a recent trend where the
end user interactions and the associated applications are modelled in terms of services
required from the underlying execution platform (Network on Terminal Architecture).
An obvious consequence is that the execution platform also needs to be modelled in
terms of services it provides for the applications.

The application and platform designers are facing an abundant number of design
alternatives and need systematic approaches for the exploration of the design space. For
example, an application designer has to know early whether a new application or a
feature is feasible on the target platform. A platform designer must be able to analyse the
impacts of next generation applications on the platform even before the applications are
implemented. Efficient methods and tools for early system-level performance analysis
are necessary to avoid wrong decisions at the critical stage of system development.

22

1.1 Problem definition

There are three typical use cases for performance evaluation in the design phase of
embedded systems. Performance evaluation is used to compare a number of alternative
platforms and find the best one, to search for the best application out of several for a
given platform, and to design a new system, platform or application. The goal of the
designer is to provide the highest achievable performance at the lowest possible cost
(Jain (1991)). The most significant problem with the performance evaluation of future
embedded systems is the complexity of the evaluation.

First, the applications and supporting software are increasing in size and variety.
Linux is a popular choice for an operating system in embedded system devices. For
eaxample, Google’s Android and Intel’s and Nokia’s MeeGo are based on the Linux
kernel. Several other vendors use Linux in a variety of devices ranging from home
cinema amplifiers to coffee makers. Figure 1 displays the size of the desktop and server
computer-oriented Debian Linux distribution as a function of time (DistroWatch.com,
Debian Counting). The number of software packages, i.e. applications and libraries, has
increased tenfold in ten years. The number of source code lines in those applications has
experienced a similar increase during the same time frame. The Linux distributions
used in embedded systems are more streamlined than Debian but likely to follow the
same trend. On the other hand, Deshpande & Riehle (2008) claim that the number of
software projects and total lines of source code is increasing at an exponential rate. In
addition to the convergence in functionality and the resulting increase in the number of
applications, the size of the individual applications is also growing due to the constant
need of adaptation (Turski (1996)). According to a large-scale study performed on open
source software in Koch (2007), the evolutionary behaviour of software projects follows
a quadratic model.

Second, the number of components and number of transistors in each component
in the platforms is growing. ITRS predicts that the number of processing engines in
platforms is increasing 1.4-fold each year (Figure 2). The underlying fabrics — logic,
embedded memory, on-chip switching fabric, and system interconnect — will scale
consistently with the increase in the number of cores. More and more performance
can be extracted from individual components, thereby providing more capacity for
applications to utilise. As ASIC technology progresses, more transistors fit in the
same area. Historically, the number of transistors in microprocessors has increased

23

0

50

100

150

200

250

300

350

16.11.1997 12.8.2000 9.5.2003 2.2.2006 29.10.2008

Release date

SLOC [M]

Packages [k]

Fig 1. The size of Debian Linux distribution releases from Debian 2.0 to Debian
5.0.

exponentially since the first singe-chip CPU, Intel 4004. Furthermore, the clock
frequencies of processor cores and accelerators is increasing by 1.05x per year (ITRS).

Enormous system complexity can be realised on a single die, but exploiting this
potential reliably and cost-effectively will require a roughly 50-fold increase in design
productivity over what is possible today (ITRS). Performance evaluation models are
required to capture both the characteristics of the application functionality and the
architectural resources needed for the execution. Using models at a too low level of
abstraction, for example, register-transfer level (RTL) or instruction set simulation (ISS)
is not feasible. Even though they are able to provide accurate results, the modelling
effort is heavy and simulation times long due to the vast amount of details needed. Some
high-level abstraction approaches like queuing networks (QNs) and its variants fail
to exhibit the characteristics of the execution platforms. New methods and tools are
needed to simplify the design of the complex systems and to enable efficient design
space exploration. These methods must enable evaluation of performance and power at
the system level, in the early phases of the design flow, to avoid costly mistakes and
redesigns.

24

0

500

1000

1500

2000

2500

3000

3500

2009 2011 2013 2015 2017 2019 2021 2023

N
um

be
r

of
 p

ro
ce

ss
in

g
en

gi
ne

s

Year

Fig 2. ITRS prediction for the number of processing engines in future platforms.

1.2 Research hypothesis

This reseach work aimed at developing a new method for evaluating the performance
of the complex computer systems of the future. The developed method needs to be
accurate enough so that it is possible to make design decisions based on the evaluation
results. Furthermore, it needs to be usable already in the early phases of design to avoid
costly redesigns. Methods were developed to simplify the modelling of applications and
platforms in order to reduce the modelling effort. The effort reduction is provided by
using proper abstractions and support tools that assist in model development. Methods
to improve evaluation speed were also studied. The performance evaluation approach
needs to be fast enough for exploring design alternatives without running simulations
that last weeks or months.

The hypothesis for the research is that it is possible to perform system-level
performance evaluation using abstract, non-functional workload models of applications
instead of fully-functional application binaries. The workload models consist of abstract
instructions read, write and execute. The use of workload models reduces the complexity
of the system model consisting of the workload models and a SystemC-based execution

25

platform model. This decreases modelling effort, improves simulation speed and
maintains accuracy at a reasonable level. It is possible to simulate the system model
already in the early phases of design, before the implementations of both the application
and the platform exist. The load information for creating the workload models can be
extracted from various sources, including algorithm descriptions, traces, measurement
data, and the source code.

1.3 Research methods

This research concentrates on designing a novel approach for the performance evaluation
of complex, future embedded systems. The abstractions needed to lower modelling
effort and enhance simulation speed while maintaining accuracy will be developed
intuitively and experimentally. Several methods for creating workload models from
various sources of information will be researched. The models can be created analytically
from algorithm descriptions or by transformation from the source code, measurement
data, or execution trace. Automatic or semi-automatic tools for assisting the designer
with the workload modelling methods will be developed where applicable.

The developed performance evaluation approach will be applied to several case
studies, which represent both state-of-the-art and future embedded systems. Simulations
of the systems will be performed and data representing the performance and power
and energy consumption of the system will be extracted. The complexity of even the
state-of-the-art systems is such that it is not feasible to verify all simulations with
measurements. The visibility of the internal performance of real systems is typically
restricted and the measurements are often limited to the execution time and throughput
of application or applications. However, the simulation results obtained with the
performance evaluation approach will be verified with measurements in real systems
while taking the above limitations into account.

1.4 Original papers

This thesis is built on the foundation laid in nine original scientific papers, which
are presented in more detail in Chapter 6. Paper I describes the overall performance
evaluation approach presented in this thesis in the form it was at the beginning of
2008. It contains detailed descriptions of how applications and platforms are modelled
and of the supporting tools. Paper II elaborates on the interfaces between models of

26

applications and platforms and on service modelling. Paper III expands the approach for
system-level power and energy consumption simulation.

Load extraction techniques for workload modelling of applications are described in
Papers I, IV, V and VI. Paper I describes an analytical technique based on application
specifications. Paper IV shows, how to extract load information from measurements
of individual applications and how to combine them to a workload model of a multi-
application use case. Paper V presents an initial, manual source code-based technique,
which is replaced with an automatic compiler-based technique in Paper VI. Paper VII
contains an early technique for utilising the Unified Modelling Language (UML) in the
creation of workload models. This technique is then improved in Papers VIII and IX.

All of the papers from I to IX contain experiments with case studies. Where
possible, the simulation results obtained from the experiments have been validated with
measurements from real applications executed on real platforms.

27

28

2 System-level performance evaluation

Performance evaluation approaches can be divided into three categories: analytical
approach, simulations, and measurements (Heidelberg & Lavenberg (1984), Jain (1991)).
The analytical approach is suitable for early performance evaluation, since results are
available quickly and evaluating trade-offs is easy. Analysis provides the best insight
into the effects of various system parameters and their interactions (Jain (1991)). On the
other hand, the accuracy of results is low because the analytical approach requires many
simplifications and assumptions. As a consequence, the results provided by the analytical
approaches are not convincing. Analytical methods are typical in capacity planning —
especially the determination of computing, caching and buffering capacity — I/O design
and helping in resource organisation design. Examples of analytical approaches are
presented in Raghavan et al. (2004), Marcon et al. (2005), Sangiovanni-Vincentelli &
Di Natale (2007).

In simulation approaches, the execution of an application is simulated using a
computer program. In co-simulation, this consists of two parts: simulation of software
execution and simulation of hardware. Simulation provides more accurate results
than analysis in general since it is possible to incorporate more details of the system
than in analysis (Jain (1991)). The level of detail is limited only by the time that is
available for model development. More detailed simulations require more time to
develop and are harder to debug and slower to simulate. Thus it is better to start with
less detailed models and increase the detail level as the design progresses. Like the
analytical approaches, simulations are suitable for early evaluation, since they can be
performed before implementations of hardware and or software are available. Evaluation
of design trade-offs is still possible with simulations, but due to slower evaluation speed,
it is less practical than with analysis.

Performance measurements can be done with real applications, prototypes of real
applications, or benchmark programs that mimic the real software. An implementation
of the execution platform is, however, required in all cases, and therefore measurements
are not suitable for early evaluation. Evaluation speed with measurements varies, but
it is slower than analysis and faster than simulation in general (Jain (1991)). The
measurement results are obtained from a real system and thus convincing; however,
the instrumentation required to perform the measurements can affect the results.

29

Performance data that can be obtained with measurements is typically limited by the
system. For example, measuring processor utilisation or shared memory access latency
may not be possible without special HW/SW support in the system. Examples of
measurement-based performance evaluation approaches can be found from Calvez &
Pasquier (1998), Stewart & Arora (2003), Suresh et al. (2003).

Measurements are out of the scope of this thesis since they cannot be used during
system design phases. Analytical approach is discarded due to low accuracy, which
leaves only simulation. The simulation speed problem needs to be solved with proper
abstraction level while maintaining result accuracy at a useful level. Only such simulation
methods that are capable of evaluating the performance of a complete system as opposed
to an individual application or hardware component are considered in the following.

2.1 Virtual system, virtual platform and virtual prototype
approaches

The following categorisation of performance simulation approaches has been adapted
from European EDA Roadmap. The approaches are divided into virtual system, virtual
platform and virtual prototype categories based on the detail level in the execution
platform model and whether real applications or models of applications are simulated.

Virtual system approaches combine abstract application models with an abstract
execution platform model. The applications are represented using e.g. workload models,
traces or task graphs, but not as real instructions of processors. The platform model
typically has a high abstraction level and capacity models of components instead
of instruction set simulators. Virtual system approaches are used for system-level
exploration, where they fill the gap between system specification and virtual platforms.
They can be used to make decisions regarding architecture, performance, price, and
power consumption in addition to verifying design expectations in terms of functional
and non-functional system properties (European EDA Roadmap). Due to the abstraction
level, virtual system approaches are both instruction and cycle approximate. Simulation
speed is typically faster than with lower-level simulation approaches, but the results are
less accurate compared to virtual prototype simulations.

Virtual platform approaches use real application software compiled to binary form in
simulations. The execution of the applications is simulated on top of a virtual platform
model, which contains one or more instruction set simulators. The platform models

30

need to be functionally complete and use accurate memory maps to be able to execute
the application binaries. Therefore, the models are complex and the approaches rely
on the availability of IP models. The SystemC library is often used for modelling the
interconnects and peripherals, which are then linked to custom instruction set simulators.
Virtual platform approaches are instruction accurate, but accuracy with respect to timing
can vary a lot — some approaches or tools can even have two sets of platform component
models, one for slow and accurate simulation and another for fast and inaccurate. Virtual
platforms are mostly used for embedded software development, where it is necessary to
verify that the functionality of the software works correctly and the accuracy of the
performance evaluation results is less important.

Virtual prototype approaches also use real application binaries with instruction
set simulators like the virtual platform approaches. However, the virtual prototype
approaches have a much lower level of abstraction in their execution platform model.
They model the full functionality that is required for simulating low-level details of the
hardware, which emphasises the problems of model complexity and IP availability.
The models are created using a hardware description language like VHDL or Verilog.
Virtual prototype approaches are both instruction and clock accurate and provide more
convincing results than either virtual system or virtual platform simulations. However,
they are too slow for early performance evaluation from both modelling time and
simulation time point of view due to the level of details in the models.

2.2 Transaction-level modelling use cases

Another categorisation is presented in Kogel et al. (2005), which defines four transaction-
level modelling (TLM) use cases for different design tasks: Functional View (FV) for
executable specification design task, Architect’s View (AV) for architecture exploration,
Programmer’s View (PV) for embedded software design and development, and Verifica-
tion View (VV) for system verification. Transaction-level modelling is a technique
for raising the abstraction level of the modelling of communication to the level of
communication transactions. It strives for simulation speed, accuracy and lightweight
modelling (Maillet-Contoz & Ghenassia (2005)).

The functional view model is an accurate TLM model of the functionality of
an application. The focus of FV models is on the algorithms, and the models are
independent of any implementation. Thus the platform is not modelled at all and the

31

models are untimed. As a consequence, FV simulation is not suitable for performance
evaluation.

The architect’s view model is a functional model of all elements in the system. The
models of the elements provide sufficient timing information to analyse the performance
of different architectures with respect to overall performance and identification of
potential bottlenecks. The application part of an AV system model may be a FV model,
or represented as non-functional workload models or traffic generators (Kogel et al.

(2005)). The platform elements — communication nodes, memories, peripherals, etc. —
are performance models focusing on communication timing and resource sharing. A
sufficiently accurate model of the communication and/or memory requirements needs to
be derived from the system requirements.

AV models are used in architecture exploration, where it can support the evaluation
of architecture trade-offs in system design — how many processors to use, what
interconnect approach, how large a cache, etc. — and identification and resolving
of bottlenecks in the applications and the execution platform. They are also used
in hardware–software partitioning and mapping of the applications to the execution
platform (Vanthournout et al. (2004)). AV models have enough detail to achieve
approximate timing. The modelling style enables easy modelling of resource contention
and arbitration (Montoreano (2007)) and enough speed to explore a very large solution
space (Vanthournout et al. (2004), Kogel et al. (2005)). 100% accuracy is not needed
from AV models, since the impact of architecture changes are on a much bigger scope
than a single clock cycle. However, an accuracy level of 70–80% must be reached to
ensure the quality of result analysis (Kogel et al. (2005)).

In embedded software development, large amounts of software need to be run for
verification while most hardware-related aspects can be ignored. Simulation speed and
development time can be greatly reduced if untimed or loosely-timed models are used.
The programmer’s view (PV) level extends instruction set simulators with a functional
view of a system to enable SW developers to develop and debug embedded software for
a SoC. A PV model contains a functionally correct model of the SoC, but other parts of
the system may be excluded or abstracted to save modelling and simulation time (Kogel
et al. (2005)). A typical PV system is composed of a processor model (instruction-set
simulator), interconnection and a functional description of peripherals. A PV model is
more architecture-specific than a FV model. Compared to architect’s view, PV provides
a different abstraction of the same platform as AV, for a different purpose. Where AV
requires more timing accuracy, PV needs more functional accuracy.

32

PV places many requirements on the level of detail in an execution platform model.
The models need to be register accurate and bit true (Donlin (2004), Vanthournout et al.

(2004), Kogel et al. (2005)), capable of interrupt handling, and the memory map of the
system and synchronisation between processing elements must be correctly modelled
to ensure correct operation. PV is not suitable for the development of timing-critical
software. However, simulation speed can be very high due to the low timing accuracy —
an operating system can be booted and test code run in seconds (Montoreano (2007)).

All cycle timing details of a protocol become important as design refinement goes
down at the abstraction level. Detailed HW design requires more accurate simulations
than what is provided by the AV level. Verification view (VV) models include details of
microarchitecture and bit-level interfaces. They have fully protocol-compliant arbitration
of the communication infrastructure, and timing annotations are accurate to the level
of individual clock cycles (Donlin (2004)). The detail level of the models is high
enough to enable accurate HW–SW development and verification. VV simulation
requires implementation models of hardware components, an accurate memory map,
and functionally accurate peripherals (Kogel et al. (2005)). It provides more accurate
results than either PV or AV simulation, but it has also lower simulation speed than both
PV and AV, since the models are clocked and highly detailed.

The following two sections present system-level simulation approaches existing
both in research and industry. The purpose of each approach and the modelling and
simulation technique used in it is described. The approaches are also categorised
according to the criteria presented in Sections 2.1 and 2.2. If the simulation approach is
a part of a larger system exploration or design flow, the emphasis is on the simulation
part of the approach in the following.

2.3 Simulation approaches in research

SPADE

System-level Performance Analysis and Design space Exploration (SPADE) (Lieverse
et al. (2001a,b)) is a method and tool which implements trace-driven system-level
co-simulation of application and architecture. The applications are described with Kahn
process networks using YAPI (de Kock et al. (2000)). The Kahn process networks allow
applications to be modelled relatively independently of the target platform. However,

33

they also limit the scope of SPADE to signal processing systems and other fields where
communication can be modelled using unbounded FIFO buffers.

The application models generate symbolic instruction traces, one trace per each
process in the application. The traces do not contain control expressions at all and can
not model time-dependent behaviour (Pimentel et al. (2001)). The traces are transformed
from the application level to the architecture level for performance simulation. Abstract
performance models are used for describing the resources in platforms constructed from
generic building blocks in a model library. The resources are divided into processing,
communication and memory resources. The resources of the platform interpret the trace
operations as the load to be executed, account time, and report performance data.

ARCHER

ARCHitecture ExploRation of heterogeneous embedded systems (ARCHER) (Zivkovic
et al. (2002)) presents an extension to SPADE, which adds hybrid symbolic programs
to application modelling. A symbolic program is like a symbolic instruction trace in
SPADE, but which has been augmented with control information obtained from the
execution of an annotated application model (Zivkovic et al. (2003a)). The control
trace is valid only for a single set of data. The platform model supporting performance
evaluation of the symbolic programs consists of Symbolic Program Units (SPUs), read
write interfaces and FIFO buffers. SPUs model instruction-level parallellism and reuse
of available processing resources.

Artemis

Architectures and Methods for Embedded Media Systems (Artemis) is a modelling and
simulation environment focusing on embedded multimedia systems (Pimentel et al.

(2001)). It supports two separate simulation frameworks: SPADE and Simulation of
Embedded-System Architectures for Multilevel Exploration (SESAME) (Terpstra et al.

(2001)).
Like SPADE, SESAME is also based on Kahn process networks. In SESAME, the

designer first selects candidate architectures using analytical modelling and multiobjec-
tive optimisation. High-level and architecture-independent application specifications are
maintained by applying dataflow graphs in its intermediate mapping layer. The dataflow
graphs take care of run-time transformation of coarse-grained application-level events

34

into finer grained architecture-level events. The load of an application is captured partly
manually by instrumenting the code of each Kahn process with annotations describing
the application’s computational and communication actions (Pimentel et al. (2006)).

SESAME allows simulation at multiple levels of abstraction (Pimentel et al. (2002))
and supports mixed-level models, which enable more detailed evaluation of a specific
platform component. At the highest abstraction level, the components are black boxes
with processing capacity, power consumption, and cost parameters. The refinement
of the models can continue until RTL-level simulation (Pimentel et al. (2001)). The
low-level simulations can be used to calibrate higher-level architecture models for
improved accuracy (Pimentel (2008)). Models are created using the Pearl discrete-event
simulation language, or SystemC with an add-on library extending SystemC with Pearl’s
message-passing paradigm (Pimentel et al. (2006)).

Originally only single-application simulations were possible in SESAME, but
Thompson & Pimentel (2007) present an extension for simulating a combination of a
primary application and stochastic secondary applications concurrently. Furthermore,
Van Stralen & Pimentel (2010) add support for intra- and inter-application scenarios.
The inter-application scenarios describe the behaviour of multiple applications, which
can run concurrently.

ARTS

Abstract system-level modelling and simulation framework (ARTS) (Mahadevan et al.

(2005a,b)) is intended for the modelling and simulation of multiprocessor SoCs and
focuses on multimedia streaming applications. Application designers can develop new
application models and study their performance for the available configurations of the
platform with ARTS, whereas platform developers can develop new platform models
and study their impact on a given application domain.

Applications are modelled using static data flow task graphs. The tasks can be
periodic or sporadic. Tasks have a set of parameters, which define e.g. best and worst
case execution time in cycles and the memory requirement of the task (Mahadevan
et al. (2007)). Pre-emption, synchronisation, allocation of shared resources and task
scheduling is supported through a real-time operating system (RTOS) model. A system
model is formed by mapping tasks of the application model onto computing components
of the platform model. The platform model includes communication and memory
models in addition. ARTS supports modelling of different communication topologies

35

from shared bus to 2d mesh NoC. The application, platform and mapping models are
expressed using a custom ARTS scripting language. A SystemC model is then generated
and simulated in the ARTS framework.

Baghdadi et al.

Baghdadi et al. (2000, 2002) present a design space exploration methodology based
on the co-design tool MUSIC and system-level simulator GEODESIM. In the first
stage, the system functionality is specified in SDL language. In the second stage of
the methodology, the designer targets the SDL specification for one specific system
architecture. Finally, the architecture-annotated SDL specification is simulated at high
level using GEODESIM.

Each SDL process may have a realisation in software or hardware. The SDL code
will be translated to C or RTL code for software and hardware, respectively. For all
available HW and SW realisations, the basic blocks are identified from the code, and
their execution times in terms of clock cycles are calculated from low-level simulation.
The SDL specification is back-annotated with the execution times. The architecture
is also modelled with SDL for the GEODESIM simulation. The architecture model
contains node, priority and delay directives, where nodes represent execution resources,
generally processors. Priority and delay directives are used to assign priorities to SDL
processes to model multitasking and delays to specify the execution time of SDL actions
obtained from the low-level simulation.

Jaber et al.

Jaber et al. (2009) presents a high-level architecture exploration methodology for
investigating the influence of shared resources on the performance of a system. The
methodology is based on the DIPLODOCUS design space exploration UML profile, and
uses the Y-chart approach, where applications, architecture and mapping are modelled
separately. UML models are given as input to the simulation environment, which
generates SystemC code for simulation.

Abstract application models are created using class diagrams for modelling tasks
and activity diagrams for the behaviour of those tasks (Apvrille et al. (2006). Abstract
architecture models are compositions of instances of generic components. The list
of generic components includes a processor, bus, memory, hardware accelerator, and

36

peripheral. Each component has a small set of parameters. In addition to SystemC,
DIPLODOCUS supports transformation to a LOTOS specification for formal analysis.

Applications are modelled as a network of communicating tasks (Waseem et al.

(2006)), which can exchange data samples and signals and request the execution of
another task. Abstract data exchange and data processing instructions are used to
characterise the behaviour. The architecture is modelled as a network of physical
resources, including computation, communication and storage nodes. All resources have
parameters like processing capacity in millions of cycles per second or memory size
in bytes. The nodes are instantiated from a library implementing a set of predefined
models. In the mapping phase, tasks issue computation and communication requests
to shared resources. Simulation is able to produce e.g. average, worst and best case
execution times for each task and the utilisation of each resource.

M3-SCoPE

M3-SCoPE proposed by Posadas et al. (2011) is a design space exploration framework
based on the virtual system simulation approach. Instead of an ISS, it uses native
co-simulation of the embbeded software in the simulation host computer. It provides
performance estimation of the entire system by including facilities to model the
temporal behaviour of application software, to emulate the behaviour of an operating
system (Posadas et al. (2005)), and to enable realistic modelling of hardware software
communication.

Performance modelling of the embedded software is performed by adding static
execution time estimates as annotations to the code. Next, the SW code is executed
and the annotated estimates are used to achieve timed simulation. The estimates are
obtained by cross-compiling the application to the target hardware and then analysing
the basic blocks of the generated assembly code. Compiler optimisations and caching in
processors can also be taken into account. In hardware platform modelling, PV models
of components including processors, buses, memories, and network interfaces are used.
Furthermore, it is possible to define static and dynamic power consumption for each
component to estimate the power consumption of the system.

M3-SCoPE requires mature application software, models of hardware components
and an XML-based description of the system as input. The XML file describes
the instantiation of applications and hardware components and the allocation of the

37

applications on the hardware. The output of the simulator gives estimates on execution
time and number of cache misses in XML form.

MESH

Modelling Environment for Software and Hardware (MESH) (Paul et al. (2003)) is a
simulation framework based on a layered model composed of dynamic logical threads
on top of a physical thread layer. The logical threads model application software and are
expressed by annotating C code with consume calls. The calls indicate computational
complexity of a software region. The complexity values are derived by profiling or
designer experience. The trace annotations dictate the finest timing resolution provided
by MESH. The physical threads model hardware and describe the computational power
of processors, memories, HW devices, and networks. The modelling technique is
intended mainly for RISC style processors (Paul et al. (2005)). The scheduling layer
of MESH can use the computational power figures to determine, when and where the
logical threads should execute.

MESH uses a hybrid of performance analysis and simulation (Bobrek et al. (2004)).
Analytic contention models are applied to groups of shared resource accesses, which are
derived from simulation. The threads are simulated for a period of time determined by
the thread annotations, while contention is ignored. Accesses to shared resources within
that period are grouped and sent to the analytical model to calculate time penalties due
to competition for the shared resources of the system. Complex systems may have a
large number of small timeslices, which has an adverse effect on simulation speed. The
designer can specify a minimum timeslice to reduce the effect at the cost of accuracy.

MILAN

The Model-Based Integrated Simulation (MILAN) framework (Mohanty et al. (2002))
includes the DESERT design space exploration and High-level Performance Evaluator
(HiPerE) (Mohanty & Prasanna (2002)) rapid performance estimation tools. DESERT is
used to eliminate designs, which do not meet user-defined constraints and HiPerE to
estimate the performance of the remaining designs at the system level. HiPerE evaluates
the system-wide performance based on component-specific performance parameters,
which are provided by the designer initially. However, MILAN also supports component-
specific performance evaluation with analytical and cycle-accurate simulators for

38

providing more accurate performance parameters to HiPerE. The component-specific
evaluation estimates computation, storage and communication cost.

Applications in HiPerE are modelled using trace files, which consist of ordered
lists of communication and computation operations. First, the application source code
is annotated at task level. Next, the trace is obtained from the functional simulation
during which the task is executed and certain amount of data is transferred. HiPerE uses
a Generic Model (GenM) for modelling the SoC architectures. GenM consists of a
processor, some reconfigurable logic, and memory connected via an interconnect. Each
resource in GenM has timing and energy parameters. The user must model, which tasks
can be implemented on which available resources. For application–platform mapping,
HiPerE needs additional performance parameters, including the time for executing a
task on a specific processor. The designer provides initial values for the performance
parameters, but component-specific performance simulation can be used to provide
more accurate values.

TAPES

The Trace-based Architecture Performance Evaluation with SystemC (TAPES) (Wild
et al. (2006)) performance evaluation approach uses traces to model applications at
a high abstraction level. The functionality of applications is replaced with execution
latencies of subfunctions consisting of a processing delay and external transactions
on the respective resources. Interaction between subfunctions is represented with
inter-SoC-module transactions, but no real data exchange is performed during simulation.
The architecture resources are modelled as black boxes, whose internal structure and
processing is disregarded during simulation. The effect of caches in processors is
taken into account manually during trace definition. Contention and arbitration in the
communication architecture is modelled, and the contention results in stretching of the
traces with respect to time.

TAPES is based on SystemC, and the simulation model is dynamically generated
from an XML-based configuration and a model library. The library includes abstract
resources for processors, memories, accelerators, and communication architectures. The
configuration and model generation system enables easy reconfiguration to different
resource and mapping configurations. However, the specification of the traces is a
manual process, and the approach needs to evaluate all possible patterns of conditions
for branches since control dependencies cannot be resolved during simulation. It is

39

also limited to bus-based SoC architectures with a single system bus and point-to-point
connections.

Fornaciari et al.

Fornaciari et al. (2001) presents a design space exploration framework focusing on
processor-to-memory communication through the memory hierarchy. The simulation
technique of the framework is based on a software execution profiler for cycle-accurate
instruction set simulation of the application and a dynamic tracer to generate data and
address bus streams. The technique includes configurable bus and memory models, with
the latter having behavioural models of on- and off-chip level 1 and 2 caches and main
memory. The bus and memory models use the bus traces from the software execution
profiler as input.

The framework aims to find the best platform configuration for the application
without performing exhaustive analysis of the parameter space. The parameters for the
exploration include cache size, block size, and data and instruction cache associativity
(Fornaciari et al. (2001, 2002)). Sensitivity analysis is used to perform optimisation of
exploration parameters and to discard less promising configurations from evaluation.
Analytical energy models are used to evaluate overall energy-delay cost.

Lahiri et al.

Lahiri et al. (2001b) presents a hybrid trace-based performance analysis technique
and tool for the design of custom communication architectures for SoCs utilising the
POLIS (Balarin (1997)) and PTOLEMY (Eker et al. (2003)) frameworks. First, an initial
co-simulation with abstract communication, where the communication is modelled
as exchange of events or tokens, is performed. The architecture implementing the
communication is not considered. The output from the simulation is a timing-inaccurate
system execution trace, which is represented using communication analysis graphs
(CAGs). The CAGs represent computation, communication and synchronisation without
details like values of internal variables or data. The first step of the technique is slow
and intended to be performed only once per each use case.

Second, the CAGs are analysed to estimate the performance of the system by
taking the effects of the communication architecture into account. The designer lays
down the communication architecture to implement communication events and the tool

40

manipulates the CAGs based on the communication architecture to generate a timing-
accurate trace. The manipulation includes adding handshaking to initiate communication,
resizing of communication according to maximum block transfer sizes of channels, and
dynamic delays due to contention and arbitration. A clustering algorithm is used to
choose an initial mapping of the communication to the network topology, which is then
improved iteratively. The second step of the technique supports design space exploration
and optimisation by being able to evaluate alternative communication architectures
rapidly (Lahiri et al. (2004)).

Schnerr et al.

Schnerr et al. (2008) presents an approach for the simulation of embedded software,
which integrates cycle-accurate analysis with an abstract SystemC model. The first
step of the approach consists of static cycle-accurate execution time analysis for the
application. A cross-compiler is used to create an executable binary for the target
processor. Execution time in clock cycles is calculated statically for each basic block
based on the instructions in the binary and a pipeline description of the processor.
Abstract SystemC models using TLM communication are generated in the second
step of the approach. Finally, the SystemC models are back-annotated with WCET
and BCET timing from the analysis step. A dynamic correction is included in the
models to adjust for branch prediction and caching techniques in modern processors.
The architecture simulation technique of the approach is limited to the simulation of
processors and caches.

StepNP

StepNP is a simulation environment developed at ST Microelectronics, which con-
centrates on network processors (Paulin et al. (2002)). The main components of the
environment are a high-level multiprocessor architecture simulation model, a network
router application framework and a control, debugging and analysis toolset. The
architecture simulation platform is SystemC-based and encapsulates instruction-set
simulators inside a SystemC wrapper. It contains models for processor engines (a
RISC-style processor with multithreading), NoC communication channel using the OCP
protocol, and specialised co-processors. StepNP supports functional, transaction and
cycle-based abstraction levels.

41

Beltrame et al. (2006) proposes an application-platform mapping methodology
based on StepNP to achieve co-exploration of the application design space. Mapping
begins with the consideration of a software-only implementation. The C source code of
the application is profiled natively in a workstation and parallelised if possible. Then the
application and a platform model is co-simulated with StepNP. The simulation results
are analysed and the application and or architecture models can be modified by adjusting
the hardware software partitioning. The mapping cycle continues until all application
constraints are met.

A technique for multi-accuracy power and performance modelling with StepNP is
presented in Beltrame et al. (2007). It provides StepNP with the capability of dynamic
switching of functionality, communication and power consumption models at different
accuracy levels. A refined, accurate model is used for the interesting parts of the
simulation and they are replaced with less accurate but faster models for the other
sections. A library of power consumption models is used to measure power consumption
and perform energy-delay tradeoffs.

ReSP

Reflective Simulation Platform (ReSP) (Beltrame et al. (2008)) is a TLM-based multi-
processor simulation platform, which provides a wrapper for the Python scripting
language around the SystemC kernel. The Python extension adds a simplified way
to specify the architecture of the system and simulate the given configuration, and it
provides support for automated analysis.

ReSP has a set of primitives to build a complex platform from components chosen
from a database of SystemC modules. The database contains functional, cycle-accurate
processor cores written using the ArchC language, interconnect models for buses
and NoCs, memory hierarchy models, and miscellaneous components like interrupt
controllers. Additional components can be created with SystemC. Since an instruction
set simulator is used for processors, there are no models of applications. ReSP provides
two operation modes: interactive and automatic. In the interactive mode, the architecture
is built using commands exported by the user interface. In the automatic mode, the
architecture description is provided in an XML file, from which the architecture model
is generated, which can be used to support design space exploration algorithms.

42

Metropolis

Metropolis (Balarin et al. (2003)) is a system design framework based on a metamodel
supporting functionality capture and analysis, architecture description, and mapping. It
can support synthesis and formal analysis tools in addition to simulation and is able to
generate verification models automatically. Metropolis includes a parser that reads
metamodel designs and an API for developers to modify it and augment additional
information. The API is also used by tool-specific backends to generate the input
required by the tool from the metamodel. Simulator backend translates the metamodel
specification into executable SystemC code (Sangiovanni-Vincentelli (2007)).

Application functionality is modelled as a network of processes communicating
through ports with defined interfaces. The network’s behaviour is defined as a set of
executions, where the executions are a sequence of events, i.e. program entries or exits.
Architecture functionality is modelled as a set of services provided by the arhicture to
the application. Efficiency of the service implementation is taken into account with a
cost value representing either time or energy. The architecture contains both media
(processors, buses and memories) and processes (software tasks on a processor). A
mapping network encapsulates function and architecture networks and defines, which
part of the architecture serves which application functionality.

Koski

Koski (Kangas et al. (2006)) is an automated flow for multiprocessor SoC design based on
the TUT UML profile. It covers all design phases from specification to implementation.
First, the requirements and constraints of both application and architecture are captured.
Next, the functionality of the system is described with an UML application model, which
can be verified with functional simulation. UML application and architecture models are
transformed to abstract architecture exploration models, and an automatic exploration is
performed using static and dynamic exploration models. Finally, an implementation is
produced by passing the UML descriptions to automatic code generation.

The UML application model uses class diagrams to describe the class hierarchy of
the application and composite structure diagrams to describe the connections between
the class instances. Signals and ports are used for communication. The UML architecture
model is described with a composite structure diagram, which instantiates processing
element and communication network components from a library with a set of parameters

43

like clock frequency, cache size, data width, etc. The design constraints are defined
in a UML system model with architecture specific attributes such as area, power and
execution time. For architecture exploration, the UML application models are abstracted
to Kahn process network models, where the complexity of each application task is
obtained from profiling in a reference platform or in the final platform. The processing
elements of the architecture are characterised with performance, area, power and
available memory properties. A coarse model of communication is used for static
exploration, whereas dynamic exploration adds a PV-level or cycle-accurate model of
the communication network. Dynamic exploration uses models at different levels of
abstraction, so a transaction generator (Kangas et al. (2003)) is needed to combine the
models. Performance information obtained from the exploration is back-annotated to the
UML environment after the exploration is finished.

2.4 Commercial system-level simulation tools

CoFluent Studio

CoFluent Studio is a commercial simulation framework from CoFluent Design, which
contains a graphical modelling tool and a SystemC library extending the OSCI SystemC
and TLM libraries (CoFluent). CoFluent Studio contains two packages, one for timed
behavioural modelling (TBM) and another for system architecting (SA). The TBM pack-
age is used for obtaining timed-executable specifications of the application for further
system architecting or implementation. The SA package is used for exploring system
architectures, analysing their performance, and obtaining executable specifications for
futher HW/SW co-design and implementation.

TBM captures the behaviour and time of applications with a proprietary presentation
using the GUI tool and/or C++ code. The execution time for parts of the software
is given by the designer as input. The TBM package is able to generate SystemC
code from the graphical model automatically for simulation. SA adds a proprietary
representation of the execution platform in the GUI tool and enables mapping of the
application model created in TBM to the platform model. The platform model consists
of layers of processor, interconnect and memory resources, to which the designer can
add timing annotations.

44

Synopsys Platform Architect and Processor Designer

Synopsys Platform Architect (Synopsys Platform Architect) is a tool for the design,
performance analysis and optimisation of multi-core SoC architectures. It is based
on SystemC and TLM and provides a graphical modelling tool and visualisation of
simulation results. Platform Architect supports early hardware–software partitioning for
optimising system performance through the virtual system modelling approach. Generic
task graphs are used to create SystemC performance models of application tasks. The
graphs are mapped onto Virtual Processing Units (VPUs), which are task-driven traffic
generators. After exploration the models can be refined to create a virtual platform
capable of executing the application software by replacing the VPUs with instruction set
simulators. Mixed SystemC / HDL co-simulation is supported in combination with
other Synopsys tools. A component library provides models of VPUs, processors,
interconnects, and memories. Processor models are available in loosely-timed and
cycle-accurate form, whereas the interconnect and memory models can be cycle-accurate
or cycle-approximate.

Synopsys Processor Designer (Synopsys Processor Designer) is another tool for
developing custom application-specific instruction set processors (ASIPs). It is able to
produce an ISS, SW tools including a compiler, and an RTL implementation model from
the ASIP specification given as input. The ISS models from Processor Designer can be
combined with the system-level models in Platform Architect (Wieferink et al. (2005)).

Cadence Virtual System Platform

Cadence Virtual System Platform (Cadence Virtual System Platform) is a commercial
software development, functional verification, and system analysis and optimisation
tool. Hardware software co-simulation and virtual prototype verification is supported
through other Cadence tools. Virtual System Platform is able to produce SystemC
TLM 2.0-compatible virtual platform models automatically from IP-XACT or text
input specifications. The platform is built from components in a SystemC TLM IP
model library, which includes fast instruction set simulators of processors for software
development and peripheral models. Abstraction level can be lowered to RTL by refining
the TLM models and using high-level synthesis.

45

2.5 Summary

Table 1 summarises the purpose of each performance evaluation approach presented
in this chapter and categorises them to simulation and hybrid simulation–analysis
approaches. The simulation technique used in each approach is further categorised to
virtual system, virtual platform or virtual prototype simulation according to European
EDA Roadmap and to FV, AV, PV or VV simulation based on the TLM use cases
presented in Kogel et al. (2005). It is also noted, if the approach supports RTL simulation.

Section 1.1 stated that the most significant problem with the performance evaluation
of future embedded systems is complexity. The requirement for early evaluation
precludes virtual platform and virtual prototype approaches, since it is not possible
to wait until the applications have been developed. For the same reason, PV and VV
use cases are not suitable for the task. Furthermore, the detail level in the platform
model would be very high with VV, and it would require considerable modelling effort
especially if several alternative designs were to be explored. Thus, virtual system and
architect’s view based simulation were selected for the ABSOLUT approach presented in
Chapter 3 of this thesis to achieve early evaluation, low modelling effort, and reasonable
accuracy.

The ABSOLUT approach is naturally closest to the other virtual system and AV-
based approaches. ABSOLUT is not limited to a specific application field or model of
computation. However, SPADE and its descendants, ARCHER and Artemis/SESAME,
use Kahn process networks for application models and concentrate on signal processing
systems. In TAPES, the applications are modelled as traces, whose specification
is a manual process. TAPES is also limited to bus-based SoC architectures with a
single system bus. ARTS uses data flow graphs as application models and focuses
on multimedia streaming. A common problem of the ARTS, Baghdadi et al., MESH
and MILAN approaches is that they require execution times of (parts of) applications
as input to the models. The approaches rely on designer experience, profiling in a
workstation or low-level simulation support to obtain the execution times. Jaber et al.

and CoFluent Studio use UML and proprietary models of applications, respectively.
Creating the graphical models requires effort and it is very difficult to utilise existing
data, e.g. source code, measurements or traces, to reduce the modelling effort.

46

Table 1. Categorisation of surveyed performance simulation approaches.

Approach
Purpose Type Simulation

Ev1 Ex2 F3 A4 S5 EER TLM
RTL

S6 Pl7 Pr8 FV AV PV VV

ABSOLUT x x x x
ARCHER x x x x
Artemis x x x x x x
ARTS x x x x
Baghdadi et al. x9 x x10 x x9 x10 x9 x10

Cadence VSP x x x x x
CoFluent Studio x x x x11 x12

Fornaciari et al. x x x13 x13 x13

Jaber et al. x x14 x x x14 x
Koski x x x x x15 x x16 x16 x15

Lahiri et al. x x x17 x17 x17

1 Performance evaluation
2 Design space exploration
3 Design flow
4 Analysis
5 Simulation
6 Virtual system
7 Virtual platform
8 Virtual prototype
9 GEODESIM

10 MUSIC
11 TBM package
12 SA package
13 Software execution profiler (instruction set simulator) part
14 Provided by DIPLODOCUS
15 Real FPGA prototype
16 For communication network only
17 HW/SW co-simulation part of the approach

47

Table 1. Categorisation of surveyed performance simulation approaches (contin-
ued).

Approach
Purpose Type Simulation

Ev1 Ex2 F3 A4 S5 EER TLM
RTL

S6 Pl7 Pr8 FV AV PV VV

M3-SCoPE x x x x18 x
MESH x x x x
Metropolis x x x x x x
MILAN x x x20 x x19 x20 x19 x20

ReSP x x x x
Schnerr et al. x x x x x21

SPADE x x x x
StepNP x x22 x x x x x
Synopsys PA x x x x x x x
TAPES x x x x

1 Performance evaluation
2 Design space exploration
3 Design flow
4 Analysis
5 Simulation
6 Virtual system
7 Virtual platform
8 Virtual prototype
9 HW/SW co-simulation part of the approach

18 Requires application SW for simulation but does not use an ISS
19 System-wide performance estimation with HiPerE
20 Component-specific performance estimation
21 Architecture simulation limited to only processors and caches
22 With the methodology presented in Beltrame et al. (2006)

48

3 ABSOLUT

This chapter presents the system-level performance modelling and simulation approach
developed in the work. Abstract Instruction Workload and Execution Platform-based
performance simulation (ABSOLUT) is a model-based layered approach for the
evaluation of embedded computer system performance in early phases of development.
ABSOLUT supports early decision making by giving answers to questions like:

– Is this new application or feature feasible on that platform?
– Does this platform provide enough capacity for this set of applications?
– What kind of platform architecture and computing and/or communication resources

would be needed for these foreseen applications and/or services?

The ABSOLUT approach aims at early evaluation with low modelling effort. It does
not require that the final software or hardware exists before the models can be created
and simulated, which is shown in the case examples of Chapter 4. The amount of work
required for simulating use cases is far less than comparable implementation efforts. A
set of support tools exists for generating complex workload and platform models and for
filtering and visualising simulation results.

Figure 3 illustrates the ABSOLUT approach in Y-chart form (Kreku et al. (2008b)).
Applications and their input are modelled as workloads, which consist of abstract
primitive instructions. The workload models control the progress of the simulation and
utilise the resources of the execution platform model. However, data processing of the
applications is abstracted with the primitive instructions, so for example an ABSOLUT
model of a video playback application is not able to play video files.

The second arm of the Y-chart is formed by a capacity model of the execution
platform. The platform model provides execution resources to the workload models and
models performance or timing characteristics of the real platform. It is the role of the
platform model to establish how long it takes to execute the workloads. The execution
platform model provides its services to the workload models via pre-defined interfaces,
which enables separation of application and platform concerns. The workload models
can be allocated to platform resources, which provide the services required by the model.
It is possible to replace individual resources or the entire platform without modifications
to the workload models as long as the service requirements are satisfied.

49

Use case &
Applicat ions

Workload
modelling

Allocat ion

Execut ion plat form

Platform
modelling

Simulat ion

Simulat ion
results

Fig 3. The ABSOLUT approach presented according to the Y-chart model.

Both the workload and platform models are implemented in SystemC (Grötker
(2002)) and simulated using the OSCI SystemC (Open SystemC Initiative website)
kernel. The models are instrumented with performance probes for extracting resource
utilisation, latencies, and other relevant performance data out of the simulations. Several
tools have been implemented so that the user can create workload and platform models
without writing new SystemC code or porting existing code to SystemC.

3.1 Application modelling

Applications are modelled as abstract workload models in the ABSOLUT approach
(Kreku et al. (2004b, 2008b)). The purpose of the workload models is to illustrate the
load an application causes to an execution platform when it is executed. They characterise
the control flow and the effect of the data processing and communication on the execution
platform. Abstraction is achieved by not modelling the calculations or operations
of the original application in detail. Due to the abstraction method, the workload
models can be created and simulated before the applications are finalised, which enables
early performance evaluation. Abstracting the functionality of the application reduces
application modelling effort and improves simulation speed. Furthermore, the workload

50

modelling technique has a beneficial impact also on the platform model complexity,
which will be elaborated on in Section 3.2.

It is straightforward to modify the models, which facilitates easier evaluation of
various use cases with minor differences. For example, the models can be parameterised
to scale the complexity or change the execution order of applications from one use
case to another. As opposed to typical virtual system-based simulation approaches, the
workload models themselves do not contain execution time information. It is left for the
platform model to find out how long it takes to process the workloads in ABSOLUT.

3.1.1 Layers

Workload models have a hierarchical structure (Kreku et al. (2006), Kreku & Tiensyrjä
(2011)) depicted in Table 3, where application workload model A is constructed of one
or more process workload models Pi:

A = {Cp,P1,P2, . . . ,Pn}, (1)

where Cp denotes the common control between the process workload models and n is
the total number of processes and threads in the application. There is no disctinction
between processes and threads in ABSOLUT due to the abstraction — both are modelled
using process workload models. The control may be implemented using, for example,
standard C++ control structures in SystemC-based workload models.

The processes are comprised of function workloads Fi:

Pi = {C f ,F1,F2, . . . ,Fn}, (2)

where C f is control and describes the relations of the functions, for example, branches
and loops. The operating system models of the execution platform model handle
workload scheduling at the process level.

Function workload models are basically control flow graphs:

Fi = (V,G), (3)

where nodes vi ∈ V are basic blocks and arcs gi ∈ G are branches. Basic blocks are
ordered sets of load primitives used for load characterisation. The load primitives in
ABSOLUT are abstract instructions read and write for modelling memory accesses
and execute for modelling data processing (Table 2). Reads and writes take target

51

Table 2. Read, write and execute are the low-level workload primitives in ABSOLUT.

Primitive Parameters Description

Read addr, w, b Read w words of b bits from address addr
Write addr, w, b Write w words of b bits to address addr
Execute n Execute n data processing instructions

Table 3. The workload model hierarchy has four layers.

Layer Content

Application layer Process workload models of processes and threads
Process layer One or more function workload models; control
Function layer Basic blocks; control
Basic block layer Abstract instructions read, write and execute; service requests

address, number of words and number of bits as parameters, where the address is not
exact but directs the read or write to a specific component in the system. The workload
models are platform independent since the primitives are abstract and not real processor
instructions.

Control at the function layer can be either deterministic or statistical. Deterministic
control follows the modelled use case accurately, and it is written explicitly in the
workload model using C++ control structures. It can also be read from an external
control trace (Saastamoinen & Kreku (2011)). With statistical control, the arcs are
associated with branching probabilities, which the simulator will use to select the next
basic block to be executed (Kreku et al. (2010)). Statistical control results to smaller
models, but at the cost of accuracy.

3.1.2 Load extraction for application models

Workload models capture the control behaviour of applications in the hierarchically
layered structures. On the other hand, they abstract the details of data processing and
communication as workload primitives. To obtain the control and workload primitives for
the models, four different techniques are used in ABSOLUT: analytical, measurement-
based, trace-based, and compiler-based (Kreku et al. (2008b)). These techniques can be

52

used separately or in combination depending on what kind of descriptions of application
algorithms are available.

Analytical workload modelling

The analytical workload modelling technique (Kreku et al. (2004a)) is currently the
simplest way to create workload models, but also generally the least accurate. As the
name suggests, it is based on analysis of the number of operations from an algorithm
specification or other suitable description.

Analytical modelling consists of three phases. First, the number of data processing
instructions and the amount of memory traffic is analysed from the specification. In
principle, after this point we could write a simple three-line workload model that would
consist of one — potentially large — read, write and execute primitives. However,
the ordering and the block size of the operations usually affects performance notably.
Therefore, in the second phase the total operation numbers are divided into smaller
blocks. In the best case, this can also be done based on the algorithm description. In the
worst case, we can only create a number of uniformly distributed blocks of workload
primitives.

The analytical technique typically produces the most compact workload models. It
also requires the least effort, if support tools are not taken into account. However, the
quality of the workload models depends a great deal on the use case (algorithm) being
modelled.

Measurement-based workload model generation

The second technique for creating the workload models is to extract data from partial
measurements or traces made of the use case (Kreku et al. (2004b)) being modelled. This
method can easily be automated, which allows rapid modelling of complex use cases
with minimal manual work. The complex use case in this context means a workload,
which cannot be measured in its entirety in an existing system and which consists of
several programs that can be measured or estimated alone.

A method has been developed for the generation of workload models from processor
utilisation data in three steps. The first step is to measure the processor utilisation data of
the individual programs. The second step is to merge and concatenate the data according
to the state sequence model of the complex use case. The merged utilisation curve is

53

likely to have data points where the utilisation is more than 100%. This is, however, not
a problem because the value will only be used as a basis for estimating the number
of load primitives for the workload model. The third step is to generate the workload
models from the samples of the monitoring tool.

Trace-based workload model generation

The automatic trace-based workload model generation technique takes an application
execution trace as input. It is assumed that the trace describes the instructions executed
by a processor or a hardware accelerator while it is running the application to be
modelled. The trace can be directly converted to a workload model by generating a
read primitive for each load instruction, a write primitive for each store, and execute
primitives for all the other instructions. Another possibility is to create a statistical
workload model from the trace by sampling the probabilities of the load, store and data
processing instructions periodically. The benefit of the statistical trace-based models is
that they are smaller and faster to simulate. It is also straightforward to create variants of
the models by scaling the complexity upwards or downwards.

Compiler-based workload model generation: ABSINTH and ABSINTH2

ABSINTH (ABStract INstruction exTraction Helper) is a tool for generating workload
models automatically from the application source code (Kreku et al. (2010)). ABSINTH
has been implemented by extending GNU Compiler Collection (GCC) version 4.5.1
with two additional passes (Figure 4). The first ABSINTH pass, pass_absinth_cf,
is responsible for constructing the function layer of the workload model, i.e. the
control flow between basic blocks in each source code function. The second pass,
pass_absinth_bbs, will traverse the Register Transfer Language (RTL, GCC’s low-
level intermediate format) representation to extract workload primitives for each basic
block. ABSINTH generates workload models in a late phase of compilation after most
optimisation passes. Thus the resulting models are somewhat target dependent. For best
accuracy, one should use the same compiler target architecture in model generation and
performance simulation (e.g. a cross-compiler).

There are three phases in the model generation process to obtain a proper model of
control for the models:

1. First, the source code must be compiled with profiling (-fprofile-generate)

54

GCC
Front-end

GCC
Middle-end

pass_absinth_bbs

…

pass_rtl_loop_init

pass_absinth_cf

pass_rtl_move_
loop_invariants

…

GCC
Back-end

Basic block
traversal

BB edge
traversal

RTL expression tree
traversal

Load primitive
generation

Source code
(C, C++, …)

Binary

Control flow
generation

(function layer)

optim
isation

passes

Fig 4. ABSINTH as a part of GCC (Kreku et al. (2010)) (©2010 IEEE).

2. then, the compiled binary must be executed with a data set corresponding to the use
case

3. finally, the source code must be compiled again with both profile-guided optimisation
and ABSINTH-enabled (-fprofile-use -fabsinth).

ABSINTH uses the profiling data during model generation for the probabilities of
branches, which are modelled statistically. It is also used to extract the number of
iterations for loops.

ABSINTH2 (Saastamoinen & Kreku (2011)) is a second-generation tool for compiler-
based workload model generation. Unlike ABSINTH, it produces workload models,
which are deterministic at the function layer. ABSINTH2 is an alternative to ABSINTH,
not a replacement. It is able to produce more accurate workload models due to the
deterministic function-layer control. However, the resulting models are also larger and
slower to simulate.

There are two phases in workload model generation with ABSINTH2:

1. First, the application is compiled with ABSINTH2-modified GCC with flags
-fabsinth2 -labsinth-tracer. ABSINTH2 modifies the application binary
by inserting a function call to a tracing library at the beginning of each basic block.
An XML file containing the workload primitives of each basic block is also written.

2. Next, the application is executed. The tracing library writes a zlib-compressed trace
of the control.

55

A special ABSINTH2 SystemC process workload model has been implemented. The
process workload model parses the control trace and primitives on-the-fly during
simulation.

An extension to ABSINTH2 called SAKE, or abStract externAl library worKload
Extractor, is presented in Saastamoinen & Kreku (2011). ABSINTH and ABSINTH2 by
themselves do not generate workload models for library functions, since they are not
normally compiled at the same time as the application source code. However, SAKE
uses the Valgrind memory debugging, memory leak detection and profiling tool to
automatically generate workload models for the library functions. Neither ABSINTH
nor ABSINTH2 have dependencies on any particular source code language, so they
should be able to generate workload models from any language supported by GCC.
However, only the C and C++ front-ends have been used so far.

Summary

The selection of the load extraction method (Table 4) depends on:

– What kind of information is available of the application or applications
– How accurate the resulting models need to be
– How much effort the designer is willing to use to create the models.

In general, you will want to use as accurate method as possible for the best results. On
the other hand, if you have only limited information available of the applications, you
may be forced to use the analytical method. If you are modelling a small background
load with only a minor impact on the overall performance, it makes sense to use one of
the faster extraction methods.

3.2 Platform modelling

The execution platform model in ABSOLUT models both hardware and platform
software components and interconnects (Kreku et al. (2004b, 2008b)). It is an abstracted
hierarchical representation of the actual platform architecture. The models are created
with the SystemC language using the transaction-level modelling (TLM2 Whitepaper)
style. The role of the execution platform model is to process the workload primitives in
the workload models and consume time in a cycle-approximate manner. The platform

56

Table 4. Comparison of the relative strengths and weaknesses of the load extrac-
tion techniques. The modelling effort column reflects the fact that support tools
exist for measurement-, trace-, and compiler-based techniques.

Technique Requirements Modelling
effort

Simulation
speed

Accuracy

Analytical Coarse-grained informa-
tion of number of mem-
ory accesses and data pro-
cessing operations

Average Fast Low

Measurement-
based

Processor utilisation data Average Average Average

Trace-based deter-
ministic

Instruction trace Low Slow High

Trace-based sta-
tistical

Instruction trace Average Average Average

Compiler-based
deterministic

Source code Low Slow High

Compiler-based
statistical

Source code Average Average Average1

1 With good profiling data

model also provides high-level services for the workload models implemented on top of
the low-level primitives.

Abstractions used in ABSOLUT platform modelling approach aim at obtaining a
sophisticated compromise between the platform models in typical high-level virtual
system approaches and low-level instruction and cycle-accurate virtual platform ap-
proaches. The approach strives for reducing complexity to decrease modelling effort and
enhance simulation speed while maintaining most of the accuracy.

From the abstractions in application modelling (Section 3.1) follows that the platform
model need not contain full functionality for executing compiled application binaries.
The workload models of applications are constructed of workload primitives instead of
real instructions. Relieved of the burden of simulating the application functionality, the
components in the ABSOLUT platform model can be pure performance models. They
model just the component’s execution capacity, which is consumed by the primitives in
the workload models.

57

3.2.1 Layers

The ABSOLUT platform model is composed of three layers (Kreku et al. (2006)):
platform architecture layer, subsystem layer and component layer. Each layer provides
its own services, which are abstraction views of the architecture models. They describe
the behaviour of the platform and related attributes — performance, for example — but
hide other details. High-level services are built on top of low-level services, and they
can also use the services implemented at the same layer. Each service may have many
different implementations. This makes the design space exploration process easier,
because replacing components or platforms with others can be easily done as long as
they implement the same services.

Platform architecture layer

The platform architecture layer is the topmost layer, which incorporates platform
software and serves as the portal that link the workload models and the platforms to
the mapping process. The models at the platform architecture layer contain high-level
services in addition to one or more subsystems. The platform-layer services consist of
service declaration and instantiation information. The service declaration describes the
functionalities that the platform can provide. Because a platform can provide the same
service with several different ways, the instantiation information describes how a service
is instantiated in a platform.

Application workloads typically call platform- or subsystem-level services, process
workloads call subsystem services, and function workloads call component-level services.
Ideally, all services required by the application are provided by the execution platform,
and there is a 1:1 mapping between the requirements and provisions. However, often this
is not the case, and the workloads need to use several lower level services in combination
to produce the desired effect.

Subsystem layer

The subsystem layer is the next layer below the platform architecture and describes the
components of the subsystem and how they are connected. The services used at this
layer could include e.g. video preprocessing, decoding and postprocessing for a video
acceleration subsystem.

58

The model can be presented as a composition of structure diagrams that instantiates
the elements taken from the library. The load of the application is executed on processing
elements. The communication network connects the processing elements with each other.
The processing elements are connected to the communication network via interfaces.

Component layer

This layer consists of processing (e.g. processors, DSPs, dedicated hardware, and
reconfigurable logic), storage, and interconnection (e.g. bus and network structure)
elements. An element must implement one or more types of component-layer services.
For example, a network interface component should implement both master and slave
services. In addition, some elements need to implement services that are not explicitly
defined in component-layer services, e.g. a bus must support arbitration and a network
must support routing.

The component-layer read, write and execute services are the primitive services,
based on which higher-level services are built. The processing elements in the component
layer realise the low-level workload-platform interface, through which the workload
primitives are transferred from the workload side. The processing element models will
then generate accesses to the interconnections and slaves as appropriate. The platform
model may contain several processing elements, which have different instruction
sets in real life, i.e. simulations of heterogeneous computer systems are supported.
However, the ABSOLUT models of all processing elements have the same set of abstract
instructions; only the set of higher-level services may differ.

All the component models contain cycle-approximate or cycle-accurate timing
information. The data path of processing units is not modelled in detail in contrast to
cycle-accurate virtual platform models. Instead, the processor models have a cycles
per instruction (CPI) parameter, which is used in estimating the execution time of the
workloads. For example, the execution time E for data processing instructions is:

E = nC, (4)

where n is the number of instructions to be executed and C is the value of the CPI
parameter. It is the responsibility of the user to provide the values for the model
parameters.

Interconnects are modelled at a nearly cycle-accurate level, if possible, to maintain
simulation accuracy. TLM2-style local time offsets (TLM2 Whitepaper) can be used

59

to speed up simulation. Memory models in ABSOLUT do not need to provide data
storage due to the abstraction decisions in workload modelling. Instead, they receive
requests from processing elements, simulate the memory access latency and, finally,
send responses back to the processing elements. No data is moved in the request or
response transactions at all.

Processor caches and SDRAM memory page misses are currently modelled sta-
tistically since the workload models do not contain accurate address information. A
potential future development of ABSOLUT would be to extend ABSINTH (Section
3.1.2) to output at least memory-addressing patterns in the workload models. The
patterns could enable high-level deterministic simulation of caches and page misses.

3.2.2 Services

The services of the platform can model either hardware or software services. In
ABSOLUT, software services are modeled as workload models, but unlike application
models, they are integrated in the platform model and easily reusable by the applications
(Kreku et al. (2009)). If the service is provided by a process or a set of processes running
in the system, the service model consists of application- or process-layer workloads. If
the service is implemented as a library, the model will be at the function layer. Service
models can utilise other services, but eventually they consist of the same workload
primitives as the application models.

There are two alternatives in how to implement a HW service: It can be implemented
simply as a delay in the associated component, if the processing of the service does not
affect the other parts of the system at all. In this case, the service must not perform I/O
operations or request other services. The second alternative is to implement the service
as workload primitives, which are executed inside the HW component and not inside a
process workload running on one of the processor models.

3.2.3 Operating system

In simple cases, the execution of workload models can be scheduled manually by
hard-coding it to the models. However, it is not recommended. Typically, the platform
model includes one or more operating system (OS) models, which control access to the
processing unit models of the platform by scheduling the execution of process workload
models (Kreku & Tiensyrjä (2011)). The OS model provides both low-level workload

60

primitive and high-level services interfaces to the workloads and relays interface function
calls to the processor or other models which realise those interfaces. The OS model will
allow only those process workload models which have been scheduled for execution to
call the interface functions. Re-scheduling of process workload models is performed
periodically according to the scheduling policy implemented in the model.

The OS model extends the workload primitive interface with a number of methods
for registering, starting, stopping, and killing process workload models. For mapping a
process workload model to an OS model, the process must be registered. For the OS
model to schedule the process for execution, the process must be started. Processes can
also be stopped to temporarily disable them — while they are waiting for an external
event, for example – and killed once they are not needed anymore.

If all the processors in the platform model have the same instruction set in real life,
the operating system model can distribute the process workload models across all the
processor models. However, if the system is heterogeneous, multiple operating system
models are needed in the platform model: one for each different instruction set. The
current implementation includes a round-robin scheduler, which makes its decisions
based solely on the availability of the process workload and processor models in addition
to the previous time the workload models were scheduled for execution. The algorithm
can be replaced without changes to the rest of the OS model to simulate more complex
scheduling decisions, which could take power consumption into account, for example.

High-level services are registered to OS models so that workload models can utilise
them through a generic service interface. In the registration phase, the service provider,
service name and service attribute types are informed to the OS model. The service
provider can be any model, which realises the generic service interface, e.g. a platform
component or a process workload model.

3.2.4 Model library

ABSOLUT Library of Existing models (ALE) is a collection of performance models for
supporting model re-use and rapid construction of complex platform models. ALE
contains low-level component (abstract base class), master, slave, and shared bus models.
There are also generic processor, hardware accelerator, and memory models, whose
purpose is to support creating new component models by extending the generic models.
Finally, the set of fully-fledged models includes ARM and Intel Core i7 processor

61

models, SDRAM and SRAM memory models, a DMA controller, a display controller,
network interfaces and routers, and a distributed shared memory engine (DME).

COGNAC, or COnfiguration GeNerator for ABSOLUT performanCe simulation, is
an semi-automatic tool for generating complex platform models from building blocks.
It takes two text-based files as input: The first one is provided by ALE and denotes,
what kind of components exist in the model library and what kind of interfaces each
component has. The second one is provided by the user and defines the structure of
the platform at block level, i.e. which components should be instantiated and how the
components should be connected. There is also additional support for constructing
repetitive structures like the subsystems in a homogeneous NoC system. COGNAC
generates the platform model, except for subsystem- and platform-layer services, which
have to be added manually by the user.

3.2.5 Allocation of workloads on the platform

In order to facilitate simulation of the system model consisting of both the application
and platform models, the applications need to be mapped to the platform (Kreku &
Tiensyrjä (2011)). Mapping involves choosing the part of the platform, which will host
(execute) each particular workload model, and which instruction and data memory or
memories they will utilise. Mapping the execution is done during the initialisation of the
workload model, i.e. each workload model receives a pointer to its host as a parameter.
The mapping is done in several layers in such a way that

– Application workload models are mapped to subsystem models
– Process workload models are mapped to operating system models inside subsystems
– Function workload models are mapped to processing unit models.

The operating system model is already mapped to a fixed set of one or more processors
in its initialisation. Thus, the process model will just distribute its pointer to the OS
model when mapping the functions to the processing units.

Memory mapping is done via memory addresses, which are used as parameters to
high- and or low-level interface calls. These addresses could, for example, be hard-coded
in the models. However, the recommended way is to set these up as model parameters
in the process workloads, and the process workloads then distribute the addresses to
function workloads during their initialisation. The addresses used during simulation

62

Process WL 1

Process WL 2

…

Process WL N

Application WL

Operating
System model

Processing unit 1 Processing unit 2

Subsystem

…

Load primitive,
Service interfaces

Process control
interface

Master IF to other
components

Fig 5. Process workloads send load primitives and service calls to the platform
model during simulation (Kreku et al. (2008b)).

are then defined in the configuration file of the system model. Thus adjusting memory
mapping does not force the user to recompile the models.

3.3 Performance simulation

Workload models utilise the resources of platform models with workload primitives and
high-level service requests (Figure 5). The operating system models receive the requests,
propagate the requests from the processes scheduled for execution, and block the others.
The requests are passed through to the processing elements and other service providers
in the platform model.

The processing elements simulate the execution time of data processing instructions.
Memory accesses are also processed by the processing elements, but they may propagate
to the other components of the system, e.g. interconnects and memories, if the element
does not have cache memory or if the cache misses. The platform model advances
simulation time while it is processing the workload primitives and service requests.
Simulation will continue until it is explicitly stopped by one of the workload models
when the use case has been completed.

3.3.1 Performance probes

The platform model is instrumented with counters, timers, and probes, which record the
status of the components during the simulation. These performance probes are manually

63

inserted in the component models where appropriate and are flexible so that they can be
used to gather information about platform performance as needed. Typically,

1. Status probes collect information about utilisation of components and scheduling of
processes performed by the operating system models. They can provide average
utilisation percentage of any component for each performance and power state. They
are also able to periodically write temporary utilisation to a file. Viewer Of collecteD
Key information for Analysis (VODKA) is a tool, which can visualise the files and
show utilisation, power and energy consumption curves as a function of time.

2. Counters are used to e.g. calculate the number of load primitives, service calls,
requests, and responses performed by the components.

3. Timers are used to e.g. keep track of the task switch times of the OS models and
processing times of services.

The probes support the setting of soft and hard constraints. If a soft constraint is not met
during simulation, a warning message will be displayed. An unmet hard constraint will
stop the simulation.

The models in the ALE library (Section 3.2.4) contain a default set of probes for
extracting the most commonly required performance and power consumption data
from the system. The probes output the performance data to the standard output once
the simulation is complete. The data can be analysed and feedback can be given to
application or platform designers. For example, if the utilisation of components is low,
lowering the clock frequency can be proposed for decreasing power consumption.

3.3.2 Simulation environment

ABSOLUT uses the IEEE standard OSCI SystemC 2.2 (Open SystemC Initiative
website) library for simulation. The system model is built in a GNU/Linux environment
using GNU Compiler Collection (GCC) (GCC) and CMake (CMake) cross-platform
build system. The simulator, BEER, is a command line program executed in a terminal
window. During simulation, it prints progress information to standard output, and once
the simulation is completed, it displays the collected performance results.

In a mobile video player case (Kreku et al. (2007)), the simulation speed was one
tenth of real time. In other words, simulating the system for one second took about
ten seconds in a Linux PC with Intel Xeon processor. ABSOLUT is fast enough for
performing early-phase performance evaluation and for simulating multiple, alternative

64

use cases for architecture exploration, which will be shown in Chapter 4. However, the
simulation speed could still be improved by optimising the models: the existing models
are proof-of-concept models, where ease of debugging has been more important than
simulation time. Furthermore, the models are based on OCP-IP protocol models using
TLM1 library and lack the simulation time improvements brought by TLM2 (TLM2
Whitepaper).

65

66

4 Case studies

ABSOLUT has been applied to a number of case studies, where the goal of the study has
been to evaluate the performance capabilities of existing and future platforms, explore
platform sizing and parallelisation, and explore application partitioning, to name a few.
The following sections describe the applications and platforms, results obtained from
the simulations, and how the results were validated, if possible.

4.1 OMAP1-based platforms

Several case studies have used the Texas Instruments’ OMAP1 (Chaoui et al. (2001))
family of mobile multimedia processor SoCs as their execution platforms. The OMAP1
consists of ARM9 MCU, Texas Instruments C55x DSP, SDRAM and SRAM memories
as shown in Figure 6. There is also a traffic controller, which allows the CPU and DSP
to access the memories.

4.1.1 Mobile phone usage scenarios

Mobile phone usage scenario 1 (Figure 7) consists of simultaneous bluetooth download
and application list browsing. The length of the case is about 54 seconds in total
and everything is executed on the MCU. Mobile phone usage scenario 2 has a lot of
activity on the MCU, including but not limited to a GPRS connection, SMS and MMS

ARM9
(TI925)

DSP
(TI C55x)

System
DMA

SDRAM
controller

SRAM

TC

Fig 6. Block diagram of the structure of OMAP1 SoC. Black and white boxes in the
connections represent master and slave ports, respectively.

67

messaging and video capturing in addition to MP3 decoding on the DSP. The length of
this case is slightly over six minutes in total. The workload models were modelled
using the measurement-based approach (Section 3.1.2) from separate measurements of
individual programs. The performance measurements of the programs were made in a
real prototype platform consisting of the OMAP1510 processor and Symbian operating
system.

The use cases could not be measured in their entirety due to software maturity
problems on the prototype platform. For comparison purposes, the average utilisation
values of the individual measurements were summed, although this induces a systematic
error, because task switching, scheduler time slices and other operating system effects
are not taken into account. Thus, the evidence with respect to accuracy of ABSOLUT
simulation results provided by this case is less reliable than those provided by the other
case studies.

Table 5 displays the accuracy of ABSOLUT simulation results in comparison to
measurements in both mobile phone usage scenarios. The error percentages E have been
calculated using the following formula:

E = |1− S
M
|, (5)

where S is the value obtained from simulation and M from measurements. In this case,
the values represented the ARM MCU and DSP utilisation in the OMAP platform
(Kreku et al. (2004b)). The maximum and minimum error percentages were 25% for
use scenario 1 MCU load and 13% for use scenario 2 DSP load, respectively. The
comparison is limited to processor utilisation because it was not possible to measure
anything else on the prototype platform. However, ABSOLUT is able to provide much
more information about the system with the performance probes presented in Section
3.3.1.

4.1.2 MP3 playback

This use case consists of only MPEG1 audio layer 3 (MP3) playback, which is decoded
by the DSP of the OMAP1510 SoC for one second (Kreku et al. (2004b)). The decoder is
using both the internal memory of the DSP and external SDRAM. The workload models
for this case were based on the source code of a freely available mpg123 MP3 decoder
(MPG123) and modelled manually using the source code- or compiler-based approach

68

Bluetooth

App.list

GPRS connection Bluetooth download

MP3 playback

MMS recept. Video capt. SMS send App.list Calendar

Use
case 1

Use
case 2

Time
[min]

1 2 3 4 5

Fig 7. Use cases 1 and 2 of the mobile phone usage scenarios.

Table 5. Comparison of simulation and measured results for OMAP1510-based
platforms.

Simulation, S Measurement, M Error, E

Mobile phone use case 1 MCU load 35% 28% 25%
Mobile phone use case 2 MCU load 43% 36% 19%
Mobile phone use case 2 DSP load 9% 8% 13%
MP3 playback DSP load 19% 19% 0%

of Section 3.1.2, but without the ABSINTH tool. Table 5 provides a comparison
between the DSP load obtained from simulations and measurements made using the
same prototype OMAP platform as in Section 4.1.1. The DSP load in the simulation
results is exactly the same as in the measurement results, which results to an error
percentage of 0%.

4.1.3 Partitioning of MPEG4 encoding

The partitioning of an MPEG4 encoder (Figure 8) for the OMAP5912 platform was
studied in this case example (Kreku et al. (2005)). The video encoder used in the task
was the open source libavcodec library with ffmpeg front-end, which was partitioned to

69

Input
SDRAM DCT Q AC/DC Scan RLC VLC

IQ

IDCT

Frame-
buffer

SDRAM

ME

+

-

1
2

1
2

MC

1 = Intra

2 = Inter

Fig 8. Block diagram of the MPEG-4 encoder (Kreku et al. (2005)) (©2005 IEEE).

utilise both the DSP and the ARM sides of the OMAP5912 SoC. Based on the hardware
accelerators available in the DSP and on the profiling results of the MPEG-4 encoder,
two partitioning alternatives were considered for the discrete cosine transformation
(DCT) and sum of absolute differences (SAD) calculation inside motion estimation. The
DCT and SAD were mapped to either the ARM or the DSP independently of each other.
All other parts of the encoder were executed on the ARM processor.

The workload models were created using a variant of the source code- or compiler-
based approach without the ABSINTH tool. During the simulation runs we measured
the achieved frame rate and utilisation of all the components of OMAP. For validating
the simulation results, the ffmpeg encoder was executed on an OMAP5912 development
kit. The encoding frame rate and ARM and DSP processor utilisation were measured.
During the course of the work, it was noticed that the communication between the
processor included a notable overhead on single macro block size data transfers. With
ABSOLUT, it was also possible to estimate the performance potential of the architecture
with a lower communication overhead to explore, how it would affect the partitioning
decision.

There was virtually no difference between the obtained DSP load values resulting to
the minimum error percentage of 2%. On the other hand, the frame rate achieved with
the OSK5912 kit was 24% lower than in the simulator (Table 6). Simulations with the
low communication overhead showed a clear improvement in the frame rate, though the
performance still was not clearly better than in the all-MPU case.

70

Table 6. Comparison of simulation and measured results for OMAP5912-based
platforms.

Simulation, S Measurement, M Error, E

All-MCU MPEG4 encoding FPS 15.9 17.8 11%
DSP-accelerated MPEG4 encoding FPS 8.3 6.7 24%
DSP-accelerated MPEG4 encoding DSP load 18.9% 18.5% 2%

ARM11 DSP GFX
accelerator

SDRAM
controller

SRAM

IVA
System
DMA

Display
controller

Memory
scheduler L4 IC

Periphe-
rals

L3 interconnect

Fig 9. Block diagram of the structure of OMAP2 SoC. Gray boxes in the connec-
tions denote that the link has both master and slave ports.

4.2 OMAP2-based platforms

OMAP2 is a newer, more complex multiprocessor SoC than OMAP1 and contains a
faster ARM CPU and DSP. It has a hierarchical multi-level interconnect and several
hardware accelerators, including 2D and 3D graphics (GFX) and video (IVA) accelerators
(Figure 9). It has been used as the execution platform for two ABSOLUT case studies
about Quake 2 gaming and virtual network computing (VNC).

4.2.1 Quake 2 gameplay

The Quake 2 3D game (Quake 2) was modelled in this case study. The purpose of the
study was to evaluate the capability of a future mobile device based on the OMAP2

71

platform in executing a contemporary 3D PC game. The Quake2 game was modelled
and simulated with two different display sizes and frame rates.

Quake2 consists of three main modules: game core, audio and OpenGL graphics
functionality, which were mapped to the ARM, DSP and graphics accelerator, respec-
tively. The workload models were mostly based on the source code of Quake2; however,
the models of OpenGL API functions were based on profiling data.

The utilisation of each component in OMAP2 was obtained with both display
resolutions and frame rates. The simulations indicated that only the high resolution and
high frame rate combination would be problematic for the platform with the graphics
accelerator and SDRAM memory limiting the system performance. However, the clock
frequencies of the components used in the simulations turned out to be lower than what
was available in final OMAP2420 and OMAP2430 SoCs. It was not possible to measure
the performance of Quake 2 on OMAP2 for comparison purposes since OMAP2 was
still in development at the time of the study.

4.2.2 Virtual network computing

Virtual Network Computing (VNC) is a remote controlling software which allows to
view and fully interact with a VNC server. In this use case, the VNC viewer program is
executed on a mobile terminal (Figure 10) for internet browsing. The platform consists
of an OMAP2-based computer with Linux OS, touch screen, buttons, sound, USB 2.0,
microSD, WLAN wireless networking, and bluetooth connectivity. Workload models
were created by extracting the load of the RealVNC application using analytical and
source code-based techniques.

The system model was instrumented to extract the ARM CPU load, average frame
rate, and average network traffic achieved in the simulations. For validation purposes
a VNC application was executed on TI OMAP2430 SDP development board and
corresponding information was measured from the platform. The simulation results were
quite close to the results from the measurements: The load of the ARM11 CPU was
underestimated in the simulations by about 15%, whereas the frame rate and network
traffic were overestimated by about 11% and 14%, respectively (Table 7).

The WLAN connection to the server was found to be the main reason for the
relatively low utilisation of the components in the platform. In order to find out, how
the platform would cope in the same use case with an ideal network, the models were
modified accordingly. According to the simulations, the platform would have achieved

72

Mobile Terminal Handset

Wifi

Mobile Terminal Server

Web Services ServerMobile Terminal Handset

Wifi

Mobile Terminal Server

Web Services Server

Fig 10. Mobile VNC terminal concept. (Kreku et al. (2008a))(©2008 IEEE).

Table 7. Comparison of simulation and measured results for OMAP2-based plat-
forms.

Simulation, S Measurement, M Error, E

VNC use case CPU load 9.2 % 10.8 % 15%
VNC use case FPS 6.0 5.4 11%
VNC use case network traffic 179 kB/s 157 kB/s 14%

ten-fold increase in frame rate, at which point the CPU and display controller would
have been at the limit of their performance.

4.3 Intel Core i7-based personal computer platforms

Intel Core i7 975 (Intel Nehalem Microarchitecture) is a 3.33 GHz CPU for high-end
personal computers and workstations. It contains eight logical processor cores divided
into four physical and four virtual cores. Each physical core contains independent L1
and L2 caches, and the processor has a shared L3 cache in addition. Integrated memory
controller handles accesses to external SDRAM memories.

Saastamoinen et al. (2011) models a network traffic analysis application, which
monitors internet traffic to ensure quality of service and to detect intrusions and other
malicious activities. The application is multi-threaded with POSIX threads and runs as a

73

deamon in the Linux operating system. The ABSINTH tool was used to model the
application from the source code and the pthread threading library was modelled as
services on the Intel Core i7 platform model. Processor utilisation for each virtual and
physical core was obtained from simulations. It was noticed that mutex locking between
the application threads was causing one of the threads to be starved for execution time.

Saastamoinen & Kreku (2011) uses the ABSOLUT approach and the ABSINTH1,
ABSINTH2 and SAKE tools to model parallel application kernels for the same Core i7
platform. The kernels include fibonacci sequence calculation, sparse matrix manipulation,
and multi-threaded matrix multiplication.

4.4 Future platforms

These case studies represent examples, where ABSOLUT has been used to evaluate the
performance of complex future platforms.

4.4.1 Distributed mobile video player

In the mobile video player (MVP) case example, a mobile terminal user wants to view
a movie on the device and selects one from a list of movies available on the mobile
terminal (Kreku et al. (2009)). The execution platform provides services for storing and
playing of movie files.

The platform in the mobile video player case consists of four heterogeneous
subsystems (Figure 11):

1. General purpose (GP) subsystem, which is used for executing an operating system
and generic applications and services

2. Image (IM) subsystem, which accelerates image and video processing
3. Storage (ST) subsystem, which contains a repository for video clips
4. Display (DP) subsystem, which takes care of displaying the device UI and video.

The subsystems are interconnected by a network using a ring topology. Major parts
of the activity in the MVP case study are modelled as services in the platform model.
The workload model of the MVP application utilises those services to display a list of
video files to the user of the system and then initiates playback of a user-selected file. A
generic background load was added to the GP subsystem to model the execution of other
applications in the system.

74

ARM11
(1)

ARM11
(2)

SDRAM Network
IF

Bus

General purpose (GP) subsystem

ARM7
Video
accel

SRAM
Network

IF

Bus DMA

Image processing (IM) subsystem

Network
IF

Context
SRAM

Storage
SRAM ARM7

BusDMA

Storage (ST) subsystem

Network
IF SRAM

Display
IFARM7

Bus DMA

Display (DP) subsystem

Router Router

RouterRouter

Fig 11. The Mobile Video Player platform consists of four subsystems connected
via ring network (Modified from Kreku et al. (2007)).

The MVP application and the platform consisting of 27 components were modelled
with the ABSOLUT approach in less than a week. The system was successfully
simulated and potential performance bottlenecks were identified. The platform was able
to perform video playback without problems according to the simulations. However, it
was estimated that the video accelerator of the IM subsystem might not be powerful
enough for video recording, and increasing its clock frequency was proposed as a
solution.

4.4.2 Parallel WiMax SDR

This case study (Ieromnimon et al. (2011)) concentrated on the parallelisation of IEEE
802.16e PHY software implementation. Several parallelisations of sequential source
code were explored with IMEC MPA parallelisation tool (Mignolet et al. (2009)), and
their speed-ups were simulated with MPA high-level simulator. Based on the high-level

75

Router
(1, 1)

Router
(2, 1)

Router
(1, 2)

Router
(2, 2)

Node
(1, 1)

Node
(1, 2)

Node
(2, 1)

Node
(2, 2)

Fig 12. 2x2 mesh execution platform for the parallel WiMAX SDR application.

ARM
Network

IF

SDRAM SDRAM

DME

Fig 13. Block diagram of a node in the execution platform for the parallel WiMAX
SDR application.

simulator results the best parallelisations were chosen for more detailed evaluation with
ABSOLUT.

The platform for the application was a KTH McNoC (Millberg et al. (2004))
Network-on-Chip platform with either a 2x2 or 2x3 2D mesh configuration, the smaller
of which is displayed in Figure 12. All nodes in the mesh are alike and consist of an
ARM11 processor, Distributed shared Memory Engine (DME), SDRAM memory, and a
network interface (Figure 13). The DME (Lu et al. (2010)) provides distributed shared
memory accessing to the system by controlling the processors’ accesses to local private,
local shared and remote shared memory regions.

Execution time, utilisation, speedup, power consumption, and GIPS per Watt figures
were extracted from the system with ABSOLUT simulations. The obtained speedups
were lower than anticipated, and the utilisation values indicated that it resulted from
uneven load balancing. New parallelisations were created and simulated according to

76

feedback from ABSOLUT to solve the load balancing issue. According to Ieromnimon
et al. (2011), ABSOLUT and MPA together provided a 5-fold productivity improvement
compared to traditional design methods in the case study.

4.4.3 Parallel SDR sensing application

The application in this case study is the software implementation of the sensing algorithm
of cognitive radio in a Software Defined Radio (SDR) terminal (Aguirre & Candaele
(2011)). The terminal analyses the spectrum based upon 40 MHz bandwidth slices and
looks for a GSM transmission, which means that the parameters of 200 channels of
200 kHz each have to be extracted. Again, the sequential source code was parallelised
with MPA and the efficiency of the parallelisation was initially estimated with the MPA
high-level simulator.

The platform is related to the WiMAX study platform, but with a number of key
differences. The network is exactly the same KTH McNoC (Figure 12), but the number
of nodes varies from 2 to 54 depending on the parallelisation of the application. At most,
there were more than 300 components in the system. Each node has a custom ASIP
processor with two parallel execution units, the DME, two SRAM memory blocks, and
a network interface.

The execution time of the sensing algorithm, speedup compared to the sequential
version, GIPS / Watt and node utilisation figures were extracted from ABSOLUT
simulations. Next, energy-delay product was calculated from ABSOLUT results to
identify the most efficient parallelisation. Finally, the simulation results were validated
with instruction set simulation of the application using the Synopsys Processor Designer.
The comparison was performed only for the sequential version of the application since
the Processor Designer is not able to simulate the parallel systems. The execution time
given by ABSOLUT was 3.2% higher than the one given by Processor Designer.

77

78

5 Discussion

The goal of this thesis was to develop a novel approach for the performance evaluation
of future embedded systems. The requirements for the approach included that it needs to
be usable already in the early phases of the design flow, and that the results are accurate
enough for making design decisions based on them. The research hypothesis was that
by using workload models consisting of abstract instructions, the above goals could
be achieved. Furthermore, it was proposed that the load information for creating the
workload models could be extracted from several different sources, including application
specifications, traces, measurement data, and the source code.

5.1 Analysis of results

The results from the case studies in Chapter 4 prove that it is possible to do early-
phase system-level performance evaluation with non-functional workload models of
applications. This thesis presented nine case studies, where the ABSOLUT approach
was used to evaluate the performance of an embedded computer system. Many of the
case studies explored several application, execution platform or mapping alternatives.
The Quake 2, VNC, MVP, WiMax, and sensing application case studies were completed
before the execution platform of the case study had been developed. The mobile phone
usage case studies were performed before the applications were mature, and the MVP
case study without any application software at all.

Analytical, measurement-, trace- and source code-based workload modelling
techniques were developed for ABSOLUT and used in the case studies. Further
techniques could be developed based on what kind of data is available of the applications
for creating the models.

The analytical technique turned out to be useful for the early simulations since it can
be used once there is some kind of specification available about the work the application
does. This was demonstrated in the MVP case study. The analytical technique is best
suited for applications without an extensive amount of control, e.g. signal processing
applications, so that the modelling effort remains low. The models created with the
analytical technique can be replaced with more detailed measurement-, trace-, or
source code-based models for later simulations. They require that the application

79

or a reasonably similar application exists and its performance can be measured in
a resembling architecture, its execution can be traced, or it can be compiled in a
workstation. Those techniques can utilise a previous generation of the same application
or a different application developed for the same purpose as input. The complexity
of the workload models obtained can then be easily scaled upwards or downwards as
necessary.

The MVP case study also showed that the control part of the workload models can
be generated from existing UML application models, which enables reuse of design
models for performance evaluation and further reduces modelling effort. The workload
primitives could also be obtained if source code were first generated from the UML
models and then ABSINTH was used to create the workload models from the source
code. Another possibility would be to explicitly model the primitives in UML using e.g.
statechart diagrams.

The results of the case studies show that the complexity of the workload models
varies a lot depending on the technique used for creating the models. However, the
model complexity can be very low especially for models created using the analytical
technique. On the other hand, the complexity of models created from the application
source code approaches that of compiled, executable binaries. The abstractions used in
modelling the applications also reduce the complexity of the execution platform models:
The data paths of processing elements need not be modelled, hardware accelerators can
be modelled as black boxes providing services to the rest of the system, and the memory
models do not need to provide data storage. No data is moved in the transactions during
simulations.

The required modelling effort was low. A component model for the execution
platform can be created in one day from scratch, assuming that the user is familiar
with the ABSOLUT approach and the component to be modelled. In other words, it
takes more time to study the architecture of the component and obtain values for model
parameters than it takes to create the model itself. The subsystem and platform layers
of the execution platform models can be created in minutes or hours depending on
the complexity of the platform with the assistance of the COGNAC tool. However,
that does not include the time required for modelling subsystem- or platform-layer
services. The effort required by workload modelling depends on the chosen technique.
The analytical technique turned out to have the highest manual effort despite the lowest
detail level because automatic tools and scripts were developed for the other techniques.

80

For example, the ABSINTH tool was able to produce workload models as a part of
normal source code compilation flow.

Simulation speed depends on the complexity of the simulated system and the
simulation hardware. For example, the simulation of the mobile video player application
on a four-subsystem platform consisting of about 30 components took ten seconds
for one second of video playback. The workstation running the simulation was a
modern Linux PC with a Intel Core i7 processor. The workload models in the MVP
case study were hand-written models using the analytical technique. Automatically
generated models in other case studies were 2–5 times slower, partially due to higher
level of detail and partially due to the inefficiencies of the generated code. Simulation
speed was not compared to other simulation approaches due to the effort it would
have required. However, simulation speed is improved compared to cycle-accurate or
cycle-approximate instruction set simulation of a similar platform on the grounds of the
higher abstraction level used in ABSOLUT.

The absolute error percentages from the comparisons between ABSOLUT sim-
ulations and measurements or instruction set simulations in Chapter 4 are collected
in Table 8. The largest error was in the MCU load of the mobile phone use case 1,
25%. The smallest errors were with MP3 playback DSP load, DSP-accelerated MPEG4
encoding DSP load, and sensing algorithm execution time, which were all 3% or less.
The arithmetic average error of all cases is 12%±8%. According to Kogel et al. (2005)
an accuracy of 70–80% is enough for an architect’s view simulation approach, which
has been achieved.

Fidelity refers to the degree to which a model or simulation reproduces the state and
behaviour of a real application and/or platform. ABSOLUT concentrates on performance
only and does not simulate the functionality of the applications. Thus, the only potential
source of poor fidelity would be the statistical modelling of control on the application
side. Statistical control works well for applications, where data processing is dominating
the execution, which was shown in the parallel JPEG encoder case study. However, for
control-dominated applications, the control in the workload models may not always
follow the desired path, resulting to poor fidelity unless the simulation is repeated a
large number of times. Therefore, it is recommended to use deterministic control in the
workload models for best results.

81

Table 8. Error percentages of simulations in the case studies, which were vali-
dated with measurements in real systems.

Measurement Error, E

Mobile phone use case 1 MCU load 25%
Mobile phone use case 2 MCU load 19%
Mobile phone use case 2 DSP load 13%
MP3 playback DSP load 0%
All-MCU MPEG4 encoding FPS 11%
DSP-accelerated MPEG4 encoding FPS 24%
DSP-accelerated MPEG4 encoding DSP load 2%
VNC use case CPU load 15%
VNC use case FPS 11%
VNC use case network traffic 14%
Sensing algorithm execution time 3%
Average 12%
Standard deviation 8%

5.2 Theoretical and practical implications

ABSOLUT has proven to be an efficient approach for early phase performance evaluation
due to the various reasons referred to in the previous section. The abstractions used in
the approach work and ABSOLUT is a more general purpose approach than the other
virtual system or architect’s view approaches presented in Chapter 2. It is not limited to
any specific application field or platform type. It does not require the execution time for
(parts of) the application models as input, which would result to the problem of how to
obtain those execution times. Instead of proprietary models, ABSOLUT uses an IEEE
standard modelling language, SystemC, and models based on the TLM standard and
common OCP protocols. Even if interoperability with other modelling approaches is not
straightforward as a result of different abstractions, due to compliance with standard
interfaces, it is at least possible to achieve.

The case studies performed with ABSOLUT confirm the claims of Kogel et al.

(2005) with respect to architect’s view: More accurate results are produced than by fast,
i.e. loosely-timed, programmer’s view approaches. Furthermore, less modelling effort is
required compared to PV or VV approaches due to lower level of detail in the models.
ABSOLUT, however, is not the Swiss army knife of simulation approaches. It is capable

82

of filling a slot between more coarse-grained early evaluation techniques and more
accurate methods able to simulate the functionality of applications. It is a useful part of
a design flow, not the entire design space exploration or design flow by itself.

One very beneficial property of a virtual system-based approach turned out to be
the ease of constructing models of very large platforms and getting the simulations
running. For example, the largest variant of the platform used in the sensing application
case study had 54 subsystems with more than 300 components in total. The extra
effort required by this platform in comparison to the smaller variants consisted of
writing larger configuration files for the COGNAC platform model generator and for the
parameters of each component in the platform. A much larger effort is required to set up
a functionally-correct virtual platform model of a similar platform. Evaluation speed
has been fast enough in the case studies presented in this thesis. However, it needs to
be further improved to combat the ever-increasing complexity of the future systems.
Partially, it can be achieved with optimisations of models, but also the abstraction level
still needs to increase in the future.

Creating a platform model with ABSOLUT requires only proper documentation of
the components and subsystems of the platform. A block diagram of the architecture
showing the components and their connections is needed as well as values for capacity
parameters like clock frequency, data width, etc. In practice, however, obtaining the
documentation can be very difficult. Often, the documentation, which reveals the
required amount of detail, is not publicly available, and some kind of leverage is needed
to obtain the documentation from the vendor of the component or platform. One partial
solution to the problem is to have a large model library so that extensive design space
exploration can be performed without resorting to creating new component models.
The values for statistical performance parameters, which include CPI and cache hit
probability parameters for processors, can be obtained by executing the application in an
instruction set or cache simulator, respectively. In the worst case, typical values for the
processor for a generic workload can be used instead at the cost of accuracy.

Even if both application and platform models are simple, there is a relatively high
learning curve with ABSOLUT. The concept of simulating non-functional workload
models may be difficult to grasp initially. People expect to use ABSOLUT simulations
for software development even if it was designed for performance evaluation purposes.
It was also noticed that people that only run simulations without developing models
themselves may not trust the simulation results when they do not concretely see
what is going on in the simulations. This problem could be alleviated by developing

83

service models that provide a partial, selective functionality for the workload models of
applications. For example, a printf service model could be developed to print the same
strings to standard output as the real C library implementation would.

There are two important drawbacks with ABSOLUT currently, one theoretical and
one practical. The workload modelling techniques presented in Section 3.1.2 are not
able to produce accurate memory addresses to workload models currently. Thus, it is
difficult to model address-dependent behaviour in the memory hierarchy accurately, and
the platform models in the case studies used statistical models of caches, for example.
This is an interesting topic for future work, which will be elaborated on in Section 5.4.

The second drawback is the lack of special support for debugging. The normal
means for debugging provided by SystemC, C++ and software tools are of course usable
with ABSOLUT. However, earlier in this chapter it was mentioned that studying the
architecture of a component typically takes more time than modelling it. The same
applies also for the debugging of the model. Even if a model works correctly in one
case study, it does not mean that it will do so in all the corner cases. If a simulation
stops unexpectedly, it can be very hard to find out, what was the original cause for
the stop. For example, additional support for tracking of transactions in the models
and visualisation of the inner workings of the platform model would help alleviate the
problem.

The target user for ABSOLUT is a platform developer interested for developing
new platforms or extracting more performance from existing platforms, an application
developer concentrating on performance issues with ABSOLUT and using other means
for evaluating functionality, or a system developer exploring applications, platforms or
mappings. For adoption by the target users, ABSOLUT needs improvement also in ease
of use. The existing tools are at proof-of-concept level, and there are no graphical user
interfaces for modelling, configuration or simulation. More automation is needed so that
performance evaluation with ABSOLUT can be better integrated with the normal design
flow instead of being a separate effort.

5.3 Reliability and validity

An extensive set of case studies have been modelled to expirement with the ABSOLUT
approach. The applications in the case studies are from different fields including
multimedia, gaming and networking. Two of the case studies, WiMax software radio and
GSM sensing application, were performed by third parties not involved in ABSOLUT

84

development. The studies showed that differences between simulation results and
measurements made with the same applications in a real platform were rather low,
reaching an average of 12%. The error percentages were in the same ballpark in each
case, resulting to a standard deviation of 8%. However, the case studies are only
snapshots that show a trend. They do not rule out that the error could not be higher than
what can be considered acceptable for early evaluation in a particular case study. Much
of the data obtained from simulations can not be verified simulations due to immaturity
of software and hardware for performing the measurements and lack of visibility in the
hardware.

5.4 Recommendations for future work

Currently, ABSOLUT operates at a single abstraction level on the platform side, whereas
on the workload side, the analytical technique can be considered to produce models at a
higher abstraction level than the other techniques. Incorporation of consistent support
for higher abstraction level simulation would be useful for even earlier evaluation and
for assisting with the evaluation of even more complex systems. At the same time,
improved accuracy would be beneficial for the later stages of the design flow. This
could be achieved by taking the data paths of processing elements into account with
static estimation techniques like in Kreku & Soininen (2003), or by supporting also
instruction set simulation. ABSOLUT could implement a full design exploration flow
with support for models at various abstraction levels and additional tools implementing
design space exploration algorithms like a number of the approaches presented in
Chapter 2. Integrated support for the calibration (Pimentel et al. (2008)) of the statistical
parameters of the platform model would help increase the accuracy of the results.

A more difficult research problem is how to get accurate address information
to workload models, which would enable more accurate modelling of the memory
hierarchy. Currently, the various workload modelling techniques do not provide means
for obtaining the addresses automatically. The designer has to map parts (code and
data for basic blocks, functions, processes, etc) of application to one of the memory
components of the platform. In other words, memory addresses are considered only at
the block level. ABSINTH could be extended to produce addresses during compilation
or run-time; however, an open question is what could be done with the other workload
modelling techniques to resolve the problem.

85

Improving the accuracy of the approach is difficult if it is not known, where the
errors come from. The case studies presented in Chapter 4 are not able to quantify,
whether the majority of the errors results from the abstractions in the workload or
platform models. More experiments where combinations of applications and platforms
are simulated and measured are required in the future.

Simulation speed has been adequate for the case studies but could be improved for
faster exploration and evaluation of very complex systems. Transforming the models
in the ALE library from TLM 1.0 to 2.0 is one potential way to enhance evaluation
speed. Another is to eliminate bottlenecks from the models. For example, currently the
workload primitives are implemented as function calls as shown in Section 3.1.1, which
results to a considerable number of function calls during simulation. This could be
optimised by passing basic blocks or entire functions at once from the workload models
to the platform model. There are further bottlenecks especially in the ABSINTH2-
generated models, which utilise run-time parsing of trace and XML files. This could be
moved offline to speed up simulation. Adoption of a parallel SystemC kernel, which has
been research for example in Cox (2005), Chopard et al. (2006), Ezudheen et al. (2009),
would allow utilising the performance of contemporary workstations more efficiently. A
more research-oriented problem would be to explore how to reach higher abstraction
levels without sacrificing accuracy of the results.

86

6 Introduction to papers

This thesis includes nine scientific publications about the ABSOLUT performance
evaluation approach. Paper I is a research arcticle published in an open access journal,
whereas Papers II and III are book chapters. The rest of the papers have been published
in conference proceedings. Jari Kreku is the first author of each included publication
and they are mostly based on his research work.

Table 9 shows, how the description of the modelling approach is distributed to
the publications. Kreku et al. (2008b) presents the overall ABSOLUT approach as it
was at the beginning of 2008. Kreku et al. (2009) adds more details to the interfaces
used in the workload and platform models and to the modelling of services. Kreku &
Tiensyrjä (2011) expands ABSOLUT for system-level power simulation by utilising the
performance probes in combination with component-level power consumption input.
The analytical workload modelling technique is first presented in Kreku et al. (2008b),
the measurement-based technique in Kreku et al. (2004b), manual source code-based
technique in Kreku et al. (2004a) and automatic source code- / compiler-based technique
in Kreku et al. (2010). Kreku et al. (2005) presents an initial technique to create
workload models from UML application models, which is then improved on in Kreku
et al. (2007, 2008a).

Table 10 reveals, which case studies are presented in each publication. The case
studies are used to demonstrate that the ABSOLUT approach can be used to evaluate
performance at the system level before implementations of applications and/or platform
exist. The results from a number of the case studies are verified by comparing them
to measurements obtained by executing the same applications in a real platform. The
mobile video player case study is shown in Kreku et al. (2008b, 2009, 2007, 2008a).
The parallel JPEG encoding study is depicted in Kreku et al. (2010), Kreku & Tiensyrjä
(2011). Mobile phone usage scenarios can be found from Kreku et al. (2004b), Quake 2
gaming case study from Kreku et al. (2004a), and MPEG4 encoding case study from
Kreku et al. (2005). Finally, Kreku et al. (2008a) contains the virtual network computing
case study.

87

Table 9. Description of the ABSOLUT modelling approach in the publications.

No Publication
Modelling approach

Platform Workload

Perf1 Pwr2 A3 M4 T5 S6 U7

I Kreku et al. (2008b) x x x x x
II Kreku et al. (2009) x x
III Kreku & Tiensyrjä (2011) x x x
IV Kreku et al. (2004b) x x
V Kreku et al. (2004a) x x
VI Kreku et al. (2010) x
VII Kreku et al. (2005) x
VIII Kreku et al. (2007) x
IX Kreku et al. (2008a) x

1 Performance modelling
2 Power modelling
3 Analytical technique
4 Measurement-based technique
5 Trace-based technique
6 Source code-based technique
7 UML front-end for workload modelling

6.1 Combining UML2 Application and SystemC Platform
Modelling for Performance Evaluation of Real-Time
Embedded Systems

Paper I presents a detailed overview on the ABSOLUT performance evaluation approach.
The modelling approach is presented starting from the Y chart and continuing to the
workload modelling of applications with UML and SystemC and capacity modelling of
platforms with SystemC. UML to SystemC workload model transformation utilising
Telelogic Tau and the SystemC generator developed by the Lund University is also
presented, which results to a pure SystemC-based system model. The layering of
the workload and platform models is shown in addition to the primitive and service
interfaces between the workload and platform models. Of the load extraction techniques
presented in this thesis, the analytical and measurement-based techniques are included
in Paper I. It also presents the initial developments towards the automatic source

88

Table 10. Case studies presented in the publications.

No Publication
Case studies

M8 J9 P10 Q11 M12 V13

I Kreku et al. (2008b) x
II Kreku et al. (2009) x
III Kreku & Tiensyrjä (2011) x
IV Kreku et al. (2004b) x
V Kreku et al. (2004a) x
VI Kreku et al. (2010) x
VII Kreku et al. (2005) x
VIII Kreku et al. (2007) x
IX Kreku et al. (2008a) x x

8 Mobile video player
9 Parallel JPEG encoding

10 Mobile phone usage
11 Quake 2 gaming
12 MPEG4 encoding
13 Virtual network computing

code-based workload model generation. Finally, the Mobile Video Player case study is
used as an example.

Jari Kreku designed the overall ABSOLUT workload and platform modelling
approach, developed the platform models used in the paper, and performed the MVP
case study simulations. The layering of the models was created in collaboration with
Kari Tiensyrjä. The measurement-based load extraction technique was developed in
collaboration with Jani Penttilä and Tarja Kauppi.

6.2 Application Workload and SystemC Platform
Modeling for Performance Evaluation

Paper II extends Paper I with a more detailed description of how the workload and
platform models are created through a thorough presentation of the MVP case study.
The modelling of services is emphasised, and the utilisation of components in a model
library for the platform model is shown. Finally, more detailed results from the MVP
case study are displayed. The main contributions by Jari Kreku to this paper are the

89

design of the ABSOLUT approach, implementation of the platform models for the case
study, performing the simulation, and analysing the results.

6.3 Scalable Multi-core Architectures: Design
Methodologies and Tools, chapter System
Exploration

Paper III presents ABSOLUT as the system-level performance and power evaluation
tool of the Mapping Optimisation of Scalable Multi-core Architectures (MOSART)
design flow. The application modelling is presented in detail, including layers, base
classes for application, process and function workload models of the ALE model library,
and methods of the base classes. In the MOSART flow, input to the workload modelling
is the parallel C/C++ source code from the IMEC MPA parallelisation tool. Thus the
ABSINTH workload model generator and the interface between MPA and ABSOLUT
are also presented.

The main extension presented by the Paper III to ABSOLUT is the power and
energy consumption modelling and simulation at the system level. It is based on
component-level power consumption input and extension of the performance probes to
support recording of power consumption states of components. Mapping of workload
models to platform models, interfaces provided by the operating system model for
process control and service registration and model parameters are also shown in such a
detail not found in the other publications. The link between MPA and ABSOLUT and
the performance and power simulation is demostrated with the JPEG case study in this
paper.

Jari Kreku developed the ABSOLUT approach, the ABSINTH tool, the link between
the MPA and ABSOLUT tools and the JPEG case study simulation models. The power
and energy consumption modelling and simulation was developed in collaboration with
Kari Tiensyrjä.

90

6.4 Workload simulation method for evaluation of
application feasibility in a mobile multiprocessor
platform

Paper IV is the first publication of the ABSOLUT approach. It describes the contents of
workload and platform models at a conceptual level. A systematical method for creating
workload models from existing measurement data of several independent applications
and combining them for the simulation of a complex use case is presented.

The ABSOLUT approach is applied to three case examples: The first one consists of
MP3 playback as performed by the DSP coprocessor of the OMAP1510 application
platform engine. An MP3 decoder is modelled manually from the source code, and a
capacity model of the OMAP1510 is created. The combined system model is simulated,
and then the results are compared to measurements made from the same application
running in an OMAP prototype. The second and third case examples utilise several
typical mobile handset applications sequentially and concurrently, including text and
multimedia messaging, MP3 playback, and bluetooth download, among others. These are
modelled using the presented measurement-based approach from individual applications.
Finally, the results obtained from the simulations are compared to the measurements
made of the entire use cases.

Jari Kreku designed the overall ABSOLUT workload and platform modelling
approach, developed the source code-based load extraction technique, implemented the
OMAP1510 and MP3 player models, and performed the simulations. The measurement-
based load extraction technique was developed in collaboration with Jani Penttilä and
Tarja Kauppi.

6.5 Evaluation of Platform Architecture Performance
using Abstract Instruction-level Workload Models

Paper V extends Paper IV by providing more detailed descriptions of both workload and
platform models. It elaborates how time is simulated in the different component types
of the platform side, i.e. processing unit, interconnection, and memory or peripheral
models. An initial hierarchy for workloads is also presented. In this paper they consist of

1. workloads for each individual processing unit
2. workload subsets

91

3. workload functions
4. load primitives.

The hierarchy and naming of the upper layers is refined in later papers. Furthermore, a
manual method for modelling of applications from the source code is presented. This
method is applied for the modelling of the Quake 2 3D game for a modified OMAP2410
platform.

Jari Kreku designed the overall ABSOLUT workload and platform modelling
approach, developed the source code-based load extraction technique, implemented
the OMAP2410 model, and performed the simulations. The original layering of the
workload models was created in collaboration with Tarja Kauppi.

6.6 Automatic workload generation for system-level
exploration based on modified GCC compiler

Paper VI contributes the ABSINTH automatic source code-based workload modelling to
the ABSOLUT approach. It is based on two compilation passes inserted in the open
source GCC compiler, one for generating the control flow of workload models and
another for extracting the load primitives. The version presented in the paper generates
only statistical control for the models with the help of profiling data from application
execution. ABSINTH generates SystemC code, which can be used as workload models
in ABSOLUT simulations after a postprocessing step. The first version of the JPEG
encoder case study consisting only of the performance simulation is presented in this
paper. The simulation results provided by ABSOLUT are compared to those obtained
from MPA high-level simulation. ABSINTH is further applied to an x264 video encoder
case study. The workload model generation technique used in ABSINTH and the
implementation of the tools were done by Jari Kreku.

6.7 Exploitation of UML 2.0-Based Platform Service
Model and SystemC Workload Simulation in MPEG-4
Partitioning

This publication contains the first experiments with modelling applications with UML.
As a prerequisite the workload platform interfaces of the ABSOLUT approach were
described in UML. In the modelling approach presented in this paper, the structure of

92

the workload, including functions, control flow, and load primitives, is expressed in the
UML-based model. The load primitives are implemented as calls to the aforementioned
interfaces. Then, a UML to C++ generator is used to transform it to SystemC. Unfortu-
nately this requires that essential parts of the SystemC like the sc_module class are also
expressed in the UML model for the C++ generator to work correctly. The case example
in the paper consists of evaluating the partitioning of an MPEG4 encoder to OMAP5912
platform with ABSOLUT. Three alternatives were examined: In the first one, everything
is executed on the OMAP5912’s ARM CPU. In the second one, the discrete cosine
transform (DCT) is accelerated by the DSP. Finally, in the last one, both the DCT and
the sum of absolute differences (SAD) algorithms are accelerated by the DSP.

Jari Kreku developed the overall ABSOLUT approach, the technique for UML-based
workload modelling used in the paper, and the OMAP platform model. Validation of the
results obtained from simulations was performed by Matti Eteläperä for his diploma
thesis. This effort consisted of porting the open source FFMPEG encoder to OMAP5912
Starter Kit and executing it while monitoring its performance. Simulations, comparisons
to measurements and analysis were performed by Jari Kreku.

6.8 SystemC Workload Model Generation from UML for
Performance Simulation

Paper VIII presents an improved UML front-end for workload modelling compared to
Paper VII. Existing, unmodified UML class and statechart diagrams are automatically
transformed to SystemC by utilising Telelogic Tau and a SystemC generator developed
by the Lund University. A flow to get a combined SystemC-based system model from
UML-based workload models and a SystemC-based platform model is presented. The
mobile video player case study is used as an example to demonstrate the concept.
The main contributions by Jari Kreku to the research in this paper include the overall
ABSOLUT approach and the linking of the SystemC code generated from UML with
the platform models, the latter of which was done in collaboration with Mika Hoppari at
VTT and Per Andersson at the Lund University. Jari Kreku implemented the platform
models, performed the simulations and analysed the results.

93

6.9 Application–Platform Performance Modeling and
Evaluation

Paper IX extends Paper VIII with the description of the low-level workload primitive
interface and high-level service interface between application and platform models.
Furthermore, the UML-based workload modelling front-end is experimented with the
VNC case study, where a mobile handset is used for internet browsing through a VNC
server. Jari Kreku contributed the overall ABSOLUT approach and supported Tuomo
Kestilä with the modelling and simulation of the VNC case for his diploma thesis.

94

7 Conclusions

Performance evaluation is used in the design of embedded systems to compare alternative
platforms and find the best one, to search for the best application out of several for a
given platform, and to design a new system, platform, or application. Evaluation aims at
obtaining the highest possible performance of the system under development with the
least amount of cost. However, studies have shown that application complexity has a
superlinear, quadratic growth, and also the number of components in execution platforms
and the number of transistors in each component is increasing. As a consequence,
enormous system complexity can be realised on a single die, but novel methods and
tools are needed to alleviate the resulting system evaluation complexity problem.

Performance evaluation approaches are divided into analytical, simulation and
measurement categories. Analytical approaches require simplifications and assumptions
resulting to low accuracy. On the other hand, measurements are not suitable for early
evaluation since they require that the system is available and mature enough for the
execution of the applications. Simulation approaches can be further divided into virtual
system, virtual platform, and virtual prototype approaches. The virtual platform and
prototype approaches simulate executable application binaries using instruction set
simulators in a platform model with a high and low abstraction level, respectively. The
virtual system approaches combine abstract application and platform models making
them particularly well suited for early evaluation.

The ABSOLUT performance evaluation approach presented in this thesis aims at
low modelling effort through proper abstractions to solve the complexity problem while
maintaining enough accuracy for reliable evaluation results. Applications are modelled
as layered workload models ultimately consisting of abstract, instruction-like workload
primitives. Several techniques have been developed to create the workload models
from information sources such as application specifications, execution traces, or source
code. As application functionality is abstracted, the complexity of execution platform
models is also reduced, especially with respect to the processing elements. A platform
model can be rapidly constructed from components in a model library with the help of a
platform generation tool. The virtual system model constructed by allocating workload
models on top of the platform components is simulated using the SystemC simulation
kernel and models based on the TLM standard. Performance data, for example processor

95

utilisation, is extracted from simulations by instrumenting the workload and or platform
models with custom performance probes.

ABSOLUT has been applied to nine case studies in this thesis. Applications have
been modelled from different fields including audio video playback and recording,
communication and gaming. All the workload modelling techniques presented in the
thesis have been utilised in the case studies. The modelled execution platforms have
included contemporary embedded system and workstation platforms, future embedded
platforms under development, and even custom, complex future platforms have been
invented and then explored with ABSOLUT. Whenever possible, the simulation results
have been validated with measurements from real applications in a real platform. The
experiences and results from the case studies prove that ABSOLUT is suitable for early
performance evaluation and that low modelling effort, reasonable simulation speed and
accurate results have been achieved.

The workload modelling techniques presented in the thesis are not able to extract
accurate address information for the models in their current form. Thus, certain parts
of the memory hierarchy, for example caches, need to be modelled statistically in
the execution platform models. Finding a solution to the address problem is seen as
one challenging research problem for the future work. ABSOLUT could be further
expanded with support for multiple abstraction levels both in application and in platform
sides. Higher-level models would provide faster evaluation for design space exploration,
whereas the more detailed lower-level models would provide more accuracy and
reliability for the later phases of the design flow.

96

References

Aguirre S & Candaele B (2011) Scalable Multi-core Architectures: Design Methodologies and
Tools, chapter MPSoC Performance Analysis for Cognitive Radio Applications. Springer.

Apvrille L, Muhammad W, Ameur-Boulifa R, Coudert S & Pacalet R (2006) A uml-based
environment for system design space exploration. Proc. Electronics, Circuits and Systems,
2006. ICECS’06. 13th IEEE International Conference on, IEEE, 1272–1275.

Baghdadi A, Zergainoh N, Cesario W & Jerraya AA (2002) Combining a performance estimation
methodology with a hardware/software codesign flow supporting multiprocessor systems.
IEEE Transactions on software engineering 28(9): 822–831.

Baghdadi A, Zergainoh N, Cesario W, Roudier T & Jerraya AA (2000) Design space exploration
for hardware/software codesign of multiprocessor systems. Proc. 11th International Workshop
on Rapid System Prototyping (RSP), 8–13.

Balarin F (1997) Hardware-software co-design of embedded systems: the POLIS approach.
Springer Netherlands.

Balarin F, Watanabe Y, Hsieh H, Lavagno L & Passerone C (2003) Metrpolis: an integrated
electronic system design environment. IEEE Computer 36(4): 45–52.

Beltrame G, Bolchini C, Fossati L, Miele A & Sciuto D (2008) Resp: A non-intrusive transaction-
level reflective mpsoc simulation platform for design space exploration. Proc. Proceedings of
the 2008 Asia and South Pacific Design Automation Conference.

Beltrame G, Sciuto D & Silvano C (2007) Multi-accuracy power and performance transaction-level
modeling. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
26(10): 1830–1842.

Beltrame G, Sciuto D, Silvano C, Paulin P & Bensoudane E (2006) An application mapping
methodology and case study for multi-processor on-chip architectures. Proc. 2006 IFIP
International Conference on Very Large Scale Integration, Citeseer, 16–18.

Bobrek A, Pieper J, Nelson J, Paul J & Thomas D (2004) Modeling shared resource contention
using a hybrid simulation/analytical approach. Proc. Proceedings of the Design, Automation
and Test in Europe, 1144–1149.

Buck J, Ha S, Lee EA & Messerschmitt DG (1992) Ptolemy: A framework for simulating and
prototyping heterogeneous systems. Technical report, University of California, Department of
Electrical Engineering and Computer Science.

Cadence Virtual System Platform (2011) Available at
http://www.cadence.com/products/sd/virtual_system/pages/default.aspx.

Calvez J, Heller D & Pasquier O (1996) Uninterpreted co-simulation for performance evaluation
of hw/sw systems. Proc. 4th International Workshop on Hardware/Software Co-Design,
Pittsburgh, Pennsylvania, USA, 132–139.

Calvez J & Pasquier O (1998) Performance monitoring and assessment of embedded hw/sw
systems. Design Automation for Embedded Systems 3(1): 5–22.

Calvez J, Pasquier O, Isidoro D & Jeuland D (1994) Codesign with the mcse methodology. Proc.
Proceedings of the 20th EUROMICRO Conference, 19–26.

Chaoui J, Cyr K, de Gregorio S, Giacalone JP, Webb J & Masse Y (2001) Open multimedia
application platform: Enabling multimedia applications in third generation wireless terminals
through a combined risc/dsp architeture. Proc. Proceedings of the Acoustics, Speech and

97

Signal Processing (ICASSP) conference, 2: 1009–1012.
Chopard B, Combes P & Zory J (2006) A conservative approach to systemc parallelization.

Computational Science–ICCS 2006 653–660.
CMake (2011) Cross platform make website. Available at http://www.cmake.org.
CoFluent (2011) Cofluent design website. Available at http://www.cofluentdesign.com.
Cox D (2005) Ritsim: Distributed systemc simulation. Master’s thesis, Rochester Institute of

Technology .
de Kock EA, Essink G & Smits WJM (2000) Yapi: application modeling for signal processing

systems. Proc. Proceedings of the 37th Design Automation Conference (DAC’00), Los
Angeles, California, USA, 402–405.

Debian Counting (2011) Available at http://libresoft.dat.escet.urjc.es/debian-counting/.
Deshpande A & Riehle D (2008) The total growth of open source. Proc. Proceedings of the

Fourth Conference on Open Source Systems, Springer-Verlag, 197–209.
DistroWatch.com (2011) Debian gnu/linux. Available at

http://distrowatch.com/table.php?distribution=debian.
Donlin A (2004) Transaction level modeling: flows and use models. Proc. Proceedings of the

2nd IEEE/ACM/IFIP international conference on Hardware/software codesign and system
synthesis, ACM, 75–80.

Eker J, Janneck J, Lee E, Liu J, Liu X, Ludvig J, Neuendorffer S, Sachs S & Xiong Y (2003)
Taming heterogeneity-the ptolemy approach. Proceedings of the IEEE 91(1): 127–144.

European EDA Roadmap (2009) CATRENE. 352 p.
Ezudheen P, Chandran P, Chandra J, Simon B & Ravi D (2009) Parallelizing systemc kernel for

fast hardware simulation on smp machines. Proc. Principles of Advanced and Distributed
Simulation, 2009. PADS’09. ACM/IEEE/SCS 23rd Workshop on, IEEE, 80–87.

Fornaciari W, Sciuto D, Silvano C & Zaccaria V (2001) A design framework to efficiently
explore energy-delay tradeoffs. Proc. Ninth International Symposium on Hardware/Software
Codesign (CODES), 260–265.

Fornaciari W, Sciuto D, Silvano C & Zaccaria V (2002) A sensitivity-based design space
exploration methodology for embedded systems. Design Automation for Embedded Systems
7(1–2).

GCC (2011) The gnu compiler collection website. Available at http://gcc.gnu.org.
Grötker T (2002) System Design with SystemC. Kluwer Academic Publishers. 240 p.
Heidelberg P & Lavenberg S (1984) Computer performance evaluation methodology. IEEE

Transactions on Computers .
Hylands C, Lee E, Liu J, Liu X, Neuendorffer S, Xiong Y, Zhao Y & Zheng H (2003) Overview

of the ptolemy project, techreport ucb/erl m03/25, department of electrical engineering and
computer science. University of California, Berkeley .

Ieromnimon F, Kritharidis D & Voros NS (2011) Scalable Multi-core Architectures: Design
Methodologies and Tools, chapter Application of the MOSART Flow on the WiMAX
(802.16e) PHY Layer. Springer.

Intel Nehalem Microarchitecture (2009) First the tick, now the tock: Intel microarchitecture
(nehalem) white paper. Available at http://www.intel.com/technology/architecture-silicon/next-
gen/319724.pdf.

ITRS (2009) International technology roadmap for semiconductors. Available at
http://www.itrs.net/Links/2010ITRS/Home2010.htm.

98

Jaber C, Kanstein A, Apvrille L, Baghdadi A, Moenner PL & Pacalet R (2009) High-level system
modeling for rapid hw/sw architecture exploration. Proc. IEEE/IFIP International Symposium
on Rapid System Prototyping (RSP ’09), Paris, France, 88–94.

Jain R (1991) The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation and Modeling. John Wiley & Sons, Inc. 685 p.

Kangas T, Kukkala P & Orsila H (2006) Uml-based multiprocessor soc design framework. ACM
Transactions on Embedded Computing Systems 5(2): 281–320.

Kangas T, Riihimaki J, Salminen E, Kuusilinna K & Hamalainen T (2003) Using a communica-
tion generator in soc architecture exploration. Proc. System-on-Chip, 2003. Proceedings.
International Symposium on, IEEE, 105–108.

Kienhuis B, Deprettere E, Vissers K & Van Der Wolf P (1997) An approach for quantitative
analysis of application-specific dataflow architectures. Proc. Application-Specific Systems,
Architectures and Processors, 1997. Proceedings., IEEE International Conference on, IEEE,
338–349.

Koch S (2007) Software evolution in open source projects — a large-scale investigation. Journal
of Software Maintenance and Evolution: Research and Practice 361–382.

Kogel T, Haverinen A & Aldis J (2005) Ocp tlm for architectural modeling. Technical report,
OCP-IP.

Kreku J, Eteläperä M & Soininen JP (2005) Exploitation of UML 2.0-based platform service
model and SystemC workload simulation in MPEG-4 partitioning. Proc. International
Symposium on System-on-Chip Proceedings, 167–170.

Kreku J, Hoppari M, Kestila T, Qu Y, Soininen J & Tiensyrja K (2008a) Application-platform
performance modeling and evaluation. Proc. Specification, Verification and Design Languages,
2008. FDL 2008. Forum on, IEEE, 43–48.

Kreku J, Hoppari M, Kestilä T, Qu Y, Soininen JP, Andersson P & Tiensyrjä K (2008b) Combining
uml2 application and systemc platform modelling for performance evaluation of real-time
embedded systems. EURASIP Journal on Embedded Systems .

Kreku J, Hoppari M, Kestilä T, Qu Y, Soininen JP & Tiensyrjä K (2009) Languages for Embedded
Systems and their Applications, volume 36 of Lecture Notes in Electrical Engineering,
chapter Application Workload and SystemC Platform Modeling for Performance Evaluation,
131–148. Springer.

Kreku J, Hoppari M, Tiensyrjä K & Andersson P (2007) Systemc workload model generation
from uml for performance simulation. Proc. Forum on Specification and Design Languages.

Kreku J, Kauppi T & Soininen JP (2004a) Evaluation of platform architecture performance using
abstract instruction-level workload models. Proc. International Symposium on System-on-
Chip Proceedings, 43–48.

Kreku J, Penttilä J, Kangas J & Soininen JP (2004b) Workload simulation method for evaluation
of application feasibility in a mobile multiprocessor platform. Proc. Proceedings of the
Euromicro Symposium on Digital System Design, 532–539.

Kreku J, Qu Y, Soininen JP & Tiensyrjä K (2006) Layered uml workload and systemc platform
models for performance simulation. Proc. International Forum on Specification and Design
Languages (FDL), 223–228.

Kreku J & Soininen J (2003) Mappability estimate: a measure of the goodness of a processor-
algorithm pair. Proc. System-on-Chip, 2003. Proceedings. International Symposium on, IEEE,
119–122.

99

Kreku J & Tiensyrjä K (2011) Scalable Multi-core Architectures: Design Methodologies and
Tools, chapter System exploration. Springer.

Kreku J, Tiensyrjä K & Vanmeerbeeck G (2010) Automatic workload generation for system-level
exploration based on modified gcc compiler. Proc. Design, Automation and Test in Europe
conference and exhibition.

Lahiri K, Dey S & Ragunathan A (2001a) Evaluation of the traffic-performance characteristics
of system-on-chip communication architectures. Proc. Proceedings of 14th International
Conference on VLSI Design, 29–35.

Lahiri K, Ragunathan A & Dey S (2000a) Efficient exploration of the soc communication
architecture design space. Proc. IEEE/ACM International Conference on Computer Aided
Design (ICCAD), 424–430.

Lahiri K, Ragunathan A & Dey S (2000b) Performance analysis of systems with multi-channel
communication architectures. Proc. Proceedings of the 13th International Conference on
VLSI Design, Calcutta, India, 530–537.

Lahiri K, Ragunathan A & Dey S (2001b) System-level performance analysis for designing
on-chip communication architectures. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 20(6): 768–783.

Lahiri K, Ragunathan A & Dey S (2004) Design space exploration for optimizing on-chip
communication architectures. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 23(6): 952–961.

Lieverse P, van der Wolf P & Deprettere E (2001a) A trace transformation technique for
communication refinement. Proc. 9th International Symposium on Hardware/Software
Codesign (CODES), 134–139.

Lieverse P, van der Wolf P, Vissers K & Deprettere E (2001b) A methodology for architecture
exploration of heteregeneous signal processing systems. Kluwer Journal of VLSI Signal
Processing 29(3): 197–207.

Lu Z, Chen X, Zhang Y, Naeem A, Jantsch A, Anagnostopoulos I, Xydis S, Bartzas A, Soudris D
& Baloukas C (2010) Final version of nostrum extensions for distributed memory and abstract
data types. Technical report, Mapping Optimisation for Scalable multi-core ARchiTecture
(MOSART). Http://www.mosart-project.org.

Mahadevan S, Angiolini F, Storgaard M, Olsen R, Sparso J & Madsen J (2005a) A network
traffic geenrator model for fast network-on-chip simulation. Proc. Proceedings of the Design,
Automation and Test in Europe, 780–785.

Mahadevan S, Storgaard M, Madsen J & Virk K (2005b) Arts: a system-level framework
for modeling mpsoc components and analysis of their causality. Proc. Proceedings of
the International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 480–483.

Mahadevan S, Virk K & Madsen J (2007) Design Automation for Embedded Systems, chapter
ARTS: A SystemC-based framework for multiprocessor Systems-on-Chip modelling. Springer.

Maillet-Contoz L & Ghenassia F (2005) Transaction level modeling. Transaction Level Modeling
with SystemC 23–55.

Marcon C, Kreutz M, Susin A & Calazans N (2005) Models for embedded application mapping
onto nocs: timing analysis. Proc. Rapid System Prototyping, 2005.(RSP 2005). The 16th
IEEE International Workshop on, IEEE, 17–23.

Mignolet JY, Baert R, Ashby T, Avasare P, Jang HO & Son JC (2009) Mpa: Parallelizing an
application onto a multicore platform made easy. IEEE Micro 29(3): 31–39.

100

Millberg M, Nilsson E, Thid R, Kumar S & Jantsch A (2004) The nostrum backbone - a communica-
tion protocol stack for networks on chip. Proc. 17th International Conference on VLSI Design,
Mumbai, India. DOI: http://doi.ieeecomputersociety.org/10.1109/ICVD.2004.1261005.

Mohanty S & Prasanna V (2002) Rapid system-level performance evaluation and optimization for
application mapping onto soc architectures. Proc. Proceedings of the IEEE International
ASIC/SOC Conference, 160–167.

Mohanty S, Prasanna V, Neema S & Davis J (2002) Rapid design space exploration of hetero-
geneous embedded systems using symbolic search and multi-granular simulation. ACM
SIGPLAN Notices 37(7): 18–27.

Montoreano M (2007) Transaction level modeling using osci tlm 2.0. Open SystemC Initiative
(OSCI) .

MPG123 (2011) Fast console mpeg audio player and decoder library. Available at
http://www.mpg123.de.

Network on Terminal Architecture (2011) Nota world open architecture initiative.
OMAP2 (2005) Omap2 architecture: Omap2420 processor product bulletin. Available at

http://focus.ti.com/pdfs/wtbu/TI_omap2420.pdf.
Open SystemC Initiative website (2011) Available at http://www.systemc.org/.
Paul J, Bobrek A, Nelson J, Pieper J & Thomas D (2003) Schedulers as model-based design

elements in programmable heterogeneous multiprocessors .
Paul JM, Thomas DE & Cassidy AS (2005) High-level modeling and simulation of single-chip

programmable heterogeneous multiprocessors. ACM Transactions on Design Automation of
Electronic Systems 10(3): 431–461.

Paulin P, Pilkington C & Bensoudane E (2002) Stepnp: A system-level exploration platform for
network processors. Design & Test of Computers, IEEE 19(6): 17–26.

Pimentel A (2008) The artemis workbench for system-level performance evaluation of embedded
systems. International Journal of Embedded Systems 3(3).

Pimentel A, Erbas C & Polstra S (2006) A systematic approach to exploring embedded system
architectures at multiple abstraction levels. IEEE Transactions on Computers 55(2): 99–112.

Pimentel A, Hertzberger L, Lieverse P, van der Wolf P & Deprettere E (2001) Exploring embedded
systems architectures with artemis. IEEE Computer 34(11): 57–63.

Pimentel A, Polstra S, Terpstra F, van Halderen A, Coffland J & Hertzberger L (2002) Embedded
processor design challenges., volume 2268 of Systems, architectures, modeling, and simulation
— SAMOS, chapter Towards efficient design space exploration of heterogeneous embedded
media systems, 57–73. Springer-Verlag.

Pimentel A, Thompson M, Polstra S & Erbas C (2008) Calibration of abstract performance
models for system-level design space exploration. Journal of Signal Processing Systems (50):
99–114. DOI: 10.0007/s11265-007-0085-2.

Posadas H, Adamez J, Villar E, Blasco F & Escuder F (2005) Rtos modeling in systemc for
real-time embedded sw simulation: A posix model. Design Automation for Embedded
Systems 10: 209–227.

Posadas H, Herrera F, Sanchez P, Villar E & Blasco F (2004) System-level performance analysis
in systemc. Proc. Proceedings of Design, Automation and Test in Europe Conference and
Exhibition (DATE âĂŹ04), Paris, France, 378–383.

Posadas H, Real S & Villar E (2011) M3-scope: Performance modeling of multi-processor
embedded systems for fast design space exploration. In: Silvano C, Fornaciari W & Villar E
(eds) Multi-objective Design Space Exploration of Multiprocessor SoC Architectures, 19–50.

101

Springer New York.
Ptolemy II (2011) Ptolemy ii website. Available at http://ptolemy.berkeley.edu/ptolemyII.
Quake 2 (2011) id software quake 2 website. Available at

http://www.idsoftware.com/gate/?uri=%2Fgames%2Fquake%2Fquake2%2F.
Raghavan G, Salomäki A & Lencevicius R (2004) Model based estimation and verification of

mobile device performance. Proc. Proceedings of the 4th ACM international conference on
Embedded software, ACM, 34–43.

Saastamoinen J, Khan S, Tiensyrjä K & Taipale T (2011) Multi-threading support for system-
level performance simulation of multi-core architectures. Proc. Proceedings of the 24th
International Conference on Architecture of Computing Systems, Como, Italy, 169–177.

Saastamoinen J & Kreku J (2011) Workload model generation for system-level design exploration.
Proc. Tbd.

Sangiovanni-Vincentelli A (2007) Quo vadis sld: reasoning about trends and challenges of
system-level design. Proceedings of the IEEE 95(3): 467–506.

Sangiovanni-Vincentelli A & Di Natale M (2007) Embedded system design for automotive
applications. Computer 40(10): 42–51.

Schnerr J, Bringmann O, Viehl A & Rosenstiel W (2008) High-performance timing simulation of
embedded software. Proc. Proceedings of the 45th annual Design Automation Conference,
New York, NY, USA.

Sciuto D, Salice F & Fornaciari W (2002) Metrics for design space exploration of heterogeneous
multiprocessor embedded systems. Proc. Proceedings of the tenth international symposium
on Hardware/software codesign.

Stewart D (2001) Measuring execution time and real-time performance. Proc. Embedded Systems
Conference (ESC), Citeseer.

Stewart D & Arora G (2003) A tool for analyzing and fine tuning the real-time properties of an
embedded system. IEEE Transactions on Software Engineering 311–326.

Suoranta R (2006) New directions in mobile device architectures. Proc. 9th EUROMICRO
conference on Digital System Design: Architectures, Methods and Tools, 17–26.

Suresh D, Najjar W, Vahid F, Villarreal J & Stitt G (2003) Profiling tools for hardware/software
partitioning of embedded applications. Proc. Proceedings of the 2003 ACM SIGPLAN
conference on Language, compiler, and tool for embedded systems, ACM, 189–198.

Synopsys Platform Architect (2011) Available at http://www.synopsys.com/Systems/
ArchitectureDesign/pages/PlatformArchitect.aspx.

Synopsys Processor Designer (2011) Available at http://www.synopsys.com/Systems/
BlockDesign/ProcessorDev/Pages/default.aspx.

Terpstra F, Polstra S, Pimentel A & Hertzberger B (2001) Rapid evaluation of instantiations of
embedded systems architectures: A case study. Proc. In Proc. of the Progress workshop on
Embedded Systems, Citeseer.

Thompson M & Pimentel A (2007) Systems, architectures, modeling, and simulation — SAMOS,
volume 4599, chapter Towards Multiapplication Workload Modeling in Sesame for System-
Level Design Space Exploration, 222–232. Springer-Verlag.

TLM2 Whitepaper (2007) Available at http://www.systemc.org.
Turski W (1996) Reference model for smooth growth of software systems. IEEE Transactions on

Software Engineering 22(8): 599–600.
Van Stralen P & Pimentel A (2010) Scenario-based design space exploration of mpsocs. Proc.

Proc. of the IEEE International Conference on Computer Design (ICCDâĂŹ10), Citeseer.

102

Vanthournout B, Goossens S & Kogel T (2004) Developing transaction-level models in systemc.
Technical report, Coware.

Waseem M, Apvrille L, Ameur-Boulifa R, Coudert S & Pacalet R (2006) Abstract application
modeling for system design space exploration. Proc. Digital System Design: Architectures,
Methods and Tools, 2006. DSD 2006. 9th EUROMICRO Conference on, IEEE, 331–337.

Weber A (2007) The convergence of mobile data phones, consumer electronics, and wallets:
Lessons from japan. Telematics and informatics 24(3): 180–191.

Wieferink A (2004) System level processor/communication co-exploration methodology for
multi-processor system-on-chip platforms. Proc. Proceedings of Design Automation and Test
in Europe, Paris, France, 1256–1261.

Wieferink A, Dörper M, Leupers R, Ascheid G, Meyr H, Kogel T, Braun G & Nohl A (2005)
System level processor/communication co-exploration methodology for multiprocessor
system-on-chip platforms. IEE Proceedings of Computers and Digital Techniques 152(1):
3–11.

Wild T, Herkersdorf A & Lee GY (2006) Tapes — trace-based architecture performance evaluation
with systemc. Design Automation for Embedded Systems 10(2–3): 157–179. Special Issue
on SystemC-based System Modeling, Verification and Synthesis.

Zivkovic V, de Kock EA, van der Wolf P & Deprettere E (2003a) Fast and accurate multiprocessor
architecture exploration with symbolic programs. Proc. Proceedings of the conference on
Design, Automation and Test in Europe.

Zivkovic V, Deprettere E, van der Wolf P & de Kock EA (2002) Design space exploration of
streaming multiprocessor architectures. Proc. IEEE Workshop on Signal Processing Systems
(SIPS), 228–234.

Zivkovic V, Deprettere V, van der Wolf P & De Kock E (2003b) From high level application
specification to system-level architecture definition: Exploration, design and compilation .

103

104

Original articles

I Kreku J, Hoppari M, Kestilä T, Qu Y, Soininen J-P, Andersson P & Tiensyrjä K (2008)
Combining UML2 Application and SystemC Platform Modelling for Performance Evalua-
tion of Real-Time Embedded Systems. EURASIP Journal on Embedded Systems. DOI:
10.1155/2008/712329.

II Kreku J, Hoppari M, Kestilä T, Qu Y, Soininen J-P & Tiensyrjä K (2009) Application
Workload and SystemC Platform Modeling for Performance Evaluation. Best of FDL 2009
book.

III Kreku J & Tiensyrjä K (2011) Scalable Multi-core Architectures: Design Methodologies
and Tools, chapter System exploration. Springer.

IV Kreku J, Penttilä J, Kangas J & Soininen J-P (2004) Workload simulation method for
evaluation of application feasibility in a mobile multiprocessor platform. Proceedings of the
Euromicro Symposium on Digital System Design. Rennes, 31 Aug.–3 Sept. 2004 . IEEE
Computer Society: 532–539. DOI: 10.1109/DSD.2004.1333322.

V Kreku J, Kauppi T & Soininen J-P (2004) Evaluation of platform architecture performance
using abstract instruction-level workload models. International Symposium on System-on-
Chip. Tampere, 16–18 Nov. 2004. Tampere University of Technology: 43–48.

VI Kreku J, Tiensyrjä K & Vanmeerbeeck G (2010) Automatic workload generation for
system-level exploration based on modified GCC compiler. Proc. Design, Automation and
Test in Europe conference and exhibition.

VII Kreku, Eteläperä M & Soininen J-P (2005) Exploitation of UML 2.0-based platform service
model and systemC workload simulation in MPEG-4 partitioning. International Symposium
on System-on-Chip. Tampere, 15–17 Nov. 2005. Tampere University of Technology:
167–170.

VIII Kreku J, Hoppari M, Tiensyrjä K & Andersson P (2007) SystemC workload model
generation from UML for performance simulation. Forum on Specification and Design
Languages. FDL, Barcelona, Spain, 15–18 Sep. 2007. ECSI, Grenoble.

IX Kreku J, Hoppari M, Kestilä T, Qu Y, Soininen J-P & Tiensyrjä K (2008) Application –
Platform Performance Modeling and Evaluation. Forum on Specification, Verification and
Design Languages, 2008. FDL 2008. 23–25 Sept. 2008: 43–48.

Reprinted with permission from ECSI (VIII), IEEE (IV, V, VI, VII, IX) and Springer (II,
III).

Original publications are not included in the electronic version of the dissertation.

105

106

A C T A U N I V E R S I T A T I S O U L U E N S I S

Book orders:
Granum: Virtual book store
http://granum.uta.fi/granum/

S E R I E S C T E C H N I C A

419. Hietakangas, Simo (2012) Design methods and considerations of supply
modulated switched RF power amplifiers

420. Davidyuk, Oleg (2012) Automated and interactive composition of ubiquitous
applications

421. Suutala, Jaakko (2012) Learning discriminative models from structured multi-
sensor data for human context recognition

422. Lorenzo Veiga, Beatriz (2012) New network paradigms for future multihop
cellular systems

423. Ketonen, Johanna (2012) Equalization and channel estimation algorithms and
implementations for cellular MIMO-OFDM downlink

424. Macagnano, Davide (2012) Multitarget localization and tracking : Active and
passive solutions

425. Körkkö, Mika (2012) On the analysis of ink content in recycled pulps

426. Kukka, Hannu (2012) Case studies in human information behaviour in smart
urban spaces

427. Koivukangas, Tapani (2012) Methods for determination of the accuracy of surgical
guidance devices : A study in the region of neurosurgical interest

428. Landaburu-Aguirre, Junkal (2012) Micellar-enhanced ultrafiltration for the
removal of heavy metals from phosphorous-rich wastewaters : From end-of-pipe
to clean technology

429. Myllymäki, Sami (2012) Capacitive antenna sensor for user proximity recognition

430. Jansson, Jussi-Pekka (2012) A stabilized multi-channel CMOS time-to-digital
converter based on a low frequency reference

431. Soini, Jaakko (2012) Effects of environmental variations in Escherichia coli
fermentations

432. Wang, Meng (2012) Polymer integrated Young interferometers for label-free
biosensing applications

433. Halunen, Kimmo (2012) Hash function security : Cryptanalysis of the Very
Smooth Hash and multicollisions in generalised iterated hash functions

434. Destino, Giuseppe (2012) Positioning in Wireless Networks : Non-cooperative
and cooperative algorithms

C435.etukansi.kesken.fm Page 2 Monday, November 12, 2012 1:55 PM

A
B
C
D
E
F
G

UNIVERS ITY OF OULU P.O.B . 7500 F I -90014 UNIVERS ITY OF OULU F INLAND

A C T A U N I V E R S I T A T I S O U L U E N S I S

S E R I E S E D I T O R S

SCIENTIAE RERUM NATURALIUM

HUMANIORA

TECHNICA

MEDICA

SCIENTIAE RERUM SOCIALIUM

SCRIPTA ACADEMICA

OECONOMICA

EDITOR IN CHIEF

PUBLICATIONS EDITOR

Senior Assistant Jorma Arhippainen

University Lecturer Santeri Palviainen

Professor Hannu Heusala

Professor Olli Vuolteenaho

University Lecturer Hannu Heikkinen

Director Sinikka Eskelinen

Professor Jari Juga

Professor Olli Vuolteenaho

Publications Editor Kirsti Nurkkala

ISBN 978-951-42-9989-6 (Paperback)
ISBN 978-951-42-9990-2 (PDF)
ISSN 0355-3213 (Print)
ISSN 1796-2226 (Online)

U N I V E R S I TAT I S O U L U E N S I SACTA
C

TECHNICA

U N I V E R S I TAT I S O U L U E N S I SACTA
C

TECHNICA

OULU 2012

C 435

Jari Kreku

EARLY-PHASE
PERFORMANCE
EVALUATION OF COMPUTER
SYSTEMS USING WORKLOAD
MODELS AND SystemC

UNIVERSITY OF OULU GRADUATE SCHOOL;
UNIVERSITY OF OULU,
FACULTY OF TECHNOLOGY,
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

C
 435

AC
TA

Jari K
reku

C435.etukansi.kesken.fm Page 1 Monday, November 12, 2012 1:55 PM

	Abstract
	Tiivistelmä
	Preface
	Abbreviations
	List of original articles
	Contents
	1 Introduction
	1.1 Problem definition
	1.2 Research hypothesis
	1.3 Research methods
	1.4 Original papers

	2 System-level performance evaluation
	2.1 Virtual system, virtual platform and virtual prototypeapproaches
	2.2 Transaction-level modelling use cases
	2.3 Simulation approaches in researchSPADE
	2.4 Commercial system-level simulation toolsCoFluent Studio

	2.5 Summary
	3 ABSOLUT
	3.1 Application modelling
	3.1.1 Layers
	3.1.2 Load extraction for application models

	3.2 Platform modelling
	3.2.1 Layers
	3.2.2 Services
	3.2.3 Operating system
	3.2.4 Model library
	3.2.5 Allocation of workloads on the platform

	3.3 Performance simulation
	3.3.1 Performance probes
	3.3.2 Simulation environment

	4 Case studies
	4.1 OMAP1-based platforms
	4.1.1 Mobile phone usage scenarios
	4.1.2 MP3 playback
	4.1.3 Partitioning of MPEG4 encoding

	4.2 OMAP2-based platforms
	4.2.1 Quake 2 gameplay
	4.2.2 Virtual network computing

	4.3 Intel Core i7-based personal computer platforms
	4.4 Future platforms
	4.4.1 Distributed mobile video player
	4.4.2 Parallel WiMax SDR
	4.4.3 Parallel SDR sensing application

	5 Discussion
	5.1 Analysis of results
	5.2 Theoretical and practical implications
	5.3 Reliability and validity
	5.4 Recommendations for future work

	6 Introduction to papers
	6.1 Combining UML2 Application and SystemC PlatformModelling for Performance Evaluation of Real-TimeEmbedded Systems
	6.2 Application Workload and SystemC PlatformModeling for Performance Evaluation
	6.3 Scalable Multi-core Architectures: DesignMethodologies and Tools, chapter SystemExploration
	6.4 Workload simulation method for evaluation ofapplication feasibility in a mobile multiprocessorplatform
	6.5 Evaluation of Platform Architecture Performanceusing Abstract Instruction-level Workload Models
	6.6 Automatic workload generation for system-levelexploration based on modified GCC compiler
	6.7 Exploitation of UML 2.0-Based Platform ServiceModel and SystemC Workload Simulation in MPEG-4Partitioning
	6.8 SystemC Workload Model Generation from UML forPerformance Simulation
	6.9 Application–Platform Performance Modeling andEvaluation

	7 Conclusions
	References
	Original articles

