

An Adaptive Human Brain to Computer
Interface System for Robotic or Wheel-

Chair based Navigational Tasks

DULLAL GHOSH

Master of Science Thesis
Stockholm, Sweden 2012

An Adaptive Human Brain to Computer
Interface System for Robotic or Wheel-Chair

based Navigational Tasks

Dullal Ghosh

Master of Science Thesis MMK 2012:75 MDA 445

KTH Industrial Engineering and Management

Machine Design

SE-100 44 STOCKHOLM

 2

 1

 Examensarbete MMK 2012:75 MDA 445

Ett adaptivt gränssnitt mellan hjärna och
datorsystem för navigering av robot eller

rullstol

 Dullal Ghosh

Godkänt

2012-11-05

Examinator

Jan Wikander

Handledare

Mats Hanson

 Uppdragsgivare

Technical University of Munich,
Germany

Kontaktperson

Mohammad Abu-Alqumsan /
Angelika Peer

Sammanfattning

Ett av flera huvudsyften med ett gränssnitt mellan hjärna och datorer är att förbättra
livskvaliteten för förlamade personer. I tidigare studier har betydande ansträngningar gjorts för
att känna igen en användares avsikter. Dock finns inga tidigare studier som visar varför detta är
viktigt. De system som idag ligger i framkant gällande gränssnittet mellan hjärna och dator har
dessvärre låg bandbredd vilket leder till en hög kognitiv belastning på användaren. Ett gränssnitt
mellan hjärna och dator som är designat med dynamisk anpassning kan minska ansträngningen
som krävs av användaren för att använda systemet samt ge denna en förkroppsligande känsla.
Utgående för detta försöker denna rapport att utveckla ett intelligent system för gränssnittet
mellan hjärna och användare. Detta system baseras på lärandet av en användares beteende samt
att förutspå användarens intention när det kommer till att navigera en semiautonom robot. Vidare
har arbete lagts på att modellera en användare samt att bygga en robot för att träna den
utvecklade algoritmen. Simulerade tester av den utvecklade algoritmen bekräftar möjligheterna
att använda ett sådant användare anpassat system för interaktionen mellan hjärna och dator.

Även med en adaptiv gränssnitt mellan hjärna och dator så är systemet utsatt för fel på grund av
felaktig klassificering av användarens avsikt. Detta fel kan leda till felaktigt beteende hos en
robot eller felaktig förflyttning av en rullstol för en funktionshindrad person. Flera fysiologiska
studier har visat att fel-relaterade potentialer framkallas i hjärnan när ett fel begås av ett system
som agerar som gränssnitt mellan människa och maskin. Erkännande av fel-relaterade potentialer
i de inspelade elektroencefalografi data kan utnyttjas för att förhindra felfortplantning till
genomförande och därmed fungera som en kontrollmekanism för att känna igen användarens
intention. Således i den sista delen fokuserar denna uppsats på att utveckla en klassificerare för
detektering av fel-relaterade potentialer genom användning av Support Vector Machine och
resultatet visar jämförbar klassificerings prestanda för Support Vector Machine som för de bästa
Gauss klassificerare.

 2

 3

 Master of Science Thesis MMK 2012:75 MDA 445

An Adaptive Human Brain to Computer Interface
System for Robotic or Wheel-Chair based

Navigational Tasks

 Dullal Ghosh

Approved

2012-11-05

Examiner

Jan Wikander
Supervisor

Mats Hanson

 Commissioner

Technical University of Munich,
Germany

Contact person

Mohammad Abu-Alqumsan /
Angelika Peer

Abstract

Among several, one of the main goals of Brain-computer interface (BCI) system is to improve
the quality of life for paralyzed persons. While significant effort has been made to recognize user
intention, the necessity of predicting user intention in the context of BCI for navigational tasks to
design a dynamic interface, has not been addressed yet. State-of-the-art BCI system has low
bandwidth because of which the user is subjected to much cognitive or interaction load. However
a BCI system designed with dynamic customization feature to adapt as per individual user,
would indeed reduce the interaction load and provide embodiment feeling to the user. Therefore
this thesis attempts to develop an intelligent BCI system based on reinforcement learning
approach to learn the user behaviour and predict the intentions in the context of a semi-
autonomous robotic navigational task.

In addition, an effort has also been made towards modeling a user or to build an agent, in order
to train the developed algorithm. Simulated testing of the developed algorithm confirms the
potential of using such a user adapted brain-computer interface system.

Even with an adaptive brain-computer interface, the system is prone to errors due to
misclassification of the user's intention. Propagation of this classification error could lead to
wrong execution of a robotic avatar or movement of a wheel-chair in use by a paralyzed person.
Several physiological studies have shown that error-related potentials are elicited in the brain
when an error is committed by the BCI system. Recognition of error-related potentials in the
Electroencephalography recorded data could be exploited to prevent error propagation till
execution and hence act as a verification mechanism for the classifier devoted for recognizing
user intention in the context of BCIs. Thus in the last part, this thesis focuses on developing a
classifier for detection of error-related potentials using Support Vector Machine and the result
shows comparable classification performance of Support Vector Machine to that of state-of-the-
art classifiers such as Gaussian classifier and Bayesian filter method.

 4

 5

FOREWORD

Here I would like to thank all those who have contributed with their help, guidance, motivation
and assistance during the thesis work.

This master thesis work has been carried out on behalf of KTH Royal Institute of Technology,
Stockholm, Sweden at Technical University of Munich, Germany as an Erasmus Mundus
Exchange program and is a part of VERE (Virtual Embodiment and Robotic Re-Embodiment)
European Program.

First, I would first like to express my appreciation to my direct supervisor M.Sc. Mohammad
Abu-Alqumsan at TU Munich, for his support, guidance and help in achieving the goals of this
thesis. I would also like to thank Professor Mats Hanson for supervising me on behalf of KTH
and for his time to guide me during this thesis report writing. Thanks to Dr. Angelika Peer at TU
Munich for reviewing my work and suggesting improvements during several presentations. I am
really grateful to KTH Erasmus Coordinator Anna Hellberg Gustafsson for nominating and
providing me the opportunity to pursue the thesis at TU Munich as an Erasmus Mundus scholar.

Thanks to my fellow colleagues Rigas-Georgios Zapounidis, Akhter Jamil, Abhilash Babu,
Rickard Nilsson, Martin Andersson and Ertan Kayan for their company and motivation
throughout the thesis period. Thank you Aditya Ghantasala and Áron Cserkaszky for being there
with me during the thesis.

Last but not the least I would like to thank my Parents for their love, continuous motivation and
moral support throughout the Master program. Thank you Mom and Dad…

Dullal Ghosh

Stockholm, November 2012

 6

 7

NOMENCLATURE

Abbreviations

AUI Adaptive User Interface

BCI Brain-Computer Interface

BMI Brain-Machine Interface

EEG Electroencephalography

ERP Event-related Potentials

ErrP Error-related Potentials

IErrP Interaction Error-related Potentials

KKT Karush-Kuhn-Tucker

LS Least Square

MDP Markov Decision Process

noErrP no Error-related Potentials

POMDP Partially Observable Markov Decision Process

QP Quadratic Programming

RBF Radial Basis Function

RL Reinforcement Learning

ROS Robot Operating System

SMO Sequential Minimal Optimization

SNR Signal-to-Noise Ratio

SSVEP Steady State Visually Evoked Potential

SVM Support Vector Machine

 8

 9

TABLE OF CONTENTS

SAMMANFATTNING (SWEDISH) 1

ABSTRACT 3

FOREWORD 5

NOMENCLATURE 7

TABLE OF CONTENTS 9

1 INTRODUCTION 11

 1.1 Brain-Computer Interface 11

 1.2 Brain-Computer Interface Paradigms 12

 1.3 Problem Description 13

 1.4 Report Structure 15

2 PART ONE (ADAPTIVE BCI) 16

 2.1 State-of-the-Art Adaptive Interface 16

 2.2 Brain-Computer Interface Manager 17

 2.2.1 Adaptive Interface with Dynamic Policy 18

 2.3 Markov Decision Process 18

 2.3.1 Learning User Behaviour and Prediction of User Intention 20

 2.3.2 Learning Behaviour 20

 2.3.3 Change in Behaviour 22

 2.3.4 Outlier in Behaviour 23

 2.3.5 Prediction of User Intention 24

 2.4 Training of the Algorithm Parameters and Testing 25

 2.4.1 Fixed Policy Interface 27

 2.4.2 Adaptive Policy Interface 27

 2.4.3 Results of Fixed and Adaptive Policy Interfaces 28

 2.4.4 Extension of the Learning Scheme 31

 2.5 Future work on Adaptive Brain-Computer Interface 31

3 PART TWO (CLASSIFICATION OF ERROR-RELATED POTENTIALS) 32

 3.1 State-of-the-Art Classification of Error-related Potentials 32

 3.2 Support Vector Machine 33

 3.3 Data Set Used for Classifier 34

 3.4 Feature Extraction and Training of Classifier 35

 3.4.1 Method of Feature Extraction 35

 3.5 Support Vector Machine Classifier Training 37

 3.6 Classification Performance of Support Vector Machine 38

 3.6.1 Timing Performance of Support Vector Machine Classifier 39

 3.7 Future Work on Support Vector Machine Classification Method 39

4 SUMMARY 40

5 LIST OF FIGURES 41

6 REFERENCES 42

APPENDIX A: Markov Agent for Training and Testing of the Algorithm 46

 B: Parameters for Support Vector Machine Classification 47

 10

In this
paradig

1.1 B
Commu
the num
every 50
other br
significa
virtue o
interfac
direct c
decades
fiction.
feasible
is show
needs el
invasive
electrod
current
one is w
alone. S
thought
context
chair in
person’s

2

1 christop
2 http://cu
3 Stens co

Fig

 (FR

chapter a
gms or techn

Brain-Co
unication w
mber of para
0 people liv
rain damag
ant improve

of a techniq
ce, or somet
communica
s, instrumen

However,
e in laborato
wn in Figure

lectrodes to
e BCI avoid
des on the s
flows withi
where para
Some other
t [4], virtual
of robotic

n a known e
s own body

pher and dana
urrent.com/1ji
orporation – B

gure 1: Exa

RIEND -II Sys

brief intr
niques, prob

omputer
ith patients
alyzed perso
ving with pa
ge also rem
ements” [1]

que known a
times called
tion pathw
nt control b
it is only i

ories [3]. An
e 1. In gen
o be inserted
ds surgery a
scalp as in
in the neuro
lyzed patie

r application
l key board
embodimen

environmen
y.

reeve foundat

idc4c
Biofeedback E

ample Task

stem – Univer

oduction of
blem descrip

r Interfa
suffering f

ons goes up
aralysis1. “M

mains a ther
]. The qual
as Brain-Co

d a direct ne
way between
by just thin
in the last
n example o

neral there c
d into the b
and rather u
Figure 2. E
ons of the b
nts can spe
ns may inc

d control, cu
nt, a paralyz
t (with kno

tion

Equipment and

rsity of Breme

11

of brain-com
ption and re

ace
from paraly
p to 6 millio
Movement r
rapeutic pro
lity of life o
omputer Int
eural interfa
n the brain

nking, using
few years

of a person
could be in

brain tissue
uses an Ele

EEG measu
brain. Amon
ell out wor
clude the ab
ursor contro
zed person

own topolog

d Training

en)

mputer inte
eport struct

ysis is an un
on in Unite
estoration f
oblem and
of paralyze
terface (BC

face or a bra
n and an
g brain wav
that these
operating a

nvasive or n
[3]. In cont

ectroenceph
res voltage
ng several a
ds and form
bility of a u
ol or for neu
could use B

gical map),

3

 Figur

1 INT

erface, bra
ture have be

nsolved cha
ed States alo
for patients
available tr
d persons c

CI), “often c
ain–machin
external de

ves has bee
systems ha

a robotic arm
non-invasiv
trary to abo
alographic
fluctuation

applications
m sentences
user to con
uroprostheti
BCI to navi
as if the ro

e 2: EEG C

RODU

ain-compute
een present

allenge. As
one, which
with chron

reatments d
could be im
called a min
ne interface,
evice” [2].
en accepted
ave been sh
m through b
ve BCIs. Inv
ove BCI cate

(EEG) cap
ns resulting
s of non-inv
s using the

ntrol a vide
ics applicat
igate a robo
obot is an av

Cap (NeXus)

CTION

er interface
ed.

per statics,
means 1 in
ic stroke or

do not offer
mproved by
nd-machine
, which is a
For many

d in science
hown to be
brain waves
vasive BCI
egory, non-
by placing
from ionic

vasive BCI,
eir thoughts
eo game by
ions. In the

ot or wheel-
vatar of the

)

e

,
n
r
r
y
e
a
y
e
e
s
I
-
g
c
,
s
y
e
-
e

1.2 B
Under t
user int
P300 w
respons
matches
stimuli
below i
squares
number

4

P300 b
experim
cognitiv
stimulus
making
hence th
the pari
used as
typical
probabi
Figure 4
P300-ba
simultan

4 OpenVi

 Op

Brain-Co
the framew
tentions and

wave. SSVE
e to a visu
s that of th
at frequenc
is an exam
on screen

r of options

based BCI
ment. An ER
ve, or motor
s. P300 is a
. It is obser
he name P3
ietal lobe [8
metrics of
oddball pa
lity non-tar
4 shows the
ased BCI h
neously, com

iBE software f

enViBE (INR

omputer
ork of Brai
d preferenc
EP is the o
ual stimulus
he stimulus
cies in the

mple of SSV
are used. S
that could b

uses Event
RP is the me
r event. Mo
a late appea
rved as a po
300. The sig
8]. The pre
cognitive f

aradigm in
rget items u
e matrix at th
has higher
mpared to S

for Brain Com

RIA, France)

Fi

r Interfa
in-Compute
es by use o

oscillatory w
s modulated

and its ha
range of ap
VEP. In S
SVEP has e
be displayed

t-related Po
easured brai
re formally
aring featur
ositive defle
gnal is typic
esence, mag
function in d

which low
using flashin
he flashing
number of

SSVEP-base

mputer Interfac

gure 3: SSV

12

ace Para
er Interface
of Steady S
wave appea
d at a certa
armonics. S
pproximate
SVEP-base
excellent si
d on the scr

otentials (E
in response

y, it is any st
re of an ER
ection in vo
cally measu
gnitude, top
decision ma

w-probabilit
ng of a mat
time of the

f options th
ed BCI.

ces

VEP-based B

adigms
(BCI), sele

State Visual
aring in th

ain frequenc
SSVEPs can
ly 3.5 Hz t

ed BCI sim
ignal-to-noi
reen.

ERP) to re
 that is the
tereotyped e

RP that is e
oltage with
ured most st
pography an
aking proce
ty target it
trix introdu

e items that
hat could b

Dan

BCI

s
ective atten
lly Evoked
e occipital
cy. The freq
n be elicite
to 75 Hz [5

multaneous
se ratio but

ecord user
direct result
electrophys

elicited in th
a latency of
rongly by th

nd timing o
esses. It is u
ems are in

uced by Farw
lie in the fo
be displaye

hua Zhu et al.

ntion is used
Potential (
leads of th

quency of t
ed by repet
5]. In Figur
flashing or
t has limita

intention i
lt of a speci
siological re
he process
f about 300
he electrod

of this signa
usually elici
nter-mixed
rwell and D
ourth colum
ed on the B

. [6]

d to extract
(SSVEP) or
he EEG in
the SSVEP
itive visual
re 3 shown
r flickering
tions in the

in the BCI
fic sensory,

esponse to a
of decision

0ms [7] and
es covering
al are often
ited using a
with high-

Donchin [9].
mn from left.

BCI screen

t
r
n
P
l
n
g
e

I
,
a
n
d
g
n
a
-
.
.
n

 13

5

6

During the choice task in both of these paradigms, if the interface interprets user intention
wrongly and the interface recognized option is displayed on the screen to the user, then an error-
related potentials (ErrP) is elicited in the brain. ErrP is a component of an event-related potential
and time-locked to commission of error.

1.3 Problem Description
Semi-autonomous navigation is a flexible task sharing system and the user could assist the robot
with low level navigation whenever needed and the system allows the robot to specify goals
autonomously and maintain high level path planning. The communication between user and
robot, when BCI is used in this context is accomplished by EEG signals. With the help of
sensory information and a topological map of the environment, the robot is able to recognize
situations when a decision should be made. Decisions are made either by the robot autonomously
or by the user, depending on the level of sharing in use. In case it is recognized by the robot that
a decision need to be made by the user, the interface should provide with navigational options
from which the user selects. These options could be intended goal locations or low level
commands such as turn left or move forward.

BCIs have low bandwidth or bit-rate with maximum information transfer rates of 5–25 bits/min
at best, which depend both on speed and accuracy [10]. Present BCI interfaces are based on fixed
policy where the user, environment and the interface start always at a specific state, and based on
the user input; the interface deterministically updates its contents and presents them to the user.
This method of presentation to the user is often time consuming and involves much interaction
load to the user and thereby diminishing the embodiment feeling of the user in commanding a
robot avatar or wheel-chair in use. Therefore the first objective is to build a brain-computer
interface based on adaptive policy with automatic customization feature as per individual user
for a navigational task, which is needed to make the best use of the scarce resources, i.e. with
available options or bit-rate. The robot should be able to learn routines in user behaviour and
propose the navigational actions to the user in a way to optimize user interaction. The developed
adaptive interface needs to be tested with the help of a Gazebo simulated environment where the

5 http://www.etsu.edu/cas/bcilab/ETSU
6 http://de.wikipedia.org/wiki/Ereigniskorrelierte_Potentiale

Standard 6x6 P300 speller matrix
 (ETSU BCI Lab)

 (Birbaumer & Schmidt, 2006, S. 481)

Figure 4: P300-based BCI

 14

robot would receive commands from the user through Robot Operating System (ROS) 7. The
Gazebo simulator is a primary tool used for robots and robotic applications in ROS community
to simulate indoor and outdoor environments 8. Generating a user model is also required to train
and test the algorithm. The BCI system in this case is simulated by a Graphical User Interface.

In both fixed and adaptive policy based BCI system, the user intention recognition rates of
classifier is subjected to error due to misclassification [11] and flows down till execution as a
command unless prevented. The detection of ErrP in the EEG signal could be exploited to
prevent possible error propagation as shown in Figure 5 below. Error-related potentials raise
many challenges in terms of classification due to low signal-to-noise ratio, especially in the case
of single trials [12]. In Figure 6 the average of Error-related Potentials and no Error-related
Potentials (noErrP) signals over number of trials are visible to the naked eyes with clear
distinction. Averaging the signal over number of trials is not a feasible method to detect ErrP as
it is generated only once within a certain duration after seeing the erroneous response of the
interface. For the case of single trial, the difference between the two signals is not clear to the
naked eyes as shown in Figure 7. This results in big challenge to classify and categorize the
scalp-recorded EEG data for detection of ErrP.

Therefore the second objective is to recognize user’s cognition state that reflects user awareness
to errors committed by the interface or in other words, is to develop a classifier for detection of
possible ErrP in the EEG data and hence prevent misclassified user intention or command from
being executed.

7 Willow Garage, Robot Operating System (ROS)
8 http://gazebosim.org/about.html

Figure 5: EEG Data Classifiers

Figure
noErrP

1.4 R
The ent
problem
users. I
last part
detectin
classifie
such as

 6: Avera
P (Correct tr

Report S
tire report h

m of develo
present late
t (Classific

ng ErrP in th
er for detect
Gaussian c

age ErrP (
rial) – [Cz e

Structur
has been di
ping an alg
er in this pa
ation of Er
he EEG dat
tion of ErrP
lassifier and

(Error trial
electrode]

re
ivided into
gorithm for
art, the prop
rror-related
a and the m

P. Further, t
d Bayesian

15

l) and

Fig
and

two parts.
intelligent

posed algor
Potentials)

methodology
the results o
filter metho

gure 7: Sin
d noErrP (C

The first pa
adaptation

rithm and p
, mentions
y to use Sup
of SVM wit
od are comp

ngle trial E
Correct trial)

art (Adaptiv
of a BCI s
ossible futu
the state-of

pport Vecto
th other stat
pared.

ErrP (Error
) - [Cz elec

ve BCI) ad
system as p
ure works a
f-the-art cla

or Machine (
te-of-the-ar

r trial)
trode]

ddresses the
er different

as well. The
assifiers for
(SVM) as a
rt classifiers

e
t
e
r
a
s

 16

2 PART ONE (ADAPTIVE BCI)

In this chapter the state-of-the-art adaptive user interface, brain-computer interface manager,
the algorithms for learning and markov decision process for prediction of user intention along
with the training and testing results of the algorithm have been presented. At last the future
works related to adaptive brain-computer interface have been described.

2.1 State-of-the-Art Adaptive User Interface

An adaptive user interface also known as AUI, is a user interface which adapts or changes, its
layout and elements to the needs of the user or context and is similarly alterable by each user.
Alternatively an adaptive user interface is a software artefact that improves its ability to interact
with a user by constructing a user model based on partial experience with that user [13]. An
adaptive interface should have a property to only show relevant information to a user as per the
context. The area of intelligent and adaptive user interfaces has been of interest to the research
community for a long time [14]. “To date, research in this field has not led to a coherent view of
problems, let alone solutions” [14]. Several studies including the work by Gajos et al. [15] which
generate different interface renditions in response to different usage patterns, mention benefits of
adaptive systems. Machine learning is an emerging field which could be exploited for their
possible uses in designing adaptive interfaces, as has been examined in Pat Langley’s work [16].
To mention, machine learning has been successfully incorporated in cell phone devices [17].
Reinforcement Learning (RL) [18], a machine learning paradigm, stands as a promising
approach under the situation where the exact dynamics of the environment are not known. The
learning problem is to find an optimal policy that maps states to actions, through a trial-and-error
process of repeated interaction with the user. It has been successfully utilized in many
applications including the problem of dialogue management [19]. RL has also been used to
permit the robot to learn and optimize appropriate control policies from its interaction with the
user [20, 21]. An interesting piece of work by Liu et al. [22] mentions how a mobile phone could
learn context and user preferences via RL to adapt and set its alarm type automatically based on
context information obtained from a variety of sensors. At another instance, the power of RL
algorithm has been demonstrated [23] with application to a real-world problem as complex as
controlling an autonomous helicopter. Partially Observable Markov Decision Process (POMDP)
is another engineering framework that integrates Reinforcement Learning and Bayesian belief
tracking and the benefits of this approach are demonstrated by the example of a simple gesture-
driven interface to an iPhone application [13].

With regard to application of machine learning techniques in Brain-Machine Interface (BMI), a
group of researchers have exploited RL algorithm to illustrate how BMI learns to complete a
reaching task using a prosthetic arm based on the user's neuronal activity [24]. For the case of
brain-computer interface system, Chavarriaga et al. have mentioned how the performance of user
intention classifier could be improved with the help of RL [25]. Also POMDP model has been
utilized to compute an optimal sequence of stimuli in P300 based BCI task [26]. In the case of a
navigational task, it is interesting to see the research work by Perrin et al. [27] that demonstrates
a method for the robot to propose low level actions to the user, like turn left or move forward, at
the decision making points where the user could either accept or reject the proposition. In an
unknown environment, the robotic system first extracts features so as to recognize places of
interest where a human-robot interaction should take place (e.g. crossings). Based on the local
topology, relevant actions are then proposed. It is to be noted that with this above methodology,
only low level actions as analysed from the environment, are proposed one by one and Error-

 17

related potentials in case of disapproval were used for this purpose. The dialogue management
strategy continued as long as the user chooses no. Even for a single user, utilizing ErrP to record
user choice poses the problem that ErrP classifier is often subjected to recognition error due to
single trial classification and therefore multiple recordings (until the probability difference
between the two most probable actions exceeds a given threshold) need to be performed to
confirm the classification result. If the cardinality of goal space is large, this method seems to be
time consuming and involves much interaction workload to the BCI user and thus poses the risk
of diminishing the embodiment feeling of the user in commanding a robot avatar or wheel-chair
in use. Further, the work doesn’t take care of change in user behaviour and possible outlier, or in
other words, it doesn’t take care of uncertainties in user behaviour to predict the appropriate
action and propose them to the user, which often is the case for a navigational task [28].

State-of-the-art-BCI interface is based on fixed policy which would be explained in the
following section. Virtually all existing user interfaces, not only in BCI, follow the finite-state
machine model [13]. The area of designing an adaptive brain computer interface with dynamic
customization for navigational tasks is still not explored and is being addressed through this
thesis work. Several success stories of RL algorithms to many domains, motivates us to design
an adaptive BCI system for navigational task with the help of RL, by treating the interface
adaptation as an optimization problem. Further, the uncertainties in user behaviour such as
change in behaviour and outlier could also be tackled as described in the following sections of
our work. The key contribution of this thesis is to design a reinforcement learning algorithm to
learn user behaviour including possible uncertainties in behaviour and predict the user intentions
in a BCI based navigational task which could provide robotic embodiment feeling to the user.

2.2 Brain-Computer Interface Manager
As mentioned earlier, a paralysed person could command a robot avatar or wheel-chair using
brain-computer interface system. A BCI system designed on fixed-policy interface is a finite-
state automaton that mediates between the user and the robot avatar of the user. For a limited
user goal-space, every goal can be mapped into one of the available BCI controls. In the case of
large goal-spaces, though it is still possible to use the fixed policy approach but it is not
convenient for the user due to several of the following factors. A user always starts from a
starting interface and then goes down in a well-designed hierarchy which is defined by task
experts till reaching the intended command, which might be a long and tedious trajectory,
leading to a negative impact on the embodiment feeling. Another drawback of this approach is
the requirement of a detailed task description and the fact that it imposes strong assumptions
about the user and the environment by ignoring dynamics of both. Figure 8 depicts an interface
designed as a finite-state automaton with three masks. Using this approach, in case the user
intended option lies in the third mask, then the user needs to select ‘Next’ buttons in the first
mask and second masks and in the third mask the user needs to select the intended option. So in
this case, three interactions are required to decode a single user intention.

 18

 Figure 8: Example of a Finite State Automaton

2.2.1 Adaptive Interface with Dynamic Policy

As a fixed-policy interface only depends on the task description and model, the time needed to
select a goal with a fixed-policy interface is user, situation and context independent. Therefore
customization of the interface according to user preferences is necessary to reduce the interaction
workload and consequently increase the robotic embodiment feeling. This originates the
necessity of designing a dynamic interface where the options proposed to the user are no longer
fixed but are dynamically customized for individual user automatically. Therefore the policy
based on which the interface would be designed and managed is desired to be an optimized
policy. This could be formulated as an optimization problem where decision needs to be made by
the interface manager to propose the optimized set of options to the user at every decision
making situation.

2.3 Markov Decision Process and Reinforcement Learning

Although humans have the potential for relatively random patterns of behaviour, there are easily
identifiable routines in every person’s life [28]. Based on this, the proposition of best set of
actions to the user could be modelled as a Markov Decision Process (MDP). MDP provide a
mathematical framework for modelling decision making in situations where outcomes are partly
random and partly under the control of a decision maker. More precisely MDP is “a decision-
theoretic model capable of taking into account both uncertainty in the effects of its actions and
trade-offs between competing short-term and long-term objectives when making decisions” [29]. ࡿ is the set of all states, ࡭ is the set of all possible actions and ࡼ is the set of all state to action
selection probabilities. At each time step, the process is in a state ∈ and the decision maker ,࢚ࡿ
may choose any action ܽ ∈ ݌ with probability ݏ that is available in state ,࢚࡭ ∈ .from that state ࢚ࡼ
The process responds at the next time step by randomly moving into a new state ݏ′ ∈ and ,ࡿ
giving the decision maker a reward ࡾ. The next state ݏ′ depends on the current state ݏ and the
decision maker's action ܽ. But given ݏ and ܽ, it is conditionally independent of all previous
states and actions for first order Markov model; in other words, the state transitions of a MDP
possess the Markov property. MDP is modelled with ሼࡿ, ,࡭ ,ࡼ ,ࡾ ,ሽࢽ is the future ࢽ	݁ݎ݄݁ݓ
discount factor for rewards, with a value typically close to 1. In case the dynamics of the
environment or state transition probabilities are not known in prior, the system should learn these
transitions explicitly by interacting with the environment. Therefore this learning mechanism
which gains knowledge of environment by virtue of interacting with its environment falls under
the category of Reinforcement Learning (RL) scheme. The learning of the algorithm should lead
to a policy that would map a state to an action for all possible states.

1st Mask 2nd Mask 3rd Mask

 19

In our present work a P300 interface based on fixed policy has been implemented that presents,
in a predefined order, to the BCI user a sequence of command options sets to choose from. It is
worth mentioning that the total number of possible command options exceeds the maximum
number of goal locations that can be hosted by a P300-based BCI mask. The user is modelled as
a MDP and the interface should learn the user behaviours or actions carried out from every state
and propose a set of best possible actions to the user as per the capacity of P300-based BCI
mask. The in other words, it should capture the user intentions. Here action ܽ ∈ is the ࡭
proposition of an action to the user. It is to be noted that actions here are propositions with
respect to the interface manager, i.e. what set of commands should be presented to the user at
each decision making situations. The scenario used is a pure navigation scenario, where all user
goal-oriented commands are of the form “move to location x” or low level commands such as
turn “left” or move “forward” as shown is Figure 9 for few states and action pairs.

 Figure 9: State-action Mapping

Additionally, RL-based algorithm has been developed thereby aiming at finding an optimal
policy for the interface adapted as per individual user. The results of both approaches have been
compared in terms of user interaction workload which is measured by the time needed to get user
intention decoded by the system. In both cases, i.e. adaptive and fixed-policy interface, however,
user input is mapped into user commands that trigger the transition to new states and interface
actions without considering classification errors. For tasks with available detailed description
and model or where the adaptive policy assigns same priorities to multiple actions, fixed policy
will be used for those tasks or actions as it is intuitive to go for fixed policy if no concrete
decision could be made regarding the possible user intended actions. This results in a system
with mixed policy considering both fixed and adaptive policies. Therefore the interface proposes
actions to the user as per the mixed policy. Figure 10 relates the adaptive interface manager to
other system components such as EEG decoder to recognize user intention ࢛ࡵ and present the
decoded intention to the user by the help of interface manager. The noise ࢏ࡺ is due to the
disturbances in the EEG signal as it is captured from the electrodes placed at the scalp of the user
and also includes the user intention classification error or noise by the classifier. The recognised
user intention in P300-based or SSVEP-based BCI, is sent as a robotic command to the robot
avatar or wheel-chair in use.

 20

Figure 10: Adaptive Interface Manager and its Relation to Other Components of the
Embodiment System

2.3.1 Learning User Behaviour and Prediction of User Intention

Decision-making model is used here to first observe and learn the user behaviour and then
predict the user intention in the context of a navigational task. The underlying pattern in user
behaviour could be of first, second or higher orders, though no assumption is made with respect
to the order of the dynamics. Modeling user behaviour with second or higher order Markov
Decision Process, pose the problem of increased memory consumption. Therefore a first order
MDP is considered to solve the navigation problem. The knowledge of the user model is
incomplete which means that the action selection probabilities from a state are not known in
advance and they need to be explicitly learned from the user behaviour using the strategy of
reinforcement learning.

States are defined as every possible goal locations in the map. Actions are propositions of next
states or low level commands to the user. These low level commands include commands like
moving forward or turning left etc. Thus the actions are more in numbers than the states. Both
the number of states and the number of possible actions are known in prior. The number of state-
action pairs thus rises to number of states times’ number of actions. The objective is to find a
policy which could map each state to a best possible action. As P300 mask could contain not just
one but a set of possible actions or propositions, therefore for each state the policy should rank
all user intended actions and show a set of most probable actions in the first mask depending
upon the capacity of the designed P300 mask which is available in different variants.

2.3.2 Learning Behaviour

The learning mechanism associated with navigation task is a continuous process having finitely
large goal state space S	 ∈ ሼs1, s2, s3, … , snሽ of the robot and interface action space A	 ∈ሼa1, a2, a3, … , anሽ. Every goal state is considered as a location in the map which is fully
observable. The user action is fully observable but the action probability P from a state is not
known in prior. The algorithm has the opportunity to learn regarding user behaviour after every
interaction with the user. It is interesting to note, as every state here is a goal location and
therefore the problem of predicting with finitely large goal spaces could be divided into sub-
problems each consisting of only two goal locations or states, one as a starting and the other as
ending state. In other words each sub-problem could be considered as an episodic task where the
episode ends after every transition. Based on the interface action, the interface receives an

 21

immediate reward ݎ, which is considered here as the needed time or number of interactions with
the user. Though there are several possible actions from a state, the user only performs one
action every time and thus reaching from a starting state to a goal state in one step. The user
behaviour is stochastic with actions having a probability distribution from each state. For the
purpose of learning a stochastic user model, sampling is done from the probability distributions
of actions in a state and a trajectory generated is made available to the algorithm. The algorithm
is expected to learn the user model from this generated trajectory. As the sampled trajectory is
made available to the algorithm, bootstrapping method is not used in this case, where a guess is
made depending upon another guess as done in Temporal Difference prediction method [18]. It
is to be observed that here every transition in the trajectory involves a learning step for the
algorithm.

The state of the robot (location) at time ݐ is defined as ݏ ∈ ܽ Taking action .࢚ࡿ ∈ ݏ from state ࡭ ∈ will either make the robot move to a state s′if a ࡿ ∈ is the set of all high levelࢎ࡭ where ,ࢎ࡭
commands or, in other words, the set of all goal locations or will make no change to s if a ∈ ,࢒࡭
where ࢒࡭ is the set of all low level action commands. More formally, ࢚ࡿis defined to be a random
variable referring to current state and ࢚ࡿା૚ refers to next state. ࢚࡭ is a random variable that refers
to an action at time ݐ and hence; 																																										࢚ࡿା૚ ൌ ܽ if ࢚ࡿ ∈ ା૚࢚ࡿ																																										 ࢒࡭ ് ܽ if ࢚ࡿ ∈ ܽ or ࢎ࡭ ∈ ା૚ (1)࢚ࡿ

I assume that that robot executes all command deterministically, which means that if I know ܽ
then I know ݏ′deterministically. Therefore the problem of predicting user next state is exactly the
same as predicting the next user action. Based on this transition, the state-action pair receives a
positive reward of ݎ௙ ൌ 1. A term defined as frequency of selecting an action ܽfrom a state ݏ is
the accumulated rewards over time and updated for the occurred state-action pair as follows: 																																																									ܨሺܽ/ݏሻ ൌ ܨሺܽ/ݏሻ 	൅ ݎ௙ (2)

As the robot has no initial knowledge of the dynamics of the environment, the value of each
state-action pair is termed as: 																																									ܳሺݏ, ܽሻ ൌ 	ݏ	∀	݁ݎ݄݁ݓ	 0 ∈ ܽ∀ and	ࡿ ∈ (3) ࡭

It is worth mentioning that frequency of a state-action pair ܨሺܽ/ݏሻ represents the ܳሺݏ, ܽሻ value
of that state-action pair and therefore the below assignment holds true for our case: 																																														ܳሺݏ, ܽሻ ൌ ሻ (4)ݏ/ሺܽܨ

A policy is defined as a mapping from every state ݏ to an action ܽ. Policy improvement is done
by making the policy greedy with respect to the current value function. For any state-action
value function ܳ, the corresponding greedy policy is the one that, for each ݏ ∈ , ࡿ
deterministically chooses an action with maximal ܳ value: 																																																							ߨሺݏሻ ൌ ,ݏ௔ܳሺݔܽ݉݃ݎܽ ܽሻ (5)

The reward ݎ is a form of motivation for the occurred state-action pair and is likely to increase
the chances of occurrence of the action ܽ while the robot visits the state ݏ next time. As an

 22

example, after first interaction with the user, the ܳ value of the occurred state-action pair at time ൌ 1 , is updated to: 																																																														ܳሺݏ, ܽሻ ൌ 1 (6)

Matrix of dimension equal to number of states times number of actions, is memorized which
contains the ܳሺݏ, ܽሻ values ∀ݏ ∈ ܽ∀ and ࡿ ∈ and the values are updated after every ,࡭
interaction with the user.

2.3.3 Change in Behaviour

Humans have potential for relatively random patterns of behaviour and hence the behaviour
could be termed as stochastic [28]. The amount of randomness regarding behaviour of a user
corresponds to its entropy. Entropy (in bits) of a discrete random variable ࢄ is defined by Claude
Shannon in the equation below.

ሻࢄሺࡴ ൌ 	െ	∑ ୀ૚࢏࢔ሻ࢏࢞ሺ࢖૛ࢍ࢕࢒ሻ࢏࢞ሺ࢖ (7)

People who live less entropic lives are easier to predict and but who live entropic lives tend to be
more variable and harder to predict. One such case of user behaviour could be related to change
in behaviour after certain number of interactions with the interface where the user jumps from a
policy ߨ to another policy ߨᇱ and continues following policy ߨᇱ thereafter. In order to handle this
situation of changed behaviour by increasing the convergence rate of the algorithm or learn the
altered behaviour faster, another form of reward is incorporated. Separate interaction counter or
local timer for each state is defined and an action executed in a state increments the timer
associated with that state by one. This local timer value is rewarded to the occurred action of the
corresponding state. Therefore this timer associated reward function ܶሺݏ, ܽሻ for a state-action
pair is intuitively a function of the time the action a happened last in the corresponding state ݏ. It
is worth noting that the timer associated reward function ܶሺݏ, ܽሻ is equal in magnitude to the
marginal count ܨ௧ೌሺݏሻ of the state ݏ at the time of last occurrence of the action ܽ in the same
state ݏ. Hence each state-action pair was time stamped with a reward value equal to the marginal
count of the corresponding state when the respective action was seen last occurring in that same
state and hence defined mathematically as below: 																																																ܶሺݏ, ܽሻ ൌ ݏ∀	݁ݎ݄݁ݓ ሻݏ௧ೌሺܨ ∈ ܽ∀ and ࡿ ∈ (8) 				࡭

Therefore the modified ܳሺݏ, ܽሻ, when the possibility of changed behaviour pattern of a user is
included, takes the form: 																																															ܳሺݏ, ܽሻ ൌ ௙ݓ ∗ ሻݏ/ሺܽܨ 	൅	ݓ௧ ∗ ௙ݓ	݁ݎ݄݁ݓ ሻ (9)ݏ௧ೌሺܨ is the weight of Frequency based reward, ݓ௧ is the weight of Timer based reward

While the first term on the right hand side of the above equation favors frequent actions as it is
related to frequency of taking an action in a state, the second term favors recent actions in a state.
The intuition behind the second term on the right hand side of the equation is that in a state the
action that occurred recently is assigned higher timer value than the action occurred earlier in the
same state. Therefore the recent action or user behaviour is given higher priority compared to
previous action from the same state.

 23

It could be noted that use of a global timer or interaction counter as a reward function is avoided
here though it seems easier with regard to implementation. It is due to the fact that using a global
timer would assign a large value to a recent action that occurred from a less visited state in which
case the reward associated with the global timer would be more dominant than the reward
associated with the frequency term in spite of having the weighting terms for each of timer and
reward. Hence for the case of a global timer, finding a weight that would compensate for both
less visited as well as frequent states would be difficult and may lead to wrong prediction of user
intentions. Also if there is no change in user behaviour observed then also a global timer based
reward function would perform poor in terms of prediction, compared to a local timer based
reward.

2.3.4 Outlier in Behaviour

Outlier is defined as completely random pattern in user behaviour or action for certain short
period of interactions such as visiting a ‘Friend’ once in a month etc. In other words, the user
follows a policy ߨ and after certain number of interactions the user started following or switched
to another policy ߨᇱ, with having completely random state-transition probabilities for few
number of interactions and then again goes back to the original policy ߨ. The difference between
change in behaviour and outlier is that in the case of first one the user never goes back to the
original policy ߨ after changing the behaviour to follow another policy ߨᇱ, while for the latter
case the user goes back to the original policy ߨ after certain number of interactions. The weight
of timer ݓ௧ introduced in equation (9) above helps the algorithm to learn outlier as it assigns
higher timer associated reward to recent transition but in order to increase the rate of learning
during outlier period and also after completion of it, another reward function is defined which
assigns a reward ݎ௜ ∈ ሼ0,1,2ሽ, based on the number of interactions needed to select user intended
action ܽ available in a state ݏ. Here the number of interactions mean the number of masks that
are needed to be shown to the user for selection of an action from a given state. Hence ݎ௜is a
measure of the immediate reward from user to the interface policy. The cumulative interaction
reward function for a state-action pair ܫሺݏ, ܽሻ is memorized in a table, which is simply the
accumulated immediate interaction rewards for an action ܽ that occurs in state ݏ and is updated
after every interaction with the user as shown below: 																																ܫሺݏ, ܽሻ ← ,ݏሺܫ ܽሻ ൅ ݏ∀	݁ݎ݄݁ݓ ,௜ݎ ∈ ܽ and ࡿ ∈ (10) ࡭

In our experimental setup if the user intended option appears in the first mask then immediate
interaction reward ݎ௜ for that state-action pair is assigned a value 0 and similarly if it happens to
be in second or third mask, it is rewarded with values 1 and 2 respectively. The intuition behind
introduction of this interaction based reward function is to allow the algorithm to converge
faster, mainly after outlier period is over, by motivating the user intended actions that need
greater number of masks to be shown to the user.

Combining above described three kinds of situations, i.e. considering a stochastic user behaviour
with change in pattern as well as presence of outlier, the ܳሺݏ, ܽሻ could be reformulated as a
combination of reward based on state-action frequency, local timer and number of needed
interactions, as follows: 																																		ܳሺݏ, ܽሻ ൌ ௙ݓ ∗ ሻݏ/ሺܽܨ ൅ ௧ݓ ∗ ሻݏ௧ೌሺܨ ൅ ௥ݓ ∗ ,ݏሺܫ ܽሻ (11) ݁ݎ݄݁ݓ	ݓ௙ is the weight of Frequency based reward, ݓ௧ is the weight of Timer based reward and ݓ௥ is the weight of needed Interaction based reward

 24

2.3.5 Prediction of User Intention

Decision needs to be made as per the optimal policy of interface that imitates the user hidden
policy. The action based on optimal policy ߨ∗, is searched in the look-up table of ܳሺݏ, ܽሻ. As in
the case of P300-based BCI, there is possibility of displaying a set of actions in the mask,
therefore the optimal policy ߨ∗ in this case ranks all the actions with higher ܳ valued actions at
the top for every state and proposes the actions to the user as per the capacity of the mask.
Mathematically: 																																																		ߨ∗ሺݏሻ ൌ arg݉ܽݔ௦௘௧	௔∈஺ܳሺݏ, ܽሻ (12)

As the actions are ranked as per the relative values of ܳሺݏ, ܽሻ, therefore the expression: 																																ܳሺݏ, ܽሻ ൌ ௙ݓ ∗ ሻݏ/ሺܽܨ ൅ ௧ݓ ∗ ሻݏ௧ೌሺܨ ൅	ݓ௥ ∗ ,ݏሺܫ ܽሻ,
could be transformed into ܳᇱሺݏ, ܽሻ ൌ ሻݏ/ሺܽܨ ൅ ᇱ௧ݓ ∗ ሻݏ௧ೌሺܨ ൅ ᇱ௥ݓ ∗ ,ݏሺܫ ܽሻ (13)

In the following sections, ܳᇱሺݏ, ܽሻ is mentioned as ܳሺݏ, ܽሻ for simplification.

The process of learning and prediction steps could be viewed together as in the Figure 11 and the
algorithm is also mentioned below.

 Figure 11: Process of Learning and Prediction

 Frequency (ݏ/ሺܽܨ
Reward

Timer
Reward

Interaction
Reward

ܶሺݏ, ܽሻ
,ݏሺܫ ܽሻ

 +
+

+

Current
State (s)

Prediction Step

࢚࢝
࢘࢝

ሻݏሺ∗ߨ ൌarg݉ܽݔ௦௘௧	௔∈஺ܳሺݏ, ܽሻ Action 											a	

Learning Step

૚

 25

 ܾ݁݃݅݊

,ሻݏ/ሺܽܨ	݁ݖ݈݅ܽ݅ݐ݅݊ܫ ,ሻݏ௧ೌሺܨ ,ݏሺܫ ܽሻ ← ,ݏ	∀			0 ݊݋݅ݐܽݎ݁ݐ݅	݄ܿܽ݁	ݎ݋݂	ݐܽ݁݌݁ݎ	 ܽ

ݎ	݁ݖ݈݅ܽ݅ݐ݅݊ܫ ← ܣ,0 ← ݀ݎܽݓ݁ݎ	݊݋݅ݐܿܽݎ݁ݐ݊݅	݁ݐܽ݅݀݁݉݉݅	ݏ݅	ݎ	//																																			ݏ݊݋݅ݐܿܽ	݈݈ܽ	݂݋	ݐ݁ݏ

 						
 																								ܳሺݏ, ܽሻ ൌ ሻݏ/ሺܽܨ ൅ ௧ݓ ∗ ሻݏ௧ೌሺܨ ൅ ௥ݓ ∗ ,ݏሺܫ ܽሻ						//	݊݋݅ݐܿ݅݀݁ݎ݌	݌݁ݐݏ 														ݎ݋݂	݅ ൌ 1: ூܣ																								 							 3 ൌ ሻݏሺ∗ߨ ൌ																					ܽ݃ݎ	ݔܽ݉஺಺∈ಲ	 	∑ ܳሺݏ, ܽሻ			ݏ. .ݐ ݊݋݊	ݏ݊݅ܽݐ݊݋ܿ	ூܣ		 െ௔∈஺಺																																																																																																															݀݁ݐܽ݁݌݁ݎ	ݏݐ݈݊݁݉݁݁	݀݊ܽ	ܣ|ூ| ൌ																																																																																																															ܲ300	݉ܽ݇ݏ	ݕݐ݅ܿܽ݌ܽܿ	
 																										݂݅	ܽ௨⊂	ܣூ																																																															//	ݎ݁ݏݑ	݀݁݀݊݁ݐ݊݅	݊݋݅ݐܿܽ

 ݇ܽ݁ݎܾ																																			

௨ܽ	݂݅	݁ݏ݈݁	 ← ܲݎݎܧܫሺ	ݐݔ݁݊ ൌ 1ሻ
 1	ݕܾ	ݎ	ݐ݊݁݉݁ݎܿ݊݅																																			

ܣ																																		 ← ܣ െ ூܣ
 ݌݋݋݈	݂݅	݀݊݁																										

 ݌݋݋݈	ݎ݋݂	݀݊݁											

ሻݏ/ሺܽܨ																							 ← ሻݏ/ሺܽܨ ൅ 1

 ሻݏ௧ೌሺܨ	݁ݐܽ݀݌ݑ																							
,ݏሺܫ																						 ܽሻ ← ,ݏሺܫ ܽሻ ൅ ݎ

 ݁ݑ݊݅ݐ݊݋ܿ

 ݁݊݀

 Table 1: Learning and Prediction Algorithm

2.4 Training of the Algorithm Parameters and Testing

A map of the environment is built in Gazebo with several goal locations. Each of the locations
like ‘Office’, ‘Hostel’ etc., are assumed to be goal locations or states of the PR2 willow garage
robot 9, in this case. In total, thirty nine states are defined in the map. Actions are thirty nine high
level goal based and four low level commands with total of forty three actions to choose among.
Robot Operating System is used to publish the desired goal location as a ROS topic to PR2
navigational stack or to command the robot through low level navigation. The path planning
algorithm is made available with PR2 navigational stack. A top-view snap shot of the simulated
Gazebo world with PR2 robot is shown below in Figure 12.

9 http://www.willowgarage.com/pages/pr2/overview

 26

 Figure 12: Simulated Robot World in Gazebo Environment

As described earlier the user model includes stochastic behaviour. The probability of each action
in a state are defined for the purpose of developing a user model. The user was modeled as first
order MDP and implemented as shown in Appendix A. Three different user models are
developed in order to test the performances of the algorithm with different kinds of models. The
first model which is a high entropic model, has uniform distribution with average of maximum
probabilities around 0.04 while in the second user model with medium entropy, it is assigned a
maximum state-action probability as 0.5 on an average. The last user model had 80%
deterministic behaviour and thus lower entropic model, to prefer a particular action from a state.
In order to introduce changed behaviour mode, the user model had the provision to define
number of training instances after which the behaviour pattern is changed. Two modes for
changed behaviour pattern are considered. During strong change in behaviour mode, all the state-
action probabilities are redefined with high entropy while during weak change in behaviour
mode; only the action with maximum probability from each state is swapped with another action
available in the same state. In the user model, there is also provision of defining outlier period
during which the user follows a completely random policy. All together, the three user models
are equipped with different maximum state-action probability distributions and simulate change
in behaviour and outlier. For fixed policy interface, the user model was used to evaluate the
testing performance while for adaptive policy it was used both for training and testing.

PR2

 27

2.4.1 Fixed Policy Interface

For our test case, I have defined an environment with 39 states and 4 low level commands and
this sum up to 43 actions in total to simulate a P300-based BCI with 3 masks. Each mask could
contain at most 16 options including options such as ‘next’, ‘back’ or ‘repeat’ buttons. As it is
expected, there was no ‘back’ button for the first mask which means it had 15 possible actions
including the initial robot pose which is displayed as ‘Robo_initial_Pose’. The ‘Repeat_Options’
is dedicated only for the mask that comes in the last. In the case of fixed policy interface, the
BCI masks have predefined options in a specified sequence. I have used the map of the
environment to define a fixed policy. The masks designed in QT platform used for fixed policy
P300-based BCI is shown in Figure 13 below.

(a) 1st Mask (b) 2nd Mask

 (c) 3rd Mask

Figure 13: (a), (b) and (c) Simulated BCI with 3 Masks Used for Testing of Fixed
Policy P300-based BCI

2.4.2 Adaptive Policy Interface

In order to train the algorithm, the trajectory developed with the help of a user model as
described earlier, is used. The transitions in the trajectory are used as training instances,
sequentially starting from an initial state till the length of the trajectory. After each instance of
training, the algorithm is tested against the number of interactions needed in order to capture the
immediate next action while following the trajectory.

 28

2.4.3 Results of Fixed and Adaptive Policy Interfaces

 For the user model without incorporating change in behaviour and outlier, result could be seen
below in Figure 14.

 (Note: The abscissas of the following plots have different ranges)

 (a) (b)

 (c)

Figure 14: User Behaviour: (a) Highly Entropic Behaviour, (b) Medium Entropic
Behaviour and (c) Low Entropic Behaviour

For the fixed policy case, the average number of needed interactions is higher than the
interactions needed for adaptive policy in any of the three kinds of user models described above.

It could be seen for the model with higher entropy which is a measure of randomness, the
learning rate is slow and it approaches a higher value after certain number of trainings, while in
the case of medium entropic behaviour it attains a lower steady state value. As expected, in that
third case with low entropic behaviour, the steady state value reaches near to the ideal interface
which requires only one interaction to capture user intention. So from the results above, it could
be stated that a higher entropy in user behaviour leads to a lower convergence rate of the learning
algorithm or higher average per time per interaction. It means that if there is no routine in user
behaviour, there is no learning of the algorithm.

Different values of timer weights have been analyzed and the results are displayed both for weak
and strong change in behaviour in Figure 15 separately.

 29

 (a) (b)

Figure 15: Changed Behaviour Mode: (a) Weak Change at 500 number of trainings, (b)
Strong Change at 250 number of trainings

As was in the previous case, fixed policy performs poorer than the adaptive policy even in the
case of change in behaviour. It is worth noticing that in the case of weak change in behaviour,
the algorithm quickly converges even after the changed behaviour pattern is introduced and
approaches a value close to the steady state value before there is change in behaviour. But for a
strong behaviour change, the learning curve approaches towards the case of completely random
behaviour as shown in Figure 14 (a). Different timer weights affect the learning rate which is
visible in Figure 15, above.

For the situation where there are outliers in user behaviour pattern, the results are as follows in
Figure 16.

 (Note: The abscissas of the following plots have different ranges)

 (a) (b)

Figure 16: User Behaviour with Outliers (a) from 50 to 300 number of trainings and (b)
from 500 to 750 number of trainings

As expected, there is loss of information for the cases of early occurrence of outlier and also for
later occurrence of outlier in user behaviour. After the outlier period is over, learning curves in

 30

both cases approach towards the same value. Again, different weights for cumulative interaction
reward contribute to different convergence rates and steady state values. An attempt was made to
analyze the performance of the algorithm where there are both change in user behaviour and
outlier and the results for two completely different user models, are as follows:

 (a)

 (b)

 Figure 17: Both Outlier and Change in Behaviour: (a) and (b)

Even with these combination or outlier and change in behaviour cases, fixed policy was observed
to be performing poor compared to adaptive policies evaluated based on different combinations
of weight for timer and interaction reward. It could be stated that if the outlier period is longer,
the loss of information is more. However different weights could be set with regard to timer and
interaction reward, which affect the convergence rate and steady state value or steady state error.
It is worth noting that setting positive values for w t and w r helps the algorithm to converge faster
both during changed behaviour mode and also during outlier period but they need to be set
individually in order to lower the steady state error. Therefore designing individual weights is a
trade-off between convergence rate and steady state error of the learning algorithm. For
particular user behaviour, these weights are set manually after observing the steady state value of
the algorithm for different set of weights. The algorithm could further be enhanced by automatic
adaptation of the weights for different users. In order to provide this enhanced capability,
number of iterations need to be carried out and the weight values need to be selected which
satisfy the convergence criteria, i.e. to select those weight values which help the algorithm to
converge within specified number of iterations and within a defined steady state value.

The training and testing method mentioned above could be viewed as an on policy training and
testing, because prediction is done after every interaction with the user model. However, testing
was also carried out after the learning period is over or the algorithm was exposed to a specified
number of instances. Thereafter, it was tested for a trajectory of length twenty and the observed
average number of interactions closely matched the interaction values seen from the above
figures. Adaptive policy again performed better with a needed average interaction value of 24
compared to the fixed policy which was 38 on average for lower entropic user behaviour of
Figure 14 (c) above.

Outlier (50-300 number of trainings) and weak
behaviour change at 500 number of trainings

Outlier (250-750 number of trainings) and weak
behaviour change at 900 number of trainings

 31

2.4.4 Extension of the Learning Scheme

The first order markov decision model is extended to second order markov decision model, as it
is believed that implementing a higher order markov model may better predict the user behaviour
which could be of any order in reality. However a higher order markov model increases the
memory consumption rapidly. As an example, in a second order markov model, the next state of
the user not only depends on the present state but also on the immediate state prior to the present
state. It consumes memory of approximately ሺ|ࡿ|૜ሻ , where |ࡿ| is the cardinality of the state
space. Therefore due to increased memory consumption and also due to unavailability of second
order MDP of user model, this learning algorithm has not been tested. There is an attempt made
to extend the definition of state to include time schedule, in order to have better prediction of
user behaviour which is dependent not only on current state but also on time of the day, e.g. a
finite number of temporal values, twenty four in our case considering an entire day with twenty
four hours, is used to discretize each state which is originally a goal location into finite number
of states in order to include both location and time of the day in the definition of a state. Separate
track of locations along with hour of the day is memorized. However testing of the algorithm
with time schedule would need a more complex user model than implemented here and increased
memory usage due to state discretization.

2.5 Future Work on Adaptive Brain-Computer Interface

As part of the future work, this algorithm could also be enhanced with the ability to distinguish a
goal location to a sub-goal location where a sub-goal might be triggered due to external events
such as ringing of a bell etc. This could be implemented by ignoring the look-up table ܳ value
update rule when a sub-goal is recognized as an external event. The Markov Decision Model
could be extended to include partially observability of user state which might arise due to
misclassification of user intention in the BCI task. Another improvement in the algorithm might
be related to current memory requirement of the algorithm as it is evident that the memory
requirement increases rapidly depending upon the number of states because of the fact that the
look-up table memorizes values for each state-action pair. In order to reduce the memory
requirement, sparse representation might be implemented. Also the definition of state could
further be enhanced by including additional sensory information that might be input to the
learning algorithm such as environmental temperature condition, light intensity etc. in order to
better predict user behaviour as these parameters as well affect user behaviour and hence user
intention. But it would require additional memory for implementation. Further to enhance the
optimality of this BCI, the reward in terms of cognitive load of the user could also be considered.

In this c
vector m
training
chapter
detectio

3.1 S
Interact
after a w
indicatin
after 25
450ms”
cases re
be deve

Figure
noErrP

Out of s
should b
methods
unsuper
analyses
training
vectors
survey r
out by B
Bayesia
three di
positive
from th

3

chapter stat
machine, fe

g data set u
r ends descr
on of error-r

State-of-
tion Error-re
wrong actio
ng the selec

50ms follow
 [30]. Figur

espectively.
eloped.

 18: Aver
P (Correct tr

several met
be chosen d
s are used
rvised learn
s the trainin

g samples a
in new sets
revealed tha
Bollon et a

an filter. Th
ifferent subj
e respective
hree differen

3 PART

te-of-the-ar
feature extra
used for cl

ribing the po
related pote

-the-Art
elated poten
on selection
cted action,

wed by a po
re 18 and 1
In order to

rage ErrP
rial) – [Cz e

thods of dat
depending o

for classif
ning categor
ng data and
a decision r
s of data, e.g
at that prev

al. [31] was
he study by
jects with m

ely, using G
nt subjects,

T TWO

rt classificat
action and
lassifier, an
otential futu
entials in ele

t Classif
ntials (IErrP
n by the BC
these featur
sitive peak
9 shows bo

o detect the

(Error trial
electrode]

ta classifica
on the task.
fication and
ry while fin
d produces
rule can be
g. Support v

vious work o
able to rec

y Chavarria
maximum re
Gaussian cl
, reported b

32

O (CLAS

tion of erro
d classificat
nd the perf
ure work rel
ectroenceph

fication
Ps) are spec
CI system o

ures can be d
after 320m

oth ErrP an
presence o

l) and

Fig
and

ation, as the
If the train

d if the trai
nding patte
an inferred

e constructe
vector mach
on EEG dat
cognize 71%
age et al. [2
ecognition
lassifier. Si
by Ferrez e

SSIFIC
RELA

or-related p
tion method
formance re
lated to sup
halographic

n of Erro
cial features
or the user.
distinguishe

ms and a sec
d noErrP si

of ErrP in th

gure 19: Si
d noErrP (C

ere is no opt
ing data is
ining data
rn in data.

d function, w
ed that accu
hine (SVM)
ta classifica
% of ErrP a
25] had rep
rate around

imilarly the
et al. [32] w

ATION
ATED P

potentials, in
d using sup
esults have
pport vector
c data.

or-relate
s that can be
. After the
ed by first, “
cond broad
ignals for av
he EEG dat

ingle trial E
Correct trial)

timal generi
labelled, the
is unlabelle
A supervis

which is ca
urately assi
) or Gaussia
ation for det
and 85% fo
ported class
d 73% and 9
e average o
were around

N OF ER
POTENT

ntroduction
pport vecto

been pres
r machine cl

ed Pote
e detected i
onset of th

“a sharp neg
der negative
average and
ta, a classifi

ErrP (Error
) - [Cz elec

ric method,
en supervis
ed then it
sed learning
alled a class
igns labels
an classifier
tection of E

or noErrP d
sification ac
92% for Er

of the resul
nd 79% and

RROR-
TIALS)

n to support
or machine,
ented. This
lassifier for

ntials

in the EEG,
he feedback
gative peak

e peak after
single trail

ier needs to

r trial)
trode]

the method
sed learning
falls under

g algorithm
sifier. From
for feature

r. Literature
ErrP carried
data using a
ccuracy for
rrP and true
lts obtained
d 82% with

-
)

t

s
r

,
k
k
r
l
o

d
g
r

m
m
e
e
d
a
r
e
d
h

 33

standard deviation of 6.6 and 7.0 percentages for true negative and true positive respectively, as
shown below in Table 2. In their statistical classifier, every Gaussian unit represents a prototype
of one of the classes to be recognized.

Chavarriage et al. Ferrez et al.

Subject ErrP (%) noErrP (%) Subject ErrP (%) noErrP (%) 1 73.5 92.01 1 87.3 േ 11.3 82.8 േ 7.22 58.91 83.82 2 74.4 േ 12.4 75.3 േ 10.03 66.29 86.86 3 78.1 േ 14.8 89.2 േ 4.9

Avg 66.23 87.56 Avg 79.9 േ 6.6 82.4 േ 7.0

3.2 Support Vector Machine

Support vector machine is a method that uses supervised learning for analysing and recognizing
patterns in data both for classification and regression. SVM emerged in mid-1990 from the area
of statistical learning theory developed by Vapnik in the late 1970's [33]. SVM has several
benefits compared to other classification techniques [34]. Today SVM are widely used in many
areas, for handwritten digit recognition, object recognition and many others. “Support Vector
Machines are among the best (and many believe is indeed the best) “off-the-shelf” supervised
learning algorithm” [35] and therefore among various available methods of classification, SVM
was chosen to classify EEG signal for detection of error-related potentials elicited in the brain
after observing erroneous response. SVM is a representation of the examples as points in space,
mapped so that the examples of the separate categories are divided by a clear gap that is as wide
as possible as shown in Figure 20. It constructs a hyperplane or set of hyperplanes in a high or
infinite-dimensional space, which is used for classification. Intuitively, a good separation is
achieved by the hyperplane that has the largest distance to the nearest training data point of any
class, also called as functional margin; since in general the larger the margin the lower the
generalization error of the classifier. A functional margin is defined as follows: 																																																																	࢏࢟ሺ࢏࢚࢞࢝ ൅ ሻ (14)࢈
 is the weight vector with ܾ as ࢚࢝ ,is the corresponding class ࢏࢟ ,is the training instance ࢏࢞	݁ݎ݄݁ݓ
the intercept term.

Table 2: State-of-the-art results of Error related Potentials classification

 34

New examples are then mapped into that same space and predicted to belong to a category based
on which side of the gap they fall on. For linearly separable data, a Linear SVM classifier works
well. In addition to performing linear classification, SVMs can efficiently perform non-linear
classification using what is called the kernel trick, implicitly mapping their inputs into high-
dimensional feature spaces. Whereas the original problem may be stated in a finite dimensional
space, it often happens that the sets to discriminate are not linearly separable in that space. For
this reason, it was proposed that the original finite-dimensional space be mapped into a much
higher-dimensional space, presumably making the separation easier in that space. To keep the
computational load reasonable, the mappings used by SVM schemes are designed to ensure that
dot products may be computed easily in terms of the variables in the original space, by defining
them in terms of a kernel function ࡷሺ࢞, ሻ selected to suit the problem. Therefore selection of࢟
kernel function is an important step in the process of classification. This problem of kernel and
kernel parameter selection could be simplified because simple kernels have proved to be
sufficient enough and appropriate parameters can be found using grid or pattern search. Among
various, one of the advantages of SVM is that it could find a boundary between the classes even
for data which are not linearly separable, by projecting them into higher dimensions. Also SVM
provide a good out-of-sample generalization, if the kernel parameters are appropriately chosen.
For the sake of these above mentioned advantages, SVM classifier was chosen for classification
of EEG data to detect presence of error-related potentials.

3.3 Data Set Used for Classifier
In this simulated BCI experiment similar to the one described in [32], it has been tried to explore
interaction ErrPs in case of erroneous keyboard interactions. Thereby the user tries to push a ball
into a hole which is located on the same horizontal line as the ball using keyboard left and right
arrow keys only. The user input is translated by the interface into movements of the ball; thereby
it moves the ball into the wrong direction with a probability of error P as shown in Figure 21.
The recognition of the ErrPs is challenging due to the low signal-to-noise ratio (SNR) inherent in
single trials, as opposed to averaging number of trials in the case of P300.

Figure 20: Support Vector Machine Example [36]

 35

(a) t=T (b) t=T+1 (c) t=T+2

Figure 21: Experimental setup for interaction ErrPs. Using left and right arrow keys, the user
should bring the ball (red circle) into the hole (blue rectangle). As an example, the initial
positions of the ball and the hole, are shown in (a). The user hits the left arrow button to move
the ball closer to the hole, and the result is shown in (b). Interaction ErrPs are evoked when the
user hits the left arrow button and the ball goes to the right as shown in (c). Erroneous
interactions reduce the information transfer rate ITR, e.g. ITR=0 for this example.

Ignoring user interactions, which are followed by IErrPs, leads to higher information transfer
rates [30, 32, 37]. As a pilot study, data was recorded from one subject using a 32-channel
acquisition system (from g.tec company 10). Based on the extended 10-20 system, 32 active
electrodes were placed at the following positions: FP1, FP2, F7, F8, F3, F4, T7, T8, C3, C4, P7,
P8, P3, P4, O1, O2, AF3, AF4, FC5, FC6, FC1, FC2, CP5, CP6, CP1, CP2, Fz, FCz, Cz, CP, Pz,
Oz. One additional passive ground electrode was placed at Fpz. Signals were referenced to the
right earlobe. The signal was sampled with frequency of 256 Hz. EEG data is often subjected to
noise which may arise due to blinking of eyes or movement of body parts. EEG data therefore
need to undergo pre-processing, before it could be used for classification. Pre-processing
includes operations like artefact removal which is a noise with high magnitude. Then the signal
is re-sampled which applies an anti-aliasing filter or low pass finite impulse response filter to the
signal and changes the sampling rate to one fourth of original sampling value, i.e. to a sampling
frequency of 64 Hz. Among several available channels, data from channel 'Cz' which is located
near the parietal lobe that has strong signal content is used to train the classifier. Over 5 sessions
total of 74 and 260 instances of ErrP and noErrP were captured respectively for training,
validation and testing of classifier. A parameter 'time of interest' was used to extract each signal
portion of interest which was set between 0 and 650ms here. Implementation of SVM was
carried out the following way.

3.4 Feature Extraction and Training of Classifier

3.4.1 Method of Feature Extraction

It is one of the most important steps in the recognition process [38]. Mentioned below, several
categories of iterations that were performed in order to estimate a suitable way for feature
selection to distinguish ErrP from noErrP instances, in the EEG data.

a) Each Data Point as an Instance

In this category, single trial ErrP and noErrP signal portion of interest have forty two data points
as shown in Figure 22 (a) Each of these data points are considered as independent instances that
either belong to ErrP or noErrP class without considering the temporal dimension of the signal.
For example each ErrP and noErrP signal portion of interest has in total forty two instances
belonging to ErrP and noErrP classes respectively. Therefore with this approach, each signal is
transformed into forty two instances of one dimensional feature vectors. After the classification
result is obtained, a voting scheme is used to have the result for entire test signal, e.g. if more

10 http://www.gtec.at/Products/Complete-Solutions/g.BCIsys-Specs-Features

 36

than 50% data points of a signal are classified as ErrP, then the test signal is classified as ErrP
signal else it is recognized as noErrP signal.

b) Dimensionality Reduction of Each Signal

In this method, dimensions or features in signal portion of interest are reduced depending upon
the following scheme. For each individual signal, the data points are compared against each
other and if they fall in neighbourhood of each other i.e. lie within a pre-set threshold value, then
those points are considered as redundant. Redundant points are discarded keeping only one of
those points or in other words they are merged to a single value. Hence the remaining data points
of each signal are considered as important features and each of these points are treated as
independent instances neglecting the temporal dimension. Similarly this dimensionality
reduction scheme is carried out for testing data as well, i.e. it reduces data points which fall in
neighbourhood of each other considering all of them as a single point. The threshold is set here
as 0.01μv. Similar to the previous category mentioned above, the voting procedure is again
carried out here to classify an entire test signal depending upon the classification result of all of
its important constituting features.

c) Each Data Point in the Time Series Signal as a Feature

As mentioned earlier, every signal portion of interest contains forty two data points here. Each of
these data points is considered as a feature of the signal and therefore each instance of ErrP and
noErrP has a feature vector of forty two dimensions.

d) Addition of Temporal Feature

It is observed that the time difference between maximum and minimum of average ErrP signals
are different from that of average noErrP which could be seen in Figure 22 (b). This temporal
difference is considered as a feature of the signal and proportional to the difference in index of
maximum and minimum value of the respective signal. Therefore, this index difference is
estimated for each signal and considered as a feature along with the other forty two features
mentioned earlier. Therefore these sums up to a feature vector of forty three dimensions in each
instances of both ErrP and noErrP.

e) Important Features Only

Among the earlier mentioned forty three features extraction method, a technique is implemented
to retain only important features of a signal and use only those selected important features during
classification. Classifiers in sequence are developed based on only one feature of all signals
followed by another until all the features are used in separate classifiers. Each classifier is
validated using the validation data set. If a classifier contributes to at least a pre-set percentage
which is set as 30%, for correct classification of both true negative and true positive, then the
feature associated with that classifier is considered as biased to correct class feature. Feature
might also exist that are biased to opposite class which means feature that helps in classifying the
opposite class for both categories of signals instead of predicting the class they belong to.
Therefore to detect possibilities of these opposite class biased features, the classifier should have
an opposite class classification result above a defined value which is set as 70% for both true
negative and true positive signals. Among total of forty three features including the temporal
dimension, those which are biased to correct and opposite classes need to be determined. For the
sake of it, a set of forty three linear classifiers are trained separately using only one feature
followed by another feature of the signal. All of those classifiers are checked individually against
their performances with the validation set. A classifier is considered as poor classifier if it

 37

doesn’t contribute to either above 30% or above 70% for correct and opposite class classification
respectively, for both ErrP and noErrP signals in validation set. The corresponding feature
associated with the poor classifier is regarded not important and hence is discarded before
training the final classifier to be verified with test data. Important features of average ErrP and
noErrP signals are shown in Figure 22 (b).

3.5 Support Vector Machine Classifier Training

a) Randomization of Data

True negative and true positive data are randomized separately, 10 times, in order to test the
result for different set of training, validation and testing sets. The final test result is calculated as
the average outcome of each randomized set of data.

b) Normalization of Data

Each feature needs to be normalized in order to keep the feature values bounded within unity, for
the sake of assigning equal weight or importance to all of the features. Also keeping the values
within a small range allows the kernel to occupy less memory during kernel function operations
which essentially uses calculations like dot product of vectors.

c) Labelling of Data

All of the available data are labelled as -1 if it belongs to ErrP and as 1 if it belongs to noErrP.

d) Splitting of Data

The ErrP and noErrP data are split into 80, 10 & 10 ratio for training, validation and testing
respectively.

e) Kernel and Kernel Parameter Selection

Among several varieties of classifiers, Linear classifier tries to linearly separate data while a
Radial Basis Function (RBF) kernel or Gaussian kernel maps the limited set of features to
infinite number of features in order to obtain a hyperplane separating both classes of data when
the data is not linearly separable. By doing so, there are better chances of finding a separating

(a) (b)

Figure 22: ErrP (Error trial) and noErrP (Correct trial) signals (a) Avg ErrP & noErrP with Important
Features, and (b) Average ErrP & noErrP with Temporal Difference Feature

 38

hyper plane than finding it with limited available features. RBF classifier is generally considered
having better performance due to this infinite dimension mapping, compared to other classifiers
like Polynomial kernels [39]. Among various available techniques like Quadratic Programming
(QP), Sequential minimal optimization (SMO) and Least Square (LS), SMO method is selected
to find out the separating hyperplane. The SMO algorithm, gives an efficient way of solving the
dual problem arising from the derivation of the SVM. It was invented by John Platt in 1998 at
Microsoft Research [40]. SMO is widely used for training support vector machines. The
publication of the SMO algorithm in 1998 has generated a lot of excitement in the SVM
community, as previously available methods for SVM training were much more complex and
required expensive third-party QP solvers [41].

f) Training

During the step of important features selection, only linear classifier was used as it was quicker
and also had comparable results with RBF kernel. After selection step of important features, both
Linear and RBF classifiers are trained using the features. In general, the performance of
classifier is very much dependant on the choice of parameters [42]. In the case of RBF classifier
these crucial parameters used in the kernel function are box constraint and sigma value. Initially
a coarser and later a finer grid search are generally performed on these parameters. These
parameters are chosen depending upon the cross-validation accuracy, after iterating on different
values of the parameters. Cross-validation, sometimes called rotation estimation [43], is a
technique for assessing how the results of a statistical analysis generalize to an independent data
set. It is mainly used when determining the tuning parameters and also the method can estimate
the bias of the excess error in prediction [44]. In k-fold cross-validation, the original sample is
randomly partitioned into k subsamples. Of the k subsamples, a single sub-sample is retained as
the validation data for testing the model, and the remaining (k – 1) subsamples are used as
training data. The cross-validation process is then repeated k times or k folds, with each of the k
subsamples used exactly once as the validation data. The k results from the folds then are
averaged to produce a single estimation. The advantage of this method over repeated random
sub-sampling is that all observations are used for both training and validation, and each
observation is used for validation exactly once. Classification parameters used during training of
classifier are listed in Appendix B.

3.6 Classification Performance of Support Vector Machine

Test instances are recognized using both Linear and RBF classifiers separately and the
performances are compared against each other. Test results for each data set generated because
of randomization, are produced and the average performance is estimated. Also calculated are
the standard deviations for both ErrP and noErrP classification accuracy. Mentioned below is the
average result of SVM classification for different categories of iterations that is developed in this
thesis work. Among the five different categories used for feature extraction mentioned earlier,
the first “Each Data Point as an Instance” and the second “Dimensionality Reduction” categories
have similar performances with average classification rate around 70% for both ErrP and noErrP.
“Each Data Point in the time series signal as a Feature” which is third in the category list and the
next “Addition of Temporal Feature” both have better performances but average classifications
are below 75% for both ErrP and noErrP. The result obtained from the last category of iteration
“Important Features Only” defined above, is superior to all other categories mentioned. Twenty
three features are found to be important after following the procedure mentioned under
“Important Features Only” category, among the forty three available features for each signal
portion of interest and there is no such feature found which is biased to opposite class. The
average classification results of this category are 71% with standard deviation of 12% for ErrP
and 73% with standard deviation of 9% for noErrP with a linear classifier. As expected,

 39

performance seems to increase for RBF classifier with average ErrP classification of 88% with
8% standard deviation and 75% with 7% standard deviation for noErrP. The RBF classifier while
considering only important features from data is the best performer among other types of feature
extraction methods and choice of classifiers mentioned. The result of SVM classifier and
Gaussian classifier for the same data produces ErrP and noErrP average classification accuracies
as mentioned below in Table 3, for 10 fold cross-validations.

SVM Gaussian

Linear RBF

ErrP (%) noErrP (%) ErrP (%) noErrP (%) ErrP (%) noErrP (%) 71 േ 12 73 േ 9 88 േ 8 75 േ 7 95 േ 5 72 േ 13

3.6.1 Timing Performance of Support Vector Machine Classifier

The time consumed during training and validation of the linear classifier is around 70 seconds
while that of RBF classifier is approximately 110 seconds, for around 300 instances of ErrP and
noErrP in total. Both linear and RBF classifier produced test results within 0.1 second for a
single test instance.

3.7 Future Work on Support Vector Machine Classification
Method

The work could be extended to perform a BCI experiment using either P300 or SSVEP paradigm
to record user intention with more number of participants and thereafter training SVM with large
data set. A finer grid search could be performed in order to estimate better values of box
constraint and sigma which would produce higher recognition rate of ErrP and no ErrP in the
EEG data, when radial basis function (RBF) kernel is used for SVM classification. Advanced
feature extraction methods from ErrP and noErrP signals in the EEG data, may lead to even
better performance of the SVM classifier.

Table 3: ErrP Classification Rate for SVM and Gaussian Classifiers

 40

4 SUMMARY

This is the last chapter of this thesis and it concludes with the summary of the entire thesis work
of part 1 (Adaptive BCI) and part 2 (Classification of Error-related Potentials).

The future generations of user interfaces need to consider uncertainties in user behaviour and
should be able to adapt as per the user, in order to provide increased user satisfaction while using
the interface. This study shows a novel use of machine learning technique, to be specific
reinforcement learning to develop an algorithm for adaptive Brain-Computer Interface system in
application to navigational tasks. The learning algorithm used here also takes care of change in
behaviour of the user and outliers in user behaviour. As a future work of this learning algorithm,
the reward function defined in the algorithm could be enhanced by considering cognitive load of
the user. I have shown that such an adaptive BCI is indeed possible and could provide
embodiment feeling to the user as if the robot body is an avatar of the user, compared to
conventional fixed policy based BCI systems.

Further this thesis tackles the detection of single trial error-relate potentials in the EEG data
using Support Vector Machine. As expected, it is observed that feature selection plays a decisive
role for classification accuracy. SVM is found to work well, in parallel with other classifiers such
as Gaussian classifier or Bayesian filter method and could have higher ErrP recognition rate for
RBF kernel with tuned kernel parameters. The timing performance shows that SVM could be
considered for real-time BCI applications. Successful detection of error-related potentials
indicates the possibility of increasing the reliability and also improving the information transfer
rates of BCI systems.

 41

5 LIST OF FIGURES

Figure 1: Example Task 11

Figure 2: EEG Cap 11

Figure 3: SSVEP-based BCI 12

Figure 4: P300-based BCI 13

Figure 5: EEG Data Classifiers 14

Figure 6: Average ErrP (Error trial) and no ErrP (Correct trial) 15

Figure 7: Single Trial ErrP (Error trial) and noErrP (Correct trial) 15

Figure 8: Example of a Finite State Automaton 18

Figure 9: State-action Mapping 19

Figure 10: Adaptive Interface Manager and its Relation to Other Components of

the Embodiment System 20

Figure 11: Process of Learning and Prediction 24

Figure 12: Simulated Robot World in Gazebo 26

Figure 13: Simulated BCI with 3 Masks Used for Testing of Fixed Policy

P300-based BCI 27

Figure 14: User Behaviour 28

Figure 15: Changed Behaviour Mode 29

Figure 16: User Behaviour with Outliers 29

Figure 17: Both Outlier and Change in Behaviour 30

Figure 18: Average ErrP (Error trial) and no ErrP (Correct trial) 32

Figure 19: Single Trial ErrP (Error trial) and noErrP (Correct trial) 32

Figure 20: Support Vector Machine Example 34

Figure 21: Experimental Setup for Interaction ErrPs 35

Figure 22: ErrP (Error trial) and noErrP (Correct trial) signals 37

 42

6 REFERENCES

[1] Niels Birbaumer, Ander Ramos Murguialday and and Leonardo Cohen, Brain–computer
interface in paralysis, Current Opinion in Neurology, 21:634–638, (2008).

[2] Brain-computer interface Wiki - http://en.wikipedia.org/wiki/Brain-computer_interface .

[3] Dennis J. McFarland and Jonathan R. Wolpaw, Brain-Computer Interfaces for
Communication and Control, Communications of the ACM, Vol. 54 No. 5, Pages 60-66, (2011).

[4] Pour P.A., Gulrez T., AlZoubi O., Gargiulo G and Calvo, R.A., Brain-Computer Interface:
Next Generation Thought Controlled Distributed Video Game Development Platform, IEEE
Symposium on Computational Intelligence and Games, (2008).

[5] Beverina F, Palmas G, Silvoni S, Piccione F and Giove S, User adaptive BCIs: SSVEP and
P300 based interfaces, PsychNology Journal, Volume 1, Number 4, 331 – 354 (2003).

[6] D. Zhu, J. Bieger, G. G. Molina, and R.M. Aarts, A Survey of Stimulation Methods Used in
SSVEP-Based BCIs. Computational Intelligence and Neuroscience Volume, Article ID 702357,
(2007).

[7] R.M. Chapman and H.R. Bragdon, Evoked responses to numerical and non-numerical visual
stimuli while problem solving, Nature, volume 203, 1155-1157, (1964).

[8] J. Polich. Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology,
118(10), 2128-2148, (2007).

[9] L. Farwell and E. Donchin. Talking off the top of your head: toward a mental prosthesis
utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology,
70(6):510–523, (1988).

[10] J. Wolpaw, N. Birbaumer, W. Heetderks, D. McFarland, P. Peckham, G. Schalk, E.
Donchin, L. Quatrano, C. Robinson and T. Vaughan. Brain–Computer Interface Technology: A
Review of the First International Meeting. IEEE Transactions on Rehabilitation Engineering,
Volume 8, (2000).

[11] B. Blankertz, G. Dornhege, C. Schäfer, R. Krepki, J. Kohlmorgen, K. Müller, V.
Kunzmann, F. Losch, and G. Curio. Boosting bit rates and error detection for the classification of
fast-paced motor commands based on single-trial EEG analysis. IEEE Transactions on Neural
Systems and Rehabilitation Engineering, Vol. 11, No.2, (2003).

 43

[12] J. Bollon, R. Chavarriaga, J. del R. Millan, and P. Bessiere. EEG Error-RelatedPotentials
Detection With A Bayesian Filter. Proceedings of the 4th International SaD1.38 IEEE EMBS
Conference on Neural Engineering Antalya, Turkey, (2009).

[13] Steve Young, Cognitive User Interfaces, IEEE Signal Processing Magazine [128], (2010).

[14] Matthias Schneider-Hufschmidt, Thomas Kühme and Uwe Malinowski. Adaptive User
Interfaces: Principles and Practice, (Book - 2007).

[15] Gajos K., and Weld D. S., Supple: automatically generating user interfaces. In Proceedings
of the 9th international conference on Intelligent user interface, 93–100. Funchal, Madeira,
Portugal: ACM Press, (2004).

[16] Pat Langley, User Modeling in Adaptive Interfaces, Seventh International Conference on
User Modeling, Alberta, (1999).

[17] Alf Inge Wang and Qadeer Khan Ahmad, CAMF – Context-aware Machine Learning
framework for Android, Iasted International Conference on Software Engineering and
Applications (2010).

[18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction, MIT
Press, Cambridge, MA, (1998).

[19] Satinder P. Singh, Michael J. Kearns, Diane J. Litman, and Marilyn A.Walker.,
Reinforcement learning for spoken dialogue systems - NIPS (1999).

[20] Wang Y, Huber M., Papudesi V.N. and Cook D.J., User - Guided Reinforcement Learning
for an Intelligent Environment, IEEE/RJS International Conference on Intelligent Robots and
Systems , Las Vegas, NV, (2003).

[21] William D. Smart and Leslie Pack Kaelbling. Effective Reinforcement Learning for Mobile
Robots, IEEE International Conference on Robotics 8 Automation Washington, DC, (2002).

[22] Jing Michelle Liu and Raphael Hoffmann. Zhiphone: A Phone that Learns Context and User
Preferences, CSE567 class project, University of Washington, (2005).

[23] J. Andrew Bagnell and Jeff Schneider , Autonomous Helicopter Control Using
Reinforcement Learning Policy Search Methods, International Conference on Robotics and
Automation, (2001).

 44

[24] DiGiovanna J., Mahmoudi B., Fortes J., Principe J.C., Sanchez J.C., Coadaptive brain-
machine interface via reinforcement learning, IEEE Transactions on Biomedical Engineering,
Vol. 56, No. 1, (2009).

[25] R. Chavarriaga, P.W. Ferrez, and J.del R. Millán. To err is human: learning from error
potentials in brain-computer interfaces, 1st International Conference on Cognitive
Neurodynamics, Shanghai, China, (2007).

[26] Jaeyoung Park, Kee-Eung Kim, and Sungho Jo. A POMDP Approach to P300 Brain-
Computer Interfaces, International conference on Intelligent user interfaces, New York, USA,
(2010).

[27] Xavier Perrin, Ricardo Chavarriaga, Francis Colas, Roland Siegwart and José del R. Millán.
Brain-coupled interaction for semi-autonomous navigation of an assistive robot - Robotics and
Autonomous Systems, Journal of Robotics and Autonomous Systems archive Volume 58 Issue
12, Pages 1246-1255, (2010).

[28] Nathan Eagle, Alex (Sandy) Pentland., Reality mining: sensing complex social systems,
Journal of Personal and Ubiquitous Computing, Volume 10 Issue 4, Pages 255 - 268 (2006).

[29] Jennifer Boger, Jesse Hoey, Pascal Poupart, Craig Boutilier, Geoff Fernie, and Alex
Mihailidis. A Planning System Based on Markov Decision Processes to Guide People with
Dementia Through Activities of Daily Living, IEEE Transactions on Information Technology in
Biomedicine, Vol. 10, No. 2, (2006).

[30] P. W. Ferrez and J. d. R. Millán, “You are wrong! - Automatic detection of interaction
errors from brain waves,” In Proceedings of the 19th International Joint Conference on Artificial
Intelligence, Edinburgh, UK, (2005).

[31] Jean-Marc Bollon, Ricardo Chavarriaga, Jose del R. Millan† and Pierre Bessiere. EEG
Error-Related Potentials Detection With A Bayesian Filter, IEEE EMBS Conference on Neural
Engineering Antalya, Turkey, (2009).

[32] P. W. Ferrez and J. d. R. Millán, “Error-related EEG potentials generated during simulated
brain-computer interaction”, IEEE Transactions on Biomedical Engineering 55, 923–929,
(2008).

[33] Staffan Bengtsson, Detection and prediction of lane-changes: A study to infer driver intent
using support vector machine (A study to infer driver intent using support vector machine),
Master of Science Thesis, KTH Stockholm, Sweden (2012).

 45

[34] Laura Auria and R.A. Moro, Support Vector Machines (SVM) as a Technique for Solvency
Analysis - Discussion Papers, German Institute for Economic Research, DIW Berlin Discussion
Paper No. 811, (2008).

[35] Andrew Ng, Stanford Machine Learning, CS229 Lecture notes, (2012) -
http://cs229.stanford.edu/notes/cs229-notes3.pdf

[36] Early detection of plant diseases and weeds with Support Vector Machines, DFG Research
Training Group (Graduiertenkolleg) 722, International Conference Precision Agriculture,
Denver, USA, (2010).

[37] Schalk, G., Wolpaw, J. R., McFarland, D. J., and Pfurtscheller, G., “EEG-based
communication: presence of an error potential”. Clinical neurophysiology�: official journal of
the International Federation of Clinical Neurophysiology, 111(12), 2138-44, (2000).

[38] X. Wang and K.K. Paliwal. Feature extraction and dimensionality reduction algorithms and
their applications in vowel recognition. The Journal of the Pattern Recognition Society 36, 2429
– 2439, (2003).

[39] Andrew K. Chan and Cheng Peng, Wavelets For Sensing Technologies, Page 184, (Book –
2003).

[40] John C. Platt, Sequential Minimal Optimization: A Fast Algorithm for Training Support
Vector Machines, Microsoft Research, Advances in Kernel Methods – Support Vector Learning
(1998).

[41] Ryan Michael Rifkin, "Everything Old is New Again: a Fresh Look at Historical
Approaches in Machine Learning", MIT, Doctoral Dissertation, Sloan School of Management,
(2002).

[42] O. Chapelle, V. Vapnik, O. Bousquet and S. Mukherjee. Choosing Multiple Parameters for
Support Vector Machines, Journal of Machine Learning, 46, 131–159, Kluwer Academic
Publishers, MA, USA, (2002).

[43] P.A. Devijver and J. Kittler. Pattern Recognition: A Statistical Approach, Prentice- Hall,
London, GB, (Book - 1982).

[44] M. Tsujitani, Y. Tanaka, Cross-Validation, Bootstrap, and Support Vector Machines,
Advances in Artificial Neural Systems Volume, Article ID 302572, (2011).

 46

Appendix A: Markov Agent for Training and Testing of the
Algorithm

begin
 Define number of actions, trajectory length // Number of training instances

 Initialize current state, state→action probabilities

 Calculate cumulative state→action probabilities

 while training index < trajectory length do

 Generate random number // Normalize the random number

 while action index < number of actions do

 if random number > cumulative probability (current state → action) then

 if random number = 1 then next action ← action index

 else next action ← action index + 1

 end if

 else

 next action ← action index

 end if
 end while

 trajectory [training index] ← next action

 if action = low level then do nothing

 else current state ← action

 end if

 end while
end

 47

Appendix B: Parameters for Support Vector Machine
Classification

Karush-Kuhn-Tucker (KKT) violation level 0.01

KKT Tolerance Limit 0.01

Maximum Number of Iterations 20000

Kernel Catch Limit 10000

RBF Sigma 29

RBF Box Constraint 2

Matlab Version (svmtrain) R2011b

Operating System Ubuntu 10.10

