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Abstract
The popularity of wireless sensor networks is constantly increasing, both for
use in static machine to machine environments as well as dynamic environments
where the sensor nodes are carried by humans. Higher demands are put on
real-time tracking algorithms of the sensor nodes, both in terms of accuracy
and speed.

This thesis addresses the issue of tracking persons wearing small sensor nodes
within a radio network. Focus lies on fusing sensor data in an efficient way
with consideration to the computationally constrained sensor nodes. Different
sensors are stochastically modelled, evaluated, and fused to form an estimate of
the person’s position.

The central approach to solve the problem is to use a dead reckoning method
by detecting steps taken by the wearer combined with an Inertial Measurement
Unit to calculate the heading of the person wearing the sensor node. To decrease
the unavoidable drift which is associated with a dead reckoning algorithm, a map
is successfully fused with the dead reckoning algorithm. The information from
the map can to a large extent remove drift.

The developed system can successfully track a person wearing a sensor node
in an office environment across multiple floors. This is done with only minor
knowledge about the initial conditions for the user. The system can recover
from divergence situations which increases the long term reliability.
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Sammanfattning
Intresset för trådlösa sensornätverk ökar konstant, såväl för statiska maskin-
till-maskintillämpningar som för dynamiska miljöer där sensornoderna är burna
av människor. Allt högre krav ställs på positioneringsalgoritmer för sensornät-
verken, där både hög precision och låg beräkningstid ofta är krav.

Denna rapport behandlar problemet med att bestämma positionen av per-
sonburna sensornoder. Rapportens fokus är att effektivt kombinera sensordata
med hänsyn till sensornodernas begränsade beräkningskapacitet. Olika sensorer
modelleras stokastiskt, utvärderas och kombineras för att forma en skattning av
sensornodens position.

Den huvudsakliga metoden för att lösa problemet är att dödräkna sensor-
nodbärarens steg kombinerat med kompass och tröghetssensorer för att skatta
stegets riktning. En karta över byggnaden används för att reducera den annars
oundvikliga drift som härrör från dödräkning. Informationen från kartan visar
sig i stor utsträckning kunna reducera den här driften.

Det utvecklade systemet kan följa en person genom en kontorsmiljö som
sträcker sig över flera våningsplan. Detta med enbart lite information om per-
sonens initiala position. Systemet kan även återhämta sig från situationer där
algoritmen divergerar vilket ökar systemets pålitlighet på lång sikt.
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Chapter 1

Introduction

1.1 Background
Global Positioning System (GPS) provides an excellent method for positioning
of wireless devices, but areas with limited or no coverage may have severe impact
on applications which require continuous knowledge of the position. For the
purpose of indoor navigation, GPS is not a viable option due to poor coverage.
Instead, inertial sensors are often used in dead reckoning algorithms. While such
algorithms can give good short term results and can improve GPS positioning
when GPS is available, the position tends to drift in the long term. This is
caused for example by double integrating linear acceleration, which is often the
case when an inertial measurement unit is used as input to a dead reckoning
algorithm.

To overcome these problems, a map of a building or a road can greatly reduce
or even remove the drifting problems completely caused by dead reckoning. By
using a map one can start a dead reckoning algorithm with an unknown initial
position and quickly find the absolute position after some unique movement
patterns [1, 2, 3].

1.2 Related work
Time of Flight measurements for range estimation are becoming increasingly
popular in the literature [4, 5, 6, 7, 8, 9]. Most previous work is focused on high
precision in terms of position, but lightweight algorithms are becoming more
popular for implementation in computationally constrained devices [9]. In this
thesis focus will partly be on reducing the needed computations and reducing
the energy consumption. Related work for fusing various sensor data with a map
to improve the position estimate includes [1, 2, 3, 10, 11, 12]. A big challenge
compared to the previous work is trying to reduce the computational complexity.
Some work on real-time map-matching applications have been done, often with
too tight constraints for the application being useful in practice [13]. Previous
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2 Introduction

work on step detection includes [14, 15].

1.3 Purpose and scope
The purpose of this thesis is to develop and evaluate algorithms for sensor
node positioning with map aid in a sensor network, the target precision is to
locate the user within a few meters and more precisely which room the user is
currently in. The sensor network includes sensor nodes, radio coordinators and
some centralized computer that controls the network. For the algorithms to
be useful in practice, the developed positioning system must be able to run in
real-time and the energy and performance constraints of the sensor nodes must
be considered. A task of the thesis is to find a division of algorithms between
the different parts of the network to improve overall performance and reduce
energy costs of the sensor nodes.

The sensor nodes, running a lightweight operating system, have the ability
to collect sensor data and communicate with the centralized computer over the
radio.

An Inertial Measurement Unit (IMU) algorithm is already available in the
embedded software, which is why only a brief description thereof is in the scope
of this thesis.

1.4 Available hardware
The sensor nodes are called Beebadges and one example is depicted in Fig-
ure 1.1(a). In radio contexts the Beebadges are referred to as endpoints.

In similarity with a mobile telephony network, a base station is responsible
for routing traffic to and from Beebadges. The base station is referred to as a
Coordinator and is shown in Figure 1.1(b). The current implementation of the
coordinators does not allow for performing calculations on them, but does only
route traffic between Beebadges and the centralized computer.

The Beebadges are thought of being carried in a belt clip by pedestrians. In
Figure 1.2 a Beebadge is shown while worn by a person.

1.5 Xdin
Through an acquisition of Enea Experts, Xdin employs over 1100 people in
the energy, telecom, manufacturing, and automotive industries. With offices in
Stockholm, Gothenburg, Linköping, Lund, and Västerås, Xdin is a large actor
on the Swedish consultancy market.

Apart from the industries already mentioned, the skills that Enea Experts’
consultants possess makes Xdin offer solutions for a larger set of electronic
fields, including machine to machine (M2M) communication, embedded Linux
and software quality solutions.
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(a) A Beebadge, carrying a number
of sensors and a IEEE 802.15.4 radio
chip.

(b) A coordinator, equipped both
with a radio chip and an Ethernet
port, serving as a base station for the
Beebadges.

Figure 1.1. The two main components of the radio network.

Figure 1.2. Beebadge worn by a man.





Chapter 2

Probabilistic modeling

This chapter describes the available sensors and how they relate to the posi-
tioning algorithms. The embedded platform is equipped with one 3-axis ac-
celerometer, one 3-axis gyroscope, one 3-axis magnetometer, and one combined
pressure and temperature sensor. Hardware description of the sensors can be
found in Appendix B. Further, the hardware supports the possibility of both
measuring the time of flight for radio waves between radio units and measuring
the received signal strength. This can be used to estimate the relative position
of the involved embedded devices. A similar system has been described in [4]
which uses a similar type of hardware for positioning.

2.1 Coordinate frames
Different coordinate frames are used in this thesis to simplify notation when
representing vectors in different coordinate systems. The frames and their rela-
tionships are illustrated in Figure 2.1.

World frame (w - frame) The world frame is the main frame, the x-axis is
aligned so that it points towards magnetic north, and the z-axis is aligned
to the gravitational pull of the earth.

Section frame (h - frame) The difference between the world frame and a
section frame is that it is rotated along the gravitational axis and can be
given a translation compared to the origin of the world frame. The section
frame is used to represent buildings.

Plane frame (p - frame) The plane frame is aligned to its parent section
frame, the only difference is that it can be translated to represent a height
difference between different floors. The plane frame is used to represent
floors, or parts of a floor, in a building.

Body frame (b - frame) The body frame is fixed to the user carrying the
Beebadge, the z-axis is aligned to the gravitational pull from the earth, in

5



6 Probabilistic modeling

Figure 2.1. The relationship between the different coordinate frames used.

other words it will be aligned to the z-axis of the world frame. The x-axis
is aligned to the direction of travel of the user.

Sensor frame (s - frame) The sensor frame is fixed to the circuit board of
the Beebadge. All inertial sensors are measured in this frame.

2.2 Radio
The on board radio follows the IEEE 802.15.4 low rate and low economical cost
radio standard. The standard specifies the physical and the medium access
control layers and operates in the 2.4 GHz region. Using 16 different channels,
offset quadrature phase shift keying, and direct sequence spread spectrum a data
rate of 250 kbit/s is standardized. The IEEE 802.15.4 standard is designed to
be used in networks where low cost and energy consumption are prioritized
over reliability [16]. Apart from the wireless communication capability, the
onboard radio hardware can perform distance related measurements, which will
be described in the following sections.

2.2.1 Time of Flight
The hardware that is used in this project has the capability of measuring the
travel time of radio waves between two radio equipped units. Figure 2.2 illus-
trates how a time of flight measurement is performed including the different
delays that are introduced as the scan progresses, Table 2.1 shows a list of
symbols used for time of flight.

The time units th,o and th,r, are delays introduced between the antenna and
the CPU for the origin and remote node. The length of ts,r arises from the time
the remote CPU takes to process the request and create a response.
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Symbol Description
ttof Total time of flight duration
tf Propagation delay for time of flight
th,o Hardware delay origin node
th,r Hardware delay remote node
ts,r Software delay remote node
po Position origin node
pr Position remote node

Table 2.1. List of symbols used for time of flight

Figure 2.2. Time of flight flow between the origin and remote node. A time of flight
measurement is started from the origin, different delays are added together to form
the total measurement time.

Measurement equation

The time unit ts,r is assumed to remain constant and is therefore removed un-
derneath the software interface. The actual measurement received is on the
form

ytof = 2ctf + ∆dc + etof

= 2||po − pr||2 + ∆dc + etof, etof ∼ N (0, σ2
tof), (2.1)

where c is the speed of light, po and pr are the positions of the origin and remote
nodes, and ∆dc = 2(th,o + th,r).

The equality ctf = ||po − pr||2 holds only if strict Line of sight (LOS)
conditions are present. This is not the case in an indoor environment. Indoor
environments instead give rise to multipath effects in which the radio waves
travels a longer distance than the direct path between the two radio devices. It
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is hard to stochastically model the multipath environment, and it is therefore
hard to tell if the measurements are accurate or not. Measuring the time of
flight on several radio channels at a time and using the lowest time may reduce
the multipath effects [17, 8], but that is not investigated in this thesis due to
restrictions in the radio implementation on the used hardware. The results
that are shown in Appendix C exemplifies the multipath effects and thereby
invalidates the model (2.1). Due to this fact, we will not use the time of flight
measurements in the sequel.

2.2.2 Received signal strength
Received signal strength indicator (RSSI) is a commonly available measurement
on the IEEE 802.15.4 low power and lossy network radios. The RSSI depends
heavily on the path loss in the radio environment and the transmitted signal
power and will vary much over time due to time varying channels [18, 5].

With free space propagation the path loss increases logarithmically with the
distance according to the log-distance path loss model

Pr,dBm = P0,dBm − 10n log10

(
d

d0

)
, (2.2)

where Pr is the received power, d the distance between the transmitter and the
receiver, P0 the power received at a small distance d0 from the transmitting
antenna, and n is a path loss exponent, which typically ranges between two and
four in urban environments [19, pp. 69].

Measurement equation

The radio hardware delivers the RSSI measurement on the form as mentioned
above. The measurement equation can therefore be stated as

yRSSI = P0,dBm − 10n log10

(
d

d0

)
+ eRSSI, (2.3)

where eRSSI is noise mainly caused by shadowing. If shadowing had been the
only noise source, eRSSI had been Gaussian distributed with zero mean [20].
However, for the distribution to be Gaussian distributed with zero mean P0,dBm
and n must be exactly known which is not the case in practical scenarios where
the environment can change rapidly [21]. Our experiments, described in Ap-
pendix D, shows that eRSSI has some unknown distribution. Due to that uncer-
tainty in the model, we will not use the RSSI measurements in the sequel.

Using the presence of a coordinator as a measurement

The radio performs periodic scans for coordinators on the available radio chan-
nels. The main purpose of this scan is to detect if a different coordinator has
better radio conditions than the one currently connected to and therefore a
handover procedure should be initiated.
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The fact that a coordinator responds to endpoint requests is a rough measure
of the range. The range can be interpreted to be uniformly distributed within
some maximum possible spherical range from a coordinator. The measurement
equation is expressed as

yscan =
{

1
4
3πr

3
range,max

, ||po − pr||2 < rrange,max

0 , otherwise
, (2.4)

where rrange,max is the maximum range of coverage for a coordinator.
The position estimate might be very uncertain, but it still reduces the uncer-

tainty from covering a whole building or even a larger area to just the maximum
coverage area for a coordinator.

2.3 Inertial sensors
The embedded platform used in this thesis is equipped with multiple inertial
sensors. The inertial sensors are manufactured using Microelectromechanical
system (MEMS) technology, traditionally inertial sensors were bulky and ex-
pensive. This new technology allows for cheap and somewhat accurate inertial
sensors. All inertial measurements are resolved in the sensor frame. More de-
tailed information about the sensors can be found in Appendix B.

2.3.1 Accelerometer
The device is equipped with a 3-axis accelerometer that measures acceleration
in the range of ±8g.

ysa = f s + gs + δs + esa, esa ∼ N (0,Σa), (2.5)

where f s is the net acceleration of the endpoint, gs is the gravitational pull
from the earth, esa is independent Gaussian noise in each direction, and δs

is a varying bias that could depend on multiple external factor, such as the
temperature. This bias is assumed to be negligible and is therefore ignored. In
Figure 2.3 an example of the accelerometer output can be seen. The unit is
moved a distance along the negative x-axis, then back to the original position.
The figure is divided into two parts, the upper shows the acceleration and the
lower shows the velocity. The sensor is either not properly calibrated or the
x-axis is not completely orthogonal to the gravity which causes a drift.

2.3.2 Gyroscope
The gyroscope used is a 3-axis gyroscope that measures angular velocity in
the range of ±2000 degrees per second. The measurement equation for the
gyroscope is

ysω = ωs + δsω + esω, esω ∼ N (0,Σω), (2.6)
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Figure 2.3. Example data from accelerometer, the endpoint is moved along the
negative x-axis, then back the same distance

where ωs is the angular velocity of the endpoint, δsω is the present bias, and esω
is independent Gaussian noise in each direction. The bias is not constant and
depends on multiple external factors such as temperature. But for this thesis
the bias is assumed to be constant, but different for individual endpoints due
to natural variations in the manufacturing process. Thus calibration had to be
performed to achieve a good result. Calibration is performed by holding the
endpoint still and taking a long running average. The offset is compensated
for by simply subtracting it from the measurement. In Figure 2.4 is a sample
output from the gyroscope when the endpoint is rotated 90 degrees around the
x-axis, then immediately rotated back to its initial position.

2.4 Magnetometer
The magnetometer used is a 3-axis magnetometer that measures magnetic flux
in the range of ±1.2Ga. The measurement equation for the magnetometer is

ysm = Rms + δsm + esm, em ∼ N (0,Σm), (2.7)

where ms is the magnetic field without any disturbances, esm is independent
Gaussian noise in each direction. R and δsm corresponds to soft and hard iron
effects effects which is further described in [4]. Soft iron effects turned out to be
minimal on the endpoints used for this thesis, which means that the matrix R
is roughly a scaled identity matrix. To get the orientation of the magnetic field
only the direction and not the strength is important, we can therefore ignore
the effects of R. The hard iron effect is quite severe, so calibration must be
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Figure 2.4. Example data from gyroscope, the endpoint is rotated 90 degrees along
the x-axis, then immediately back to its initial position

performed by collecting a lot data points from the magnetometer, making sure
that all axes of the magnetometer is aligned with and against the magnetic field
during the data collection. The calibration term is then calculated by

δ̂sm,n = max(mk,n) + min(mk,n)
2 ∀n ∈ x, y, z, (2.8)

where k are all different measurements. This yields δ̂sm =
(
δ̂sm,x, δ̂

s
m,y, δ̂

s
m,z

)T
which is subtracted from the measurement to compensate for the hard iron
effects.

2.5 Map

A map covering a building or an area can give substantial information of the
possibility to be located at a certain position or making certain movements. This
section describes how a map can be represented for giving such information to a
positioning algorithm in an efficient way. Since potentially many thousands of
queries to the map will be performed every second caused by a large number of
users each requiring frequent evaluations of position hypotheses, these queries
must be computationally efficient. Since the area covered by a map may be
very large, a lot of information must be stored within it. To avoid unnecessary
memory consumption, the map should advantageously support partitioning into
smaller pieces.
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2.5.1 Representation
The map is advantageously represented in Two dimension representation with
limited altitude (2.5D), which means that the environment is divided into planes
and that all motion is always restricted to lie within these planes [15]. The
restriction that all motion lies within a plane can be done without hesitation,
since human movement is typically constrained to the floor of a building. The
advantage is that the complexity of the state estimation algorithms can be
reduced with this assumption, essentially reducing the dimension of the state
vector by one. The vertical dimension for the user will instead be represented
by the vertical translation of the current plane relative to the world frame.

2.5.2 Map structure
The world is split into sections, typically a section corresponds to a building.
Each section is in turn split into planes, where each floor in a building or a flat
area is represented by a plane. Therefore, each plane has its own z-translation.
If deemed necessary each floor can be split into smaller planes, allowing only
parts of a floor to be fetched at a given time. This is to decrease the amount of
transferred data and storage space needed at a given time on the endpoint.

Figure 2.5 illustrates the overall structure of the map.

Figure 2.5. Structure of the map how buildings and floors are constructed from
segments

World

The world’s coordinate system is oriented in such a manner that the gravita-
tional pull from the earth is aligned with the z-axis and the magnetic north is
aligned with the x-axis. The world also has a few nodes that serve as entrance
and exit points between planes.

Section

A section contains one or more planes. Each section will have a point in the
world’s coordinate system which is the origin of the section’s own coordinate
system. The z-axis is parallel to the world’s z-axis, while the x and y axes can
be rotated to better represent rotated buildings and environment. This will ease
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the development of maps since it would be easy to align the coordinate systems
with the walls of a building.

Each section also contains a list of locations to the coordinators that are
mounted in the building. This information can be used as reference positions
for time of flight measurements or scan result measurements as discussed in
Section 2.2.

Plane

The coordinate system for the plane is aligned with the section’s coordinate
system to which it belongs. The difference is that it can have an additional
translation in the z-direction relative to its parent section. Planes consist of
segments that lie within the plane. Segments have a start location, end location,
and a given width. Segments are connected to neighboring segments which
represent the possibility of moving between different areas of the plane. The
area spanned between the start and end with the given width represents an area
in which the user can be located. This is opposed to representing walls which
the user cannot pass through. The reason that areas the user can be located
in was chosen instead of representing walls is that it is easier to transverse a
graph of interconnected segments. This means that at a given segment it is easy
to know the neighboring areas that a user can move to. If instead walls were
represented, the system must potentially search through a large collection of
walls to be able to fully grasp the possibility of movement in a certain direction.

Figure 2.6 shows parts of the office at Xdin in Mjärdevi Science Park, where
the segments can be seen as dashed lines on top of the actual room layout. The
bullets highlight the start and end positions of different sections.

Segment

Each segment contains a start and end and has the possibility of having an
additional width. Furthermore the segment contains a step length modifier,
this modifier is used to help represent areas where the step length is for some
reason shorter or longer than a normal step. An example of this is stairs where
the step length is approximately half of a normal step.

2.5.3 Map interpretation
In this section we describe two different ways of interpreting the information
contained in the map. One is handling it as a relative probability density and
an other way is as a force field pushing the user away from walls.

Probability density

One way of interpreting the map is to see it as a two dimensional relative
probability density function. This function should be interpreted as the relative
probability that a target can be positioned at some given position compared
to being in the center of a room or hallway. The function can span higher
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Figure 2.6. Parts of Xdin’s office in Mjärdevi. Bullets represents start and end
positions for different segments, dot-dashed lines represents segments with width set
to zero and dotted squares represents segments with a given width.

dimensions as well, if for example altitude, radio coverage or magnetic fields are
included. Figure 2.7(a) shows the probability density function representation
for parts of Xdin’s office. The bright areas are rooms and the bright lines are
corridors that interconnect the rooms.

Given a segment it is most likely that a person is located within the area
spanned by the start, end, and the width. Probability surrounding the center
area of the segment will have a decay on the form e−

|d|n
m where d is the distance

from the edge, n is how fast the drop off should be, where a small n will have a
slow drop off and a faster drop off as n increases. m can be seen as the spread
of the segment. If the line has been given a width, the area in the center region
of the segment is set at its maximum value of one. Figure 2.7(b) shows a cross
section for a segment with zero width.

Additive forces

A different interpretation of the map besides a probability density is that the
map forces targets to be located only where it is possible for them to be. When
moving towards a wall, a growing force from the wall affects the momentum of
the target so that target cannot move through the wall. Such a model requires
that the force becomes infinitely large when the target’s distance to the wall
tends to zero and close to zero when the distance is sufficiently large.

Since the map is represented as lines and planes any convex function around
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(a) Relative probability density for parts of
Xdin’s office, the bright areas are rooms and
the bright lines are corridors that interconnect
the rooms

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Position [m]

R
e
la

ti
v
e
 p

ro
b
a
b
ili

ty

Decay for different n

 

 

n=2, m=1

n=3, m=1

n=4, m=1

(b) Cross section of the relative prob-
ability function for a line with differ-
ent n

Figure 2.7. Probability interpretation of the map.

those would suffice to give a magnitude of the force. The force is intuitively
directed orthogonally from the wall towards the target and multiple forces can
be added together to get a resulting force affecting the momentum of the target.

Equation (2.9) describes how the force is constructed. The function wallj(p)
is a convex function giving the magnitude and direction of the force given the
position of the target, p.

fi =
∑
j∈W

wallj(pi), where W is the set of walls. (2.9)

If positions from other targets are available, repellent forces from them can be
modeled as well, which is thoroughly discussed in [22]. The concept is visualized
in Figure 2.8 where the target Ti is affected by two walls and another target
Tm, resulting in the force fi.

Figure 2.8. Force vectors illustrating the resulting force affecting a pedestrian.
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The map is, as already mentioned, represented as areas where it is possible
to be rather than as walls. To arrive at a convex function for the magnitude of
the forces, we say that the magnitude of the force is fi,j = edj − 1, where dj is
the smallest distance to wall j. The direction of the forces are simply orthogonal
to the wall which they stems from.

2.5.4 Map interface
The map has two main tasks, first return the correct probability density value or
force vector for a given point, secondly be able to handle swaps between different
planes when walking in stairs and entering or leaving different buildings, etc.

Map output

The output from the map will be the relative probability or the force vector
for a given segment and its neighbors, along with the segment from which the
output was attained. Furthermore it must output the step length modifier, sδl,
for a given segment. This modifier is used to modify the step length in certain
areas where the step length can vary greatly, an example of this is stairs where
the step length is approximately half of a normal step.

Traversing the map

For an object to find the force vector or relative probability from the map at
a given position, a query is sent to the map with the location and the segment
used the last time by the same object. The computational burden can be low-
ered if only the last segment and its neighbors are processed since it is likely
that the predicted position is close to the previous one. An identifier of the
segment yielding the highest probability or smallest force is returned so that it
is possible to update the record of current segment. Experiments show that only
the closest neighbors and not segments further away need to be checked with
retained results. If a search is performed deeper than one step, some minimum
spanning tree algorithm could be incorporated to improve the efficiency of the
map traversal. Another advantage by just traversing the closest neighbors be-
sides lowered computational burden is that rooms or halls that lies on the other
side of a wall for example, is to a large extent excluded in the computations.

Moving between sections

A few segments will have the extra property that they are linked to a different
plane. The destination plane can be in the same section, a different section or
can be linked to the world, where map support will be disabled and only dead
reckoning is used. These segments are called link segments. A query can be
sent to the map regarding a certain segment is linked somewhere else, if it is
linked the response will also contain the destination segment and plane.
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2.6 Pedestrian motion model
Models of pedestrians moving through an environment of some kind can take
many more factors into account than just the current estimated position and
speed. Common simple models of pedestrians include constant velocity or con-
stant acceleration, but people tend to have deeper interests than just keeping the
same speed in a certain direction. Studies show that the movement of pedes-
trians can be accurately modeled if the surroundings are taken into account
[23, 22]. We will later in the thesis use these ideas to insert the information
from a map into the motion model. Keeping computational efficiency in mind,
we will below describe the simple constant velocity model.

A commonly used motion model is the constant velocity model. It is mainly
used for its simplicity and is often good enough. However, navigation systems
that use this kind of simple model rely on more accurate measurements which
correct for the insufficient motion model.

The constant velocity motion model is defined as

xk+1 =
(
In TIn
0 In

)
xk +

(
T 2

2 In
TIn

)
wk, (2.10)

where the state vector x =
(
pT ,vT

)T , n = dim(x), k is the discrete time index,
and wk is process noise, representing the model error.

2.6.1 Step model
If a step detection algorithm is used for finding the velocity of the user, the
equation would simply be

v = dstep
∆T , (2.11)

where ∆T is the estimated or measured time between two steps and dstep is the
step length of the pedestrian. This gives a velocity which should be integrated
over the duration of the step, ∆T . This gives us the following integral assuming
the step is taken at time α with a duration of ∆T

α+∆T∫
α

dstep
∆T dt = dstep. (2.12)

This means that the middle step when calculating the velocity and integrating
is just a computational burden to get back to the initial and already known
distance. This relation will be used later in this thesis for reducing the required
computations.





Chapter 3

State estimation

Extracting the information from a signal covered in noise can be accomplished
to a great extent given a stochastic model of the signal. If multiple such models
are available for the input signals to a system, and in addition a model for
the system dynamics exist, the valuable information of the system state can be
estimated. This chapter describes different algorithms for fusing such stochastic
models in a recursive manner.

Each algorithm have in common that they arrive at an optimal estimate of
the state, but are distinguished in that they are suitable in different cases de-
pending on the stochastic models. What is optimal depend on how the problem
is formulated.

If the likelihood of a set of measurements y given the set of parameters x is
defined as p(y|x), the Maximum likelihood (ML) estimate is defined as

x̂ML = argmax
x

p(y|x). (3.1)

An alternative point estimate is provided by the Maximum a posteriori (MAP)
estimate, which also requires a prior density p(x) in the problem formulation

x̂MAP = argmax
x

p(x|y) = argmax
x

p(y|x)
p(y) = argmax

x
p(y|x)p(x). (3.2)

If p(x) is equally probable for all x, MAP and ML coincide with each other.

We will in the sequel represent the current discrete time with the index k.

3.1 Kalman filter
Given a linear state space model with additive Gaussian noise

19
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xk+1 = Fxk + vk, wk ∼ N (0, Q) (3.3a)
yk = Hxk + ek, ek ∼ N (0, R) (3.3b)

the Kalman filter (KF) finds the best possible linear estimate, x̂k|k given mea-
surements y1:k as input [24]. The best possible linear estimate is defined as
the Minimum mean squared error (MMSE) estimator. It can be shown that
the MMSE estimator coincides with the ML estimator in the case of additive
Gaussian noise.

The Kalman filter is provided in Algorithm 1, and it can be noted that the
measurement updates can be performed at any time regardless of how often the
time update is performed. This fact is often overlooked in the literature, but is
crucial when multiple sample rates are used in a system.

The measurement update step in the Kalman filter can intuitively be de-
scribed as giving some information related to the unknown states, which reduces
the covariance for the involved states. The time update, on the other hand, pre-
dicts the next state of the system and causes the covariance to increase since
the future is yet unknown.

Algorithm 1 Kalman filter
Given the linear model (3.3) initialized with x̂1|0 = x0 and P1|0 = P0, the
following recursive updates gives the best possible linear estimate:

• Measurement update
If we define the auxiliary variables

εk = yk −Hkx̂k|k−1,

Sk = HkPk|k−1H
T
k +Rk,

Kk = Pk|k−1H
T
k S
−1
k ,

we can express the measurement update as

x̂k|k = x̂k|k−1 +Kkεk, (3.4a)
Pk|k = Pk|k−1 −KkSkK

T
k . (3.4b)

• Time update

x̂k+1|k = Fkx̂k|k, (3.5a)
Pk+1|k = FkPk|kF

T
k +Gv,kQkG

T
v,k. (3.5b)



3.1 Kalman filter 21

3.1.1 Extended Kalman filter
The Kalman filter requires a linear system, but in practice one or more non-
linearities often occur. If the nonlinear function can be linearized around some
point x̃, the Kalman filter may still be an option, even though non-optimal. The
nonlinear system is expressed as

xk+1 = f(xk, vk), (3.6a)
yk = h(xk, ek). (3.6b)

The noise processes vk and ek are assumed still to be Gaussian, but propa-
gated through the nonlinear functions h and f . In the original Extended Kalman
filter (EKF) the nonlinear functions are expanded in a Taylor series around a
given point x̃, retaining only the first-order terms [25],

g(x) ≈ g(x̃) + g′(x̃)(x− x̃), (3.7)

where g′ is the Jacobian of the nonlinear function g(x). The Kalman filter
described in Algorithm 1 is modified with the linearized functions and can be
described as Algorithm 2.

Algorithm 2 Extended Kalman filter
Given a linearized model (3.6) initialized with x̂1|0 = x0 and P1|0 = P0, the
following recursive updates gives the best possible linear estimate if the higher
order rest terms in the linearization are disregarded:

• Measurement update
Given the auxiliary variables

εk = yk − hk(x̂k|k−1),
Sk = h′x(x̂k|k−1)Pk|k−1h

′
x(x̂k|k−1)T + h′e(x̂k|k−1)Rkh′e(x̂k|k−1)T ,

Kk = Pk|k−1h
′
x(x̂k|k−1)TS−1

k ,

the measurement update becomes

x̂k|k = x̂k|k−1 +Kkεk, (3.8a)
Pk|k = Pk|k−1 −Kkh

′
x(x̂k|k−1)Pk|k−1. (3.8b)

• Time update

x̂k+1|k = fx(x̂k|k), (3.9a)
Pk+1|k = f ′x(x̂k|k)Pk|kf ′x(x̂k|k)T + f ′v(x̂k|k)Qkf ′v(x̂k|k)T . (3.9b)
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The Extended Kalman filter does not give an optimal estimator in the sense
that the Kalman filter does if the rest terms in the Taylor expansion are non-
zero. Neither is it guaranteed that the algorithm converges if, for example, a
bad choice of initial state or linearization point is chosen.

3.2 Particle filter
When highly nonlinear functions come into the model it may be hard to linearize
them around some point, especially if the linearization point is unknown. The
Particle filter (PF) allows for multiple hypotheses of the state vector which
are all weighted samples of the objective function, which is often a probability
distribution. The concept is to represent an objective function with sufficiently
many hypotheses so that they become dense enough to represent the function.
The system model is still the one described in (3.6) but the noise can have an
arbitrary density. We describe the core of the particle filter steps in Algorithm 3
without derivation. More in depth about the particle filter can be found in
[11, 24, 26].

3.2.1 Resampling
In order to continuously represent the objective function as it varies with time,
the set of particles has to be updated continuously. The particles are said to
be resampled. The purpose of the resampling algorithm is to redistribute the
particles to better represent the underlying density. This can be achieved by
placing particles where there already exist particles with relatively high weight.
In this way, the empirical density is updated to represent the most likely states.

Because of the relatively computationally demanding algorithm, the resam-
pling step does not need to be executed after every reweighting of the particle
set. The effective number of particles can be used as an indication of when a
resampling have to be performed. A measure of the number of effective particles
is given by

Neff = 1∑N
i=1(wi)2

, (3.16)

where 1 ≤ Neff ≤ N . Neff attains the lower bound when all the weight is placed
on one particle and the upper bound when the weight is uniformly distributed
over all particles. This measure can be used to detect when a resampling of the
particle set is needed, when Neff < Nth for some 1 ≤ Nth ≤ N a resampling of
the particle set should be performed. [11] proposes the threshold to be chosen
as Nth = 2N/3.

3.3 Marginalized particle filter
For real-time applications, the particle filter quickly becomes infeasible as the
state dimension grows. The Marginalized particle filter (MPF) allows different
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Algorithm 3 Particle filter
Given a nonlinear model (3.6), the following steps combined propagate particles
to represent the relevant domain of an objective function given measurements
y1:k.

• Initialization
Generate N particles from the initial probability density function p(x0),

xi0 ∼ p(x0), i = 1, . . . , N, (3.10)

and set the weights of the particles to wi0 = 1/N, i = 1, . . . , N.

• Measurement update
Update the weights of the particles according to

wik|k = w̃ik|kp(yk|xik), i = 1, . . . , N, (3.11)

and normalize the weights

wik = w̃ik∑N
j=1 w̃

j
k

, i = 1, . . . , N. (3.12)

• Time update
Propagate the particles through the process dynamics

xik+1 = fk(xik, vik), i = 1, . . . , N. (3.13)

• Estimation

x̂k|k =
N∑
i=1

wikxik (3.14a)

Pk|k =
N∑
i=1

wik

(
xik|k − x̂k|k

)(
xik|k − x̂k|k

)T
(3.14b)

• Resampling
Replace the set of particles {xik}Ni=1 with particles drawn at random an
identical set {xjk}Nj=1, where the probability to draw particle xj is wj ,

Pr
(

xik|k = xjk|k
)

= wjk (3.15)

After replacing the set of particles, set the weights of the particles to
wik = 1/N, i = 1, . . . , N.
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optimization methods to be used on the same state vector. A Kalman filter
may be used on the linear subset of states while the particle filter is only used
on the most crucial nonlinear states. The particle filter performs well for two
or three dimensions, but for higher dimensions the number of particles required
to represent a posterior distribution grows out of hand [24].

The general model for a system where the linear substructures have been
separated from the nonlinear ones is given by

xnk+1 = fnk (xnk ) + Fnk (xnk )xlk +Gnk (xnk )vnk , (3.17a)
xlk+1 = f lk(xnk ) + F lk(xnk )xlk +Glk(xnk )vlk, (3.17b)

yk = hk(xnk ) +Hk(xnk )xlk + ek. (3.17c)

where xk = (xnk ,xlk)T is the complete state vector.
In a simplified description of the MPF, the particles are updated and re-

sampled in the state space for the nonlinear states, treating the linear states
as measurement noise. Then, for each particle a Kalman filter measurement
update (or similar) is performed, resulting in the optimal set of linear states
given the state of the particle.

The time updates are performed in a similar fashion, where the particle
filter time update is performed first, and then the Kalman filter time update
(or similar) is performed for each particle.
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Algorithm 4 Marginalized particle filter

• Initialization
Initialize N particles, xn,i0 , according to (3.10) and initialize equally many
linear state vectors

{
xl,i0 , P

l,i
0

}
=
{

xl0,Pl
0
}
.

• Measurement update

1. Update and normalize the particle weights according to (3.11) and
(3.12).

2. Perform a Kalman filter measurement update for each particle. This
update becomes slightly different from to (3.4), depending on how
the system model is constructed. See [27] for further details.

• Resampling
Optionally: Resample according to (3.15).

• Time update

1. Propagate the particles through the process dynamics according to
(3.13).

2. Perform a Kalman filter time update for each particle. As with the
measurement update above, this becomes modified. See [27] for fur-
ther details.

• Estimation
Estimate x̂ according to (3.14), having xik =

(
xn,ik ,xl,ik

)
.





Chapter 4

Approach

This chapter describes a number of considered filtering approaches all using the
methods and relations described in Chapter 2, and Chapter 3. A number of
so called subsystems are also described which will function as an intermediate
signal processing step between the sensors and the position estimation filter.
The subsystems are differentiated from the position estimation filter in the sense
that they do not get any feedback from it.

The different approaches use different ideas of how the filtering system should
be constructed. Estimating the position on board the Beebadges results in a
system which scales well with the number of users. Such a system will however
suffer from the computational constraints of the Beebadges. If, on the other
hand, no computations are performed on board the Beebadges raw sensor have
to be transmitted from the Beebadges to some receiver. All computations are
then instead performed on a centralized computer. While the Beebadges will
not perform any computations, they will instead have to transmit high amounts
of sensor data over the radio which is power consuming. Such a system will not
scale well with added users since much computations are required for each user.
Trade-offs between those two variants will be discussed in this and the following
chapters.

4.1 Subsystems
This section describes filters and subsystems processing the sensor data from the
sensors described in Chapter 2. These subsystems are seen as separate systems
which produce input to, and are thus not directly included in, the positioning
algorithms.

4.1.1 Inertial Measurement Unit
Gyroscope, accelerometer and magnetometer data is combined to form an IMU.
More information about the sensors can be found in Appendix B. The IMU

27
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is used to find the orientation of the sensor frame relative to magnetic north
and the gravitational pull from the earth. Since the sensor frame is fixed to the
body frame, if the orientation of the sensor frame is known it straightforward
to calculate the orientation of the body frame. The output from the IMU is a
four dimensional vector which represents the orientation on quaternion form

qws =
(

cos θ2 , r sin θ2

)
∈ Ql, (4.1)

where r is the normalized axis of rotation and θ is the angle of counter-clockwise
rotation along the axis. Details on quaternion algebra is presented in Ap-
pendix A.

Heading

To be able to calculate the direction of travel of the user the orientation of
the sensor frame relative to the body frame must be known. Depending on
the assumptions made this is either known or unknown. The step direction is
defined as the x-axis in the body frame, given the orientation of the sensor frame
in relation to the body frame, we can find the vector in the sensor frame which
is parallel to the direction of travel. This vector is called vss and expressed in
quaternion form vss ∈ {Qv}. The direction of travel in the world frame is simply

vws = qws � vss � (qws)c , (4.2)

expressed in quaternion form. Since the user only moves in the plane spanned by
the x- and y-axes, these two components can be extracted to form the heading
vector as

hws =
(
vws,x, v

w
s,y
)T
. (4.3)

In reality vss might not be in the plane of motion, if this is true hws will not be
of unit length, therefore this vector needs to be normalized before use. If the
norm of hws is deviating a lot from one it is a sign that the vector vss is not in
the plane of motion, if this is the case a new vss should be found.

When the orientation of the sensor frame relative the body frame is unknown
but fixed, vss must still be found to determine the step direction. One way of
solving this problem is estimating the quaternion qsb, then using this qsb to find
vss by

vss = qsb � ebx �
(
qsb
)c
, (4.4)

where ex is the quaternion representation of the x-axis in the body frame, which
also is the step direction. It would then be possible to use (4.2) to find the step
direction in the world frame.

It turns out to be a tricky problem to estimate the qsb. A simpler approach
than estimating qsb is using known parameters of the movement. Since it is
known that a person always moves in the plane spanned by the x- and y-axes in
the world coordinate frame. When the first step is taken, ewx is transformed to
the sensor frame using the quaternion qws and is called vssr. Transforming this
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Symbol Description
ah Higher step threshold
al Lower step threshold
amax Maximum acceleration during step
tmax Time at maximum acceleration
amin Minimum acceleration during step
tmax Time at minimum acceleration
astep Acceleration difference between peak and trough
tstep Time between peak and trough
ttimeout Time out value between transitions

Table 4.1. List of symbols used for step detection

vector similarly as in (4.2), vwsr is obtained. This is the direction of travel with
a fixed angle offset around the ewz vector. Further vws can then be found using

vws = R3vwsr, (4.5)

where R3 ∈ R3x3 is a rotational matrix around the ewz vector. Again only
looking on the x and y components it is possible to rewrite (4.3) using (4.5) to

hwsr =
(
vwsr,x, v

w
sr,y
)T
, (4.6a)

hws = R2hwsr, (4.6b)

where R2 ∈ R2x2 is a rotational matrix.

4.1.2 Step detection
This section describes the step detection algorithm used in this thesis.

Motivation

Instead of having to double integrate linear acceleration, step detection detects
a change of position which prevents the need of integration. However, an as-
sumption about the step length has to be made since this is not measured. A
step detection algorithm can use many different methods. A computationally
efficient way is by monitoring the net acceleration and detecting the signature
of a step. The reason for using a step counter as opposed to integrating linear
acceleration twice to get the position is the problem with compensating for the
gravitational pull. The available IMU can be used to compensate for the gravity,
but even minor deviation from the truth in the orientation of the IMU causes
severe drift in position and velocity. Previous work done in [14] shows that step
detection can be implemented with good results on the same hardware that is
used for this thesis.
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Step acceleration model

The characteristics of a step can be divided into a horizontal part and a vertical
part where both parts have different characteristics. Due to the problem of
removing the gravitational component from the accelerometer, only the norm of
the acceleration was focused on when developing the step detection. Therefore
we cannot look at the individual components, only a combined norm. A step can
be divided into two parts, during the first part a sudden increase in acceleration
takes place, this is due to the person starts taking the step and accelerates. The
second part is characterized by sudden drop in the norm of the acceleration,
this is essentially the person leaning or "falling" forward. A more in-depth
description can be found in [28]. Figure 4.1 shows an example of the norm of
the acceleration for a few steps. The sudden increase and drop can be clearly
seen.
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Figure 4.1. Example of eight steps, circles represent peak and trough values detected

Algorithm

Before running the data through the algorithm, the norm of the acceleration is
low-pass filtered to reduce noise and allow the algorithm to detect longer trends.
The low-pass filter used is a first order filter. FIR filters of different orders were
tested, but a first order showed to be sufficient and is very computationally
efficient. To detect a step a state machine was constructed to detect the different
parts of the step. Figure 4.2 shows flow chart of how the state machine is
constructed.

The state machine is characterized by two thresholds, ah is used as an upper
threshold to detect the rising edge of a step and al to detect the falling edge
of a step. The state machine starts in the Default state, when a norm accel-
eration above ah the state machine transitions to the Peak state, during this
state the maximum acceleration amax is saved along with the time tmax when
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Figure 4.2. State machine for step algorithm

peak acceleration was recorded. When the acceleration falls below al the state
machine transitions to the Trough state, if no acceleration below al is detected
after ttimeout it is assumed that the detected peak did not belong to a step, the
state machine will the return to its default state. During the Trough state the
minimum acceleration amin is saved paired with the time tmin. When the accel-
eration increases above al, astep and tstep are calculated by simple subtraction.

astep = amax − amin, (4.7)
tstep = tmax − tmin. (4.8)

Depending on values for astep and tstep a step would be noted. In Algorithm 5
pseudocode can be found for the step detection algorithm.

Using the step details

In addition to just detecting when a step has been taken, the values astep and
tstep can be used as information to some classification algorithm to detect certain
styles of walking or detection of unnatural walking styles which may give hints
about injuries or similar.

The present algorithm does not attach any extra information based on astep
and tstep since it is not of interest for the positioning algorithms. The data could,
however, be extracted from the algorithm with ease for future applications.

Performance

The performance of the step detection algorithm was tested on different indi-
viduals to be able to evaluate its performance. Table 4.2 lists the results of this
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Algorithm 5 Step detection algorithm
First accelerometer sample Set state to Default state

For each new accelerometer sample
Calculate the accelerator norm a =

√
a2
x + a2

y + a2
z.

if state = default then
if a > ah then

state← peak
amax ← a
tmax ← t

end if
else if state = peak then

if a < al then
state← trough
amin ← a
tmin ← t

end if

if a > amax then
amax ← a
tmax ← t

end if

if tmax + ttimeout < t then
state← default

end if
else if state = trough then

if a > al then
astep ← amax − amin
tstep ← tmax − tmin
state← default
Output step event, attach astep and tstep

end if

if tmin + ttimeout < t then
state← default

end if
end if
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Individual Environment Steps taken Steps
measured

Success
rate

1 indoor with shoes 123 123 100
1 indoor without shoes 136 136 100
1 down stairs 73 64 88
1 up stairs 69 58 84
1 outdoor asphalt 138 134 97
1 outdoor soft grass 112 107 96
2 indoor with shoes 110 106 96
2 indoor without shoes 124 114 92
2 down stairs 67 58 87
2 up stairs 63 50 79
2 outdoor asphalt 104 96 92
2 outdoor soft grass 66 62 94
3 indoor with shoes 100 97 97
3 down stairs 69 64 93
3 up stairs 70 68 97

Table 4.2. Step detection algorithm was evaluated using multiple individuals on
different surfaces

evaluation.

4.2 Linear map insertion through additive forces
This algorithm makes use of the ideas of additive forces affecting ones trajectory,
as mentioned in Section 2.5.3. This concept allows for using the information
from a map in a linear manner, which allows for comparatively lightweight
algorithms to be utilized.

Using the constant velocity model (2.10) with the position and velocity in
the state vector, together with the additive forces as in (2.9), gives the process
dynamics

xk+1 =
(
I2 TI2
0 I2

)
xk +

(
T 2

2 I2
TI2

)
fk +

(
T 2

2 I2
TI2

)
wk, (4.9)

where the state vector, x is represented as
(
pT ,vT

)T and f = (fx, fy)T is the
repelling force from the surrounding walls given the currently estimated position
as described in Section 2.5.3.

For evaluation purposes of this approach, it is assumed that p0 is known and
that the way the Beebadge is worn is known and static relative to the body.

However, since the velocity is separated in a directional vector and a size,
from the IMU output and the step detection algorithm, it is convenient to have
the state vector in the same form. We formulate the state vector as
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x =

p
h
v

 , (4.10)

where p is the position, h the heading as defined in (4.3), and v the speed. The
measurement equations becomes very simple with this state representation,

yimu,k = hk + ek (4.11)
ystep,k = vk + ek (4.12)

The simple measurement equations yield nonlinearities in the system dynamics,
but with a simple Taylor expansion these become reasonably linearized. By
adapting (4.9) to the state vector (4.10) we get

f(xk, fk) =

pk + Tvkhk + T 2

2 fk
vkhk+T fk

‖vkhk+T fk‖
‖vkhk + T fk‖

xk +

T 2

2 I2
TI2
T

wk (4.13)

which together with the Jacobian, f ′(xk, fk), can be used in the EKF as de-
scribed in Algorithm 2. f ′(xk, fk) is defined as

f ′(xk, fk) =

=


1 0 Tvl,k 0 Thk,x
0 1 0 Tvl,k Thk,y

0 0
vl,k(fyT +hk,yvl,k)2

‖vhk+T fk‖3 −
vl,k(fxT +hk,xvl,k)(fyT +hk,yvl,k)

‖vhk+T fk‖3
T (fyhk,x−fxhk,y)(fyT +hk,yvl,k)

‖vhk+T fk‖3

0 0 −
vl,k(fxT +hk,xvl,k)(fyT +hk,yvl,k)

‖vhk+T fk‖3
vl,k(fxT +hk,xvl,k)2

‖vhk+T fk‖3
T (−fyhk,x+fxhk,y)(fxT +hk,xvl,k)

‖vhk+T fk‖3

0 0
vl,k(fxT +hk,xvl,k)

‖vhk+T fk‖
vl,k(fyT +hk,yvl,k)

‖vhk+T fk‖
vl,k(h2

k,x+h2
k,y)+T fxhk,x+T fyhk,y

‖vhk+T fk‖


(4.14)

We cannot normalize the direction vector h when the norm ‖vkhk + T fk‖ = 0.
In the case when f = 0 and v = 0, we get

lim
vk→0

f ′(xk,0) =


1 0 0 0 Thk,x
0 1 0 0 Thk,y
0 0 h2

k,y −hk,xhk,y 0
0 0 −hk,xhk,y h2

k,x 0
0 0 0 0 1

 (4.15)

Another problematic case occurs when vh = −T f but due to the performance
issues with the approach in total, as described in the following section, this is
not taken care of.
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Performance

Using the EKF recursions described in Section 3.1.1 we get the estimated tra-
jectory shown in Figure 4.3. It can be seen that the added forces effectively
prevent the trajectory from cutting corners in the map.
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Figure 4.3. Estimated trajectory with EKF and additive forces from the map. The
segments are shown as the underlying grey lines and the added forces for each estima-
tion are shown as lines drawn from the middle of each estimation marker (circles).

Representing the map only with additive forces aids the navigation slightly
when moving across hallways, but the momentum that is lost because of re-
pelling forces is never recovered. This effectively makes the velocity to be un-
derestimated and in the long run the filter to diverge.

Due to the nature of the KF, only one estimator of the state vector is kept
track of. While this estimator is the most probable one given a model and
measurements, our experiments show that it is insufficient to keep track of just
one estimator. If the estimator gets off the true trajectory, it is hard to find a
way back to the true position using only relative position measurements.

Remedies

The particle filter evaluates multiple hypotheses as an intermediate step between
the time and measurement updates and the computation of the estimator. The
PF prevents particles to cross walls with information from the map, but the esti-
mator is unaffected by the map and can therefore cross walls if it is needed. This
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often occurs when multiple swarms of particles exist, and this is the expected
behaviour since there might exist multiple equally likely trajectories. Once a
unique trajectory has been measured, only one swarm of particles should remain
and the estimator hopefully converges to the ground truth.

The MPF allows for having multiple hypotheses of the nonlinear states while
still keeping the linear(-ized) states optimally chosen, given the nonlinear hy-
pothesis for each particle. However, in this case the linear(-ized) states does not
depend on the nonlinear states, i.e. the velocity does not depend on the position
in the process dynamics, which leads to the variant of having the velocity as
global states for all the particles and just evaluating the belief of the position
of every particle.

4.3 Particle filter based approaches
The particle filter would with most certainty be the optimal solution in terms
of accuracy and simplicity during implementation, but at the same time the
particle filter suffers severely from the computational burden of the large amount
of particles needed to achieve a good resolution for all dimensions in the state
vector. It is therefore crucial to reduce the number of needed dimensions in the
state vector and if possible marginalize as much as possible in the state vector.

4.3.1 Particle Filter – Light
A very light weight particle filter is developed where computational requirements
are kept as low as possible. The aim of this specific filter is to implement it on
the Beebadge which has severe limitations in computational resources. The
state vector only includes the position in the plane, the current segment and
the current plane the particle belongs to, giving the state vector,

x = (px, py, s, f)T, (4.16)

where s is the current segment and f is the current plane, or floor, for the
particle.

This allows keeping a very low particle count yet sufficiently high spatial
resolution. A severe limitation to this filter is that the endpoint must be fixed
to the wearer, and with a known orientation relative to the wearer.

Step update

When a step has been taken the product slsδl is calculated, where sl is the
step length and sδl is the step length modifier. The step length is assumed
to be constant and the step length modifier is fetched from the current map
segment, details about the step length modifier can be found in Section 2.5.2.
Each particle is moved slsδl in the direction of travel with added noise. A
conventional particle filter only changes the state of the particle during the time
update according to the system dynamics, in this case we avoid the time update
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all together. The advantage of this is that it becomes natural how to introduce
the map into the filter, also when no new step is detected no radio traffic is used
nor any extra computations are performed, which is a crucial saving. Noise
should be added in both the direction and the step length. Since the heading,
hws is normalized we can rewrite the heading as hws = (cos(θ), sin(θ))T where θ
is the heading in radians. This generates the following equations,

(
dstep,x
dstep,y

)
= (slsδl + el)

(
cos(θ + eθ)
sin(θ + eθ)

)
, eθ ∼ N (0, σ2

θ), el ∼ N (0, σ2
l ). (4.17)

This generates a cloud of particles like the shown below in Figure 4.4.
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Figure 4.4. Step with Gaussian noise added both to the heading and the step length,
heading 50 degrees and step length of 0.7m, the noise is over exaggerated to better
illustrate the spread

This strategy would generate the best result. A severe limitation with this
is that the heading θ must be computed since the output from (4.2) is in vector
form and also that 2N trigonometric function calls must be done during each
measurement update, where N is the amount of particles present. To avoid this
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computational burden, (4.17) can with simple trigonometry be rewritten to(
dstep,x
dstep,y

)
= (slsδl + el)

(
cos(θ) cos(eθ)− sin(θ) sin(eθ)
sin(θ) cos(eθ) + cos(θ) sin(eθ)

)
≈
/
eθ small, use Taylor expansion

/
≈ (slsδl + el)

(
cos(θ)− eθ sin(θ)
sin(θ) + eθ cos(θ)

)
= (slsδl + el)

(
hws,x − eθhws,y
hws,y + eθhws,x

)
,

eθ ∼ N (0, σ2
θ), el ∼ N (0, σ2

l ) (4.18)

This generates a particle cloud as in Figure 4.5 with a lot less computations.
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Figure 4.5. Step with Gaussian noise added using Taylor expansion for the heading,
heading 50 degrees and step length of 0.7m, the noise is over exaggerated to better
illustrate the spread

The two methods do not generate the same result but evaluating the two
different methods shows that the performance is only marginally effected by
this simplification. After particles have been moved they are weighted together
to form an estimate according to (3.14). A resampling step described in Sec-
tion 3.2.1 is taken to remove less likely particles with particles that have higher
probability, this is to ensure that the particle cloud is continuously updated to
represent the actual distribution.

Filter algorithm

Algorithm 6 describes the lightweight particle filter in detail.
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Algorithm 6 Lightweight particle filter

1. Measurement update
Obtain latest hws from (4.2). Obtain latest step length sk.

for each particle in
{

x̃ik
}N
i=1

Extract step length modifier from the current segment for the given par-
ticle siδl
Use Equation 4.18 to generate the step

dstep =
(
dstep,x
dstep,y

)
(4.19)

Move the particle and reweigh it according to the map

x̃ik = x̃ik + dstep,

wik = wikpmap(x̃ik),

where pmap is the relative probability density described in Section 2.5.3.
Calculate the estimate using

x̂k =
N∑
i=1

wik
c

x̃ik, (4.21)

where c =
∑N
i=1 w

i
k.

Resample using (3.15)
Constant position used, so prediction is simply

x̃ik+1 = x̃ik, (4.22)

for each particle in
{

x̃ik
}N
i=1
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Performance

Matlab evaluation of the lightweight particle filter show that this filter can be
run with very few particles with maintained accuracy. Tests were run with as
low as 100 particles with good result. The problem with running with very few
particles is that the filter does not become very robust. The probability of the
filter diverging increases substantially when decreasing the amount of particles.
In Figure 4.6 an example trajectory from walking around the office at Xdin. No
ground truth is shown but the overall shape is very accurate from the actual
path.

Figure 4.6. Particle Filter Light output when walking around the office at Xdin, 100
particles represented as circles, size of a circle indicates the weight of the particle

4.3.2 Particle Filter – Heavy
A more computationally heavy particle filter than the one described above is
developed without the intent to run it on the Beebadge. The major difference
between this filter and the lightweight particle filter is that the Beebadge can
be worn in any orientation. The Beebadge must still be firmly attached to the
body for the step detection to work. This gives a larger state vector,

x = (px, py, s, f, θ)T, (4.23)
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where s is the current segment and f is the current plane, or floor, for the
particle. This filter requires a lot more particles to achieve both a good spatial
resolution and a high resolution in θ.

Finite state machine

Figure 4.7 shows the finite state machine for the particle filter. When the
program starts for the first time it is set to the inactive state, when the first
scan result arrives the filters is started and transitions to the active state. If the
filter diverges it will transition to the inactive state and awaits the next scan
result.

Figure 4.7. Finite State Machine for the filter. The initial state is the inactive state.
It transitions to active when a new scan arrives and transitions to inactive when the
filter diverges

Filter start up

When a new scan result from a arrives while the filter is inactive, a start up
procedure is run to initiate the filter around the coordinator. Particles are
evenly spread out within the range of the coordinator.

Divergence test

A simple test to determine if the filter has diverged is if
N∑
i=1

wik < ε, (4.24)

which means if the sum of all weights before the resampling is below a set
threshold ε. When the filter has diverged it is returned to its initial state and
will restart as soon as a new scan result arrives. This new scan result provided
sufficient information to allow the filter to restart.

Step update

When a step has been taken each particle is moved one step length in the
direction of travel with added noise. The direction of travel is computed in the
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same way as in the light particle filter but with the added heading compensation
from (4.6b) to account for the heading deviation for each particle. Noise is added
in both the direction and the step length which generates a cloud of particles as
in Figure 4.4. After each particle is moved, all particles are weighted together to
form an estimate. A resampling step is performed to remove less likely particles
with particles that have higher probability, this is to ensure that the particle
cloud is continuously updated to represent the actual distribution.

Scan update

When a new scan update arrives and the filter is inactive, a filter start up is
performed around the base station from which the scan result arrived. If the
filter is active the weight of all particles out of the range of the coordinator are
set to zero, according to the modelled uniform distribution in (2.4). After this
has been performed a resampling step is performed.

Reducing the number of particles

Decreasing the amount of particles would decrease the computational resources
needed to run the filter. A proposed method of determining the amount of
particles to be resampled to is

Nnew = min(αNold + (1− α)Neff, βNold, Nmin), (4.25)

where Nnew is the amount of particles that should be kept after resampling,
αNold + (1 − α)Neff is the new particle count which is a compromise between
the old particle count and the efficient particle count. α ∈ [0, 1] is used to
shift focus between either the old particle count or the effective particle count.
Where a high α would lead to a slow and conservative decline and a low alpha
would lead a quicker decline. A quicker decline could threaten the diversity of
particles during later updates. βNold where β ∈ [0, 1] is to guard against a for
some reason faulty Neff which potentially could ruin the filter. This is also to
guard against lost diversity which might be needed during later updates. Finally
Nmin is the minimum amount of particles. This is needed because Neff ≤ Nold
which would lead to that the particle count would monotonically decrease to 1
without the lower bound on particles.

The proposed method relies on some intuition on the number of particles
needed to represent the underlying density and is only useful for reducing the
number of particles. The method have shown to work well during the conver-
gence phase of a particle filter, where the initial belief is highly uncertain and
subsequent measurements reduces this uncertainty. There exist methods to de-
termine the absolute number of required particles to represent the underlying
density to some precision. The Kullback-Liebler distance (KLD) is a commonly
used measure to determine the absolute number of required particles given the
true underlying density, or an approximation thereof [29, 30]. The KLD in-
troduces additional complexity in the standard PF algorithm which affects the
real-time performance [29]. Our simple method is computationally efficient and
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is sufficient for our purposes. Figure 4.8 illustrates how the number of parti-
cles decreases as the filter converges. A number of snapshots are included at
some time instances to illustrate the particles are spread during the convergence
phase.

Algorithm

Algorithm 7 shows the flow of the particle filter with angle deviation as an extra
state.

Performance

This filter initially requires a high particle count to maintain decently high
resolution in all dimensions of the state vector. The filter normally converges to
a correct position with the correct heading deviation after only a few turns. In
Figure 4.10(a) an example of a simple stroll around the office at Xdin, comparing
with Figure 4.6 the heavy filter has a smoother trajectory and it has a lot
lower probability of diverging due to the increased amount of particles. When
comparing the performance with and without the map support it can be clearly
seen that the map to a large extent will remove the drift caused in the dead
reckoning system. This is depicted in Figure 4.9

The sensitive part of the heavy particle filter is during the first few steps,
when the uncertainty of both the position and θ is large. The particles may be
spread over several different floors, as shown in Figure 4.10(b), and if the true
trajectory pass through narrow passages the hypotheses surrounding it may be
resampled to other areas which eventually will turn out to be false. This problem
is exemplified in Figure 4.11 where the green trajectory illustrates the particle
swarm following the ground truth and the red trajectory illustrates a mirrored
swarm which survives due to the mirrored structure of the room. When walking
several laps around the block in the green trajectory, particles will more likely
be resampled from the green to the red trajectory than the other way around
because of punishment by the map when cutting corners. The green swarm will
starve and eventually vanish. When the red swarm hits the wall, the filter will
diverge.

When running the filter on a modern 3.1 GHz PC it will with a good margin
run in real-time. Some simple benchmarking data are shown in Table 4.3. The
filter with 800 particles executes in roughly 1000 times real-time at a normal
walking pace (≈ 2 steps/second). This means that a single external PC can
handle over 1000 active users that continuously walk around, in real situations
people would not move constantly so the actual capacity is much higher.

4.4 Evaluation
After evaluating the approaches mentioned in this chapter we decided to im-
plement the heavy particle filter. Using an EKF supported by additive forces
from walls suffers from the problem of only one hypothesis being evaluated at a
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Algorithm 7 Heavyweight particle filter

1. Measurement update
Obtain latest step length sk.

for each particle in
{

x̃ik
}N
i=1

Extract step length modifier from the current segment for the given par-
ticle siδl
Construct the rotation matrix R using the angular offset state θ in the
given particle, use R in Equation 4.6b to get the estimated step direction.
Equation 4.18 generates the step with added noise.

dstep =
(
dstep,x
dstep,y

)
(4.26)

Move the particle and reweigh it according to the map

x̃ik = x̃ik + dstep

wik = wikpmap(x̃ik)

where pmap is the relative probability density described in Section 2.5.3.
Calculate the estimate using

x̂k =
N∑
i=1

wik
c

x̃ik, (4.28)

where c =
∑N
i=1 w

i
k.

Resample using (3.15) with new particle count using (4.25)
Constant position used, so prediction is simply

x̃ik+1 = x̃ik, (4.29)

for each particle in
{

x̃ik
}N
i=1



4.4 Evaluation 45

Time instance, first step, t1 17.7s
Time instance, last step, t129 84.0s
Number of steps, nsteps 129
Total PF execution time, texec 56003 µs
Avg. step rate nsteps/(t129 − t1) = 1.94 Hz
x Real-time (t129 − t1)/texec = 1183.7

Table 4.3. Heavyweight particle filter benchmark based on data from a continuous
walk during some minute.

single time. This makes it very vulnerable to errors from other sub systems such
as an temporary incorrect heading or missed steps. Furthermore this method
requires the Beebadge to be worn in a known way and with a known starting
position. The light weight particle filter performed well in simulations, but the
requirements that the way the Beebadge is worn must be known, as well as the
starting position, makes it unusable in practical situations. The added perfor-
mance and versatility in terms of initial conditions and robustness outweighs
the increase in computational requirements in the heavyweight PF.
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(a) Number of particles over time.
Snapshots at the highlighted time in-
stances are shown in the other three
figures.

(b) N=433366 at highlighted time in-
stance 1.

(c) N=17916 at highlighted time in-
stance 2.

(d) N=800 at highlighted time in-
stance 3.

Figure 4.8. Illustration of decreasing number of particles as the PF converges.
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Figure 4.9. A stroll around the office at Xdin. Ground truth is shown together with
dead reckoning without map support and dead reckoning aided by the map.
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(a) An estimated trajectory at Xdin’s of-
fice, 1000 particles represented as circles,
size of a circle indicates the weight of the
particle.

(b) A scenario where the filter have not
converged yet. The spread in hypotheses
is caused by a large coverage for a coordi-
nator.

Figure 4.10. Output from the particle filter.

Figure 4.11. Illustration of a problematic case where a correct trajectory (green) is
being starved by an incorrect trajectory (red), causing the filter to potentially diverge.



Chapter 5

Implementation

The system is divided into separate parts, each with its defined tasks in the
complete system. An overview of the system is shown in Figure 5.1.

Figure 5.1. Overview of the implemented system.

5.1 Wireless client

The task of the battery driven Beebadge is to reduce the amount of data needed
to be sent over the radio. In order to achieve such a reduction, the Beebadge
keeps track of its attitude by filtering the inertial sensor data in an IMU. It also
detects when a step has been taken according to Algorithm 5. By running these
two algorithms in parallel the high sample rate inertial data can be reduced
to just above some event per second. When a step is detected, the current
estimated attitude is sent as an event over the radio channel to a receiver which
uses the event as a measurement in the filter. As a measure of the absolute
position of the endpoint, the known positions of the responding coordinators
are also sent to a receiver. Sending this kind of sparse sensor data does not cost
significantly more than sending position estimations over the radio, which had
been the case if the Beebadge had estimated the position on its own.
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5.1.1 Inertial Measurement Unit

The IMU used in this thesis is proposed by [31]. It is a light weight IMU and is
therefore well suited for our computationally constrained hardware. The output
from the IMU is a four dimensional vector which represents the orientation on
quaternion form described in (4.1).

5.1.2 Step detection

The step detection algorithm derived in Algorithm 5 runs at the same rate as the
accelerometer samples enter the system. The algorithm reduces the relatively
high data rate to around 2 Hz depending on the step rate of the person who
wears the device.

The current orientation, in quaternion form, is sent along with each step at
this lower data rate to a server which is running all particle filters.

5.1.3 Scan results

The scan results described by (2.4) are used as indicators of the absolute position
of the device. Such scans are performed at 0.1 Hz in the current environment
and multiple responses can be returned from the same scan.

5.1.4 Communication format

We are using a simple fixed length packet format for the communication of
sensor data between the client and the server. The packet is initiated with a
constant multibyte header, used both for indication of the start of a packet
and for identification of endianness differences between the client and the server
hardware.

The endianness is the ordering of the bytes within a word on a certain
platform. Two types of endianness exist, big and little endian. In big endian
the bytes are arranged in the same way as they would have been if they were
written on a paper, from the most to the least significant byte. Little endian,
on the other hand, has the bytes are ordered in reverse order compared to big
endian, this representation might seem illogical but it can be shown to simplify
arithmetic computations.

The header is defined to the same value for both the client and the server.
The client packs its messages starting with the header as defined. When the
server unpacks the message it checks for the header in both forward and reversed
order. If it is discovered to be reversed, the necessary rearrangement of the data
in the packet is done before it is taken care of.

The structure of the packet is shown in Figure 5.2, the length is fixed for sim-
plicity and the contents of the different fields depend on the type field. Further
details of the fields are not included in the thesis.
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Figure 5.2. The datastructure of the packets containing sensor data.

5.2 Server
The server is assumed to have much greater computational capacity than the
Beebadges and is also assumed to not suffer from any energy constraints. There-
fore the particle filter described in Algorithm 7 is implemented on the receiver
side to keep track of the users position. By centralizing the filter, the position
estimates of other users can be fused to improve the overall quality of the esti-
mates. This requires some model of the behaviour of the users, which is out of
the scope for this thesis.

5.2.1 Random number generation
The particle filter may require Gaussian distributed random numbers, depending
on the models used. This is the case in this thesis, which is why methods for
generating such numbers have been evaluated.

Two different methods have been compared. Firstly the two methods are
described, then a performance comparison is done. Both the quality of the
generated numbers and the execution speed is compared.

Box-Müller transform

The Box-Müller transform uses properties of the unit circle and the distribution
of angles and the squared radius therein to arrive in standard normal variables
as described in Algorithm 8.

Algorithm 8 Box-Müller transform
If U1 and U2 are independent and uniformly distributed in the interval [0, 1),
then

X1 =
√
−2 lnU1 cos(2πU2) (5.1a)

X2 =
√
−2 lnU1 sin(2πU2) (5.1b)

are independent and standard normally distributed [32].

The numbers are generated in pairs, and four relatively computationally
demanding functions have to be computed for each pair of generated numbers.



52 Implementation

Marsaglia polar method

The Marsaglia polar method is directly based on the ideas behind the Box-
Müller transform, but assumes that it is more computationally demanding to
compute the trigonometric sine and cosine functions than generating uniformly
distributed random values. The method is described in Algorithm 9, where
similarities with Algorithm 8 can be identified.

Algorithm 9 Marsaglia polar method
Sample u1 and u2 from a uniform distribution in the interval [−1, 1) until u2

1 +
u2

2 < 1. Then use u1 and u2 for computing

x1 = u1

√
−2 ln(u2

1 + u2)
u2

1 + u2
(5.2a)

x2 = u2

√
−2 ln(u2

1 + u2)
u2

1 + u2
(5.2b)

where x1 and x2 are independent and standard normally distributed [33]. With
1−π/4 ≈ 21% chance, the uniformly distributed samples u1 and u2 takes values
outside the unit circle and will have to be resampled.

Comparison

The quality of the measurements is the same, since the underlying properties
of the two algorithms are the same. The distribution of 106 generated numbers
are shown in Figure 5.3 compared with a standard normal probability density
function.

The execution times for the two methods are compared in Table 5.1, it can
be seen that the Marsaglia polar method performs slightly better than the Box-
Müller transform on the tested platform.

Algorithm Execution time
Box-Müller transform 18.071 s
Marsaglia polar method 16.572 s

Table 5.1. Execution time for generating 108 standard normal distributed values on
a 1.83 GHz x86 processor with uniformly distributed samples generated with glibc.

A more recent algorithm called the Ziggurat Method is claimed to execute
faster than the two methods given above [34]. It is not included in this thesis
since its complex structure makes it fall outside of our scope.
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Figure 5.3. Quality of 106 generated standard normal distributed values.

5.2.2 Particle filter utilities

Several generic particle filter utilities are implemented to enable some degree
of abstraction in the filter implementation. It is common in the literature to
arrange the steps described in Algorithm 3 in different ways to fit different
applications. We have chosen to make the tasks of the utilities small enough to
enable implementation in different filtering applications.

Resampling

The most crucial function to optimize is the resampling because it introduces
a large computational overhead compared to other recursive optimization algo-
rithms. The algorithm implemented is the systematic resampling algorithm [35]
due to its comparatively low computational requirements [36]. The algorithm
has been modified to include the possibility to change the number of particles
in the resampled set from the number in the prior set of particles as described
in Section 3.2.1.

The resampling algorithm is described in Algorithm 10, where floating point
round-off error avoidance is included for the sake of completeness. Further, the
two sets {xik}Ni=1 and {x̃ik}Mi=1, where N is the prior size of the particle set andM
the size after resampling, are represented by two separate memory allocations.
Those allocations are used alternately to avoid double copying between them.
The areas are resized when either the new size is larger than the currently
allocated or when the new size has shrunk to half the allocated size. We choose
to not shrink the size every time it is possible due to the computational cost of
memory management.
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Algorithm 10 Systematic resampling
Given the set of particle states {xik}Ni=1, the set of particle weights {wik}Ni=1,
and the number of particles N , the new number of particles M we compute the
resampled set of particle states {x̃ik}Mi=1, and the set of particle weights {w̃ik}Mi=1.
1: ∆r ← 1/M
2: r ← v/M, where v ∼ U(.5, .5)
3: j ← 1
4: wc ← w1

k

5: for i = 1→M do
6: while wc < r do
7: if j ≤ N then . Avoid floating point round-off errors.
8: j = j + 1
9: wc = wc + wjk
10: end if
11: end while
12: r = r + ∆r
13: x̃ik ← xjk
14: end for
15: {w̃ik}Mi=1 ← 1/M
16: N ←M

Numerical tools

A function for normalizing the set of weights {wik}Ni=1 and at the same time
monitor the sum of the weights for divergence is implemented. If the sum of the
weights falls below a given threshold, the function indicates that the filter has
diverged and that the weights cannot be normalized. Otherwise, the weights
are normalized so that the weights sum to one. The function is described in
Algorithm 11.

Algorithm 11 Particle weight normalization
Given the set of particle weights {wik}Ni=1, and a divergence threshold wth the
normalization procedure is implemented as
1: s←

∑N
i=1 w

i
k

2: if s < wth then
return False . The filter has diverged

3: else
4: for i = 1→ N do
5: w̃ik ← wik/s
6: end for
7: end if
8: return True . Normalization went well

A simple function for computing the number of effective particles is also
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implemented. This function assumes that the particle weights are normalized
and computes (3.16).

5.2.3 Map
The map is constructed around a series of structures that holds the informa-
tion regarding the map. Figure 5.4 illustrates the structure of how the map is
represented from a software architectural point of view

Figure 5.4. The software architectural structure of the map.

Each section contains two lists, one list of all planes that are present in the
section, the other contains a list of the coordinators that are present in the
section. The Coordinator structure contains information about id and location
for each coordinator. Each plane contains three lists, one which is used to store
the neighbor information for the segments, one list with all segments that are
present in the plane, and one list with all links. Furthermore the plane contains
basic information about itself, such as height above its parent section.

The map is currently hardcoded into the software. This choice is made to
ease development, for a later version the mapping information can with ease be
stored on a hard drive and fetched when a certain section is needed.

5.2.4 Quaternion library
A simple quaternion library is implemented to allow the programmer to utilize
quaternion variables and perform simple arithmetic operations on them. Be-
sides the basic arithmetic operations, a rotation and inverse rotation function
is implemented as shown in Figure 5.5, v is a vector before the transformation
and v′ is v transformed by the quaternion q ∈ Ql. Quaternion algebra is further
explained in Appendix A.



56 Implementation

Figure 5.5. Quaternion functions that was implemented to ease quaternion opera-
tions.



Chapter 6

Concluding remarks

In this chapter we give our conclusions in Section 6.1 and proposes tasks for
future work in Section 6.2 which have the potential of improving our results.

6.1 Conclusions
It is fully possible to with simple sensors fuse the sensor data with a map to
create a map aided localization system that can locate people to within a few
meters in big buildings. The system can handle thousands of users in real-time
on a standard desktop computer.

The map system built around the idea of a probability density is a great aid
to the tracking system. It is computationally efficient and is easy to traverse
to follow the user through the map. To extend the system to help the user to
navigate through buildings is a small step from the current system, the structure
of the map is well suited for this application as well.

Step detection using a simple 3-axis accelerometer with the proposed step
detection algorithm is possible for a range of surfaces and different wearers.
Further improvements is to improve its accuracy when walking up and down
stairs.

Using time of flight and RSSI indoors proved to be problematic due to the
difficulty of accounting for the multipath effects and the varying signal environ-
ments. Improvements to this field would greatly increase the accuracy of indoor
positioning.

An external particle filter which only receives sparse data from the user can
successfully track a pedestrian with very little initial knowledge of the position
and orientation of the pedestrian.

Working with single hypothesis approach such as an EKF is vulnerable to
even the slightest drift and can easily get stuck at walls. Further this requires
a precise knowledge about the initial state for the user, which is rarely known.

Comparisons was made on the energy cost between performing the calcu-
lations on board and sending sensor data over the radio for the algorithm to
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be run elsewhere, where the computational power is better and the energy con-
straints are not relevant. The conclusion is that due to the large overhead in the
packet transmissions, the difference between sending position and sending se-
lected sensor data to be processed externally is minimal or none. Therefore it is
concluded that computational demanding filtering can be performed externally
to allow for improved results.

6.2 Future work
In this section we describe tasks that can improve the system, but which fall
outside of the scope of this thesis.

6.2.1 Particle filter implementation on GPUs
Most of the computations in a particle filter are independent and can therefore
be done in parallel. Since Graphics Processing Unit (GPU)s are excellent at
performing vast amount of smaller computations in parallel implementing the
particle filter code on a GPU could improve the performance greatly for a small
cost in terms of additional hardware. More about particle filter implementation
on GPUs can be found in [37, 38].

6.2.2 Navigation
The graph structure of the map is well suited to be used as a navigation aid. If
the user desires to move to a certain segment, navigational instructions could
be sent to the endpoint to inform in which direction the user should walk to
find the desired destination.

6.2.3 RSSI fingerprinting
The radio propagation is, as mentioned earlier, very hard to model and predict
in indoor conditions. If the RSSI levels are known in and around the vicinity
of each coordinator, it would be possible to compare the measured RSSI values
with a map. This could be used to greatly increase the accuracy the location
for users [39, 40]. The main problem with this is that the whole map must
be mapped and surroundings must be static for the RSSI fingerprinting remain
valid. Even smaller changes to the surroundings, such as adding a wall, could
severely disrupt accuracy.

6.2.4 Multi channel time of flight
As mentioned in Section 2.2.1, measuring the time of flight on several frequency
channels has showed to both reduce the multipath effect and give an indication
of when it is present [17, 8]. Our algorithms relies heavily on dead reckoning and
lacks information of the absolute position to a large extent. Our results could
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be vastly improved with a reliable time of flight measurement, both during the
start up phase of the algorithm and after the filter have converged.

6.2.5 SLAM
Simultaneous location and mapping (SLAM) is an increasingly popular algo-
rithm for robotic navigation. The algorithm is out of the scope of this thesis
and is therefore not described in any detail. Information about the algorithm
can be found in [41, 42, 43]. A straightforward continuation on the studied
algorithms is to apply SLAM for mapping signal strength and even the geo-
graphical map autonomously. While SLAM may reduce the required manual
labor of creating maps, it might require a large amount of data for the maps
to converge. Uncertain maps puts higher demands on other sensors for a main-
tained precision in the position estimates. Studies of those problems are left for
the future.

6.2.6 Automatic map generation
For this thesis maps are generated by hand using simple drawings over the
areas of interest. A possible extension is to extract the topology from building
drawings done in [44]. This would greatly decrease the cost associated with
generating the maps. This is out of the scope of this thesis and only smaller
areas are needed to evaluate the positioning system.

6.2.7 Improved map system
The map is currently statically defined in the software. This was done to bypass
the tedious programming required to implement a dynamic system to handle
the map. A better solution would be to store the map in for example XML files
and load them into the software when needed.





Appendix A

Quaternion Algebra

A quaternion is a complex number where the imaginary part has been extended
to three dimensions.

A.1 Basic notation
A quaternion can either be denoted as q = (qs, qi, qj , qk) or q = (qs,q), where
q = (qi, qj , qk). Special quaternions used in this thesis are Ql which means it’s
of unit length and Qv which means the qs = 0

The following basic mathematical operators and was used in this thesis.

Addition p+ q = (ps + qs,p + q) (A.1a)
Multiplication p� q = (psqs − p + q, psq + qsp + p× q) (A.1b)
Conjugation pc = (ps,−p) (A.1c)

Norm ‖p‖2 =
√
p2
s + p · p (A.1d)

Inverse p−1 = pc

‖p‖2
(A.1e)

A.2 Spatial rotation
Quaternions are very useful as a tool to represent spatial orientation. When us-
ing quaternions as aid in spatial rotation the common notation is q = (w, x, y, z) ∈
Ql where r = (x, y, z) is the rotational vector and w = cos θ2 where θ is the an-
gle of anti clockwise rotation around r in radians. Compared to Euler angles
they avoid the problem of gimbal lock, but provide a much less intuitive way of
representing orientation compared to Euler angles. A rotation of the quaternion
v = (0,v) ∈ Qv where v is the desired vector to rotate, with the quaternion
q ∈ Ql can be expressed as

p = q � v � qc, (A.2)
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where p ∈ Qv is desired rotated vector. Figure A.1 shows how the rotation is
performed.

Figure A.1. Illustration of how a quaternion rotation is performed

The quaternion rotation can be expanded to a matrix operation shown in
(A.3).

P =
(w2+x2+y2+z2 0 0 0

0 w2+x2−y2−z2 2xy+2wz 2xz−2wy
0 2xy−2wz w2−x2+y2−z2 2yz+2wx
0 2xz+2wy 2yz−2wx w2−x2−y2+z2

)
(A.3)

The first row and first column can be discarded, since the first element of the
quaternion is always zero and since only the last three elements of the quaternion
is of interest the first row can be discarded. This give a simplified transformation
matrix

P ′ =
(
w2+x2−y2−z2 2xy+2wz 2xz−2wy

2xy−2wz w2−x2+y2−z2 2yz+2wx
2xz+2wy 2yz−2wx w2−x2−y2+z2

)
(A.4)

A rotation of a vector v ∈ R3 is then performed as v′ = P ′v.



Appendix B

Hardware

This appendix will describe the hardware used. The hardware was available to
us and assembled at the start of this thesis, so no manufacturing of hardware
was needed.

B.1 Beebadge
The Beebadge is a credit card sized circuit board with a number of sensors
as describer later. The Beebadge is equipped with a NXP JN5148 chip which
contains a 32-bit OpenRISC microcontroller and a IEEE 802.15.4 capable ra-
dio. The JN5148 is delivered with a software interface for the IEEE 802.15.4
MAC layer and runs Contiki as operating system. The Beebadge is driven by
a 350mAh Li-ion battery which is charged either via USB or by an induction
charger. An OLED connector enables simple textual or graphical communica-
tion to the user. A buzzer also exist to enable alarms or other monophonic
communications to the user.

B.1.1 Accelerometer
For simplifications, only one accelerometer is mentioned in the report. The Bee-
badge is in reality equipped with two accelerometers, but only one is used in
this thesis. The two accelerometers are MMA8451Q made by Freescale Semi-
conductor. It has a resolution of 14-bits and the output is in 2’s complement.
It can work at sampling speeds up to 800 Hz, 100 Hz was used for this the-
sis. Scaling can be set to ±2g, ±4g, and ±8g. In this thesis a scaling of ±8g
was used. Converting from raw output data to acceleration is done using the
following equation

a = aRAW · scale
8192 , (B.1)

where aRAW is the 3-axis raw output vector from the device and scale ∈ {2, 4, 8}
is the scaling used, units of a is m

s2 .
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B.1.2 Gyroscope
The gyroscope used is an L3G4200D made by STMicroelectronics. It has a
16-bit resolution and the output is in 2’s complement. It can work at sampling
speeds up to 800Hz, 100 Hz was used for this thesis. Scaling can be set to ±250,
±500, and ±2000 degrees per second. In this thesis a scaling of ±2000 was used.
Converting from raw output data to angular velocity is done using the following
equation

ω = ωRAW · scale
32768 · π

180 , (B.2)

where ωRAW is the 3-axis raw output vector from the device and scale ∈
{250, 500, 2000} is the scaling used, units of ω is rad/s.

B.1.3 Magnetometer
The magnetometer used is an HMC5883 made by Honeywell. It has a resolution
of 12-bits and the output is in 2’s complement. It can work at sampling speeds
up to 75 Hz, the maximum sampling speed was used for this thesis. Scaling
can be set to eight different levels from ±0.9 Gauss up to ±7.9 Gauss, in this
thesis ±1.2 Gauss was used, which gives an convenient scaling of 1024 units
per Gauss. Converting from raw output data to acceleration is done using the
following equation

m = mRAW

1024 , (B.3)

where mRAW is the 3-axis raw output vector from the device and the units of
m is Gauss.

B.1.4 Pressure sensor
The magnetometer used is an BMP085 made by Bosch Sensortec. It has a res-
olution of 16-bits and the output is in 2’s complement. It can work at sampling
speeds up to 128 Hz, for this thesis the a sampling rate of 10 Hz was used. The
measuring range is 300hPa to 1100hPa. Converting from raw output data to
pressure is long and tedious, it is there fore excluded from this thesis but can
be found in the data sheet for the BMP085 sensor.



Appendix C

Time of flight

The time of flight for radio waves are directly proportional to the distance
between two radio devices in strict LOS conditions. When Non line of sight
(NLOS) conditions are present the distance will increase due to that radio waves
propagate slower through denser materials. Radio waves will also suffer from
multipath conditions which can severely disrupt measurements. This appendix
illustrates the time of flight experiments that we have performed under different
indoor conditions.

C.1 Calibration
The delays th,o and th,r will depend on which node is acting as origin and which
is acting as remote. Due to natural variations in the manufacturing process, the
delays will also be different between different units. Since the measurements in
this application are always performed between an endpoint and a coordinator,
the sum between the two delays is assumed to be constant for all pairs of nodes.
The software interface comes with a parameter used to compensate for the
extra delay in the circuit. This parameter is found by performing multiple
measurements and finding the average bias in the measurements

∆d̂c = 2c
(
t̃h,o + t̃h,r

)
= 1
N

N∑
i=1

(c (ttof,i − ts,r)− dtof,i) , (C.1)

where dtof,i is the ground truth for the distance at which the measurement was
performed and c is the speed of light. For a complete description of the variables
used in this appendix, see Table 2.1

C.2 Initiation
A time of flight measurement is initiated by an endpoint by selecting which
coordinator should be the remote node. The turnaround time, ts,r, will vary de-
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pending on frequency offset of the remote node. This offset is unknown to the
transmitting node and will cause a constant offset in the measurement. To re-
duce this bias, time of flight measurements can be performed in both directions,
called forward and reverse direction. This will average out the discrepancies be-
tween the nodes and in most cases reduce this bias. When selecting the forward
direction the endpoint will act as the origin node and the coordinator as the
remote node and vice versa for the reverse direction.

C.3 Performance
The achievable performance is studied during static data collection configura-
tions. LOS and NLOS conditions are studied separately in order to study the
difference in performance them in between. On shorter ranges, the deviations in
calibration parameters and frequency have larger impact on the measurements,
since the greater part of the measurement consists of delays in the hardware.
In Figure C.2 we note that the density is normal distributed but has a non-zero
bias compared to the ground truth. ∆d̂c is found from a large set of data col-
lected in LOS at several different distances. The remaining non-zero biases may
have their explanation in the small impact of δ even in LOS conditions. The
short wavelength will potentially cause rapid changes in the multipath fading
for small movements in position or attitude of the endpoint.

The same figures as in Figure C.2 with ∆d̂c = 0 are shown in Figure C.1
for reference. It can be seen that the absent calibration parameter results in
overestimated distances in LOS conditions. It is from those measurements ∆d̂c
are found using (C.1).

Figure C.3 shows that different attitudes of the endpoint will have a large
impact on the quality of the measurements. This is probably related to the donut
shaped radiation pattern of the used monopole antennas. If the endpoint’s
and the coordinator’s antennas are placed in parallel to each other the most
accurate results are achieved. If the endpoint’s antenna is instead pointing
towards the antenna of the coordinator, multipath effects occur and result in
an overestimated distance. For NLOS conditions shown in Figure C.4 it can be
seen how the multipath effects severely disrupts measurements.
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Figure C.1. Time of flight densities at several distances with the endpoint having
the same attitude relative to the coordinator. ∆d̂c = 0. The ground truth and fitted
normal densities are included for reference.
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Figure C.2. Calibrated time of flight densities at several distances with the endpoint
having the same attitude relative to the coordinator. The ground truth and fitted
normal densities are included for reference.
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Figure C.3. Calibrated time of flight densities at a fixed distance with the endpoint
different attitudes relative to the coordinator. The ground truth and fitted normal
densities are included for reference.
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Figure C.4. Time of flight measurements for NLOS conditions. A severe disruption
from the ground truth can be seen.





Appendix D

RSSI

This appendix describes the performed RSSI experiments and illustrates the
achieved performance.

D.1 Identification of measurement model
The manufacturer of the radio chip used in this thesis proposes the RSSI to
range conversion as

d = 0.02 · 10( 108−RSSI
20 ). (D.1)

Solving the log-distance path loss model (2.2) for d gives

d = d010

(
P0,dBm−Pr,dBm

10n

)
. (D.2)

Identification in (D.1) and (D.2) gives

d0 = 0.02, (D.3a)
P0,dBm = 108, (D.3b)
Pr,dBm = RSSI, (D.3c)

n = 2, (D.3d)

which gives both the model used and the recommended parameters for the RSSI
to range conversion.

D.2 Performance
Our experiments, depicted in Figure D.1, show that the model (2.3) is invalid
for indoor environments. The empirical densities clearly have a non-zero bias
which is different at different distances. The bias indicates that P0,dBm and n
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are chosen badly. While those could be calibrated for improved accuracy, we
have chosen not to because of the poor performance in NLOS and multipath
conditions as shown in Figure D.2.

The measured RSSI values shown in Figure D.3 are converted into distances
using (D.1). The deviation from the ground truth is large and unpredictable
even for LOS conditions from 20 meters and above. For 10 meters, the measure-
ments are accurate in LOS conditions, but since the NLOS conditions at ap-
proximately the same distance are far from correct the model cannot be trusted
even at short distances.

Several other models for the received signal strength at a certain communica-
tion distance exist which might be better suited for indoor environments where
NLOS conditions are common. The multi-wall model [45] is commonly used and
tends to give better results than the log-distance path loss model [46, 39, 40].
However, the multi-wall model puts higher computational demands on the al-
gorithm since it incorporates a map over the building. Experiments performed
in [39, 40] show that the multi-wall model gives an improvement compared to
the log-distance path loss model but still is to rough for giving a decent range.
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Figure D.1. Measured RSSI values at several distances in LOS conditions. Fitted
normal distributions, ground truth and the RSSI values over time are shown.
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Figure D.2. Measured RSSI values at several distances in both NLOS and LOS con-
ditions. Fitted normal distributions, ground truth and the RSSI values over time are
shown. The LOS figures are measured with the endpoint’s antenna pointing towards
the coordinator, which induces multipath effects.
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Figure D.3. Empirical range densities calculated from the RSSI values. The sparse
resolution is caused by a low resolution in the samples.



Appendix E

Step length estimation

Estimating the step length correctly would increase the accuracy of the position.
The step length can wary due to two factors. First a fixed based step length
which for the biggest part depends on the length of the person wearing the
Beebadge, a longer person will tend to take longer steps. Secondly the walking
pace affects the step length [28].

E.1 Step length from step rate
The step length is proportional to the step rate, which at first might sound
unintuitive, but faster steps tend to be longer and vice versa for slower steps.
This can easily be tested by the reader, taking fast and short steps or slow and
long steps will feel unnatural. Figure E.1 shows the components of a step, when
taking step with a high rate θ will be greater aswell as the rate of which it
changes. This will lead to a longer step length. h will be directly proportional
to the length of the person assuming normal proportions of the body.

Literature describes a clear relationship between the step length and the
step rate [28]. This relationship should not be completely clear for users with
different lengths and therefore was not included in this thesis.

E.2 Step length estimation in particle filter
Tests was conducted to introduce the step length as another state in the particle
filter. The filter was initiated with particles with different step lengths and as
the filter converges particle with incorrect step length should disappear during
early resampling steps. This however made the filter very sensitive at an early
stage, missed steps or drift could cause particles with the correct step length to
be removed. This severely decreased the accuracy and in many situations even
cause the filter to diverge all together.
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Figure E.1. Components that lead up to the step length of human



Bibliography

[1] P. Hall, “A Bayesian approach to map-aided vehicle positioning,” Master’s
thesis, Linköping University, Department of Electrical Engineering, 2001.

[2] U. Forsell, P. Hall, S. Ahlqvist, and F. Gustafsson, “Map-aided positioning
system,” tech. rep., NIRA Dynamics AB, Linköpings Universitet, 2002.

[3] N. Svenzen, “Real time implementation of map aided positioning using a
Bayesian approach,” Master’s thesis, Linköping University, Department of
Electrical Engineering, 2002.

[4] J. D. Hol, Sensor Fusion and Calibration using Inertial Sensors, Vision,
Ultra-Wideband and GPS. PhD thesis, Linköping University, Division of
Automatic Control, 2011.

[5] A. Fink, H. Beikirch, M. Voss, and C. Schröder, “RSSI-based indoor posi-
tioning using diversity and inertial navigation,” in Indoor Positioning and
Indoor Navigation (IPIN), 2010 International Conference on, pp. 1 –7, sept.
2010.

[6] J. D. Hol, F. Dijkstra, H. Luinge, and T. B. Schön, “Tightly coupled UW-
B/IMU pose estimation,” in ICUWB, IEEE International Conference on
Ultra-Wideband, pp. 688 –692, sept. 2009.

[7] J. D. Hol, T. B. Schön, and F. Gustafsson, “Ultra-wideband calibration
for indoor positioning,” in Ultra-Wideband (ICUWB), 2010 IEEE Interna-
tional Conference on, vol. 2, pp. 1 –4, sept. 2010.

[8] M. Bedford and G. Kennedy, “Evaluation of Zigbee (IEEE 802.15.4) time-
of-flight-based distance measurement for application in emergency under-
ground navigation,” Antennas and Propagation, IEEE Transactions on,
vol. PP, no. 99, p. 1, 2012.

[9] A. Falhi and Z. Guennoun, “Localization estimation in wireless sensor net-
works based on IEEE 802.15.4 standard,” in Multimedia Computing and
Systems (ICMCS), 2011 International Conference on, pp. 1 –6, april 2011.

[10] A. Peker, O. Tosun, and T. Acarman, “Particle filter vehicle localization
and map-matching using map topology,” in Intelligent Vehicles Symposium
(IV), 2011 IEEE, pp. 248 –253, june 2011.

77



78 Bibliography

[11] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson,
R. Karlsson, and P.-J. Nordlund, “Particle filters for positioning, navi-
gation, and tracking,” Signal Processing, IEEE Transactions on, vol. 50,
pp. 425 –437, feb 2002.

[12] I. Miller, M. Campbell, and D. Huttenlocher, “Map-aided localization in
sparse global positioning system environments using vision and particle
filtering,” Journal of Field Robotics, vol. 28, no. 5, pp. 619–643, 2011.

[13] C. Ascher, C. Kessler, M. Wankerl, and G. Trommer, “Dual IMU indoor
navigation with particle filter based map-matching on a smartphone,” in
Indoor Positioning and Indoor Navigation (IPIN), 2010 International Con-
ference on, pp. 1 –5, sept. 2010.

[14] J. Säll and J. Merkel, “Indoor navigation using accelerometer and magne-
tometer,” Master’s thesis, Linköping University, Department of Electrical
Engineering, 2011.

[15] O. Woodman, Pedestrian localisation for indoor environments. PhD thesis,
University of Cambridge, 2010.

[16] IEEE, “IEEE standard for local and metropolitan area networks–part 15.4:
Low-rate wireless personal area networks (lr-wpans),” IEEE Std 802.15.4-
2003, 2003.

[17] H. Maheshwari and A. Kemp, “On the enhanced ranging performance for
IEEE 802.15.4 compliant WSN devices,” in New Technologies, Mobility
and Security (NTMS), 2011 4th IFIP International Conference on, pp. 1
–5, feb. 2011.

[18] J. Blumenthal, R. Grossmann, F. Golatowski, and D. Timmermann,
“Weighted centroid localization in Zigbee-based sensor networks,” in Intel-
ligent Signal Processing, 2007. WISP 2007. IEEE International Symposium
on, pp. 1 –6, oct. 2007.

[19] T. S. Rappaport, Wireless Communications: Principles and Practice (2nd
Edition). Prentice Hall, 2002.

[20] S. Mazuelas, A. Bahillo, R. Lorenzo, P. Fernandez, F. Lago, E. Garcia,
J. Blas, and E. Abril, “Robust indoor positioning provided by real-time rssi
values in unmodified wlan networks,” Selected Topics in Signal Processing,
IEEE Journal of, vol. 3, pp. 821 –831, oct. 2009.

[21] J. Prieto, S. Mazuelas, A. Bahillo, P. Fernandez, R. Lorenzo, and E. Abril,
“Adaptive data fusion for wireless localization in harsh environments,” Sig-
nal Processing, IEEE Transactions on, vol. 60, pp. 1585 –1596, april 2012.

[22] M. Luber, J. Stork, G. Tipaldi, and K. Arras, “People tracking with hu-
man motion predictions from social forces,” in Robotics and Automation
(ICRA), 2010 IEEE International Conference on, pp. 464 –469, may 2010.



Bibliography 79

[23] S. Pellegrini, A. Ess, M. Tanaskovic, and L. Van Gool, “Wrong turn - no
dead end: A stochastic pedestrian motion model,” in Computer Vision and
Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society
Conference on, pp. 15 –22, june 2010.

[24] F. Gustafsson, Statistical Sensor Fusion. Studentlitteratur AB, 2010.

[25] G. L. Smith, S. F. Schmidt, and L. A. McGee, “Application of statistical
filter theory to the optimal estimation of position and velocity on board a
circumlunar vehicle,” Tech. Rep. TR R-135, NASA, 1962.

[26] T. B. Schön, “Solving nonlinear state estimation problems using particle fil-
ters - an engineering perspective,” Tech. Rep. LiTH-ISY-R-2953, Linköping
University, Department of Electrical Engineering, 2010.

[27] T. Schon, F. Gustafsson, and P.-J. Nordlund, “Marginalized particle filters
for mixed linear/nonlinear state-space models,” Signal Processing, IEEE
Transactions on, vol. 53, pp. 2279 – 2289, july 2005.

[28] H. Leppäkoski, J. Collin, and J. Takala, “Pedestrian navigation based on
inertial sensors, indoor map, and WLAN signals,” in Acoustics, Speech,
and Signal Processing (ICASSP), 2012 IEEE International Conference on,
march 2012.

[29] D. Fox, “Adapting the sample size in particle filters through KLD-
sampling,” International Journal of Robotics Research, 2003.

[30] F. Pei, P. Cui, and Y. Chen, “Adaptive mcmc particle filter for nonlinear
and non-gaussian state estimation,” in Innovative Computing Information
and Control, 2008. ICICIC ’08. 3rd International Conference on, p. 494,
june 2008.

[31] S. Madgwick, A. Harrison, and R. Vaidyanathan, “Estimation of IMU and
MARG orientation using a gradient descent algorithm,” in Rehabilitation
Robotics (ICORR), 2011 IEEE International Conference on, pp. 1 –7, 29
2011-july 1 2011.

[32] G. Box and M. E. Müller, “A note on the generation of random normal
deviates,” Ann. Math. Statist., vol. 29, no. 2, pp. 610–611, 1958.

[33] G. Marsaglia and T. A. Bray, “A convenient method for generating normal
variables,” SIAM Review, vol. 6, no. 3, pp. 260–264, 1964.

[34] G. Marsaglia and W. W. Tsang, “The ziggurat method for generating ran-
dom variables,” Journal of Statistical Software, vol. 5, pp. 1–7, 10 2000.

[35] G. Kitagawa, “Monte carlo filter and smoother for non-Gaussian nonlinear
state space models,” Journal of Computational and Graphical Statistics,
1996.



80 Bibliography

[36] J. D. Hol, T. B. Schön, and F. Gustafsson, “On resampling algorithms for
particle filters,” tech. rep., Linköping University, Department of Electrical
Engineering, 2006.

[37] G. Hendeby, J. D. Hol, R. Karlsson, and F. Gustafsson, “Graphics process-
ing unit implementation of the particle filter,” Tech. Rep. LiTH-ISY-R-
2749, Department of Electrical Engineering, Linköping University, SE-581
83 Linköping, Sweden, Oct. 2006.

[38] K. Par and O. Tosun, “Parallelization of particle filter based localization
and map matching algorithms on multicore/manycore architectures,” in
Intelligent Vehicles Symposium (IV), 2011 IEEE, pp. 820 –826, june 2011.

[39] Widyawan, M. Klepal, and D. Pesch, “Influence of predicted and measured
fingerprint on the accuracy of RSSI-based indoor location systems,” in Po-
sitioning, Navigation and Communication, 2007. WPNC ’07. 4th Workshop
on, pp. 145 –151, march 2007.

[40] S. Hossain, S. H. Ariffin, N. Fisal, C. K. Neng, N. A. Hassan, and L. Latiff,
“Accuracy enhancement of fingerprint indoor positioning system,” in Intel-
ligent Systems, Modelling and Simulation (ISMS), 2012 Third International
Conference on, pp. 600 –605, feb. 2012.

[41] R. Smith, M. Self, and P. Cheeseman, “A stochastic map for uncertain
spatial relationships,” in Fourth International Symposium of Robotics Re-
search, p. 467–474, 1987.

[42] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping:
part i,” Robotics Automation Magazine, IEEE, vol. 13, pp. 99 –110, june
2006.

[43] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping
(SLAM): part ii,” Robotics Automation Magazine, IEEE, vol. 13, pp. 108
–117, sept. 2006.

[44] M. Schafer, C. Knapp, and S. Chakraborty, “Automatic generation of topo-
logical indoor maps for real-time map-based localization and tracking,” in
Indoor Positioning and Indoor Navigation (IPIN), 2011 International Con-
ference on, pp. 1 –8, sept. 2011.

[45] J. Lähteenmäki, “Indoor propagation models,” in COST action 231, Digital
mobile radio towards future generation systems final report, pp. 175 – 189,
1999.

[46] A. Borrelli, C. Monti, M. Vari, and F. Mazzenga, “Channel models for
IEEE 802.11b indoor system design,” in Communications, 2004 IEEE In-
ternational Conference on, vol. 6, pp. 3701 – 3705 Vol.6, june 2004.


