
Institutionen för datavetenskap
Department of Computer and Information Science

Final thesis

Program Dependence Graph Generation and 
Analysis for Source Code Plagiarism Detection

by

Niklas Holma

LIU-IDA/LITH-EX-A--12/065–SE

 2012-12-19

Linköpings universitet
SE-581 83 Linköping, Sweden

Linköpings universitet
581 83 Linköping





Linköpings universitet
Institutionen för datavetenskap

Final thesis

Program Dependence Graph Generation and 
Analysis for Source Code Plagiarism Detection

by

Niklas Holma

LIU-IDA/LITH-EX-A--12/065–SE

2012-12-19

Supervisor: Jonas Wallgren

Examiner: Christoph Kessler





Avdelning, Institution
Division, Department

Division of Software and Systems
Department of Computer and Information Science
Linköpings universitet
SE-581 83 Linköping, Sweden

Datum
Date

2012-12-19

Språk
Language

� Svenska/Swedish
� Engelska/English

�

Rapporttyp
Report category

� Licentiatavhandling
� Examensarbete
� C-uppsats
� D-uppsats
� Övrig rapport
�

�

URL för elektronisk version
http://www.ida.liu.se

http://www.ep.liu.se

ISBN
—

ISRN
LIU-IDA/LITH-EX-A--12/065–SE

Serietitel och serienummer
Title of series, numbering

ISSN
—

Titel
Title

Generering och analys av programberoendegrafer för detektering av plagiat i käl-
lkod
Program Dependence Graph Generation and Analysis for Source Code Plagiarism
Detection

Författare
Author

Niklas Holma

Sammanfattning
Abstract

Systems and tools that finds similarities among essays and reports are widely
used by todays universities and schools to detect plagiarism. Such tools are how-
ever insufficient when used for source code comparisons since they are fragile to
the most simplest forms of diguises. Other methods that analyses intermediate
forms such as token strings, syntax trees and graph representations have shown to
be more effective than using simple textual matching methods. In this master the-
sis report we discuss how program dependence graphs, an abstract representation
of a programs semantics, can be used to find similar procedures. We also present
an implementation of a system that constructs approximated program dependence
graphs from the abstract syntax tree representation of a program. Matching proce-
dures are found by testing graph pairs for either sub-graph isomorphism or graph
monomorphism depending on whether structured transfer of control has been used.
Under a scenario based evaluation our system is compared to Moss, a popular
plagiarism detection tool. The result shows that our system is more or least as
effective than Moss in finding plagiarized procedured independently on the type
of modifications used.

Nyckelord
Keywords plagiarism, program dependence graph





Abstract

Systems and tools that finds similarities among essays and reports are widely
used by todays universities and schools to detect plagiarism. Such tools are how-
ever insufficient when used for source code comparisons since they are fragile to the
most simplest forms of diguises. Other methods that analyses intermediate forms
such as token strings, syntax trees and graph representations have shown to be
more effective than using simple textual matching methods. In this master thesis
report we discuss how program dependence graphs, an abstract representation of
a programs semantics, can be used to find similar procedures. We also present an
implementation of a system that constructs approximated program dependence
graphs from the abstract syntax tree representation of a program. Matching pro-
cedures are found by testing graph pairs for either sub-graph isomorphism or
graph monomorphism depending on whether structured transfer of control has
been used. Under a scenario based evaluation our system is compared to Moss,
a popular plagiarism detection tool. The result shows that our system is more
or least as effective than Moss in finding plagiarized procedured independently on
the type of modifications used.

Sammanfattning

System och verktyg som hittar likheter mellan uppsatser och rapporter an-
vänds i stor omfattning av dagens universitet och skolor för att hitta plagiat bland
studenters inlämningar. Sådana verktyg är dock otillräckliga när de används för
att jämföra programkod eftersom de är svaga mot de enklaste formerna av modi-
fikationer. Anda metoder som analyserar mellanstegsformer såsom tokensträngar,
syntaxträd och grafrepresentationer har visat sig vara mer effektiva än att an-
vända sig av enkla textuella metoder. I denna examensuppsats diskuterar vi hur
programberoendegrafer, en abstrakt representation av en programs semantik, kan
användas för att hitta jämförelsevis liknande procedurer. Vi presenterar också ett
system som konstruerar approximerade programberoendegrafer från det abstrakta
syntaxträdet av ett program. Matchande procedurer hittas genom att testa grafpar
för antingen sub-graf isomorfism eller monomorfism beroende på om strukturerad
byte av kontrolflöde har använts. I en scenariobaserad utvärdering jämför vi vårt
system mot Moss, ett populärt verktyg för att detektera plagiat. Resultaten vis-
ar att vårt system är lika eller mer effektivt som Moss att detektera plagierade
procedurer oberoende av de typer av modifikationer som använts.

v





Acknowledgments

I would like to thank my supervisor, Jonas Wallgren for having great patience
in proofreading my report and giving ideas on how to present my work in the best
way. I would like to thank Erik Nilsson for his commitment to our goals and the
amount of work he put into the abstract syntax tree transformation. I would also
like to thank Torbjörn Jonsson and Klas Arvidsson for helping us start this project
and for all the ideas and positive spirit they gave us.

vii





Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Plagiarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.4 Plagiarism by means of code clones . . . . . . . . . . . . . . . . . . 2
1.5 Looking through code plagiarism . . . . . . . . . . . . . . . . . . . 2
1.6 Plagiarism detection system . . . . . . . . . . . . . . . . . . . . . . 3
1.7 Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 5
2.1 Plagiarism disguises . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Plagiarism detection techniques and tools . . . . . . . . . . . . . . 7

2.2.1 Textual comparison based . . . . . . . . . . . . . . . . . . . 7
2.2.2 Metrics based . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Token comparison . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Syntactical analysis . . . . . . . . . . . . . . . . . . . . . . 7
2.2.5 Program Dependence Graph analysis . . . . . . . . . . . . . 8

3 Program Dependence Graph 9
3.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Control-flow Graph . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Control Dependence . . . . . . . . . . . . . . . . . . . . . . 11
3.1.3 Data Dependece . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.4 Reaching Definitions . . . . . . . . . . . . . . . . . . . . . . 14
3.1.5 Program Dependence Graph . . . . . . . . . . . . . . . . . 17

3.2 Plagiarized Program Dependence Graphs . . . . . . . . . . . . . . 18
3.2.1 Graph Morphisms . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Algorithms for subgraph isomorphism testing . . . . . . . . . . . . 19
3.3.1 Time Complexities . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Construction of Approximated Program Dependence Graphs . . . 21

4 Implementation 23
4.1 Requirement summary . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ix



x Contents

4.3 External libraries and dependencies . . . . . . . . . . . . . . . . . . 26
4.3.1 VFLib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.2 Boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Configuration of modules . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 TextDiff Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.5.1 LCSSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6 Abstract syntax tree module . . . . . . . . . . . . . . . . . . . . . 31
4.7 APDG Generator Module . . . . . . . . . . . . . . . . . . . . . . . 31

4.7.1 Data structures . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.7.2 AST Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.7.3 ACDS Generation . . . . . . . . . . . . . . . . . . . . . . . 33
4.7.4 ADDS Generation . . . . . . . . . . . . . . . . . . . . . . . 38
4.7.5 APDG Examples . . . . . . . . . . . . . . . . . . . . . . . . 38

4.8 APDG Analysis Module . . . . . . . . . . . . . . . . . . . . . . . . 46
4.8.1 Pruning the search space . . . . . . . . . . . . . . . . . . . 46
4.8.2 Optimal Configuration . . . . . . . . . . . . . . . . . . . . . 47
4.8.3 Threading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.8.4 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.8.5 Sub-graph isomorphism example . . . . . . . . . . . . . . . 50

5 Analysis 53
5.1 Method of analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Interpreting Results . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.1 All results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.2 Similarity ratio by type of modification . . . . . . . . . . . 56
5.3.3 Detected procedures by type of modification . . . . . . . . . 56

6 Discussion 63
6.1 Format Alteration Scenarios . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Identifier Renaming Scenarios . . . . . . . . . . . . . . . . . . . . . 63
6.3 Declaration Reordering Scenarios . . . . . . . . . . . . . . . . . . . 63
6.4 Statement Reordering Scenarios . . . . . . . . . . . . . . . . . . . . 64
6.5 Code Insertion Scenarios . . . . . . . . . . . . . . . . . . . . . . . . 64
6.6 Control Replacement Scenarios . . . . . . . . . . . . . . . . . . . . 65
6.7 Other Modification Scenarios . . . . . . . . . . . . . . . . . . . . . 65
6.8 Overall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 Conclusions 67

8 Future Work 69
8.1 APDGs for Ada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.2 Serialization of APDGs . . . . . . . . . . . . . . . . . . . . . . . . 69
8.3 Improving the preciseness of APDGs . . . . . . . . . . . . . . . . . 70

8.3.1 Pointers and aliases . . . . . . . . . . . . . . . . . . . . . . 70
8.3.2 Exception analysis . . . . . . . . . . . . . . . . . . . . . . . 70



Contents xi

8.3.3 Call graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.4 Other types of APDG analysis . . . . . . . . . . . . . . . . . . . . 71

A Requirements of DETECT 75

B Interface for PDGFactory 77

C Configuration file for benchmarking 84

D Default configuration file 86





Chapter 1

Introduction

In this master thesis project we will examine the possibility of analysing program
dependence graphs to detect software plagiarism. We also present an implemen-
tation of a system that generates and analyses approximate program dependence
graphs for plagiarism detection. At last we compare the results to conventional
methods of plagiarism detection by performing a quantitiative analysis with our
system and another popular detection tool.

1.1 Background
In 2011, the teaching group at the Department of Computer and Information
Science (IDA) at Linköping University discussed the idea of constructing a system
aiding in the detection of software plagiarism. This discussion was later solidified
into a master thesis project to be performed by Niklas Holma (author) and Erik
Nilsson, both working as teaching assistants at IDA at that point of time.

1.2 Clients
The clients of this project are Torbjörn Jonsson and Klas Arvidsson representing
the teaching group (UPP) at the department of Computer and Information Science
at Linköping University.

1.3 Plagiarization
In programming courses, there are always students who hand in code that does
not belong to them. Looking at someone elses code can be a good starting point
in learning how to program, but directly copying someones code and handing in
as ones own work is an act of plagiarism. Using code from the web is a popular
choice, but there are also cases when a fellow student has been victimized.

Detecting software plagiarism is not a simple task. First and foremost is the job
of finding the actual similarity between submissions. Code can easily be disguised,

1



2 Introduction

and plagiarised code is easily overlooked in large courses. Second, if course-staff
would find identical submissions, proof of plagiarisation occurrence would have to
be found as well.

During literature research we found several commercial and noncommercial
systems for aiding in the detection of software plagiarisms. One alternative would
be to use one of these existing systems, but constructing a tool that is tailored
for the courses taught at IDA would give better support in finding plagiarised
code. It would give the teachers the possibility to adapt the system to the specific
programming assignments and languages used.

1.4 Plagiarism by means of code clones
The act of finding plagiarism consists of finding similar code, and has its roots in
finding code clones. We define a code clone to be a piece of code that is identical
to another piece of code, and a near miss clone as a piece of code that is nearly
identical to another piece of code.

There are many reasons why code clones occur in software projects. Baxter
et al. [4] mentions several,

• Code reuse by copying pre-existing idioms

• Coding styles

• Instantiations of definitional computations

• Failure to identify/use abstract data types

• Performance enhancement

• Accident

Plagiarized code can also be seen as code clones or near miss clones that have
separate authors. Plagiarism detection is not much different from regular code
clone detection, the only difference is the reason behind the occurence of such
clones. In academia, plagiarized code arises from a programmer’s unwillingness to
learn or solve a problem and many cheaters will put in efforts to hide their actions.

When clones or near miss code clones have been found, problematically there
exist no method or standard that constitutes what is to be regarded as plagiarism
and not. This emphasizes that software plagiarism can not be asserted by a system,
the use of plagiarism detection tools is merely an aid in finding code clones. The
actual assertion of code plagiarism must ultimately be made by a teacher or a
judge.

1.5 Looking through code plagiarism
Finding plagiarized code is not an easy task, a programmer can easily overhaul code
in such a way that a textual comparison would yield a zero percent match. To look



1.6 Plagiarism detection system 3

through such disguises, plagiarization detection tools need therefore incorporate
more effective ways of analysing the code, such as intermediate code analysis.
Interpreting and comparing intermediate forms of program code makes it possibile
to analyse the syntax and the meaning of the code rather than just the text. This
is necessary to capture the core functionality of the program as well as the intent
of the programmer.

Many popular code plagiarization detection tools that exist today analyse the
intermediate code forms that modern popular compilers work with, such as tokens
or syntax trees. Other more advanced tools generate and analyse their own ab-
stract representations of the code, such as program dependence graphs, which is
an abstract representation of a program’s semantics.

1.6 Plagiarism detection system
The result of the project proposed at IDA includes the implementation of a system
finding matches and correlations between program code which we call detect.
detect is a subsystem of cojac, the entire system that manages student hand-
ins and that provides a user interface. The details of the entire system are given
in chapter 4.

Our literature research shows many different more or less sucessful techniques
that can be applied to find plagiarism in source code. We have chosen to cre-
ate a hybrid system incorporating several approaches. detect employs textual
matching, abstract syntax tree analysis and program dependence graph analy-
sis to compare and find correlations between two units of source code. It finds
plagiarized code that is written in C, C++ and Ada.

We divided the work into three parts: textual matching, the generation and
analysis of abstract syntax trees and the generation and analysis of program de-
pendence graphs. The exposition of the textual matching and program dependence
graph analysis is given in this report, while Nilsson [17] presents the work of ab-
stract syntax tree matching.

1.7 Acronyms
Table 1.1 explains common acronyms used in this report.

Name Description
APDG Approximate Program Dependence Graph
ACDS Approximate Control Dependence Subgraph
ADDS Approximate Data Dependence Subgraph
AST Abstract Syntax Tree
VF2 A graph matching algorithm used for finding graph isomorphisms and

monomorphisms

Table 1.1. Acronyms





Chapter 2

Related Work

2.1 Plagiarism disguises

Much work has been done in the area of program plagiarization detection. Al-
though there actually exists no standard on how to classify source code plagiarism,
the result of previous work can help to analyse the effectiveness of existing and
future detection tools. One especially important part of work in plagiarism de-
tection is in the classification and categorization of plagiarization techniques. Liu
et al. [16] characterize 5 main plagiarism disguises, and rank these in order from
trivial to more complex obfuscations. Among other research, we have also found
other valid forms of plagiarism disguises. Here follows a summary.

Format Alteration (FA)

The plagiarist systematically reformats the code by adding or removing newlines,
whitespaces and comments. Since the student need no understanding of the orig-
inal code or the programming language used to perform such alterations, this is
deemed to be the most simplest form of alteration.

Identifier Renaming (IR)

The plagiarist systematically renames all or some of the identifiers of the code.
Renaming all the variables in a program is an easy task and can even trick the
most experienced programming teacher or assistant.

Statement Reordering (SR)

The plagiarist systematically reorder statements in the program, while still pre-
serving the semantics of the code.

5



6 Related Work

Declaration Reordering (DR)
The plagiarist systematically reorders statements in the program that declare new
variables or introduces new identifiers, while still preserving the semantics of the
code. This is included in Liu et al. [16] definition of statement reordering. We
have chosen to distinguish between these two.

Control Replacement (CR)
The plagiarist replaces language control-constructs with equivalent constructs,
such as replacing a for loop statement with an equivalent while loop (C++).
Another more intricate replacement would be to switch a while-statement for a
do-while loop. Figure 2.1 shows an example of the first mentioned type.

1 /∗ Or ig ina l ∗/
2 int k = 0 ;
3 for ( int i = 0 ; i < 10 ; ++i )
4 {
5 k += i ;
6 }

1 /∗ Plag iar i sm ∗/
2 int k = 0 ;
3 int i = 0 ;
4 while ( i < 10)
5 {
6 k += i ;
7 ++i ;
8 }

Figure 2.1. Example of C++ code where a for loop has been replaced by a while loop.

Code Insertion (CI)
The plagiarist adds code that does not change the functionality of the program,
such as dead code. Dead code is a computation that calculates a result which is
not used in later parts of the procedure [8], such as a for loop with an empty
body, or assigning a variable that never will be used.

Other Modifications (OM)
All other forms of code disguises fall in this category. For instance making small
optimizations to the code such as reusing or removing variables, eliminating dead
code or inlining functions. The keyword small is important since optimizing code
demands knowledge of how the code works and can be seen as unique work. For
instance, we do not classify loop unrolling as a form of disguise since the program-
mer needs to understand all the conditions and invariants involved to perform such
a task.



2.2 Plagiarism detection techniques and tools 7

2.2 Plagiarism detection techniques and tools
Techniques based on the detection of plagiarism has its roots in the detection of
code clone detection and near miss clone detection. This section summarizes the
different types of techniques that exists and some examples of systems employing
them.

2.2.1 Textual comparison based
Textual comparison based techniques find similarities between sections of text and
code. Theese kind of tools are often language independent since they have little
or no regard to the syntax of the language used. Such systems usually implement
some of the popular string matching algorithms such as Longest Common Sub-
string matching, Levenshtein distance or Greedy String Tiling [22]. Schleimer [20]
introduces Moss, an example of a popular plagiarization detection service that
considers the text of a program to find similar code. Moss hashes and compares
string k-grams to find partial copies of documents, where a k-gram is a contiguous
substring of length k.

2.2.2 Metrics based
A metric based plagiarization detection tool collects data about the programs to
analyse, such as number of loops and declarations, and creates metric vectors from
these. The metric vectors are then interpreted as points in a cartesian coordinate
system, and near points are considered to respond to similar code.

2.2.3 Token comparison
A token is a unit that represents a string recognized by the language that the code
is written in. Tokenising code is the process of retrieving tokens from code by
means of running it through a lexical analyser [1].

JPlag[18] is an example of a system using tokens to find plagiarisms among
code, it analyses strings of tokens by using the Greedy String Tiling algorithm.

2.2.4 Syntactical analysis
When analysing the syntax of the language, the grammar of the programming
language has to be taken into account. This can be done by parsing the program
code and transforming it into some intermediate representation. The most widely
used intermediate form produced by compiler-front ends is the abstract syntax tree,
or AST for short. An AST is a tree data structure which represents the hierarchical
syntactic structure of the source program. The nodes of the abstract syntax tree
are operators or language constructs, and the children are the components of that
construct.

Chilowicz et al. [6] introduce a method for plagiarism detection comparing
abstract syntax trees by means of sub-tree fingerprinting. Baxter et al. [4] show



8 Related Work

how abstract syntax trees can be used to find code clones and near miss clones by
using an articifially bad hash function to find subtrees.

Nilsson [17] presents how syntax trees can be used to find plagiarized code,
and further presents how detect implements AST analysis.

2.2.5 Program Dependence Graph analysis
Previously, data and control dependence graphs have been used by compilers e.g
for instruction scheduling and dead code eliminition. They can be seen as an
abstract representation of the control and data dependencies within a program.
Ferrante et al. [9] introduce the program dependence graph, or PDG for short, a
multigraph that unifies these two types of dependencies.

The PDG has many areas of use in software engineering. It has mainly been
used for program slicing, but it has also been shown to be a valid representation in
finding code duplications and plagiarizations. Komondoor and Horwitz [14] first
introduced the concept of finding code clones by checking for isomorphic PDGs
with program slicing. Later on Krinke [15] presented an approach in detecting
code clones by comparing length limited paths in the program dependence graph.

In focus, the most related work in the field of plagiarization detection and to
our approach has been conducted by Liu et al. [16]. Here they present the tool
GPLAG that finds plagiarism among PDGs using relaxed subgraph isomorphism
testing. Program dependence graphs have the remarkable property that they are
invariant during nearly all forms of plagiarism. This makes PDG analysis a very
robust technique against almost all forms of code disguises, even the most complex
types such as control replacement and code insertion.



Chapter 3

Program Dependence Graph

In this chapter, we will give the definition of program dependence graphs, as well
as the type of PDG used in our application. We also present how to analyse PDGs
to find code plagiarization.

3.1 Terminology
The PDG is a labelled directed multigraph representing the unification of control
and data dependencies within a program, hence it can be seen as an abstract
representation of a program’s semantics.

The vertices of the PDG represents program statements and predicate expres-
sions. The directed edges represent the control and data dependencies given by
the control and data flow of the program.

To clarify what we actually mean with a program dependence graph, we will
here explain the terminology used. The initial definition of a program dependence
graph was given by Ferrante et al. [9], and the definition expressed the control
dependence by the means of post-dominance nodes in a program’s control-flow
graph.

9



10 Program Dependence Graph

3.1.1 Control-flow Graph
The control-flow graph of a program is a directed graph, where the vertices repre-
sent the statements of the program, and the edges represent the transfer of control
between these. Our definition differs slightly from the classic definition where the
nodes in a control-flow graph represent basic blocks. In our control-flow graph,
the nodes represent each separate statement in the program.

We divide the nodes of a control-flow graph into two categories, predicate nodes
and regular statement nodes. A predicate node represent a boolean expression
that can be found in constructs that alter the flow of control. In C++ they would
represent the boolean expression inside an if, while, do while or for statement.
In Ada they can, apart from those already mentioned and supported, represent the
boolean expression inside a loop or exit when statement. Since the C++ switch
statement and Ada’s equivalent case statement can be seen as a series of if,
else if/elsif and else statements, it is not necessary to treat them separately.
Regular statements are other types of statements in the language that do not alter
the flow of control, e.g. variable assignments or declarations. We also consider
function call sites as regular statements since we do not consider interprocedural
dependencies.

To be able to determine the post-dominators, we first need to assume some
fundamental properties of the control-flow graph. Here follows a formal definition
of the control-flow graph.

Definition 1
A control-flow graph for a program P is a directed graph G augmented with
the unique nodes start and stop such that every node in the graph has at
most two sucessors. We assume that predicate nodes have two successors with
attributes “T” (true) and “F” (false) associated with the outgoing edges. We
assume that for any node N in G there exists a path from start to N and a
path from N to stop.

Apart from the definition, we also add the node entry to our control-flow
graph with one edge to start with attribute “T” and an edge to stop with
attribute “F”. The entry-node will represent any external reason the program is
executed. There nodes start and stop are unique nodes that represents the
start and termination of control-flow. Figure 3.1 shows an example of a control-
flow graph which illustrates the definition.



3.1 Terminology 11

1 int main ( )
2 {
3 while (P1)
4 {
5 S1 ;
6 i f (P2)
7 S2 ;
8 S3 ;
9 }

10 S4 ;
11 }

Pseudo-code Control-flow graph

Figure 3.1. Illustrative example of a program’s control-flow graph. P1 and P2 are
predicate nodes and represent boolean expressions. S1 to S4 represent regular statements.

3.1.2 Control Dependence
The definition of control dependence is expressed in terms of post-dominators in
the control-flow graph [9].

Definition 2
A node V is post-dominated by a node W in G if every directed path from V
to stop (not including V ) contains W .

Definition 3
Let G be a control-flow graph. Let X and Y be nodes in G. Y is control
dependent on X iff
(1) there exists a directed path P from X to Y with any Z in P (excluding

X and Y ) post-dominated by Y and
(2) X is not post-dominated by Y

Condition 1 can even be satisfied when P consists of only one edge since Z /∈ ∅.
Condition 2 can always be satisfied when X and Y are the same node.

The graphical representation of control dependencies can be shown in a control
dependence graph, but also as a subgraph of a program dependence graph which we
call the control dependence subgraph (CDS). Apart from the regular statement
and predicate nodes that are already mentioned, we insert region nodes to the
CDS to summarize the control dependencies from a node. The explanations of the
different types of nodes that a CDS can consist of are given in Table 3.1.

Since the post-dominator relation is transitive, we can express it in a hierar-
chical graph called the post-dominator tree. Figure 3.2 shows an example of a
control dependence subgraph calculated from a control-flow graph along with the
corresponding post-dominator tree. In the graphs of this report we will use the
conventional way of representing control dependencies used by Ferrante et al. [9],
which is by using the reverse direction of the control dependence relations. This is
the way detect represents control dependencies and helps for data-flow analysis



12 Program Dependence Graph

Statement Node The statement node represent a regular program statement. This
corresponds to a vertex in the program’s control-flow graph that
does only have one exit.

Predicate Node A predicate node which represents a boolean expression. It cor-
responds to a node in the program control-flow graph that have
two exits.

Region Node The region node does not correspond to a program statement. It
is inserted to summarize dependencies from a node and it can be
seen as an entry point to a sequence of statements or a program
block.

Table 3.1. Types of nodes in the control dependence subgraph.

later on in the generation process.
There is not always an intuitive way of determining control dependencies be-

tween the nodes, especially if the control-flow graph is complex. There is one
algorithm that determines control dependencies which uses annotations on the
post-dominator tree [9], but a more straightforward way is to look at every node
pair and see if both conditions for control dependency are met, which will suffice
for showing that the control dependencies in Figure 3.2 holds. E.g. by looking at
node P1 and P2.

(1) There is a path in the control-flow graph from P1 to P2 with the path P1 →
S1 → P2. S1 is post-dominated by P2, therefore condition 1 is met.

(2) By looking at the post-dominator tree we can se that P1 is not post-dominated
by P2, therefore condition 2 is met and we have shown that P2 is control
dependent on P1.

Another more intuitive and non-computational way of grasping control depen-
dencies is to look at the structure of the program code. A node representing a
statement inside the body of an if statement or a for loop always depends on
the predicate node stating the condition for the execution. Another notion is that
there exists no control dependencies between statement nodes in the same block
unless some form of control statement has been used in that block, such as break,
continue or goto.



3.1 Terminology 13

Post-dominator tree Control dependence subgraph (CDS)

Figure 3.2. Post-dominator tree and control dependence subgraph from the example
in Figure 3.1. R1 to R3 are inserted region nodes. The start and stop nodes are not
shown in the control dependence subgraph, they are only used for analysis purposes.

3.1.3 Data Dependece

Our formulation of data dependence is similar to the one given by Liu et al. [16],

Definition 4
There is a data (flow) dependence edge from a node v1 to v2 if there is some
variable var such that:

• v1 may do an assignment to var.

• v2 may use the value of var.

• There is an execution path in the program from the code corresponding to v1 to
the code corresponding to v2 along which there is no assignment to var.

Data dependencies in program code arise from statements or expressions trying
to access or modify the same resource. The type of data dependencies used by
the PDG is called flow-dependence, which exists between a statement defining or
modifying a resource (variable) and another statement along the execution path
using that resource, without any intervening modifications of the variable in the
path. To find such paths, we must perform data-flow analysis on the control-flow
graph which allows us to tell which execution paths that contains no assignments
of a given variable. One such form, or schema, of data-flow analysis is called
reaching definitions.



14 Program Dependence Graph

3.1.4 Reaching Definitions
We determine the data dependence in the graph by using the reaching definitions
data-flow schema1 as described by Aho et al. [1]. By using reaching definitions
we can determine which variables are live at a given point in a program’s flow of
control, which means that they hold values that will be used later on. We can
also tell in which node or nodes those variables were defined from a given program
point.

The schema states the dataflow in terms of definitions that flow in and out
of nodes in the control-flow graph. A definition is a 2-tuple : (v, var) where the
control-flow graph node v may do an assignment to var. Each node is assigned
the set of variable definitions that might reach it and the set of definitions that
comes “out” of it, which we call the in set and the out set.

Definition 5
The in set of a control-flow graph node N is the set of all definitions that
might reach node N , denoted in[N ]. The out set of a node N is the set of
definitions that comes from node N , denoted out[N ].

To be able to calculate the in and out sets for a node properly, it is necessary to
look at all the definitions that the node generates. This is done by assigning each
node gen and kill sets.

Definition 6
The gen set of a node N is the set of definitions generated by the statement(s)
the node represent, which we denote genN . The kill set of N is the set of all
other definitions in the program of the variables defined in N , denoted killN .

We make a difference between the notation of these sets to emphasize that the
gen and kill sets are regarded to be constant during the analysis. The in and
out sets are variables and can be incrementally calculated using an algorithm that
employs this data-flow scheme.

The out set for a node N can be calculated using the transfer function of N ,

out[N ] = genN ∪ (in[N ]− killN )

and by assigning a relationship between a node’s in set and the out set from its
predecessors

in[N ] =
⋃

P is a predecessor of N
out[P ].

we must also assume that
out[entry] = ∅

A definition flows through N from any predecessor P unless it is killed. We kill a
definition of a variable var if there is any other definition of var anywhere along
the path of the data-flow. In practice, the kill set of a node is not something

1Reaching definitions can only spot data flow dependencies for scalars and entire arrays, and
is not sufficient for analysing individual array elements.



3.1 Terminology 15

that has to be calculated for the analysis to work. The expression (in[N ]−killN )
can be simplified by iteratively removing definitions of the same variable from the
in[N ] set looking at the definitions in the genN set.

Algorithm

Since the transfer function of the reaching definitions scheme is monotonic,

N1 v N2 ⇒ out[N1] v out[N2]

a fixed-point iteration algorithm can be used to generate the data dependencies
[13]. Explanation on how detect calculates the in and out-sets to generate data
dependencies is given in Section 4.7.4.



16 Program Dependence Graph

Example

Figure 3.3 illustrates the data-flow analysis scheme with a control-flow graph. In
the figure, the in and out-sets have converged to the point described by the
equations.

1 int main ( )
2 {
3 int i = 0 , j = 1 ;
4 while ( j < 10)
5 {
6 i = i + j ;
7 j++;
8 }
9 pr in t ( i ) ;

10 }

entry start

S1 : i = 0,
j = 1;

P1 : j < 10

S2 : i = i + j;

S3 : j++;

S4 : print(i);

stop

T

T

F

F

genS1 = {(S1, i), (S1, j))}
killS1 = {(S2, i), (S3, j)}
in[S1] = ∅
out[S1] = {(S1, i), (S1, j))}

genS2 = {(S2, i)}
killS2 = {(S1, i)}
in[S2] = {(S1, i), (S1, j), (S2, i), (S3, j)}
out[S2] = {(S1, j), (S3, j), (S2, i)}

genS3 = {(S3, j)}
killS3 = {(S1, j)}
in[S3] = {(S1, j), (S3, j), (S2, i)}
out[S3] = {(S3, j), (S2, j)}

genP1 = ∅
killP1 = ∅
in[P1] = {(S1, i), (S1, j), (S2, i), (S3, j)}
out[P1] = in[P1]

genS4 = ∅
killS4 = ∅
in[S4] = {(S1, i), (S1, j), (S2, i), (S3, j)}
out[S4] = in[S4]

Figure 3.3. Illustrative example of the reaching definitions scheme. S1 to S4 are state-
ment nodes and P1 is a predicate node.



3.1 Terminology 17

3.1.5 Program Dependence Graph
We formulate the definition of a program dependence graph in the same way as
by Liu et al. [16].

Definition 7
The program dependence graph G for a procedure P is a 4-tupleG = (V,E, µ, δ)
where

• V is the set of program nodes in P .

• E ⊆ V × V is the set of data and control dependency edges

• µ : V → S is a function assigning types to program nodes from P ,

• δ : E → T is a function assigning dependency types to edges from P .

1 int main ( )
2 {
3 int a = 0 ;
4 int b = a ;
5

6 while (b <= a )
7 {
8 i f ( a == 0)
9 {

10 a = 1 ;
11 continue ;
12 }
13

14 b += a ;
15 }
16

17 return b ;
18 }

Program code Program dependence graph

Figure 3.4. Illustrative example of a program dependence graph. R1 to R3 represent
region nodes, S1 to S6 represent regular statements and P1, P2 represent predicate nodes.
Regular lines represent control dependencies. Dashed lines represent data-dependencies.

The dependency from S3 to P1 in Figure 3.4 is an example of loop-carried data
dependency, the dependency exists since data flows from the continue node S4
back to P1. Similar reasoning holds for the dependency between S5 and P1.

The dependency from S3 to S5 is less intuitive. If a == 0 is true, the definition
of a in S3 will flow to the beginning of the while loop via the continue statement.
But in the second iteration, the statement might be false, so there is still a path
where that definition can flow from S3 to S5 without being killed. In fact there
are an infinite number of such paths, it depends on how many times we follow the
while loop without entering the if statement.



18 Program Dependence Graph

The figure also contains a case where a continue statement has been used.
The continue statement on line 11 results in control dependency edges between
the nodes P2 and S5 via the added region node R4. The region node R4 is called a
follow region and was first proposed by Ballance and Maccabe [3] to add missing
control dependencies due to statements generating structured transfer of control.

3.2 Plagiarized Program Dependence Graphs
Plagiarized PDGs are nearly invariant during most forms of plagiarism. Control
replacements will not modify the control dependencies as long as the replacements
are defined. Adding statements that do not modify the semantics of the program
will in the worst case just add control and/or data dependence edges.

Reordering statements at the same nesting depth will generate equal PDGs if
the relative order of data dependencies between the statements are maintained.

Therefore, an original PDG can be seen as graph isomorphic or subgraph iso-
morphic to the plagiarized one. The method of finding plagiarized PDGs contains
the problem of subgraph isomorphism testing. detect also allows to find plagia-
rizations by looking for graph monomorphisms.

Subgraph-isomorphism testing is in general a NP-complete problem [7]. How-
ever, under the application of program dependence graphs this becomes manage-
able due to the fact that program dependence graphs are not general graphs. First
of all, PDGs are limited in size since they represent procedures that often are writ-
ten with certain design principles in mind that make them small and manageable.
Secondly, PDGs contain directed edges and particular types of nodes which allows
backtracking algorithms to become more efficient.

3.2.1 Graph Morphisms
We say that a program dependence graph G is a plagiarization of another program
dependence graph G′ if G is either subgraph isomorphic or graph monomorphic
to G′. The terminology we use for graph isomorphism, graph monomorphism and
sub-graph isomorphism are given here, these are similar to those given by Liu et al.
[16].

Definition 8
A bijective function fiso : V → V ′ is a graph isomorphism from a PDG
G = (V,E, µ, δ) to an PDG G′ = (V ′, E′, µ′, δ′) if

(1) µ(v) = µ′(fiso(v))
(2) ∀e = (v1, v2) ∈ E,∃e′ = (fiso(v1), fiso(v2)) ∈ E′ such that δ(e) = δ(e′)
(3) ∀e′ = (v′1, v′2) ∈ E′,∃e = (f−1

iso (v′1), f−1
iso (v′2)) ∈ E such that δ(e′) = δ(e)

Condition (1) specifies that there must be a mapping from all the nodes in G
to G′ and that they must have the same node type. Condition (2) specifies that
there must also be a mapping between the edges and that their type must be the
same. Condition (3) completes the definition by saying that the edge isomorphism
must be bijective.



3.3 Algorithms for subgraph isomorphism testing 19

Figure 3.5. Illustrative exam-
ple of two program dependence
graphs that are monomorphic but
not sub-graph isomorphic.

Definition 9
An injective function fsub : V → V ′ is a sub-graph isomorphism from G to
G′ if there exists a node-induced subgraph S ⊂ G′ such that fsub is a graph
isomorphism from G to S.

Definition 10
An injective function fmono : V → V ′ is a graph monomorphism from a
program dependence graph G = (V,E, µ, δ) to a program dependence graph
G′ = (V ′, E′, µ′, δ′) if

(1) µ(v) = µ′(fmono(v))

(2) ∀e = (v1, v2) ∈ E,∃e′ = (fmono(v1), fmono(v2)) ∈ E′ such that δ(e) = δ(e′)

Graph monomorphisms are a slightly weaker form of sub-graph isomorphisms.
It is only required that all nodes and edges can be mapped from G to G′. As long
as the graph is contained it is sufficient, the second graph can have both extra
edges and nodes.

Figure 3.5 shows an example of two program dependence graphs that are only
(of those mentioned) graph monomorphic. They are not sub-graph isomorphic
since the only node-induced sub-graph in G′ that is large enough (G′ itself) con-
tains an extra edge (R1, S1) that can not be mapped from G. This situation often
arises whenever follow regions are added and shows that graph monomorphism is
necessary to test whenever unstructured control statements have been used.

3.3 Algorithms for subgraph isomorphism testing
There are several applications of subgraph isomorphism testing. Some of the
examples include pattern analysis, pattern recognition and computer vision.

The first algorithms dealing with graph-isomorphism testing proposed brute-
force enumeration solutions. However these kinds of algorithms often become very



20 Program Dependence Graph

inefficient, yielding high time and memory complexities when testing large graphs.
Many low-complexity algorithms exist. Some apply topology constraints on the
graph, such as trees, planar graphs and bounded valence graphs, but relatively
efficient algorithms applying no restriction exists as well. Two commonly used
algorithms that do not impose any constraints on graph topology are Ullman’s
algorithm [21] and the VF2 algorithm by Cordella et al. [7].

Ullmans algorithm performs a tree-search enumeration in adjacency matrices
and uses refinement procedures to backtrack and prune the tree-search space.

The VF2 algorithm is a backtracking algorithm that employs a state space
representation with feasability rules to prune the search tree. Each state corre-
sponds to a partial solution of the graph matching, transfer of states represents
the addition of a matching pair of nodes.

3.3.1 Time Complexities
A complexity comparison between Ullmans and the VF2 algorithm has been per-
formed by Cordella et al. [7]. The summary of this study is shown in Table
3.2.

Algorithm Time (Worst) Time (Best) Space (Worst) Space (Best)
Ullman’s algorithm Θ(N !N2) Θ(N3) Θ(N3) Θ(N)

VF2 Θ(N !N) Θ(N2) Θ(N !N) Θ(N)

Table 3.2. Complexity comparison between Ullmans algorithm and the VF2 algorithm.



3.4 Construction of Approximated Program Dependence Graphs 21

3.4 Construction of Approximated Program De-
pendence Graphs

The conventional way of computing a program dependence graph is done by con-
structing the control-flow graph, post-dominator tree and then by generating the
control and data dependencies from these.

Another approach proposed by Harrold et al. [11] introduces a new algorithm
to efficiently construct a program dependence graph directly from abstract syntax
trees. Since this algorithm generates PDGs without post-dominator information,
time and memory usage can be saved in the generation process. The algorithm
proposed handles both structured and non-structured programs.

This method constructs the PDG in several passes:

1) The first pass generates the CDS by iterating through the abstract syntax
tree. The control-flow information becomes implicit since the order of nodes is
preserved.

2) In the case where non-structured statements such as goto are encountered the
method adds explicit control-flow edges, and performs an additional pass of
computation to remedy approximations.

3) The final pass(es) generates the DDS by performing data-flow analysis on the
CDS to compute edges representing either flow-, anti- or output-dependence,
depending on the application.

detect implements an adapted version of this algorithm to generate pro-
gram dependence graphs, however our system generates approximations. We
will therefore constrain ourselves to call the generated graphs used by detect
Approximated Program Dependence Graphs (APDGs), Approximated Control
Dependence Subgraphs (ACDS) and Approximated Data Dependence Subgraphs
(ADDS). These factors contribute to the approximations:

Pointers, Aliases

The Abstract Syntax Tree representation used in our application does not give
exact memory locations of the data used by the program. For instance, vari-
ables indirectly accessed via pointers or aliases will not be handled. The fact
that pointer-adresses can be computed during run-time further complicates this
problem.

Goto statements

detect generate the control-flow and control dependencies in only one pass,
which makes the control dependencies unpredictable in unstructured programs.
Although detect handles statements such as the continue or break correctly
when constructing control and data dependencies, the goto statement is only par-
tially handled by our system.



22 Program Dependence Graph

Exceptions

High-level control-structrures such as exception throwing and catching generate
control transfers in the program. Although the transfers are structured, they
resemble the type generated by goto statements and therefore not handled by
detect. This is further discussed in Section 8.3.2.



Chapter 4

Implementation

Our work consisted of the design and implementation of a plagiarization detection
system for C, C++ and Ada. This chapter presents the requirements, design and
implementation details of a system that we call cojac, including its subsystem
detect.

4.1 Requirement summary
From the customer elicitation a list of requirements were collected. Most of them
specify functional requirements, but there are also requirements on documentation.
This section summarizes the most important functionality of the system. The
entire list can be found in Appendix A.

POSIX Conformance

The system would have to be able to run on a POSIX conformant platform.

Language Support

The system would have to support analysis of code written in at least C, C++
and Ada since these languages are used in the most popular courses taught by the
UPP group. detect’s APDG-Analysis currently only supports C and C++. Full
Ada support is left over for future work, which is further discussed in 8.1.

Java and MatLab support was also of interest but this was left as requirements
with lower priority.

Versatility

For the system to be effective against plagiarism and to be able to detect a wider
spectrum of code disguises, the tool would have to examine the code on multiple
levels of abstraction.

It was requested that the tool should be robust against format alteration,
identifier renaming, declaration reordering, statement reordering, code insertion

23



24 Implementation

and control replacement. This matched what would be expected from using AST
and PDG based approaches.

In addition to this, it was also of interest to find purely textual matches and an
output from the system that could specify which lines of code in one file matched
another. To meet this functionality we also decided to analyse the code on a
textual level.

Modularity

It was necessary that the system was designed with modularity in mind so that
support for new programming languages and detection techniques could be added
later on.

Documentation

It was requested that there existed documentation on how to integrate new func-
tionality for the system, such as other types of detection techniques and language
support.

4.2 System Overview
Figure 4.1 shows an overview of cojac. cojac was intended to be a simple
graphical user interface with functionality for managing assignments and for the
presentation of correlation metrics. cojac does not perform any comparison of
code. This is set aside for a subsystem that we call detect. detect is the
actual tool that correlates and analyses two separate units of code and it is the
system which our work focuses on. The implementation of cojac is currently just
a simple script and extending it can be the subject of a future project proposal.

Since it is necessary to integrate different front-ends so that new languages can
be supported we designed detect to consist of easily integratable modules, as
shown in Figure 4.2. There are two separate parts of detect that are modular: the
front-end used for the language and the analysis to be performed. The APDGs are
generated directly from the AST, which decouples the parser from the generation
process.

cojac

detect

Source file 1

Source file 2
Configuration file

Result

Figure 4.1. System overview of cojac.



4.2 System Overview 25

detect

DetectMain

Language specific
front end

TextDiff

ASTAnalysis

PDGAnalysis

Language specific
PDGFactory

Config. File Source Code Units

Output
Source Code Units

AST Forests

PDG Sets

Output

Output

Figure 4.2. System overview of detect.



26 Implementation

4.2.1 Modules
detect consists of six main modules to be able to analyse and correlate code.

• DetectMain is the module that is first run when a user invokes detect.
Depending on the settings in the configuration file, it in turn invokes other
modules for plagiarism detection.

• TextDiff performs textual matching.

• The language specific front end is a parser that recognizes the target lan-
guage.

• The ASTAnalysis performs analysis of abstract syntax trees.

• The PDGFactorymodule generates Approximate Program Dependence Graphs
from the transformed syntax tree given by the ASTAnalysis module.

• The PDGAnalysis module analyses the Approximate Program Dependence
Graphs to find plagiarizations.

4.3 External libraries and dependencies

4.3.1 VFLib
To find graph morphisms among APDGs, we have used the VFlib [10] C++ library.
VFlib was written by Pasquale Foggia, one of the authors of the VF2 algorithm.
It implements the VF2 algorithm and is designed to work with simple directed
graphs with attributes on both edges and vertices, which are the prerequisites for
APDG matching.

4.3.2 Boost
detect is written in C++ and relies heavily on the Boost C++ libraries [5]. For
detect to compile, several boost libraries must be available on the host system:
boost_system, boost_filesystem, boost_regex and boost_thread.

4.4 Configuration of modules
Each step of the analysis is individually configurable by using the configuration file.
Among other, it is possible to specify exactnesses, thresholds and type of output.
Whenever a configuration file excludes a value, detect will automatically fallback
to the default configuration file which holds default values for all configurable
options. The default configurations can be found in Appendix D.



4.5 TextDiff Module 27

4.5 TextDiff Module
The detect TextDiff module finds disjoint sections of similar code inside two
code units by using the LCSSet matching algorithm. Under exhaustive search the
algorithm will find the largest sections of mappings between similar code.

Before matching pieces of code, we need to preprocess the files using a pre-
processor. The (simple) preprocessor we have written, the detect preprocessor,
perform inclusions for both Ada, C and C++ files. It does so by recursively fol-
lowing each inclusion directive that specifies a local file that has not already been
included. From this, a preprocessed code unit is generated in a separate file. After
preprocessing, the system generates an index-file that indexes the beginning of
each non-empty line in the preprocessed code unit.

4.5.1 LCSSet
The algorithm LCSSet is a naive approach in finding the mappings of common
distinct sections between two text files. It does so by looking at all possible line-
sections in descending order of size and compares them line by line. It can be seen
as a specialization of a string matching algorithm that finds all possible sub-string
“patterns” inside another “text” string, where the symbols of these strings repre-
sent lines of code in the corresponding code units.

Input : Two code units with number of lines U1 and U2, where U1 ≤ U2.
Output: Disjunct mappings between common sections of lines.
Mappings, M1, M2 ← ∅;
Initially call LCSSet(U1);
LCSSet(N):
for i ← 0 to U1 −N do

/* S1 is a line-section of size N in file 1 */
S1 ← (i, i + N) ;
if S1 /∈M1 then

for j ← 0 to U2 −N do
/* S2 is a line-section of size N in file 2 */
S2 ← (j, j + N) ;
if S2 /∈M2 then

if MatchingSection(S1, S2) then
Mappings←Mappings ∪ (S1, S2);
M1 ←M1 ∪ S1;
M2 ←M2 ∪ S2;

end
end

end
end

end
if N > 1 then

LCSSet(N - 1);
end

Algorithm 1: LCSSet
MatchingSection(S1, S2) returns true iff the lines in the sections S1 and S2 of

the code units are equal, after all whitespaces have been stripped off.
At every iteration step the algorithm goes through all the possible line sections



28 Implementation

of size N in code unit 1 towards all possible line sections of same size in code unit
2.

Theorem

The algorithm finds maximal sections of distinct similar sections.

Proof outline

This is easily seen. If two sections are mapped and they are not maximal, they be-
long to some larger section that is maximal. Since the algorithm matches sections
in descending order of size, this can not happen.

Execution time

According to the structure of the algorithm, the worst case time complexity is at
least Θ(U2

1U2). By performing a number of textual comparisons with the TextDiff
module on randomly generated files, the average case time complexity was calcu-
lated to exist between U2

1 and U3
1 . Figure 4.3 shows the execution times for these

comparison in relation to other exponential functions.

Figure 4.3. Execution time for the TextDiff depending on the number of lines in the
code units.

Enhancing performance

In practice, the LCSSet becomes inefficient for code units with more than hundred
lines of code. A test matching code units with 1000 lines took several hours to
perform. To manage this, we let the recursive call to LCSSet step down with
a configurable constant q instead of 1. We also make sure that LCSSet(Nmin)
always runs, to ensure that sections of a minimum size always get matched. In



4.5 TextDiff Module 29

the implementation of the TextDiff module we have chosen q as

q =
⌈
k ∗ U1

100

⌉
where k ∈]0, 100] is a percentage of U1 to step down with. The drawback of using
this solution is that the sections of mapped code might not be maximal, where
the advantage is that the algorithm can process files with an arbitrary number
of lines within a reasonable amount of time. k and Nmin can be specified by
TEXT_DIFF_SECTION_DECREMENT and TEXT_DIFF_SECTION_MIN in the configura-
tion file.

Other algorithms

Other string search algorithms such as Karp-Rabin are often used for plagiarism
detection since it can handle multiple pattern strings. Wise [22] introduces a string
similarity algorithm that uses greedy string tiling and Karp-Rabin matching to
find the maximal coverage of distinct common substrings. It is shown that the
worst case time complexity of this algorithm is Θ(n3), but it is estimated that the
average case exist between Θ(n) and Θ(n2).



30 Implementation

#include <iostream>

int echo(string s)
{
   cout << s << endl;
}

int mult(int i, int j)
{
   return i * j;
}

int main()
{
   int k = mult(10, 3);

   echo("multiplied");

   return k;
}

Code unit 1

#include <iostream>

int mult(int i, int j)
{
   echo("multiplied");
 return i*j;
}

int echo(string s)
{
cout<<s<<endl;
}

int main()
{
   int k = mult(10, 3);
   return k;
}

Code unit 2

1 :
2 :
3 :
4 :
5 :
6 :
7 :
8 :
9 :
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

1 :
2 :
3 :
4 :
5 :
6 :
7 :
8 :
9 :
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

Figure 4.4. Illustrative example of the LCSSet matching algorithm.

Similarity report, matching
file1.dpp.cc towards file2.dpp.cc
--------------------------------------
lines 3-6 were found equal to lines 10-13
lines 8-9 were found equal to lines 4-5
lines 10-11 were found equal to lines 7-8
lines 13-15 were found equal to lines 17-19
line 17 were found equal to line 6
lines 19-20 were found equal to lines 20-21
--------------------------------------
Total of 14 out of 14 nonempty lines matched.

Figure 4.5. Similarity report from the TextDiff module.

Figure 4.4 shows an example of LCSSet running on code units where format
alteration and statement reordering has been applied. Figure 4.5 shows a similarity
report from detect’s textual analysis performed on the code units. Empty lines
and preprocessor directives are not matched since they are discarded during the
preprocessing and line-indexing.



4.6 Abstract syntax tree module 31

4.6 Abstract syntax tree module
To generate an abstract syntax tree from source code, a parser must be used. For
the C and C++ AST generation, we have written a plugin for the GNU C++
compiler. For the Ada generation we have written our own Ada-parser using yacc.

When the code has been parsed into an abstract syntax tree, the language
specific front-ends transforms the AST representation into another syntax tree
data structure that is more suitable for APDG generation, which we call the
genericized abstract syntax tree.

The implementation details of the ASTAnalysismodule and the different front-
ends is given in Nilsson [17].

4.7 APDG Generator Module
The APDG generator module is the module that generates Approximate Pro-
gram Dependence Graphs from the syntax trees given by the AST module. The
PDGFactory is the class that performs the generation of an APDG and it does so
in two steps. It first generates the ACDS directly from the abstract syntax tree.
Then it generates the ADDS from the ACDS and other information collected from
the AST during the ACDS generation. It does so by using the reaching definitions
data-flow analysis scheme previously presented in this report.

Since data dependencies in the ADDS depends on the control-flow of a program,
control-flow edges are added during the ACDS generation.

To summarize:

• The module generates ACDS with control-flow edges.

• The module generates ADDS using the reaching definitions data-flow anal-
ysis scheme.

4.7.1 Data structures
To separate the analysis and construction of an APDG, two data-structures are
used for its representation.

PDG

The PDG class is the data structure that contains all the nodes and edges of an
APDG and is created by the PDGFactory when the APDG is built.

AnalysisGraph

Before the analysis of an APDG, a PDG is transferred into an AnalysisGraph. This
data-structure provides an interface that is better suited for APDG analysis and
captures the numbers, types and frequencies of nodes and edges that the graph
consists of. This information is later on used in the matching process for pruning
and output.



32 Implementation

4.7.2 AST Interface
To be able to generate control and data dependencies from separate kinds of ab-
stract syntax trees, we impose an interface on the data structure. The interface
specifies different control types for the nodes in the genericized AST. The control
type of each node depends on the statement(s) it represents. To be able to handle
each node appropriately, the interface also specifies extra methods depending on
the type of the node. These methods will allow for the retrieval of the separate
components which each language construct can consist of. The different control
types are presented in Table 4.1.

Node control type Representation
ASSIGNMENT An assignment statement.
DECLARATION Declaration of a variable.
FUNCALL Call site of a function.
STATEMENT_LIST Block containg several statements. The statements are the child

nodes.
IF_ELSE_BEGIN Beginning of any if-else control structure, as well as possible follow-

ing else if and else combinations.
DETECT_LOOP Beginning of any possible loop control structure the language can

provide.
CONTINUE Redirection of control flow to next iteration of a DETECT_LOOP node.
BREAK Redirection of control flow out of a DETECT_LOOP node.
GOTO Redirection of control flow to a LABEL node.
LABEL Entry point of control flow from a GOTO statement.
PROGRAM_EXIT Represents the exit point of a procedure.

Table 4.1. Control types of AST nodes.

A DETECT_LOOP node is a generic representation for any loop construct that
the language provides. In C++ it can either be a while, do while or for loop.
To handle these loops in a generic way, the DETECT_LOOP node provides methods
to determine and retrieve the parts that the loop consists of. The four parts that
a DETECT_LOOP node can have are:

• Pre-condition

• Loop body

• Post-condition

• Post-statement

E.g. a for loop would (could) have a pre-condition, loop body and could have
a post-statement, but a while loop would only have a pre-condition and a loop
body. The loop body is necessary for all loop constructs and it must consist a
STATEMENT_LIST AST-node containing all the statements inside the loop. If the
loop body is empty, the STATEMENT_LIST will contain no children.

If a loop, such as a for loop, contains any initalizing statements (declaration of
variables etc.), such statements are assumed to appear just before the DETECT_LOOP
node in the AST.



4.7 APDG Generator Module 33

An IF_ELSE_BEGIN node has similar methods to retreieve the separate else
if and else parts of the construct.

Figure 4.6 shows a genericized AST with assigned node control types. The tree
has been automatically generated by detect from the Abstract Syntax Tree repre-
sentation used in the GCC C++ compiler. In this tree there are two PROGRAM_EXIT
nodes. The first exit point comes from the return statement on line 15, the second
comes from an automatically added return statement by GCC. GCC adds this
extra return_expr for all main functions.

1 int main ( )
2 {
3 int a = 0 ;
4

5 while ( a < 10)
6 {
7 i f ( a == 5)
8 {
9 continue ;

10 }
11

12 a += 1 ;
13 }
14

15 return a ;
16 }

Program code

Genericized abstract syntax tree

Figure 4.6. Example of a genericized abstract syntax tree generated by detect.

4.7.3 ACDS Generation
The approximate control dependence generation is done in the method CDSGen-
eration. It recursively descends the abstract syntax tree in left-to right preorder



34 Implementation

iteration. At every step it generates ACDS nodes and control-flow edges depending
on the control type of the current AST-node.

Context

To be able to correctly determine where control flow edges should be added in the
separate invocations of CDSGeneration, we specify a context before every recursive
call. The context is a specified set of APDG nodes that can be relevant whenever
transfer of control is found, such as when the control reaches the end of a statement
list or a node representing structured transfer of control. The nodes that a context
consists of is described in Table 4.2.
Context node Description
currentPdg Specifies a parent node which any new APDG node should relate

to.
breakNode Specifies where control should flow when a break statement or the

end of a statement list is reached.
continueNode Specifies where control should flow when a continue statement is

found.
nextStmt Specifies where control flow goes if no explicit transfer of control

flow is found.

Table 4.2. Context nodes used for determining control-flow in CDSGeneration.

Backpatching

Before the recursive descent of each subtree in the AST, we need to decide which
nodes are to be forwarded as the context. If its necessary to forward a node
that has not yet been created, we perform backpatching [1] and create placeholder
nodes that will yield a valid destination for added control-flow and dependence
edges. Placeholder nodes get replaced by properly generated nodes in subsequent
calls to CDSGeneration.

Figure 4.7 shows an example of how generated placeholder nodes are used to
build an ACDS for a program fragment.
1) In the first step, a region node is created for the statements of the program.

Placeholder 1 is added as child and a control-flow edge is added from R1 to it.

2) In the second step, a new predicate node is added and replaces placeholder 1.
A new placeholder node is created and control-flow edges are added from the
predicate node to it. This edge represents the false-branch of control-flow.

3) A region node and a new placeholder node is added. nextStmt is set to the
placeholder node. CDSGeneration descends down into the sub-tree of the
IF_ELSE_BEGIN AST-node. A new region and placeholder node as well as
control-flow edges are added to the APDG.

4) The statement node S1 takes over the position of the placeholder. Since there
are no more statements inside the body of the if-statement, no more placeholder
nodes are added to R2.



4.7 APDG Generator Module 35

1 i f (P1)
2 {
3 S1 ;
4 }
5 S2 ;

Figure 4.7. Illustrative example of the creation of an ACDS using placeholder nodes.
Colored nodes specifies the currentPdg context node. Regular edges represent control
dependence, dotted edges represent control-flow.

5) All statement-nodes inside the if -statement have been visited and the control
flows back to the nextStmt node which was specified in step 3). CDSGeneration
has finished the descent of the if -statement and the current node is now place-
holder 2.

6) Since there are no more statements in the AST to traverse, the control flows
to the exit-node.

For other control-structures the construction of the graph would be done in
a similar way. If the program fragment contained a while loop instead of an if-
statement, in step 3) the nextStmt would have been set to P1, the breakStmt
would have been set to placeholder 2 and continueStmt would have been set to
P1. If it had been a do while loop, P1 would have been added to R2 instead
and R2 would have replaced the placeholder node in step 1). The control flow
graph for for loops are generated in a similar way as while loops. In this case
the DETECT_LOOP might have a post-statement and an ending statement-node will



36 Implementation

be added to the region node of the loop.
If a node without a node control type is encountered, the procedure ignores

the node and descends into its sub-tree without modifying the context.

Use and Def

The ASSIGNMENT, DECLARATION and FUNCALL nodes are AST nodes that might
contain use and def sets. The use set contains all variables that are used in the
node, and the def set contains all variables that are defined. If such information
exists, it is added to the generated APDG node which is later used in the ADDS
generation.

Handling structured transfer of control

Structured transfer of control is essential to handle if we are interested in detecting
control-replacement disguises such as the one given in Figure 4.8.

1 int main ( )
2 {
3 int sum = 0 ;
4 for ( int i = 0 ; i < 10 ; ++i )
5 {
6 i f ( i % 2 == 0)
7 sum += i ;
8 }
9

10 return sum ;
11 }

Original Code

1 int main ( )
2 {
3 int sum = 0 ;
4 for ( int i = 0 ; i < 10 ; ++i )
5 {
6 i f ( i % 2 != 0)
7 continue ;
8

9 sum += i ;
10 }
11

12 return sum ;
13 }

Plagiarism Example

Figure 4.8. Example of code where a more clever form of Control Replacement has
been applied.

If we reach structured control statements during the descent of the AST, it
might be the case that extra control-dependencies have to be added in the APDG.
For an example, if the flow of control reaches a continue statement inside an
if-statement which in turn resides in a loop, the remaining statements in the
loop will be control dependent on the predicate of the if-statement. In this
case, extra control-dependency edges have to be added between the remaining
statements and the predicate node via follow regions. To solve this, in addition to
the context we also forward a reference to a dependency stack in every recursive
descent. Whenever we reach an IF_ELSE_BEGIN that has a continue or break
statements in the body, we push the predicate node onto the dependency stack. If
there are any statements following the IF_ELSE_BEGIN we then add a follow region
and additional control dependencies from every node in the dependency stack to
these statements (explained in Section 3.1.5). For this to work in nested loops



4.7 APDG Generator Module 37

we create new dependency stacks. In the separate else if and else parts of an
if statement we send a copy of the dependency stack and merge these after each
recursive descent.

# Pseudo code Dependency stack Added dependencies
1 while(P1) dep1 = {}
2 {
3 S1;
4 if (P2) dep2 = {}
5 {
6 continue dep2 = {P2}
7 } dep1 = dep1 ∪ dep2 = {P 2}
8 while(P3) dep3 = {} P3 to dep1 = {P 2}.
9 {
10 if (P4) dep4 = {}
11 {
12 break; dep4 = {P4}
13 }
14 else if (P5) dep5 = {}
15 {
16 continue; dep5 = {P5}
17 } dep3 = dep3 ∪ dep4 ∪ dep5 =

{P 4, P 5}
18 S2; S2 to dep3 = {P 4, P 5}
19 }
20 S3; S3 to dep1 = {P 2}
21 }

Figure 4.9. Illustrative example of the creation and merging of dependency stacks.

Figure 4.9 shows how the dependency stacks work for nested loops. The be-
ginning of each block represents the descent of each language construct sub-tree,
and the end of the block represents coming back from the descent. In step 1) a
new empty dependency stack, dep1 is created for the while loop descent. This will
be used for all extra dependencies for the statements that exists in the block. In
step 4) a new dependency stack, dep2 is created for the if-statement, and when the
continue statement in step 6) is reached, the predicate P2 is pushed onto dep2.
When the descent comes out of the if-statement, dep1 is merged with dep2. When
we reach the while loop in step 8), all the nodes within dep1 are added to the
predicate node for the while loop (P3) via a follow region. In the descent of the
while loop a new dependency stack is created. For the if statement and its else
if part, new stacks are created. In handling these constructs, the predicate nodes
P4 and P5 are pushed onto the corresponding dependency stacks. In step 17)
dep3 is merged with the stacks created for the if statement. In 18), dependencies
from S2 are added to the nodes in dep3. When the procedure comes back to the
overlying while loop in step 20) the dependency stack for the descent is dep1 and
extra dependencies are added from the newly created node S3 to P2. Examples of
fully constructed APDG’s for various types of programs are given in Section 4.7.5.



38 Implementation

Handling unstructured transfer of control

Whenever goto and label statements are encountered, appropriate nodes are
mapped to the given label name and control-flow is resolved in the end of the
ACDS generation.

4.7.4 ADDS Generation
To transform the control dependence subgraph into a program dependence graph
we must add data dependence edges. To calculate data dependencies we have im-
plemented an algorithm which employs the reaching definitions data-flow scheme.

Calculation of data dependencies is done by iteratively calling the method
descentDDS() on the root node which performs data flow-analysis on each node
of the graph by recursively descending control flow edges to generate the in and
out sets that are necessary for scheme to work.

DDSGeneration() does not calculate the kill set explicitly. The in and out
sets are instead calculated as explained in Section 3.1.4, by iteratively removing
definitions by looking at the variables in the gen set. The gen set is made up of
the variables in the def set. Whenever a variable occurs both in the use set and
in set, data flow dependency edges are added between the current node and the
node that generated the definition.

At the end of each invocation of descentDDS(), we check to see if any out set
has been changed. If any has, there might be unresolved data-flow and the al-
gorithm is required to perform all calculations again and until all out sets have
stabilized. This is implemented by using a boolean flag that tells whether any
out set has been changed during the calculation step.

4.7.5 APDG Examples
Figures 4.10 to 4.15 shows examples of APDG’s that have been generated by de-
tect. Regular edges represent control-dependence, dashed edges represent data-
dependence and dotted edges represent control-flow edges. The control-flow edges
from predicate nodes has not been labelled ’T’ or ’F’ since control-flow information
is of no interest for the APDG analysis.

Figure 4.10 shows an APDG representing a program with simple statements,
illustrating the calculated data dependencies between them.

Figure 4.11 shows an APDG representing a program containing an if-statement
with else if and else structures. In this figure we can see that the function
operator>> used in line 8 both uses and defines the variable ’a’, although it
actually only defines the value and never reads it. Since detect does not han-
dle reference variables or pointers it is not possible to know whether any external
function actually uses or defines any actual parameter. In all function call sites we
take a conservative stance and assume that both use and definition of the actual
parameter will be done.

Figure 4.12 and 4.13 shows examples of a while and do while loop. In the
while loop, the loop-condition predicate comes before statement 1 and in the do
while loop the predicate comes afterwards.



4.7 APDG Generator Module 39

Figure 4.14 shows an APDG representing a program containing a for-statement.
In this graph, the statement representing the declaration of ’i’ is only dependent
on the program region. This is due to the fact that ’i’ is not a part of the ac-
tual control-flow loop. The statement node 6 representing incrementation of ’i’ is
set as the last statement of the control-flow loop and is control-dependent on the
predicate node.

Figure 4.15 shows an APDG representing the AST in Figure 4.6. Dependencies
from statement 2 to predicate 1 via follow region 4 is added as a result of the
continue statement on line 9.



40 Implementation

1 int f unc t i on ( )
2 {
3 int a = 1 ;
4 int b = 2 ;
5 int c = 0 ;
6

7 c = a + b ;
8

9 return c ;
10 }

Figure 4.10. Example of an APDG for a C++ function generated by detect.



4.7 APDG Generator Module 41

1 #inc lude <iostream>
2

3 using namespace std ;
4

5 void f unc t i on ( )
6 {
7 int a ;
8 c in >> a ;
9 i f ( a < 0)

10 {
11 cout << a
12 << " i s negat ive "
13 << endl ;
14 }
15 else i f ( a == 0)
16 {
17 cout << a
18 << " i s ze ro "
19 << endl ;
20 }
21 else
22 {
23 cout << a
24 << " i s p o s i t i v e "
25 << endl ;
26 }
27 }

Figure 4.11. Example of an APDG for a C++ if-statement generated by detect.



42 Implementation

1 #inc lude <iostream>
2

3 using namespace std ;
4

5 void f unc t i on ( )
6 {
7 int cho i c e = −1;
8

9 while ( cho i c e < 0)
10 {
11 c in >> cho i c e ;
12 }
13 }

Figure 4.12. Example of an APDG for a C++ while-statement.



4.7 APDG Generator Module 43

1 #inc lude <iostream>
2

3 using namespace std ;
4

5 void f unc t i on ( )
6 {
7 int a ;
8 do
9 {

10 c in >> a ;
11 }while ( a < 0) ;
12 }

Figure 4.13. Example of an APDG for a C++ do-while-statement.



44 Implementation

1 void f unc t i on ( )
2 {
3 int sum = −1;
4

5 for ( int i = 0 ; i < 10 ; ++i )
6 {
7 sum += i ;
8 }
9 }

Figure 4.14. Example of an APDG for a C++ for-statement.



4.7 APDG Generator Module 45

1 int main ( )
2 {
3 int a = 0 ;
4

5 while ( a < 10)
6 {
7 i f ( a == 5)
8 {
9 continue ;

10 }
11

12 a += 1 ;
13 }
14

15 return a ;
16 }

Figure 4.15. Example of an APDG generated from the genericized AST in Figure 4.6.



46 Implementation

4.8 APDG Analysis Module
The PDGAnalysis is the module that analyses two sets of APDGs and tries to find
plagiarisations between these. It initially takes two sets of abstract syntax trees
and transforms them into sets of APDGs using the PDGFactory-module. After
this the analysis module prunes the search space and applies the VF2 algorithm
to test for graph morphism between the graphs in the first code-unit towards the
graphs in the second. The type of graph morphism testing depends on the value
PDG_GRAPH_MATCH_TYPE in the configuration file, and can be specified to be either
exact isomorphism testing (EXACT-ISO), subgraph isomorphism testing (SUB-ISO)
or graph monomorphism testing (MONO). The module finishes by printing similarity
information that shows in each case which procedure matched which. Figure 4.16
illustrates the flow of construction and analysis of an APDG.

ACDS Generation

ADDS Generation

APDG Pruning

APDG Matching

class PDGFactory

class PDGAnalysis

AST

AnalysisGraph

Match Output

Figure 4.16. Overview of the APDG construction and analysis

4.8.1 Pruning the search space
A Program Dependence Graph is a very loose and stripped down representation
of the program code. Small APDG’s will represent very general programs and
spurious matches can be found between large and small graphs if the match is not
pruned beforehand. Although a spurious match still is a match, it is necessary to
be able to discard distinct graph pairs from the matching process since they can
be considered unique work in relation to each other.

Before directly comparing an APDG with any other APDG, the analysis mod-
ule prunes out match pairs by looking at the number of nodes and frequencies of
the node-types in the graph. The node type frequencies are captured during the
generation of an AnalysisGraph from an APDG. The following criteria describe
when a match pair (G1, G2) can be pruned from the matching process:



4.8 APDG Analysis Module 47

• G1 can’t be a subgraph isomorphism of G2 due to the fact that it is smaller
in regards to the number of nodes.

• The node ratio between graph G1 and G2 is beyond a constant threshold,
specified by PDG_NODE_RATIO_THRESHOLD.

• The edge ratio between graph G1 and G2 is beyond a constant threshold,
specified by PDG_EDGE_RATIO_THRESHOLD.

• The Euclidean distance between the node-type frequencies in G1 and G2 is
beyond a constant threshold, specified by PDG_NODE_FREQ_THRESHOLD. This
is given by the equation√

(sG1 − sG2)2 + (pG1 − pG2)2 + (rG1 − rG2)2 > PDG_NODE_FREQ_THRESHOLD

Where s, p and r are the frequencies of the number of statement, predicate
and region nodes in the graphs.

• The euclidean distance between the edge-type frequencies in G1 and G2 is
beyond a constant threshold, specified by PDG_EDGE_FREQ_THRESHOLD. This
is given by the equation√

(cG1 − cG2)2 + (dG1 − dG2)2 > PDG_EDGE_FREQ_THRESHOLD.

Where c and d are the frequencies of the number of control and data depen-
dency edges in the graphs.

• The number of nodes or edges inG1 are below a minimum threshold, they can
be specified by PDG_EDGE_NUM_THRESHOLD and PDG_NODE_NUM_THRESHOLD.

When a match pair has survived the pruning process, the AnalysisGraphs are
transferred into ArgGraphs that are used by the VFlib matching library

4.8.2 Optimal Configuration
To be able to decide which configurable values are optimal when performing an
analysis of the system, a simple machine learning procedure was used. The training
set consisted of 27 procedures which had been modified using various forms of
code insertion, a type of disguise which adds nodes and edges to the graph. The
procedure consisted of lowering each of the distance and ratio based thresholds
separately while keeping the other constant to minimize the number of spurious
matches while maintaining the number of detected procedures. The results are
shown in Table 4.3. The training set is available at
http://www.ida.liu.se/~nikho42/detect/learning/.

4.8.3 Threading
Some isomorphism testing can take a lot of time to perform. In most cases the
VFlib library will find these in microseconds while in some cases it can take sev-
eral minutes or even hours to perform. This is an effect of the way the graph



48 Implementation

Threshold Parameter Optimal range
Node frequency distance 15-25%
Edge frequency distance 20-30%
Node ratio 35-45%
Edge ratio 65-75%

Table 4.3. Optimal values for the pruning thresholds.

matching algorithm works. To avoid such comparisons we have set time-outs for
each matching process. We implemented this by using the boost threads library,
creating a new thread for each match. If a thread does not finish within a given
time it gets forcefully killed. The time-out for a thread can be specified in the
configuration file. All critical sections are synchronized using boosts scoped_lock
and interprocess_mutexes.

4.8.4 Output

The full output by the PDGAnalysis module is of textual form and contains several
parts. First comes the APDG-legend, then the match-matrix, similarity ratio and
time information.

APDG Legend

The APDG-legend lists each function signature and general information about the
APDG’s generated from each function. This include number of nodes and edges
of the different types. Figure 4.17 shows an example of an APDG-legend.

A00 : "void bar int int "
nodes: 16(3R / 0P / 13S ) edges: 38(11DE / 15CE )

A01 : "void foo int "
nodes: 14(4R / 1P / 9S ) edges: 33(10DE / 13CE )

A02 : "void print double double double double "
nodes: 10(3R / 0P / 7S ) edges: 25(8DE / 9CE )

B00 : "void function1 int "
nodes: 14(4R / 1P / 9S ) edges: 33(10DE / 13CE )

B01 : "void function3 double double double double "
nodes: 10(3R / 0P / 7S ) edges: 25(8DE / 9CE )

B02 : "int function4 "
nodes: 28(3R / 0P / 25S ) edges: 92(32DE / 27CE )

Figure 4.17. Example APDG-Legend.



4.8 APDG Analysis Module 49

Match Matrix

The match matrix shows the result of each match-process between the procedures
of the code units. To interpret the results, each match outcome is assigned a
symbol. An example of a match matrix is shown in Figure 4.18. The explanation
of the different symbols that a match can result in is shown in Table 4.4.

Symbol Description
[M] Match has been found between the graphs
- No match between the graphs were found
-t Graph match did not finish within specified time-out
* Pruned due to incompatible graph sizes

*nr Pruned due to node ratio exceeding specified threshold
*er Pruned due to edge ratio exceeding specified threshold
*nf Pruned due to node frequency distance exceeding specified threshold
*ef Pruned due to edge frequency distance exceeding specified threshold
*s Pruned due to (smallest) graph size below threshold

Table 4.4. Match symbols of the match-matrix.

B00 B01 B02 B03
+---+---+---+---+

A00 |[M]| * | * |*nr|
+---+---+---+---+

A01 |*nf|[M]| * |*er|
+---+---+---+---+

A02 | * | -t| *s|[M]|
+---+---+---+---+

A03 | - | - |[M]|*nf|
+---+---+---+---+

Figure 4.18. Example of an APDG match-matrix.

Similarity ratio

The similarity ratio is always shown as output of the APDG analysis. The ratio
shows the similarity between two code-units as the percentage of matched nodes
in all APDGs:

Similarity ratio = Number of nodes in matched graphs from code unit 1
Total number of nodes from graphs in code unit 2 · 100

If all graphs in code unit 1 are isomorphic (exact) to any other graph in code unit
2, this equation will yield a 100% similarity ratio. If any graph in code unit 1 is
not isomorphic, but e.g. sub-graph isomorphic to any other graph in code unit 2,
the similarity ratio will be strictly less than 100%.



50 Implementation

Time information

Whenever PDG_SHOW_TIME_INFO is specified in the configuration file, time infor-
mation will be shown. The time information shows how long the construction and
analysis took, both total and average per APDG. The time is automatically given
in different magnitudes depending on the duration.

4.8.5 Sub-graph isomorphism example
Figure 4.19 shows an example of a sub-graph isomorphism matching between two
APDGs where control replacement, identifier renaming, statement reordering and
code insertion has been performed. In this example no exact isomorphism can be
found since there is an extra node in the second APDG (Statement 6), generated
by the declaration of deadCode (Line 5).



4.8 APDG Analysis Module 51

1void f unc t i on1 ( )
2 {
3 int sum = 0 ;
4 for ( int i = 0 ; i < 10 ; ++i )
5 {
6 sum += i ;
7 }
8 }

1void f unc t i on2 ( )
2 {
3 int cur rent = 0 ;
4 int value = 0 ;
5 int deadCode = 0 ;
6 while ( cur r ent < 10)
7 {
8 value += current ;
9 cur rent++;

10 }
11 }

Figure 4.19. Illustrative figure of a sub-graph isomorphism between two APDGs. Hor-
izontal arrows shows the node-mappings between the graphs.





Chapter 5

Analysis

In this chapter we will describe methods used for the analysis of detect s APDG
and AST based comparison. In the end we show the result of the analysis.

5.1 Method of analysis
There have been several studies on evaluation and comparison of clone detection
tools. Such evaluations have however been very challenging to perform due to the
diverse number of detection techniques, lack of standards in similarity definitions,
absence of benchmarks, diversity of target languages and sensitivity to tuning
parameters [2].

Roy and Cordy [19] attempt to compare clone-detection tools more uniformly,
independent of tool availability and limitations of languages by using scenario-
based evaluation. This evaluation technique is based upon a designed set of
hypothetical editing scenarios which represent typical changes to copy/pasted
code. We performed a quantitative analysis by means of comparing the results
in such scenario-based evaluation between detect’s APDG-analysis, detect’s
AST-analysis and another clone detection tool called Moss [20].

53



54 Analysis

5.1.1 Scenarios
For each scenario we performed some cases of code modifications to a set of C or
C++ procedures in a file. Table 5.1 lists the different scenarios used in the analysis.
The table shows the short description, type and number of procedures affected by
every scenario. Not all scenarios can be seen as a plagiarization scenario. Where
unsystematic code modifications have been performed the semantics of the code
has been changed as well. Description of the modifications performed in each
scenario can be found in Table 5.2.

The benchmark files can be found at
http://www.ida.liu.se/~nikho42/detect/bench/. The benchmark configura-
tion file for detect’s APDG-analysis is also available in Appendix D.

Id Short description Type # Procedures
1 Change indentation of code FA 1
2 Change position of braces FA 1
3 Remove unnecessary braces FA 1
4 Add comments FA 1
5 Remove comments FA 1
6 Change comments FA 1
7 Systematically replace variable names IR 1
8 Unsystematically replace variable names IR 1
9 Systematically replace function names IR 4
10 Unsystematically replace function names IR 4
11 Change types with typedefs IR 9
12 Change order of function definitions DR 4
13 Systematically change order of params DR 5
14 Unsystematically change order of params DR 5
15 Systematically change order of variable definition SR 4
16 Unsystematically change order of variable definition SR 4
17 Change the order of switch-cases SR 1
18 Move variable declaration to outside of loop SR 3
19 Insertion of statements CI 4
20 Insertion of statements CI 5
21 Insertion of control structure (execute once) CI 4
22 Insertion of control structure (execute never) CI 4
23 Insertion of constants and parentheses in expres-

sions
CI 5

24 Negate predicate in if-statements CR 1
25 Replacing for loops with equiv. while loops and vice

versa
CR 4

26 Replacing do-while loops with equiv. and vice versa CR 4
27 Unsystematically replace control-structures CR 4
28 Control replacement with structured control state-

ments (continue)
CR 1

29 Inlining functions OM 4
30 Removal of unnecessary parenthesis, Exchanging

’+=’ for equivalent assignment
OM 4

Table 5.1. Scenarios used in analysis.



5.1 Method of analysis 55

Id Modifications
1 All whitespaces in the beginning of of each line were removed.
2 Indentation were changed from BSD to Allman style.
3 All unnecessary braces were removed.
4 2 lines of comments were added.
5 All comments were removed.
6 Multiline comments were switched with single line comments and vice versa.
7 A total of 10 Variables were renamed.
8 2 variables ’uses’ were renamed.
9 Renamed functions to get more general names, such as ’function1’, ’function2’, ...
10 Functions with the same signature were renamed. Intraprocedural dependencies

were not preserved.
11 Declared 9 typedefs to replace types used in the program.
12 All 4 function definitions were reordered.
13 A total of 9 parameters switched names. All functions preserved their semantics.
14 4 formal and 4 actual parameters switched names.
15 A total of 29 variable definitions were affected. The functions that were affected

preserved their semantics.
16 A total of 29 variable definitions were affected. The functions that were affected

did not preserve their semantics.
17 A total of 6 branches switched order.
18 A total of 7 variables were moved in and out of for loops, 4 functions were affected.
19 A total of 13 statements were added. All functions preserved their semantics.
20 A total of 10 statements were added. No functions preserved their semantics.
21, 22 7 and 10 control structures respectively were added in such a way that they did

not modify the semantics of the code.
23 Constans were inserted into 10 expressions.
24 Predicate in if and else if statements were negated and the bodies of the struc-

tures were rearranged.
25 A total of 4 for and while loops were replaced. For this kind of replacement,

variable declarations were moved into and out from the structure of the for loops.
26 A total of 4 do while, while and for loops were replaced.
27 A total of 4 loops were replaced. No functions preserved their semantics.
28 2 continue statements were inserted so that else if and else parts could be

replaced with if statements.
29 Code from 4 functions were merged into one function.
30 +=,-=, *=, /= assignment operators were replaced with equivalent assignment state-

ments. Parentheses were removed and added. All functions preserved their se-
mantics.

Table 5.2. Description of scenario modifications.



56 Analysis

5.2 Interpreting Results
To evaluate the output given by detect’s APDG-analysis towards detect’s AST-
analysis and Moss for a given scenario, two types of metrics were evaluated.

• Similarity between the code units

• The number of detected procedures

The number of detected procedures and similarity ratio of detect’s APDG
analysis is given directly by the output of the system (as explained in Section
4.8.4). When interpreting the result from the AST-analysis and Moss, system-
specific assessment methods had to be used.

AST-Analysis

The similarity ratio of detect’s AST analysis was calculated by running it twice,
once for how similar the first code-unit was to the second and then the opposite.
For each run the average of each similarity ratio between each maximal matching
pair was used to take the similarity ratio for that run. The average of the similar-
ities between both runs was used to represent the similarity for the scenario.

If a modified procedure was found to have a similarity ratio of at least 95%
towards its original procedure in any run, it was regarded to be detected.

Moss

The similarity ratio was given directly by the service. If a modified procedure was
found to match its original with at least 95% of the lines of code it comprised of,
it was regarded to be detected.

5.3 Test Results
5.3.1 All results
Table 5.3 shows both the number of detected procedures and average similarity
ratio for the test scenarios.

5.3.2 Similarity ratio by type of modification
Tables 5.4 and 5.5 as well as the corresponding charts in Figures 5.1 and 5.2 show
the average similarity ratio by type and nature of modification.

5.3.3 Detected procedures by type of modification
Tables 5.6 and 5.7 as well as the corresponding charts in Figures 5.3 and 5.4
show the total number of detected procedures by type and nature of modification.
Figure 5.5 show a summary of the number of detected procedures.



5.3 Test Results 57

Id APDG Detected AST Detected Moss Detected
Similarity procedures Similarity procedures Similarity procedures

1 100.00% 1 100.00% 1 92.00% 1
2 100.00% 1 100.00% 1 92.00% 1
3 100.00% 1 100.00% 1 92.00% 1
4 100.00% 1 100.00% 1 92.00% 1
5 100.00% 1 100.00% 1 92.00% 1
6 100.00% 1 100.00% 1 92.00% 1
7 100.00% 1 100.00% 1 94.00% 1
8 0.00% 0 72.00% 0 99.00% 1
9 100.00% 4 100.00% 4 98.00% 4
10 75.36% 4 88.74% 2 87.50% 5
11 100.00% 9 99.79% 9 71.00% 5
12 100.00% 4 100.00% 4 95.00% 4
13 100.00% 5 98.14% 4 93.00% 5
14 58.49% 3 97.55% 3 98.00% 5
15 100.00% 4 93.12% 2 35.00% 0
16 20.29% 1 93.12% 2 48.00% 2
17 26.76% 1 98.57% 1 55.00% 1
18 69.49% 4 78.28% 0 20.50% 1
19 43.94% 3 84.13% 0 13.00% 0
20 9.46% 1 81.14% 0 40.00% 2
21 0.00% 0 84.00% 1 34.00% 0
22 67.53% 4 78.69% 1 59.50% 1
23 100.00% 5 98.75% 5 26.00% 2
24 100.00% 1 85.51% 0 0.00% 0
25 100.00% 4 88.65% 0 0.00% 0
26 22.50% 1 87.31% 0 0.00% 0
27 0.00% 0 87.83% 0 0.00% 0
28 90.91% 1 86.13% 0 55.00% 0
29 0.00% 0 67.87% 0 24.00% 0
30 100.00% 4 98.75% 3 47.50% 2

Table 5.3. Scenario results.



58 Analysis

Type APDG Analysis AST Analysis Moss
FA Procedures 100.00% 100.00% 92.00%
IR Procedures 100.00% 99.93% 92.00%
DR Procedures 100.00% 99.07% 94.00%
SR Procedures 65.42% 89.99% 36.83%
CI Procedures 52.87% 86.39% 33.13%
CR Procedures 78.35% 85.65% 13.75%
OM Procedures 50.00% 83.31% 35.75%

Table 5.4. Average similarities where no modification to procedure semantics had oc-
curred.

Type APDG Analysis AST Analysis Moss
IR Procedures 37.68% 80.37% 93.25%
DR Procedures 58.49% 97.55% 98.00%
SR Procedures 20.29% 93.12% 48.00%
CI Procedures 9.46% 81.14% 40.00%
CR Procedures 0.00% 87.83% 0.00%

Table 5.5. Average similarities where modification to procedure semantics had occurred.

Type APDG Analysis AST Analysis Moss
FA Procedures 5 5 5
IR Procedures 13 13 9
DR Procedures 9 8 9
SR Procedures 9 3 2
CI Procedures 12 7 3
CR Procedures 7 0 0
OM Procedures 4 3 2

Total 59 39 30

Table 5.6. Detected procedures where no modification to procedure semantics had
occurred.

Type APDG Analysis AST Analysis Moss
IR Procedures 3 2 5
DR Procedures 3 3 5
SR Procedures 1 2 2
CI Procedures 1 0 2
CR Procedures 0 0 0

Total 8 7 14

Table 5.7. Detected procedures where modification to procedure semantics had oc-
curred.



5.3 Test Results 59

Figure 5.1. Chart over average similarities where no modification to procedure seman-
tics had occurred, as given by Table 5.4.

Figure 5.2. Chart over average similarities where modification to procedure semantics
had occurred, as given by Table 5.5.



60 Analysis

Figure 5.3. Chart over detected procedures where no modification to procedure seman-
tics had occurred, as given by Table 5.6.

Figure 5.4. Chart over detected procedures where modification to procedure semantics
had occurred, in Table 5.7.



5.3 Test Results 61

Figure 5.5. Summary of number of detected procedures by nature of modification.





Chapter 6

Discussion

In this chapter the test results are discussed.

6.1 Format Alteration Scenarios
All three systems detected all forms of format alteration. Since whitespaces or
format information are discarded during parsing such alteration will not modify
the ASTs or APDGs in any way. Moss had some problems discovering exact
plagiarism, but still performed very well.

6.2 Identifier Renaming Scenarios
In these cases of systematic modifications, both the APDG and AST analysis
performed well. Moss had some problems detecting plagiarism by means of using
typedefs.

In the cases of unsystematic modification, the APDG and AST analysis per-
formed equally well in terms of detected procedures, although the AST analysis
had a higher average similarity ratio. For the APDG analysis, the detections of
scenario 10 can be explained by the fact that the program dependencies stood the
same while only interprocedural dependencies were changed. The APDG analysis
does not calculate or make use of interprocedural dependencies. Moss performed
poorly in both scenarios having a high average similarity and detecting all proce-
dures.

6.3 Declaration Reordering Scenarios
In the cases of systematic modications, both the APDG and AST analysis per-
formed equally well both in terms of detected procedures and average similarity.
Moss had a slightly lower average similarity but still detected all procedures.

In the cases of unsystematic code modifications, the APDG and AST analysis
performed equally bad in terms of detected procedures. Moss performed poorly

63



64 Discussion

and detected all procedures. Both the AST-analysis and Moss had high similarity
ratio (97.5% and 98%).

6.4 Statement Reordering Scenarios

In the cases of systematic modifications, the APDG analysis performed well in
cases where variable definitions were moved around, but poorly when branches
of switch-statements were reordered. This can be expected from such forms of
alteration since reordered branches will generate unique non-isomorphic APDG’s.
When variable declarations were moved into and out from loops, the APDG per-
formed well in detecting some procedures. At closer look, the modifications that
the APDG analysis has problems with is in cases when variable declarations were
moved into a loop. This can be expected since it can change data-dependencies,
sometimes in ways that can modify the semantics of the program. Although the
APDG-analysis performed poorly in some separate cases, it overall detected more
procedures than the AST-analysis and Moss. The AST-analysis had a high aver-
age similarity ratio but detected only 3 procedures. Moss performed poorly and
had a similarity ratio below 60% in all scenarios, detecting only 2 procedures.

In the case of unsystematic modifications, the APDG-analysis performed well
overall having a low average similarity ratio. It detected one procedure where
the semantics had been changed. The AST-analysis performed well but had a
higher average ratio than Moss and the APDG analysis. Moss had low average
similarities in both unsystematic and systematic cases, which suggests that the
system is more prone to miss these types of modifications.

6.5 Code Insertion Scenarios

In the cases of systematic modifications, the APDG analysis performed well overall.
The APDG-analysis had a higher number of detected procedures than both the
AST-analysis and Moss, but a slightly lower average similarity ratio than the AST-
analysis. Moss performed least both in terms of average similarity and detected
procedures.

In scenario 21, added control structures insert extra predicate and region nodes
as well as control dependencies to the graph, which explains the poor result of
APDG analysis. In the case of “careful” insertion of statements only one procedure
was not matched. At closer examination this procedure was not matched due to
the conservative stance on parameters use and definition at function call sites.

In the case of unsystematic modifications, the APDG-analysis performed well
in most procedures, having the lowest similarity ratio of about 10%. One procedure
was detected since detect’s APDG-analysis does not separate between parameter
and regular variable declarations. Moss detected two procedures but had still a
low average similarity ratio. The AST-analysis had highest average similarity ratio
but detected no procedures.



6.6 Control Replacement Scenarios 65

6.6 Control Replacement Scenarios
In the cases of systematic modifications, the APDG analysis performed well over-
all, yielding a high average similarity ratio and number of detected procedures.
All modifications except in the cases where do while loops were replaced were
detected. Replacing do while with e.g. while or for loops changes the order in
which predicate nodes appear in the APDG, and isomorphism between the graphs
will not be found. The AST-analysis had a fairly high similarity ratio but de-
tected no cases. Moss performed very poorly, having none to low similarity ratio
and detecting no cases.

In the case of unsystematic modifications, Moss and the APDG analysis per-
formed best, yielding 0% similarity and no detected cases. The AST analysis had
fairly high similarity ratio but detected no cases.

6.7 Other Modification Scenarios
In the case of inlining functions, all systems performed poorly. The APDG-analysis
performed least, not managing to find any similiarity. This type of optimization
can not be detected properly by the APDG-analysis since macros and inlined
functions will (at the compilers discretion) be inlined and not found in intermediate
code forms.

In scenario 30, the APDG-analysis performed equally well or marginally better
than the AST-analysis, Moss performed least having a low average similarity and
detecting only half of the cases.

6.8 Overall
In the cases of systematic modifications, the APDG-analysis detected the most
number of procedures but had a lower average similarity than the AST-analysis.
Moss had both the least average similarity and number of detected cases.

In the cases of unsystematic modifications, the AST-analysis had the highest
average ratio but equally many or slightly fewer detected procedures than the
APDG-analysis. Moss had the highest number of detected procedures where un-
systematic modifications had been performed.





Chapter 7

Conclusions

In this master thesis we have shown how to construct and analyse Approximate
Program Dependence Graphs from Abstract Syntax Trees in a system called de-
tect to find plagiarized procedures.

Our method in constructing the APDG’s relies on using Abstract Syntax Trees
with imposed interfaces to decouple the parser from the generation proces. The
construction of an APDG is done by first constructing the Approximate Control
Dependence Subgraph with control flow information and then by calculating data
dependencies to generate the Approximate Data Dependence Subgraph.

We have shown how to analyse the APDGs to detect plagiarism by testing for
subgraph isomorphism or graph monomorphism between APDG pairs. To reduce
the matchings to perform during analysis we have also used both distance and
ratio-based pruning of the search space. Such pruning can avoid false positive
matches and substantially minimize the time taken to find plagiarized APDG’s in
a large set of programs.

We performed an analysis of detect by comparing the results in a scenario-
based evaluation against a popular and non-commercial system called Moss. The
scenarios ranged from simple to more invasive forms of modifications to procedures
in source code. The scenarios were categorized into both systematic and unsys-
tematic forms of modifications to test detection quality both in terms of true and
false positives.

The result of the analysis showed that the APDG-based system is equally effec-
tive as Moss and the AST-based system in detecting plagiarized procedures where
more trivial diguises has been used, such as format alteration, identifier renaming
and declaration reordering. It shows that the APDG analysis is more effective than
both Moss and the AST based system in detecting plagiarized procedures where
statement reordering, code insertion and control replacement has been used. All
systems fall short where the code has been modified by other means.

The analysis also shows that the APDG-based method is not fully sufficient
where more invasive forms of code modifications has been performed, such as
some forms of reordering of statements, reordering of declarations and control
replacements.

67



68 Conclusions

In terms of unsystematic modifications we have shown that Moss is more prone
than detect to find similar code where the semantics of the code differ.



Chapter 8

Future Work

In this chapter we will discuss suggestions and ideas for future improvement or
functionality of detect. These should be seen as an extension to those already
given by Nilsson [17].

8.1 APDGs for Ada
More work is needed in parsing Ada code and in the step of transforming the Ada
syntax trees for APDG analysis. At the current state, the generated ASTs do not
fully conform to the interface required by the APDG-analysis. Without adequate
conformance, APDG matching will not guarantee the detection of plagiarized pro-
cedures.

8.2 Serialization of APDGs
cojac will be used for managing and batch processing of code hand-ins from pro-
gramming students. Over time the amount of old hand-ins will accumulate and
many comparisons between code-units will have to be performed. detect will at
its current state become very inefficient in running large batches of program com-
parisons. APDG’s are discarded after each invocation of detect and new APDGs
will have to be generated for every new run. Serializing and saving APDG’s for
reuse would be of necessity for cojac to become time effective in extensive APDG
matching.

69



70 Future Work

8.3 Improving the preciseness of APDGs

8.3.1 Pointers and aliases
The Abstract Syntax Tree used in detect does not give correct ’use’ and ’define’
information where pointers and references have been used. Investigating whether
to perform some form of pointer analysis or to use other intermediate code forms
for APDG generation can be the subject for further research.

8.3.2 Exception analysis
Currently, detect does not determine dependencies generated by exceptions.
Jiang et al. [12] presents an approach to improve the preciseness of a PDG by
using exception analysis. By promoting the traditional control-flow graph into
an Improved Exception Control Flow Graph (IECFG) a more accurate program
dependence graph can be computed. Implementing similar forms of analysis in
detect is essential for calculating correct dependencies in programs using excep-
tions.

8.3.3 Call graphs
Since detect does not calculate or make use of dependencies between proce-
dures, APDG’s can match between programs that are semantically inequivalent
and false-positive matches will arise. By also finding graph morphisms in graphs
that represent static dependencies between functions, such as call graphs, might
alleviate this. Figure 8.1 demonstrates this by showing an example of 2 programs
that most likely are semantically ineqivalent. In this case an APDG analysis would
yield a similarity ratio of 100%.

1 function_A :
2 c a l l function_B ;
3

4 function_B :
5 c a l l function_C ;
6

7 function_C :
8 c a l l function_D ;
9 c a l l function_E ;

1 function_A :
2 c a l l function_C ;
3

4 function_B :
5 c a l l function_C ;
6

7 function_C :
8 c a l l function_D ;
9 c a l l function_D ;

Figure 8.1. Example of matching procedures with distinct call-graphs.

Another question to adress is whether call-graphs can be used in conjunction
with APDGs to detect e.g. subroutine extractions, or the opposite: inlining of
functions.



8.4 Other types of APDG analysis 71

8.4 Other types of APDG analysis
The APDG-module only finds exact sub-graph isomorphisms or monomorphisms.
Using other forms of APDG analysis such as γ-isomorphism (relaxed isomorphism)
as described by Liu et al. [16] can allow for more proper near matching of APDG’s.





Bibliography

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools (2nd Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2006. ISBN 0321486811.

[2] Brenda S. Baker. Finding clones with dup: Analysis of an experiment. IEEE
Trans. Softw. Eng., 33(9):608–621, September 2007. ISSN 0098-5589.

[3] Robert A. Ballance and Arthur B. Maccabe. Program Dependence Graphs
for the Rest of Us. Issue 91, Part 10 of Technical Report, University of New
Mexico, Dept. of Computer Science. URL http://www.cs.unm.edu/.

[4] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and
Lorraine Bier. Clone detection using abstract syntax trees. In Proceedings
of the International Conference on Software Maintenance, ICSM ’98, pages
368–, 1998. ISBN 0-8186-8779-7.

[5] Boost C++ Libraries. http://www.boost.org/.

[6] Michel Chilowicz, Etienne Duris, and Gilles Roussel. Syntax tree fingerprint-
ing for source code similarity detection. In Program Comprehension, 2009.
ICPC ’09. IEEE 17th International Conference on, pages 243 –247, may 2009.
doi: 10.1109/ICPC.2009.5090050.

[7] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A
(sub)graph isomorphism algorithm for matching large graphs. IEEE Trans.
Pattern Anal. Mach. Intell., 26(10):1367–1372, October 2004. ISSN 0162-
8828.

[8] Saumya K. Debray, William Evans, Robert Muth, and Bjorn De Sutter. Com-
piler techniques for code compaction. ACM Trans. Program. Lang. Syst., 22
(2):378–415, March 2000. ISSN 0164-0925.

[9] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program de-
pendence graph and its use in optimization. ACM Trans. Program. Lang.
Syst., 9(3):319–349, July 1987. ISSN 0164-0925.

[10] Pasquale Foggia. The VFLib Graph Matching Library, ver-
sion 2.0, March 2001. URL http://www.cs.sunysb.edu/˜
algorith/implement/vflib/implement.shtml.

73



74 BIBLIOGRAPHY

[11] Mary Jean Harrold, Brian Malloy, and Gregg Rothermel. Efficient construc-
tion of program dependence graphs. SIGSOFT Softw. Eng. Notes, 18(3):
160–170, July 1993. ISSN 0163-5948.

[12] Shujuan Jiang, Shengwu Zhou, Yuqin Shi, and Yuanpeng Jiang. Improv-
ing the preciseness of dependence analysis using exception analysis. In Pro-
ceedings of the 15th International Conference on Computing, CIC ’06, pages
277–282, 2006. ISBN 0-7695-2708-6.

[13] Gary A. Kildall. A unified approach to global program optimization. In Pro-
ceedings of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, POPL ’73, pages 194–206, 1973.

[14] Raghavan Komondoor and Susan Horwitz. Using slicing to identify duplica-
tion in source code. In Proceedings of the 8th International Symposium on
Static Analysis, SAS ’01, pages 40–56, 2001. ISBN 3-540-42314-1.

[15] Jens Krinke. Identifying similar code with program dependence graphs.
In Proceedings of the Eighth Working Conference on Reverse Engineering
(WCRE’01), WCRE ’01, pages 301–, 2001. ISBN 0-7695-1303-4.

[16] Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. Gplag: detection of
software plagiarism by program dependence graph analysis. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery
and data mining, KDD ’06, pages 872–881, 2006. ISBN 1-59593-339-5.

[17] Erik Nilsson. Abstract syntax tree analysis for plagiarism detection. Mas-
ter’s thesis, Linköping University, Department of Computer and Information
Science, The Institute of Technology, 2012. ISRN: LIU-IDA/LITH-EX-A--
12/043–SE.

[18] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. Finding plagiarisms
among a set of programs with jplag. J. UCS, 8:1016–1038, 2000.

[19] Chanchal K. Roy and James R. Cordy. Scenario-based comparison of clone
detection techniques. In Proceedings of the 2008 The 16th IEEE Interna-
tional Conference on Program Comprehension, ICPC ’08, pages 153–162,
2008. ISBN 978-0-7695-3176-2.

[20] Saul Schleimer. Winnowing: Local algorithms for document fingerprinting.
In Proceedings of the 2003 ACM SIGMOD International Conference on Man-
agement of Data 2003, pages 76–85. ACM Press, 2003.

[21] Jeffrey R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):
31–42, January 1976. ISSN 0004-5411.

[22] Michael Wise. String Similarity via Greedy String Tiling and Running
Karp-Rabin Matching. Technical Report, University of Sydney, Depart-
ment of Computer Science, 1993. URL http://luggage.bcs.uwa.edu.au/˜
michaelw/ftp/doc/RKR_GST.ps.



Appendix A

Requirements of DETECT

Each requirement has a priority. The system must implement requirements of
priority 1. requirements of priority 2 and 3 may be implemented.

Id Type Description Prio
1. Documents Documentation on how to use cojac. 1
2. System cojac can be run in a POSIX system. 1

3. System cojac can define a group of input units in a configuration file
and detect similarities within this group.

1

4. System cojac can define in which ways the comparisons should be
done in the configuration file.

2

5. System There is a GUI for modifying the configuration file for cojac. 2

6. System There is a GUI for cojac. 3

7. System cojac uses a program detect, which uses one or several com-
parison algorithms to compare two units of source code at a
time.

1

8. System detect is a command-line based program. 1

9. System detect takes two input units of code (of the same program-
ming language) and compares them.

1

10. System Parameters passed to detect can be given on the command-
line.

2

11. System Parameters passed to detect can be extracted from a config-
uration file given by cojac.

1

12. System detect supports input units written in the language C. 1

13. System detect supports input units written in the language C++. 1

14. System detect supports input units written in the language Ada. 1

15. System detect supports input units written in the language Java. 2

16. System detect supports input units written in the language MatLab. 3

17. System detect integrates different front-ends for the supported lan-
guages.

1

75



76 Requirements of DETECT

Id Type Description Prio

18. System It should be possible to integerate a new front-end with de-
tect so that a new programming language can be supported.

1

19. System It should be possible to remove a front-end in detect. 1

20. System It should be possible to replace a front-end in detect so that
a new standard of a language can be supported.

1

21. System It should be possible to integrate a new module with compar-
ing algorithm(s) in detect

1

22. Documents There exists documentation on how to manage (adding and
removing) the front-ends within detect.

1

23. System detect determines how many lines in the input files are tex-
tually identical.

1

24. System detect determines how many lines in the input files are iden-
tical without regarding whitespaces.

1

25. System detect reports which lines were textually identical. 1

26. System detect reports which lines were textually identical not re-
garding whitespaces.

1

27. System detect reports a metric representing the amount of similarity
in code where Format Alteration, Identifier Renaming and
Declaration Reordering has been applied.

1

28. System detect reports a metric that represents the amount of sim-
ilarity in code where Statement Reordering, Code Insertion
and Control Replacement has been applied and also fulfills
requirement 27.

2

29. System detect finds similarities in code which has been copied and
modified by micro optimization.

3

30. System cojac records data regarding submitters history of submis-
sions and plagiarism metrics.

3

31. System cojac flags submitters whose submissions have frequently
high plagiarism metrics.

3



Appendix B

Interface for PDGFactory

1#i f n d e f PDG_FACTORY_H
2#define PDG_FACTORY_H
3
4 /∗∗
5 ∗ @ f i l e
6 ∗ D e f i n i t i o n o f the c l a s s PDGFactory and N e s t i n g S t a c k
7 ∗ @author N i k l a s J . Holma
8 ∗
9 ∗ The PDGFactory c l a s s c o n t s t r u c t s a program dependence graph from a

10 ∗ g i v e n AST i n t e r f a c e s p e c i f i e d i n " AST_interface . h " .
11 ∗
12 ∗/
13
14 /∗ Standard I n c l u d e s ∗/
15#include <s t r i n g >
16#include <v e c t o r >
17#include <map>
18
19 /∗ L o c a l I n c l u d e s ∗/
20#include " AST_interface . h "
21#include " PDGExceptions . h "
22#include "PDG. h "
23#include " C o n f i g . h "
24#include " VarSet . h "
25
26 /∗ E x t e r n a l I n c l u d e s ∗/
27#include " b o o s t / shared_ptr . hpp "
28
29 namespace d e t e c t
30 {
31
32 // The AST_interface o p e r a t e with shared_ptr
33 typedef b o o s t : : shared_ptr<AST_interface> ASTptr ;
34 // P r e d e c l a r a t i o n o f N e s t i n g S t a c k , comes a f t e r PDGFactory .
35 c l a s s N e s t i n g S t a c k ;
36
37 c l a s s PDGFactory
38 {
39 // A LabelMap maps l a b e l s t r i n g to nodes i n the graph
40 typedef s t d : : map<s t d : : s t r i n g , PDG : : Node> LabelMap ;
41
42 // A GotoMap maps nodes i n the graph to l a b e l s t r i n g s
43 typedef s t d : : map<PDG : : Node , s t d : : s t r i n g > GotoMap ;
44
45 public :
46 PDGFactory ( ) ;
47
48 /∗∗
49 ∗ This method c o n s t r u c t s the program dependence graph from an AST .
50 ∗ I t g e n e r a t e s a new PDG and AnalysisGraph , and c o n s t r u c t s them i n
51 ∗ t h r e e s t e p s :
52 ∗ 1) g e n e r a t e CDS by c a l l i n g constructCDS ( )
53 ∗ 2) g e n e r a t e DDS by c a l l i n g constructDDS ( )
54 ∗ 3) g e n e r a t e AnalysisGraph from the PDG v i a the
55 ∗ PDG : : c o n s t r u c t A n a l y s i s G r a p h ( ) method .
56 ∗
57 ∗ @param t r e e a b o o s t shared_ptr to the AST t r e e
58 ∗ @param dotFilename the f i l e n a m e to output dot−data
59 ∗ @param c o n f i g u r a t i o n a p o i n t e r to the c o n f i g i n s t a n c e
60 ∗ @return a p o i n t e r to the c r e a t e d a n a l y s i s graph
61 ∗/

77



78 Interface for PDGFactory

62 AnalysisGraph ∗ constructPDG ( const ASTptr& t r e e ,
63 const s t d : : s t r i n g& dotFilename ,
64 const C o n f i g ∗ c o n f i g u r a t i o n ) ;
65
66 protected :
67 // R e p r e s e n t s a PDG node which does not e x i s t
68 s t a t i c const PDG : : Node PDG_NON_EXIST = −1;
69 // R e p r e s e n t s an AST node which does not e x i s t
70 s t a t i c const ASTptr AST_NON_EXIST; // N u l l p t r
71
72 /∗∗
73 ∗ Used to s e t the l a b e l s i n the dot−output
74 ∗ @return the next r e g i o n node i d e n t i f i e r as s t r i n g
75 ∗/
76 s t d : : s t r i n g getNextRegionId ( ) ;
77
78 /∗∗
79 ∗ Used to s e t the l a b e l s i n the dot−output
80 ∗ @return the next p r e d i c a t e node i d e n t i f i e r as s t r i n g
81 ∗/
82 s t d : : s t r i n g g e t N e x t P r e d i c a t e I d ( ) ;
83
84 /∗∗
85 ∗ Used to s e t the l a b e l s i n the dot−output
86 ∗ @return the next s t a t e m e n t node i d e n t i f i e r as s t r i n g
87 ∗/
88 s t d : : s t r i n g getNextStatementId ( ) ;
89
90 /∗∗
91 ∗ S t a r t s the c o n s t r u c t i o n o f the CDS, c r e a t i n g a PDG and i n t u r n s
92 ∗ i n v o k e s descentCDS ( ) . A f t e r t h i s , takeCareOfGotosAndLabels ( ) i s
93 ∗ c a l l e d .
94 ∗/
95 void constructCDS ( ) ;
96
97 /∗∗
98 ∗ R e c u r s i v e l y d e s c e n d s the AST to b u i l d the c o n t r o l dependence
99 ∗ subgraph . The method i n t u r n s i n v o k e s o t h e r methods depending on

100 ∗ the NodeControlType o f the AST node .
101 ∗
102 ∗ @param currentPdgNode The p a r e n t PDG node on which new nodes a r e
103 ∗ to be added .
104 ∗
105 ∗ @param currentAstNode The c u r r e n t AST node on which the f u n c t i o n
106 ∗ b u i l d s new PDG nodes from .
107 ∗
108 ∗ @param breakNode the breakNode h o l d s the b a c k t r a c k i n g PDG Node ,
109 ∗ t h i s node i s forwarded so t h a t c o n t r o l dependence e d g e s can be
110 ∗ added f o r i m p l i c i t c o n t r o l f l o w from break s t a t e m e n t s .
111 ∗
112 ∗ @param continueNode the continueNode h o l d s the p r e v i o u s l o o p
113 ∗ r e g i o n node . i t i s used whenever a ’ c o n t i n u e ’ s t a t e m e n t i s
114 ∗ found .
115 ∗
116 ∗ @param r e l a t i o n the kind o f r e l a t i o n a t t r i b u t e any new PDG node
117 ∗ i s s e t to have to i t s p a r e n t PDG node .
118 ∗
119 ∗ @param nextStmt i f the descentCDS i s c a l l e d on the l a s t
120 ∗ s t a t e m e n t i n a s t a t e m e n t l i s t , the nextStmt i s s e t to the next
121 ∗ s t a t e m e n t i n the program . This i s used to add c o n t r o l f l o w e d g e s
122 ∗ from i . e . the l a s t s t a t e m e n t o f a w h i l e loop , i f loop , and so
123 ∗ f o r t h .
124 ∗
125 ∗ @param depStack used to keep t r a c k o f e x t r a d e p e n d e n c i e s g e n e r a t e d by
126 ∗ c o n d i t i o n a l b r e a k s and c o n t i n u e s t a t e m e n t s .
127 ∗/
128 void descentCDS ( const PDG : : Node currentPdgNode ,
129 const ASTptr& currentAstNode ,
130 const PDG : : Node breakNode ,
131 const PDG : : Node continueNode ,
132 const s t d : : s t r i n g& r e l a t i o n ,
133 const PDG : : Node nextStmt ,
134 N e s t i n g S t a c k& depStack ) ;
135
136 /∗∗
137 ∗ D e c i d e s wether a g i v e n AST node a c t u a l l y w i l l g e n e r a t e a
138 ∗ PDG node .
139 ∗
140 ∗ @param s t a t e m e n t the AST node to check
141 ∗
142 ∗ @return t r u e i f the s t a t e m e n t s h o u l d g e n e r a t e a PDG node
143 ∗/
144 bool i s A c t u a l S t a t e m e n t ( const ASTptr& s t a t e m e n t ) const ;
145
146 /∗∗
147 ∗ D e c i d e s wether t h e r e a r e any g o t o s a f t e r an i n d e x i n a s t a t e m e n t l i s t
148 ∗
149 ∗ @param s t a t e m e n t L i s t N o d e the s t a t e m e n t l i s t node to check i n
150 ∗ @param i n d e x the i n d e x to check from
151 ∗
152 ∗ @return t r u e i f the s t a t e m e n t l i s t c o n t a i n s any g o t o s a f t e r i n d e x



79

153 ∗/
154 bool c o n t a i n s G o t o s A f t e r I n d e x ( const ASTptr& statementListNode , i n t i n d e x ) const ;
155
156 /∗∗
157 ∗ D e c i d e s wether a node g e n e r a t e s the l a s t node i n a s t a t e m e n t
158 ∗ l i s t , g i v e n t h a t some AST nodes do not g e n e r a t e s t a t e m e n t s .
159 ∗
160 ∗ @param s t a t e m e n t L i s t N o d e the s t a t e m e n t l i s t node to check i n
161 ∗ @param i n d e x the i n d e x to check from
162 ∗
163 ∗ @return t r u e i f t h e r e a r e n t any a c t u a l s t a t e m e n t s a f t e r i n d e x
164 ∗/
165 bool i s L a s t S t a t e m e n t ( const ASTptr& statementListNode , i n t i n d e x ) const ;
166
167 /∗∗
168 ∗ D e c i d e s wether a node g e n e r a t e s the f i r s t node i n a s t a t e m e n t
169 ∗ l i s t , g i v e n t h a t some AST nodes do not g e n e r a t e s t a t e m e n t s .
170 ∗
171 ∗ @param s t a t e m e n t L i s t N o d e the AST s t a t e m e n t l i s t node ( p t r ) to check i n
172 ∗ @param i n d e x the i n d e x to check from
173 ∗
174 ∗ @return t r u e i f t h e r e a r e n t any a c t u a l s t a t e m e n t s b e f o r e i n d e x
175 ∗/
176 bool i s F i r s t S t a t e m e n t ( const ASTptr& statementListNode , i n t i n d e x ) const ;
177
178 /∗∗
179 ∗ Counts the number o f a c t u a l s t a t e m e n t s o f an AST s t a t e m e n t l i s t
180 ∗ node .
181 ∗
182 ∗ @param s t a t e m e n t L i s t N o d e the AST s t a t e m e n t l i s t node ( p t r ) to count
183 ∗ a c t u a l s t a t e m e n t s i n
184 ∗
185 ∗ @return number o f a c t u a l s t a t e m e n t s
186 ∗/
187 unsigned numActualStatements ( const ASTptr& s t a t e m e n t L i s t N o d e ) const ;
188
189 /∗∗
190 ∗ D e c i d e s wether a g i v e n AST s t a t e m e n t l i s t node c o n t a i n s any
191 ∗ u n s t r u c t u r e d program s t a t e m e n t s t h a t w i l l g e n e r a t e e x t r a
192 ∗ d e p e n d e n c i e s .
193 ∗
194 ∗ @param s t a t e m e n t L i s t N o d e the AST s t a t e m e n t l i s t node ( p t r ) to check i n
195 ∗
196 ∗ @return t r u e wether the s t a t e m e n t l i s t c o n t a i n s any u n s t r u c t u r e d
197 ∗ program s t a t e m e n t s .
198 ∗/
199 bool g e n e r a t e s E x t r a D e p e n d e n c i e s ( const ASTptr& s t a t e m e n t L i s t N o d e ) const ;
200
201 /∗∗
202 ∗ D e c i d e s wether a g i v e n AST node r e p r e s e n t s an u n s t r u c t u r e d
203 ∗ c o n t r o l −f l o w statement , such as goto , break or c o n t i n u e .
204 ∗
205 ∗ @param node the node ( p t r ) to check
206 ∗
207 ∗ @return t r u e wether the s t a t e m e n t r e p r e s e n t s an u n s t r u c t u r e d c f −s t a t e m e n t
208 ∗/
209 bool m o d i f i e s C o n t r o l F l o w ( const ASTptr& s t a t e m e n t ) const ;
210
211 /∗∗
212 ∗ T r a n s f e r s the use and d e f i n i t i o n s e t s from an AST node to a PDG
213 ∗ node , w i l l i n turn c a l l the p u l l U s e D e f s from the t r e e s to p u l l
214 ∗ use and d e f i n f o r m a t i o n from sub−e x p r e s s i o n s .
215 ∗
216 ∗ @param pNode the PDG node to t r a n s f e r to
217 ∗ @param aNode the AST node to t r a n s f e r from
218 ∗
219 ∗/
220 void s e t U s e D e f s (PDG : : Node pNode , const ASTptr& aNode ) ;
221
222 /∗∗
223 ∗ R e c u r s i v e l y c a l l s i t s e l f and adds a l l u s e s and d e f s i n the AST
224 ∗ s u b t r e e to pRoot . This i s u s e f u l s i n c e a s t a t e m e n t can c o n s i s t
225 ∗ o f s e v e r a l o t h e r sub−e x p r e s s i o n s .
226 ∗
227 ∗ @param pRoot the PDG node to add to
228 ∗ @param s u b t r e e the s u b t r e e to r e c u r s i v e l y descend and p u l l use and d e f
229 ∗ i n f o r m a t i o n from
230 ∗
231 ∗/
232 void p u l l U s e D e f s (PDG : : Node pRoot , const ASTptr& s u b t r e e ) ;
233
234
235 /∗∗
236 ∗ C r e a t e s a p l a c e h o l d e r node f o r l a t e r use i n the PDG.
237 ∗
238 ∗ @param f a t h e r the node t h a t the p l a c e h o l d e r w i l l have c o n t r o l dependency
239 ∗ to
240 ∗ @param r e l a t i o n the l a b e l o f the c o n t r o l dependence edge
241 ∗ @param depStack the dependency s t a c k c o n t a i n i n g e x t r a dependency
242 ∗ i n f o r m a t i o n
243 ∗



80 Interface for PDGFactory

244 ∗ @return the c r e a t e d p l a c e h o l d e r PDG node i d
245 ∗/
246 PDG : : Node c r e a t e P l a c e h o l d e r (PDG : : Node f a t h e r , s t d : : s t r i n g r e l a t i o n ,
247 N e s t i n g S t a c k& depStack ) ;
248
249 /∗∗
250 ∗ C r e a t e s a c h i l d to a g i v e n PDG node with the g i v e n i n f o r m a t i o n .
251 ∗
252 ∗ @param f a t h e r the node to which the newly c r e a t e d node s h o u l d r e l a t e to
253 ∗ @param l a b e l the l a b e l o f the node , used f o r dot output
254 ∗ @param r e l a t i o n the l a b e l o f the edge , used f o r dot output
255 ∗ @param eType the type o f the edge
256 ∗ @param nType the type o f the node
257 ∗
258 ∗ @return the newly c r e a t e d PDG node i d
259 ∗/
260 PDG : : Node c r e a t e C h i l d (PDG : : Node f a t h e r , const s t d : : s t r i n g& l a b e l ,
261 const s t d : : s t r i n g& r e l a t i o n , PDG : : EdgeType eType ,
262 PDG : : NodeType nType , N e s t i n g S t a c k& depStack ) ;
263
264 /∗∗
265 ∗ C r e a t e s a new s t a t e m e n t PDG node .
266 ∗
267 ∗ @param f a t h e r N o d e the p a r e n t node to r e l a t e to
268 ∗ @param r e l a t i o n the l a b e l o f the c o n t r o l dependency edge , used f o r dot
269 ∗ output
270 ∗ @param depStack the dependency s t a c k c o n t a i n i n g e x t r a dependency i n f o r m a t i o n
271 ∗
272 ∗/
273 PDG : : Node c r e a t e S t a t e m e n t (PDG : : Node fatherNode , const s t d : : s t r i n g& r e l a t i o n ,
274 N e s t i n g S t a c k& depStack ) ;
275
276 /∗∗
277 ∗ C r e a t e s a new r e g i o n PDG node .
278 ∗
279 ∗ @param f a t h e r N o d e the p a r e n t node to r e l a t e to
280 ∗ @param r e l a t i o n the l a b e l o f the c o n t r o l dependency edge , used f o r dot
281 ∗ output
282 ∗ @param depStack the dependency s t a c k c o n t a i n i n g e x t r a dependency i n f o r m a t i o n
283 ∗
284 ∗/
285 PDG : : Node c r e a t e R e g i o n (PDG : : Node fatherNode , const s t d : : s t r i n g& r e l a t i o n ,
286 N e s t i n g S t a c k& depStack ) ;
287
288 /∗∗
289 ∗ C r e a t e s a new p r e d i c a t e PDG node .
290 ∗
291 ∗ @param f a t h e r N o d e the p a r e n t node to r e l a t e to
292 ∗ @param r e l a t i o n
293 ∗ the l a b e l o f the c o n t r o l dependency edge , used f o r dot output
294 ∗ @param depStack the dependency s t a c k c o n t a i n i n g e x t r a dependency
295 ∗ i n f o r m a t i o n
296 ∗
297 ∗/
298 PDG : : Node c r e a t e P r e d i c a t e (PDG : : Node fatherNode , const s t d : : s t r i n g& r e l a t i o n ,
299 N e s t i n g S t a c k& depStack ) ;
300
301 /∗∗
302 ∗ Handles a STATEMENT_LIST a s t node i n the APDG g e n e r a t i o n . W i l l
303 ∗ by d e f a u l t add a new r e g i o n and add the s t a t e m e n t s o f the AST
304 ∗ node by c a l l i n g addStatements ( ) .
305 ∗
306 ∗ This method i s v i r t u a l and might have to be o v e r l o a d e d depending on
307 ∗ the type o f the AST .
308 ∗
309 ∗ params : same as descentCDS ( )
310 ∗/
311 v i r t u a l void ha ndl eSt ate men tLi stN ode ( const PDG : : Node , const ASTptr&,
312 const PDG : : Node , const PDG : : Node ,
313 const s t d : : s t r i n g &, const PDG : : Node ,
314 N e s t i n g S t a c k &) ;
315
316 /∗∗
317 ∗ I t e r a t i v e l y g o e s through the s t a t e m e n t s o f a STATEMENT_LIST a s t
318 ∗ node and g e n e r a t e s s t a t e m e n t s from the s t a t e m e n t l i s t by
319 ∗ i n v o k i n g o t h e r methods depending on the c o n t r o l type .
320 ∗
321 ∗ This method i s v i r t u a l and might have to be o v e r l o a d e d depending on
322 ∗ the type o f the AST .
323 ∗
324 ∗ params : same as descentCDS ( )
325 ∗/
326 v i r t u a l void addStatements ( const PDG : : Node , const ASTptr&,
327 const PDG : : Node , const PDG : : Node ,
328 const s t d : : s t r i n g &, const PDG : : Node ,
329 N e s t i n g S t a c k &) ;
330 /∗∗
331 ∗ Handles an AST node t h a t c o n t a i n s use and d e f i n f o r m a t i o n . These
332 ∗ a r e by d e f a u l t a s t nodes with c o n t r o l type FUNCALL, ASSIGNMENT
333 ∗ and PROGRAM_EXIT.
334 ∗



81

335 ∗ This method i s v i r t u a l and might have to be o v e r l o a d e d depending
336 ∗ on the type o f the AST .
337 ∗
338 ∗ params : same as descentCDS ( )
339 ∗/
340 v i r t u a l void handleUseDefNode ( const PDG : : Node , const ASTptr&,
341 const PDG : : Node , const PDG : : Node ,
342 const s t d : : s t r i n g &, const PDG : : Node ,
343 N e s t i n g S t a c k &) ;
344
345 /∗∗
346 ∗ Handles a DETECT_LOOP a s t node .
347 ∗
348 ∗ This method i s v i r t u a l and might have to be o v e r l o a d e d depending
349 ∗ on the type o f the AST .
350 ∗
351 ∗ params : same as descentCDS ( )
352 ∗/
353 v i r t u a l void handleDetectLoopNode ( const PDG : : Node , const ASTptr&,
354 const PDG : : Node , const PDG : : Node ,
355 const s t d : : s t r i n g &, const PDG : : Node ,
356 N e s t i n g S t a c k &) ;
357
358 /∗∗
359 ∗ Handles an IF_ELSE_BEGIN a s t node .
360 ∗
361 ∗ This method i s v i r t u a l and might have to be o v e r l o a d e d depending
362 ∗ on the type o f the AST .
363 ∗
364 ∗ params : same as descentCDS ( )
365 ∗/
366 v i r t u a l void h a n d l e I f E l s e B e g i n N o d e ( const PDG : : Node , const ASTptr&,
367 const PDG : : Node , const PDG : : Node ,
368 const s t d : : s t r i n g &, const PDG : : Node ,
369 N e s t i n g S t a c k &) ;
370 /∗∗
371 ∗ Handles a CONTINUE a s t node .
372 ∗
373 ∗ This method i s v i r t u a l and might have to be o v e r l o a d e d depending
374 ∗ on the type o f the AST .
375 ∗
376 ∗ params : same as descentCDS ( )
377 ∗/
378 v i r t u a l void handleContinueNode ( const PDG : : Node , const ASTptr&,
379 const PDG : : Node , const PDG : : Node ,
380 const s t d : : s t r i n g &, const PDG : : Node ,
381 N e s t i n g S t a c k &) ;
382 /∗∗
383 ∗ Handles a BREAK a s t node .
384 ∗
385 ∗ This method i s v i r t u a l and might have to be o v e r l o a d e d depending
386 ∗ on the type o f the AST .
387 ∗
388 ∗ params : same as descentCDS ( )
389 ∗/
390 v i r t u a l void handleBreakNode ( const PDG : : Node , const ASTptr&,
391 const PDG : : Node , const PDG : : Node ,
392 const s t d : : s t r i n g &, const PDG : : Node ,
393 N e s t i n g S t a c k &) ;
394 /∗∗
395 ∗ Handles a GOTO a s t node . I s by d e f a u l t a l r e a d y h a n d l e s i n
396 ∗ addStatements ( ) .
397 ∗
398 ∗ This method i s v i r t u a l and might have to be o v e r l o a d e d depending
399 ∗ on the type o f the AST .
400 ∗
401 ∗ params : same as descentCDS ( )
402 ∗/
403 v i r t u a l void handleGotoNode ( const PDG : : Node , const ASTptr&,
404 const PDG : : Node , const PDG : : Node ,
405 const s t d : : s t r i n g &, const PDG : : Node ,
406 N e s t i n g S t a c k &) ;
407 /∗∗
408 ∗ Handles a LABEL a s t node . I s by d e f a u l t a l r e a d y handled i n
409 ∗ addStatements ( ) .
410 ∗
411 ∗ This method i s v i r t u a l and might have to be o v e r l o a d e d depending
412 ∗ on the type o f the AST .
413 ∗
414 ∗ params : same as descentCDS ( )
415 ∗/
416 v i r t u a l void handleLabelNode ( const PDG : : Node , const ASTptr&,
417 const PDG : : Node , const PDG : : Node ,
418 const s t d : : s t r i n g &, const PDG : : Node ,
419 N e s t i n g S t a c k &) ;
420
421 /∗∗
422 ∗ Returns t r u e wether a g i v e n AST p o i n t e r i s not p o i n t i n g to
423 ∗ AST_NON_EXIST ( n u l l p t r ) which r e p r e s e n t s t h a t the AST node does
424 ∗ not e x i s t .
425 ∗/



82 Interface for PDGFactory

426 i n l i n e bool n o d e E x i s t s ( ASTptr p ) { return p != AST_NON_EXIST; }
427
428 /∗∗
429 ∗ Returns t r u e wether a g i v e n PDG i s PDG_NON_EXIST ( −1)
430 ∗ which r e p r e s e n t s t h a t the PDG node does not e x i s t or have not y e t
431 ∗ been c r e a t e d .
432 ∗/
433 i n l i n e bool n o d e E x i s t s (PDG : : Node n ) { return n != PDG_NON_EXIST; }
434
435 /∗∗
436 ∗ Goes through a l l accumulated pdg nodes r e p r e s e n t i n g goto
437 ∗ s t a t e m e n t s and adds c o r r e c t c o n t r o l f l o w e d g e s between them and
438 ∗ the c o r r e s p o n d i n g c o n t r o l f l o w t a r g e t by u s i n g the goto and
439 ∗ l a b e l m a p s .
440 ∗/
441 void takeCareOfGotosAndLabels ( ) ;
442
443 /∗∗
444 ∗ Adds e x t r a c o n t r o l d e p e n d e n c i e s from a dependency s t a c k to a PDG
445 ∗ node , a l s o adds an e x t r a r e g i o n to the graph to summarize t h e s e
446 ∗ d e p e n d e n c i e s .
447 ∗
448 ∗ @param to Node to add the e x t r a d e p e n d e n c i e s to
449 ∗ @param depStack the dependency s t a c k c o n t a i n i n g ( p r e d i c a t e )
450 ∗ nodes t h a t g e n e r a t e e x t r a d e p e n d e n c i e s .
451 ∗/
452 void g i v e E x t r a D e p e n d e n c i e s (PDG : : Node to , N e s t i n g S t a c k& depStack ) ;
453
454 /∗∗
455 ∗ C o n s t r u c t s the Data Dependence Subgraph . I t e r a t i v e l y c a l l s the
456 ∗ descentDDS and does so as l o n g as any OUT s e t s has been changed .
457 ∗/
458 void constructDDS ( ) ;
459
460 /∗∗
461 ∗ R e c u r s i v e l y d e s c e n d s the PDG to g e n e r a t e data dependency e d g e s
462 ∗ u s i n g the USE and DEF i n f o r m a t i o n t h a t each node have .
463 ∗ At each s t e p IN , OUT, GEN and KILL s e t s a r e c a l c u l a t e d f o r
464 ∗ the c u r r e n t node .
465 ∗
466 ∗ @param node the PDG node to descend
467 ∗ @param v i s i t s a s e t o f p r e v i o u s l y v i s i t e d nodes
468 ∗ @param r e a c h i n g OUT s e t o f the p r e v i o u s node
469 ∗/
470 void descentDDS ( const PDG : : Node node ,
471 s t d : : s e t <PDG : : Node> v i s i t s ,
472 VarSet r e a c h i n g ) ;
473
474 /∗ The lMap maps l a b e l s to node i d s ( s t r i n g s to i d s ) ∗/
475 LabelMap labelMap ;
476
477 /∗ The gMap maps node i d s to l a b e l s ( i d s to s t r i n g s ) ∗/
478 GotoMap gotoMap ;
479
480 /∗ The AST r o o t p o i n t e r ∗/
481 ASTptr r o o t ;
482
483 /∗ A p o i n t e r to the PDG i n s t a n c e , w i l l be c r e a t e d and d e s t r o y e d f o r
484 ∗ each new PDG c o s t r u c t i o n .
485 ∗/
486 PDG∗ g ;
487
488 /∗ A p o i n t e r to the c o n f i g u r a t i o n i n s t a n c e ∗/
489 const C o n f i g ∗ c o n f ;
490
491 /∗ Used f o r DDS g e n e r a t i o n to t e l l wether any OUT s e t has changed ∗/
492 bool continueDDS ;
493
494 /∗ Used f o r DDS g e n e r a t i o n to t e l l how many t i m e s a nodes i s
495 ∗ a l l o w e d to be v i s i t e d
496 ∗/
497 unsigned maxDDSVisits ;
498
499 private :
500 PDGFactory ( const PDGFactory&) ;
501 PDGFactory& operator=(const PDGFactory&) ;
502 } ;
503
504 c l a s s N e s t i n g S t a c k
505 {
506 public :
507 // The DependencyData type r e p r e s e n t s a node
508 typedef signed i n t DependencyData ;
509
510 // The Stack type i s a s e t o f DependencyData
511 typedef s t d : : s e t <DependencyData> Stack ;
512
513 // For s h o r t −c u t t i n g the i t e r a t o r type
514 typedef Stack : : i t e r a t o r i t e r a t o r ;
515
516 N e s t i n g S t a c k ( ) ;



83

517
518 // Copy c o n s t r u c t o r
519 N e s t i n g S t a c k ( N e s t i n g S t a c k &) ;
520
521 /∗∗
522 ∗ Merges the dependency s t a c k with a n o t h e r .
523 ∗
524 ∗ @param o t h e r the dependency s t r a c k to merge with
525 ∗/
526 void merge ( N e s t i n g S t a c k& o t h e r ) ;
527
528 /∗∗
529 ∗ Pushes a PDG node to the dependency s t a c k
530 ∗
531 ∗ @param e x t r a the PDG node to push
532 ∗/
533 void pushExtraDependency (PDG : : Node e x t r a ) ;
534
535 /∗∗
536 ∗ Checks wether the s t a c k i s empty
537 ∗/
538 bool h a s E x t r a D e p e n d e n c i e s ( ) const ;
539
540 // C l e a r s the dependency s t a c k .
541 void c l e a r ( ) ;
542
543 // Returns an i t e r a t o r to the b e g i n n i n g o f the dependency s t a c k
544 i t e r a t o r b e g i n ( ) ;
545
546 // Returns an i t e r a t o r p o i n t i n g to j u s t p a s t the end o f the s t a c k
547 i t e r a t o r end ( ) ;
548
549 private :
550 Stack s t a c k ;
551 } ;
552 }
553
554#endif // PDGFactory_h

Appendixes/PDGFactory.h



Appendix C

Configuration file for
benchmarking

# Main parts of detect
ENABLE_DEBUG_MODE=FALSE
ENABLE_CONFIG_DUMP=FALSE
ENABLE_TEXT_DIFF=FALSE
ENABLE_AST_DIFF=FALSE
ENABLE_PDG_DIFF=TRUE

# Graph output
AST_DUMP_DOT_GRAPHS=FALSE
AST_DOT_GRAPH_DETAIL=FALSE
AST_DUMP_GENERICIZED=FALSE
PDG_DUMP_DOT_GRAPHS=FALSE
PDG_DUMP_TEXT_GRAPHS=FALSE
PDG_DOT_GRAPH_DETAIL=FALSE
PDG_DOT_SHOW_CFLOW=FALSE
PDG_DOT_SHOW_DDEP=FALSE
PDG_DOT_SHOW_CDEP=FALSE

# Flags for AST Analysis
CRYPT_HASH_METHOD=SHA1_METHOD
AST_WEIGHT_THRESHOLD=5
AST_DUMP_FINGERPRINTS=FALSE
AST_MATRIX_OUTPUT=FALSE
AST_GREATEST_OUTPUT=TRUE
ENABLE_COLORFUL_OUTPUT=TRUE
AST_DETAILED_OUTPUT=FALSE
AST_ALL_MATCHES_OUTPUT=TRUE

# Flags for PDG Analysis

84



85

## MONO | SUB-ISO | EXACT-ISO
PDG_GRAPH_MATCH_TYPE=MONO
PDG_SHOW_LEGEND=TRUE
PDG_MATRIX_OUTPUT=TRUE
PDG_DUMP_MAPPINGS=FALSE
PDG_VERBOSE_OUTPUT=FALSE
PDG_MATCH_TIMEOUT=10
PDG_NODE_FREQ_THRESHOLD=20
PDG_EDGE_FREQ_THRESHOLD=25
PDG_NODE_RATIO_THRESHOLD=40
PDG_EDGE_RATIO_THRESHOLD=70
PDG_EDGE_NUM_THRESHOLD=3
PDG_NODE_NUM_THRESHOLD=3



Appendix D

Default configuration file

AST_ALL_MATCHES_OUTPUT=TRUE
AST_DETAILED_OUTPUT=FALSE
AST_DOT_GRAPH_DETAIL=FALSE
AST_DUMP_DOT_GRAPHS=FALSE
AST_DUMP_FINGERPRINTS=FALSE
AST_DUMP_GENERICIZED=FALSE
AST_MATRIX_OUTPUT=FALSE
AST_GREATEST_OUTPUT=TRUE
AST_WEIGHT_THRESHOLD=0
COLOR_RED_THRESHOLD=98
COLOR_YELLOW_THRESHOLD=90
CRYPT_HASH_METHOD=MD5_METHOD
ENABLE_AST_DIFF=TRUE
ENABLE_COLORFUL_OUTPUT=TRUE
ENABLE_CONFIG_DUMP=FALSE
ENABLE_DEBUG_MODE=FALSE
ENABLE_PDG_DIFF=TRUE
ENABLE_TEXT_DIFF=TRUE
PDG_DOT_GRAPH_DETAIL=TRUE
PDG_DOT_SHOW_CDEP=TRUE
PDG_DOT_SHOW_CFLOW=TRUE
PDG_DOT_SHOW_DDEP=TRUE
PDG_DUMP_DOT_GRAPHS=FALSE
PDG_DUMP_MAPPINGS=TRUE
PDG_DUMP_TEXT_GRAPHS=FALSE
PDG_GRAPH_MATCH_TYPE=MONO
PDG_MATCH_TIMEOUT=3
PDG_MATRIX_OUTPUT=TRUE
PDG_NODE_FREQ_THRESHOLD=5
PDG_EDGE_FREQ_THRESHOLD=5
PDG_EDGE_NUM_THRESHOLD=8

86



87

PDG_NODE_RATIO_THRESHOLD=10
PDG_NODE_NUM_THRESHOLD=5
PDG_SHOW_LEGEND=TRUE
PDG_SHOW_TIME_INFO=TRUE
PDG_VERBOSE_OUTPUT=TRUE
TEXT_DIFF_DETAILED_OUTPUT=FALSE
TEXT_DIFF_PREPROCESS=TRUE
TEXT_DIFF_SECTION_DECREMENT=5
TEXT_DIFF_SECTION_MIN=1
TEXT_DIFF_WARNING_THRESHOLD=95





Upphovsrätt
Detta dokument hålls tillgängligt på Internet — eller dess framtida ersättare —
under 25 år från publiceringsdatum under förutsättning att inga extraordinära
omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för icke-
kommersiell forskning och för undervisning. Överföring av upphovsrätten vid en
senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av doku-
mentet kräver upphovsmannens medgivande. För att garantera äktheten, säker-
heten och tillgängligheten finns det lösningar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman
i den omfattning som god sed kräver vid användning av dokumentet på ovan be-
skrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form
eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller
konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se för-
lagets hemsida http://www.ep.liu.se/

Copyright
The publishers will keep this document online on the Internet — or its possi-
ble replacement — for a period of 25 years from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for his/her own use and
to use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses of
the document are conditional on the consent of the copyright owner. The publisher
has taken technical and administrative measures to assure authenticity, security
and accessibility.

According to intellectual property law the author has the right to be mentioned
when his/her work is accessed as described above and to be protected against
infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity, please
refer to its www home page: http://www.ep.liu.se/

c© Niklas Holma


