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Abstract

Purpose: Optical Coherence Tomography (OCT) is a catheter-based imaging method
that employs near-infrared light to produce high-resolution cross sectional
intravascular images. A new segmentation technique is implemented for automatic
lumen area extraction and stent strut detection in intravascular OCT images for the
purpose of quantitative analysis of neointimal hyperplasia (NIH). Also a graphical

user interface (GUI) is designed based on the employed algorithm.

Methods: Four clinical dataset of frequency-domain OCT scans of the human
femoral artery were analysed. First, a segmentation method based on Fuzzy C Means
(FCM) clustering and Wavelet Transform (WT) was applied towards inner luminal
contour extraction. Subsequently, stent strut positions were detected by utilizing
metrics derived from the local maxima of the wavelet transform into the FCM

membership function.

Results: The inner lumen contour and the position of stent strut were extracted with
very high accuracy. Compared with manual segmentation by an expert physician, the
automatic segmentation had an average overlap value of 0.917 + 0.065 for all OCT
images included in the study. Also the proposed method and all automatic
segmentation algorithms utilised in this thesis such as k-means, FCM, MRF — ICM and
MRF — Metropolis were compared by means of mean distance difference in mm and
processing time in sec with the physician’s manual assessments.. The strut detection

procedure successfully identified 9.57 + 0.5 struts for each OCT image.

Conclusions: A new fast and robust automatic segmentation technique combining
FCM and WT for lumen border extraction and strut detection in intravascular OCT
images was designed and implemented. The proposed algorithm may be employed
for automated quantitative morphological analysis of in-stent neointimal

hyperplasia.



[epiAnym

Zkomog: H topoypadia omtikng cuvoxng (OCT) eival pia amelkoviotiki péBodog
Baolopévn otov KOOETNPLOOUO Kol XPnOLUOMOoiel UTEPUBpO PwE yla va TapayeL
EvO0-ayyELAKEG ELKOVEG — €YKAPOLAG TOMNAG HE uyPnAn avdluon. € autnv TNV
SlatplBn, Ko VEQ TEXVLKN TUNHATOMoinonG uAomolBnkKe yla TV auvtopatn e€aywyn
NG TEPLOXAG TOU aulol KabBwg Kal ylo TNV avixveuon twv «strut» otig évdo-
ayyelakéc OCT elKOVEG E OKOTO TNV MOCOTIKNA avaAuon tng unepmAaociag. Emiong
€va eUKOAO otnv xprion TmepBaAlov ypadilkwv yla kabnuepwvr KAWLKA XprAon

oXe6LA0TNKE E TOV UAOTIOLNUEVO aAyopLOpo.

Mé£0obou: Teéooeplg OCT KAWLIKEG efeTdoelg medlou-ouxvotntag tng avBpwrvng
unplaiag aptnpiag avaAuOnkav. H mpotewvopevn pEBodog Tunpatonolnong ylo thv
e€aywyn TOu E£0WTEPLKOU TEPLYPAUMATOC aulou, eival Boaolouévn otov Fuzzy C-
Means (FCM) clustering kol TOV HETOOXNUATIONO Kupatidiou. 2Tn OUVEXELQ, Ol
B£0el¢ Twv «struty evtomiotnkav xpnoLlonolwvtag SL1adopeC TOMLKEG MAPAUETPOUG
TIOU TIPOEPXOVTOL Ao T TOTUKA HEYLOTA TOU UETAOXNUATIONOU KUpaTLSiwy eviog

™¢ FCM ocuvdptnong.

AnoteAéopata: To ecwTePLKO Tepiypappa auAou Kat n B€on twv «strut» e€AxOnkav
HE TIOAU peyaAn akpiBela. I cUYKPLON LE TNV TOCOTLKA afloAoynaon amo Evav £l81KO
LaTPO, N AUTOMATN TUNUaTomoinon gixe péon T emukailuyng 0,917+0,065 yLo OAeg
T OCT elkOveg mou meplhapBavovtal otn HeAETN. Emiong, €ylve cUYKPLON HE TOUC
k-means, FCM, ICM kat Metropolis autopatoug alyoplOuoug tpnpatonoinong yla
e€aywyr TOU €0WTEPLKOU TEPLYPAUMATOG auloU kot emédetée vPnAng akpiBelag
OMOTEAECUOTA OTOV  HIKpOTEpo Suvato xpovo emefepyaciag. H Swadikaoia

avixveuong «strut» mpoodloploe emtuxwg 9.57+ 0,5 «strut» yla kabe OCT ewkova.

Tuunepacpata: Mia VEQ QMOTEAECMOTIK KOL Ypnyopn OQUTOUATN TEXVIKN
TUNpatomnoinong mou cuvdudlel FCM kat WT yla tnv e§aywyn Twv opiwv Tou auAou
KOl TNV OViXveuon Twv «strut» otic €évdo-ayyelakeg elkoveg OCT oxedLAoTNKE Kol
vAorouibnke. O mpoTeVOUEVOG aAyoplOuog umopel va xpnolpomownBel ywa tnv

OLUTOMOTOTIOLNEVN TIOOOTLKH LopdoAoyLK avaAucon TnG untepmAaciag.
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CHAPTER1

OPTICAL COHERENCE TOMOGRAPHY

PHYSICS & INSTRUMENTATION

Introduction

Optical coherence tomography (OCT) is an emerging optical imaging technology that
performs high-resolution, cross-sectional tomographic imaging of internal structure
in biological systems and materials [1,2]. OCT is analogous to ultrasound B mode
imaging except that it uses light instead of sound. Image resolutions of 1-15 um can
be achieved, over one order of magnitude higher than conventional ultrasound. OCT
performs imaging by measuring the echo time delay and intensity of backscattered
light from internal microstructure in the tissue. Compared to traditional intravascular
ultrasound (IVUS), OCT has a ten-fold higher image resolution given the use of light
rather than sound. This advantage has seen OCT successfully applied to the
assessment of atherosclerotic plaque, stent apposition and tissue coverage,
introducing a new era in intravascular coronary imaging. The origins of OCT date

back to 1990 and introduced by David Huang [1].

1.1 Anatomic Considerations

Principally, all epicardial coronary arteries, venous or arterial grafts accessible by a
guiding catheter, are eligible for OCT imaging. Considerations regarding anatomy and
patient characteristics arise from the fact (a) that OCT imaging requires a blood-free
environment and (b) from OCT catheter design. As the imaging procedure demands
temporary blood removal and flush (e.g. lactated ringers or X-ray contrast medium),
it should not be performed in patients with severely impaired left ventricular
function or those presenting with hemodynamic compromise. Further, OCT should
be used with caution in patients with single remaining vessel or those with markedly
impaired renal function. Lesions that are ostially or proximally located cannot be

adequately imaged using proximal balloon occlusion and thus, a non-occlusive
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technique may be preferred in these circumstances. Large caliber vessels or very
tortuous vessels often preclude complete circumferential imaging as a result of a
non-central, non-coaxial position of the OCT imaging probe within the vessel. These
anatomic limitations seem to be significantly attenuated in Fourier-domain OCT, as
the pullback speed is much higher and as a result, the duration of ischemia and the
amount of potentially nephrotoxic flush is much lower. Increased penetration depth
and scanning range allow imaging of the complete circumference of large and
tortuous vessels. The design as short monorail catheter enables to negotiate even
complex lesions by selecting an appropriate standard guide wire. As there is no
proximal balloon occlusion necessary, also ostial lesions, bifurcations and large

vessels can be visualized [2].

1.2 Fundamentals

The principle is analogous to pulse-echo ultrasound imaging, however light is used
rather than sound to create the image. Whereas ultrasound produces images from
backscattered sound “echoes,” OCT uses infrared light waves that reflect off the
internal microstructure within the biological tissues. The use of light allows for a 10
fold higher image resolution, however this is at the expense of a reduced
penetration depth and the need to create a blood-free environment for imaging. In
coronary arteries blood (namely red blood cells) represents a nontransparent tissue
causing multiple scattering and substantial signal attenuation. As a consequence,
blood must be displaced during OCT imaging. This procedure is potentially causing
ischemia in the territory of the artery under study. The need for balloon occlusion
and intra-coronary flush are at the forefront of emerging developments to simplify
the OCT image acquisition process. Automated catheter pullbacks at very high speed
are currently under development in OCT systems using optical Fourier-domain
imaging. Faster pullback speeds offer the potential to scan an entire stent within a

matter of 5-6 seconds [2].

1.3 Principles Of Operation

OCT utilizes a near infrared light source (approx 1300nm wavelength) in combination

with advanced fibre-optics to create a dataset of the coronary artery. Both the
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bandwidth of the infrared light used and the wave velocity are orders of magnitude
higher than in medical ultrasound. The resulting resolution depends primarily on the
ratio of these parameters, and is one order of magnitude larger than that of IVUS:
the axial resolution of OCT is about 15 um. The lateral resolution is mainly
determined by the imaging optics in the catheter and is approximately 25 um. The
imaging depth of approximately 1.0-1.5mm within the coronary artery wall is limited

by the attenuation of light in the tissue [TABLE 1.1].

Table 1.1: Comparison OCT and IVUS

ocT IVUS

Axial Resolution 10-20 um 100-150 um
Penetration depth 1.5-2 mm 4-8 mm
Probe size 0.4 mm 1.1 mm
Pullback speed 0.5 mm/s Up to 40 mm/s
Blood removal Yes No
needed

Plaque Yes Yes

characterization

Fibrous cap Yes No
measurement
Vesselremodelling No Yes

OCT is analogous to ultrasound imaging but uses light instead of sound. Cross-
sectional images are generated by measuring the echo time delay and intensity of
light that is reflected or backscattered from internal structures in tissue [1]. Because
the velocity of light is extremely high, the echo time delay cannot be measured

directly. Instead, it is necessary to use correlation or interferometry techniques. One
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method for measuring the echo time delay of light is to use low-coherence

interferometry.

Low-coherence interferometry was first developed for measuring reflections in fiber
optics and optoelectronic devices [3-5]. The first applications of low-coherence
interferometry in biomedicine were in ophthalmology to perform precision
measurements of axial eye length and corneal thickness [6, 7]. Low-coherence
interferometry measures the echo time delay and intensity of backscattered light by

interfering it with light that has traveled a known reference path length and time

delay.
Coherent Laser Source
ia
AL
—— Reference
Beam AL
Splitter
Source Sample

Low coherence Source

A
2K

\/ Detector _.VI\UU u uvﬁk —

Figure 1.1 OCT measures the echo time delay of reflected light by using low-
coherence interferometry. The system is based on a Michelson-type interferometer.
Reflections or backscattering from the object being imaged are correlated with light

which travels a reference path.

Measurements are performed using a Michelson-type interferometer (figure 1.1).
Light from a source is directed onto a beam splitter, and one of the beams is incident
onto the sample to be imaged, while the second beam travels a reference path with
a variable path length. The backscattered light from the sample is interfered with

reflected light from the reference arm and detected with a photodetector at the
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interferometer output. If the light source is coherent, then interference fringes will
be observed as the relative path lengths are varied. However, if low-coherence light
or short pulses are used, then interference occurs only when the two path lengths
match to within the coherence length of the light. The echo time delay and intensity
of backscattered light from sites within the sample can be measured by detecting
and demodulating the interference output of the interferometer while scanning the
reference path length. This method is analogous to heterodyne optical detection in

optical communications.

Figure 1.2 is a schematic illustrating how OCT performs cross-sectional imaging. The
optical beam is focused into the sample being imaged, and the echo time delay and
intensity of the backscattered light are measured to yield an axial backscattering
profile. The incident beam is then scanned in the transverse direction, and the axial
backscattering profile is measured at several transverse positions to yield a two-
dimensional data set. This data set represents the optical backscattering through a
cross section of the tissue. The data is displayed as a logarithmic gray scale or false

color image.

One of the advantages of OCT is that it can be implemented using compact fiber
optic components and integrated with a wide range of medical instruments. Figure
1.3 shows a schematic of an OCT system using fiber optic Michelson-type
interferometer. A low-coherence light source is coupled into the interferometer, and
the interference at the output is detected with a photodiode. One arm of the
interferometer emits a beam that is directed and scanned on the sample that is
being imaged, while the other arm of the interferometer is a reference arm with a
scanning delay line. The system can be interfaced to microscopes, hand held imaging

probes, as well as catheters and endoscopes.
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Figure 1.2 Cross-sectional images are constructed by performing measurements of
the echo time delay of light at different transverse positions. The result is a two-
dimensional data set that represents the backscattering in a cross-sectional plane of

the tissue.
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Reference Scanning Schemes

Optical Arm * Time Domain
Source * Fourier Domain
(NIR)
L 1
Beam
Splitter .
Tissue
Display Sample N
Arm
: (2
Electronics H Computer
y
X

Figure 1.3 Schematic of OCT instrument based on a fiber-optic implementation of a
Michaelson interferometer. One arm of the interferometer is interfaced to the
measurement instrument and the other arm has a scanning delay line. The system

shown is configured for high-speed catheter/endoscope based imaging.

1.4 Equipment

The equipment for intracoronary OCT generally consists in an OCT imaging catheter,
a motorized pullback device and an imaging console, that contains the light source,
signal processing units, data storage and display [8]. The imaging catheter is part of
the sample arm of the interferometer. The optical signal is transmitted by a single-
mode fiber, which is fitted with an integrated lens micro-prism assembly to focus the
beam and direct it towards the tissue. The focus is approximately 1mm outside the
catheter. In order to scan the vessel lengthwise, the catheter-imaging tip is pulled
back while rotating, usually inside a transparent sheath, allowing to collect a three
dimensional dataset of the coronary artery. Both rotary and pullback motion are

driven proximally by a motor outside the patient.
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1.4.1 Time-Domain Oct

In time-domain (TD-) OCT, the length of the reference arm is scanned over a distance
of typically a few millimetres, by moving a mirror. The point from which intensity is
collected from the sample arm is moved through the tissue accordingly, and the
amplitude of the recorded interferogram in a scan corresponds to the reflectivity of
the tissue along the direction of the sample beam. By scanning the beam along the
tissue, in a rotary fashion for intravascular imaging, an image is built up out of
neighbouring lines. Figure 1.4 shows the currently commercially available TD-OCT

system (Lightlab Imaging, Westford, MA, USA).

optical p-optic lens/mirror

Figure 1.4 The currently commercially available TD-OCT system (Lightlab Imaging,
Westford, MA,USA). A)The OCT imaging wire with an outer diameter of 0.019 inch B)
Magnification of the distal catheter tip C) Magnification of the 0.006 inch rotating
single-mode fibre-optic core, located within the distal sleeve of the imaging wire D)
Imaging console with pullback device allowing for real-time image display and data

storage.

1.4.2 Fourier-Domain Oct

A new generation of OCT systems operates in the frequency (rather than time-)
domain, also called Fourier domain. The interferogram is detected as a function of
wavelength, either by using a broadband source as in the time domain systems, and
spectrally resolved detection, or alternatively by incorporating a novel wavelength-

swept laser source [9] [10][TABLE 1.2]. This latter technique is also called “swept-
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source OCT”, or optical frequency domain imaging (OFDI), and capitalizes most
effectively on the higher sensitivity and signal-to-noise ratio offered by Fourier
domain detection. This development has led to faster image acquisition speeds, with
greater penetration depth, without loss of vital detail or resolution, and represents a
great advancement on current conventional OCT systems. From the signal received
in one wavelength sweep, the depth profile can be constructed by the Fourier
transform operation that is performed electronically in the data processing unit. All
other components of a Fourier-domain system (the interferometer, the catheter,
including the imaging optics, display) are comparable in principle to those in a time-

domain OCT system.

Tablel.2: Characteristics of time domain OCT (TD-OCT) and Fourier domain OCT
(FD-OCT). Characteristics of TD-OCT are given for the commercially
avalaibleLightlab Imaging (Westford,MA, USA) system, characteristics of FD—OCT
are based on non/commercially available prototypes.

TD-OCT FD-OCT
fixed light source and light  source with variable
variable reference mirror wavelength and fixed reference

mirror

Axial 10-20 um Upto 7 um

Resolution

Penetration 1.5-2 mm 1.5-2 mm

depth

Optical Image Wire Integrated in catheter

core

Maximum 3 mm/s Up to 40 mm/s

pullback

speed

Scan 7 mm >10 mm

diameter

Blood Yes Yes

removal

needed

The scan speed, or line rate, in a time-domain-OCT system are limited by the
achievable mechanical scan speed of the reference arm mirror, and by the sensitivity
of the signal detection [11]. The source wavelength in Fourier-domain OCT can be
swept at a much higher rate than the position scan of the reference arm mirror in a
time-domain OCT system. In addition, Fourier-domain OCT has a higher sensitivity
than time-domain OCT at large line rates and scan depths [12-14]. These features

can be put to good use in larger scan speeds, of the order of 105 lines per second. In



Chapter 1 OPTICAL COHERENCE TOMOGRAPHY PHYSICS & INSTRUMENTATION

a Fourier domain OCT system, the wavelength range of the sweep determines the
resolution of the image, while the imaging depth is inversely related to the

instantaneous spectral width of the source.

The increased sensitivity of Fourier-domain OCT also allows for larger imaging
depths. The attenuation of light by the tissue is the same for time-domain and for
Fourier-domain OCT, but the lower noise of the latter makes it possible to discern
weaker signals that would be indistinguishable from the background in time-domain
OCT. The depth range from which useful anatomical information can be extracted is
extended by a factor of about 3 [15]. Clinically, this advantage enables the

assessment of coronary micro-structures well beyond the arterial-lumen border.

Figure 1.5 Occlusive image acquisition technique (TD OCT imaging Lightlab Imaging,
Westford, MA, USA).

Fourier domain OCT systems produce images much faster than standard video-rate,
so recorded data has to be replayed for inspection by the operator. Currently, OCT
systems scan 200-500 angles per revolution (frame), and 5-10 images per mm in a
pullback. If these parameters are maintained with high speed systems, 20 mm/s (or
higher) pullback speeds are possible at the same sampling density as conventional
OCT data. Figure 1.6 shows different FD-OCT prototypes as used at the Thoraxcenter
in 2008.

The high scan speeds have been employed for real-time volumetric imaging of
dynamic phenomena including fast pullbacks for intra-coronary imaging with

minimal ischemia, [15] and retinal scans with minimal motion artifacts [16]. Imaging

10
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of dynamic phenomena in time, or rather removing motion artifacts, are the prime
applications of high-speed OCT. 3-Dimensional rendering of volumes becomes
possible if motion during the scan is limited. The high data rate of novel OCT
technologies could also be used to increase sampling density, either in the
longitudinal (pullback) or angular direction. A smaller spacing between frames in a
pullback would lead to a better sampling of small scale features in the arterial or
stent geometry that would be missed at 100 um inter-frame distance. Denser
sampling in the angular direction would facilitate speckle filtering in OCT images.
Speckle is a major obstacle for the development of parametric and quantitative

imaging techniques. These possibilities are still largely unexplored.

A B C D

Figure 1.6 Different FD-OCT prototypes as used at the Thoraxcenter in 2008 A) M4
system, Lightlab Imaging, Westford, MA, USA , B) Terumo OCT C) Volcano OCT D)
MGH OFDI system (G. Tearney and B. Bouma, Wellman Center for Photomedicine,
MGH, Boston, MA, USA).
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CHAPTER 2

CLUSTERING ALGORITHMS

Introduction

Clustering is an unsupervised learning task that aims at decomposing a given set of
objects into subgroups or clusters based on similarity. The goal is to divide the data-
set in such a way that objects (or example cases) belonging to the same cluster are
as similar as possible, whereas objects belonging to different clusters are as
dissimilar as possible. The motivation for finding and building classes in this way can
be manifold [17]. Cluster analysis is primarily a tool for discovering previously hidden
structure in a set of unordered objects. In this case one assumes that a ‘true’ or
natural grouping exists in the data. However, the assignment of objects to the
classes and the description of these classes are unknown. By arranging similar
objects into clusters one tries to reconstruct the unknown structure in the hope that
every cluster found represents an actual type or category of objects. Clustering
methods can also be used for data reduction purposes. Then it is merely aiming at a
simplified representation of the set of objects which allows for dealing with a
manageable number of homogeneous groups instead of with a vast number of single
objects. Only some mathematical criteria can decide on the composition of clusters
when classifying data-sets automatically. Therefore clustering methods are endowed
with distance functions that measure the dissimilarity of presented example cases,
which is equivalent to measuring their similarity. As a result one yields a partition of

the data-set into clusters regarding the chosen dissimilarity relation.

All clustering methods that we consider in this chapter are partitioning algorithms.
Given a positive integer K, they aim at finding the best partition of the data into K
groups based on the given dissimilarity measure and they regard the space of

possible partitions into K subsets only.

12
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A common concept of all described clustering approaches is that they are prototype-
based, i.e., the clusters are represented by cluster prototypes Mj, j=1, ..., K.
Prototypes are used to capture the structure (distribution) of the data in each
cluster. With this representation of the clusters we formally denote the set of
prototypes M= {M1, ..., MK}. Each prototype Mj is an n-tuple of parameters that
consists of a cluster center i (location parameter) and maybe some additional
parameters about the size and the shape of the cluster. The cluster center pi is an
instantiation of the attributes used to describe the domain, just as the data points in
the data-set to divide. The size and shape parameters of a prototype determine the
extension of the cluster in different directions of the underlying domain. The
prototypes are constructed by the clustering algorithms and serve as prototypical

representations of the data points in each cluster.
2.1 Basic Clustering Algorithms

Clustering algorithms are used extensively not only to organize and categorize data,

but are also useful for data compression and model construction [18].

In this section, we present the fuzzy C-means, deriving it from the hard c-means
clustering algorithm. The latter one is better known as k-means, but here we call it
(hard) C-means to unify the notation and to emphasize that it served as a starting
point for the fuzzy extensions. We further restrict ourselves to the simplest form of
cluster prototypes at first. That is, each prototype only consists of the center vectors,
Ci=(ci), such that the data points assigned to a cluster are represented by a
prototypical point in the data space. We consider as a distance measure d an inner

product norm induced distance as for instance the Euclidean distance.

All algorithms described in this section are based on objective functions Q, which are
mathematical criteria that quantify the goodness of cluster models that comprise
prototypes and data partition. Objective functions serve as cost functions that have
to be minimized to obtain optimal cluster solutions. Thus, for each of the following
cluster models the respective objective function expresses desired properties of
what should be regarded as “best” results of the cluster algorithm. Having defined

such a criterion of optimality, the clustering task can be formulated as a function

13
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optimization problem. That is, the algorithms determine the best decomposition of a
data-set into a predefined number of clusters by minimizing their objective function.
The steps of the algorithms follow from the optimization scheme that they apply to
approach the optimum of Q. Thus, in our presentation of the hard and fuzzy c-means
we discuss their respective objective functions first. Then we shed light on their

specific minimization scheme.

The idea of defining an objective function and have its minimization drive the
clustering process is quite universal. Aside from the basic algorithms many
extensions and modifications have been proposed that aim at improvements of the
clustering results with respect to particular problems (e.g., noise, outliers).
Consequently, other objective functions have been tailored for these specific
applications. However, regardless of the specific objective function that an algorithm
is based on, the objective function is a goodness measure. Thus it can be used to
compare several clustering models of a data-set that have been obtained by the

same algorithm (holding the number of clusters, i.e., the value of p).

In their basic forms the hard and fuzzy C-means algorithms look for a predefined
number of K clusters in a given data-set, where each of the clusters is represented by
its center vector. However, hard and fuzzy C-means differ in the way they assign data
to clusters, i.e., what type of data partitions they form. In classical (hard) cluster
analysis each datum is assigned to exactly one cluster. Consequently, the hard C-
means yield exhaustive partitions of the example set into non-empty and pairwise
disjoint subsets. Such hard (crisp) assignment of data to clusters can be inadequate
in the presence of data points that are almost equally distant from two or more
clusters. Such special data points can represent hybrid-type or mixture objects,
which are (more or less) equally similar to two or more types. A crisp partition
arbitrarily forces the full assignment of such data points to one of the clusters,
although they should (almost) equally belong to all of them. For this purpose the
fuzzy clustering approaches presented in Section 2.3 fulfill the requirement that data
points have to be assigned to one (and only one) cluster. Data points can belong to
more than one cluster and even with different degrees of membership to the

different clusters. These gradual cluster assignments can reflect present cluster
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structure in a more natural way, especially when clusters overlap. Then the
memberships of data points at the overlapping boundaries can express the

ambiguity of the cluster assignment.

The shift from hard to gradual assignment of data to clusters for the purpose of
more expressive data partitions founded the field of fuzzy cluster analysis. We start

our presentation with the hard C-means.
2.2 K-Means Clustering Algorithm

One of the simplest unsupervised clustering techniques is k-means clustering [19,
20]. The procedure follows a simple and easy way to classify a given data set through
a certain number of clusters. In this method, from a set of patterns, K number of
patterns are randomly chosen as initial cluster centers of the K clusters. In each
iteration the patterns are assigned to the cluster having the nearest center; and the
centers of the clusters are updated after assignment of all patterns. The center of a
cluster is the arithmetic mean of the patterns assigned to it at the previous iteration.
Thus if M = [u1,u2, . . .,uK], includes K number of vectors j (uj, 1 <= j <= K) of cluster
prototypes, then after the first iteration pl becomes the arithmetic mean of the
patterns assigned to the first cluster at this iteration, p2 the arithmetic mean of the
patterns assigned to second cluster and so on. It means that the different
components of the vector pj are the arithmetic means of corresponding component
values of the patterns belonging to the jth cluster. This process stops when the

centers become fixed i.e. no changes occur from the partitioning point of view.

This process is “partitive” because at every iteration the partitions or boundaries
between the clusters are changed and some patterns from one cluster are moved to
some other clusters. The boundaries are crisp or hard as each pattern is assigned to

only one cluster.

The k-means algorithm basically minimizes the following objective function

K n

0=>>

j=1 i=1

v/ — ,u.Hz (2.1)
i J
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where v{ the ith sample of jth class Kj and pj the center of the jth cluster

. 2
defined as the mean of v, € K ;. Also H"ij T H; H (Euclidean distance).

Distance equations that we can use are:

n 2
Euclidean d(x,y) = %/Z(XI- =)
i=1

Hamming d(x,y) = ;Zl|xi -]

Tchebyschev d(x,y) =max|x, — y,,i=12,..,n
Minkowski d(x,y) = {/le‘,(x,- =)’ p>0
Camberra d(x,y)= g% x,and y, >0

The K-means algorithm is composed of the following steps:

/1. Initialize the number of classes K and centroids v;j. \
2. Assign each pixel or voxel to the group whose centroid is the closest.
3. After all pixels have been assigned, recalculate the centroids.

4, Repeat steps 2 and 3 until the centroids no longer change.

/

The k-means algorithm does not necessarily find the most optimal configuration,

corresponding to the global objective function minimum. The algorithm is also
significantly sensitive to the initial randomly selected cluster centres. The k-means
algorithm can be run multiple times to reduce this effect. K-means is a simple

algorithm that has been adapted to many problem domains.
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2.3 Fuzzy C-Means Clustering (Fcm) Algorithm

Fuzzy cluster analysis allows gradual memberships of data points to clusters
measured as degrees in [0,1]. This gives the flexibility to express that data points can
belong to more than one cluster. This method was developed by Dunn in 1973 [21]
and improved by Bezdek in 1981 [22]. Furthermore, these membership degrees offer
a much finer degree of detail of the data model. Aside from assigning a data point to
clusters in shares, membership degrees can also express how ambiguously or
definitely a data point should belong to a cluster. The concept of these membership
degrees is substantiated by the definition and interpretation of fuzzy sets (Zadeh,

1965) [23].

Let V ={vl, ..., vn} be the set of given examples and let c be the number of clusters

1 <c<n. Then we call uj a probabilistic cluster partition of V if

> u, >0,Vi={l,..,C} (2.2)
j=1

and

C
ZMU =1Vj={L...,n} (2.3)
i1

The uj; E [0,1] are interpreted as the membership degree of datum vj to cluster i
relative to all other clusters. Constraint (2.2) guarantees that no cluster is empty.
This corresponds to the requirement in classical cluster analysis that no cluster,
represented as (classical) subset of V, is empty. Condition (2.3) ensures that the sum
of the membership degrees for each datum equals 1. This means that each datum
receives the same weight in comparison to all other data and, therefore, that all data
are (equally) included into the cluster partition. As a consequence of both
constraints no cluster can contain the full membership of all data points.
Furthermore, condition (2.3) corresponds to a normalization of the memberships per
datum. Thus the membership degrees for a given datum formally resemble the

probabilities of its being a member of the corresponding cluster.
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After defining probabilistic partitions we can turn to developing an objective
function for the fuzzy clustering task. Certainly, the closer a data point lies to the
center of a cluster, the higher its degree of membership should be to this cluster.
Following this rationale, one can say that the distances between the cluster centers
and the data points (strongly) assigned to it should be minimal. Hence the problem
to divide a given data-set into c clusters can (again) be stated as the task to minimize
the squared distances of the data points to their cluster centers, since, of course, we
want to maximize the degrees of membership. The probabilistic fuzzy objective

function Q is thus based on the least sum of squared distances.

More formally, a fuzzy cluster model of a given data-set V into c clusters is defined to

be optimal when it minimizes the objective function:

n C
@m=Z§%?

j=1i=1

2
1<m<ow (2.4)

v~ H

under the constraints (2.2) and (2.3) that have to be satisfied for probabilistic
membership degrees in Q . The condition (2.3) avoids the trivial solution of
minimization problem, i.e., uj=0 Vi, j. The normalization constraint (2.3) leads to a
‘distribution’ of the weight of each data point over the different clusters. Since all
data points have the same fixed amount of membership to share between clusters,
the normalization condition implements the known partitioning property of any
probabilistic fuzzy clustering algorithm. The parameter m, m > 1, is called the
fuzzifier or weighting exponent. The actual value of m determines the ‘fuzziness’ of
the classification. The generalization for exponents m > 1 that lead to fuzzy
memberships has been proposed in Bezdek, 1973 [25]. With higher values for m the
boundaries between clusters become softer, with lower values they get harder.

Usually m=2 is chosen.

The membership degrees have to be chosen according to the following formula that

is independent of the chosen distance measure [22, 24] :
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1

u. =
(2.5)

2
m-=1
& (I-ul

=R

In this case there exists a cluster i with zero distance to a datum vj, uj=1 and u,=0 for
all other clusters k # i. The above equation clearly shows the relative character of the
probabilistic membership degree. It depends not only on the distance of the datum

v; to cluster i, but also on the distances between this data point and other clusters.

The cluster center estimated:

H, = - - (2.6)

The fuzzy c-means algorithm is composed of the following steps:

ﬁ.Choose the number of clusters or region. \

2. Assign pixels their initial membership values according to equation (2.3).

3. Compute the centroid for each cluster, and the membership values using the formula
in Equations (2.5, 2.6).

4. lterate until max < & where k is the iteration number

k+l_ul{§

and € is the error threshold; otherwise return to step 2.

Q’-\ssign each pixel the cluster number for which its membership is maximum. /

Where:

¢ - the number of cluster centers or data subsets
m - the weighting exponents
||vj — ui||? - the distance measure between object vi and cluster center pj;

n - the total number of pixels in image;
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uij - the fuzzy membership membership matrix
ui - the cluster center for subset i in feature space;
U — the fuzzy c-partition

Q- objective function

2.4 Markov Random Field (MRF)

Markov random field (MRF) theory provides a convenient and consistent way of
modeling context dependent entities such as image pixels and other spatially
correlated features. This is achieved through characterizing mutual influences among
such entities using MRF probabilities. The practical use of MRF models is largely
ascribed to the equivalence between MRFs and Gibbs distributions established by
Hamersley and Clifford (1971) [26] and further developed by Besag (1974) [27] for
the joint distribution of MRFs. This enables us to model vision problems by a
mathematically sound yet tractable means for the image analysis in the Bayesian
framework Grenander 1983 [28], Geman and Geman 1984 [29]. From the
computational perspective, the local property of MRFs leads to algorithms which can
be implemented in a local and massively parallel manner. Furthermore, MRF theory

provides a foundation for multi-resolution computation Gidas 1989 [30].

For the above reasons, MRFs have been widely employed to solve vision problems at
all levels. Most of the MRF models are for low level processing. These include image
restoration and segmentation, surface reconstruction, edge detection, texture
analysis, optical flow, shape from X, active contours, deformable templates, data
fusion, visual integration, and perceptual organization. The use of MRFs in high level
vision, such as for object matching and recognition, has also emerged in recent

years.

MRF modeling combines conditional (local intensity distribution) with contextual
(intensity similarity within small neighborhoods) information under the Bayesian
framework in order to estimate the true intensities of the image rather than those
based only on the conditional information [27]. It assumes that the class probability

of a pixel is only dependent on class membership of its spatial neighbors (also called
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lattice) which in turn reduces the possible influence of noise and overlapping
structures. The model assumption that the conditional distribution depends on the
pixels in the near neighborhood is subject to the Bayesian framework which states
that the decision rule for labeling an image pixel combines the conditional intensity
distribution of an individual region with prior knowledge regarding that region [31,

29].

Given the fact that the observed image y is a realization of a random field Y, X is the
true unknown label of the observed pixel, and x indicates the estimate of x*, the
main objective of the MRF segmentation model is to find x given the observed image
y.

Let’s assume that P(X) is our prior knowledge and P(Y[X) is the probability of
realizing the observed image given the regions distribution in the image. P(Y|X —

Conditional Intensity Distribution)

Then, in accordance to Bayes theorem

P(Y | X)P(X)

P(X|Y)= 0

(2.7)

where, P(X[Y) is our posterior probability. The most widely used conditional intensity
distribution is the Gaussian distribution, whose function, given the class x; is given

by:

PY=y|X=x)= —Mj (2.8)

1 exp
270! o,

Where, us and o are the distribution parameters of class x;.usand osare the mean

value and the standard deviation.

P(X— Contextual information) estimated by:

P(X =x) =exp{- SU (x)} (2.9)

Then, x can be obtained by taking the posterior’s probability natural logarithm and
minimizing its negative resultant:[27] (minimizing its negative resultant is faster from

maximizing so for this reason it is used ).
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X =arg mxin(— log(P(X |Y))) = (2.10)

arg min(-log p(y | x)—log p(x)) = (2.11)

Substitutingequations2.8and 2.9 in equation2.7, the final assessment of x obtained
through the calculation of the Minimum a Posteriori (MAP) in the following

equation:

x=arg min{y_ﬂs +%Iog(27wf) + pU(x,)} (2.12)
(o2

Where, U(x;) is the number of pixels in the neighborhood that have color x;. and8 is

a positive constant that controls the interaction between the pixels within the

neighborhood.

A number of approaches has been proposed to solve this difficult optimization
problem. The solutions can, in general, be viewed under two categories:
deterministic or stochastic. In the following sections, we will discuss Besag's
deterministic approach known as the iterated conditional modes (ICM algorithm)

and the stochastic approach, Metropolis algorithm.
2.4.1 Icm Algorithm

The iterated conditional modes (ICM) algorithm, which is an approximate solution to
the MAP estimate, was proposed by Besag [27]. The ICM solves the minimization
problem by sequentially updating (i.e., raster scanning the image) labels by

minimizing the following equation at each pixel s:

x=arg min{y_ﬂs +%Iog(27wf) + pU(x,)} (2.12)
(o2

N

we will refer to the expression inside the brackets as total energy, which is the sum
of the negative log-likelihood and the Gibbs energy.p is a positive constant that

controls the size of clustering or interaction between the sites.

The energy function U(x), which we will also be referring to as Gibbs energy, has the
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following form:

U(x) = Z V.(x.) (2.13)

ceC

where C denotes the set of cliques* for Ns (Ns denote the neighborhood of s). Note
that the sum runs over all clique configurations. V. is the potential function
associated with a clique. It is a function that maps a clique configuration to a real
number, that is, Vc: |—» R. The potential function is applicable to all the
neighborhoods over the image space. A widely used two point clique potential can

be given by:

-1 x,=x,8reC
(2.14)

1 x, #x,8,reC

-]

In this formulation, the potential function will be equal to -1 the pair have the same

intensities and +1 otherwise.

(i-1,j—1) (i-1,j) (i-1,j+1)

(i,j-1) (i, j) (i,j+1)

(i+1,j-1) (i+1,])) (i+1,j+1)

*A clique is a subset of points ceC, which are all neighbors of each other.
Let’s see how ICM algorithm works:

1. The picture is subject to an initial clustering either automatically or manually.

2. For each Pixel and depending on the number of final clusters the sum of the
two Energies estimated (Ei= log-likelihood + Gibbs Energy) (Energies
Etotalix1) @aNd Etotal (x2) fOr labels(1 & 2).

3. For the final price of the Pixel x select the one (label) which has the lowest

energy.
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4. This process is repeated in the entire pixels of the image. As a stopping
condition we have a predetermined number of repetitions or a threshold

obtained (for example, the energy change is less than a certain threshold).

The performance of the ICM algorithm depends heavily on the initial labeling. If a
good initial labeling is possible, the ICM algorithm can quickly converge to a desired
solution. If a reasonably good initial labeling is not possible, the stochastic algorithm,
which will be discussed in the following sections, may be a better choice. Of course,
if they can be executed in a reasonable time. For initial clustering can be used basic

clustering algorithms, as k-means etc.
2.4.2 Simulated Annealing Algorithms

In this section, we will discuss a simulated annealing-(SA)-based algorithm that solve
the MAP estimate in a manner similar to the physical annealing process that occurs
in matters. The first simulated annealing algorithm was proposed by Metropolis et
al. in 1953 [32]. It was motivated by simulating the physical process of annealing
solids. In a physical annealing process, the matter is heated at a very high
temperature and then gradually and very slowly cooled to reach the ground state.
Inspired by the physical annealing, the SA-based solutions introduce a temperature
variable, similar to the physical temperature in concept, into our energy functions.
This variable will allow us to start our optimization process from a state in which all
the configurations have equal probability, in other words, from a very hot state.
Then, by gradually decreasing the temperature variable, we will be reaching to the
global solution. Simulated annealing is a local search algorithm capable of escaping
from local optima. The principal advantage of these approaches is that the
performance of the optimization is no longer dependent on initial labeling.
Kirkpatrick et al. were the first to introduce simulated annealing to optimization
problems in 1982 [33]. Since then, simulated annealing has been widely used in
combinatorial optimization problems and has achieved good results on a variety of

problem instances.

We use E, and E. represent the new energy and current energy respectively. En is

always accepted if it satisfies En<Ec, but if En>Ec the new energy level is only
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accepted with a probability as specified by exp(-(En-Ec)/T) ,where T is the current
temperature. Hence, worse solutions are accepted based on the change in solution
quality which allows the search to avoid becoming trapped at local minima. The
temperature is then decreased gradually and the annealing process is repeated until

no more improvement is reached or any termination criteria have been met.
2.4.3 Metropolis Algorithm

The method of Metropolis begins by choosing randomly a new value x’ with uniform
probability. If the energy is lowered by the replacement of x with x’, the variable is
set to this new value. If the energy is increased, then a random number u with
uniform distribution between 0 and 1 is generated, and the variable is changed by x’

only if AE/Ty is greater than u. Otherwise the variable retains its previous value x.

Note that the previous algorithm is in fact trying to minimize:

(logo, +(y, — ) o, + pU(x,))IT (2.15)

where T is the temperature parameter. Similar to the physical annealing process, we
need to start with a high temperature and cool it down by decreasing the
temperature very slowly. The most commonly used cooling schedule is Ty =CeTy,
where C takes on values in the range [0.97, 1). A value of 0.97 seems to give
acceptable results. We will use Ty = 4 as the initial temperature. Note that this

temperature has no physical relevance in terms of absolute value.

To understand better how the algorithm works we present the pseudo code for 2-D

images with two regions.
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PSEUDO CODE

Function Metropolis returns the segmented image
Inputs: The labeled image with two regions with labels xi where i =1,2
K = number of iterations.
The original image
Select an initial temperature Tk
for k = 1:K Let k be the iteration index and set k=1
Draw a random uniform number u in the range (0,1)
for s = 1:N Let s be the site of the pixel in the original image and N the cluster.
Go to pixel s
Calculate the total energies E(x1) and E(x2) for labels x1 and x2
Calculate AE = E(x2) - E(x1)
IfAE/Tk<O
Assign the label x2 to the pixel s
else ifAE/Tk> u
Assign the label x2 to the pixel s
else
do not change the label

k€k+1 and T € CeT, C=astandard constant.
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THE WAVELET TRANSFORM

3.1 Wavelet Theory

Wavelets are an extension of windowed Fourier analysis by Gabor [34], in which
through a fixed window a large number of oscillations are used for detecting high
frequencies, whereas a small number is used to detect low frequencies. However, in
the first case the window is ‘blind’ to smooth events and in the second case the
window probably will miss a brief change. Instead of a fixed window and a variable
number of oscillations Morlet and Grossman [35] employed a ‘mother wavelet’
which is stretched or compressed to change the size of the window, thus providing a
decomposition of the signal at different scales (frequency bands) (figure3.1a) and it
can be moved to various locations on the signal (figure3.1b). Wavelets are used to
transform the signal under investigation into another representation which presents
the signal information in a more useful form. This transformation of the signal is
known as the wavelet transform. Mathematically speaking, the wavelet transform is

a convolution of the wavelet function with the signal.

The wavelets size variation due to dilation permits them to automatically adapt to
the different components of the signal. A small window (high frequency band)
detects rapid high-frequency components and a large window (low frequency band)
traces slow low-frequency components. The wavelet transform gives a
representation that has good localization in both frequency and space [36-38]. The
localization in frequency implies a correspondence between a scale of the wavelet
transform and a frequency band. The overall study across all available frequency
bands is called multi-resolution analysis [39-41]. The wavelet transform is divided in
two main categories: the continuous wavelet transform (CWT) and the discrete

wavelet transform (DWT) which we will not concern and we will not describe.
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Y

Dilation and translation of a wavelet. (a) Stretching and squeezing a

wavelet: dilation (al =a2/ 2, a3 = a2 x 2). (b) Moving a wavelet: translation.
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3.2 Requirements For The Wavelet

(t) is the wavelet “mother” function that satisfies the constraints:

rwy/ (t)dt =0 (3.1)

In order for the transform to be invertible, the wavelet {)(t) must satisfy the

admissibility condition [35]:
400 A 2 da)
¢, = J._OO|V/(60)| Py <+ (3.2)

3.3 1-D Continuous Wavelet Transform

The continuous wavelet transform (CWT) is defined as follows:

Wr(a,b)=[" f(t,, ()t 3:3)
where,

1 t—>b
W, ()= \/;l//( ; ) (3.4)

is a window function called the mother wavelet a is a scale and b is a translation.

If w (w) is the Fourier transform of ((t) and f(w) the Fourier transform of f(t) then:

WL, f (@) = (s0) f (@) 55)

The function f(t) can be reconstructed from its wavelet transform [35]:

dadb

2
a

(3.6)

W 0= ] WHab, 0

There are, in fact, a large number of wavelets to choose from, for use in the analysis
of our data. The best one for a particular application depends on both the nature of

the signal and what we require from the analysis (i.e. what physical phenomena or
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process we are looking to interrogate, or how we are trying to manipulate the

signal).Some main wavelets you can see in the figure 3.2.

Wit) W(t)

W(t)

t
Figure 3.2. (1)Gaussian wave (first derivative of a Gaussian). (2) Mexican hat (second
derivative of a Gaussian). (3) Morlet (real part).
3.4 2-D Continuous Wavelet Transform

The continuous wavelet transform of a 2D signal f(t1, t2) is defined as [42]:

WT(ayaz’bl’bz) = rwf(tptz) "//(aliazvblibzvtytz)dtldtz (3.7)
Mother wavelet:

1 t,=b t,-b
W(a11a21b11b21t11t2):WW(la 11 2a 2) (38)
11%2 1 2

A reconstruction of the image can be achieved with the inversion formula:

WT: f(t,,t,) =
(3.9)

a,a,

1 popre dad
C_V/‘[;J: Wr(al’aZ’bl’bZ)‘//(al’azibpbz’tl’tz)%dbldbz
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The admissibility condition (that allows to reconstruct the function f),

do,dw,

C, =27 | |p(o, o) (3.10)

|, 0, |

Where y/(w,, w,) represents the 2D Fourier transform of ¢ and || denotes the

modulus of the complex number.

Figure 3.3 2D Mexican Hat wavelet.
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CHAPTER 4

FAST AND ROBUST VESSEL LUMEN SEGMENTATION AND
STRUT DETECTION IN INTRAVASCULAR OCT

Introduction

Optical Coherence Tomography (OCT) is a catheter-based imaging method that
employs near-infrared light to produce high-resolution cross-sectional intravascular
images. We propose a new segmentation technique for automatic lumen area
extraction and stent strut detection in intravascular OCT images for the purpose of
guantitative analysis of neointimal hyperplasia (NIH) and also we create a graphical

user interface (GUI)for our code.
4.1 Previous Work

Few attempts have been made toward lumen segmentation in OCT images.
Tanimote et al. [43] proposed a semiautomatic method that employs a combination
of an edge detection filter and a smoothing operator so as to acquire the lumen area
boundary in intracoronary arteries, both in vitro and in vivo. The introduced
algorithm is based on the existing segmentation software named CURAD. [44] The
user intervention includes the initialization of various starting points within the OCT
image to ensure the correctness and the continuity of the extracted contour.
Consensus in the measurements of two expert observers was reached with the use
of intraclass and interclass correlation coefficients and the reliability coefficients.
[45] The absolute and relative difference between lumen area measurements was

0.02+0.10 mm? and 0.3 + 0.5%, respectively.

Another edge detection technique in order to acquire the vessel lumen border for in
vivo human coronary vessels was proposed by Sihan et al.[46] As a preprocessing
step a despeckling filter is utilized to reduce speckle-noise and normalize gaps and
shape irregularities in the vessel lumen interface. Subsequently, an iterative
implementation of the Canny filter [47] via a binary search was employed, until the

desired percentage of image pixels were classified as edge pixels. This classification
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procedure between contour edges and the edges caused from noise or other
structures within the OCT image was achieved by thresholding at first the dot
product between the gradient orientation and catheter center, and afterward the
edge length. The human observer measured a lumen area of 4.1+ 1.4 mm? while the

proposed methodology calculated the same areaas 4.0+ 1.3 mm? (p=0.09).

Endothelialization and NIH quantification in follow-up OCT images was also assessed
throughout the past few years. Bonnema et al. [48] introduced a fully automatic
method to detect covered and uncovered struts and establish a percent cellular
coverage for a volumetric OCT dataset. The algorithm proposed, was evaluated in
tissue-engineered human blood vessels. It comprises of three distinct steps. At first,
the luminal surface is identified in an iterative process based on the maximum
reflected intensity in order to isolate possible strut positions. Afterward, a strut
detection algorithm is employed in which image pixels are considered as strut pixels
if they satisfy three conditional characteristics: bright reflection at the surface of the
strut, concentrated energy and a dark shadow underneath the strut. Finally, the
difference between the luminal profile of the mimic and the position of the luminal
strut surface is evaluated to determine the cellular coverage. Based on the manual
assessment, the uncovered strut identification algorithm operated with a sensitivity
of 93% and a specificity of 99%. In case of the struts inside the hyperplasia area the

algorithm reached 81% sensitivity and 96% specificity.

Gurmeric et al. [49] also proposed an automatic stent implant follow-up in
intravascular OCT images. The Ilumen extraction and strut detection was
accomplished by a deformable spline contour model that propagates with ordinary
differential equations toward an optimal solution. The percentage of correctly
detected struts was calculated as the absolute difference between the number of
struts marked by the physician and the number of struts detected by the proposed

algorithm achieving an approximate accuracy of 86% in strut detection.

Kauffmann et al. [50] suggested an automatic and supervised lumen and strut
detection algorithm to evaluate re-endotheliazation in OCT images. The inner wall
delineation is carried out in three consecutive steps: binarization of the OCT image

using the Otsu method, [51] approximation of the wall border through
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morphological segmentation and inner contour extraction via an initialization of
active contour model near to real edges of the vessel. The strut detection procedure
takes place via a gradient-based shadow detection algorithm and analyzing gray level
radial profiles. The strut detection rate ranged from 35.42% to 73.39% in vivo and up

to 84.44% in vitro acquisitions.

Unal et al. [52] recommended an automatic segmentation method in OCT images.
The lumen segmentation is applied, in previously denoised images, throughout an
active contour framework that employs two Catmull-Rom splines that are initialized
by shooting rays from the center of each image to every direction. The strut
detection is also based in shadow detection by analyzing angular intensity energy
distribution in the lumen area. The mean difference between the computer method
and expert evaluations for lumen cross-section area was 0.11+0.70 mmz, r2=0.98,
p<0.0001. The average number of detected struts was 10.40 £ 2.90 per cross section

when the expert identified 10.50% 2.80, r’=0.78, p<0.0001.

Both Unal et al. [52] and Gurmeric et al. [49] introduced for the first time
computerized applications of the lumen- vessel border detection and strut detection
to quantitatively assess stent endothelialisation and NIH development in-stent

placement follow-up studies within intracoronary OCT.

An automated strut detection algorithm was also developed based on an adapted K-
nearest neighbour method by Bruining et al [53]. The classification between struts or
not in a polar transformated OCT image is employed with a modified K-nearest
neighbour (mKNN) algorithm. The mKNN with a-priori information is applied to all
rows to find a solution for this classification problem. The a-priori information
consists of five manually selected frames that we considered visually diverse enough
to detect most of the struts. Validation in just implanted stents group (n=15)
resulted in a success rate of 77%. In a stent follow-up group (n=14) 6 months after

implantation with tissue growth inside a success rate of 50% was observed.

Tsantis et al [54] proposed a segmentation technique for automatic lumen area
extraction and stent strut detection in intravascular OCT images for the purpose of
guantitative analysis of neointimal hyperplasia (NIH). A clinical dataset of frequency-
domain OCT scans of the human femoral artery was analyzed. First, a segmentation
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method based on the Markov random field (MRF) model was employed for lumen
area identification. Second, textural and edge information derived from local
intensity distribution and continuous wavelet transform (CWT) analysis were
integrated to extract the inner luminal contour. Finally, the stent strut positions were
detected via the introduction of each strut wavelet response across scales into a
feature extraction and classification scheme in order to optimize the strut position
detection. Results: The inner lumen contour and the position of stent strut were
extracted with very high accuracy. Compared with manual segmentation by an
expert vascular physician the automatic segmentation had an average overlap value
of 0.937+0.045 for all OCT images included in the study. The strut detection
accuracy had an area under the curve (AUC) value of 0.95, together with sensitivity

and specificity average values of 0.91 and 0.96, respectively.

Lu et al [55] developed a highly automated method for detecting stent struts and
measuring tissue coverage. A bagged decision trees classifier was employed to
classify candidate struts using features extracted from the images. Strut detection
statistics approached variability of manual analysis. Differences between manual and
automatic area measurements were 0.12 + 0.20 mm? and 0.11 + 0.20 mm? for stent

and tissue areas, respectively.

Most aforementioned approaches [43,44,46-50,52] either employed only edge
detection techniques with ad hoc thresholding, or more complex approaches with
active or spline deformable models that are mainly intensity-based. It is worth
mentioning that they do not clarify how they encounter the bright concentric rings
that apparently would decrease the active contour model performance. The complex
nature of OCT imaging make strut detection as one of the most challenging tasks
among medical image processing applications. Different reflection angles, refraction
phenomena, misplaced probe positions together with speckle noise, altering
continuously the strut reflection surface. Therefore, detection approaches that do
not integrate these complex characteristics are most likely to have limited
performance. Strut detection algorithms [48,49,50,52] published so far, consider as
prerequisite the fact that behind the strut bright surface a shadow area is created

due to high reflectivity. However, this is not always the case since in many occasions
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bright surfaces can be present without shadowing. In addition, in several OCT images

struts are partially or totally invisible leaving a comet tail behind.
4.2 Oct Clinical Dataset

For this study, Fourier domain OCT (FD-OCT) of the femoral artery was performed
with a commercially available system (C7-XR, Lightlab, Massachusetts, USA). OCT
acquisitions were performed with a dextrose saline flush (glucose 5%w/v) technique
with simultaneous manual obstruction of the common femoral artery. Routine OCT
acquisitions during follow-up of femoral arteries with previously implanted stents
were employed. Stents examined were commercially available new generation
nitinol self-expanding stents that are approved for the femoral artery. Femoral
nitinol stents expand up to a 5-7 mm diameter once implanted due to their thermal
memory properties, the stent mesh is produced with laser-cutting technology in
variable lengths (up to 20 cm) and they have an almost square sub-millimeter cross-

sectional stent strut configuration.

Four OCT in vivo sequences of the human femoral artery (each scan visualizing 54
mm of vessel lumen in 270 consecutive frames; 1080 frames analyzed in total) were
included in the study for the vessel lumen border extraction algorithm. Stent struts
because of previous stent placement were identified in all 4 femoral OCT sequences.
However, individual stent struts were present in 300 frames from all sequences and
were further included in the strut detection study. The OCT unit performs automatic
or manual calibration every time before study acquisition against an item of known
size (i.e., the size of the catheter used =2.7Fr = 0.9 mm) [56, 57]. This unit is also
digital imaging and communications in medicine (DICOM) compliant and thus
exported images contain all calibration information (e.g., pixel size) needed to
produce quantitative results. Calibration was also checked before quantitative

analysis. OCT acquisition parameters are outlined in detail in Table 1.
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TABLE 5.1. FD-OCT scan parameters of the femoral artery.[58]

OCT technology

Frequency-domain image reconstruction

OCT catheter
Guide wire size
Working channel
Injector pump
Flush technique
Light wavelength
Axial resolution
Lateral resolution
Scan diameter
Max pullback speed
Acquisition length
Acquisition time
Frame rate
Number of frames

Image export format

Monorail optical fiber (C7-XR, Lightlab, Massachussetts, USA)
0.01400 compatible
3.7Fr (0.01400 wire plus the catheter with the optical fiber)
Automated electronic injector (Medrad, Warrendale, USA)
50 ml of dextrose 5%w/v at 10ml/s (max 400psi)
1250-1350nm
15-20 um
25-200 Im (depending on pullback speed)
3-8 mm (8.3 mm in saline)
20 mm/s
54 mm
2.7s
100 f/s
270

DICOM

4.3 Lumen Wall Delineation

Before applying the combined FCM and CWT algorithms each OCT frame is

transformed from the Cartesian coordinates (x,y) consisting of 1024x1024 pixels

(pixel size 7 by 7 mm) to the polar coordinates (r,0) in which the horizontal and

vertical axes represent, respectively, the angular position between 0 and 360 and the

pixel position from image center (probe position) to image border (Figure 5.1).
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(b)
Figure 5.1 (a) Typical OCT image, (b) Polar reformation of the OCT image in which the

horizontal and vertical axes represent, respectively, the angular position (8: 0°—

360°) and the pixel position from image center to image border (r: 1 — 512 pixels).
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The Cartesian coordinates x and y can be converted to polar coordinates r and 0 with

r>0and &in the interval (-i, ] by [59]:

r=a/x2+ y2 (as in the Pythagorean theorem) (4.1)
and
@ = arctan 2(x, y) (4.2)

Then to construct the image as we see in figure 5.1 b) we use the following

equations:

x = x, +7cos(@) (4.3)
and

Y=y, +rsin(d) (4.4)

Where Xo, Yo is the center of the OCT (1024x1024) images.

The FCM algorithm assigns pixels to two or more clusters by using fuzzy
memberships [Bezdek et al]. It is considered as an iterative optimization that
minimizes a cost function when pixels close to the centroid of their clusters, are
assigned with high membership values. This membership function represents the
probability that a pixel belongs to a specific cluster. Let V = {v1, v2,. . ., vn} denotes
an image with N pixels to be partitioned into ¢ = 2 (i.e. the lumen and the
hyperplasia area) clusters, where x; represents the feature value. The cost function

is defined as follows:

2
1<m< oo (4.5)

chm = nz zu,']"

j=1i=1

‘Vj - K

subject to:
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c

Zu1]=1, uUE[O,l], 1S]Sn, 1<i<c (46)

i=1
Where m € (1,00) controls the fuzziness of the resulting partition,ujand

||>representthe membership of pixelv; in the ith clustering, and the

df; = |lv; —
distance between the pixelv; and the cluster center y; respectively.In image
clustering, the most commonly used feature is the gray-level value, or intensity of
image pixel. Thus the FCM cost function is minimized when high membership values
are assigned to pixels whose intensities are close to the centroid of their clusters and
low membership values are assigned when the point is far from the centroid. The
membership function represents the probability that a pixel belongs to a specific
cluster. In the FCM algorithm, the probability is dependent solely on the distance

between the pixel and each individual cluster center in the feature domain. The

membership function and cluster centers are updated by the following:

1
u;" = >
-1 4.7
CZ ij-,ul " 7
k=1 ij-ll’lkH
m
> U v,
u; = - (4.8)
m
S u
i=1

Starting with an initial guess for each cluster center, the FCM converges to a solution
for u; representing the local minimum or a saddle point of the cost function.
Convergence can be detected by comparing the changes in the membership function

or the cluster center at two successive iteration steps.

The continuous wavelet transform (CWT) provides a time-frequency representation
of a signal offering time and frequency localization. The wavelet coefficients Wf(b,a)
of the CWT are provided by convolving the signal f(t) with shifting by b and scaling by
a family of functions ([60]:

40



Chapter 4 FAST AND ROBUST VESSEL LUMEN SEGMENTATION AND STRUT DETECTION IN INTRAVASCULAR OCT

(t — b))

WFb,a) = lal ! f o (4.9)

In this study, the 2D CWT was implemented employing the “Mexican hat” wavelet
filter [61]:

e20? (4.10)

2 t?\ =t
—1
v3a7t1/4< UZ)

which is the normalized negative second derivative of a Gaussian function(equivalent

Y() =

to the Laplacian Of Gaussian— LOG function). The 2D wavelet coefficients Wf(a; a,,

b,, b,) of an image f(ty,t;) are defined as:

1 4 t -b, t -b
Wf(ay,a,,b,,0,) :‘a1a2‘ 1 i;f(ﬁ@)' —~—2)dtdt, (4.11)
a

1 a;
The FCM algorithm determines the centroids and membership function pixel-by-
pixel while it is employed for image clustering. In addition, FCM is considered as a
local search optimization algorithm, and due to this it is very sensitive to the initial
centroid. If the initial centroid is generated randomly, it is possible that the
convergence of the algorithm will become time-consuming which turns out to be
impractical for image clustering purposes. So as to avoid the blindness of random
evaluation and processing time increment, CWT analysis provides the initial
centroids in order to minimize the number of iteration steps. This initialization step
provides edge information into the FCM clustering algorithm by selecting the initial
centroid from the gray values that correspond to high wavelet coefficient values that
represent the maximum optical intensity difference between the pixels from the
vessel and luminal side along the contour. Consequently the FCM algorithm divides
the OCT image data into the two final clusters (i.e., one cluster concerning the area
that presents with a high light reflectance and a second cluster concerning the areas
in the image with a low light reflectance) figure 5.2. The vessel lumen boundary

provided from the clustered image in Cartesian coordinates is depicted in Figure 5.3
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Figure 5.2. FCM combined with CWT clustering. Red area represents the vessel wall

in polar coordinates.

07/02/2010 16:48:43
0070

Figure 5.3. Vessel Lumen border delineation
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In practice, the clustering program is stopped if the convergence error is smaller
than 107 or 100 iterations are achieved. Due to the wavelet transform initialization
the average number of iterations was approximately 3. The fuzziness value was set
at m=2 in this study to further reduce the computation time (the power functions

are replaced by squares).

In order to evaluate the clustering performance of the proposed method, a
comparative study has been held between the clustering results and the “ground
truth” derived from an expert physician who manually delineated the lumen area, by
means of overlap degree between the two sets. Overlap is defined as the ratio of
intersection over the union of the two clustered areas [62].The value of overlap is

bound between zero (no overlap) and one (exact overlap).
4.4 Stent Strut Position Detection

In OCT images, stent struts do not have a constant appearance. They often give a
bright reflection and usually appear as small line segments or spots depending on
the light reflection angle. In some cases they also they produce a shadow zone
behind the bright echo. The proposed algorithm approaches the strut position
detection as a blob detection procedure in which blobs are considered as the
maximum response of the LOG filter in the CWT analysis. All wavelet local maxima
values that correspond to various structures within the OCT image are considered as

candidate strut positions.

In cases where most of the strut is visible the corresponding wavelet local maxima
can be discriminated from other structures within the OCT image. However, in most
cases the transmission — reflection light path is not perpendicular and produces a
shortened line segment or a small blob with lower brightness values. This is due to
refraction of the incident light beam. This complexity of OCT images enhances the
strut pattern variability, which in turn constitutes the edge information provided by
the wavelet coefficient values as insufficient information towards accurate strut
detection. In order to overcome the aforementioned limitations a new map has been
built that incorporates the edge properties provided by the wavelet local maxima

value combined with spatial and regional properties of the strut.
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Although the wavelet values are similar, there are spatial (size of the structure) and
regional (adjacent structural environment) properties that can distinguish the
correct strut positions. A thorough examination has been made in order to quantify
these properties so as to discriminate the strut responses from the other candidate
positions. The candidate strut positions are located either in the interface between
lumen and vessel area or within the hyperplasia area. The alteration of size and
neighborhood of each candidate maxima position consequently transforms the size

and behavior of each wavelet response (Figure 5.3).
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Figure 5.3 Wavelet signal transitions of various structures located as local maxima
within the OCT image. (a) Strut response, (b) response in lumen/vessel wall points,

(c) other response within the vessel that does not correspond to strut.
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Two metrics have been employed towards the new mapping, the Full Width Half
Maximum —-U;(FWHM) that represents the spatial resolution properties of each strut
and the relation between the corresponding wavelet signal transitions starting at a
local minimum, followed by the local maximum and ending again at a local minimum

— U, (figure 5.4).

U, = FWHM (4.12)

max — min,

U, (4.13)

max — ming

max
140 +
120 +
100 +
80 +
60 + FWHM
40 4

PREA\ /\

J v
20 +
40 T \/ \/

60 T minl min2
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Figure 5.4 Wavelet transform response of a candidate strut position and the metrics

employed towards strut detection procedure.

The FWHM metric emerges the size differentiation of each candidate maxima.
Apparently struts are thinner that the other structures providing smaller FWHM
values. Also U, metric due the signal transition bilaterally from the maxima provides
the symmetry response thus revealing the homogeneity environment around the
strut positions within the hyperplasia. A symmetrical (value close to 1) response

suggests a strut covered with hyperplasia.

Each wavelet local maxima is transformed into the new mapping value with the

following equation:
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LocalMaximavalue (4.14)
Uy

U=U2*

The new map values are utilized to the FCM membership function providing high

membership values for strut wavelet responses and low memberships values for the

rest of the wavelet responses (Figure 5.5, figure 5.6).

Figure 5.5 Wavelet edge map. Candidate strut positions (yellow circles) correspond

to wavelet local maxima values.

Figure 5.6 FCM clustering results from the new map. Red circles are clustered as

struts whereas yellow as non-struts.
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4.5 Hyperplasia Estimation

In order to approximate the hyperplasia extent a double fitting scheme with a
feedback procedure is employed towards the hyperplasia quantification. The double
fitting procedure inserts all wavelet local maxima clustered as struts into a gradient-
weighted algebraic fitting algorithm so as to decide whether the struts points form a

circle or an ellipse.

The circle algebraic fitting algorithm is based on the minimization of the sum of
squares of algebraic distances from the circle with center (a,b) and radius R to the N
data pointsx;[63, 64]. The circle objective function F with the natural parameters is

given:

F(a,b,R) = Z[(xi — @)% + (y; — b)? — R2)? (4.15)
i=1

Where a # 0 and b, c € R?
The parameterized form is given by:

n
F(4,B,C,D) = Z(Azi + Bx; + Cy; + D)? (4.16)
i=1
Where A =1, z; =x? + y?,B = —2a,C = —2b andD = a? + b? — R?, under the
constraint B? + C? — 4AD = 1. Every circle will correspond to a unique quadruple

(A,B,C,D) and vice versa.

In order to approximate the local maxima points clustered as struts the implicit
polynomial function P(x,y)=0 that describes a circle is minimized. The coefficients of
the polynomial are equivalent with the aforementioned parameters. The gradient

weighted algebraic fit is based on minimizing:

n

PG ydl*

(4.17)
V[P, y) 2

i

Where P(x,y) = A(x? + y?) + Bx + Cy + D.
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The ellipse fitting algorithm considers the implicit quadratic polynomial function that

represents a general conic [64]:

FAX)=A-X=ax?>+bxy+cy’+dx+ey+f (4.18)

Where A = [abcdef]TandX = [x%xyy?xy]. F(4; X;), is called the algebraic distance
of a point (x,y) to the conic F(4; X;) = 0. The fitting is approached by minimizing the

sum of squared algebraic distances:

D(A) = Z F(X;)? (4.19)

The best fit between the two aforementioned algorithms is considered as the curve
with the minimum distance between the approximated curve points and the local
maxima points. A feedback algorithm is also employed towards the optimization of
the strut detection procedure. All local maxima points (struts and not struts) are re-
inserted in the best fitting curve computed from the preceding step to check any
possible misclassifications from the FCM clustering. Any misclassified point of either
cluster that fits the approximated curve (circle or ellipse) is classified to the correct

group (Figure 5.7).

(a)
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Figure 5.7 Double fitting procedure with feedback procedure towards hyperplasia

guantification. (a) the fitting procedure adds in the strut group four additional points
(blue dots) missed by the FCM clustering whereas removes a false classified point as
strut (orange dot) in polar coordinates. (b) The fitting algorithm in Cartesian

coordinates.

The fitting procedure besides the hyperplasia quantification increases the specificity
of the proposed method by reducing the number of false maxima classified as struts
combined with the sensitivity increment by adding in the struts cluster any maxima

that was missed from the FCM algorithm.
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4.6 Quantitative Results

Regarding the inner vessel lumen segmentation accuracy, the overlap degree results
provided by the proposed method are at first compared with manual segmentation
by an expert physician in terms of overlap degree between the two sets. The
proposed automatic segmentation had an average overlap value of 0.917 + 0.065 for

all OCT images included in the study.

Also the proposed method and all automatic segmentation algorithms utilised in this
thesis such as k-means, Fcm, MRF — Icm and MRF — Metropolis were compared by
means of mean distance difference in mm and processing time in sec with the
physician’s manual assessments. Table 5.2 gives a detailed account of the

performance differences between the clustering algorithms.

TABLE 5.2 Quantitative results. Values expressed as means in mm and in sec.

Mean Difference Distance(mm) Processing Time (s)
Proposed Method 0,09170 5,1
FCM 0,09398 8,2
K-means 0,09544 8,7
MRF —Icm 0,08996 11,6
MRF — Metropolis 0,08888 12,9
S. Tsantis et al 0,08714 14,8

Regarding the strut detection procedure, Table 5.3 gives a detailed account of the
strut detection accuracies obtained by the proposed method. The strut detection

procedure successfully identified 9.57 + 0.5 struts for each OCT image.

TABLE 5.3Truth Table of the strut detection procedure

Strut Detection

Local Maxima Rest Strut

Rest 22398 848 96.35%
Strut 821 2868 77.74%
Overall Accuracy 93.80%

The accuracy values presented in Table 5.3 are calculated after the double fitting
algorithm employment. The corresponding values before the fitting algorithm were
89.77% as overall accuracy with sensitivity and specificity values of 66.00% and

94.07% respectively. These results are highly indicative of the effectiveness of the
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proposed method towards an accurate strut detection procedure. After algorithmic
application toward detection of the lumen area and stent struts in each one of the
four femoral OCT datasets, the following parameters indicated as clinically significant
by the team of interventional radiologists were calculated in every OCT frame;
maximum stent diameter(Ds; corresponding to vessel diameter immediately after
stent placement), maximum lumen diameter (DL; corresponding to the maximum
patent lumen diameter at the time of the OCT acquisition after development of NIH),
late lumen loss (DLLL; corresponding to the maximum thickness of NIH), stent area
(As; corresponding to cross-sectional vessel area immediately after stent placement),
and lumen area (AL; corresponding to cross-sectional patent lumen area at the time

of the OCT acquisition after development of NIH) (Fig. 5.8).

Figure 5.8 Typical OCT frame graphical reproduction with the different calculated
lengths and areas; DS, DL, DLLL, AS, and AL
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Quantitative data after calculation of the predetermined morphological variables in
the four individual clinical data sets are outlined in detail in Table 5.4.

TABLE 5.4 Quantitative results. Values expressed as means (standard deviation).

Maximum
Stent Maximum Neointimalh
Diameter Lumen Diameter Late Lumen Stent Area Lumen Area Area ypeplasiaAni
Ds Diameter Stenosis LossDIll(mm As Al Stenosis h
(mm) DI(mm) Dst% ) (mm2) (mm2) Ast% (mm2)
Case 1 6,04(0.10) 2,17(0.25) 20,69(5.12) 0,52(0.15) 5,82(0.41) 3,37(0.72) 42,04(3.24) 2,45(2.58)
Case 2 3,49(0.22) 2,83(0.17) 19,14(6.2) 0,60(0.15) 7,91(1.09) 5,06(0.58) 35,93(2.58) 2,84(1.35)
Case 3 3,75(0.09) 2,86(0.15) 23,88(5.4) 0,75(0.08) 10,96(0.46) 5,95(0.6) 45,75(5.51) 5,01(0.88)

Case 4 3,34(0.18) 1,97(0.16) 15,75(4.3) 0,39(0.09) 4,11(0.5) 2,66(0.44) 35,32(3.01) 1,45(0.86)
e

Maximum stent diameter (DS) ranged from 3.34 to 6.04 mm, maximum lumen
diameter DL from 1.97 to 2.86 mm, and late lumen loss(DLLL) was variable ranging
from 0.39 to 0.75 mm. A wide range of vessel stenosis on a diameter or area basis
(%Dstenosis ranged from 15.75% to 20.69%, while %Astenosis ranged from 35.32%
to 45.75%, respectively) was found in all analysed vessel segments. NIH had
developed diffusely in all femoral arteries and the respective area ranged from 1.45

to 5.01mm?>.

4.7 Graphical User Interface Implementation

A GUI (Graphical User Interface) has been implemented towards employment of the
proposed algorithm in a daily clinical practice. The GUI implemented performs the

following functions:

® Load images
® Inner lumen contour extraction
® Strut contour extraction and struts finding

® Manual strut position correction

Each OCT image is loaded by pushing the “load image” push-button. The initial image
appears in the first axis (right of the push-button “load image”).Afterwards the inner
lumen contour is calculated (by pushing the “inner boundary” push-button).Also the
strut contour along with the struts are visualised [it also keeps the inner contour
“on”] (by pushing the “in out boundary strut” push-button). In that case they both
appear in the second axis (right of the push-buttons “inner boundary”, “in out

boundary strut”). The user has the possibility, if he is not satisfied with the final
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result, to delete points that the algorithm considers wrongly as struts or add some
that the algorithm does not found, by choosing add or remove from the pop-up
menu. When all correction have been made, the “final” (push-button) should be
pushed and the final result appears in axis 2.There are two static texts that help the
user to interact better with the gui. When one of the two options is chosen the pop-
up menu opens a big window, with the image enlarged so that we have better visual
interpretation in the option of removal or adding of the struts, also in the same
window appears a text that contains useful guidelines in order to choose the extra
points. Finally the gui window has the potential to be resizable. Finally, all calculated

parameters are saved for each OCT image in an excel file.

detection_oct = B |

Static Text -

< —— ifthe strut detec\ti'iiﬁ"da n_g_t satisfy you, add or delete struté?

i e
__—— |[EMOYE X,

Pop-up Menu ——:
3 Axes

Figure 5.9 Graphical User Interface environment of the proposed method
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4.8 Discussion

In the present thesis, a methodology is proposed to: (a)segment the vessel lumen
border from 2D OCT images (via a combined scheme of an FCM model and CWT
analysis) and (b) detect the positions of stent struts within the 2D OCT images (by
utilizing metrics derived from the local maxima of the wavelet transform into the
FCM membership function) in order to assess the degree of neointimal hyperplasia
within the stented vessels from OCT images. More specifically, the vessel lumen
border of the OCT images is extracted, and then, the stent struts within the images
are detected. This study has the benefits that: (i) it gives quantitative information
about NIH and (ii) it uses strut characteristics in order to classify whether areas of

the OCT image belong to stent struts or not.

The complex nature of OCT imaging make strut detection as one of the most
challenging tasks among medical image processing applications. Different reflection
angles, refraction phenomena, misplaced probe positions together with speckle
noise, altering continuously the strut reflection surface. Therefore, detection
approaches that do not integrate these complex characteristics are most likely to
have limited performance. Strut detection algorithms published so far, consider as
prerequisite the fact that behind the strut bright surface a shadow area is created
due to high reflectivity. However, this is not always the case since in many occasions
bright surfaces can be present without shadowing. In addition, in several OCT images
struts are partially or totally invisible leaving a comet tail behind. The proposed study
throughout CWT analysis identifies sharp variations with great accuracy wherever
they occur within the OCT image and consider them initially as candidate strut

positions.

The strut detection accuracy of the proposed algorithm was significantly high
reaching an overall accuracy value of 93.8%, together with high sensitivity and
specificity values (averages of 77.74 % and 96.35%, respectively). Of further interest,
the developed algorithm runs in an unsupervised fashion and demonstrated a robust
performance in automatic vessel lumen segmentation and stent strut detection as

shown by its pilot application in ten clinical datasets. The algorithm may prove

54



Chapter 4 FAST AND ROBUST VESSEL LUMEN SEGMENTATION AND STRUT DETECTION IN INTRAVASCULAR OCT

extremely useful in quantitative assessment of stent endothelialisation and NIH
development in longitudinal studies of stent placement in the peripheral arteries.
The software may accurately calculate late lumen loss and NIH area through-out the
examined stent, thereby providing quantitative surrogate markers of vascular

restenosis and vessel wall response after stent implantation.
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