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Abstract

The world in which we live is becoming more and more automated, exemplified
by the numerous robots, or autonomous vehicles, that operate in air, on land, or
in water. These robots perform a wide array of different tasks, ranging from the
dangerous, such as underground mining, to the boring, such as vacuum cleaning.
In common for all different robots is that they must possess a certain degree of
awareness, both of themselves and of the world in which they operate. This thesis
considers aspects of two research problems associated with this, more specifically
the Simultaneous Localization and Mapping (slam) problem and the Multiple
Target Tracking (mtt) problem.

The slam problem consists of having the robot create a map of an environment
and simultaneously localize itself in the same map. One way to reduce the ef-
fect of small errors that inevitably accumulate over time, and could significantly
distort the SLAM result, is to detect loop closure. In this thesis loop closure detec-
tion is considered for robots equipped with laser range sensors. Machine learning
is used to construct a loop closure detection classifier, and experiments show that
the classifier compares well to related work.

The resulting slam map should only contain stationary objects, however the
world also contains moving objects, and to function well a robot should be able to
handle both types of objects. The mtt problem consists of having the robot keep
track of where the moving objects, called targets, are located, and how these tar-
gets are moving. This function has a wide range of applications, including track-
ing of pedestrians, bicycles and cars in urban environments. Solving the mtt
problem can be decomposed into two parts: one part is finding out the number
of targets, the other part is finding out what the states of the individual targets
are.

In this thesis the emphasis is on tracking of so called extended targets. An ex-
tended target is a target that can generate any number of measurements, as op-
posed to a point target that generates at most one measurement. More than one
measurement per target raise interesting possibilities to estimate the size and the
shape of the target. One way to model the number of targets and the target states
is to use random finite sets, which leads to the Probability Hypothesis Density
(phd) filters. Two implementations of an extended target phd filter are given,
one using Gaussian mixtures and one using Gaussian inverse Wishart (giw) mix-
tures. Two models for the size and shape of an extended target measured with
laser range sensors are suggested. A framework for estimation of the number of
measurements generated by the targets is presented, and reduction of giw mix-
tures is addressed. Prediction, spawning and combination of extended targets
modeled using giw distributions is also presented. The extended target tracking
functions are evaluated in simulations and in experiments with laser range data.
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Populärvetenskaplig sammanfattning

Den värld i vilken vi lever har med tiden blivit allt mer automatiserad. Ett av
många tecken på detta är det stora antal robotar, eller autonoma farkoster, som
verkar bland annat i luften, på land, eller i vatten. De här robotarna kan utföra
ett brett spektrum av olika uppgifter, allt ifrån direkt farliga, som underjordisk
gruvdrift och sanering av havererade kärnreaktorer, till alldagliga och tråkiga,
som dammsugning och gräsklippning. På samma sätt som en människa behöver
använda sina sinnen och sitt medvetande för att hantera vardagen, måste alla
typer av robotar ha en viss medvetenhet för att kunna utföra sina uppgifter. Det
krävs bland annat att robotarna kan uppfatta och förstå sin arbetsmiljö.

I den här avhandlingen behandlas ett antal delar av två stycken övergripande
forskningsproblem som är relaterade till detta. Det första forskningsproblemet
kallas för samtidig positionering och kartering, vilket på engelska heter Simulta-
neous Localization and Mapping och förkortas slam. Det andra forskningspro-
blemet kallas för målföljning.

slam-problemet går ut på att låta roboten skapa en karta av ett område, och sam-
tidigt som kartan skapas positionera sig i den. Exakt vad som menas med karta
i det här sammanhanget varierar beroende på robotens specifika arbetsuppgift.
Exempelvis kan det, för en inomhusrobot, röra sig om en virtuell modell av var
golv, väggar och möbler finns i ett hus. En oundviklig del av slam-problemet är
att roboten hela tiden gör små fel, vilket påverkar kartan som skapas, samt hur
väl roboten kan positionera sig. Enskilda fel har inte särskilt stor inverkan, men
om felen ackumuleras under en längre tid kan det leda till att kartan förvrängs,
eller att roboten helt enkelt inte kan finna sin position i kartan.

Ett sätt att undvika att så sker är att utrusta roboten med en funktion vilken gör
det möjligt för roboten att känna igen platser som den har besökt tidigare, vilket
kallas platsigenkänning. När roboten känner igen en plats kan den jämföra med
vad kartan och positionen säger. Om kartan och positionen inte säger att roboten
är tillbaka på en plats som tidigare besökts kan denna diskrepans korrigeras. Re-
sultatet är en karta och en position som bättre representerar verkligheten. I den
här avhandlingen har platsigenkänning studerats för robotar som är utrustade
med laserscanners, och en funktion för platsigenkänning har skapats. I en serie
experiment har det visats att funktionen kan känna igen platser såväl inomhus
i kontorsmiljö, som utomhus i stadsmiljö. Det har även visats att funktionens
egenskaper jämför sig väl med tidigare arbete på området.

Den resulterande slam-kartan bör av naturliga skäl endast innehålla stationä-
ra föremål. Vår värld innehåller dock även rörliga föremål, och för att en robot
ska kunna arbeta på ett säkert sätt måste den även hålla reda på alla rörliga fö-
remål som finns i dess närhet. Det andra forskningsproblemet som behandlats
i avhandlingen, målföljning, går ut på att utrusta roboten med funktioner som
gör det möjligt för den att hålla reda på var de rörliga målen är, samt vart de är
på väg att röra sig. Exempelvis kan den här typen av funktioner användas till att
hålla reda på fotgängare, cyklister och bilar i en stadsmiljö.
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viii Populärvetenskaplig sammanfattning

Tidigare har forskningen inom målföljning varit fokuserad på så kallade punkt-
mål. Vid följning av punktmål kan följningsproblemet sägas ha två delar: den
ena är att räkna ut hur många rörliga mål det finns, den andra är att räkna ut var
varje enskilt mål befinner sig, samt vart det är på väg.

Här har fokus istället legat på följning av vad som kallas för utsträckta mål, en
typ av mål som rönt ökande uppmärksamhet i forskningsvärlden de senaste fem
till tio åren. Med utsträckta mål får följningsproblemet en tredje del: att för var-
je enskilt mål räkna ut storleken och formen på målet, det vill säga den spatiala
utsträckningen. Att känna till utsträckningen på de rörliga målen är viktigt exem-
pelvis för en robot som ska ta sig genom ett rum där många person befinner sig.
För att göra det krävs att roboten rör sig nära personerna, utan att för den skull
krocka med någon. Att lösa detta på ett bra sätt kräver att roboten har kunskap
inte bara om var personerna befinner sig, utan även hur mycket plats de tar upp.

I avhandlingen har ett antal aspekter av följning av utsträckta mål studerats. En
viktig och komplicerande aspekt av följning av såväl punktmål, som utsträckta
mål, är att roboten på förhand inte vet hur många mål som finns i dess närhet.
En funktion för att hantera osäkerheterna kring antalet mål som finns, samt osä-
kerheterna kring var varje mål befinner sig, har implementerats.

I många situationer är det nödvändigt att kunna prediktera, eller förutsäga, var
de olika målen kommer att befinna sig i den närmaste framtiden. Det kan exem-
pelvis röra sig om en robot som ska köra genom en vägkorsning, och då måste
undvika att krocka med övrig trafik. För detta ändamål har en prediktionsfunk-
tion tagits fram.

När ett större antal mål rör sig i robotens närhet kan det bli svårt att följa varje
enskilt mål. Istället kan roboten följa grupper av mål. Det blir då nödvändigt att
hålla reda på vad som sker när mål lämnar gruppen, eller nya mål ansluter till
gruppen. Fritt översatt från engelska till svenska kan dessa två händelser kallas
för målproduktion och målkombination. Funktioner för att hantera produktion
och kombination av utsträckta mål har tagits fram.

För att roboten ska kunna beräkna ett måls spatiala utsträckning krävs model-
ler för formen på målen. När laserscanners används kan formen på en bil sägas
vara approximativt rektangulär, och formen på en person kan sägas vara approx-
imativt elliptisk. Beräkning av storleken på rektangulära och elliptiska mål har
studerats för robotar utrustade med laserscanners.

Målföljningsfunktionerna som nämnts ovan har utvärderats med hjälp av såväl
simulerade data, som experimentella data insamlade med laserscanners. Resul-
taten visar att det arbete som har utförts jämför sig väl med tidigare arbete på
området.
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1
Introduction

This chapter introduces the research topics that are considered in this thesis, and
summarizes the research contributions. In Section 1.1 a motivation to the re-
search topics is given, and in Section 1.2 and Section 1.3 the topics are described
in more detail. A list of published work is given in Section 1.4, and the main
contributions of the thesis are summarized in section 1.5. The chapter is ended
with a thesis outline in Section 1.6.

1.1 Motivation

The research presented in this thesis was undertaken at the Division of Auto-
matic Control, Department of Electrical Engineering, at Linköping university.
Automatic control is a research area that can be given the following definition,
deliberately intended to be as broad as possible:
Definition 1.1 (Automatic control). To automatically make a system behave as
desired.

In this context automatically is to be understood as without human intervention.
A system may refer to anything whose behavior can be controlled, however this
thesis will be limited to mobile robots, also called autonomous vehicles.

In the January 2007 issue of the magazine Scientific American, Bill Gates, co-
founder and former ceo of Microsoft, predicted that the next hot research field
would be robotics (Gates, 2007). About four years later, a free online course in ar-
tificial intelligence, given by Stanford University during the fall semester of 2011,
attracted more than 58000 students globally (Markoff, 2011). Both these exam-
ples serve as a testament to the interest in, and relevance of, robotics research.
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4 1 Introduction

Indeed, the past decades have seen a large research effort in the field of robotics.
In order for a mobile robot to behave as desired in the dynamic and complex
world within which humans live, the robot must be aware of itself and its sur-
roundings. In this thesis we refer to this as knowing the state of the robot and the
state of its surroundings. The state of the robot includes its location, knowledge
of which requires the ability to recognize places that the robot has visited earlier,
also called loop detection. The state of the robots’ surroundings includes the lo-
cation of moving objects, called targets, knowledge of which requires the ability
to track the targets as they move.

The main research topics considered in this thesis are

1. loop closure detection, i.e. recognizing places that have been visited before;

2. multiple target tracking, i.e. estimating how many targets there are and
estimating each target’s state.

To solve both these problem, the robot needs to sense the environment around it,
similarly to how humans use their five senses1 to be able to go about their days.
In this thesis data from laser range sensors is used for both loop closure detection
and target tracking. A reconstruction of 2317 2D laser range scans, acquired
inside a shopping mall, is shown in Figure 1.1. Figure 1.2, a small portion of a
full scene constructed by 34 3D laser range scans, shows an outdoor environment
with some buildings and vegetation.

Laser range sensors are versatile sensors that provide data rich in information
content, and the sensor data can be used for many different tasks. In the Defense
Advanced Research Projects Agency’s (darpa) Urban Challenge, e.g., laser range
sensors were used for task such as staying in lane; maintain vehicle separation;
vehicles at an intersection; leaving lane to pass; U-turn; following a vehicle; queu-
ing at an intersection; negotiate obstacle field; road blockages; merging to traffic
circle; sparse waypoints (straight); road follow: gps outages; merging at T in-
tersection; merging at 4-way intersection; left turns at intersections; emergency
vehicle avoid; and blocked intersection (Campbell et al., 2007).

1.2 Loop closure detection

Loop closure detection is an important part of the Simultaneous Localization and
Mapping (slam) problem. The slam problem consists of finding out where the
robot is (localization), while simultaneously finding out what the surrounding en-
vironment looks like (mapping), see e.g. the two part slam tutorial by Durrant-
Whyte and Bailey (2006) and Bailey and Durrant-Whyte (2006). To solve the
slam problem the acquired sensor data must be organized such that, when the
individual pieces of data are put together, they together constitute a coherent
map. However, one of the fundamental properties of the slam problem is that
small errors, due to sensor inaccuracies, are constantly inserted into the localiza-

1Vision, hearing, smell, taste, and touch.
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Figure 1.1: Laser range data in 2D, from the ground floor of the shopping
mall “Gränden” in central Linköping, Sweden. The laser range data is shown
in blue, the robot trajectory is shown in red. Data courtesy of Petter Torle,
C3 Technologies.

tion and mapping process. As time passes the errors accumulate, and eventually
the map is no longer a good representation of the world. One method to correct
this problem is to detect when the robot returns to a place that it has previously
visited, i.e. detect that the robot has closed a loop. Because loop closure detection
is used to correct errors in the slam process, it is of high importance that incor-
rect, or false, loops are not closed, because this would only increase the errors.

In this thesis the slam map consists of individual laser range scans, so called
point clouds, acquired at different locations. Loop closure is detected by com-
paring different point clouds to each other in a pairwise fashion, and classifiying
them as either being from the same location, or not.

1.3 Multiple target tracking

Multiple target tracking is needed for the robot to be able to move around without
constantly running into other objects, and also to make the robot able to follow
a moving object while the object moves. The research area target tracking dates
back at least to the mid 1900’s, when radar stations were built for the purpose
of tracking airplanes, see e.g. the books by Bar-Shalom and Fortmann (1987), Bar-
Shalom (1992), Bar-Shalom and Rong Li (1995), Bar-Shalom et al. (2001), and Bar-
Shalom et al. (2011). In the typical target tracking scenario it is unknown how
many targets there are, it is unknown which target caused which measurement,
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Figure 1.2: Laser range data in 3D, only a portion of the full data set is shown.
The scene features a couple of buildings and some vegetation. The data was
acquired using laser range sensors mounted on a helicopter. Data courtesy of
Piotr Rudol and Mariusz Wzorek, at the Knowledge Processing lab (kplab)
at the division of Artificial Intelligence and Integrated Computer Systems
(aiics) at the Department of Computer and Information Science (ida) at
Linköping university (LiU).

it is unknown if all targets caused any measurement at all, and there are false, so
called clutter, measurements that were not caused by any target at all. In some
target tracking scenarios, the target and sensor setup is such that each target
generates at most one measurement per time step, in other scenarios each target
may generate more than one measurement. In the former case the targets are
called point targets, in the latter case the targets are called extended targets.

In this thesis we consider tracking of multiple extended targets, where both the
number of targets and each target’s state must be found.

1.4 Publications

The following papers, listed in reverse chronological order, have been published:

K. Granström, C. Lundquist, and U. Orguner. Extended Target Track-
ing using a Gaussian Mixture PHD filter. IEEE Transactions on Aero-
space and Electronic Systems, 2012.

K. Granström and U. Orguner. A PHD filter for tracking multiple
extended targets using random matrices. IEEE Transactions on Signal
Processing, 2012a. doi: 10.1109/TSP.2012.2212888.

K. Granström and U. Orguner. On the Reduction of Gaussian inverse
Wishart mixtures. In Proceedings of the International Conference
on Information Fusion (FUSION), pages 2162–2169, Singapore, July
2012d.
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K. Granström and U. Orguner. Estimation and Maintenance of Mea-
surement Rates for Multiple Extended Target Tracking. In Proceed-
ings of the International Conference on Information Fusion (FUSION),
pages 2170–2176, Singapore, July 2012c.

K. Granström, C. Lundquist, F. Gustafsson, and U. Orguner. On ex-
tended target tracking using PHD filters. In Workshop on Stochastic
Geometry in SLAM at IEEE International Conference on Robotics and
Automation (ICRA), St. Paul, Minnesota, USA, May 2012.

K. Granström, T. B. Schön, J. I. Nieto, and F. T. Ramos. Learning to
close loops from range data. The International Journal of Robotics
Research, 30(14):1728–1754, December 2011.

U. Orguner, C. Lundquist, and K. Granström. Extended Target Track-
ing with a Cardinalized Probability Hypothesis Density Filter. In Pro-
ceedings of the International Conference on Information Fusion (FU-
SION), pages 65–72, Chicago, IL, USA, July 2011.

C. Lundquist, K. Granström, and U. Orguner. Estimating the shape
of targets with a PHD filter. In Proceedings of the International Con-
ference on Information Fusion (FUSION), pages 49–56, Chicago, IL,
USA, July 2011a.

K. Granström, C. Lundquist, and U. Orguner. Tracking Rectangular
and Elliptical Extended Targets Using Laser Measurements. In Pro-
ceedings of the International Conference on Information Fusion (FU-
SION), pages 592–599, Chicago, IL, USA, July 2011.

K. Granström and T. B. Schön. Learning to Close the Loop from 3D
Point Clouds. In Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 2089–2095,
Taipei, Taiwan, October 2010.

K. Granström, C. Lundquist, and U. Orguner. A Gaussian Mixture
PHD filter for Extended Target Tracking. In Proceedings of the In-
ternational Conference on Information Fusion (FUSION), Edinburgh,
UK, July 2010.

K. Granström, J. Callmer, F. T. Ramos, and J. I. Nieto. Learning to
Detect Loop Closure from Range Data. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages
15–22, Kobe, Japan, May 2009.

J. Callmer, K. Granström, J. I. Nieto, and F. T. Ramos. Tree of Words for
Visual Loop Closure Detection in Urban SLAM. In Proceedings of the
Australian Conference on Robotics & Automation (ACRA), Canberra,
Australia, December 2008.
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The following paper has been provisionally accepted for publication:

K. Granström and U. Orguner. On Spawning and Combination of Ex-
tended/Group Targets Modeled with Random Matrices. IEEE Trans-
actions on Signal Processing, 2012e.

The following paper has been revised and resubmitted:

K. Granström and U. Orguner. A New Prediction Update for Extended
Target Tracking with Random Matrices. IEEE Transactions on Aero-
space and Electronic Systems, 2012b.

The following paper has been submitted:

C. Lundquist, K. Granström, and U. Orguner. An extended target
CPHD filter and a gamma Gaussian inverse Wishart implementation.
Journal of Selected Topics in Signal Processing, 2012a.

Finally, the following paper about pedagogic and didactic aspects of undergradu-
ate teaching, has also been published:

C. Lundquist, M. A. Skoglund, K. Granström, and T. Glad. Insights
from implementing a system for peer review. IEEE Transactions on
Education, 2012b. doi: 10.1109/TE.2012.2211876.

1.5 Main contributions

The second part of this thesis contains edited versions of eight of the above listed
papers. The scientific contributions contained in these eight papers are summa-
rized in this section.

1.5.1 Loop closure detection

Learning to close loops from range data

Paper A,

K. Granström, T. B. Schön, J. I. Nieto, and F. T. Ramos. Learning to
close loops from range data. The International Journal of Robotics
Research, 30(14):1728–1754, December 2011.

presents a loop closure detection classifier that works for point cloud data in both
2D and 3D. A thorough implementational description is given, and the classifier’s
properties are evaluated in several different experiments using publicly available
data. The pros and cons compared to related work are discussed, and the classi-
fier is shown to compare well to other loop closure detection methods.
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1.5.2 Target tracking

Extended Target Tracking using a Gaussian Mixture PHD filter

Paper B,

K. Granström, C. Lundquist, and U. Orguner. Extended Target Track-
ing using a Gaussian Mixture PHD filter. IEEE Transactions on Aero-
space and Electronic Systems, 2012.

presents a Gaussian mixture implementation of an extended target phd filter.
The optimal filter requires a summation over all possible measurement set parti-
tions, which is computationally infeasible in all but the simplest of cases. Suit-
able partitioning methods are presented, such that the number of partitions that
are considered can be kept to a minimum without sacrificing too much tracking
performance. The filter is evaluated in both simulations and experiments.

Tracking Rectangular and Elliptical Extended Targets Using Laser
Measurements

To keep the presentation simple, the sizes and shapes of the extended targets are
not estimated in Paper B. Paper C,

K. Granström, C. Lundquist, and U. Orguner. Tracking Rectangular
and Elliptical Extended Targets Using Laser Measurements. In Pro-
ceedings of the International Conference on Information Fusion (FU-
SION), pages 592–599, Chicago, IL, USA, July 2011.

presents a version of the Gaussian mixture phd filter that is designed for laser
range measurement, with capability to estimate the shape and size of the targets.
Two different types of targets are considered, rectangular and elliptical, and the
filter is also capable of estimating the target type. Furthermore, the paper shows
that the Gaussian mixture phd filter is not limited to linear motion and measure-
ment models, as in Paper B, it also works for non-linear models. The filter is
evaluated in both simulations and experiments.

A PHD filter for tracking multiple extended targets using random matrices

In Paper B and Paper C Gaussian distributions are used to model the extended
targets. An alternative to the Gaussian model is to use Gaussian inverse Wishart
distributions to model the extended targets, a model in which the extended target
shape is assumed to be elliptical. Paper D,

K. Granström and U. Orguner. A PHD filter for tracking multiple
extended targets using random matrices. IEEE Transactions on Signal
Processing, 2012a. doi: 10.1109/TSP.2012.2212888.

presents a Gaussian inverse Wishart implementation of the extended target phd
filter. A likelihood function is derived, and the necessary assumptions and ap-
proximations are given. Two partitioning methods are presented, in addition to
the methods given in Paper B. The filter is evaluated in both simulations and
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experiments, and the results show the benefits of estimating the target size and
shape, in addition to estimating the position.

Estimation and Maintenance of Measurement Rates for Multiple Extended
Target Tracking

The extended target phd filters in Paper B, Paper C and Paper D model the num-
ber of measurements generated by an extended target as Poisson distributed. In
Paper B and Paper D it is noted that correctly setting the filter parameter corre-
sponding to the Poisson rate is necessary in certain circumstances. With an incor-
rect parameter setting, the filter might estimate the number of targets incorrectly.
Paper E,

K. Granström and U. Orguner. Estimation and Maintenance of Mea-
surement Rates for Multiple Extended Target Tracking. In Proceed-
ings of the International Conference on Information Fusion (FUSION),
pages 2170–2176, Singapore, July 2012c.

presents a framework for estimating an individual, possibly time varying, Poisson
rate for each extended target. In addition to the already known measurement
update, a simple time update is suggested, and a method for mixture reduction
is also given. Simulations show that the filter can estimate multiple Poisson rates
simultaneously.

On the Reduction of Gaussian inverse Wishart Mixtures

In Paper D a heuristic is used for reduction of Gaussian inverse Wishart mixtures,
however it is noted that a better and less approximative method is needed. Pa-
per F,

K. Granström and U. Orguner. On the Reduction of Gaussian inverse
Wishart mixtures. In Proceedings of the International Conference
on Information Fusion (FUSION), pages 2162–2169, Singapore, July
2012d.

presents a merging method that can be used for reduction of Gaussian inverse
Wishart distribution mixtures. It is shown how a weighted sum of distributions
can be approximated with a single distribution, and a criterion is suggested that
can be used to determine whether or not two distributions should be merged.
Simulations show the merits of the presented merging method.

A New Prediction Update for Extended Target Tracking with Random Matrices

In Paper D it is noted that when two spatially close targets maneuver, the filter
often cannot keep the two targets resolved, and as a consequence underestimates
the number of targets. Part of the problem is the heuristic prediction method that
is used. Paper G,

K. Granström and U. Orguner. A New Prediction Update for Extended
Target Tracking with Random Matrices. IEEE Transactions on Aero-
space and Electronic Systems, 2012b.
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presents a prediction method that can handle maneuvering extended targets bet-
ter, while considering all uncertainty sources. Simulation results show that the
presented method outperforms related work on this subject.

On Spawning and Combination of Extended/Group Targets Modeled with
Random Matrices

The event that a target launches another target, or that a larger target separates
into multiple smaller targets, is called target spawning. The opposite, i.e. that
multiple targets merge into a single target, is called target combination. Target
spawning is not explicitly modeled in Paper D, however it is noted there that a
spawning function could be useful. Paper H,

K. Granström and U. Orguner. On Spawning and Combination of Ex-
tended/Group Targets Modeled with Random Matrices. IEEE Trans-
actions on Signal Processing, 2012e.

presents spawning and combination of extended targets whose state are modeled
as Gaussian inverse Wishart distributed. Limited to the two target case, a model
for target combination is first derived. The combination model is then used to de-
rive a model for spawning into two targets. Simulation results show the benefits
of the presented functions.

1.6 Thesis outline

The thesis is divided into two parts, with background material in the first part
and edited versions of the eight published papers in the second part. It should be
noted that while the chapters in the first part give relevant background required
for the second part of the thesis, the amount of detail is intentionally kept to a
minimum. The reason is that each of the papers in the second part includes back-
ground material – repeating this material would cause unnecessary redundancy.

The first part of the thesis is organized as follows. Chapter 2 presents the laser
range sensor and the data it produces. Classification, with an emphasis on so
called boosting, is the topic of Chapter 3. The machine learning method used in
this thesis, called AdaBoost, is presented and illustrated using a number of exam-
ples. The estimation problem is introduced in Chapter 4, and filtering solutions
and performance metrics are mentioned. Chapter 5 is about the target tracking
problem. Data association methods are over-viewed, and performance evaluation
is discussed. Random finite sets and the probability hypothesis density filter is
introduced in Chapter 6, and extended target tracking is the topic of Chapter 7.
The first part of the thesis is ended with Chapter 8, which presents conclusions
and discusses future work.





2
The laser range sensor

This chapter presents a brief overview of the laser range sensor and the data it
produces. The sensor is described in Section 2.1, and examples of 2D and 3D
data are given in Section 2.2 and Section 2.3, respectively. The occlusion problem
is described in Section 2.4, and registration of laser range data is discussed in
Section 2.5.

2.1 Introduction

In the past 10 year, a vast amount of research has been performed using data from
laser range sensors, e.g. mapping, localization and target tracking. There exist dif-
ferent types of laser sensors that produce slightly different types of data, this the-
sis will be limited to so called sweeping laser sensors. This sensor type works by
measuring the distance to the nearest object at different angles, provided that the
nearest objects’ reflectance properties are good enough. A simulation example of
laser range data is given in Figure 2.1.

For an estimation or classification application, the laser range sensor’s probabilis-
tic properties need to be modeled. In this thesis, a brief introduction to modeling
of the laser range sensor is given. For a more thorough description, chapter 6
in the book by Thrun et al. (2005) is a good starting point. A description of the
underlying mechanical and electrical properties goes beyond the scope of this
thesis.

In the remainder of this thesis, the output from laser range sensors will be re-
ferred to as point clouds, with the following definition:

13
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Figure 2.1: Example of laser range data in a 2D simulation environment,
where the objects are shown in light gray. The sensor is located at the large
black dot, the sensor field of view (180◦ wide) is shown by the semi-circle.
The sensor sweeps right to left, and measures the nearest object every fourth
degree. When the nearest object is further away than the boundary of the
field of view, the sensor returns maximum range.

Definition 2.1 (Point cloud pk). A collection of points in space,

pk =
{
pki

}N
i=1

, pki ∈ R
D. (2.1)

Here, k refers to the acquisition time tk , N is the number of points pki in the cloud
and D is the dimensionality of the data.

The name point cloud is inherited from the fact that the sensor measurement
defines a point in space which is occupied by an object. It should be noted though
that the name point cloud does not capture the so called negative information,
i.e. the information about the free space along the laser measurement ray1. In
an application, this negative information about the free-space is important to
consider along with the points themselves.

In the applications presented in this thesis, the dimensionality of the data is ei-
ther D = 2 or D = 3. Many sensors however, in addition to measuring range, also
measure the remission value of the measured point. If the laser range data is
fused with image data from a camera, each point may also contain rgb color val-
ues. Thus the dimensionality D of the data could be larger than 3. Each measured

1cf. the gray rays from the sensor to the measurement points in Figure 2.1
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(a) (b) (c)

Figure 2.2: Examples of laser range sensors. (a): the SICK LMS200-series.
(b): the Hokuyo URG-04Lx-series. (c): the Velodyne HDL-64E. Images are
from www.sick.com, www.hokuyo-aut.jp and www.velodyne.com/
lidar/, respectively.

point p is a function L of the sensor position s and the surrounding environment
M,

p = L
(
s,M, ep

)
, (2.2)

where ep is random noise. Typically ep is modeled as a Gaussian with zero mean
and covariance Σp,

N
(
ep ; 0,Σp

)
. (2.3)

The properties of laser range sensors vary substantially from sensor to sensor.
Maximum measurable range rmax varies from several meters to several kilome-
ters, angular resolution varies from being in the order of one degree to the order
of one thousand of a degree. Examples of popular sensors are the LMS200-series
sensors manufactured by SICK, see Figure 2.2a, and the sensors manufactured by
Hokuyo, see Figure 2.2b. Both these sensors produces planar laser range scans,
i.e. they sense the surrounding environment in 2D. Using different pan/tilt units,
several 2D scans can be combined to provide 3D laser range data. There are also
dedicated 3D laser range sensors, e.g. the HDL-series sensors from Velodyne, see
Figure 2.2c.

2.2 Laser range data in 2D

In 2D the points in the point cloud are typically given in polar coordinates as

pki =
[
rki ϕki

]T
, (2.4)

where r is the range and ϕ is the horizontal angle, or bearing, to the measured
point. Using the polar to Cartesian transformation[

x
y

]
= Tp2c (r, ϕ) =

[
r cos (ϕ)
r sin (ϕ)

]
, (2.5)
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Figure 2.3: Illustration of laser point uncertainty. (a): Uncertainty in po-
lar coordinates. (b): The same uncertainty ellipses as in (a), transformed to
Cartesian coordinates using the transform (2.5). (c): First order approxima-
tion of transformed uncertainty in (b) using (2.9).

the points can be expressed in Cartesian coordinates as

pki =
[
xki yki

]T
. (2.6)

The measurement noise covariance matrix is typically a diagonal matrix, where
the range and bearing standard deviations can be modeled as functions of range
and bearing,

Σp =
[
σ2
r (r, ϕ) 0

0 σ2
ϕ (r, ϕ)

]
. (2.7)

Using the Jacobian Jp2c of the polar to Cartesian transformation (2.5),

Jp2c =
[
cos (ϕ) −r sin (ϕ)
sin (ϕ) r cos (ϕ)

]
(2.8)

the covariance can be approximated to first order in Cartesian coordinates as

Σcp = Jp2cΣpJ
T
p2c. (2.9)

An illustration of the modeled uncertainty is shown in Figure 2.3, where a mea-
surement at range r = 10m and bearing ϕ = 45◦, and its corresponding uncer-
tainty, are shown in Figure 2.3a. The results for the non-linear transformation
from polar to Cartesian coordinates (2.5) is shown in Figure 2.3b. Compare with
the first order approximation in Figure 2.3c.

Figure 2.4 shows a typical outdoor point cloud, both in polar and Cartesian coor-
dinates, Figure 2.4a and Figure 2.4b, respectively. Typical indoor data was shown
in Figure 1.1 in Chapter 1. The figures also feature the corresponding 3σ covari-
ance ellipses for every tenth point. For this example, the measurement noise
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Figure 2.4: Example 2D point cloud, acquired in an outdoor environment.
(a): Polar coordinates. (b): Cartesian coordinates. All points measuring
range above the maximum range rmax = 50m have been filtered out. The
points are shown in black, for every tenth point the corresponding 3σ co-
variance ellipse is shown in gray.

covariance is modeled as

Σp =
[
σ2
r (r, ϕ) 0

0 σ2
ϕ (r, ϕ)

]
=


(
0.01

(
1 + r

rmax

))2
0

0
(

0.01π
180

(
1 + r

rmax

))2

 . (2.10)

Thus the uncertainty in range grows larger as the distance to the nearest object
along the laser ray grows larger. The bearing noise model can be understood as
modeling the laser ray as being shaped as a triangle, with the tip located at the
sensor. Thus, the measured point is located on the bottom edge of the triangle.

2.3 Laser range data in 3D

In 3D the points in the point cloud are given in spherical coordinates as

pki =
[
rki ϕki ψki

]T
, (2.11)

where r is the range, ϕ is the horizontal angle and ψ is the vertical angle to the
measured point. Using the spherical to Cartesian transformationxy

z

 = Ts2c (r, ϕ, ψ) =

r sin (ψ) cos (ϕ)
r sin (ψ) sin (ϕ)

r cos (ψ)

 , (2.12)

the points can be expressed in Cartesian coordinates as

pki =
[
xki yki zki

]T
. (2.13)
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Figure 2.5: Example 3D point cloud in Cartesian coordinates, shown from
two different view points in (a) and (b). Grey-scale is used to accentuate
height. In the center of the point cloud there are two persons and behind
them a car can be seen. To the left and right of the persons and the car there
are two trees.

The measurement noise covariance matrix is typically a diagonal matrix, where
the range, horizontal angle and vertical angle standard deviations can be mod-
eled as functions of range, horizontal angle and vertical angle,

Σp =


σ2
r (r, ϕ, ψ) 0 0

0 σ2
ϕ (r, ϕ, ψ) 0

0 0 σ2
ψ (r, ϕ, ψ)

 . (2.14)

Using the Jacobian Js2c of the spherical to Cartesian transformation (2.12),

Js2c =

sin (ψ) cos (ϕ) −r sin (ψ) sin (ϕ) r cos (ψ) cos (ϕ)
sin (ψ) sin (ϕ) r sin (ψ) cos (ϕ) r cos (ψ) sin (ϕ)

cos (ψ) 0 −r sin (ψ)

 (2.15)

the covariance can be approximated to first order in Cartesian coordinates as

Σcp = Js2cΣpJ
T
s2c. (2.16)

An example point cloud is shown in Figure 2.5. In the figure, gray-scale is used
to accentuate height. A 3D point cloud was also shown in Figure 1.2 in Chapter 1.

2.4 Occlusion

Similarly to how a camera needs direct line of sight to the object that is being
sensed, so does a laser range sensor. Thus, if an object A is located at the same
bearing as another object B, but at larger range than B, then A is occluded by B.
Depending on the shape and size of the two objects, A is either partially of fully
occluded by B. An example of occlusion is given in Figure 2.6. Occlusion presents
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Figure 2.6: Example of the occlusion problem for laser range sensors. The
3D point cloud shows two persons in the foreground, and behind them is a
partially occluded vehicle. This point cloud is a portion of the point cloud
shown in Figure 2.5. Grey-scale is used to accentuate height, however the
gray-scale is different from Figure 2.5.

a considerable challenge in estimation and classification problems where laser
range data is used. In the context of target tracking, targets may be lost when
they move behind other objects and thus do not generate any measurements. For
loop closure detection, occlusions by dynamic objects means that the appearance
of the point cloud can be significantly changed.

2.5 Registration

Registration is the process by which two point clouds pk and pl are fitted to
each other with respect to some measure, or cost function, C (pk ,pl). Typically,
the problem is solved by finding a rigid body transformation (R, t), where R is
a rotation matrix and t is a translation vector, such that the sum of distances
between different point correspondences in the two point clouds is minimized.
Point cloud registration is in the literature also referred to as scan matching. Sev-
eral different methods for finding this rigid body transformation have been sug-
gested, among them the (probably) most popular and well used is the so called
Iterative Closest Point (icp) algorithm (Besl and McKay, 1992; Chen and Medioni,
1992; Zhang, 1994). icp works by solving the following optimization problem

min
(R,t)

C (pk ,pl) = min
(R,t)

Nk∑
i=1

Nl∑
j=1

wi,j

∥∥∥∥pki − (
Rplj + t

)∥∥∥∥2
, (2.17)

where wi,j is 1 if point pki and point plj describe the same point in space, and
0 otherwise. Finding these point correspondences is typically performed by a
nearest neighbor search, and a solution (R, t) is found by iterating between find-
ing nearest neighbor point pairs and computing the corresponding rigid body
transformation. The cost function in (2.17) has many local minimas, and the icp
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Figure 2.7: Point cloud registration using the icp algorithm. (a): two point
clouds from an outdoor environment before the icp algorithm is applied.
(b): after the icp algorithm is applied. Note how the rotation and translation
that aligns the two point clouds are rather small, thus initializing the icp
algorithm in

(
R0, t0

)
= (I2, 02×1) is sufficient.

algorithm is thus dependent on being initialized in a good point
(
R0, t0

)
in order

to converge. There are a few different ways to implement icp, and a full overview
goes beyond the scope of this thesis. Chapter 4 in the book by Nüchter (2009) is
a good starting point for the interested reader.

An illustrative example of the icp algorithm is given in Figure 2.7, where two
point clouds are shown before and after the icp algorithm is applied. A 3D exam-
ple of registration is given in Figure 1.2 in Chapter 1, where the point cloud was
constructed from 34 smaller point clouds which were registered to each other.

As mentioned above, icp is a local algorithm in the sense that it, if initialized
poorly, often gets stuck in local minimas of the cost function (2.17). To remedy
this problem, a method that is able to find a rigid body transformation (R, t) that
is close to the ground truth without relying on a good initial guess is needed.
Some examples of methods that attempt to improve upon the performance of icp
are the Normal Distributions Transform (ndt) in 2D (Biber and Strasser, 2003)
or 3D (Magnusson et al., 2007), crf-Match in 2D by Ramos et al. (2007), or the
approach using histograms in 2D by Bosse and Zlot (2008).



3
Classification

This chapter introduces the classification problem, with an emphasis on boosting
methods for finding decision boundaries. The classification problem is defined
in Section 3.1, and boosting is presented in Section 3.2. The boosting method
of choice, called adaptive boosting, is presented algorithmically, and some key
properties of adaptive boosting are highlighted in a series of examples.

3.1 The classification problem

The purpose of a classification method is to take an input data vector

f = [f1, . . . , fnf ]T ∈ Rnf (3.1)

and assign it to one of K classes. Let Ck denote the class domain, where k ∈
{1, . . . , K} is a class index. In some classification scenarios, the K classes are as-
sumed to be disjoint,

Ci ∩ Cj = ∅, ∀i , j, (3.2)

and the input space can therefore be divided into decision regions which are
separated by boundaries. These are called decision boundaries, or decision sur-
faces, see e.g. Bishop (2006). When the decision boundaries are affine functions
of the input data f, the corresponding classifiers are called linear. There are also
non-linear classifiers, i.e. classifiers which define decision boundaries that are
non-linear functions of the input data. Classes that are disjoint can be separated
by linear/non-linear decision boundaries, and are therefore called linearly/non-
linearly separable.

21
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However, many problems in classification are neither linearly separable, nor are
the true, underlying, data domains Ck disjoint. For data sets which can not be sep-
arated by linear decision boundaries, methods which combine multiple models
may be used. Such methods are sometimes called committees, examples include
bagging and boosting, see e.g. Bishop (2006). Bagging classifiers are formed by
generating M bootstrap data sets from a single data set, and then using each boot-
strap data set to train a classifier. Bootstrap data sets are generated by randomly
drawing points with replacement from the original data set. Some points from
the original data set may thus be drawn more than once in a bootstrap data set,
while other points are not drawn at all. The bagging classification is then formed
by taking the average of the M bootstrap classifications. In Paper A, boosting,
presented in Section 3.2, is used to compute non-linear classifiers.

3.2 Boosting

Boosting is a machine learning method for finding combinations of simple base
classifiers in order to produce a form of committee whose performance can be
significantly better than any one of the base classifiers used alone. The simple
base classifiers need to be just slightly better than a random guess, hence they
are often called weak classifiers, see e.g. Bishop (2006). The resulting combina-
tion is (typically) better than the best individual weak classifier, and analogously
the resulting classifier learned by boosting is thus called strong. The principal
difference between boosting and other committee methods such as bagging, is
that the training is performed sequentially. Each weak classifier is learned using
a weighted form of the data set, where the weighting of each data point depends
on the performance of the previous weak classifiers, see e.g. Bishop (2006). There
exists a few different boosting methods, here we will limit ourselves to consider-
ing adaptive boosting.

3.2.1 Adaptive boosting

A widely used form of boosting is adaptive boosting, abbreviated AdaBoost. It is
a machine learning procedure which greedily builds a strong classifier by a lin-
ear combination of weak classifiers (Freund and Shapire, 1995). When the weak
classifiers are combined into a strong classifier, the resulting decision boundary
is non-linear. As more weak classifiers are added, the classification error on the
training data converges towards zero, and eventually becomes zero. Although
this might be interpreted as over-fitting, AdaBoost has been shown to generalize
well on testing data (Freund and Shapire, 1995). A more detailed overview and
examination of boosting than can be given here is found in Chapter 10 in the
book by Hastie et al. (2009).

Although later generalized to multiple classes, AdaBoost was originally designed
for problems with two classes, i.e. K = 2. Rather than denoting the two classes as
1 and 2, here they are referred to as the positive class and negative class, or p and
n, respectively. As input to the AdaBoost learning algorithm, N hand-labeled
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training data pairs are provided,(
f1, y1

)
, . . . ,

(
fi , yi

)
, . . . ,

(
fN , yN

)
, (3.3)

where each data point fi has a corresponding class label yi . To learn a classifier
using AdaBoost, data points from each class are needed. Let Np and Nn be the
number of training data points belonging to Cp and Cn, respectively, i.e. N =
Nn + Np. The data labels in the two class problem are defined as

yi =
{

1 if fi ∈ Cp,
0 if fi ∈ Cn.

(3.4)

In the AdaBoost algorithm, each data pair
(
fi , yi

)
is given a weight wit , where

t denotes the specific iteration of the algorithm. The weights are initialized as
wi1 = 1

2Nn
if yi = 0, or wi1 = 1

2Np
if yi = 1. This initialization ensures that each

class is given half the weight of the data, and all data pairs within a class are
given an equal weight.

After initialization, AdaBoost iteratively adds weak classifiers to a set of previ-
ously added weak classifiers, to find a good combination that together constitutes
a strong classifier. The weak classifiers used in this thesis are decision stumps, i.e.
one node decision trees, defined as

c
(
fi , θ

)
=

{
1 if pf ij < pλ
0 otherwise

(3.5)

with parameter θ = {j, p, λ}, where j is the particular component of fi selected, f ij ,
p is the polarity (p = ±1), and λ ∈ R is a threshold. The result of a weak classifier
(3.5) is that the input space is partitioned into two half spaces, separated by an
affine decision boundary which is parallel to one of the input axes.

In each iteration t, the weak classifier that minimizes the weighted classification
error with respect to θ is chosen. This is performed by solving an optimization
problem. Given the parameters of the best weak classifier θt , the training data is
classified and the weights of the mis-classified data are increased (or, conversely,
the weights of the correctly classified data are decreased). Further, using the
classification error εt a weight αt is computed for the best weak classifier. Details
on how the weights are computed are given below.

This procedure is repeated until T weak classifiers c
(
fi , θt

)
have been computed.

Weak classifiers can be added several times in each dimension of Rnf , each time
with a new polarity and threshold, i.e. same j and new p and λ. The normalized
weighted combination of T weak classifier together create the strong classifier
c
(
fi
)
. The output of the strong classifier is a likelihood, c

(
fi
)
∈ [0, 1]. To obtain

a binary classification decision, a threshold τ ∈ [0, 1] is used, where the standard
choice is τ = 0.5. A detailed presentation of AdaBoost is given in Algorithm 1,
and the learning iterations are illustrated in Example 3.1.
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Algorithm 1 AdaBoost

Input: Labeled data pairs:
(
f1, y1

)
, . . . ,

(
fN , yN

)
. Number of training iterations:

T .
Initialize weights: wi1 = 1

2Nn
if yi = 0, wi1 = 1

2Np
if yi = 1

1: for t = 1, . . . , T do
2: Normalize the weights:

w̃it =
wit∑Nn+Np

j=1 w
j
t

, i = 1, . . . , Nn + Np (3.6)

3: Select the best weak classifier with respect to θ,

θt = arg min
θ

N∑
i=1

w̃it

∣∣∣∣c (fi , θ) − yi ∣∣∣∣ (3.7)

4: Define ct
(
fi
)

= c
(
fi , θt

)
, and εt =

∑N
i=1 w̃

i
t

∣∣∣∣ct (fi) − yi ∣∣∣∣.
5: Update the weights:

wit+1 = w̃itβ
1−ei
t , i = 1, . . . , Nn + Np, (3.8)

where ei = 0 if fi is classified correctly and 1 otherwise, and βt = εt
1−εt . Set

αt = log 1
βt

.
6: end for

Output: Strong classifier

c
(
fi
)

=

∑T
t=1 αtct

(
fi
)

∑T
t=1 αt

∈ [0, 1] (3.9)

Example 3.1: AdaBoost learning
A data set was generated in polar coordinates, where the angle fϕ was sampled
uniformly in [0 2π], and the range fr was sampled from N (fr ; 0, 0.10) for the
positive class and N (fr ; 0.50, 0.10) for the negative class. Using the transform
(2.4), the sampled data was transformed into Cartesian coordinates. Note that
since the range components fr for the two classes are randomly sampled from
probability distributions that overlap, the underlying classes are not separable
and it is therefore difficult to define a “true” decision boundary.

However, with the known Gaussian distributions for the range components of the
data, a probabilistic decision boundary can be defined by considering which class
has higher probability in any given data point. Here, the probabilistic decision
boundary in the range component is defined as the range for which both classes
are equally probable,

1
√

2π0.102
e
− (r−0)2

2 · 0.102 =
1

√
2π0.102

e
− (r−0.50)2

2 · 0.102 ⇔ r = 0.25. (3.10)

Thus, for this example, in Cartesian coordinates the probabilistic decision bound-
ary is a circle with radius 0.25. This probabilistic decision boundary is compared
with the decision boundary learned by AdaBoost. The data set and a number of
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learning iterations are shown in Figure 3.1.

In Figures 3.1b to 3.1f, the decision boundaries of the weak classifiers are shown
as black lines and the resulting decision regions are shown in white for Cp and
light purple for Cn. The increasing weight of the misclassified data is illustrated
by making the markers larger.

3.2.2 Examples

In this section we show some of the properties of AdaBoost through some exam-
ples. The first two examples are for data from classes that are separable, either
linearly of non-linearly. Thus, for these examples true decision boundaries can be
defined. The third example is with data from classes that are non-separable, sim-
ilarly to the data in Example 3.1. The last example bears the largest resemblance
to the real world classification problem addressed in this thesis in Paper A.

A very basic requirement for a classification method is that it can handle data
which is linearly separable. The AdaBoost algorithm is tested on such data in
Example 3.2.

Example 3.2: Linearly separable data
Data points fi are generated by uniform sampling in [0 1] × [0 1]. In total N =
1000 data points are generated, and sorted into classes according to{

fi ∈ Cp if f i1 < f
i

2 ,
fi ∈ Cn otherwise.

(3.11)

Thus, the class regions are well defined in the data space, f ∈ R2, and a true
decision boundary can be defined as the line f i2 = f i1 . Figure 3.2 shows the data
and the results. AdaBoost is able to compute a good estimate of the true decision
boundary, using T = 100 weak classifiers.

For linearly separable data, using AdaBoost can be inefficient from a computa-
tional point of view. In Example 3.2 a linear classifier, e.g. Fischer’s linear discrim-
inant (see e.g. Bishop (2006)), would be a better choice due to its lower computa-
tional demands. An example of data which is separable by a non-linear decision
boundary is given in Example 3.3.

Example 3.3: Non-linearly separable data
Data points fi are generated by uniform sampling in [0 1] × [0 1]. In total N =
1000 data points are generated, and sorted into classes according to{

fi ∈ Cp if
∣∣∣f i1 − 0.5

∣∣∣ ≤ 0.25 AND
∣∣∣f i2 − 0.5

∣∣∣ ≤ 0.25,
fi ∈ Cn otherwise.

(3.12)

Similarly to Example 3.2, the class regions are well defined and the true decision
boundary is defined as a square box. The data and the results are shown in Fig-
ure 3.3. For the particular example, using just T = 9 weak classifiers, AdaBoost
finds a good estimate of the true decision boundary.
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(d) T = 3
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(g) Decision region
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(h) Probabilistic decision re-
gion.
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Figure 3.1: AdaBoost learning. (a): polar data set, f ∈ Cp in green, f ∈ Cn
in dark purple. (b) to (f): the first five training iterations. (g) and (h): final
decision region, T = 25, and true probabilistic decision region. (i): Training
error versus number of training iterations T . The error is defined as the
percentage of data points that are mis-classified.
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Figure 3.2: AdaBoost with data that is linearly separable. (a): Cp in green, Cn
in dark purple. (b): AdaBoost decision region, T = 100. (c): True decision
region.
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Figure 3.3: AdaBoost with data that is separable by a non-linear decision
boundary. (a): Cp in green, Cn in dark purple. (b): AdaBoost decision region,
T = 9. (c): True decision region.

Most practical classification problems however, are with data sampled from class-
es that are likely to be non-separable. Example 3.4 presents data, where each
class is represented by a Gaussian distribution. Thus, with knowledge of the
true underlying class distributions, a decision boundary can be computed from
the probability density functions analogously to how a decision boundary was
computed in Example 3.1. In the example, there is a large resemblance between
the learned decision boundary and the probabilistic decision boundary.
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Figure 3.4: AdaBoost with data generated by two Gaussian distributions. (a):
Cp in green, Cn in dark purple. (b): AdaBoost decision boundary, T = 100.
(c): Probabilistic decision region.

Example 3.4: Gaussian data
This example illustrates how AdaBoost finds a decision boundary for data from
two non-separable classes. The data points fi are generated by sampling from
two Gaussian distributions, and keeping only samples that fall in [0 1] × [0 1].
Here, Np = Nn = 1000 data points are generated from the following Gaussian
distributions

Cp : Samples from N
(
f ;

[
0.95
0.05

]
,

[
0.01 0

0 0.02

])
,

Cn : Samples from N
(
f ;

[
0.25
0.75

]
,

[
0.20 −0.005
−0.005 0.20

])
.

(3.13)

A probabilistic decision boundary is computed analogously to Example 3.1, i.e.
by computing the value of each Gaussian’s corresponding probability density
function, and for each point in the data space consider which class has higher
probability. In Figure 3.4 the data is shown together with the decision boundary
learned by AdaBoost and the probabilistic decision boundary.

3.2.3 Properties

Above it was shown that AdaBoost has strong capabilities of finding good non-
linear decision boundaries. In each of the three examples however, the number of
training data was quite large. In this section, we show what happens when there
is few training data available (i.e. Np and Nn are small), or when the training data
are unbalanced (Np � Nn orNp � Nn). The important issue of over-fitting is also
addressed. Paper A contains experiments where the data is unbalanced, and also
contains experiments where the learned classifier is tested for overfitting.

Performance when data is scarce is shown in Example 3.5.
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Figure 3.5: AdaBoost when both Np and Nn are small. A decision boundary
has to be learned from an insufficient amount of data. (a): Polar data, T = 25.
(b): Gaussian data, T = 3.

Example 3.5: Few data
Data is generated by randomly selecting Np = 20 and Nn = 20 data points from
the polar data in Figure 3.1a, and from the Gaussian data in Figure 3.4a. These
data sets were previously used in Example 3.1 and Example 3.4, thus the prob-
abilistic decision boundaries are the same as previously. Figure 3.5 shows the
results, compare to the true decision boundaries given in Figure 3.1g and Fig-
ure 3.4c. It is quite clear from the results that the decision boundary learned by
AdaBoost is a poor estimate of the probabilistic decision boundaries. It can be
noted though, that such few data gives a rather poor representation of the under-
lying true distributions, and finding a good decision boundary can be expected
to be difficult using any method.

Unbalanced data is presented in Example 3.6, where the number of positive data
Np is 100 times fewer than the number of negative data Nn.

Example 3.6: Unbalanced data
Data is generated by randomly selecting Np = 10 data points from the positive
class, and using all Nn = 1000 data points from the negative class. As in Exam-
ple 3.5, both the polar and the Gaussian data sets were used, thus the probabilis-
tic decision boundaries are the same as previously. Figure 3.6 shows the results,
compare to the probabilistic decision boundaries given in Figure 3.1g and Fig-
ure 3.4c. It is evident that with unbalanced data, AdaBoost no longer finds a
decision boundary which resembles the probabilistic one. Instead the learned
decision boundary adapts too much to the data, which can be interpreted as over-
fitting, an issue which is addressed in the next example.

When learning models for classification, care should be taken to avoid the prob-
lem of over-fitting. Over-fitting is when the learned model adapts too much to the
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Figure 3.6: AdaBoost when the numbers of data in each class are unbalanced,
here Np � Nn. (a): Polar data, T = 25. (b): Gaussian data, T = 100.

training data, and thus does not generalize well to validation data, or the true un-
derlying decision regions. Over-fitting, in the context of AdaBoost, corresponds
to using a number of weak classifiers that is too large. Work by Freund and
Shapire (1995) has shown that AdaBoost has a strong resistance to over-fitting,
indeed experimental results in Paper A confirm this. Attempts have been made
to explain AdaBoost, and its reported resistance to over-fitting, in terms of logis-
tic regression, see the paper by Friedman et al. (2000). However, an exhaustive
and full technical explanation has to the best of the author’s knowledge not been
given.

Example 3.7: Overfitting
In this example, the polar data from Example 3.1 and Gaussian data from Exam-
ple 3.4 were used. For both data sets a classifier was learned using AdaBoost for
T = 1000 iterations. Figure 3.7 shows the results, compare to the true decision
boundaries given in Figure 3.1g and Figure 3.4c.

The results in Example 3.7 show that despite T being excessively large, the re-
sulting decision boundary has not over-fitted to the training data. However, Ex-
ample 3.5 did show that when data are scarce, the resulting decision boundary
adapts too much to training data, i.e. the resistance to overfitting appears to be
dependent on the total number of training data.

3.2.4 S-fold cross validation

When solving a classification problem it is important to keep the training data
separate from the validation data. If data is scarce, a common practice is to use S-
fold cross validation. With this approach, the data is partitioned into S-folds, or
subsets. In each of S runs, the S:th fold is reserved for validation, and remaining
S − 1 folds are used for training. The results from each round are then pooled.
This procedure allows a portion S−1

S of the data to be used for training, while the
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Figure 3.7: Overfitting test. (a): Polar data, T = 1000. (b): Gaussian data,
T = 1000.

whole data set can be used for performance evaluation. While performing S-fold
cross validation, it is important to keep the training and validation data fully
disjoint. A drawback of S-fold cross validation is that the training procedure has
to be repeated S times, which can prove time consuming when the training is
computationally expensive, see e.g. Bishop (2006).

A sub-problem of S-fold cross validation is how to partition the data into folds.
When data is a sequence over time, training data and validation data can be cho-
sen as different time sequences. This is common practise in e.g. system identi-
fication, see e.g. Ljung (1999). In Paper A the data used in classification is not
ordered temporally, and thus training and validation data can not be taken as
different time sequences. Instead, the data is partitioned into folds by randomly
permuting the order of the data, and then dividing the re-ordered data into folds.
If the random permutation is performed correctly, each fold should be a good
representation of the entire data set. It is also important to consider the labels
of the data such that one, or more, of the folds do not represent an unbalanced
subset of the whole data set.

3.3 Performance evaluation

This section contains the definition of some quantities related to performance
evaluation of binary classifiers. It is shown how these quantities can be used
to evaluate classifiers, and compare classifiers to each other. The performance
evaluation metrics are used to evaluate and compare classifiers in Paper A.

3.3.1 Basic concepts

For a binary classifier, the true positive rate tp is the number of positive test
data correctly classified as positive. Similarly, the true negative rate tn is the
number of negative test data correctly classified as negative. The false positive
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Table 3.1: Binary classifier contingency table.

A
ct

u
al

cl
as

s

Predicted class
p n Tot.

p True
Positive

False
Negative tp + fn = N t

p

n False
Positive

True
Negative fp + tn = N t

n

Tot. tp + fp fn + tn

rate fp is the number of negative test data incorrectly classified as positive, and
the false negative rate fn is the number of positive test data incorrectly classified
as negative.

Let there be N t
p and N t

n number of positive and negative test data, respectively.
The four outcomes of a binary classifier can be formulated in a 2 × 2 contingency
table, or confusion matrix, as shown in Table 3.1.

3.3.2 Detection and false alarm

The detection, or true positive, rate D and false alarm, or false positive, rate FA
are defined as

D =
tp

tp + fn
=
tp
N t

p
, (3.14a)

FA =
fp

fp + tn
=
fp
N t

n
. (3.14b)

For an AdaBoost learned classifier, and a given set of test data, the detection and
false alarms rates can be computed for different thresholds τ , see Example 3.8.

Example 3.8: Detection and false alarms rates
A set of N t

p = N t
n = 104 test data was generated in the same way as the training

data in Example 3.1. Figure 3.8 shows the detection and false alarm rates for
different thresholds when the test data is classified using the classifiers learned
in Example 3.1 (all training data), Example 3.5 (few training data), Example 3.6
(unbalanced training data), and Example 3.7 (overtraining).

The figure shows that both the detection rate and the false alarm rate decrease
with an increasing threshold. This is intuitive, because a higher threshold im-
plies that a higher likelihood is required for the test data point to be classified as
belonging to the positive class.
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Figure 3.8: Detection (solid) and false alarm (dashed) rates for different
thresholds. The legend refers to classifiers learned using the data in Ex-
ample 3.1 (All), Example 3.5 (Few), Example 3.6 (Unbal), and Example 3.7
(Over).

3.3.3 Receiver operating characteristic

For any binary classifier the detection rate should be high and the false alarm rate
should be low. However, as shown in Example 3.8, these two objectives are in con-
flict. A higher detection rate implies that a lower threshold should be used, but
a lower threshold in turn implies a higher false alarm rate. A receiver operating
characteristic (roc) curve is an illustration of a binary classifier’s trade off be-
tween detection and false alarm. Example 3.9 gives roc curves for the detection
and false alarm curves in Example 3.8.

Example 3.9: Receiver operating characteristic
The detection and false alarm rates in Figure 3.8 are plotted against each other as
roc curves in Figure 3.9. At any given false alarm rate, the detection rate should
be as high as possible, which implies that the roc curve should be as close as
possible to the upper left corner of the plot. It can be seen that the overtrained
classifier has similar performance as the classifier learned using all data. The
classifier learned using few data points has worse performance, but is slightly
better than the classifier learned using unbalanced data.

In addition to visually comparing roc curves in order to compare different clas-
sifiers, the area under the roc curve can be taken as a performance measure. In
the best case scenario, the detection rate is 100% for any threshold that gives a
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Figure 3.9: roc curves corresponding to the detection and false alarm curves
in Figure 3.8. The legend refers to classifiers learned using the data in Ex-
ample 3.1 (All), Example 3.5 (Few), Example 3.6 (Unbal), and Example 3.7
(Over).

Table 3.2: Area under the roc curves in Figure 3.9.
Classifier All Few Unbal Over
Area under roc 99.45% 94.85% 92.07% 99.62%

non-zero false alarm rate. In this case the area under the roc curve would be
1, which means that the larger the area under the roc curve is, the better the
classifier is. The areas under the roc curves in Figure 3.9 are given in Table 3.2.
The results confirm that the classifier learned using the unbalanced training data
is the worst, and that the overtrained classifier has equal performance with the
classifier learned using all training data.

In certain classification problems it is more important to have a low FA rate than
to have a high D rate, one such example is given in Paper A. In this case, different
classifiers can be compared by considering the D rate at a specific FA rate. Natu-
rally, the opposite could also be true, i.e. high D rate is more important than a low
FA rate. In this case, a comparison of FA rates for specific D rates can be made.

In Table 3.3 the D rates at 0% and 1% FA rate are given for the roc curves in
Figure 3.9. Judging by the D rate at 1% FA rate, the classifier learned using the
unbalanced training data is again the worst. However, judging by the D rate at
0% FA rate, the classifier learned using the unbalanced training data is the only
one that achieves a non-zero D rate.
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Table 3.3: D rate at 0% and 1% FA rate for the roc curves in Figure 3.9.
Classifier All Few Unbal Over
0% FA 0% 0% 46.94% 0%
1% FA 97.71% 70.75% 60.36% 98.20%





4
Estimation

This chapter is about estimation, a signal processing problem in which an unob-
served signal is approximated using an observed signal containing noise. Estima-
tion is an important part of many scientific fields, e.g. sensor fusion and robotics.
A common requirement for practical estimation is a mathematical model of the
observed and unobserved signals, and the relationship between the signals. In
the cases where the mathematical models are linear, and the noise is Gaussian
distributed, the Kalman filter is the optimal solution to the estimation problem.
In many applications the state-space description is non-linear, for these cases the
extended Kalman filter might be an option.

The chapter is organized as follows: the estimation problem is presented and
defined in Section 4.1. Section 4.2 is about dynamical models and measure-
ment models, with examples in both continuous and discrete time. Recursive
single state Bayes filtering is overviewed in Section 4.3. Linear and non-linear
estimation methods are described in Section 4.4 and performance evaluation is
presented in Section 4.5.

4.1 The estimation problem

Estimation can, in a general sense, be defined as the problem of approximating,
or estimating, a state x, or a parameter θ, using the noisy measurement z. In an
estimation problem, the quantity of interest, either the state x or the parameter
θ, or the pair x and θ, is unknown. To keep things simple and uncluttered, in
the remainder of the chapter we will assume that it is the state x that is being
estimated. However, note that the presented theory applies equally well to the
parameter θ.

37
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Assume, for the sake of simplicity, that the state, parameter and measurement
are all vector valued variables, x = [x1, . . . , xnx ]T ∈ Rnx , θ = [θ1, . . . , θnθ ]T ∈ Rnθ
and z = [z1, . . . , znz ]T ∈ Rnz . Estimation can be performed in either continuous
or discrete time. Let x(t) denote the true state in continuous time t, and let xk
denote the true state at discrete time instant tk , i.e. xk = x (tk). In discrete time,
let x̂k|` denote the estimate at discrete time tk , given all measurements up to,
and including, time t`. When t` > tk (` > k), the estimation problem is called
smoothing, and when t` < tk (` < k) the problem is called prediction. However,
in this chapter we will limit ourselves to the filtering problem, i.e. when t` = tk
(` = k).

4.2 Dynamic models and measurement models

To solve the estimation problem it is necessary to model how the estimated quan-
tity x evolves over time, i.e. to model the state dynamics, which is typically done
using differential equations in continuous time. Let

ẋ(t) = a (x(t),u(t),w(t), θ(t)) (4.1)

denote the dynamic motion model in continuous time. Here, ẋ(t) is the derivative
of x(t) w.r.t. time t, u(t) is an exogenous input variable, and w(t) is random noise,
often called process noise. Note that estimation of the state x often assumes that
the parameter θ is known. Often estimation of the state x cannot be performed
in continuous time, instead it has to be performed in discrete time. Let

xk+1 = f (xk ,uk ,wk , θk) (4.2)

be the discrete time counterpart of (4.1). The discrete time steps are related as
follows,

tk+1 = tk + Ts(k) (4.3)

where Ts(k) is the sampling time at time step k. The sampling time can be a
function of time, i.e. it can be time varying. However, in the remainder of this
chapter we assume constant sampling time and simply write Ts.

In addition to modeling the state dynamics, it is necessary to model the relation-
ship between the measurements z and the state x. Let

z(t) = c (x(t), e(t), θ(t)) (4.4)

denote the measurement model in continuous time. Here e(t) is random noise,
often called measurement noise. Analogously to the continuous-discrete relation-
ship between (4.1) and (4.2), a measurement model can be given in discrete time
as

zk = h (xk , ek , θk) . (4.5)

In the most simple case, the motion and measurement models are both linear, and
the process and measurement noises are additive zero mean Gaussian. However,
far from all systems can be modeled as linear and Gaussian. In the following, we
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will give some simple model examples in continuous and discrete time.

4.2.1 Example in continuous time

Example 4.1 gives a simple linear and noiseless state space system in continuous
time.

Example 4.1: Linear state space system, continuous time
Let the state vector contain the one dimensional position p and velocity v of an
object, i.e. x(t) = [p(t) v(t)]T. The motion model can be defined as

ẋ(t) =
[
ṗ(t)
v̇(t)

]
=

[
v(t)
a(t)

]
=

[
0 1
0 0

] [
p(t)
v(t)

]
+

[
0
1

]
w(t)

= Ax(t) + Bw(t) (4.6)

where w(t) = a(t) is the acceleration. This motion model is often called con-
stant velocity model. Let the measurement be the position, thus the measurement
model is

z(t) = z(t) = p(t)

=
[
1 0

] [p(t)
v(t)

]
= Cx(t). (4.7)

Note that the motion and measurement models (4.6) and (4.7) are modeled as
noiseless. This is an atypical choice, because most often systems are assumed to
be noisy.

The motion and measurement models used in this thesis are all in discrete time,
and in the next section, which presents discrete time models, noise is included. A
presentation of random signals in continuous time goes beyond the scope of this
thesis, instead we refer the reader to the literature, see e.g. (Jazwinski, 1970).

4.2.2 Examples in discrete time

As was noted above, some estimation problems cannot be solved in continuous
time, and instead discrete time models have to be derived for the dynamic mo-
tion and measurements. A possible way to discretize a continuous model is to
approximate the continuous time derivatives as

ẋ(t) ≈x(t + Ts) − x(t)
Ts

(4.8a)

=
xk+1 − xk

Ts
, (4.8b)



40 4 Estimation

where Ts is the sample time, and we assume that t = kTs. Note that in the limit,
limTs→0, the approximation is exact. The approximation (4.8) is also called Eu-
ler’s approximation. In Example 4.2 Euler’s approximation is used to find a dis-
crete time counterpart to the continuous time system presented in Example 4.1.

Example 4.2: Linear Gaussian state space system, discrete time
Using the approximation given in (4.8), the motion model in (4.6) is given in
discrete time as

xk+1 − xk
Ts

=
[ pk+1−pk

Tsvk+1−vk
Ts

]
=

[
0 1
0 0

] [
pk
vk

]
+

[
0
1

]
wk

⇔

xk+1 =
[
pk+1
vk+1

]
=

[
1 Ts
0 1

] [
pk
vk

]
+

[
0
Ts

]
wk

= Fxk + Gwk , (4.9)

with discrete time process noise p (wk) = N (wk ; 0,Qk). The measurement model
is given in discrete time as

zk =
[
1 0

] [pk
vk

]
+ ek

= Hxk + ek , (4.10)

with discrete time measurement noise p (ek) = N (ek ; 0,Rk).

Other continuous to discrete approximations are also possible, see e.g. Gustafs-
son (2010). Depending on the approximation that is used, the discretization of
the continuous constant velocity model in Example 4.1 could be different than
the one given in Example 4.2.

However, in many cases neither the state dynamics nor the measurements can
be modeled accurately as linear systems. Instead non-linear models have to be
used. Similarly, the noise processes are not necessarily zero mean Gaussian, but
may belong to any other probability distribution. An example of a non-linear,
non-Gaussian, state space system is given in Example 4.3.

Example 4.3: Non-linear non-Gaussian state space system, discrete time
A common non-linear motion model is the coordinated turn model with polar
velocity. The state is

xk =
[
pxk pyk vk φk ωk

]T
, (4.11)

where pxk and pyk are the positions in two dimension, vk is the velocity, φk is the
heading and ωk is the turn rate.



4.3 Recursive single state Bayes filter 41

The motion model, see e.g. Rong Li and Jilkov (2003), is

xk+1 =


pxk + 2vk

ωk
sin

(
ωkTs

2

)
cos

(
φk + ωkTs

2

)
pyk + 2vk

ωk
sin

(
ωkTs

2

)
sin

(
φk + ωkTs

2

)
vk

φk + ωkTs
ωk


+ wk , (4.12)

where wk is random process noise with covariance matrix (Rong Li and Jilkov,
2003)

Qk = blkdiag

[0 0
0 0

]
, Tsσ

2
v ,

 T 3
s σ

2
ω

3
T 3
s σ

2
ω

2
T 3
s σ

2
ω

2 T 3
s σ

2
ω


 . (4.13)

The coordinated turn motion model is often used for airplane tracking in air
traffic control, and the measurement is then typically the range to the airplane
measured by a radar station. If the radar station is located in s = [sx sy]T, the
measurement model for the state vector in (4.11) is

zk =

√(
pxk − sx

)2
+

(
pyk − sy

)2
+ ek , (4.14)

where ek is random measurement noise.

4.3 Recursive single state Bayes filter

It is often of interest to use dynamic and measurement models to describe the
time evolution of a state. Because of the uncertainties involved, such as process
and measurement noise, the knowledge of the state is often described using prob-
ability distributions.

The time evolution of the distribution of the state x can be described in a recursive
Bayesian framework. At time step k, assume that we have a prior distribution for
the state variable,

p
(
xk

∣∣∣zk ) , (4.15)

where zk is the set of all measurements from time step 0 to time step k

zk = {z0, z1, . . . , zk−1, zk} . (4.16)

The prior can be predicted (i.e. time updated) to the next time step using the
Chapman-Kolmogorov equation,

p
(
xk+1

∣∣∣zk ) =
∫
p (xk+1 |xk ) p

(
xk

∣∣∣zk )dxk , (4.17)

where p (xk+1 |xk ) is the transition density from time k to time k + 1.
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Let p (zk+1 |xk+1 ) be the measurement likelihood. Then, given the predicted prior,
the corrected (i.e. measurement updated) posterior is

p
(
xk+1

∣∣∣zk+1
)

=
p (zk+1 |xk+1 ) p

(
xk+1

∣∣∣zk )∫
p (zk+1 |xk+1 ) p

(
xk+1

∣∣∣zk )dxk+1

. (4.18)

Let p (x0) be the prior at the initial time step. The prior p (x0), the prediction
(4.17), and the correction (4.18), are sufficient to describe the time evolution of
the distribution of the state x given measurements z,

p (x0)
c→ p

(
x0

∣∣∣z0
) p
→ p

(
x1

∣∣∣z0
) c→ p

(
x1

∣∣∣z1
) p

→ . . .

. . .
c→ p

(
xk

∣∣∣zk ) p
→ p

(
xk+1

∣∣∣zk ) c→ p
(
xk+1

∣∣∣zk+1
) p
→ . . .

(4.19)

where
p
→ denotes prediction and

c→ denotes correction.

It is often desired that the propagated distribution over x has the same functional
form, i.e. that p

(
xk

∣∣∣zk−1
)

and p
(
xk

∣∣∣zk ) are of the same functional form for all k.
For example, if the initial prior is a Gaussian distribution

p (x0) = N (x0 ; m0, P0) , (4.20)

it is desired that p
(
xk

∣∣∣zk−1
)

and p (xk |zk ) are Gaussian for all k, i.e.

p
(
xk

∣∣∣zk−1
)

=N
(
xk ; mk|k−1, Pk|k−1

)
, (4.21a)

p
(
xk

∣∣∣zk ) =N
(
xk ; mk|k , Pk|k

)
. (4.21b)

The property that the posterior distribution p
(
xk

∣∣∣zk ) has the same functional

form as the prior distribution p
(
xk

∣∣∣zk−1
)

is called conjugacy; for a given mea-
surement likelihood p (zk |xk ) the prior that gives the same posterior is called
conjugate prior.

Worthy of mention for their relevance to this thesis are the conjugate pairs given
in Table 4.1. A comprehensive study of conjugate pairs can be found in e.g. the
book by Gelman et al. (2004).

Table 4.1: Conjugate prior pairs
Measurement likelihood Conjugate Prior (variable of interest)
Poisson Gamma (Poisson rate)
Gaussian Gaussian (mean vector)
Multivariate Gaussian Inverse Wishart (covariance matrix)
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4.4 Some solutions to the estimation problem

There exists a variety of methods to solve estimation problems, in this section we
will briefly review some of them. For linear estimation with Gaussian noise, the
Kalman filter provides the optimal solution. For non-linear, non-Gaussian, prob-
lems, the extended Kalman filter and the particle filter are two possible methods.
The Kalman filter is used in Paper B, Paper D and Paper H, and the extended
Kalman filter is used in Paper C and Paper G.

4.4.1 Linear estimation with the Kalman filter

For the case presented in Example 4.2, when the motion and measurement mod-
els are linear and the process and measurement noise are Gaussian and indepen-
dent, the estimation problem can be solved in closed form using the Kalman filter
(Kalman, 1960). The Kalman filter propagates in time the first moment mk|k and
the second moment Pk|k of the state xk ,

. . .
c→ N

(
xk ; mk|k , Pk|k

) p
→ N

(
xk+1 ; mk+1|k , Pk+1|k

)
c→ N

(
xk+1 ; mk+1|k+1, Pk+1|k+1

) p
→ . . .

(4.22)

The Kalman filter prediction and correction equations are given in Algorithm 2.
Example 4.4 shows how the Kalman filter is used to estimate the states of the
discrete time system given in Example 4.2.

Algorithm 2 Kalman filter

Input: Measurements: {zk}Nk=0. Initial state estimate and covariance: {m0,P0}.
Models: F, G, andH . Parameters: Rk and Qk .

1: for k = 0, . . . , N do
2: Correction (measurement update)

ẑk|k−1 = Hmk|k−1 (4.23a)

Sk = HPk|k−1H
T + Rk (4.23b)

Kk = Pk|k−1H
TS−1
k (4.23c)

mk|k = mk|k−1 + Kk
(
zk − ẑk|k−1

)
(4.23d)

Pk|k = Pk|k−1 − KkHPk|k−1 (4.23e)

3: if k < N then
4: Prediction (time update)

mk+1|k = Fmk|k (4.24a)

Pk+1|k = FPk|kF
T + GQkG

T (4.24b)
5: end if
6: end for

Output: State estimates and covariances
{
mk|k ,Pk|k

}N
k=1
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Figure 4.1: Kalman filter state estimates, with 95% confidence intervals.

Example 4.4: Kalman filter
The system in Example 4.2 was initialized at the state x0 = [−0.75, 0.72]T, and
then simulated with true process noise covariance Q̄k = 1. N = 19 measurements
were generated with true measurement noise covariance R̄k = 1. The solution
from the Kalman filter, initialized with

m0 =
[
0
0

]
, (4.25a)

P0 =
[
1 0
0 1

]
, (4.25b)

is given in Figure 4.1. In the Kalman filtering the same models were used as
were used to simulate the system, and process and measurement noise covariance
parameter were set to Qk = Q̄k and Rk = R̄k , respectively.

For certain dynamic motion models, e.g. the constant velocity model in Exam-
ple 4.2, the state covariance Pk|k will converge to a steady state value, see e.g. Bar-
Shalom and Fortmann (1987). In such cases, a class of stationary filters known as
α-β filters can be used. The filter recursion consists of the following prediction
and correction steps,

mk+1|k = Fmk|k , (4.26a)

mk+1|k+1 = mk+1|k +
[
α
β
Ts

] (
zk+1 − ẑk+1|k

)
, (4.26b)

which, analogously to (4.22), can be expressed as

. . .
c→ mk|k

p
→ mk+1|k

c→ mk+1|k+1
p
→ . . . (4.27)

The steady state Kalman filter can be used to determine appropriate values for
the parameters α and β, see e.g. Bar-Shalom and Fortmann (1987).
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4.4.2 Non-linear estimation

As mentioned above, in many estimation problems the system is neither linear,
nor are the noise processes Gaussian. One possible way to solve a non-linear
estimation problem is to assume that the process and measurement noises are
zero mean Gaussian, and to apply the so called Extended Kalman Filter (ekf), see
e.g. Jazwinski (1970). As the name hints, the ekf is an extension of the Kalman
filter to non-linear systems. The ekf works by, at each time step, linearizing the
non-linear equations around the state estimate via first order Taylor expansion.
This linearization introduces linearization errors though. Note that there is no
guarantee of convergence of the ekf, however there is much practical experience
showing that, if initialized properly, the solution of the ekf often converges.

In the cases when the noise distributions cannot, with reasonable accuracy, be as-
sumed to be Gaussian, the so called Particle Filter (Gordon et al., 1993) is a good
alternative to the ekf. In brief, the particle filter provides an approximation of
the distribution of the state xk conditioned on zk . The approximation of the dis-
tribution is based on a number of particles, or samples, with associated weights.
There are also filters that combine the Kalman filter and the particle filter, these
are called Marginalized Particle Filters or Rao-Blackwellized particle filters, see
e.g. Schön et al. (2005). In brief, this type of filter is suitable for systems whose
state-space models can be separated into linear and nonlinear parts. There are
also non-linear filtering methods, good references on non-linear filtering are Si-
mon (2006) and Gustafsson (2010).

4.5 Performance evaluation

When a system is simulated, as in Example 4.4, the true state xk is available
and can be compared to the state estimate x̂k|k . In contrast to simulations, the
true state is often not directly available in experiments, however sometimes an
approximation of the true state can be obtained. One such example is outdoor
positioning of mobile robots, in which case the position given by a gps sensor
can be used as an approximation of the true position. In other cases the true
state can not be approximated, and other more or less subjective performance
measures have to be used.

Performance evaluation in the absence of the true state is briefly addressed in
Paper A, Paper B, Paper C, and Paper D. In the remainder of this section, it is
assumed that the true state is available. When evaluating estimation results, it is
important to have a well defined notion of the performance of the estimate. Two
performance evaluation methods are presented in this section.

4.5.1 The root mean square error

The estimation error Ek is defined as

Ek = xk − x̂k|k . (4.28)



46 4 Estimation

0 2 4 6 8 10 12 14 16 18 20
−2

−1

0

1

2

Time [s]

P
o
si
ti
o
n

[m
]

 

 

95%
p − p̂

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3

Time [s]

V
el

o
ci

ty
[m

/
s]

 

 

95%
v − v̂

Figure 4.2: Kalman filter estimation errors, with 95% confidence intervals.

The estimation error is thus a vector of the same dimension as the underlying
state xk , i.e. Ek = [ε1

k , . . . , ε
nx
k ]T ∈ Rnx , and each component of the estimation

error has the same unit as the corresponding state. If the states are position and
velocity, as in Example 4.2, the components of the estimation error are given in
meters and meter per second, respectively, see Example 4.5.

Example 4.5: Kalman filter estimation errors
The estimation errors corresponding to the Kalman filter results in Example 4.4
are given in Figure 4.2. The figure shows the estimation errors and the 95%
confidence intervals.

A standard performance metric for the estimation error is the root mean square
error (rmse) ρ. Given a time sequence of states xk , and the corresponding state
estimates x̂k|k , the rmse’s are defined, for each component of the estimation error
vector, as

ρi
M=

√√√
1
N

N∑
k=1

(
εik

)2
. (4.29)

Note that the summation is taken over time for each component of the estimation
error vector. The rmse of the estimation error Ek , i.e. the Euclidean norm of
the vector, can be difficult to interpret because often the states have different
dimensions1. An exception to this is when the state vector contains multiple
states of the same dimension, in which case an rmse can be calculated in each
time step for those states2.

When simulated data is used, Monte Carlo techniques can be used to realize the
system with different process and measurement noise sequences. In such a case,
the rmse can be evaluated at each time step over the different simulations. Let

1cf. Example 4.2: what is the unit of a sum of position squared and velocity squared?
2When x contains x-position and y-position, the 2D Euclidean norm of x is the position error.
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Emk be the estimation error at time step k for the m:th Monte Carlo simulation run.
The rmse at each discrete time step k is then calculated, for each component i of
the estimation error vector, as

ρi,MC
k =

√√
1
nMC

nMC∑
m=1

(
εi,mk

)2
. (4.30)

where εi,mk is component i of Emk , and nMC is the number of Monte Carlo runs.
Note that since the estimation error can be negative, calculating the mean estima-
tion error should be avoided. Evaluating the rmse over time may be of interest
when the true target track contains different types of motion, e.g. linear motion
and curving motion. In such cases, it is often difficult to model both types of
motion using just one motion model.

Note that techniques exist that find the estimate that minimizes the squared
rmse, the so called minimum mean square error (mmse) estimate x̂mmse, see e.g.
Bar-Shalom and Fortmann (1987).

4.5.2 The normalized estimation error square

An alternative to the estimation error is the normalized estimation error square
(nees) ηk , defined as

ηk
M=

(
xk − x̂k|k

)T
P−1
k|k

(
xk − x̂k|k

)
. (4.31)

The nees can be understood as being a weighted average of the individual state
errors, where the weights are given by the inverse state covariance. Thus, if the
variance of a state estimate is high, its inverse weight will be small and a large
error will have a smaller contribution to the nees. Conversely, if the variance of
a state is low, its inverse weight will be large and a large error will have a larger
contribution to the nees. Note that the nees, in contrast to the estimation error
and rmse, is a dimensionless quantity.

When the state estimate x̂k is Gaussian distributed, the nees can be shown to
be χ2-distributed with nx degrees of freedom (Bar-Shalom et al., 2001). Thus,
using the χ2 (nx)-distribution, probability gates can be computed for the nees.
Similarly to (4.30), the nees can be averaged over Monte Carlo runs. The nees
however, is always positive by definition, and thus the sum can be calculated over
the Monte Carlo runs,

ηMC
k =

nMC∑
j=1

η
j
k =

nMC∑
j=1

(
xjk − x̂jk|k

)T (
Pjk|k

)−1 (
xjk − x̂jk|k

)
. (4.32)

The Monte Carlo nees sum ηMC
k is χ2-distributed with nx × nMC degrees of free-

dom. Probability gates gmax
γ and gmin

γ , corresponding to γ% of the probability
mass, can be computed using the χ2 (nxnMC)-distribution. For a given discrete
time sequence, ηMC

k should be within
[
gmin
γ , gmax

γ

]
γ% of the time instances. If it

is not, it is a sign that the estimates may be inconsistent. In practical implementa-
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Figure 4.3: Estimation performance evaluation. (a): the rmse for the posi-
tion and velocity, respectively. (b): the nees with 90% confidence interval.

tions, ηMC
k is often divided by the number of Monte Carlo runs nMC. When this is

performed, gmax
γ and gmin

γ must also be divided by nMC. Example 4.6 shows the
Monte Carlo average rmse and nees for the system in Example 4.4.

Example 4.6: rmse and nees
The system presented in Example 4.4 is simulated with 100 unique process and
measurement noise sequences, and the Kalman filter was used to compute state
estimates. The corresponding rmse and nees are shown in Figure 4.3. The nees
is within the 90% confidence interval in 19 out of 20 time steps, or 95% of the
time steps.

4.6 Simultaneous localization and mapping

Filtering can be applied to solve a broad variety of problems. An example that
is of high relevance to this thesis, is the Simultaneous Localization and Mapping
(slam) problem. The slam problem is a robotics problem that consists of the
joint estimation of the robot state rx and the map state M. Thus, the full state
vector is

x =
[
rx
M

]
. (4.33)

The robot state typically consists of position and orientation, which is also called
the robot pose. The map is often divided into landmarks, sometimes called fea-
tures, and thus the map state M can be decomposed as

M =
[(

m(1)
)T

. . .
(
m(i)

)T
. . .

(
m(m)

)T]T
, (4.34)
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where m(i) is the i:th landmark state. The landmark state is often given as an (x, y)
or (x, y, z) position, however the orientation can also be included. In some slam
applications the robot trajectory, i.e. a history of robot poses, is of interest and
therefore included in the state vector. In the estimation, the estimated quantity
is the trajectory state

tx =
[
rxT

0
rxT

1 . . . rxT
k . . . rxT

K
rxT
c

]T
, (4.35)

where rxk is the kth robot pose and rxc is the current robot pose. When both the
robot trajectory and the whole map is estimated, the problem is called Full-slam.
The Full-slam state vector is

x =
[
tx
M

]
. (4.36)

Estimating the robot trajectory tx, and not the landmarks in the map state M, is
called trajectory based slam. In this case, the state vector is simply x=tx. In
trajectory based slam, instead of measuring the landmarks in the map state M,
the robot measures the relative difference between the current pose rxc and some
previous pose rxk . A simple example of trajectory based slam in 2D is given in
Example 4.7.

Example 4.7: Trajectory based slam
A true trajectory was simulated,3 and control inputs and measurements were
obtained from the simulation. The robot pose is

rxk =
[
xk yk φk

]T
, (4.37)

where (xk , yk) is the position and φk is the orientation. The relative pose

rxk,c =
[
xk,c yk,c φk,c

]T
(4.38)

is defined as a rigid body transformation that transforms rxk to rxc. For a pose
defined as in (4.37), the relationship between rxk , rxc and rxk,c is (Smith et al.,
1990)

rxc =

xcyc
φc

 =

xk + xk,c cos(φk) − yk,c sin(φk)
yk + xk,c sin(φk) + yk,c cos(φk)

φk + φk,c

 (4.39a)

=

xkyk
φk

 +

cos(φk) − sin(φk) 0
sin(φk) cos(φk) 0

0 0 1


xk,cyk,c
φk,c

 (4.39b)

=rxk +
[
R(φk) 02×1
01×2 1

]
rxk,c, (4.39c)

where R( · ) is a rotation matrix, and 0m×n is an m × n all zero matrix.

3The trajectory was simulated using the ekf-slam toolbox written by Tim Bailey and Juan I. Nieto,
Australian Centre for Field Robotics (acfr), University of Sydney (usyd), Australia.
http://www-personal.acfr.usyd.edu.au/tbailey/software/index.html
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Figure 4.4: Trajectory based slam. The true trajectory is given by the line,
estimated poses by the dots and the 99% pose uncertainty is shown by the
ellipses for every fifth pose.

In this example, measurements are generated when the true current pose is suf-
ficiently close to a previous pose, i.e. when the robot closes a loop. The measure-
ments are of the true relative pose rxk,c, with additive white Gaussian noise. The
probability of detecting loop closure was set to one. In reality however, detecting
loop closure presents a considerable challenge, and the probability of detection
is less than one.

A slam trajectory was estimated using an Exactly Sparse Delayed state Filter
(esdf) (Eustice et al., 2006), which is an ekf on information form for state vectors
of the type (4.35). The results are shown in Figure 4.4.

The origins of modern slam research can be traced back to the mid 80’s, when
probabilistic methods were first applied to mobile field robotics (Durrant-Whyte
and Bailey, 2006). Early work of large impact includes the paper by Smith et al.
(1990), which showed that when a robot makes relative observations of land-
marks, the estimates of the landmarks are all correlated. This implied that a
consistent full solution to the slam problem would require a joint state consist-
ing of both robot state rx and map state M. A nice overview of slam research
is given in the two part tutorial by Durrant-Whyte and Bailey (2006) and Bailey
and Durrant-Whyte (2006).



4.6 Simultaneous localization and mapping 51

A number of different solutions to the slam problem have been proposed. In on-
line solutions, the data is considered incrementally, i.e. processed one at a time,
while in offline solutions the data is typically considered in batch, i.e. all data is
processed at the same time, see e.g. Thrun and Leonard (2008). Popular solutions
to the slam problem include ekf-slam, see e.g. Dissanayake et al. (2001), which,
as the name reveals, solves the problem using an ekf. Another solution is fast-
slam (Montemerlo et al., 2002), which is based on the particle filter. fast-slam
has been shown to suffer from particle depletion when the robot’s mission grows
longer in time, which results in inconsistent estimates (Bailey et al., 2006). There
are, however, many practical examples where fast-slam has provided good re-
sults. A third family of solutions to the slam problem are the graph-based so-
lutions, pioneered by Lu and Milios (1997). The graph-based solutions solve the
slam problem offline in batch, either as trajectory based slam, or as Full-slam.

An important part of any slam solution is the data association, i.e. associating
measurements to the right landmark estimates, or associating relative pose esti-
mates to the correct previous pose. Data association in slam is very important,
because incorrect associations can lead to inconsistent slam-estimates. In Pa-
per A data association for trajectory based slam is posed as a loop closure detec-
tion problem, and a detection classifier is learned using AdaBoost.





5
Target tracking

This chapter is about target tracking, which is a type of estimation problem. The
target tracking problem is defined in Section 5.1, and some common data associ-
ation methods are presented in Section 5.2. The optimal sub-pattern assignment
metric for target tracking performance evaluation is defined in Section 5.3.

5.1 The target tracking problem

In this thesis, we will focus on targets that are moving objects, such as airplanes,
cars and humans. Early target tracking research was motivated by, among other
things, tracking of airplanes using radars, see e.g. Bar-Shalom and Fortmann
(1987). When airplanes are tracked using radar stations, the distance between
the sensor and target is often such that the target only occupies one resolution
cell of the sensor. Due to this, each target generates at most one radar measure-
ment. Because the targets generate at most one measurement per time step, they
effectively behave as points in the surveillance space and can thus be modeled as
such. This leads to the point target assumption, with the following definition:
Definition 5.1 (Point target). A target that gives rise to at most one measure-
ment per time step.

In the following two subsections some properties of target tracking are listed, and
problem formulations are given for both the case of a single target, and the case
of multiple targets.

5.1.1 Single target tracking

Single target tracking can be defined as the processing of measurements in order
to maintain an estimate of a target’s current state. As in any estimation problem,

53
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it holds that

I each target generated measurement is corrupted by noise.

However, when the estimation problem was introduced to the reader it was im-
plicitly assumed that in each time step there is a single state generated measure-
ment. In contrast to this, single target tracking is complicated by the fact that

II the probability of detection for each target is less than one, i.e. in each time
step it is not known whether or not the target generated a measurement,

III there are false, so called clutter, measurements, and

IV measurement origin is unknown, i.e. it is not known which measurements
are target generated, and which measurements are clutter.

Each time step, a sensor delivers Nz,k measurements z(j)
k . Let the set of measure-

ments at time k be denoted

Zk =
{

z(j)
k

}Nz,k
j=1

. (5.1)

Further, let Zk be all sets of measurements from time 1 to time k, i.e. Zk = {Zi}ki=1.
The objective of single target tracking is to use Zk to determine whether or not
there is a target present, and if a target is present, to estimate the target state xk .

5.1.2 Multiple target tracking

Multiple target tracking is an extension of single target tracking, and can be de-
fined as the processing of multiple measurements obtained from multiple targets
in order to maintain estimates of the targets’ current states, see e.g. Bar-Shalom
and Fortmann (1987). At the heart of multiple target tracking lies a joint estima-
tion problem, namely estimating the number of targets, and estimating the states
of each target. In addition to the properties I to IV listed above, in multiple target
tracking

V the number of present targets is unknown.

Let Nx,k denote the unknown number of targets present at time k, and let x(i)
k

denote the state of target i at time k. At time k the set of all present targets Xk is
given by

Xk =
{

x(i)
k

}Nx,k
i=1

. (5.2)

The objective of multiple target tracking is to estimate Xk given Zk , i.e. to deter-
mine how many targets there are, and for the targets that are present, to estimate

the target states x(i)
k .
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5.2 Data association methods

An important part of solving a target tracking problem is solving the data associ-
ation problem, sometimes also referred to as the correspondence problem. Data
association means to associate each measurement to one of the measurement gen-
erating sources, i.e. either to a target or a clutter source.

Data association is an integral part of target tracking, because incorrect data as-
sociation can result in disastrous tracking performance. In this section, we will
briefly overview some data association methods often used for point target track-
ing. In each time step, each measurement is either clutter, or generated by a
target. For the measurements that are generated by targets, a decision has to be
made as to which measurements belong to already existing targets, and which
measurements belong to new targets. Handling the data association problem is
easier when the number of targets is limited to at most one. Hence, we will re-
view single target tracking association methods first before reviewing association
methods for multiple target tracking.

5.2.1 Single target tracking

When at most one target is present, i.e. single target tracking, the data association
problem comes down to deciding if there is a target present, and if so, which
measurement belongs to the target. Since there is at most one target present, the
association can be handled locally, i.e. only the measurements closest to the target
estimate are considered as potentially having been generated by the target.

Nearest neighbor

In nearest neighbor (nn) data association, the target is associated to the nearest
measurement such that (

z(i)
k − ẑk|k−1

)T

S−1
k

(
z(i)
k − ẑk|k−1

)
(5.3)

is minimized. Here, the notation ẑk|k−1 and Sk was introduced in Algorithm 2,
and i is an index which spans over all measurements that fall within the gate. A
gate, or validation region, is a part of the measurement space where the specific
measurement is found with some (high) probability (Bar-Shalom and Fortmann,
1987). Gating is used as a means to reduce the risk that the target is corrected
using a clutter measurement. Each measurement has a probability of being target
generated, and a probability of being clutter. The measurements that fall inside
the gate have a probability of being target generated that is relatively high.

One of the more common gating methods is ellipsoidal gating, which checks
whether the quantity in (5.3) is larger or smaller than some gate threshold gγ ,
which corresponds to γ% of the probability mass.1 Ellipsoidal gating thus corre-
sponds to an ellipsoidal region in the measurement space. Note that nn makes
a hard decision in the sense that only the measurement that minimizes (5.3) is

1The quantity in (5.3) is χ2-distributed, cf. the normalized estimation error square in (4.31).
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considered, the remaining measurements that fall inside the gate are ignored in
the correction step.

Probabilistic data association

Probabilistic data association (pda) is a soft version of nn. No hard decision is
made at all, instead all measurements that fall inside the gate are used to the

extent that they suit the prediction. Let
{

z(i)
k

}mk
i=1

be the measurements that fall

within the gate. The following hypotheses are considered,

H0 : All of
{

z(i)
k

}mk
i=1

are clutter (5.4a)

Hj : z(j)
k was target generated and

{
z(i)
k

}
i,j

are clutter. j = 1, . . . , mk (5.4b)

Using the total probability theorem, the probability P
(
xk

∣∣∣∣∣{z(i)
k

}mk
i=1

)
is calculated

as

P
(
xk

∣∣∣∣∣{z(i)
k

}mk
i=1

)
=

mk∑
j=0

P
(
xk

∣∣∣∣∣Hj , {z(i)
k

}mk
i=1

)
P

(
Hj

∣∣∣∣∣{z(i)
k

}mk
i=1

)
. (5.5)

Details on how pda is implemented can be found in the literature, see e.g. Bar-
Shalom and Fortmann (1987).

5.2.2 Multiple target tracking

In multiple target tracking, i.e. when more than one target may be present, data
association is more complicated, and using local methods is insufficient. Instead
a global association decision must be made, meaning that all measurement-to-
target-estimate associations have be to considered jointly.

Global nearest neighbor

Global nearest neighbor (gnn) data association considers all measurement-to-
clutter/existing track/new track associations, and selects the best overall hypoth-
esis. In an implementation, the clutter and new target tracks are typically han-
dled by so called track initiators, and they are therefore combined into a cate-
gory called external sources. At each time step, an association matrix contain-
ing measurement-to-source likelihoods is formed, and the assignment problem
is then solved as a convex optimization problem, e.g. using the auction algorithm
(Blackman and Popoli, 1999). While being global, and thus superior to nn, gnn
represents a hard decision for each measurement and only one data association
hypothesis is thus considered. In some more complex scenarios, making a hard
decision may be insufficient.

Joint probabilistic data association

Joint probabilistic data association (jpda) is a soft version of gnn analogously to
how pda is a soft version of nn. Measurement-to-target probabilities are com-
puted jointly over all targets, and only measurements from the last time step are
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considered, see e.g. Bar-Shalom and Fortmann (1987).

Multiple hypothesis tracking

Multiple hypothesis tracking (mht) is a data association method that considers as-
sociation of sequences of measurements and evaluates the probabilities of all hy-
potheses. Quickly, the number of possible hypotheses grows very large, and there-
fore methods to reduce the number of hypotheses have been suggested. These in-
clude clustering to reduce combinatorial complexity, pruning of low probability
hypotheses and merging of similar hypotheses, see e.g. Bar-Shalom and Rong Li
(1995).

5.3 Performance evaluation

In Section 4.5 performance evaluation methods for the estimation problem were
presented. While state estimation is a central part of target tracking, in many
scenarios performance indicators, such as rmse and nees, can not be applied
directly to a target tracking problem. Some typical difficulties are highlighted in
Example 5.1.

Example 5.1: Multiple target tracking data association difficulties
Let the true number of targets be 2, and let each state consist of Cartesian x and y
position. Consider the scenarios given in Figure 5.1. Note that the index numbers
for the estimates are not used as track labels. In Figure 5.1a the targets and the
estimates can be arranged in vectors according to the respective index numbers,
and the total position rmse can be computed in a straightforward manner as the
Euclidean norm of the estimation error. In Figure 5.1b, the indexing of the targets
and the estimates does not coincide, and a straightforward computation of the
rmse does not make sense. In Figures 5.1c and 5.1d, the problem is complicated
further because the number of targets is either under- or overestimated.

Thus, a multiple target tracking performance evaluation method must capture
both the error in the estimated number of targets, as well as the state estimation
error. Further, the performance evaluation should consider, globally, which esti-
mate is associated to which target. One such method is the optimal subpattern
assignment (ospa) metric (Schuhmacher et al., 2008). Let

d(c)
(
x(k), x(l)

) M= min
(
c, d

(
x(k), x(l)

))
(5.6)

be the distance between x(k) and x(l), cut off at c > 0. Here d ( · , · ) is any metric,
in target tracking typically the Euclidean metric. Let X = {x(1), . . . , x(m)} and X̂ =
{x̂(1), . . . , x̂(n)}, where m, n ∈ {0, 1, 2, . . .}. Let Πk denote the set of permutations on
{1, 2, . . . , k} for any k ∈ {1, 2, . . .}. For example, if k = 3 then Π3 is

Π3 =
{
[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]

}
. (5.7)
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Figure 5.1: Multiple target tracking data association difficulties. There are
two true targets, marked with black dots, and the estimated targets are
marked with gray squares.

Define d̄(c)
p

(
X, X̂

)
, called the ospametric of order p with cut-off c, as

d̄
(c)
p

(
X, X̂

) M=

1
n

min
π∈Πn

m∑
i=1

d(c)
(
x(i), x̂(π(i))

)p
+ cp (n −m)




1
p

if m ≤ n (5.8a)

d̄
(c)
p

(
X, X̂

) M= d̄
(c)
p

(
X̂,X

)
if m > n (5.8b)

d̄
(c)
p

(
X, X̂

) M= 0 if m = n = 0 (5.8c)

Note that if d ( · , · ) is the Euclidean metric, n = m, p = 2, c = ∞ and the optimal

permutation is π(i) = i, the ospa d̄(∞)
2 reduces to the rmse multiplied with

√
nx.

It is shown by Schuhmacher et al. (2008) that (5.8) is indeed a metric. Similarly
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to how a minimum mean square error estimate can be found, see Section 4.5, a
minimum mean ospa (mmospa) estimate x̂mmospa can be found (Guerriero et al.,
2010). In Example 5.2 the ospa metric is evaluated for the scenarios presented
in Example 5.1.

Example 5.2: ospametric
For the multiple target tracking scenarios given in Figure 5.1, the ospa metric,
evaluated with c = 0.5 and p = 2, is

(a): d̄(0.5)
2

(
X, X̂

)
= 0.14 (5.9a)

(b): d̄(0.5)
2

(
X, X̂

)
= 0.14 (5.9b)

(c): d̄(0.5)
2

(
X, X̂

)
= 0.36 (5.9c)

(d): d̄(0.5)
2

(
X, X̂

)
= 0.31 (5.9d)





6
Random finite sets and the

probability hypothesis density

This chapter is about random finite sets and the probability hypothesis density.
Random finite sets and multi-target calculus are reviewed in Section 6.1. These
mathematical concepts can be used to derive a recursive multi-state Bayes filter.
Multi-state Bayes filters is the topic of Section 6.2, with an emphasis on the prob-
ability hypothesis density filter.

6.1 Introduction

When the estimation problem was presented, see Chapter 4, the notion of a ran-
dom vector x was implicitly assumed to be known to the reader. In this section
the reader is introduced to the perhaps less familiar concept of a random finite
set, and is also given a short overview of multi-target calculus.

6.1.1 Random finite sets

In the previous chapter both the measurements and targets were seen as sets,
see (5.1) and (5.2). Considering the properties I to V listed in Section 5.1, in
multiple target tracking it becomes suitable to model the numbers of elements in
the measurement and target sets as random variables, and to model all elements
in the sets as random variables.

A random finite set (rfs) is a set where each element in the set is a random vari-
able, and where the number of elements in the set is a non-negative integer val-
ued random variable. Mahler (2007b) defines random finite set as follows.
Definition 6.1 (Random finite set). A random variable Ξ that draws its instanti-
ations Ξ = X from the hyperspace X of all finite subsets X (the null set ∅ included)
of some underlying space X0.
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One of the benefits of using rfs:s to model multiple target tracking is that doing
so simplifies the performance evaluation, as highlighted in the examples in Sec-
tion 5.3. The number of elements in an rfs is also called the set cardinality, and
is denoted |X|. Note that an rfs X is without ordering, which implies that

X =
{
x(1), x(2)

}
=

{
x(2), x(1)

}
(6.1)

for |X| = 2. The rfs concept is used for multiple target tracking in Paper B to
Paper H. In Example 6.1 we give an rfs example whose elements are random
state vectors.

Example 6.1: Random finite set in Euclidean vector space
In multiple target tracking the target states can typically be defined as vectors in
a Euclidean vector space Rnx , e.g. this is the case in the examples in Chapter 4.

Let the underlying state space be a Euclidean vector space, i.e. X0 = Rnx . Then
the hyperspace X consists of the following finite sets:

X = ∅
X = x(1) ∈ Rnx

...

X =
{
x(1), . . . , x(Nx)

}
, x(i) ∈ Rnx ∀i

...

(6.2)

where Nx ≥ 0 is the set cardinality.

Thus, in multiple target tracking the target set (5.2) can be modeled as a random
finite set Xk ∈ X , where X0 = Rnx . This has a simple interpretation: there could
be any number of targets present, and the state of each present target is a vector
in Rnx .

6.1.2 A brief overview of multi-target calculus

The probability mass function and probability density function are two impor-
tant concepts in the context of random variables. In this section the rfs general-
izations of these concepts, given by Mahler (2007b), are introduced.

For a random variable x ∈ X0 the probability mass function px(S) gives the prob-
ability of x being in some part S ⊆ X0,

Px (S) = Pr (x ∈ S) . (6.3)

The probability density function px (x) describes the relative likelihood of x to
occur at a given point x, and it is related to the probability mass function by an
integral

Px(S) =
∫
S

px(x)dx, (6.4)
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and a derivative

px (x) =
dPx(S)

dx

∣∣∣∣∣
S=x

. (6.5)

The probability mass function for a random vector can be generalized to the be-
lief mass function for an rfs. The belief-mass function is denoted βΞ(S), and
is defined as the probability that the random finite set Ξ on X0 is within some
region S,

βΞ(S) = Pr (Ξ ⊆ S) . (6.6)

Similarly, the probability density function for a random vector can be generalized
to the probability density function pΞ(X) of a random finite set Ξ.

A multi-state density function on the underlying space X0 is a real valued func-
tion p(X) of a finite subset variable X ⊆ X0 such that, if X0 has a unit of mea-
surement u, the unit of measurement of p(X) is u |X|. Furthermore a multi-state
density function p(X) is a multi-state probability density function if p(X) ≥ 0 for
all X and if ∫

p(X)δX = 1. (6.7)

The probability density function of an rfs Ξ is, if it exists, the function pΞ (X),
such that ∫

S

pΞ (X) δX = Pr (Ξ ⊆ S) , ∀S. (6.8)

The relation between pΞ(X) and βΞ(S) is thus given by a set integral

βΞ(S) =
∫
S

pΞ(X)δX (6.9)

and a set derivative

pΞ(X) =
δβΞ(S)
δX

∣∣∣∣∣
S=∅

. (6.10)

Please refer to the book by Mahler (2007b) for the definitions of the set integral
and the set derivative. Multi-target distributions can also be expressed in vector
notation, e.g.

pΞ
({

x(1), x(2)
})

= 2px

(
x(1), x(2)

)
, (6.11)

since the probability density must be distributed equally over the two possible
vectors

[
x(1), x(2)

]
and

[
x(2), x(1)

]
. In general it holds that

pΞ
({

x(1), . . . , x(n)
})

= n!px

(
x(1), . . . , x(n)

)
. (6.12)

As mentioned earlier in the chapter, the cardinality of an rfs is a random variable,
and it is necessary to model its distribution. The cardinality distribution of the
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finite random set Ξ is

pΞ (n) , p|Ξ| (n) (6.13a)

, Pr (|Ξ| = n) (6.13b)

=
1
n!

∫
X0

p
({

x(1), . . . , x(n)
})

dx(1) . . .dx(n). (6.13c)

Let p (n) be a probability distribution on the non-negative integers and let px (x)
be a probability density function on X0. For any X =

{
x(1), . . . , x(n)

}
with |X| = n,

define

pΞ (X) , n!p(n)
n∏
i=1

px

(
x(i)

)
. (6.14)

An i.i.d. cluster process is any random finite set Ξ that has pΞ(X) as its distribu-
tion, for some choice of p(n) and px(x). In Example 6.2 a type of i.i.d. cluster
process called Poisson process is given.

Example 6.2: Multitarget Poisson process
If p(n) is the Poisson probability mass function with rate parameter γ ,

p(n) =PS (n; γ) (6.15a)

=
γne−γ

n!
, (6.15b)

then the rfs X with pdf

pΞ (X) = e−γγn
n∏
i=1

px

(
x(i)

)
(6.16)

is a multi-target Poisson process.

The concepts i.i.d. cluster process and Poisson process can be used to derive prac-
tical recursive multi-state Bayes filters, e.g. the probability hypothesis density
filter and the cardinalized probability hypothesis density filter, which are given
in the next section.

For a more in depth description of multi-target calculus, please refer to the book
by Mahler (2007b).

6.2 Recursive multi-state Bayes filter

In Section 4.3 we described the time evolution of the probability distribution of
a single target. In this section we generalize this to the multi-target case using
the concepts and tools introduced previously in this chapter. For the sake of
simplicity and brevity, we drop the subscript Ξ from the multi-target pdf, i.e.

p (X) = pΞ (X) . (6.17)
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At time step k, assume that we have a posterior distribution for the multi-target
set,

p
(
Xk

∣∣∣Zk ) . (6.18)

The posterior can be predicted (time updated) to the next time step using the set
equivalent of (4.17),

p
(
Xk+1

∣∣∣Zk ) =
∫
p (Xk+1 |Xk ) p

(
Xk

∣∣∣Zk ) δXk , (6.19)

where p (Xk+1 |Xk ) is the multi-target transition density from time k to time k + 1.

Let p (Zk+1 |Xk+1 ) be the multi-target measurement likelihood. Then the set equiv-
alent of (4.18) is

p
(
Xk+1

∣∣∣Zk+1
)

=
p (Zk+1 |Xk+1 ) p

(
Xk+1

∣∣∣Zk )∫
p (Zk+1 |Xk+1 ) p

(
Xk+1

∣∣∣Zk ) δXk+1

. (6.20)

The prior at the initial time step p (X0), and the prediction and correction equa-
tions, (6.19) and (6.20) respectively, is sufficient to describe the time evolution of
the distribution of the state X given measurements Z,

p (X0)
c→ p

(
X0

∣∣∣Z0
) p
→ p

(
X1

∣∣∣Z0
) c→ p

(
X1

∣∣∣Z1
) p

→ . . .

. . .
c→ p

(
Xk

∣∣∣Zk ) p
→ p

(
Xk+1

∣∣∣Zk ) c→ p
(
Xk+1

∣∣∣Zk+1
) p
→ . . .

(6.21)

From the above we see that there are many conceptual similarities between sin-
gle target Bayes filtering, presented in Section 4.3, and multi-target Bayes filter-
ing. However, while the single target Bayes filter is computationally tractable,
its multi-target generalization is typically not, due to the need to compute set
integrals. Because of this approximations are needed, in the next section we will
introduce a first order approximation of the full multi-target Bayes filter.

6.2.1 The probability hypothesis density filter

For a random vector x ∈ Rnx with conditional pdf px(x|z), the first order moment,
also called the expected value, is defined as

Epx [x|z] ,
∫
Rnx

x px (x|z) dx (6.22a)

= x̂. (6.22b)

For a random vector with Gaussian pdf px

(
xk |zk

)
= N

(
xk ; mk|k , Pk|k

)
, the ex-

pected value is equal to the mean vector, x̂k|k = mk|k . The α-β-filter recursion
(4.27) corresponds to propagating the expected value,

. . .
c→ x̂k|k

p
→ x̂k+1|k

c→ x̂k+1|k+1
p
→ . . . (6.23)
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The first-order moment of a multi-target pdf is a density function defined on
single target states x ∈ X0 (Mahler, 2007b),

Dk|k (x) . (6.24)

In point process theory Dk|k (x) is called first-moment density or intensity den-
sity, see e.g. Mahler (2007b), however for target tracking the name probability
hypothesis density (phd) was adopted by Mahler (2007b). Despite its name, the
phd should not be confused with a probability density function. It is uniquely
determined by the property that, given any region S in single target state space
X0, i.e. S ⊆ X0, the integral ∫

S

Dk|k (x) dx (6.25)

is the expected number of targets in S (Mahler, 2007b). Especially, if S = X0 is
the entire state space then

Nk|k
M=

∫
Dk|k (x) dx (6.26)

is the expected total number of targets (Mahler, 2007b).

The phd filter propagates the first order multi-target moment (6.24) through
time,

D0 (x)
c→ D0|0 (x)

p
→ D1|0 (x)

c→ D1|1 (x)
p
→ . . .

. . .
c→ Dk|k (x)

p
→ Dk+1|k (x)

c→ Dk+1|k+1 (x)
p
→ . . .

(6.27)

and can be interpreted as an rfs equivalent to the α-β-filter for state vector es-
timation, see Section 4.4.1. It has been noted that, in principle, it is possible
to derive predictor and corrector equations for a second order multi-target filter,
however such a filter is unlikely to be computationally tractable (Mahler, 2007b).

phd filter initialization consists of choosing a prior phd (Mahler, 2007b)

D0 (x) = n0 × s0 (x) , (6.28)

where n0 is the initial expected number of targets, and s0 (x) is a pdf with peaks
that correspond to likely initial target locations.

Given a phd Dk|k (x), the predicted phd is (Mahler, 2007b)

Dk+1|k (x) = Db
k+1|k (x)︸     ︷︷     ︸

Birth of new targets

+
∫
pS (x′) pk+1|k (x|x′)Dk|k (x′) dx′︸                                     ︷︷                                     ︸

Prediction of existing targets

+
∫
ps
k+1|k (x|x′)Dk|k (x′) dx′︸                            ︷︷                            ︸

Target spawning

(6.29)
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where

• Db
k+1|k (x) is the likelihood that new targets will appear at time k + 1,

• pS (x′) is the probability that a target with state x′ at time k will survive to
time k + 1,

• pk+1|k (x|x′) is a single target Markov transition density, and

• ps
k+1|k (x|x′) is the likelihood that at target with state x′ at time k will spawn

a target with state x at time k + 1.

Under the assumption that the multi-target distribution corresponding to the
predicted phd is approximately Poisson, the corrected phd is (Mahler, 2007b)

Dk+1|k+1 (x) ≈ (1 − pD (x))Dk+1|k (x)︸                     ︷︷                     ︸
Not detected targets

+
∑
z∈Z

pD (x) pk+1 (z|x)

λc (z) +
∫
pD (x′) pk+1 (z|x′)Dk+1|k (x′) dx′

Dk+1|k (x)︸                                                                   ︷︷                                                                   ︸
Detected targets

(6.30)

where

• pD (x) is the probability that a measurement will be collected at time step
k + 1 from a target with state x,

• pk+1 (z|x) is the sensor likelihood function,

• λ is the average of the Poisson distributed number of false alarms collected
by the sensor, and

• c (z) is the spatial distribution of the false alarms.

In (6.29) and (6.30) the theoretical equations for phd prediction and correction
are given, however these equations must be implemented to be useful in a practi-
cal setting. One alternative is to use particle filters, e.g. a sequential Monte Carlo
filter; another alternative is to approximate the phd with a weighted mixture of
Gaussian distributions and use the Kalman filter, or one of its non-linear exten-
sions.

A sequential Monte Carlo implementation of the phd filter for point targets is
presented by Vo et al. (2005), with a convergence analysis given by Vo et al. (2005);
Clark and Bell (2006); Johansen et al. (2006). The Gaussian mixture phd (gm-
phd) filter for point targets assumes that at time step k the phd has the following
Gaussian mixture representation (Vo and Ma, 2006),

Dk|k (x) =
Jk|k∑
j=1

w
(j)
k|kN

(
x ; m(j)

k|k , P
(j)
k|k

)
. (6.31)



68 6 Random finite sets and the probability hypothesis density

Thus, because
∫
N

(
x ; m(j)

k|k , P
(j)
k|k

)
dx = 1, the number of present targets is readily

given as Nk|k =
∑Jk|k
j=1 w

(j)
k|k . To arrive at predictor and corrector equations, the fol-

lowing assumptions were made by Vo and Ma (2006), repeated below for clarity:
Assumption A1. Each target evolves and generates observations independently
of one another.

Assumption A2. Clutter is Poisson and independent of target-originated mea-
surements.

Assumption A3. The predicted multiple-target rfs is Poisson.

Assumption A4. Each target follows a linear Gaussian dynamical model and the
sensor has a linear Gaussian measurement model.

Assumption A5. The survival and detection probabilities are state independent.

Assumption A6. The intensities of the birth and spawn rfs:s are Gaussian mix-
tures.

As mentioned by Vo and Ma (2006), Assumption A1, A2, A4 and A5 are standard
in many target tracking applications, see e.g. Bar-Shalom and Fortmann (1987).
The third assumption is reasonable in applications where target interactions are
negligible. Extended, more complete, remarks on the assumptions are given in
Vo and Ma (2006).

The full prediction and correction equations are not repeated here, instead we
refer the reader to the paper by Vo and Ma (2006). Convergence analysis of the
gm-phd filer is given in Clark and Vo (2007).

6.2.2 The cardinalized probability hypothesis density filter

A known drawback of the phd filter is that the cardinality is estimated using a
single parameter (the mean), resulting in the cardinality distribution being ap-
proximated with a Poisson distribution. Because the Poisson mean and variance
are equal, when the true cardinality is high the corresponding estimate has a
high variance. In practice, this results in an oversensitive cardinality estimate
(Erdinc et al., 2005), e.g. seen when there are missed detections. To improve
upon this, the cardinalized probability hypothesis density (cphd) filter was in-
troduced (Mahler, 2007a). In addition to propagating the phd Dk|k (x) in time,
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the cphd filter also propagates the full cardinality distribution Pk|k (n),{
D0 (x)
P0 (n)

c→
{
D0|0 (x)
P0|0 (n)

p
→

{
D1|0 (x)
P1|0 (n)

c→
{
D1|1 (x)
P1|1 (n)

p
→ . . .

. . .
c→

{
Dk|k (x)
Pk|k (n)

p
→

{
Dk+1|k (x)
Pk+1|k (n)

c→
{
Dk+1|k+1 (x)
Pk+1|k+1 (n)

p
→ . . .

(6.32)
To initialize the cphd filter an initial phd

D0 (x) =n0 × s0 (x) (6.33)

and an initial cardinality distribution P0 (n) have to be chosen (Mahler, 2007b),
where s0 (x) is a pdf with peaks that correspond to likely initial target locations,
and P0 (n) is a pmf definded on n ∈ N = {0, 1, 2, 3, . . .} such that the expected value
is n0,

n0 =
∞∑
n=0

nP0 (n) . (6.34)

The cphd prediction and correction equations are more intricate than their phd
counterparts, and they are not repeated here. However, we note that the cphd
prediction and correction require the assumption that the propagated multi-tar-
get distribution is approximated with an i.i.d. cluster process, cf. (6.14). A gm
implementation of the cphd filter for point targets can be found in the paper by
Vo et al. (2007).

6.3 A brief revisit to the SLAM problem

Random finite sets were introduced in this chapter in part because they are a
suitable remedy to the intricacies of performance evaluation of multiple object
estimation, as highlighted in Section 5.3. Similarly to multiple target tracking, in
slam the map state M consists of an unknown number of landmarks, each with
an unknown state. Thus, modeling the landmarks as an rfs

M =
{
m(i)

}m
i=1

, (6.35)

rather than a vector, as in (4.34), can simplify performance evaluation of the
slam map. A further benefit of the rfs model is that the measurement to land-
mark data association can become more robust against high clutter rate and mea-
surement noise.

An rfs formulation for slam was first proposed by Mullane et al. (2008), who
model the robot state and map as a joint finite set valued variable and give
a Gaussian mixture implementation of the proposed phd-slam filter. A Rao-
Blackwellized implementation of phd-slam was given by Mullane et al. (2011),
with early results presented by Mullane et al. (2010). The implemented phd-
slam filter is based on using the gm-phd filter for the map and a particle filter
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for the robot trajectory. A similar approach is taken by Lee et al. (2012).

The rfs approaches to slam share most similarities with fast-slam (Monte-
merlo et al., 2002). Comparisons show that the rfs approach outperforms fast-
slam in scenarios with high levels of clutter measurements.



7
Extended target tracking

In this chapter we revisit the target tracking problem, this time with an emphasis
on a type of target that is called extended. We give a definition of extended target
in Section 7.1 and provide some extended target models in Section 7.2. Measure-
ment set partitioning is presented in Section 7.3, and performance evaluation for
extended target estimates is discussed in Section 7.4.

7.1 Introduction

In many modern target tracking applications the point target assumption, see
Definition 5.1 in Chapter 5, is not valid. Examples of such applications include
vehicle tracking using automotive radars, people tracking using laser range sen-
sors or object tracking using vision sensors, e.g. cameras. See Figure 7.1 for two
examples. This prompts us to make the following definition:
Definition 7.1 (Extended target). A target that potentially gives rise to more
than one measurement per time step.

It is important to note here that the target tracking properties I to V listed in
Section 5.1 apply to extended targets too. In addition to those properties, for
extended target tracking it also holds that

VI the number of measurements generated by each target is unknown.

The multiple measurements per target raise interesting potentials for the estima-
tion of target shape and size. While the single measurement setting is sufficient
to track the targets’ centers of mass, multiple measurements allow certain prop-
erties of the targets to be estimated too, e.g. shape, size and orientation. With this
added knowledge, differentiation between different target types is possible.

71
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Figure 7.1: (a) Laser data with car, bicycle and pedestrian. (b) Camera image
with pedestrian detections. Detections obtained using the classifier by Maji
et al. (2008).

7.2 Extended target modeling

Naturally there are more than one possible way to model extended targets. In
this section we will briefly overview a few different alternatives.

7.2.1 Extended target measurements

Let ξk denote the extended target state at time tk . Modeling the distribution of
the set of target generated measurements means to model the distribution

p (Zk |ξk) = p
(
Zk |Nz,k , ξk

)
p
(
Nz,k |ξk

)
, (7.1)

where the measurement set Zk was defined in (5.1). The measurements z(j)
k are

often assumed to be i.i.d.,

p
(
Zk |Nz,k , ξk

)
=
Nz,k∏
j=1

p
(

z(j)
k

∣∣∣∣ ξk) , (7.2)

where p (zk | ξk) is a likelihood function for a single target generated measure-
ment.

In the extended target model suggested by Gilholm and Salmond (2005) the num-
ber Nz,k of target generated measurements is Poisson distributed with a rate pa-
rameter λk . The probability mass function for Nz,k is

p
(
Nz,k |λk

)
=PS

(
Nz,k ; λk

)
(7.3a)

=
e−λkλ

Nz,k
k

Nz,k!
. (7.3b)

Each of the Nz,k measurements are then distributed according to a spatial extent
model. The analysis in Gilholm and Salmond (2005) is limited to the single target
case, and a multiple hypothesis Kalman filter implementation and a particle filter
implementation is given.
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The model by Gilholm and Salmond (2005) has been extended to modeling the
generation of target measurements as an inhomogeneous Poisson point process
(Gilholm et al., 2005). The probability of n measurements falling in a region A of
the surveillance space is

P
(
Nz,k = n

)
= PS (n; λk(A)) , (7.4a)

where

λk(A) =
∫
A

Λk (z |ξk ) dz (7.4b)

is the expected number of measurements falling in A, and Λk (z |ξk ) is the spa-
tially dependent intensity of the Poisson process. The likelihood function for a
single measurement in the region A is

p (z |ξk ) =
Λk (z |ξk )
λk(A)

, (7.5)

i.e. given ξk , any measurement z is a random draw from this pdf. For this ex-
tended target model, Gilholm et al. (2005) gave a particle filter implementation
for the multiple target case, and an extended target phd filter for this model was
developed by Mahler (2009).

A slightly different approach is taken by Swain and Clark (2010). They assume
that at most one measurement is generated by a point target, however the point
targets belong to groups, or clusters. The cluster centers are referred to as parent
processes, and their point target processes are daughter processes. The resulting
filter presented by Swain and Clark (2010) is similar to the extended target phd
filter (Mahler, 2009).

In all papers in the second part of this thesis, except Paper A and Paper F, the
number of extended target generated measurements is modeled as Poisson dis-
tributed, with a target state dependent measurement rate λk (ξk). In the next
section, different models for the extended target state are given, together with
corresponding measurement models.

7.2.2 Extended target state

For the extended target state, a common choice is to let the extended target state
be a vector ξk ∈ Rnx that is Gaussian distributed,

p
(
ξk

∣∣∣Zk ) = N
(
ξk ; mk|k , Pk|k

)
. (7.6)

The measurement distribution is then typically modeled as

p
(

z(j)
k

∣∣∣∣ ξk) = N
(
z(j)
k ; hk (ξk) , Rk

)
, (7.7)

where hk( · ) : Rnx → Rnz is a non-linear measurement function. In this case,
the extended state vector contains all states that are of interest, such as position,
velocity, acceleration and the states that govern the shape and size of the extended
target. A Gaussian state vector is used in Paper B and Paper C, and is also used by
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Figure 7.2: State estimate with rectangular shape for the extended target,
and measurements from a car.

e.g. Salmond and Parr (2003); Gilholm and Salmond (2005); Baum et al. (2010b);
Baum and Hanebeck (2011); Baum et al. (2011).

In Example 7.1 a Gaussian state vector is applied to the car data from Figure 7.1a,
under the assumption that the target is shaped as a rectangle.

Example 7.1: Gaussian state
Consider the laser data in Figure 7.1a, which features measurements from a car,
a bicycle and a pedestrian. For the car a rectangle appears to be a suitable shape
model. Let the extended target state be a Gaussian distributed vector,

ξk =
[
xk , yk , `k , wk , φk

]T
(7.8)

where (xk , yk) is the position, (`k , wk) is the length and width of the rectangle, and
φk is the orientation of the rectangle.

Using the knowledge that the laser range sensor measures along the edge of the
shape, i.e. along the edges of the rectangle, Figure 7.2 shows the result of this
extended target state applied to the car measurements from Figure 7.1a. The
rectangle is not an exact fit to the measurements, however it is a reasonable ap-
proximation of the shape.

Note that for this type of example, modeling the measurement function hk( · ) can
be quite complicated. Modeling of the measurement function for laser range data
is considered in Paper C.

An alternative to the Gaussian model (7.6) was proposed by Koch (2008). This
model is sometimes referred to as the random matrix model, or random matrix
framework. The random matrix model defines the extended target state as the
combination of a kinematical state vector xk ∈ Rnx , and an extension state matrix
Xk ∈ Sd++ representing the size of the target. Modeling the extension as a random
matrix means that the shape is modeled as elliptical.
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The extended target state ξk = (xk , Xk) is modeled as Gaussian inverse Wishart
(giw) distributed (Koch, 2008),

p
(
ξk

∣∣∣Zk ) =p
(
xk

∣∣∣Xk ,Zk ) p (
Xk

∣∣∣Zk ) (7.9a)

=N
(
xk ; mk|k , Pk|k ⊗ Xk

)
IW

(
Xk ; vk|k , Vk|k

)
, (7.9b)

and the measurement distribution can be modeled as

p
(

z(j)
k

∣∣∣∣ ξk) = N
(
z(j)
k ; hk (xk) , Xk

)
. (7.10)

Koch (2008) uses a linear function hk (xk) = Hkxk , which results in linear correc-
tion for the extended target state estimate. The giw model is used in Paper D,
and is also used by e.g. Koch and Feldmann (2009); Wieneke and Koch (2010);
Lan and Rong Li (2012).

In this model, the measurement covariance is given by the extension matrix, and
the measurements are assumed to be spread across the target surface. The kine-
matic state vector contains states that are derivatives of the spatial state com-
ponent, denoted rk (Koch, 2008). For example, if the measurements are of the
extended target’s Cartesian (xk , yk)-position, then the spatial state component is
rk = [xk , yk]

T. In this case the kinematic state vector xk contains the position rk ,
and possibly also higher derivatives of the spatial components such as velocity
drk/dtk and acceleration d2rk/dt2k .

As mentioned above, in the random matrix model the extended target shape is
assumed to be an ellipse (Koch, 2008). While this assumption is limiting, in
many scenarios the ellipse is a sufficient approximation of the true extended tar-
get shape. Example 7.2 shows the giw model applied to the laser data in Fig-
ure 7.1a.

Example 7.2: giw state
Consider again the laser data in Figure 7.1a. Let the extended target be giw
distributed, with kinematical state

xk =
[
xk , yk

]T
, (7.11)

and extension state Xk ∈ S2
++. Using a linear measurement function Hkxk = xk , in

Figure 7.3 this extended target state is applied to the car, bicycle and pedestrian
measurements from Figure 7.1a, respectively.

For the bicycle and the pedestrian an ellipse appears to be a reasonable model for
the shape, however it is a poor model for the car.

The measurement model (7.10) implicitly assumes that the sensor noise is negli-
gible in comparison to the target extent (Feldmann and Fränken, 2008; Feldmann
et al., 2011), a relation that does not hold in all scenarios.
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Figure 7.3: The giw extended target state model applied to the laser data
from Figure 7.1a. (a), (b) and (c) Model applied to measurements from a car,
a bicycle and a pedestrian, respectively.

Feldmann and Fränken (2008), see also the work by Feldmann et al. (2011), pro-
posed to approximate the kinematical and extension state as independent

p
(
ξk

∣∣∣Zk ) =p
(
xk

∣∣∣Xk ,Zk ) p (
Xk

∣∣∣Zk ) (7.12a)

≈p
(
xk

∣∣∣Zk ) p (
Xk

∣∣∣Zk ) (7.12b)

=N
(
xk ; mk|k , Pk|k

)
IW

(
Xk ; vk|k , Vk|k

)
, (7.12c)

with measurement distribution model

p
(

z(j)
k

∣∣∣∣ ξk) = N
(
z(j)
k ; Hkxk , zXk + Rk

)
, (7.13)

where z is a scaling factor, and Rk ∈ Sd+. This measurement model can be inter-
preted as meaning that Xk is the true extension of the extended target, while Rk is
the sensor error covariance matrix. Note that with this measurement distribution,
the correction for the extended target state estimate is no longer linear, but has
to be approximated (Feldmann and Fränken, 2008; Feldmann et al., 2011). For a
comparison of the model (7.9), (7.10) and the model (7.12), (7.13), see the paper
by Feldmann et al. (2011).
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In comparison to (7.9), in the giwmodel (7.12) the kinematic state vector can be
defined independently of the spatial state component. This includes the possibil-
ity of states that represent, e.g., the heading and the turn-rate. This variant of the
giwmodel is used in Paper F and Paper G.

A third model for the measurement distribution is suggested by Lan and Rong Li
(2012),

p
(

z(j)
k

∣∣∣∣ ξk) = N
(
z(j)
k ; Hkxk , BkXkB

T
k

)
, (7.14)

where Bk is a d × d non-singular transformation matrix. The transformation that
Bk represents could, e.g., be a rotation or a scaling of the extension matrix Xk .
Setting the two models (7.13) and (7.14) equal, we have the following relation
(Lan and Rong Li, 2012),

BkXkB
T
k = zXk + Rk (7.15a)

= (zXk + Rk)
1
2 X
− 1

2
k XkX

− T
2

k (zXk + Rk)
T
2 , (7.15b)

⇔ Bk = (zXk + Rk)
1
2 X
− 1

2
k . (7.15c)

Under the assumption Xk ≈ X̂k|k−1 = E
[
Xk

∣∣∣Zk−1
]
, Lan and Rong Li (2012) ap-

proximate (7.15c) as

Bk ≈
(
zX̂k|k−1 + Rk

) 1
2 X̂
− 1

2
k|k−1, (7.16)

which gives a matrix Bk that is not a function of the extended target state.

Both the state vector representation (7.6) and the random matrix representation
(7.9), (7.12) can be augmented with a state variable γk > 0, where γk is related to
measurement generating Poisson rate as follows,

λk (ξk) = γk . (7.17)

The conjugate prior for the Poisson rate is the gamma distribution, see Table 4.1
in Chapter 4. In this case it is natural to model ξk = (γk , xk) as gamma Gaussian
(gg) distributed,

p
(
ξk

∣∣∣Zk ) =p
(
γk

∣∣∣Zk ) p (
xk

∣∣∣Zk ) (7.18a)

=GAM
(
γk ; αk|k , βk|k

)
N

(
xk ; mk|k , Pk|k

)
, (7.18b)

and to model ξk = (γk , xk , Xk) as gamma Gaussian inverse Wishart (ggiw) dis-
tributed,

p
(
ξk

∣∣∣Zk ) =p
(
γk

∣∣∣Zk ) p (
xk

∣∣∣Xk ,Zk ) p (
Xk

∣∣∣Zk ) (7.19a)

=GAM
(
γk ; αk|k , βk|k

)
N

(
xk ; mk|k , Pk|k ⊗ Xk

)
IW

(
Xk ; vk|k , Vk|k

)
,

(7.19b)
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or

p
(
ξk

∣∣∣Zk ) =p
(
γk

∣∣∣Zk ) p (
xk

∣∣∣Zk ) p (
Xk

∣∣∣Zk ) (7.20a)

=GAM
(
γk ; αk|k , βk|k

)
N

(
xk ; mk|k , Pk|k

)
IW

(
Xk ; vk|k , Vk|k

)
. (7.20b)

A Bayesian recursion for estimation of the Poisson rate γk is given in Paper E.
The ggiwmodel (7.19) is used in Paper H.

7.2.3 Extension shape models

Closely related to modeling the distribution of the extended target measurements
is modeling the extended target shape. Dezert (1998) models the extension as a
collection of points, which together with the target kinematics are jointly esti-
mated from the measurements. In this case the target shape is given by the shape
of the points. Gilholm and Salmond (2005) give an example in which the target
extension is an infinitely thin stick of length `, a similar example is used by Boers
et al. (2006).

The giwmeasurement models suggested by Koch (2008), Feldmann et al. (2011),
and Lan and Rong Li (2012), assume that the extended target is shaped like an
ellipse, and that the measurements are spread across the target surface. Inspired
by Koch (2008), Degerman et al. (2011) decompose the extension matrix into
principal components, and design a heuristic Kalman filter for tracking the ex-
tension. Zhu et al. (2011) model the extension as a combination of two ellipses,
more specifically two Gaussian distributions. The random hypersurface model
by Baum and Hanebeck (2009) models the measurements as random samples of
measurement generating points on the target surface. A random hypersurface
model is given for elliptic targets by Baum et al. (2010b), and a comparison be-
tween the elliptic random hypersurface model and the giw model is given by
Baum et al. (2010a).

Modeling the measurements as being spread across the target surface is appropri-
ate, e.g., when airborne radars are used to track ground vehicles. For other sen-
sors, e.g. the laser range sensor, the measurements are better modeled as being
spread along the edge of the target surface. Rectangular and elliptical shape mod-
els are given for the laser range sensor in Paper C, Lundquist et al. (2011a) give
a more general shape model for laser range type sensors, capable of estimating
arbitrary shapes. Note that the methods presented by Lundquist et al. (2011a)
and in Paper C are capable of estimating the entire extension, even when only
parts of the extension are seen. For similar scenarios, Petrov et al. (2011) give a
sampling based measurement model for extended targets whose extensions are
measured across so called regions of interest. They illustrate their approach by
considering circular objects. Lundquist et al. (2011b) model the extended targets
using polynomials, an approach that is shown to be applicable to road-mapping
using vehicle radars.
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7.3 Measurement set partitioning

In Chapter 5 the data association problem was mentioned, and some data asso-
ciation methods for multiple point target tracking in clutter were given in Sec-
tion 5.2. The data association problem must be solved also for multiple extended
target tracking in clutter. Because more than one measurement may originate
from the same target, one approach to solving the data association problem is to
divide the set of measurements into non-empty subsets, where each subset is as-
sumed to contain measurement that are all from the same source. The subsets can
then be associated to the extended targets, similarly to how single measurements
are associated to the point targets.

In this thesis, we refer to the division of the measurement set into non-empty
subsets as partitioning the measurement set, a particular partitioning of the mea-
surement set is called a partition, and the non-empty subsets are denoted cells.
Note that in the literature, partitioning is sometimes called clustering or cluster
analysis, and the cells are then typically called clusters. For a given partition, the
cells can be interpreted as containing measurements that all stem from either a
single extended target or a clutter source.

There are different ways to approach the measurement partitioning, e.g. the mea-
surement-to-cell association could be either hard or soft. Hard association means
that the measurement belongs to the cell or not, similarly to nn and gnn data
association. Soft association means that the measurement belongs to the cell to a
certain degree. This thesis will only consider hard measurement-to-cell associa-
tions.

When it comes to computing the partitions, one method is to assume that the
partition should have K cells, and then assign the measurements to the K cells by
minimizing a cost function. One such partitioning method is K-means clustering,
see e.g. the textbooks by Bishop (2006); Hastie et al. (2009). K-means clustering
is a type of combinatorial algorithm (Hastie et al., 2009), meaning that it works
directly on the data and does not have an underlying probability model. Given a
desired number of cells, the algorithm assigns the data to the cells by iteratively
minimizing a cost function. One of K-means clustering’s drawbacks is its ten-
dency to get stuck in local optimas during the cost function minimization. An
improved version, called K-means++ clustering, is reported to have an initializa-
tion that better avoids local optimas (Arthur and Vassilvitskii, 2007; Ostrovsky
et al., 2006).

Alternatively, one may define a criterion by which it is determined whether, or
not, two measurements belong to the same cell. One such criterion is the distance
between the measurements, as given by a distance measure, e.g. the Euclidean
metric or Mahalanobis distance. This is also known as hierarchical clustering
(Hastie et al., 2009), and there are two types of hierarchical methods: agglomera-
tive and divisive. Agglomerative is bottom-up, i.e. it starts with all measurements
in one cell each, and builds larger cells (Hastie et al., 2009). Divisive is top-down,
i.e. it starts with all measurements in the same cell and splits into smaller cells
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(Hastie et al., 2009).

In terms of the distance used to determine cell membership, two alternatives are
complete linkage and single linkage. Let W1 and W2 be two cells whose union is
empty, i.e. the two cells do not have any measurements in common. For complete
linkage, the distance between the cells is measured as

max
{
d
(
z(i)
k , z(j)

k

)
: z(i)

k ∈ W1 , z(j)
k ∈ W2

}
, (7.21)

where d( · , · ) is the distance measure used. This means that the distance between
the two cells is the maximum distance between a pair of measurements. For
single linkage, the distance between the cells is measured as

min
{
d
(
z(i)
k , z(j)

k

)
: z(i)

k ∈ W1 , z(j)
k ∈ W2

}
. (7.22)

In this case the distance between the two cells is the minimum distance between
a pair of measurements.

In Paper B a type of agglomerative, single linkage, hierarchical partitioning meth-
od, called Distance Partitioning, is proposed for use in multiple extended target
tracking. Distance Partitioning forms the basis for the measurement set partition-
ing that is used in this thesis, however additional methods are also proposed in
Paper B and Paper D. Example 7.3 gives a small comparison of Distance Parti-
tioning and K-means++ clustering.

Example 7.3: Measurement set partitioning
True target measurements were generated from three Gaussian distributions with
the following means and covariances,

m(1) =[0 0]T, P (1) =diag ([1 1]) , (7.23a)

m(2) =[15 0]T, P (2) =diag ([0.25 1]) , (7.23b)

m(3) =[0 15]T, P (3) =diag ([1 0.25]) . (7.23c)

In total, 10 measurements were sampled from each distribution, let ZT denote
the set of 30 target measurements. Further, 10 clutter measurements were gen-
erated by uniform sampling in [−5 , 20] × [−5 , 20]. Let ZC denote the set of 10
clutter measurements, and let ZT C denote the union of ZT and ZC .

The measurements are shown in Figure 7.4a. Figure 7.4b and Figure 7.4c show ZT

and ZT C , respectively, after partitioning with Distance Partitioning with thresh-
old 2, measurements with the same color belong to the same cell. We see that
Distance Partitioning gives correct cells for the target generated measurements,
and places the clutter measurements in individual cells in Figure 7.4c. Both these
partitions are quite intuitive, and correspond well to our desire to have a parti-
tion in which the cells contain measurements that all stem from either a single
extended target or a clutter source.

In Figure 7.4d ZT is shown after partitioning with K-means++ clustering, we see
that the result is the same partition as when Distance Partitioning is used, see
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Figure 7.4: Comparison of clustering methods. Measurements with the same
color belong to the same cell. (a) True target measurements shown as blue
circles, cyan squares and yellow triangles, respectively, and clutter measure-
ments shown as red diamonds. (b) Partition of ZT computed using Distance
Partitioning, threshold 2. (c) Partition of ZT C computed using Distance Par-
titioning, threshold 2. (d) Partition of ZT computed using K-means++ clus-
tering, K = 3. (e) Partition of ZT C computed using K-means++ clustering,
K = 3. (f) Partition of ZT C computed using K-means++ clustering, K = 13.

Figure 7.4b. However, when K-means++ clustering is used for partitioning of
ZT C , the results are much less intuitive. The partitions, for K = 3 and K = 13
are shown in Figure 7.4e and Figure 7.4f. For this measurement set, K-means++
does not return the correct partition for any value of K between 3 and 13.

7.4 Performance evaluation

In terms of multiple extended target tracking, there is no conceptual difference
to multiple point target tracking that prevents the use of the ospa metric (see
Section 5.3). However, the ospa requires a metric d( · , · ) for comparison of a true
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extended target state and a state estimate. In this section we will discuss some
alternatives for performance evaluation of a single extended target estimate.

In Section 4.5 the rmse and nees were introduced as performance metrics for
state vector estimates, theses metrics are no less valid for an extended target state
vector. However, depending on the particular modeling framework used, the
extension states could benefit from being treated differently.

For extended targets whose extension parameters are included in the state vector,
cf. (7.6), the rmse and nees can naturally be used also for the states related
to the extension. In case the extended target state is decomposed as in (7.9) or
(7.12), the extension estimation error can be evaluated using a matrix norm, e.g.
the Frobenius norm,

∥∥∥Xk − X̂k|k∥∥∥F =

√√√√ d∑
i=1

d∑
j=1

∣∣∣∣X[ij]
k − X̂[ij]

k|k

∣∣∣∣2, (7.24)

where d × d is the dimension of the extension matrix, and the notation A[ij] is
used to denote the i, jth element of the matrix A. The Frobenius norm for ma-
trices is analogous to the Euclidean norm for vectors. It is used for performance
evaluation in Paper G and Paper H.

Another performance metric, often used in computer vision, is a difference mea-
sure called Intersection-Over-Union (iou). The ioumeasures the volumes of the
intersection and the union of the true extended target and the estimate, and then
takes the ratio of the two volumes. Note that the iou is not a metric, e.g. it does
not satisfy the triangle inequality. Further, in comparison to the rmse, nees and
Frobenius norm, who are all equal to zero when there is no error, the iou is equal
to one when there is no error. The iou measure is used for performance evalua-
tion in Paper C.

In case a measurement rate γk is estimated, a suitable performance metric is the
absolute difference, ∣∣∣γk − γ̂k|k ∣∣∣ . (7.25)

Example 7.4 compares performance metrics for giw distributed extended targets.

Example 7.4: Extension estimation performance evaluation
Let the extended target state be giw distributed, with true state

ξk = (xk , Xk) , (7.26a)

xk = [0 , 0]T , (7.26b)

Xk =R
( 45

180
π
)

diag
([

52 , 22
])
RT

( 45
180

π
)
, (7.26c)
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where R( · ) is a 2D rotation matrix. There are two state estimates,

ξ̂
(1)
k|k =

(
x̂(1)
k|k , X̂

(1)
k|k

)
, (7.27a)

x̂(1)
k|k = [−0.25 , 0.15]T , (7.27b)

X̂
(1)
k|k =R

( 35
180

π
)

diag
([

62 , 1.752
])
RT

( 35
180

π
)
, (7.27c)

and

ξ̂
(2)
k|k =

(
x̂(2)
k|k , X̂

(2)
k|k

)
, (7.28a)

x̂(2)
k|k = [−1 , 1]T , (7.28b)

X̂
(2)
k|k =R

( 45
180

π
)

diag
([

5.12 , 2.12
])
RT

( 45
180

π
)
. (7.28c)

The true state and the estimates are shown in Figure 7.5a, the intersections and
the unions of the 2σ -ellipses are shown in Figure 7.5b and Figure 7.5c. The Eu-
clidean norms for the kinematical state vector differences, the Frobenius norms
for the extension matrix differences, and the iou values are∥∥∥∥xk − x̂(1)

k|k

∥∥∥∥
2

= 0.29,
∥∥∥∥xk − x̂(2)

k|k

∥∥∥∥
2

= 1.41, (7.29a)∥∥∥∥Xk − X̂(1)
k|k

∥∥∥∥
F

= 12.79,
∥∥∥∥Xk − X̂(2)

k|k

∥∥∥∥
F

= 1.09, (7.29b)

iou = 0.70, iou = 0.64. (7.29c)

Determined by the iou measure, ξ̂(1)
k|k is the better estimate. To be able to deter-

mine by the Euclidean and Frobenius norms, the two norms would have to be
weighed together. Depending on how this is performed, either estimate could be
the better one.
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Figure 7.5: Illustration of the difference measure intersection over union.
The 2σ -ellipses are plotted. (a) True extended target state ξk (gray area),

state estimate ξ̂(1)
k|k (black solid line), and state estimate ξ̂(2)

k|k (black dashed
line). (b) The intersection (black solid line) and the union (gray area) of ξk
and ξ̂

(1)
k|k . (c) The intersection (black dashed line) and the union (gray area)

of ξk and ξ̂(2)
k|k .



8
Concluding remarks

This chapter summarizes the thesis, with conclusions in Section 8.1 and recom-
mendations for future work in Section 8.2.

8.1 Conclusions

A method for loop closure detection in slam using data from laser sensors was
presented. A compact and efficient feature description of each point cloud is
given, and AdaBoost is used to construct a classifier that uses the features to clas-
sify a point cloud pair as being either from the same location, or not. The classi-
fier is able to detect loop closure from arbitrary direction, and in experiments it
is shown to produce detection rates that compare well to related work at low false
alarm rates. The real world slam experiments showed that the classifier can be
used within the context for which it was constructed.

Two different implementations of the extended target probability hypothesis den-
sity filter was presented, one Gaussian mixture implementation and one Gaus-
sian inverse Wishart implementation. The Gaussian mixture implementation
was also extended to non-linear motion and measurement models. The ideal
filter requires consideration of the full set of partitions, which is computation-
ally unfeasible in all but the very simplest cases. It was shown that the full set of
partitions can be approximated with a subset of partitions, without having to sac-
rifice tracking performance. Four different partitioning methods were suggested,
and it was shown that they reduce the number of partitions considered by several
orders of magnitude, and also that they outperform the well known partitioning
method K-means clustering.

85
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It was shown in simulations and experiments that the case of spatially close tar-
gets can be difficult to handle. Suitable remedies to improve performance under
these circumstances were suggested, and results showed that performance was
improved. Further, it was shown that the filter is sensitive to the number of mea-
surements generated by each extended target. A framework for estimating the
number of measurements generated was presented, and shown to be capable of
estimating an individual measurement rate for each target. The complexity of
the implementations increases exponentially with time, and approximations are
necessary to ensure computational feasibility. To this end, merging of distribu-
tion mixtures was presented. Finally, extended target prediction, spawning and
combination was also addressed.

8.2 Future work

A noted drawback of the presented loop detection classifier is that it, compared
to related work, is more sensitive to translation, i.e. required a higher degree of
point cloud overlap. While this is not problematic in environments with well
defined pathways, such as road networks or office hallways, it would present a
challenge in environments with less restrictions on motion. A topic for future
work is to increase the classifiers ability to handle translation.

The underlying ideas behind the presented loop detection classifier could have
extensions to the environment labeling problem. Environment labeling is a prob-
lem in which the parts of the sensor data is labeled according to which class it
originated from, e.g. ground, vegetation, building walls, cars, humans, etc. Fea-
tures similar to the ones used to describe the point clouds as a whole could be
used as local descriptors of each point in the point clouds. Using a multi-class
classifier, the data point could then be labeled with the most likely class label.

Two different models for estimation of the size and shape of extended targets
were used, however they were both limited to simpler shapes. A comparison of
different models for the shape and size of the extended targets would be interest-
ing. Given a partition of the current measurement set, and prior extended target
estimates, the cell to target association problem is similar to classic point target
tracking. It would be interesting to see how the partitioning methods could be
used together with classic target tracking approaches, like Multiple Hypothesis
Tracking, to construct multiple extended target tracking algorithms. If such a
tracking algorithm can be devised, a comparison to the extended target phd fil-
ter could show the advantages and disadvantages of using random set theory.

Further work on measurement set partitioning can be undertaken, to ensure that
the filtering framework is capable of handling multiple extended targets that ma-
neuver close to each other in heavily cluttered measurement data. When targets
are spatially close, the suggested partitioning methods sometimes fail in produc-
ing correct partitions. A method capable of detecting that a cell contains mea-
surement that actually belong to multiple sources could improve performance.
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Regarding estimation of the measurement rates, better models for the relation
between the measurement rate and the target kinematics and target extension is
needed. Reduction of distribution mixtures is addressed using merging, and a
simple way to construct a pairwise criterion is suggested. The related literature
on Gaussian mixture reduction contains different approaches to the problem of
finding which components in the mixture should be merged, and which should
not be merged. A comparison of these approaches applied to other distribution
mixtures would be interesting.

The presented approach to prediction of an extended target modeled with ran-
dom matrices can be tested further in multiple target scenarios. Only one step
prediction is considered in the paper, however the case of multi-step prediction
could further show the merits of the prediction. It would also be interesting to
include the prediction in an interacting multiple model framework. The spawn-
ing and combination of extended targets only handles the two target case, an
extension to the case of an arbitrary number of targets would be interesting.

Somewhere along the intersection of mapping and target tracking lies the prob-
lem of separating the sensor data into segments that correspond to either station-
ary or moving objects. This thesis has not handled the segmentation problem,
although it is shown that the loop detection classifier is not sensitive to moving
objects. An extended target tracking framework could possibly be used to de-
termine which parts of the surrounding environment are stationary, and which
parts are moving.
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