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Abstract 
 

 Protein-protein interactions are fundamental to many biological processes. A 

large proportion of proteins have been identified as partially or entirely disordered in 

their native state. Disordered protein regions appear to be especially adept for facilitating 

interactions and are often important for signaling and regulation. This is a relatively 

young field compared to the extensively studied structured proteins, which means the 

data available is not as abundant and well characterized. Consequently, the first goal of 

this thesis is to use a structure-based method to identify intrinsically disordered protein 

(IDP) complexes. We hypothesize that we can take advantage of the tendency of 

intrinsically disordered segments to adopt extended structures when bound to globular 

proteins to separate them from natively structured proteins. Radius of gyration is used to 

measure the extendedness of protein chains in protein data bank structures. The dataset of 

selected extended protein chains is then verified to be enriched in disorder through 

sequence based prediction. The second goal of the thesis is to characterize the identified 

IDP complexes. This involved an attempt to analyze the compaction of intrinsically 

disordered segments upon binding and analysis of the interface residue composition. 

Analysis of the interface residue composition revealed an interesting disparity between 

the residue compositions across the IDP complex interface. An enrichment of 

hydrophobic and depletion of charged residues on the IDP side of the interface seems to 

suggest that IDP interactions are relatively unspecific due to strong hydrophobic 

contributions. Their importance in signaling and regulation as well as studies that 

suggested highly specific interactions led us to investigate the polar interactions of IDP 

complexes. Computational alanine scanning and continuum electrostatic calculations on 



iii	  
	  

IDP complexes reveal a class of protein-protein interaction that has high electrostatic 

complementarity in comparison to structured protein complexes. Charged residues on the 

IDP interface make greater contribution to binding compared to those of structured 

proteins. Furthermore, large desolvation penalties and Coulombic interactions balance 

out to contribute to highly specific yet low affinity interactions. 
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1 Introduction 

 

1.1 Intrinsically Disordered Proteins 

 Ever since the first structure of myoglobin was resolved by Kendrew and 

colleagues more than half a century ago (Kendrew et al., 1958), the Protein Data Bank 

has grown to include more than 80 thousand structures. The immense progress in 

structural biology allows us to understand many cellular processes through making the 

connection between structure and function. This led to the view that proper protein 

function requires well-determined three-dimensional structures. In fact, many have 

viewed proteins as intricate machines that work in a well ordered manner in the cell 

(Alberts, 1998). This view slowly evolved with the discovery of unstructured proteins 

whose structure cannot be described by a single set of three-dimensional coordinates. 

NMR techniques have shown the presence of disorder in cellular proteins decades ago 

(Daniels et al., 1978), but the importance of these intrinsically disordered proteins (IDPs) 

has only been recognized more recently (Dyson and Wright, 2005). Consequently, the 

majority of previous research and methods cater towards structured proteins, which 

means that the study of IDPs is a relatively new field with many gaps in knowledge to fill. 

 Taking advantage of the availability of large quantities of protein sequences, 

computational programs were developed to identify intrinsically disordered regions from 

sequence (e.g. DISOPRED). A paradigm changing discovery was made when whole 

genome predictions of protein disorder revealed that greater than 30 percent of 

eukaryotic proteins have unstructured regions of over 30 residues long (Ward et al., 
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2004). Not only are IDPs prevalent in our proteome, they are also functional and are 

implicated in various important processes. One of the main motivations to study IDPs is 

the fact that they are often involved in signaling and regulation. Biophysical properties 

conferred by their unstructured nature makes ID regions suited for recognition of protein 

targets. Moreover, some IDPs are identified as hub proteins in protein interaction 

networks. Hub proteins play key roles in interaction networks through interacting with 

multiple partners and examples of hubs include p53, Mdm2 and p300 (Gsponer and Babu, 

2009). The implication of these regulatory proteins in severe diseases, such as cancer, 

gives IDP research practical applications in medicine. In fact, because IDP binding sites 

on structured proteins tend to be deep grooves, IDP interactions show extra promise for 

drug development targeting protein-protein interactions (Meszaros et al., 2007). 

 

1.2 Protein-protein interactions 

 No one would doubt the complexity of cellular systems because it is their 

functions that are allowing us to contemplate this very subject. These complex systems 

must have sophisticated mechanisms to regulate a myriad of metabolic processes and to 

respond to all sorts of external signals and stimuli. These mechanisms of signaling and 

regulation are primarily facilitated through protein-protein interactions. Consequently, a 

significant amount of research has been done to better understand the biophysical 

properties that control protein folding and interactions. Proper regulation of cellular 

processes generally requires specificity in protein-protein interactions and the means to 

regulate these interactions, such as post-translational modifications, alternate splicing or 

autoinhibition. 
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 The chemical physics behind protein-protein interactions involves both the inter-

molecular interactions (such as salt bridges) and the proteins’ interaction with solvent. 

 

1.2.1 Solvation 

 Protein folding is a subject of great interest in structural biology and its solution 

is often considered as the holy grail of structural biology. A protein is synthesized as a 

linear polypeptide and is driven to fold by the gradient in the free energy landscape 

(Baldwin, 2007). The search of the free energy minima results in the folded three-

dimensional structure. It is well established that the most important driving force behind 

protein folding is the burial of non-polar (hydrophobic) surfaces from the polar 

environment of water (Baldwin, 2007). The hydrophobic effect (hydrophobic factor) is 

the same property that prevents oil from mixing well with water. In fact, free energy 

change of burying hydrophobic side chains in the protein interior was first modeled with 

dissolving hydrocarbons in water (Baldwin, 2007). A model suggested by Widom 

proposes that the hydrophobic effect comes from a balance between creating a cavity for 

the solute in the hydrogen-bonding structure of water and the new solute-solvent 

interactions (i.e. ΔGsolvation = ΔGcavity + Einteraction) (Baldwin, 2007). Hence, the solvation 

energy refers to the change in free energy conferred by transferring protein from gas 

phase into the aqueous environment. The solvation of a hydrophobic surface would have 

a high solvation free energy because the cost of creating the cavity, which involves 

breaking the hydrogen bond network in bulk water, is not well compensated by solute-

solvent interactions that primarily consist of van der Waals interactions. However, 

solvating polar surfaces would be more favorable due to the polar-polar interactions 
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between the solute and water. Stable folded proteins selected by nature have interiors 

composed primarily of hydrophobic residues, with the exception of buried catalytic sites 

in enzymes. On the other hand, charged and polar residues are enriched on the surface of 

proteins where they are solvated. 

Put in the context of protein-protein binding, solvation energy is the free energy 

for removing the water from the interface surfaces. This is generally unfavorable for the 

polar surfaces and favorable for hydrophobic surfaces. The balance of hydrophobicity 

and polarity varies between different types of protein interfaces with homo-dimers being 

the most hydrophobic and hetero-complex components that can exist individually being 

more polar (Jones and Thornton, 1997). The difference reflects the need for some 

proteins to be soluble on their own and also function in their oligomeric state. 

 

1.2.2 Hydrophobic effect 

 Protein-protein interactions involve the same physics as folding so it is no 

surprise that the hydrophobic effect is a key thermodynamic driving force for protein 

binding. Protein-protein interfaces are enriched in hydrophobic residues, which is in 

contrast with the rest of the polar-residue-enriched and solvent-exposed protein surfaces. 

Hydrophobic surface patches are synonymous with protein-protein interactions. In fact, 

the drive to form non-polar interactions is so strong that hydrophobic patches sometimes 

promote nonspecific and detrimental interactions that lead to formation of protein 

aggregates. In one study, it was shown that predictors for aggregation are actually better 

at predicting binding interfaces on protein surfaces than hydrophobicity alone (Pechmann 
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et al., 2009). Protein aggregates are implicated in serious neurodegenerative diseases 

such as Huntington’s and Alzheimer’s disease. 

 

1.2.3 Electrostatic Interactions 

 Specificity of protein interactions is generally believed to rely on shape 

complementarity, hydrogen bonds and salt bridges. A protein has high specificity for a 

binding partner when their affinity is very high compared to the protein’s affinities for all 

of its non-cognate binding targets. Shape complementarity is important for structured 

protein binding and has been successfully applied in protein-protein docking programs 

(Ritchie and Kemp, 2000). Since ID segments lack a unique three-dimensional structure, 

the focus of our attention is on electrostatic interactions. The electrostatic energy of 

protein interactions is an extensively studied subject and it encompasses much of the 

contributions from salt bridges and hydrogen bonds. Although electrostatics generally 

does not contribute greatly to the affinity of protein-protein binding, it has been revealed 

that polar interactions can sometimes contribute significantly to the binding free energy 

but more often confer specificity. Clackson and Wells showed that even though charged 

residues generally contribute less than hydrophobic residues, functionally important 

charged residues which make complementary contacts across the interface can be 

interaction “hot spots”, whose replacement with alanine reduces binding affinity by more 

than 1 kcal/mol (Clackson and Wells, 1995). 

 Taking into account all the polar interactions, Sheinerman and Honig analyzed 

the interfaces of four protein-protein complexes and found that the total electrostatics 

contribution to binding is inversely correlated with non-polar solvent accessible surface 
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area buried upon binding (Sheinerman and Honig, 2002). In other words, the electrostatic 

interactions are stabilizing in complexes with relatively weak non-polar contributions to 

binding while in others, the electrostatic contributions are strongly destabilizing but the 

non-polar contributions to binding are very high. Repeatedly, studies have shown that 

salt bridges in protein interfaces can contribute favorably in terms of electrostatic 

interaction to the free energy of binding but that the effect is often counterbalanced by 

very unfavorable polar solvation energy of binding, or desolvation (Elcock et al., 1999). 

  Despite the fact that the sum of electrostatic energy of binding is generally not a 

great contributor to affinity, polar interactions such as salt bridges are still important for 

specificity. In the simplified example in Figure 1.1, the desolvation cost of burying 

charged residues is compensated by making new specific interactions with residues of the 

opposing charge. When the charged residue is not making specific interactions, the 

desolvation cost is not compensated and the electrostatic component of the binding free 

energy becomes unfavorable. Consequently, even though electrostatic interactions are 

not the main contributor to affinity, they effectively penalize uncomplimentary protein 

binding to uphold specificity. 
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Figure 1.1 Specificity conferred by electrostatic complementarity. 

Complex (a) and (b) have the same shape complementarity but the first complex has 

higher electrostatic complementarity. In the first complex, the desolvation cost of the 

four surface charges cancels out the Coulombic energy from the two salt bridges. The 

second complex with approximately equal desolvation penalties will have unfavorable 

total electrostatic free energy of binding. In this way, electrostatic interactions can rule 

out the formation of the second complex despite the fact that there are no explicit same-

charge interactions opposing binding. 

 

 Electrostatic interactions are also an important determinant for association 

kinetics. Simulations of enzyme-substrate association have demonstrated the role of 

electrostatics in the rate of association in diffusion-limited enzymes, for which the rate-

limiting step in their reaction is association (Elcock et al., 1999). In one such case, 

McCammon and colleagues have shown that enzyme-substrate association rates for 

copper/zinc superoxide dismutase can be altered by mutating charged residues inside the 

interface and also outside to a lesser degree (Sines et al., 1990). The electrostatically 

enhanced association was also shown in protein-protein associations such as barnase with 
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the inhibitor barstar (Gabdoulline and Wade, 1997).  Even for cases where the 

electrostatic contributions to binding were found to be unfavorable in their bound state, 

electrostatic interactions could still contribute favorably when the two proteins are 

approaching (Elcock et al., 1999). 

 

1.3 IDPs in Protein-Protein Interactions 

 Many functional advantages have been proposed for intrinsic disorder in proteins, 

all of which involve interactions with other proteins in some way. In contrast to 

structured protein complexes, much less is known about the energetics of interactions 

between ID segments and globular proteins. Notably, the role of electrostatics and 

specificity is not well characterized. Researchers tend to agree that IDP interactions are 

generally highly specific while often maintaining low affinity. Being regulatory or 

signaling elements requires these proteins to be able to selectively bind their targets 

while being able to quickly dissociate in response to signals, which is analogous to 

switches in the cellular pathways (Zhou, 2012). Studies have shown that the interface 

residues of ID segments are even more conserved than those of structured protein 

interfaces. This is unexpected because of the stark contrast to the rest of the ID regions, 

which have little conservation (Meszaros et al., 2007). Sequence conservation alludes to 

the importance of the residues to the interaction and also the importance of the 

interaction itself. But without rigid scaffolding behind the interface of ID segments to 

help enforce shape complementarity restrictions during binding, how do ID segments 

bind with high specificity? This is the one of the main focuses of this thesis. 
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1.3.1 Advantages of ID 

 Firstly, why do cells require ID segments? Some functional advantages of being 

unstructured proposed include (i) their ability to facilitate post-translational 

modifications (ii) their efficiency in recruiting and scaffolding proteins through the “fly-

casting” mechanism and (iii) their ability to adapt different conformations, which allows 

them to bind to one or more partner with specificity (Gsponer and Babu, 2009). 

Unstructured segments of proteins have the advantage of being accessible by other 

proteins such as kinases, which are involved in post-translation modifications. For 

example, a study in yeast kinase-substrate network revealed that substrates of kinase are 

two times more enriched in disordered proteins than structured proteins (Gsponer et al., 

2008). Post-translational modifications are crucial for signaling and regulation because 

they provide the cell with greater control through increasing the complexity of their 

interaction networks. P53 terminals are good examples of ID regions that are highly 

populated with sites of modifications. Phosphorylation, acetylation, ubiquitination, 

methylation and other post-translational modifications in different patterns or 

combinations can alter the affinity of the binding partners of the IDP and also regulate 

the protein’s stability (Wright and Dyson, 2009). The fly-casting mechanism gives 

unstructured proteins a larger “capturing radius” than structured proteins. This 

mechanism gives ID segments greater association rates with binding partners by forming 

weaker binding intermediates while the rest of the two proteins are still separate (Levy et 

al., 2004; Shoemaker et al., 2000). Finally, ID segments can bind more than one partner 

with specificity; and HIF1α is a good example (Dyson and Wright, 2005). Hydroxylation 

of Asn830 of HIF1α is a mechanism that reduces its affinity for CPB/p300. However, 
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binding to CPB/p300 requires a helical conformation while binding to the hydroxylase 

active site requires an extended conformation. The ability to alter affinity for different 

partners under different conditions/stimuli provides greater complexity for signaling and 

regulation. 

 Another advantage that ID regions provide is large surface area. By providing 

greater interaction area, ID regions can support interactions with several molecules to 

form large multimeric complexes (Gsponer and Babu, 2009). IDPs such as BRCA1 that 

act as a scaffold for complex assembly led to a study that revealed a correlation between 

protein complex size and the average predicted disorder (Hegyi et al., 2007). A similar 

proposed rationale for the presence of IDPs is that unstructured regions reduce the 

protein mass required to provide the needed interaction area (Gunasekaran et al., 2003). 

The authors of this study reasoned that if all the unstructured regions are replaced with 

structured domains, the complexes would be much larger in size and, consequently, so 

would the genome size and cell mass. 

 Clearly, intermolecular interaction is the key function of IDPs. However, much 

less is known about the characteristics of IDP complexes relative to the structured protein 

complexes which are traditionally studied. IDP complexes are defined as complexes 

where one protein subunit is disordered in isolation. Describing and uncovering more 

about the protein-protein interactions in IDP complexes are the focuses of the rest of the 

introduction and my research chapters. 
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1.3.2 Describing IDP Interactions 

 Two main models have been suggested for the binding of an ID segment to 

structured proteins: (i) induced folding upon binding and (ii) conformation selection. The 

first suggests that the unstructured ID segment folds into the bound state upon making 

intermolecular interactions with the structured interaction partner while the second 

suggests a pre-existing conformation is selected out of the population of sampled 

conformation during binding (Song et al., 2008; Sugase et al., 2007). A more recent 

interpretation attempts to unify the two models (Csermely et al., 2010). The role of 

entropy in binding differs from traditional structured protein binding because of the 

greater loss of conformational entropy upon binding. The magnitude of entropy loss is up 

for debate since it depends on the binding model and the degree of disorder in the 

complex. Not only is there a spectrum to the extent of disorder in native ID segments, but 

it has also been noted that many IDP complexes display varying degrees of disorder. 

Tompa and Fuxreiter coined the phenomenon “fuzziness”, which may limit the entropic 

penalties of binding and further confer advantages in specificity and regulatory functions 

(Tompa and Fuxreiter, 2008). Essentially, quite a few binding models have been 

recognized through studying a relatively small fraction of IDPs. This highlights the great 

diversity in the mechanisms employed by IDP interactions. 

 Although IDP complexes are not as thoroughly studied as their structured 

counterparts, it is well established through previous studies that hydrophobic interactions 

are even more prevalent in IDP interfaces than structured protein interfaces. The 

enrichment of hydrophobic residues is one of the reasons why some researchers proposed 
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that their interactions may be less specific than classical protein complexes (Vacic et al., 

2007).  

The large and hydrophobic interface of IDPs leads to high binding enthalpy. 

Nussinov proposed that tight interfaces provided by IDPs are required for effective signal 

propagation across proteins (Nussinov, 2012). The high binding enthalpy is 

counterbalanced by entropic cost of the transition from disorder to order state. This 

balance leads to low affinity. More specifically, Zhou pointed out that high dissociation 

rate is the reason why low affinity is an advantage (Zhou, 2012). He also proposed that 

the high dissociation rate comes from the flexibility of IDPs, which allows for smaller 

dissociation steps with lower energy barriers. The large interface area and precise fit is 

thought to be the source of specificity. However, is this alone enough to prevent non-

specific interactions when IDPs can clearly adapt their conformation to the binding site? 

 

1.4 Research Overview 

The proposed lack of specificity in IDP interactions does not appear to agree with 

experimental studies that suggest high specificity in IDP interactions. Neither does it 

seem logical that cellular signaling and regulation, which require specificity for high 

fidelity, can rely on nonspecific binding interactions. This motivates our analysis of IDP 

interfaces for factors contributing to specificity, such as hydrogen bonding and polar 

interactions. Our hypothesis is that IDP interactions should generally be highly specific, 

and therefore exhibit strong polar interactions. 

Firstly, we required a dataset of IDP complexes. An IDP complex dataset was 

created using the radius of gyration divided by protein length (Rg/N) as a classifier that 
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selects for highly extended protein chains. The IDP complex dataset was then validated 

using Disopred2 for sequence-based disorder prediction. We also analyzed the residue 

composition and solvent accessible surface area of selected protein segments to check for 

agreement with previous studies. Because the method selected for highly extended 

proteins, we also compared the extendedness of the ID segments before and after binding. 

The interface of the validated IDP complex dataset was analyzed and compared to 

a dataset enriched in structured proteins. Residue composition and alanine scanning 

analysis of the interface allowed us to roughly examine and compare the types of 

residues and their thermodynamic contributions to the interactions. Lastly, we provided a 

more accurate estimate of the electrostatic contributions to ID segment binding. 

2 Methods 

 

2.1 Dataset Creation 

 

2.1.1 Testing Datasets 

 Initially, IDP complexes were collected from literature. The key words “intrinsic 

disorder”, “unstructured”, and “flexible” were used to search for studies involving IDPs. 

Many complexes were also found through the DisProt database, which is a curated 

database of IDPs (Sickmeier et al., 2007). We only kept protein chains longer than 20 

residues to reduce the number of protein-peptide complexes. Long IDP segments were 

also taken from two articles by Dosztányi and coworkers (Meszaros et al., 2009; 



14	  
	  

Meszaros et al., 2007). Finally, a collection of 74 IDP chains were aligned and clustered 

(see below) to produce a dataset of 52 IDP chains in complexes. 

In a second step, a dataset of structured proteins was assembled. This structured 

protein dataset was derived from the 3D Complex database (Levy et al., 2006). 3D 

Complex is a database of protein complexes classified by their known three-dimensional 

structure in a hierarchical way. The top level of the hierarchy, the Quaternary Structure 

Topologies, groups protein complexes by the number of chains and the pattern of 

contacts between them. Quaternary Structure Families is the second level of 

classification and further divides protein chains based on structural similarities (i.e. based 

on SCOP domain architecture). We selected dimers out of the Quaternary Structure 

Families of complexes and downloaded the structure coordinates from the Protein Data 

Bank (PDB) (Berman et al., 2000). The Quaternary Structure Families grouping has little 

to no relation to their sequence identity. Therefore, we could apply a sequence alignment 

and clustering procedure on the dataset (see below). The alignment returned 782 non-

redundant structures. With protein chains that are shorter than 20 residues or had already 

been identified as IDPs in my literature search removed, a final dataset of 762 protein 

chains was created. I will refer to this dataset as the 3D complexes. 

 

2.1.2 Sequence Alignments and Clustering 

 Sequence alignment followed by clustering removed redundant proteins from the 

protein datasets. EMBOSS Needle is a pairwise alignment tool that uses the Needleman-

Wunsch global alignment algorithm (Needleman and Wunsch, 1970). We used the 

scoring matrix EBLOSUM62 and default gap penalties. Needle outputs sequence 
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percentage similarity and identity for each chain pair. We defined redundant sequences 

using a sequence identity threshold determined by Rost’s threshold for percentage 

identity	  (Rost, 1999):	  

!! ! = ! + 480 ∙ !!!.!"∙(!!!!! !""") 

We choose n = 3 to create more conservative non-redundant datasets and L is the protein 

length.  

 Redundant structures were removed by grouping all the protein pairs that are 

above the identity threshold. One structure was selected out of each group to create a 

non-redundant dataset. 

 

2.2 The Classifier 

 

2.2.1 Radius of Gyration Over Protein Length 

 The radius of gyration (Rg) can be used as a measure of protein size. The Rg of a 

protein is the root mean square distance of the atoms from the center of mass: 

!!! = !!(!! − !!)! !
!

!!!

 

where the position of the atom i and the center of mass are !! and !!  respectively. The 

mass of atom i is !!  and the total mass is M. In our case, only the alpha-carbon 

coordinates in the PDB files were included in the calculation, so !! !!
!!! = 1/! 

where N is the number of alpha-carbons. By dividing the protein size by protein length, 

the resulting ratio (Rg/N) is a measure of the extendedness of the protein. Rg was 

calculated using the script rgyr.pl, which is part of the MMTSB toolset, with the ‘-caonly’ 
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option specified (Feig et al., 2004). The protein length was calculated by counting the 

alpha-carbons only. 

 

2.2.2 Testing Rg/N 

 The performance of Rg/N for separating the IDP complexes and 3D complexes 

was first measured using Receiver Operating Characteristic (ROC) curves. They are 

often used in medical decision making, psychology and machine learning (Bradley, 1997; 

Swets et al., 2000). ROC curves are plots of a true positive rate on the y-axis and a false 

positive rate on the x-axis at varying thresholds or cutoff values. The true positive rate 

(TPR) is also known as the sensitivity and is described for a specific cutoff by this 

equation: 

!"# = !" !" + !"  

where TP is the true positive, which is the number of positive cases (i.e. ID segments) 

correctly classified. FN is the false negative, which is the number of positive cases 

incorrectly classified as negative cases (i.e. structured protein). The false positive rate 

(FPR) is given by this equation: 

!"# = !" !" + !"  

where the false positive (FP) is the number of negative cases classified as positives by 

the threshold while the true negative (TN) is the number of negative cases correctly 

classified. 

The left side of the ROC curve represents very stringent thresholds where most 

positive and negative instances are classified as negative, and the threshold relaxes 

towards the right. The ROC curve can be used to compare how well classifiers perform 
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in separating the positive and negative datasets. The area under the ROC curve (AUC) is 

a way of evaluating ROC curves. AUC is correlated to the accuracy of the classifier and 

has the advantage of being insensitive to class skew (Bradley, 1997). 

 However, the ROC curves do not visually show the optimal Rg/N threshold. A 

Matthew’s Correlation Coefficient (MCC) curve is able to show that explicitly 

(Matthews, 1975). The MCC of each cutoff is a value between -1 and 1, where 1 is 

perfect prediction and zero indicates a random prediction. MCC can be calculated by: 

!"" =
!" ∙ !" − !" ∙ !"

!" + !" ∙ !" + !" ∙ !" + !" ∙ !" + !"
 

The ROC and MCC curves were plotted using the ROCR package (Sing et al., 2005). 

 

2.2.3 Coiled Coils, Disulfide-Rich Domains, and Transmembrane Domains 

 The overlap between the Rg/N of the testing IDP complex dataset and the 3D 

complex dataset contained many coiled coils and disulfide rich domains. The removal of 

these structures from the 3D complex dataset increased the AUC slightly. Therefore 

coiled coils and disulfide-rich domains were removed as part of the process of filtering 

out structured protein chains. 

 Coiled coils are common structural motifs that consist of two to five alpha-helices 

that twist together to form a large coil (Burkhard et al., 2001). Some coiled coils are 

structured while others are disordered (Anurag et al., 2012). Because we cannot 

distinguish intrinsically structured from intrinsically unstructured coiled coils, we used 

Socket (Walshaw and Woolfson, 2001) to identify them and remove them from other ID 

segment candidates. Socket is a program that identifies coiled coils by recognizing the 
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‘knobs-into-holes’ packing patterns formed by interlocking alpha-helices in PDB file 

structures. 

 Disulfide-rich protein domains are small domains whose structures are stabilized 

by disulfide bonds. These protein domains tend to be shorter than 100 residues and have 

small hydrophobic cores. As a result, their structures are mainly stabilized by more than 

one disulfide bond (Cheek et al., 2006). Their small size and relatively irregular shape 

give them high Rg/N. Consequently, all protein chains shorter than 100 residues with two 

or more disulfide bonds were classified as structured proteins. 

 Another class of protein domains that are extended in structure are 

transmembrane domains. We used the HMMTOP server for the prediction of 

transmembrane helicies (Tusnady and Simon, 2001). It uses a hidden Markov model that 

was trained to recognize topological regions of experimentally determined 

transmembrane proteins based on sequence. For example, it makes use of the difference 

in residue composition between cytoplasmic and extracytoplasmic protein domains that 

flank the transmembrane region. The transmembrane domains are 17 to 25 helical 

residues long and stretch across membranes. There are beta-barrel transmembrane 

structures but they have only been recognized in bacterial membranes so far (Tusnady 

and Simon, 2001). Helical transmembrane domains are more common by far, so we 

removed only the structures identified by HMMTOP. 
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2.3 Application of the Identification Filter on the PDB and Selection of Potential 

IDP Complexes 

 The list of PDB files to be analyzed was from the nrtable (non-redundant protein 

dataset) of NCBI with nrlevel 0, which means sequences are grouped using BLAST p 

value of 10e-7 as a cutoff. Firstly, all the homomeric complexes and any protein chain 

from the list that consists of more than 50% unknown or non-canonical residues were 

removed. Then we selected protein chains at least 20 residues long to ensure that we do 

not end up with a large number of protein-peptide complexes. Because we wanted to 

analyze the secondary structure, the selected protein complex must also have a DSSP file 

deposited in the RCSB PDB (See Secondary Structure Analysis Below). 

We wanted ID segments that are bound to globular proteins, so only protein 

chains that are in contact with at least one non-homologous protein chain that is more 

than or equal to 70 residues in length were selected. Two proteins were considered in 

contact when alpha-carbon atoms are 3.5Å to 9Å apart. The cutoff of 70 residues was 

chosen because that is the approximate size of some of the smallest, folded domains such 

as the SH3 and villin-type headpiece (D'Aquino and Ringe, 2003; Packer et al., 2011). 

The key step in the selection process of potential ID segment is the application of 

the Rg/N threshold to select extended protein chains. We refer to the selected group of 

potential IDPs as IDP complexes or ID segments from this point forward. 

 

2.4 Secondary Structure Analysis 

 The DSSP program (Define Secondary Structure of Proteins) was designed by 

Kabsch and Sander to assign secondary structures through hydrogen bonding patterns 
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and the geometry of three-dimensional protein structures (Kabsch and Sander, 1983). It 

was used by many studies and bioinformatics programs and could be considered the gold 

standard for secondary structure assignments even today (Joosten et al., 2011). 

Furthermore, there is generally one DSSP file for every PDB file stored in the PDB. 

DSSP make assignments to alpha helices (H), beta bridge (B), extended strands in beta 

ladders (E), 310 helix (G), pi helix (I), hydrogen bonded turn (T), bend (S), and irregular 

structures (Ir). For the purpose of this study, we combined H, G, and I into the helices 

group. Similarly, Ir, S, and B were all included in irregular structures. 

 

2.5 Validation 

 

2.5.1 Disorder Prediction 

 One of the reasons for choosing to use protein geometry to select ID segments 

was that we could use sequence analysis to validate the resulting dataset. Disopred2 is a 

knowledge-based prediction program that uses support vector machine (SMV) that was 

trained on sequences of high-resolution X-ray structures from the PDB (Ward et al., 

2004). Disordered regions are identifiable in these PDB files because they would be 

present in the protein sequence but are missing in the coordinates due to their flexibility 

and, consequently, lack of electron density. For each residue in the input sequence, 

Disopred would output a probability of the residue being in a disordered region and 

identify residues that have higher disorder prediction than a default threshold producing a 

false positive rate of 5%. Disopred predictions were calculated for all protein chains in 

the nrPDB dataset, which included the ID segments. The full sequence of the protein 



21	  
	  

chain was used as the input for disorder prediction because longer sequences would give 

better prediction. Furthermore, most protein chains came from the UniProt databank 

(Magrane and Consortium, 2011). For those that are linked to the UniProt databank, we 

tried to use the longer UniProt sequence instead. The percentage predicted disorder 

values of each protein chain were calculated with only residues that have alpha-carbon 

coordinates in the PDB file. The percentage predicted disorder is the number of residues 

predicted to be disordered divided by the total number of residues. IUPred (Dosztanyi et 

al., 2005), which is a disorder prediction program that uses a pair-wise inter-residue 

interaction scoring matrix, was also used to calculate the percentage predicted disordered 

and we arrived at similar results (not shown). 

 

2.5.2 Extended ID Segment Dataset 

 Previous studies have shown higher hydrophobic residue composition at the 

interface of IDP complexes (Vacic et al., 2007). A way to check if the presence of order 

promoting sequences is due to an enrichment of interacting regions was through doing 

analysis with the addition of the flanking regions of the ID segments. An effort was made 

to extend each of the ID segments by 30 residues on each end by counting from the first 

and last residue with alpha-carbon coordinate in the PDB file. The sequences from 

UniProt were used preferentially because they are the full sequence of the native protein. 

The percentage predicted disorder was calculated with all the residues, regardless of 

whether the alpha-carbon coordinates were present. 
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2.5.3 Solvent Accessible Surface Area of IDPs 

A feature of IDPs is high solvent accessible surface area (SASA) due to their lack 

of hydrophobic core (See below for SASA calculations). A recent study by Marsh and 

Teichmann compared the SASA of bound protein to that of their monomeric state (Marsh 

and Teichmann, 2011). The premise is that the SASA of monomeric proteins are highly 

correlated to mass and deviations of SASA in the bound state could indicate changes 

conformation upon binding. In the study by Marsh and Teichmann, they derived an 

equation that correlates the SASA of monomers (!!
!"#$%&'#$) with their mass based on 

4988 monomeric proteins: 

!!
!"#$%&'#$ = 4.84!!.!"# 

The relative solvent accessible surface area (Arel) was calculated by dividing the 

measured SASA by the predicted SASA of a monomer of the same mass: 

!!"# = !!!"#$%&$' !!
!"#$%&'#$ 

The SASA was measured from the structure of the protein chain in isolation while in the 

bound conformation. The deviations of Arel ratios from one provided an indication of the 

change in conformation upon binding. 

 

2.6 Calculation of SASA 

 An atom is defined as accessible if a spherical probe with certain radius 

representing the solvent, such as water, could be brought into contact with the van der 

Waals (VdW) surface of the atom (Lee and Richards, 1971). Additionally, the solvent 

accessible surface area (SASA) is defined as the surface traced by the centre of a solvent 

sphere as it rolls across the van der Waals surface of the protein. Solvent accessible 
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surface areas of protein structures in PDB files were calculated using Areaimol, which is 

a program that uses an algorithm by Shrake and Rupley (Shrake and Rupley, 1973). The 

solvent probe radius used was 1.4Å, which is the default radius used by Areaimol and by 

other studies (Levy, 2010; Miller et al., 1987). The point density used was 25Å-2 for 

relative high precision in exchange for higher computational resources. In addition to 

standard VdW radii used by Areaimol, the radii of zinc, calcium, and sodium ions were 

taken from CHARMM22 parameters. All crystal water molecules were ignored by 

default. 

 All complexes with DNA and RNA were removed from all analysis with SASA 

calculations because we were only interested in protein-protein interactions and the 

procedure was more consistent with the following molecular modeling analysis. 

 

2.7 Radius of Gyration Ratio and Compaction of IDPs 

 Because the radius of gyration is a measure of protein size, comparison of the Rg 

of a protein before and after formation of a complex reveal its magnitude of compaction 

or expansion during the process. We do not know the size of the IDPs in isolation, but 

Marsh and Forman-Kay derived an equation to predict the hydrodynamic radius (Rh) of 

IDPs based on sequence (Marsh and Forman-Kay, 2010). They fitted Rh measurements 

from pulse field gradient (PFG) NMR and size-exclusion chromatography (SEC) 

experiments to an equation that accounted for net charge (Q), fraction of proline residues 

(Ppro), protein length (N), and presence of polyhistidine tag (Shis): 

!! = (1.24 ∙ !!"#   +   0.904) ∙ (0.00759 ∙ !   +   0.963) ∙ (!!!") ∙ 2.49 ∙ !!.!"# 
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Shis is equal to 0.901 with the presence of the polyhistidine tag and is equal to 1 when 

there is no tag. 

 Despite the fact that the compaction of our ID segments might depend on regions 

that are missing from the coordinates of the PDB files, our calculations of Rh only 

included residues with coordinates because these were the residues that we used to 

calculate Rg. The occurrence of polyhistidine tag was defined by the presence of at least 

five consecutive histidines in the protein sequence. The net charge of the protein chain 

was calculated at pH 7.2 using the Henderson-Hasselbalch Equation for each ionizable 

group. The pKa of the polypeptide side chains were taken from 

http://www.cem.msu.edu/~cem252/sp97/ch24/ch24aa.html with the exception of 

histidine, which we used the pKa of 6.8 to be consistent with Marsh and Forman-Kay. 

The pKa of the N and C-terminals were 8.2 and 3.65 respectively. 

Hydrodynamic radius is the radius of a sphere that would have the same rate of 

diffusion as the molecule being measured (Marsh and Forman-Kay, 2010). The diffusion 

coefficient measured in dynamic light scattering experiments is often used to calculate 

Rh using the Stokes-Einstein equation. The diffusion of the protein is not only dependent 

on the size of the protein, but also the hydration of the protein. Therefore, the Rh value is 

dependent on the size of the protein with the hydration layers and the geometry of the 

protein. The radius of gyration is not directly comparable to Rh. For instance, the Rh of a 

globular protein is generally much larger than its radius of gyration. However, the Rh can 

be converted to Rg by using the following equation: 

!! = !!! 
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The value ρ, which is the ratio of Rg over Rh, is dependent on the shape of the molecule, 

but we do not know the shape of the ID segments in solution (Wilkins et al., 1999). For 

this study, we used ρ values of  3 5 ! ! , 1.1, and 1.4 to show the possible outcomes of 

using different shape approximation to convert Rh to Rg. However, we suggest that ρ of 

1.1 is a conservative average that could be used for IDPs (see results and discussion).  

 

2.8 Interface Residue Analysis 

 The interface of a protein complex was defined as the region with a change in 

SASA upon binding. Similarly, we defined all residues with a ΔSASA upon binding as 

interface residues. For IDP complexes and 3D complexes, the SASA was calculated for 

the PDB structure of the whole complex, for the selected ID segment or the selected 

structured chain in isolation, and of the remaining protein chain(s) of the complex in 

isolation. The ΔSASA upon protein binding was calculated by subtracting the SASA in 

the complexed state by the SASA of the two subunits in isolation: 

∆!"!" = !"!"!"#$%&'(!:!) − !"!"! − !"!"! 

This static view of ΔSASA is a rough estimate because it assumes that the conformation 

of the complex subunits do not change upon binding. This definitely is not true, 

especially for IDPs. The study by Marsh and Teichmann on the Arel showed that 

conformational changes that lead to change in total SASA is common in protein-protein 

interactions (Marsh and Teichmann, 2011). However, we do not know the structure of 

these protein chains in isolation, so it was an assumption that had to be made. 

 The protein-protein interfaces were further divided into different regions. A 

recent article by Levy proposed definitions for the core, rim and support regions of 
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protein-protein interfaces based on SASA calculations (Levy, 2010). Relative ASA 

(rASA) was calculated by normalizing the residue X’s SASA by their SASA in a Gly-X-

Gly peptide. Residues with rASA greater than 0.25 in the complexed state were assigned 

to the rim. Residues with rASA less than 0.25 in the complexed state were assigned to 

the core if rASA was greater than 0.25 in the unbound state. The remaining residues, 

which were buried under the core of the interface even before binding, were assigned to 

the support. Importantly, there is generally no support region for ID segments because 

they bury very few residues beneath the surface of the interface. Therefore, we ignored 

the support residues in the analysis done in this study. 

  

2.9 High Resolution Datasets 

 To avoid artifacts of poor resolution structures, high-resolution datasets for the 

IDP complexes and 3D complexes were created for the analysis of hydrogen bonds, salt 

bridges, computational alanine scanning, and continuum electrostatic calculations. The 

high-resolution datasets consisted of X-ray structures that are higher in resolution than 

2.5Å. Consistent with the SASA analysis, all PDB complexes with DNA/RNA were 

excluded. We also excluded structures that have heterogens, which are marked with 

HETATM in the coordinate section of PDB files, because they could not be readily 

modeled using CHARMM (Chemistry at HARvard Macromolecular Mechanics) and 

other programs. An effort had been made to also include some of the IDP complex 

structures containing heterogens higher than the resolution of 2.0Å to maximize the size 

of the IDP dataset. Coordinate ions such as calcium and zinc could be easily included in 

CHARMM structures. Other small molecules that are not part of the native structure or 
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do not interact with the IDP complex interface were ignored (e.g. glycerol from 

crystallization process). 

 

2.10 Hydrogen Bonds, Salt Bridges and Interface Area 

 We used the program HBPlus to calculate potential hydrogen bonds from the 

high-resolution protein complex structures (McDonald and Thornton, 1994). The 

program predicts potential hydrogen bonding by calculating the positions of hydrogen 

and analyzing the structure for hydrogen bond donor and acceptor pairs that satisfy a 

hydrogen bonding criteria. We used the default criteria which included a distance 

threshold for donor and acceptor heavy atom distance of < 3.9Å and hydrogen and 

acceptor distance of < 2.5Å. All hydrogen bonds across protein complex interfaces were 

tabulated. The analysis did not include aromatic hydrogen bonds. 

Any pair of nitrogen and oxygen atom from charged residues that are closer than 

4.0Å apart was defined as a salt bridge (Barlow and Thornton, 1983). Terminal charged 

groups were also included in the analysis. But despite the large presence of terminal 

groups on relative short ID segments, the terminal groups contributed insignificantly (not 

shown). Distances between each charged interface residue and all other charged residues 

were calculated. The number of inter-chain and intra-chain interactions made by these 

interface residues were tabulated. Residues with no charge compensation within the 

distance threshold were also analyzed for the presence neighbouring crystal water 

because water molecules might be involved in water bridging. 
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2.11 Computational Alanine Scanning for Per Residue Contribution to Binding 

 Alanine-scanning mutagenesis is an important method often used to study the 

contribution of interface residues to protein-protein or protein-ligand binding. Residues 

are mutated to alanine to abolish the interactions made by all the side chain atoms aside 

from the β-carbon. 

 FoldX was chosen in this study due to its straightforward procedure for alanine 

scanning. The FoldX energy function for the calculation of the free energy of unfolding 

(ΔG; i.e. the change in stability of the protein) consists of van der Waals (!!!"#), polar 

solvation (!!!"#$%), apolar solvation (!!!"#$%), hydrogen bonds (!!!!"#$), electrostatic 

(!!!"), main chain entropy (!!!"), and side chain entropy (!!!") contributions. 

!" =!!"# ∙ !!!"# +!!"#$% ∙ !!!"#$% +!!"#$% ∙ !!!"#$% + !!!" + !!!!"#$ + !!!"

+ !!!"# +!!" ∙ ! ∙ !!!" +!!" ∙ ! ∙ !!!" 

!!!"# is related to the effect of electrostatic interaction on association rate and is not 

relevant to the method we used. !!!"  is the stabilization energy of bridging water 

molecules, which we ignored. These energy terms are from empirical data. Weights are 

applied to some energy terms through training of the energy function on the results of 

experimental mutation studies (Schymkowitz et al., 2005). The results of alanine 

scanning using FoldX had been compared to a Rosetta procedure and they yielded 

similar results, although FoldX’s estimate tend to be slightly higher (London et al., 2010). 

 Before executing mutational analysis, it is recommended that a repair procedure 

is run on PDB structures to repair incorrect structures, such as removing van der Waals 

clashes. This procedure was done with the “VdWDesign” variable of two, which means 

that the maximum penalty was assigned for van der Waals clashes. 
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 The mutational analysis was done using the “alascan” command. VdWDesign 

variable was set to zero to prevent large energetic penalties due to the mutations. The 

alascan procedure truncates every residue of the protein complex into alanine and does 

not move the neighboring residues. Residues are mutated to alanine one at a time and the 

output is a change in energy of folding (ΔΔGmut) for each residue. Alanine and glycine 

residues were not analyzed since their side chains cannot be truncated. We also chose not 

to include proline residues since their mutation involves changes to the backbone. The 

change in binding energy upon mutation (ΔΔΔGbind) for each of the interface residue 

defined by ΔSASA was calculated by subtracting the ΔΔGmut of the residue in complexed 

state by the ΔΔGmut of that residue in the unbound state. Mutations carried out without 

minimization are less accurate but the truncation of larger residues to alanine should not 

induce big changes in the structure of the protein. Furthermore, a comparable Rosetta 

mutation protocol with no rearrangement of neighboring residues and using a dampened 

Lennard-Jones repulsive energy was shown to perform relatively well for mutations of 

large to small residues (Kellogg et al., 2011). 

 All FoldX calculations were done at the temperature of 298K, pH 7, and ionic 

strength of 0.05M. Coordinated metal ions from the crystal structures were used while 

water molecules were ignored. 
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2.12 Electrostatic Calculations Using CHARMM Parameters 

 

2.12.1 CHARMM Structure Minimization 

 Before calculating the electrostatic free energies for the high-resolution datasets, 

the structures were first processed by CHARMM (Brooks et al., 1983). CHARMM22 

parameters were chosen for the electrostatic calculations. The script named convpdb.pl 

from the MMTSB toolset was used to convert PDB files into CHARMM22 format (Feig 

et al., 2004). During the conversion process, all histidine residues were converted from 

HIS to HSD. HSD is a neutral histidine residue with the proton on the ND1 atom. 

Determining the protonation state of each histidine residue would be difficult and 

approximating all histidine as the protonated state (HSP) did not have a big effect on our 

comparison between IDP and 3D complexes. After we generated each of the protein 

chains in CHARMM, we added all the hydrogen using the ‘hbuild’ command. During 

this process, missing atoms and residues were also generated in their extended 

conformation by CHARMM. Missing segments in the middle of a protein chain of less 

than or equal to six residues were allowed to be built. However, PDB files with longer 

missing mid-chain segments were removed because it is less likely that the residues’ 

position would be predicted correctly. For the same reason, a maximum of two missing 

residues were generated at the ends of the protein chains. The structures were then 

minimized using a procedure similar to the one used in a Sheinerman and Honig study 

(Sheinerman and Honig, 2002). In detail, each complex was subjected to 20 steps of 

steepest descent minimization at 0.05kcal/mol gradient tolerance. A low number of steps 

was used due to the fact that these are high-resolution structures. Steepest descent is less 
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precise but can be used to quickly remove obviously bad clashes in the structure. Next, 

harmonic constraints with the force of 50kcal/mol/Å2 were applied to the heavy atoms 

with coordinates in the original PDB file before minimizing with 5000 conjugate gradient 

steps at 0.02kcal/mol gradient tolerance. This would allow the originally missing atoms 

that were built by CHARMM to be minimized while the rest of the atoms in the complex 

were held near their original positions. The resulting protein coordinates were used for 

electrostatic calculations with DelPhi. 

Both minimization steps were done with FACTS as continuum solvent 

(Haberthur and Caflisch, 2008). FACTS is a generalized Born implicit solvent model. It 

accounts for the effects of solvation on the protein structure implicitly, which means no 

explicit water molecule is added to the system. Implicit solvent model was used because 

minimization in vacuum may produce non-physical conformations. 

 

2.12.2 Electrostatic Calculations 

 A procedure for using the program DelPhi for calculating the electrostatic free 

energy of binding for protein-protein complexes is described by Sheinerman and Honig 

(Sheinerman and Honig, 2002). As discussed in that article, this is a simplified 

approximation that assumes the components of the complex do not undergo significant 

conformational changes upon binding. They described the free energy change of binding 

(ΔΔGbind) as a sum of the free energy change due to changes in conformation during 

binding (ΔΔGstrain) and free energy change of rigid binding (ΔΔGrigid). ΔΔGstrain consists 

of enthalpic and entropic changes upon binding and is always positive in value, which is 
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unfavorable for binding (Sheinerman et al., 2000). Similar to their study, the electrostatic 

calculations here also consisted only of ΔΔGrigid.  

DelPhi is a program for calculating electrostatic potential using the Poisson-

Boltzmann Equation (PBE) (Honig and Nicholls, 1995). The PBE provides a way to 

describe the electrostatic interaction of molecules in ionic solution. DelPhi presents a 

method for calculating the numerical solution to the PBE, which could not be solved 

analytically for complex systems such as proteins. The Poisson’s equation is a partial 

differential equation that can be applied to electrostatics in vacuo to give the following 

equation: 

−∇ ∙ ∇! ! = ! !
!! 

where ! !  and ! !  are the position specific electrostatic potential and charge density 

respectively. !! = 8.85×10!!"!/!  is the vacuum permittivity and permittivity (! ) 

(units in farads per meter) is a measure of a medium’s resistance to the formation of a 

electric field. 

The permittivity is proportional to the dielectric constant: 

!! = !/!! 

Therefore, the dielectric constant (!!) for a vacuum environment is one. The dielectric 

constant increases for media that are more polarizable. An electric field can induce dipole 

moments in atoms and molecules through electronic polarization and orientational 

polarization. Electronic polarization involves the shifting of electrons, which moves the 

negative charge relative to the positive charge in an atom and creates a dipole. Water 

molecules and polar protein side chains have permanent dipoles, which can participate in 

orientational polarization. Molecules with permanent dipole moments can reorient or 
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change their conformation to align with the electric field and permanent dipoles are 

generally much stronger than induced dipoles. A dipole moment induced or oriented by 

an electric field creates its own electric field (reaction field) that opposes and reduces the 

strength of the inducing field. Consequently, highly polarizable media with high 

dielectric constants reduce or screen electric fields more effectively. Media such as the 

protein interior, which has limited allowance for reorientation due to constraints from 

hydrogen bonding networks and tight packing, generally can only polarize electronically 

and have low !! of around two. In contrast, water can freely participate in orientational 

polarization, so water has a high !!  of 80. Importantly, calculation of electrostatic 

potential of systems with water and protein requires two dielectric constants. The Poisson 

equation for these systems is as follows: 

−∇ ∙ ! ! ∇! ! = ! !
!! 

where ! !  is the position specific dielectric constant. Regions accessible by water, as 

defined by solvent accessible surface using Lee and Richard’s definition (Lee and 

Richards, 1971), are assigned the high external dielectric constant 80. The regions not 

accessible by solvent are assigned the low interior dielectric. 

 Lastly, salt concentration in the solvent also affects the electrostatic potential 

because they are sources of charge. Ions are free to position themselves closer and away 

from molecules or surfaces with the opposite charge and like charge respectively. This 

has a similar effect as polarization and reduces the electrostatic potential of the screened 

source charge. The distribution of ions free in solution is described as a Boltzmann 

distribution. The Debye-Huckel theory uses the Boltzmann factor to describe the local 

concentration of ions relative to the bulk concentration in the solvent (!!,!"#$). The 
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Boltzmann factor is !!!" where U is the electrostatic energy of the ion, which is equal to 

the product of the electrostatic potential and the charge of the ion (! ! ! ). Therefore, 

the concentration of ion species i at position r is: 

!!,!"#$!!!" ! !! 

The full nonlinear PBE that takes into account the salt concentration’s effect on the 

electrostatic potential is: 

−!!∇ ∙ ! ! ∇! ! = ! ! + !!!!,!"#$!!!" ! !!

!

!!!

 

where ! !  is the density of the source charge (i.e. charges in the protein). The 

contribution of salt to the electrostatic potential is all in the second term. Finally, an 

approximation can be made to produce the linear PBE: 

−!!∇ ∙ ! ! ∇! ! = ! ! + !!! ! !! ! ! !  

The term !!, which is equal to zero in the protein due to absence of salt, in solvent is 

equal to: 

!! =
!
!!!

!!!!!,!"#$
!

!!!

 

Solving the PBE gives the electrostatic potential in every point in space. DelPhi 

provides the approximate solution for PBE using finite difference methods on a three 

dimensional cubic grid. All the charges in the PDB coordinates are mapped onto the grid 

points. For example, a charge from the coordinate will be mapped onto the 8 grid points 

surrounding it. The dielectric will be defined for each grid line joining the grid points. 

The electrostatic potential defined by PBE can be calculated for a grid point using a finite 

difference equation. The electrostatic potential at a grid point can be calculated from its 
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charge density, its !, the electrostatic potential of the 6 neighboring grid points, and the 

dielectric constants on the 6 adjoining grid lines. Consequently, the electrostatic potential 

of each grid point can be calculated with the exception of the points on the outer 

boundaries, which are all missing at least one neighboring grid point. The electrostatic 

potential at these boundary points must be defined by one of several approximations, 

which are called boundary conditions by DelPhi. 

With the electrostatic potential calculated, the electrostatic free energy can be 

calculated. The electrostatic potential energy of a charged particle in a system with only 

two charges is:  

! = !! ∙ !! !!  

where !! is the charge of the first particle and !! !!  is the electrostatic potential at the 

position of the first charge generated by the second charged particle. The total 

electrostatic free energy of an entire protein can be calculated as the sum of energy of all 

the charges in the potential field (Sheinerman and Honig, 2002). 

∆!!!"# =
1
2 !! ∙ !(!!)

!

!!!

 

 The total electrostatic free energy is partitioned into (i) the Coulombic energy and 

(ii) the solvation energy by DelPhi. (i) The Coulombic energy is the sum of the energy of 

each fixed charge in the protein multiplied by the electrostatic potential generated from 

all the other fixed charges in the protein (!!"#$). The !!"#$ at position j is given by this 

equation (Rocchia et al., 2001): 

!!"#$ !! =
!!

4!!!!!!!"!!!

 

where the !! is equal to the internal dielectric constant and rij is the distance from charge i.   
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(ii) The solvation energy is equivalent to the energy of moving the protein from 

vacuum (i.e. dielectric constant of 1) to the solvent (i.e. external dielectric constant of 80). 

The source of this energy is due to the polarizing effect of the electric field generated by 

the fix charges. The electric field induces surface charges on the boundary between two 

different dielectric media and the resulting induced field is called the reaction field. In 

the case of a protein, this boundary is between protein and water as defined by Lee and 

Richard (Lee and Richards, 1971). The reaction field energy is the energy from the 

product of all the fixed charges and the potential generated by the induced surface 

charges (!!"#$%). The equation for !!"#$% is: 

!!"#$% !! =
!!

4!!!!!"!

 

where !! is the surface charge at position p (Rocchia et al., 2001). 

Electrostatic calculations with DelPhi were done using charge and radii from 

CHARMM22 parameters. We used a 401*401*401 point cubic grid with a scale of 2 

grids/Å. This is a very big grid chosen in order to fit all of our complexes with the 

longest dimension of the largest complexes filling less than 80% of the grid. The 

accuracy of the calculation is dependent on the grid spacing, which affects the resolution 

of the molecule for the calculation of the electrostatic potential map. A 2 grids/Å or 

greater spacing is recommended. However, the number of grid points possible is limited 

by the computational resources available. This grid was centered on the geometrical 

center of all the atoms of the protein complex. The calculations on the subunits of the 

complex were done on the same grid position that was used for the whole complex. The 

probe radius for determining the solvent accessible surface area was 1.4Å. An ion 

exclusion (Stern) layer of 2.0Å surrounded the protein where the ion concentration was 
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zero. The boundary potential at the edge of the grid was calculated as the Debye-Huckel 

potential based on the charge distribution of the system. Each calculation consisted of 

2000 iterations of the linear PBE. Generally, 1000 iterations were more than enough for 

our systems to converge. The linear PBE is not as accurate as the nonlinear PBE, but the 

linear PBE converges more quickly and is suitable for molecules that have lower net 

charges, such as proteins (Rocchia et al., 2001). 

The interior (protein) and exterior (solvent) dielectric constants were 2 and 80 

respectively. The choice of dielectric constant for protein varies for different experiments. 

The dielectric constant of 1 is used for a medium that is completely non-polarizable, 

which is also the dielectric of a vacuum environment. Sheinerman and Honig used the 

dielectric constant of 2 for rigid binding electrostatic calculations (Sheinerman and 

Honig, 2002). The dielectric constant of 2 means that the protein structure does not 

undergo conformational changes but it does undergo electronic relaxation. The dielectric 

constant of 4 implicitly accounts for some changes in the protein structure. Interestingly, 

dielectric constants of 8 or higher are used for calculation of pKa values of titratable side 

chains (Nielsen and McCammon, 2003). In accordance to the method used by 

Sheinerman and Honig, we used the dielectric constant of 2. We did redo the calculations 

with the dielectric constant of 4. We got similar results when we compared the 

electrostatic energies of binding of the IDP complexes to the 3D complexes, but their 

magnitudes are much smaller (not shown). 

Similar to the alanine scanning calculations, the electrostatic free energy of 

binding was calculated as the change in electrostatic free energy between the complex 

and the two subunits in their unbound states. Wang and Kollman showed that the total 
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electrostatic contributions to the free energy of binding of proteins in water could be 

calculated as follows (Wang and Kollman, 2000): 

∆∆!!"!# = ∆∆!!"#!"! + (∆!!"#  !:!!!!" − ∆!!"#  !!!!" − ∆!!"#  !!!!" ) 

where ∆∆!!"#!"! is the electrostatic energy of interaction from binding (i.e. Coulombic 

energy). ∆!!"#  !:!!!!"   ,∆!!"#  !!!!" , and ∆!!"#  !!!!"  are the reaction field energies of the whole 

complex, protein a in isolation, and protein b in isolation calculated by DelPhi with 

interior and exterior dielectric constants of 2 and 80 respectively. The change in free 

energy of solvation from binding is equal to the reaction field energy of the complex 

minus the reaction field energies of the two protein complex subunits in isolation. 

3 Results & Discussion 

Table 1 List of datasets analyzed and the number of structures in each dataset. 

 The numbers in brackets are the number of structures used in the electrostatics 

calculations (see methods in CHARMM structure minimization). 

Dataset Name Number of structures 
Non-‐redundant	  PDB	   6918	  
IDP	  Complexes	   368	  
High-‐resolution	  IDP	  Complexes	   91(71)	  
3D	  Complexes	   762	  
High-‐resolution	  3D	  Complexes	   140(109)	  

	  

3.1 Identification of ID segments in complex with partner proteins 

It has been shown that ID segments burry more solvent accessible surface area 

relative to their length than do structured proteins when they interact with other 

macromolecules (Gunasekaran et al., 2004). In addition, several examples have been 

reported in which ID segments wrap around binding partners [e.g. p27Kip1 (Russo et al., 

1996)]. The reason why ID segments are unstructured in isolation is that they have little 
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to no hydrophobic core, and consequently, are not globular in shape. When they form a 

complex, they are stabilized by the interactions with the surface of the binding partner 

and tend to wrap around their structured partner. This motivated us to hypothesize that 

ID segments could be identified based on their geometry when they are bound to 

structured proteins. Specifically, the radius of gyration (Rg) of a protein is a measure of 

its size and will reveal the extendedness of the protein chain when divided by chain 

length (N). We tested this hypothesis on a set of 52 experimentally verified long ID 

segments for which we know the structure when in complex with their partner chains(s), 

which is generally a globular protein. As a negative set, we selected 762 complexes from 

the 3D Complex database, which is a database of proteins classified based on sequence, 

structure and topology. This should give a negative set that is enriched in structured 

proteins that are structurally diverse. We will refer to this dataset as the 3D complexes 

(See Table 1). 

Consistent with our hypothesis and previous observations (Meszaros et al., 2007), 

we find that ID segments in complex with structured proteins tend to have larger Rg 

values for a given protein length than do structured proteins when interacting with 

partner(s) (Figure 3.1). In order to see whether Rg/N can be used as an effective classifier 

of these structures, we used receiver operating characteristic (ROC) curves. The ROC 

curve constructed from calculating the Rg/N of the positive ID segment and the negative 

structured proteins datasets has an AUC of 0.986 (Figure 3.2a). To find an optimal 

threshold, we then plotted the Matthews correlation coefficient (MCC) curve (Figure 

3.2b), which allows identifying thresholds with the highest performance for the classifier 

(Matthews, 1975). At the Rg/N of 0.22Å, the MCC is maximized to a value of 0.87±0.06. 
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The chosen IDP dataset is biased to long and extended ID segments, so measures of 

performance should be interpreted accordingly. Overall, these parameters clearly 

demonstrate that Rg/N is a very effective classifier to distinguish extended intrinsically 

disordered segments from structured proteins when in complex with partner molecules. 

 

 

 
Figure 3.1	  Scatter plot of IDP complexes and 3D complexes.	  

There are 52 ID segments (red squares) and 762 3D complexes (black triangles). The 

Rg/N threshold of 0.22Å is represented by the dotted line. Disulfide-rich proteins and 

coiled coils were identified from the 3D complex dataset, which comprises most of the 

structures that overlap with Rg/N of IDP structures. There are 29 disulfide rich structures 

and 42 coiled coils represented by blue boxes and green circles respectively. 
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Figure 3.2 ROC curves and MCC curve evaluating the classifier. 

(a) ROC and (b) MCC curves were plotted from varying the Rg/N threshold. ID 

segments are the positive set and 3D complex proteins are the negative set. Figure (c) is a 

ROC curve of the positive ID segments and the negative structured proteins with 

disulfide-rich domains and coiled coils taken out. All curves were plotted by randomly 

sampling 26 structures from the positive and negative sets and averaging over 1000 

repetitions.	  

Despite the excellent performance, we were interested in determining which 

proteins were falsely identified as intrinsically disordered. A close inspection of Figure 

3.1 reveals that most of the false positives are from smaller proteins chains. Rg/N as a 

classifier appears to have difficulty discerning short ID segments from small, folded 

structures. Folded proteins shorter than 100 residues are often stabilized by disulfide 

bonds (Cheek et al., 2006), which allow them to adopt relatively expanded conformations. 
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Indeed, proteins with disulfide bonds are enriched among the false positives that we 

identified with the Rg/N classifier. Therefore, we removed proteins that are rich in 

disulfide bridges from the negative set. In addition, coiled coils often form long stretches 

of helical structure. Although some coiled coils are known to be intrinsically disordered 

(Brunger, 2005), this is not the case for all coiled coils. Consequently, coiled coils were 

also removed from the negative set. As a result of the exclusion of disulfide-rich 

complexes and coiled coils, the AUC rises slightly (Figure 3.2c).  

 Next, we applied the method on a non-redundant set of PDB files. The result of 

the procedure is 368 potential ID segments from 6379 nrPDB chains. IDP complexes or 

ID segments will be referring to this group of potential IDPs from this point forward. 

 

3.2 Validation of identified proteins 

 

3.2.1 Sequence disorder prediction 

 The motivation for using a measure of geometry to select interacting ID segments 

of proteins is to have a method that does not rely on sequence information, which avoids 

biases in the analyses presented below. Sequence-based disorder predictions can instead 

be used to cross-validate the selected structures. First, we predicted the disorder for the 

selected polypeptide chains, i.e. only those residues with known coordinates (Figure 3.3). 

The selected chains have significantly higher predicted disorder content than a control set 

of non-redundant structures from the PDB (p value < 2.2e-16; Wilcoxon test). Moreover, 

the selected polypeptide chains are also predicted to be significantly more disordered 

when compared to chains that have Rg/N < 0.22Å (p value < 2.2e-16; Wilcoxon test). 
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Nevertheless, there are still sequences in the identified dataset that have low intrinsic 

disorder predicted based on their primary structure. The lower than expected percentage 

disorder for some sequences may be explainable by the enrichment of ID interaction 

regions in the dataset. These interacting segments are often called Molecular Recognition 

Features (MoRFs) (Vacic et al., 2007). Interface regions within ID segments are known 

to be highly hydrophobic and have residue compositions more similar to the buried 

regions of ordered proteins than to the rest of the ID segments (Vacic et al., 2007). To 

test this reasoning, we added 30 residues from each of the two flanking regions of the 

identified ID segments and repeated the analysis. Indeed, the distribution of percentage 

disorder increases significantly when the ID segment sequences are extended (Figure 3.3, 

p value = 0.002; Wilcoxon test), which suggests that the flanking regions of these ID 

segments are often more disordered than the interacting regions. A considerable number 

of ID segments in our set do not have both flanking regions because they are located at 

the protein termini or the extended sequences were not readily found. Consequently, we 

expect the difference to be greater still if we could include more flanking regions or 

exclude the interacting residues.  

 

 



44	  
	  

Figure 3.3	  Percentage predicted disordered. 

The percentage predicted disorder of protein chains were calculated using Disopred2 and 

their distributions are represented by these box-plots. The horizontal lines of a box-plot 

listed starting from the bottom are the minimum, first quartile, median, third quartile, and 

maximum of the distribution respectively. The interquartile range (IQR), which is 

represented by the coloured region, is the difference between third and first quartiles. 

Circles above the maximum or below the minimum are data points greater than or less 

than 1.5*IQR, which are considered to be outliers. (a) The percentage disorder of the 

selected ID segments, the whole nrPDB dataset, and the low Rg/N protein chains were 

plotted in red, light grey, and dark grey respectively. (b) The percentage predicted 

disorder of the selected ID segments and the extended ID segments were plotted in red 

and dark grey respectively. Distributions with p values below 0.05 are marked by asterisk. 

 

3.2.2 Amino acid composition 

 The amino acid composition of the ID segments is in agreement with the disorder 

prediction. In comparison to the 3D complex proteins, the composition of the identified 

protein segments shown in Figure 3.4 is enriched in disorder promoting residues 

(Romero et al., 2001), especially charged residues such as R and K (R p value = 1.14e-10, 

K p value = 2.69e-5; Wilcoxon Test). The order-promoting residues, which include most 

of the hydrophobic amino acids (W p value = 1.29e-13, C p value < 2.2e-16, F p value = 
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4.18e-10, I p value = 0.00080, V p value < 2.2e-16, Y p value =  2.10e-12, L p value = 0.269; 

Wilcoxon Test), are depleted in our dataset. Surprisingly, some disorder promoting 

residues are not significantly enriched, or are even depleted, in the ID segments, such as 

D and E (D p value 8.66e-6, E p value 0.653; Wilocoxon Test). The overall residue 

compositions of ID segments and 3D complex proteins are similar to some extant despite 

the great difference in predicted percentage disorder, which takes into account the 

importance of other properties like sequence complexity. Since we only counted residues 

with alpha-carbon coordinates, which are usually residues near the binding site that are 

stabilized through inter-molecular interactions, we could expect more disorder promoting 

residues when including the flanking regions. When we extended the number of residues 

analysed by 30 on each end of the selected polypeptide chains, there is a modest decrease 

in the percentage of order promoting residues (Figure 3.4). In summary, these results 

show that our method is able to select for ID proteins, and respectively, for ID protein 

segments that are in complex with other macromolecules. 

 
Figure 3.4 Residue composition. 

Residue composition of ID segment, extended ID segment, and 3D complex protein 

datasets in red, magenta, and blue respectively. 
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3.2.3 Solvent accessible surface area 

 The increase in SASA of IDPs in bound conformation in correlation with the 

increase in chain length is much steeper compared to structured proteins, which makes 

large SASA one of the defining features of IDPs (Gunasekaran et al., 2004). As 

discussed in the introduction, one of the advantageous features of IDPs is the large 

surface area they provide. The lack of hydrophobic core in their native state leads to large 

surface areas that can facilitate protein-protein interactions. Marsh and Teichmann 

defined relative accessible surface area (Arel) to predict conformational changes upon 

binding based on the bound protein SASA’s deviation from the predicted SASA in the 

monomeric state (Marsh and Teichmann, 2011). Arel is computed by taking the ratio of 

the calculated SASA over the SASA predicted by mass. An Arel > 1 indicates the bound 

protein conformation has higher SASA relative to its monomeric state, which means it 

has undergone conformational changes. Higher Arel values suggest larger conformational 

changes. 

Based on our selection procedure, we expect the ID segments to have Arel 

significantly larger than one. Indeed, the Arel is greater than one for nearly all the selected 

ID segments. The Arel of our ID segments are much larger than those of 3D complex 

proteins as well (p value < 2.2e-16; Wilcoxon test; Figure 3.5).  Interestingly, comparing 

our results for 3D and IDP datasets to their corresponding structured and disordered 

datasets in the Marsh and Teichmann’s study, both of our datasets have higher Arel 

distributions. The higher Arel distribution in our 3D dataset suggests that it is relatively 

heterogeneous and is not void of proteins with flexible structures. Importantly, the Arel in 
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our IDP dataset is generally much higher than the disordered proteins in their study. This 

probably reflects our selection process, which is based on the extendedness of the protein. 

Proteins with higher Rg/N are expected to have larger SASA due to their extended 

structure. In contrast, their dataset is defined using a sequence prediction method. 

 

Figure 3.5	  Ratio of SASA in complexed conformation and monomeric state. 

The SASA ratio of ID segments and 3D complex proteins are the red and blue columns 

respectively. 

 

If we make the assumption that unbound conformations of IDPs are similar to 

structured monomeric proteins in shape, the results may indicate that our ID segments 

have extreme changes in conformation upon binding. It is likely true that ID segments do 

have large conformational changes during binding. However, it is difficult to imagine 

that ID segments have similar SASA to folded proteins when they are isolated in solution. 

This analysis is more suited for general protein complexes. Therefore, we can only 

conclude that our ID segment dataset have high SASA in their protein-bound 

conformation, which has been recognized in other studies as a discriminating feature of 

IDPs. 
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3.3 Characterization of complexes 

 

3.3.1 Predicting compaction in IDP binding 

How expanded are the ID segments in their bound states compared to their free 

states? Marsh and Forman-Kay recently derived a formula from experimental results of 

SEC and PFG NMR studies to determine the hydrodynamic radius (Rh) that ID proteins 

have when free in solution (Marsh and Forman-Kay, 2010). To compare the expansion of 

ID segments before and after binding, we used their equation to predict the Rh that the 

ID segments have in solution and then transformed it to the Rg using a shape 

approximation (Wilkins et al., 1999). The conversion ratio ρ of Rg/Rh is dependent on 

the shape of the molecule. 

The ID segments could behave like random coils, so an extreme option would be 

to use ρ around 1.5 determined for linear chain polymers (Burchard et al., 1980). The 

structure of IDPs in their native state is different from chemically denatured proteins due 

to residual structural properties of IDPs that tend to make them more compact (Marsh 

and Forman-Kay, 2010). It has been suggested that unfolded proteins with residual 

structures can have a ρ value anywhere between 3 5 ! ! and approximately 1.4, which 

are the ρ values for compact spherical molecules and denatured proteins respectively 

(Receveur-Brechot and Durand, 2012). Wilkins et al. also calculated the ρ of 1.06 for 

highly denatured protein chains (Wilkins et al. 1999). On the other hand, a recent study 

on the effects of charge interactions on the size of IDPs in solution showed that IDPs 

with high net charge can be much more expanded than a neutral denatured protein due to 
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charge repulsion (Muller-Spath et al., 2010). Fӧrster resonance energy transfer (FRET) 

was used in that study to analyze the conformation of IDPs and they calculated the Rg of 

three ID segments. Using their Rg and using Marsh and Forman-Kay’s equation to 

estimate the Rh based on sequence, I derived ρ values of approximately 1.3, 1.7 and 1.8 

for HIV-1 integrase, human prothymosin α variant N, and variant C respectively. Human 

prothymosin α is an extreme case due to the large net charge. Nonetheless, IDPs tend to 

be enriched in charged residues, so the expansion of IDPs due to net charge should be 

applicable to many cases. In Marsh and Forman-Kay’s study, they compared Rh 

measurements of relatively large numbers of disordered, denatured, and structured 

proteins in solution (Marsh and Forman-Kay, 2010). Their study clearly showed that the 

Rh values of IDPs are much closer to denatured proteins than structured proteins of equal 

length. 

Because we do not know the shape of ID segments in their native state, three 

different conversion ratios of Rg/Rh (ρ) are analyzed. Aside from the ρ values of (3/5)(1/2) 

and 1.4, we also used an intermediate ρ of 1.1. The ratio between the Rg of free ID 

segments (i.e. converted from predicted Rh) and the Rg of the bound conformation is 

calculated using the three different shape assumptions (Figure 3.6). A ratio higher than 

one suggests that the ID segment is more extended when free in solution and that implies 

compaction during binding. Marsh and Forman-Kay also used the ratio between 

measured Rh over predicted Rh as a measure of compaction. They used this ratio to study 

the correlation of different sequence features to IDP compaction in solution.  



50	  
	  

 

Figure 3.6	  ID segments Rg free in solution over Rg in complexed state. 

The distributions of the ratios of predicted Rg of the ID segment free in solution over Rg 

of the ID segment in bound conformation is shown. The blue, purple, and red columns 

correspond to the ρ values of (3/5)(1/2), 1.1, and 1.4 respectively. 

 

Figure 3.6 reveals that the Rg values of the unbound ID segments are generally 

higher than the bound Rg for both ρ of 1.1 and 1.4. The Rg ratios from the spherical 

approximation are predominantly below 1. However, the ρ of (3/5)(1/2) is used as an 

extreme example that is unlikely to be applicable to ID segments because it assumes the 

protein chain is densely packed in solution. The average ρ of ID segments is also likely 

lower than 1.4 due to the presence of residual structures. As discussed above, the 

extendedness of an ID segment is largely dependent on net charge. An averaged absolute 

net charge of 3.8±3.7 is calculated for our ID segments. This shows a great variability in 

net charge but many ID segments have net charge of 1 to 2, which suggests relatively 

low extendedness. Consequently, we suggest a low ρ of 1.1 as a reasonable average 

approximation. For the ρ of 1.1, some structures have ratio below 1, which may indicate 
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that some of the longer ID segments that wrap around large binding partners are in 

conformations more extended than they normally are in the native state, being held open 

by their binding partners. However, the general distribution suggests that the majority of 

ID segments are less extended in their bound state in spite of the fact that our ID 

segments are biased toward extended bound structures. This is in agreement with the 

model of folding up upon binding where the ID segment contracts as secondary 

structures are formed with the help of inter-molecular interactions. Although, we must 

reiterate that the real ρ varies greatly between individual ID segments with different 

residual structures and net charges. 

 

3.3.2 Secondary structure analysis 

Since we are not aware of a dataset of IDP complexes of this size, we thought it 

useful to tabulate the secondary structures involved. Figure 3.7 shows that helix is by far 

the most common secondary structure found. Loops or irregular structures involve the 

second largest group of residues. Both these categories are overrepresented compared to 

structured proteins (Figure 3.8). Beta structures are much less common in these ID 

segments. 
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Figure 3.7	  Secondary structure composition of ID segments and predicted disorder. 

The secondary structure composition of the entire ID segment dataset was tabulated. The 

total percentage of disordered residues involved in each type of secondary structure is the 

number below each label. 

 
Figure 3.8 Pie chart of secondary structure composition of 3D complex proteins. 

 

The secondary structure of the ID segments are also aligned and compared with 

disorder prediction in Figure 3.7. The percentage disorder for each secondary structure 

category is the sum of all corresponding residues predicted to be disordered divided by 
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the total number of residues in that category. The helices and beta strands have lower 

percentage predicted disorder than residues in irregular structures, indicating that there 

may be some residual secondary structure in their native state. In fact, only around 30% 

of the helices are predicted to be greater than 50% disordered in their native state. 

Irregular structures have the highest predicted disorder, which is expected since they are 

less likely to have sequence propensity for forming secondary structures or folding. 

 

3.3.3 Interface residue analysis 

The main focus of our study is on the interaction between IDPs and their 

structured binding targets, so we analysed the interface residue composition. Many 

studies noted the differences in residue composition in the core of the interface compared 

to the rest of the interface (Bahadur et al., 2003). The cores of structured protein 

interfaces are the most buried regions and their residue compositions are enriched in 

hydropobic residues like the interior of globular proteins. On the other hand, the rim 

region surrounds the core and is enriched with charged and polar residues that are 

partially solvated even in the complexed state. 

We observed the expected enrichment of hydrophobic residues at the cores of 

complex interfaces (Figure 3.9a)(e.g. IDP core vs. IDP rim: I p value = 1.459e-15). 

Importantly, the core regions of the ID segments are much more enriched in hydrophobic 

residues than the core regions of 3D complexes (e.g. IDP vs. 3D C p value = 1.891e-6, F 

p value = 2.425e-6 (W insignificantly higher p value = 0.1529)), which is in agreement 

with previous studies (Vacic et al., 2007).  Moreover, comparison of Figure 3.9a and 3.9b 

demonstrates that the rim contains more charged and polar residues for both IDP and 3D 
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complexes. Therefore, the core and rim regions of IDP complexes have the same general 

properties as those of structured complexes. Furthermore, IDP complex interfaces are 

definitely more enriched in hydrophobic residues, but most hydrophobic residues are 

found in the core regions only. 

 

Figure 3.9 Interface residue compositions. 

The interface area was divided into the core and rim regions. The core region (a) 

interface residue compositions of ID segments, IDP binding partner, and the 3D complex 

proteins correspond to red, maroon, and dark blue columns respectively. The rim region 

(b) interface residue composition of ID segments, IDP binding partners, and the 3D 

complex proteins correspond to magenta, purple, and light blue columns respectively. 

The error bars are the 95% confidence intervals calculated from the mean composition 

from individual interfaces. The interface regions of IDP binding partners from the same 

complex were counted as a single interface. 
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Interestingly, both Figure 3.9a and 3.9b show that charged and polar residues are 

generally depleted on the IDP side of the interface compared to their structured binding 

partners. Somewhat unexpected is the evidence that the rim of the IDP interface is not 

heavily enriched in polar residues. Because the core is so depleted of polar residues (e.g. 

IDP core vs. ID partner core: K p value = 0.03157, E p value = 3.846e-07), we thought 

there would be more in the rim to compensate. Instead, the lack of extra charged groups 

on the ID segment interface appears to support the idea of less specific interactions. In 

fact, there are slightly greater percentage of charged residue compositions on the ID 

partner rim than the IDP's side (E p value = 0.0001178, D p value = 0.0001038, H p 

value = 0.01886 (insignificantly lower K p value = 0.8263, R p value = 0.8095); 

Wilcoxon test). This could suggest that there are charged residues on the structured 

partner that are buried but not compensated with opposing charges upon binding. This 

would lead to an overall unfavourable electrostatic energy for binding and, consequently, 

low specificity. Alternatively, charged residues on the ID segments may be placed more 

strategically for greater electrostatic complementarity. To test this hypothesis, we 

evaluated the salt bridge and hydrogen bond interactions across complex interfaces. 

In agreement with our hypothesis, there are a greater number of salt bridges found 

in the interfaces of IDP complex compared to the 3D complex dataset. In Table 2, there 

are on average 6.9 possible salt bridge interactions found in IDP complex interfaces 

while 4.7 are found in structured-structured complexes. The number of salt bridges on 

the IDP complexes is not significantly higher after normalization by the average interface 

area, but the interface areas of IDP complexes are generally much larger. On average, 

there are only slightly more hydrogen bonds in IDP complex interfaces (p value = 
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0.05324; Wilcoxon test). The numbers of hydrogen bonds in IDP complexes is 

comparable, or even slightly lower, when we normalize by interface area. IDP complex 

interfaces do not appear to be significantly enriched in hydrogen bonds, but it appears 

that a greater percentage of charged residues are making complementary bridging 

interactions. Although the percentages of charged residues are smaller on the ID segment 

interface regions, they may be able to make greater contributions to binding. 

 

Table 2 Hydrogen bonds, salt bridges and interface size. 

	   IDP	  Complexes	   3D	  Complexes	   p	  values	  
Hydrogen	  bonds	   12.44	   10.64	   0.05324	  
	  	  	  	  	  	  Per	  100 Å2	   0.85	   0.92	   0.3488	  
Salt-‐bridges	   6.95	   4.51	   0.00357	  
	  	  	  	  	  	  Per	  100	  Å2	   0.49	   0.44	   0.1308	  
Unpaired	  charges	   11.48	   10.93	   0.9389	  
	  	  	  	  	  	  Per	  100	  Å2	   0.8	   1.05	   1.914e-‐5	  
Unpaired	  with	  intra-‐chain	  bridges	   3.37	   2.93	   0.2034	  
	  	  	  	  	  	  Per	  100	  Å2	   0.22	   0.28	   0.2742	  
Interface	  SASA(Total/2)	   1443.92	   1148.43	   6.507e-‐5	  

 

3.4 Alanine scanning analysis 

 Consistent with previous analysis of ID segments in complex with partner 

proteins, we find that they have enrichment for hydrophobic residues at the interface. 

Previous studies proposed, based on these findings, that ID segment-partner interactions 

may be less specific than other protein-protein interactions. This interpretation seems to 

be at odds with various experimental findings of high specificity in ID-segment mediated 

interactions. Therefore, we calculated the energetic contributions of interface residues to 

binding by carrying out computational alanine scans. It is well understood that, in general, 

only a small number of interface residues are making the essential contributions to 

binding and they are called “hot spots”. We defined hot spot residues as those which 
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have a ΔΔΔGbind of >1.5kcal/mol. In order to avoid artefacts from low-resolution data, 

we first assembled high-resolution datasets consisting of crystal structures < 2.5Å in 

resolution. We also analysed our results through comparison with the 3D complexes to 

minimize any bias in the methods of calculation. Analysis of our high-resolution datasets 

reveals a greater percentage of interface residues qualifying as hot spots in IDP 

complexes than in 3D complex proteins at 28% and 20% respectively (p value = 3.18e-8; 

Wilcoxon test).  

Next, we analysed the contribution of different groups of amino acids to the 

interface energy. Figure 3.10a shows the distribution of changes in binding free energy 

(ΔΔΔGbind) for hydrophobic residues (V, L, I, F, M, Y, W) in IDP complexes and 3D 

complexes. Interestingly, the distribution of ΔΔΔGbind in the ID segments and their 

binding partners' side of the interface is comparable (p value = 0.81; Wilcoxon test), but 

the hydrophobic residues in IDP complexes generally contribute significantly more to the 

interface energy than hydrophobic residues in structured complexes (IDP partner p value 

= 3.6e-14, ID segment p value < 2.2e-16; Wilcoxon test). Greater interface percentage 

composition of hydrophobic residues with larger surface area, such as phenylalanine, 

isoleucine and leucine (e.g. Figure 3.9 ID segment and 3D complex core F p value = 

2.425e-6;Wilcoxon test), would contribute to greater mean ΔΔΔGbind. Another possible 

explanation is that the packing of the side chains in the IDP interface is more optimal 

compared to the rigid binding structured proteins. Better packing means greater enthalpy 

from van der Waals interactions, which can translate to higher specificity. A study 

showed that IDP interface residues make more contacts compared to structured proteins, 
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which could give rise to greater interaction energy for polar and apolar interface residues 

(Meszaros et al., 2007). 

 

Figure 3.10 Change in free energy of binding from alanine scan. 

The box plots show the ΔΔΔGbind from alanine scanning results. The residues from the 

IDP binding partner interface and the ID segment interface were plotted in red. Both 

sides of the 3D complex interface were combined and plotted in grey. Figure (a) includes 

all hydrophobic residues, figure (b) includes all charged residues, and figure (c) includes 

only charged residues that are forming salt bridge interactions. Asterisks identify 

distributions that have p values below 0.05. 

 

Figures 3.10b and 3.10c reveal the distribution of the charged residues (E, D, R, 

K, H) and the residues that can form salt bridges respectively. As expected, the ion-

pairing residues have higher ΔΔΔGbind due to the favourable electrostatic interactions. 

For all charged interface residues (Figure 3.10b), we again find higher per-residue 

contributions to binding on the IDP complexes relative to 3D complexes (ID segment p 

value < 2.2e-16, IDP partner p value = 0.01057; Wilcoxon Test). Intriguingly, the charged 

interface residues on the IDP side of the interface have much higher average contribution 
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than those on the structured-partner’s side (p value < 2.2e-16; Wilcoxon Test). We 

propose that a greater proportion of the charged residues on the ID segment’s interface 

are making specific interactions, such as salt bridges, than the charged residues on the 

partner protein. Indeed, this disparity in ΔΔΔGbind is smaller when we analysed only the 

salt bridge forming residue. However, there is still a difference (p value 0.009444; 

Wilcoxon Test), which could arise from cases where a charged residue on the ID 

segment make multiple salt bridge interactions with the structured partner. The interface 

residue composition analysis above, which showed a smaller population of charged 

residues on the IDP, is in agreement with this explanation. A study involving 

experimental and computational double or higher order mutations demonstrated that 

polar/charged interactions can form cooperative networks that contribute favourably to 

structured protein binding (Albeck et al., 2000). Furthermore, the ΔΔΔGbind distribution 

of salt bridging residues in IDP complexes is even higher compared to that of the 3D 

complexes (ID segment p value = 2.966e-7, IDP partner p value = 0.01818; Wilcoxon 

Test). This is more evidence that points to high specificity of IDP interaction. Each 

residue in the IDP complex interface, especially those in the ID segment, appears to have 

greater role in binding compared to structured protein-protein complexes. The greater 

residue conservation observed on the ID segment's interface is also consistent with our 

explanation (Meszaros et al., 2007). This paints a very different picture for IDP 

interactions than more promiscuous hydrophobic interface patches that some studies have 

suggested. 

Furthermore, comparing the percentage of interface residue qualifying as hot spot 

residues on the IDP against those on their partner protein reveals that there is a greater 
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percentage on the IDP side. The percentage of interface residues qualifying as hot spots 

averages at 41% and 21% (p value < 2.2e-16;Wilcoxon test) for the ID segment and their 

partner respectively. However, there are greater numbers of residues on the structured 

partners’ interface that may dilute the percentage. The structured protein’s side of the 

interface includes more residues because some residues are partially buried beneath the 

interface and, in many cases, IDP binding sites are deep grooves with large surface areas. 

Put it another way, the average IDP interface contain roughly half the residues but have 

the same number of hot spots as their structured partner. However, this does not preclude 

the possibility that residues on the ID segment may be taking up more optimal positions 

to contribute more to binding energy. Studies have shown that structured protein 

involved in relatively rigid binding have interface residues that are off their minima due 

to structural constraints. These constraints are relaxed in IDP binding because they can 

reorganize their conformation upon binding to make more optimal interactions, such as 

hydrogen bonding angles (Xu et al., 1997). 

 

3.5 Role of electrostatics in ID segment-partner interaction 

 In order to get more quantitative insights into the contribution of electrostatics to 

the binding of ID segments to their partner proteins, we used the same approach that has 

previously been used to study the binding of folded proteins (Sheinerman and Honig, 

2002). Results from a comparable procedure using DelPhi for electrostatic calculation 

have been shown to have good correlation to experimental mutation data for salt bridges 

(Albeck et al., 2000). Predicted association rates of proteins at varying salt concentration 

have also been shown to correlate well with experimental results (Selzer and Schreiber, 
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1999). In the same article, Sheinerman and Honig also revealed a trend of larger surface 

area corresponding to greater hydrophobic contributions (Sheinerman and Honig, 2002). 

Since IDP complexes have large interface areas, we were interested to see if they defy 

this trend. 

We compared the electrostatic contributions to the interface stability in classical 

protein-protein complexes to complexes where one partner is ID in isolation. The 

distribution of polar desolvation energy of binding is shown in Figure 3.11a. As expected, 

the electrostatic desolvation energy of binding is much higher for IDP complexes (p 

value = 7.997e-11). The high electrostatic desolvation energy reflects the cost of removing 

the larger polar interfaces from the high dielectric environment of the polar solvent and 

burying them within the low dielectric protein environment. Despite the slightly lower 

charged residue percentage composition involved in the interaction of IDP complexes 

(Figure 3.9), the desolvation energy is still much higher than the structured protein 

complexes. While most IDP complexes have very unfavorable desolvation energy of 

binding, it is favorable for more than a quarter of the structured complexes. However, the 

unfavorable polar desolvation may be compensated by inter-chain electrostatic 

interactions, such as salt-bridges. 
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Figure 3.11	  Polar desolvation, Coulombic, and total electrostatic energy of binding. 

Electrostatic contributions to binding were plotted for IDP complexes in red and 3D 

complexes in grey. Figure (a) shows the desolvation energy of binding. Figure (b) shows 

the Coulombic interaction energy of binding. Figure (c) shows the total electrostatic 

energy of binding. 

 

Initially, the residue composition at the interface suggests that the total 

electrostatic energy of binding for IDP complexes will be somewhat destabilizing 

because of the uncompensated charges on the partner protein. Surprisingly, the 

electrostatic energy of binding for IDP complexes is slightly, but not significantly, more 

favorable than for structured protein complexes (p value = 0.0988; Wilcoxon test) 

(Figure 3.11c). Importantly, the total electrostatic energy of binding is not a very good 

predictor of affinity (Sheinerman and Honig, 2002). What is important for specificity is 

the balance between the polar-desolvation energy and the Coulombic interaction energy, 

which comes from charge/polar protein-protein interactions. 

Regardless of whether the total electrostatic energy contributes positively to 

binding, we can already see that the contribution of Coulombic energy in IDP complexes 

is high enough to overcome most of the highly unfavorable polar-desolvation energy. 
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Figure 3.11b shows that Coulombic contributions to binding are much greater in IDP 

than conventional complexes (p value 4.44e-11; Wilcoxon test). The large differences 

between the total electrostatic energies of binding and the polar desolvation penalties 

observed in IDP complexes leaves a great deal of room for the modulation of specificity. 

Uncomplimentary charged/polar groups will cause protein association to become 

unfavorable by not compensating for the penalties for burying themselves in a low 

dielectric environment. This demonstrates the importance of charged and polar 

interactions in the IDP complexes. With the shape complementarity likely playing a 

lesser role in IDP complexes due to the lack of scaffolding in IDPs, the role of 

electrostatic complementarity is essential to specificity. The difference in Coulombic free 

energy of binding between IDP and conventional protein complexes shows that IDP 

complexes are clearly in a different category in regards to protein-protein association. 

 

4 Conclusion 

 The abundance of IDPs in our proteome and their involvement in morbid diseases 

make the understanding of IDPs very important. Their discovery changed our 

understanding of protein-protein interactions from a more static and rigid view to a much 

more dynamic one. Their ability to associate with multiple proteins and propensity for 

post-translational modification provide greater complexity to cellular signaling.  Not only 

is there a varying degree of disorder in their native states, but some complexes are also 

shown to be very dynamic and to lack a single well-defined binding conformation. 

Undoubtedly, IDPs add a new level of complexity to our understanding of protein-

protein interactions and cellular functions. 
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 This field has grown rapidly and researchers have proposed many functional 

reasons for why IDPs are employed by cells and have studied their structural properties 

in complexes. Repeatedly, hydrophobic residues were noted to be enriched in IDP 

interactions and hydrophobic interactions are associated to non-specific interactions. 

 In this thesis, the goal is to create a large dataset of IDP complexes and 

characterize them. We observed many of the same properties found in other studies of 

IDPs in our selected complexes, which include high accessible surface area and 

enrichment of hydrophobic residues in the interface. Indeed, the hydrophobic effect is a 

strong driving force for binding and IDPs require high enthalpy to compensate for the 

loss of entropy. However, our study of these IDP complexes revealed the significance of 

electrostatic interactions. Previous studies often focused more on the core of the IDP 

complex interfaces and neglected the surrounding charged residues. Moreover, the direct 

analysis of hydrogen bonds and salt bridges often fails to capture the full electrostatic 

complementarity in protein-protein interactions. The continuum electrostatic approach 

used here more accurately accounts for all the electrostatic contributions to binding. 

 We showed that the magnitude of Coulombic and desolvation energy in IDP 

binding are both very large. This could be another explanation for the high specificity 

and low affinity proposed by other researchers. The current opinion on the subject often 

relates the high specificity to the enthalpy conferred by the large interface and low 

affinity to the entropic cost of stabilizing the IDP. We proposed that electrostatic 

complementarity is an important contributor to these attributes because the large 

Coulombic interaction energy is often completely canceled by the equally large 

desolvation penalties. We also showed that the fewer charged residues on ID segment 
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interfaces are able to contribute more towards binding than those on structured proteins 

or even the binding partners of ID segments. These properties could be another defining 

feature of IDPs. 

The higher energy contributions to binding of charged residues on the ID 

segments may be due to the cooperative charged residue networks on the opposing 

interface. This could be a worthwhile subject for further research. Defining features like 

this could be used for prediction of IDP binding sites, which is one of the long-term goals 

in the Gsponer lab. This is an ambitious goal with the potential for great rewards. Not 

only would it allow the prediction of novel interactions but it could also help identify 

new drug targets. Another tool that would be useful to the field is a classification system 

for IDP complexes. The diverse folding patterns of IDPs in their complexed states may 

make classification using structural features more difficult than for structured protein 

complexes, which can rely on well-characterized folding domains. It may be more 

practical to classify IDP complexes based on biophysical properties such as electrostatics 

because they may be more relevant to the function of these interactions. For instance, the 

balance in polar and apolar contributions would likely be different for ID segments 

involved in signaling as opposed to scaffolding. A classification system that is reflective 

of their functions could be useful. 

In summary, we have shown that strong electrostatic interactions are prominent 

features of IDP complexes that likely play an important role in modulating their 

specificity. Furthermore, with a large dataset of IDP complex structures, there are many 

other experiments and possibilities to explore. 
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