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Abstract

MapReduce is a wide-spread programming model for processing big amounts of
data in parallel. PACT is a generalization of MapReduce, based on the concept
of Parallelization Contracts (PACTs). Writing efficient applications in MapReduce
or PACT requires strong programming skills and in-depth understanding of the
systems’ architectures. Several high-level languages have been developed, in order to
make the power of these systems accessible to non-experts, save development time
and make application code easier to understand and maintain. One of the most
popular high-level dataflow systems is Apache Pig. Pig overcomes Hadoop’s one-
input and two-stage dataflow limitations, allowing the developer to write SQL-like
scripts. However, Hadoop’s limitations are still present in the backend system and
add a notable overhead to the execution time. Pig is currently implemented on top
of Hadoop, however it has been designed to be modular and independent of the
execution engine.
In this thesis project, we propose the integration of Pig with another framework
for parallel data processing, Stratosphere. We show that Stratosphere has desirable
properties that significantly improve Pig’s performance. We present an algorithm that
translates Pig Latin scripts into PACT programs that can be executed on the Nephele
execution engine. We also present a prototype system that we have developed and
we provide measurements on a set of basic Pig scripts and their native MapReduce
and PACT implementations. We show that the Pig-Stratosphere integration is very
promising and can lead to Pig scripts executing even more efficiently than native
MapReduce applications.





Referat

Att skapa effektiva applikationer i MapReduce eller PACT kråver goda programmer-
ingskunskaper och djup förståelse utav systemens arkitektur. Flera högnivå-språk
har utvecklats för att göra de kraftfulla systemen tillgängliga för icke-experter, för
att spara utvecklingstid och för att göra applikationernas kod lättare att förstå.
Ett utav de mest populära systemen för högnivå-dataflöden är Apache Pig. Pig
överkommer Hadoops ett-input och tvånivå-begränsningar och låter utvecklaren
skriva SQL-liknande skript. Dock är Hadoops begränsningar fortfarande närvarande
i backend-systemet och lägger till ett synligt tillägg till exekutionstiden. Pig är för
nuvarande implenterat ovanpåHadoop, dock har det designats för att vara modulärt
och oberoende utav exekutionsmotorn.
I det här exjobbs-projektet presenterar vi integration utav Pig med ett annat frame-
work för parallel dataprocessering, Stratosphere. Vi visar att Stratosphere har
önskade egenskaper som signifikant förbättrar Pigs prestanda. Vi presenterar en
algoritm som översätter Pig Latin-skript till PACT-program som can köras påNephele-
exekutionsmotorn. Vi presenterar ocksåett prototypsystem som vi har utvecklat och
vi bidrar med mätningar utav ett set av grundläggande Pigskript och deras MapRe-
duce och Pact-implementationer. Vi visar att Pig-Stratosphere-integrationen är
väldigt lovande och kan leda till att Pigskript exekuteras mer effektivt än MapReduce
applikationer.
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1 Chapter 1

Introduction

Large-scale data management and analysis is currently one of the biggest challenges
in the area of Distributed Systems. Industry, as well as Academia, are in urgent
need of data analytics systems, capable of scaling to Terabytes or even Petabytes of
data. Such systems need to efficiently analyze web data, search indices, log files and
scientific applications data, such as climate indicators or DNA sequences. Most of
the recent approaches use massive parallelism and are deployed on large clusters of
hundreds or even thousands of commodity hardware.
The most popular framework MapReduce (20), was first proposed by Google, and
its open-source implementation, Hadoop (3), is nowadays widely used. However,
it has several limitations, such as accepting only one input data set in the Map
or Reduce functions. Another disadvantage lies in the fact that any MapReduce
program needs to follow a static pipeline of the form split-map-shuffle-sort-reduce.
This form is suitable for simple applications, such as log-file analysis, but complicates
the implementation of relational queries or graph algorithms. These observations
have led researchers to develop more general-purpose systems, inspired by the idea
of MapReduce (27; 12). One of them is Stratosphere (10), which consists of an
open-source programming model, PACT, and the Nephele execution engine (32).
The system is essentially a generalization of MapReduce and aims to overcome the
weaknesses mentioned above.

1.1 Motivation

Using both MapReduce and PACT requires significant programming ability and
in-depth understanding of the systems’ architectures. Applications usually lead to
complex branching dataflows which are often too low-level and inflexible. In order to
save development time, avoid bugs and make application code easier to understand
and maintain, several high-level languages have been proposed for these systems.
Hadoop currently supports JAQL (15), Hive (31) and Pig (22).
One of the most popular high-level dataflow systems is Pig. Pig was developed by
Yahoo! engineers and is currently an open-source project under the Apache Software
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Foundation. Pig Latin (28), Pig’s high-level language, aims to offer the simplicity and
declarative fashion of SQL, while maintaining the functionality and expressiveness
of MapReduce. Pig compiles Pig Latin into physical plans that are transformed
into MapReduce jobs and run on top of Hadoop. Pig overcomes Hadoop’s one-input
and two-stage dataflow limitations. It also provides built-in functions for common
operations, such as filtering, join and projection of data. Having Hadoop as its back-
end execution engine, Pig directly benefits from its scalability and fault-tolerance.
However, even if not obvious to the users, the limitations and inflexibility of Hadoop
are still present in the Pig system. Translating relational operations using the static
pipeline of MapReduce causes a notable overhead when compiling Pig Latin, since
data has to be materialized and replicated after every MapReduce step.
Pig has been designed to be independent of the execution engine. Its initial im-
plementation is using Hadoop, carrying along all advantages and disadvantages of
the framework. Stratosphere offers a superset of MapReduce functionality, while
overcoming some of its major weaknesses. It allows data pipelining between execution
stages, enabling the construction of flexible execution strategies and removing the de-
mand for materialization and replication in every stage. Moreover, when dealing with
multiple data sets, records need not be tagged with an additional field that indicates
their origin, as in MapReduce. This limitation is not present in the Stratosphere
context, since PACT supports multiple inputs.

1.2 Contributions

In this thesis, we present our work on integrating the Pig System with Stratosphere.
We studied the Pig system in depth and analyzed its internal structure in order
to design a feasible integration strategy. We identified the separation line of the
high-level abstraction offered by Pig and the Hadoop execution engine and developed
a prototype implementation that supports a limited set of Pig operations.
We show that it is possible to plug a different execution engine into the Pig system.
However, a large part of the Pig stack has to be re-implemented in order to support
the new engine. With our Pig to PACT translation algorithm and our prototype,
we show that Stratosphere has desirable properties that significantly simplify the
plan generation. We developed a set of basic scripts and their native MapReduce
and PACT equivalents and we provide a comparison of our prototype with Pig, as
well as the native programs. We observed that Stratosphere’s relational operators
are much more efficient than their MapReduce equivalents. As a result, Pig on
Stratosphere seems to have a great advantage over Pig on Hadoop and often results
in Pig executing even faster than native MapReduce. Our prototype results are very
promising and we strongly believe that exploiting additional Stratosphere features,
such as Output Contracts or compiler hints would result in an even more efficient
system.

4
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1.3 Structure of the thesis

The rest of this thesis is structured as following: In Chapter 2, we provide the
necessary background and explain the concepts that are needed in order to follow
this work. We briefly present the MapReduce programming model and the Hadoop
Distributed File System. We also discuss query optimization techniques, most of
which are present in the Pig system. In Chapters 3 and 4 we present the Pig and
the Stratosphere systems respectively. Chapter 5 describes our work, the integration
strategies, the decisions we took and how we designed the system. We present here
out translation algorithm, as well as the implementation in detail. Chapter 6 contains
the evaluation of our prototype, describes the experimental setup and presents and
discusses our results. In Chapter 7, we shortly comment on related work and compare
it with our system, while we provide our conclusions, open issues and vision for the
future in the last chapter.

5





2 Chapter 2

Background

2.1 The MapReduce Programming Model

MapReduce is a programming model based on the idea of data parallelism. It is
designed to efficiently execute programs on large clusters of commodity machines,
on top of which a distributed file system is deployed. The file system used in the
open-source implementation of MapReduce, Hadoop, is the Hadoop Distributed File
System, HDFS (30), which is briefly introduced in the next section. MapReduce
aims at exploiting data locality and therefore tries to move the computation where
the data reside, instead of moving the data close to the code. Its architecture is
inspired by functional programming and consists of two second-order functions, Map
and Reduce, which form a static pipeline, as shown in Figure 2.1.
Data are read from the underlying distributed file system and are transformed
into key-value pairs. These pairs are then grouped into subsets and serve as input
parameters for parallel instances of the Map function. A user-defined function must
also be specified as a parameter and is applied to all subsets independently. The
output of the Map function is another set of key-value pairs. These new set is then
sorted by key and partitioned according to a partitioning function. This sorted data
feed the next stage of the pipeline, the Reduce function. The partitioning stage of
the framework guarantees that all pairs sharing the same key will be processed by
the same Reduce task. In a similar way, a user-defined function is again applied to
all pairs in parallel, in order to produce the output. Each parallel instance of the

Figure 2.1: MapReduce Pipeline
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Figure 2.2: Stages of a MapReduce job

Reduce function creates a file in the distributed file system with its results. Figure
2.2 illustrates the stages of a MapReduce job.
One of the most important advantages of the schema described above is that most of
the parallelization complexity is handled by the framework. The user only has to
write the first-order function that will be wrapped by the Map and Reduce functions.
However, this advantage comes with loss of flexibility. Each job must consist of
exactly one Map function followed by one Reduce function, and no step can be
omitted or executed in a different order. Moreover, if an algorithm requires multiple
Map and Reduce steps, these can only be implemented as separate jobs, and data
can only be passed from one job to the next through the file system. This limitation
can frequently add a significant overhead to the execution time.

2.2 HDFS

HDFS is the distributed file system used by the Hadoop project. Hadoop MapReduce
jobs read their input data from HDFS and also write their output to it. HDFS is also
used by the Pig and Stratosphere systems. HDFS has been very popular because of
its scalability, reliability and capability of storing very large files.
HDFS has two main types of nodes: the datanode and the namenode. Typically,
a Hadoop instance has a single datanode and a group of datanodes are organized
together into a Hadoop cluster. The main responsibility of a datanode is to store
blocks of data and to serve them under request over the network. Datanodes can
communicate with each other in order to rebalance data load and also to achieve
replication. The default replication strategy offered by HDFS is storing a file on
three nodes. The other type of node, the namenode, is unique in a HDFS cluster
and is responsible for storing and managing metadata. HDFS architecture is shown
in Figure 2.3. The namenode stores metadata in memory, which limits the number
of files that can be stored by the system. If there is a need to store a large number
of small files, the namenode is the bottleneck of the system.
The main advantage of using HDFS when running MapReduce jobs is that it is
aware of the data locations. This means that MapReduce tasks will be scheduled to

8
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Figure 2.3: HDFS architecture

run on those nodes that would minimize network traffic and avoid unecessary data
transfers.

2.3 Query Optimization

Traditionally, relational database systems consist of two main sub-systems: the query
optimizer and the query execution engine. The query execution engine implements a
set of physical operators, i.e. different execution strategies for relational operations.
It is a common case that physical operators do not map to relational operators in a
one-to-one fashion. Physical operators are often represented as trees or graphs, which
are called execution plans. In these plans, edges represent the flow of data from one
operator to the next, so they are also called data-flow graphs. The execution engine
is responsible for executing the plan and producing the result of the given query. The
query optimizer generates the input for the execution engine. It accepts the parsed
high-level language query and is responsible for producing an efficient execution plan
to be executed. Essentially, the optimizer’s job is equivalent to a complex search
problem, having as parameters a search space of all possible plans, a cost estimation
function and an algorithm to conduct the space. The goal of the optimizer is to
minimize the cost of the produced plan using an efficient search algorithm.
One of the most influential systems in the area of query optimization has been
the System-R optimizer (13). Its algorithm uses dynamic programming and the
concept of interesting orders. The latter provide information on how different possible
orderings of operations could impact the cost of subsequent operations. Its cost
estimation framework collects statistical information from data that has been stored
in the past. Then, given an operator and the statistical information for each of its
inputs, it provides a statistical summary of the operator’s output, as well as the

9
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estimated cost for executing this operator. Other popular systems are Exodus (26)
and its successor, Volcano (24), which provide extensible tools and a more powerful
search engine. They combine dynamic programming with goal-directed search and
branch-and-bound pruning techniques. Both Exodus and Volcano, as well as Cascades
(25) belong to the family of rule-based optimizers. These optimizers use a dynamic
set of rules that consist of a pattern and a substitute. If a pattern is found in the
expression tree, the substitute expression will be added in the search space. Rules
and patterns can be very complex and might differ depending on the optimization
goals of each system. A detailed overview of query optimization techniques can be
found in (18).

2.4 High-Level Languages of Data-Analytics Frameworks

SQL has long been the standard of high-level languages for relational queries. Most
of the high-level languages developed for large-scale data analytics frameworks have
borrowed a lot of ideas and concepts from it. Google actually built their own SQL
implementation on top of the MapReduce framework (17). Other systems offer
high-level languages that share ideas from declarative programming languages or
scripting languages, or provide Java/Scala interfaces for easy application developing.
In this section, we briefly present the most influential systems and their associated
high-level languages.
One of the most widely-used systems is Hive (31). Initially developed by Facebook
(2), Hive is a data warehousing solution developed atop Hadoop. It provides an easy
way to store, summarize and query large amount of data. Hive’s high-level language,
HiveQL, allows users to express queries in a declarative, SQL-like manner. Very
similar to Pig, HiveQL scripts are then compiled to MapReduce jobs and executed
on the Hadoop execution engine.
Cascading (1) is a Java application framework that facilitates the development of data
processing applications on Hadoop. It offers a rich Java API for defining and testing
complex dataflows. It abstracts the concepts of map and reduce and introduces the
concept of flows, where a flow consists of a data source, reusable pipes that perform
operations on the data and data sinks. Cascading quickly gained popularity among
the industry and Twitter (11) even developed and open-sourced a Scala API for it,
Scalding (9).
Similar to Cascading, Google has released FlumeJava (16), a Java library for easily
programming and managing MapReduce pipelines. FlumeJava is a powerful system
that supports a large number of operations and uses deferred evaluation instead of
constructing a dataflow graph. Its main advantage, though, is the system’s optimizer,
which uses a set of independent graph transformations in order to produce an efficient
execution plan.
Another popular query language is Jaql (15). Jaql is less general than the systems we
have already introduced in this section, as it is designed for quering semi-structured

10
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data in JSON format only. the system is extensible and supports parallelism using
Hadoop’s Map-Reduce. Although Jaql has been specifically designed for data in
JSON format, it borrows a lot of characteristics from SQL, XQuery, LISP, and
PigLatin. Recently, Jaql was also integrated with Nephele/PACTs at TU Berlin (19).
Last but not least, it is worthwhile to introduce DryadLINQ (33), the program-
ming environment built on top of Microsoft’s Dryad (27) distributed execution
engine. DryadLINQ uses the .NET Language Integrated Query (5) to provide a rich
high-level query language, relying on the .NET library. It transforms LINQ pro-
grams into distributed Dryad jobs graphs which are both statically and dynamically
optimized.

11
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Pig

Pig is a high-level system that consists of a declarative scripting language, Pig Latin,
and an execution engine that allows the parallel execution of data-flows on top of
Hadoop. Pig offers an abstraction that aims to hide the complexity of the MapReduce
programming model and allow users to write SQL-like scripts, providing all common
data operations (filtering, join, ordering, etc.) Pig user need not understand the
implementation details of MapReduce, nor do they need to care about the data
distribution and parallelization techniques. Developing applications using Pig has
proven to be much more efficient regarding development time that using MapReduce.
Maintenance costs and bugs also seem to be greatly reduced, as much less code is
required.
Soon after Pig was released, its creators published a statement that explains the
inspiration behind the project and the intentions of the team for the future. This
statement is knows as the “Pig Philosophy” and can be summarized in the following
four points:

• Pigs eat anything: Pig can operate both on structured and unstructured
data, relational, nested, or even metadata. It can receive input from files,
databases or key-value stores. This flexibility comes from the fact that apart
from the built- in functions for loading data, users can write their own and
customize them according to their needs.

• Pigs live anywhere: Pig is a system for parallel data processing. Although
its first implementation uses the Hadoop execution engine, it is intended to
be independent of the underlying framework and easily ported on top of other
systems. The present thesis is based on this design characteristic.

• Pigs are domestic animals: Although Pig is a high-level system that aims
to abstract information of the underlying implementation, its users are provided
with a great amount of freedom in customizing and extending the system. Users
can provide their own load and store functions, they can turn off optimization
rules and can also integrate Java or scripting language code with Pig.
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• Pigs fly: The idea behind this statement is that Pig’s primary goal is perfor-
mance and all future should be performed towards this direction.

3.1 System Overview

The Pig System takes a Pig Latin program as input and produces a series of
MapReduce jobs which are then executed on the Hadoop execution engine. The
series of transformation steps that Pig programs go through is shown in Figure
3.1. The Pig Latin script is first sent to the Parser. The Parser is responsible to
check for syntax and type correctness, schema inference, existence of streaming
executables referenced, definition of variables used and the ability to instantiate
classes corresponding to UDFs (User-Defined Functions). The output of the Parser
is a DAG, the Cannonical Logical Plan. Each Pig Latin statement corresponds
to a logical operator which is added as a new node to the graph. The edges of
the graph define the dataflow between operators. The initial Logical Plan is then
processed by the Logical Optimizer, which performs logical optimizations, such as
projection pushdown. The logical optimizations performed are explained in detail
in a following section of this chapter. Next, the Logical Plan is transformed into
a Physical Plan which is then compiled to to a set of MapReduce jobs. Next, the
Map-Reduce Optimizer performs optimizations, such as adding a combiner stage
for early partial aggregation, when possible. Finally, the MapReduce jobs DAG is
topologically sorted and jobs are submitted to Hadoop.
Pig offers three execution modes:

• Interactive Mode: In this mode, the user is provided with an interactive shell,
Grunt, to which it can submit Pig Latin commands. No compilation or plan
execution is happening in this stage, unless the STORE command is used. The
user is provided with two very useful commands in this mode: DESCRIBE and
ILLUSTRATE. The DESCRIBE command displays the schema of a variable
and ILLUSTRATE displays a small set of example data for a variable, helping
the user in understanding the program semantics. These two commands are
extremely useful for debugging programs containing complex nested data.

• Batch Mode: Instead of using the interactive shell and writing the commands
one by one, a Pig Latin script is more often written inside a file that contains
all the necessary commands. This file can then be submitted for execution in
the Batch mode.

• Embedded Mode: Pig commands can also be submitted through Java meth-
ods. A Java library is provided which allows the integration of Pig scripts inside
Java code. In this mode, Pig Latin programs can be generated dynamically or
dynamic control flows can be constructed.
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Figure 3.1: Pig System Overview

3.2 Pig Latin

Pig Latin is the high-level dataflow language of the Pig system. Pig Latin scripts
consist of statements which can contain variables of different types, as well as built-in
or user-defined functions.

3.2.1 Statements

Pig Latin statements cover most of the usual data analysis operations, such as:

• Loading and Storing: LOAD, STORE, DUMP
These commands allow Pig to read and write data from the distributed file
system or other sources and can be combined with user-defined functions that
specify data characteristics, such as schema information.

• Filtering: FILTER, DISTINCT, FOREACH...GENERATE, STREAM
These statements receive a single dataset as input and can operate on it in
records, in order to perform transformations and produce a new dataset as
output.

• Grouping and Joining: GROUP, COGROUP, JOIN, CROSS
These are commands that operate on one or multiple datasets. They can be
used to group records based on one or more fields, join records on user-specified
keys or produce the cartesian product of all records.

• Sorting: ORDER, LIMIT
Pig Latin also includes commands for ordering the input one or more fields or
limiting the number of output records.
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• Combining and Splitting: UNION, SPLIT
Datasets can also be combined in one larger dataset, using UNION, or split in
smaller sets based on some attribute, using SPLIT.

3.2.2 Data Types

Pig Latin offers a wide type system, covering the most common numeric, text,
binary and complex types. All scalar Pig types are represented in interfaces
by java.lang classes, which makes them easy to work with in user defined func-
tions.

• Numeric: Int, Long, Float, Double
The size and precision of these types are identical to the ones of the java.lang
package.

• Text: Chararray
A string or array of characters. Constant chararrays can be are expressed as
string literals with single quotes.

• Binary: Bytearray
An array on bytes.

• Complex:

Tuple: A tuple is an ordered sequence of fields of any type. Each field
contains one data element and can be referred to by name or position. Elements
do not all need to be of the same type and schema information is optional.
A tuple constant can be written enclosing the fields inside parentheses and
using commas to separate the fields. For example, (’foo’, 42) describes a tuple
constant with two fields.

Bag: A bag is an unordered set of tuples. Tuples inside bags cannot be
referenced by position and a schema information is again optional. A constant
bag can be constructed using curly brackets to enclose the tuples and tuples
are separated by commas. For example, (’foo’, 42), (’bar’, 88) describes a bag
with two tuples, each of which has two fields. Bags are often used in Pig in
order to create type sets, by using one-field tuples. Bag is the only type in Pig
that is not required to fit into memory. As bags can be quite large, Pig has a
mechanism to detect when bags do not fit in memory and can spill parts of
them to disk.

Map: A map in Pig is a set of key-value pairs, where the value can be
of any type, including complex types. The key is of type chararray and is
used to find the value in the map. Map constants can be constructed using
brackets where keys and values are separated by a hash, and key value pairs
are separated by commas. For example, [’name’#’bob’, ’age’#55] will create a
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map with two keys, “name“ and “age“. Note that it is allowed to have values
of different types, chararray and int in this case.

3.2.3 Functions

The language has a rich set of built-in functions, but also allows users to define
and use their own functions. The built-in functions can be divided in the following
categories:

• Eval: AVG, CONCAT, COUNT, isEmpty, MAX, MIN, etc.

• Load/Store: TextLoader, PigStorage

• Math: ABS, LOG, ROUND, SQRT, etc.

• String: INDEXOF, LOWER, REPLACE, SUBSTRING, UPPER, etc.

• Bag and Tuple: TOTUPLE, TOBAG

A complete guide on built-in Pig functions can be found in (6).

3.2.4 An Example: WordCount

We present here the most popular and simple example of data analysis applications,
the WordCount. In this example, a text file is given as input and the number of
times each word appears in the file is expected as output. Let’s assume that we have
a text file with the following content 1:

I got an aching head
I have been sleeping too long

In this broken bed
What can I do to excite you
What can I do to lie still

This application can be easily written in Pig Latin in the following way:

wordInput = LOAD ’ input ’ USING TextLoader ( ) ;
words = FOREACH wordInput GENERATE FLATTEN((TOKENIZE( $0 ) ) )
AS word ;
grouped = GROUP words BY word ;
r e s u l t = FOREACH grouped GENERATE group AS key , COUNT(words )
AS count ;
STORE r e s u l t i n to ’ output ’ ;

1Lyrics from the Song "Mercy on the Street" by Midnight Choir
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Figure 3.2: Pig Plan Compilation for the WordCount example

In the above script, the contents of the file are loaded in a set called wordInput
and are then split into words and saved in the words set. Next, the words set is
grouped using each word as the key and saved in the set grouped. For each element
of the grouped set, the occurrences of each word are counted and the key-value pairs
result are generated. The generated plans are shown in Figure 3.2. In this example,
FOREACH and Local Rearrange can be performed inside the Mapper, while the
Package and the next FOREACH can be performed inside the Reducer. The Global
Rearrange and LOAD/STORE operations are taken care by the Hadoop framework
automatically. After the execution, an output file will be created with the following
content:

(I,4), (In,1), (an,1), (do,2), (to,2), (bed,1), (can,2), (got,1), (lie,1),
(too,1), (you,1), (What,2), (been,1), (have,1), (head,1), (long,1), (this,1),
(still,1), (aching,1), (broken,1), (excite,1), (sleeping,1)

3.2.5 Comparison with SQL

Pig Latin has a lot of similarities with SQL and people used to write SQL queries
often find it easy to get started with it. However, there are a few very fundamental
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differences that might create confusion in the beginning. while SQL is a query
language and describes a question to be answered, Pig Latin is used to describe how
to answer it, by defining exactly how to process the input data. Another important
difference is that an SQL query is written in order to answer one single question. If
users need to do several data operations, they must write separate queries, often
storing the intermediate data into temporary tables. Another solution is using
subqueries, which might be tricky to write correctly. Pig, on the other hand, is
designed to support several data operations in the same script. As a result, there
is no need to write the data pipeline in the form of subqueries or to store data in
temporary files. Moreover, while SQL is designed to operate on data that fulfill
certain constraints and have well-defined schemas, Pig is able to operate on data
with unknown schemas or even inconsistent. Data need not be organized in tables
and can be processed as soon as they are loaded in HDFS.

3.3 Implementation

In this section, we will discuss in more detail the internals of the Pig system. We
first explain how plans are generated and how MapReduce jobs are created. Then,
we briefly describe how the Hadoop Launcher is implemented. Next, we describe
Pig’s Logical Optimizer and give a few examples of common optimizations. We
then explain a set of common operators and discuss in detail their compilation
to MapReduce. Finally, we provide a brief comparison between Pig and MapRe-
duce.

3.3.1 Plan Generation

The Pig execution engine is divided into a front end and a back end. The front
end takes care of all compilation and transformation from one Plan to another.
First, the parser transforms a Pig Latin script into a Logical Plan. Semantic checks
(such as type checking) and some optimizations (such as determining which fields
in the data need to be read to satisfy the script) are done on this Logical Plan.
We discuss these optimizations in the following section. The Logical Plan is then
transformed into a PhysicalPlan. This Physical Plan contains the operators that
will be applied to the data. Each Logical operator is compiled down to one or more
Physical Operators. The PhysicalPlan is then passed to the MRCompiler. This is the
compiler that transforms the PhysicalPlan into a DAG of MapReduce operators. It
uses a predecessor depth-first traversal of the PhysicalPlan to generate the compiled
graph of operators. When compiling an operator, the goal is first trying to merge it
in the existing MapReduce operators, in order to keep the generated number of jobs
as small as possible. Physical operators are divided into blocking and non-blocking.
Blocking are these operators that require a shuffling phase and will therefore force
the creation of a reduce phase. A new MapReduce operator is introduced only
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Figure 3.3: Logical to Physical to MapReduce Plan Generation

for blocking operators and splits. The two operators are then connected using a
store-load combination. The output of the MRCompiler is an MapReduce Plan. This
plan is then optimized by using the Combiner where possible or by combining jobs
that scan the same input data. The final set of of MapReduce jobs is generated by the
JobControlCompiler. It takes an MapReduce Plan and converts it into a JobControl
object with the relevant dependency info maintained. The JobControl Object is
made up of Jobs each of which has a JobConf. The conversion is done by compiling
all jobs that have no dependencies and removing them from the plan. The generated
jobs are then submitted to Hadoop and monitored by Pig. In the back end, Pig
provide generic Map, Combine and Reduce classes which use the pipeline of physical
operators constructed in the front end to load, process, and store the data. The plan
generation for the following script can be seen in Figure 3.3.

A = LOAD ’ f i l e 1 ’ AS (x , y , z ) ;
B = LOAD ’ f i l e 2 ’ AS ( t , u , v ) ;
C = FILTER A BY y>0;
D = JOIN C BY x , B BY u ;
E = GROUP D BY z ;
F = FOREACH E GENERATE group , COUNT(D) ;
STORE F INTO ’ output ’ ;

3.3.1.1 Pig’s Hadoop Launcher

In this section we shortly present functionality of the main class that launches Pig
for Hadoop MapReduce. The class has a simple interface to:

20



3.3 Implementation

• reset the state of the system after launch

• launch Pig (in cluster or local mode)

• explain how the generated Pig plan will be executed in the underlying infras-
tructure

Other methods provided are related to gathering runtime statistics and retrieving
job status information. The most important methods of MapReduceLauncher are
compile() and launchPig(). The compile method gets a Physical Plan and compiles
it down to a Map-Reduce Plan. It is the point where all MapReduce optimizations
take place. A total of eleven different optimizations are possible in this stage,
including combiner optimizations, secondary sort key optimizations, join operations
optimizations etc. The launchPig method receives the Physical Plan to be compiled
and executed as a parameter and returns statistics collected during the execution.
In short, it consists of the following simplified steps:

• Retrieves the optimized Map-Reduce Plan.

• Retrieves the Execution Engine. The JobClient class provides the primary
interface for the user-code to interact with Hadoop’s JobTracker. It allows sub-
mitting jobs and tracking their progress, accessing logs and status information.
Usually, a user creates a JobConf object with the configuration information
and then uses the JobClient to submit the job and monitor its progress.

• Creates a JobClient Object.

• Creates a JobControlCompiler Object. The JobControlCompiler compiles the
Map-Reduce Plan into a JobControl object. The JobControl object encapsulates
a set of MapReduce jobs and their dependencies. It tracks the state of each
job and has a separate thread that submits the jobs when they become ready,
monitors them and updates their states. This is shown in Figures 3.4 and 3.5.

• Repeatedly calls the JobControlCompiler’s compile method until all jobs in
the Map-Reduce Plan are exhausted

• While there are still jobs in the plan, it retrieves the JobTracker URL, launches
the jobs and periodically checks their status, updating the progress and statistics
information.

• When all jobs in the Plan have been consumed, it checks for native Map-Reduce
jobs and runs them.

• Finally, it aggregates statistics, checks for exceptions, decides the execution
outcome and logs it.
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Figure 3.4: Inside a JobControl Object

Figure 3.5: ControlledJob State Diagram
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3.3.2 Plan Optimization

In this section we describe Pig’s Logical Plan Optimizer. As we have already discussed
in section 3.3.1, the initial Logical Plan is created by an one-to-one mapping of the
Pig Latin statements to Logical Operators. The structure of this Plan is of course
totally dependent on the scripting skills of the user and can result in highly inefficient
execution. Pig performs a set of transformations on this plan before it compiles it
to a Physical one. Most of them are trivial and have been long used in database
systems and other high-level languages. However, is is still interesting to discuss
them in the "Pig context".

3.3.2.1 Rules, RuleSets, Patterns and Transformers

The base optimizer class is designed to accept a list of RuleSets, i.e. sets of rules.
Each RuleSet contains rules that can be applied together without conflicting with
each other. Pig applies each rule in a set repeatedly, until no rule is longer applicable
or it has reached a maximum number of iterations. It then moves to the next set
and never returns to a previous set. Each rule has a pattern and an associated
transformer. A pattern is essentially a sub-plan with specific node types. The
optimizer will try to find this pattern inside the Logical Plan and if it exists, we
have a match. When a match is found, the optimizer will then have to look more in
depth into the matched pattern and decide whether the rule fulfills some additional
requirements. If it does, then the rule is applied and the transformer is responsible
for making the corresponding changes to the plan. Some extra caution is needed in
two places. The current pattern matching logic assumes that all the leaves in the
pattern are siblings. This assumption creates no problems with the existing rules.
However, when new rules are designed, it should be kept in mind that the pattern
matching logic might need to be changed. Another point that needs highlighting
concerns the actual Java implementation. When searching for a matching pattern,
the match() method will return a list of all matched sub-plans. Each one of them is
a subset of the original plan and the operators returned are the same objects as in
the original plan.

3.3.2.2 Optimization Examples

We present here a small subset of optimizations performed by Pig.

• ColumnMapKeyPrune
This rules prunes columns and map keys that are not needed. More specifically,
removes a column if it mentioned in a script but never used and a map key if
it never mentioned in the script.
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• FilterAboveForeach
This rule pushes Filter operators above Foreach operators. However, it checks
if the field that Filter works on is present in the predecessor of Foreach:

A = LOAD ’ f i l e ’ AS (a , b , c ) ;
B = FOREACH A GENERATE a+2, b ;
C = FILTER B BY b>0;
STORE C INTO ’ output ’ ;

• MergeFilter
This rule merges two consecutive Filter operators, adding the condition of the
second Filter to the condition of the first Filter with an AND operator. The
following script :

B = FILTER A BY a>0;
C = FILTER B BY b>0;

will become:

B = FILTER A BY (a>0 AND b>0);

• MergeForeach
This rule merges Foreach operators, but it’s not as simple as it sounds. There
are a few additional requirements that need to be met. For example, if the
first Foreach operator has a Flatten in its internal plan, the rule cannot be
applied. Flatten is an advanced Pig operations that removed nesting. The
optimizer also checks how many times the outputs of the first Foreach are used
by the second Foreach. The assumption is that if an output is referred to more
than once, the overhead of multiple expression calculation might even out the
benefits from the application of this rule. For example, the optimization will
not be performed in the following script:

A = LOAD ’ f i l e ’ AS (x , y , z ) ;
B = FOREACH A GENERATE 2∗x+y AS b ;
C = FOREACH B GENERATE b , b+z ;

3.3.3 Compilation of Basic Pig Operators

In this post I will present some of the basic and most common and useful Pig
operators. I will explain how they operate on data and what results they produce,
but also how they are internally translated into Map-Reduce jobs and executed on
the Hadoop execution engine.

• FOREACH
FOREACH takes as input a record and generates a new one by applying a
set of expressions to it. It is essentially a projection operator. It selects fields
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from a record, applies some transformations on them and outputs a new record.
FOREACH is a non-blocking operator, meaning that it can be included inside
the current Map-Reduce operator.

• FILTER
FILTER selects those records from dataset for which a predicate is true. Predi-
cates can contain equality expressions, regular expressions, boolean operators
and user-defined functions. FILTER is also non-blocking and can be merged in
the current Map or Reduce plan.

• GROUP BY
GROUP collects all records with the same key inside a bag. GROUP generates
records with two fields: the corresponding key which is assigned the alias
"group" and a bag with the collected records for this key. We can group on
multiple keys and we can also GROUP "all". GROUP all will use the literal "all"
as a key and will generate one and only record with all the data in it. This can
be useful if we would like to use some kind of aggregation function on all our
records, e.g. COUNT. GROUP is a blocking operator and it compiles down to
three new operators in the Physical Plan: Local Rearrange, Global Rearrange
and Package. It requires repartitioning and shuffling, which will force a Reduce
phase to be created in the MapReduce plan. If we are currently inside a Map
phase, then this is no big problem. However, if we are currently inside a Reduce
phase, a GROUP will cause the pipeline to go through Map-Shuffle-Reduce.

• ORDER BY
The ORDER BY operator orders records by one or more keys, in ascending or
descending order. However, ORDER is not implemented as simply as Sorting-
Shuffle-Reduce. Instead ,it forces the creation of two MapReduce jobs. The
reason is that datasets often suffer from skew. That means that most of the
values are concentrated around a few keys, while other keys have much less
corresponding values. This phenomenon will cause only a few of the reducers to
be assigned most of the workload, slowing down the overall execution. The first
MapReduce job that Pig creates is used to perform a fast random sampling
of the keys in the dataset. This job will figure out the key distribution and
balance the load among reducers in the second job. However, this technique
breaks the Map-Reduce convention that all records with the same key will be
processed by the same reducer.

• JOIN
No matter how common and trivial, join operations have always been a headache
to MapReduce users. The problem originates from MapReduce’s Map-Shuffle-
Sort-Reduce static pipeline and single input second-order functions. The
challenge is finding the most effective way to "fit" the join operation into this
programming model. The most common strategies are two and both consist of
one Map-Reduce job:
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Reducer-side join: In this strategy, the map phase serves as the prepa-
ration phase. The mapper reads records from both inputs and tags each record
with a label based on the origin of the record. It then emits records setting as
key the join key. Each reducer then receives all records that share the same
key, checks the origin of each record and generates the cross product.

Mapper-side join: The alternative comes from the introduction of
Hadoop’s distributed cache. This facility can be used to broadcast one of
the inputs to all mappers and perform the join in the map phase. However,
it is quite obvious that this technique only makes sense in the case where one
of the inputs is small enough to fit in the distributed cache. Fortunately, Pig
users do not need to program the join operations themselves. Pig’s default join
is the Reducer-side join described above. However, Pig users can use the JOIN
operator in pair with the USING keyword in order to select more advanced
join execution strategies. Pig’s advanced join strategies and their compilation
to MapReduce can be found in (21).

• COGROUP
COGROUP is a generalization of the GROUP operator, as it can group more
than one inputs based on a key. Of course, it is a blocking operator and is
compiled in a way similar to that of GROUP.

• UNION
UNION is an operator that concatenates two or more inputs without joining
them. It does not require a separate Reduce phase to be created. An interesting
point about UNION in Pig is that it does not require the input records to share
the same schema. If they do, then the output will also have this schema. If
the schemas are different, then the output will have no schema and different
records will have different fields. Also, it does not eliminate duplicates.

• CROSS
CROSS will receive two or more inputs and will output the cartesian product
of their records. This means that it will match each record from one input
with every record of all other inputs. If we have an input of size n records and
an input of size m records, CROSS will generate an output with n*m records.
The output of CROSS usually results in very large datasets and it should be
used with care. CROSS is implemented in a quite complicated way. A CROSS
logical operator is in reality equivalent to four operators as shown in Figure 3.6.
The GFCross function is an internal Pig function and its behavior depends on
the number of inputs, as well as the number of reducers available (specified by
the "parallel 10" in the script). It generates artificial keys and tags the records
of each input in a way that only one match of the keys is guaranteed and all
records of one input will match all records of the other.
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Figure 3.6: CROSS operator compilation in MapReduce

3.4 Comparison with MapReduce

In the previous chapter, we saw that MapReduce is a very simple yet powerful
framework for analyzing large datasets in parallel. Pig’s goal is to make parallel
processing even easier. In this section, we present a brief comparison of the two
systems.
Clearly, Pig’s main advantage over MapReduce lies in its data-flow language, Pig Latin,
and its built-in common data processing operations, such as join, filter, group by,
order by, union, etc. Group by is directly provided by MapReduce during the shuffle
and reduce phases and order by is also provided for free as a side-effect of the way
grouping is implemented. The complexity of implementing the rest of the operations
ranges from trivial (filter, projection) to complicated (join). Pig’s implementations
of these operations are quite sophisticated and use advanced engineering techniques
in order to make them more efficient (e.g. sampling in order by).
Another important advantage of Pig over MapReduce is its ability to perform
optimizations on the user code. When writing a MapReduce program, the framework
has no information on the user code. On the other hand, Pig creates the logical
plan from the a Pig Latin script, which can then be analyzed and reveal possible
transformations that could be applied on the dataflow. As a result, it also can
perform early error checking and optimizations.
Another difference is that MapReduce has no type system. This is a choice that
provides the users with great flexibility in defining their own types and serialization
methods. However, the absence of a type system essentially prevents the framework
from being able to perform any kind of code checking both before and during runtime.
In conclusion, writing and maintaining Pig Latin code poses a clearly lower cost to the
developers. Yet, there exist algorithms that would be much more difficult to develop
with Pig than with MapReduce. An additional downside is that, when using Pig, the
developer has less control over the program behavior. This is true for any kind of
high-level system. Not needing to have a deep understanding oh how the underlying
implementation works is convenient, but it can also lead to highly inefficient code.
It is true that, given enough time, it is always possible to write a program in a
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low-level system that will out-perform any generic system. Consequently, native
MapReduce should be preferred over Pig for performance sensitive applications. The
universal rule that developers should choose the right tool for the job applies here as
well.
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4 Chapter 4

Stratosphere

Stratosphere is a data-processing framework, under research by TU Berlin. It provides
a programming model for writing parallel data analysis applications, PACT, and an
execution engine, Nephele, able to execute dataflow graphs in parallel. Stratosphere
can be seen as a generalization of Hadoop Map-Reduce. In this section, both Nephele
and PACT are addressed in more detail.

4.1 The Nephele Execution Engine

Nephele is an execution engine designed to execute DAG-based data flow programs.
It takes care of task scheduling and setting up communication channels between
nodes. Moreover, it supports dynamic allocation of resources during execution and
fault-tolerance mechanisms.
The programming model provided with Stratosphere is PACT. However, it is possible
to submit jobs directly to the Nephele engine, in the form of Directed Acyclic Graphs
(DAGs). Each vertex of the graph represents a task of the job. There are three
types of vertices: Input, Output and Task. The edges of the graph correspond to the
communication channels between tasks.

4.1.1 Nephele Advantages

Nephele allows parametrization in a high degree, in order to achieve several optimiza-
tions. For example, one can set the degree of data parallelism per task or explicitly
specify the type of communication channels between nodes. Another important ad-
vantage of Nephele compared to other engines is the possibility for dynamic resource
allocation. Nephele is capable of allocating resources from a Cloud environment,
depending on the workload. On the contrary, MapReduce and Dryad have been
designed to work in cluster environments only.
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Figure 4.1: Nephele Execution Engine Architecture

4.1.2 Nephele Architecture

The architecture of the Nephele execution engine is presented in Figure 4.1. In
order to submit a job to the Nephele engine, a Client has to communicate with
the the Job Manager. The Job Manager is unique in the system and is responsible
for scheduling the jobs it receives and coordinating their execution. The resources
required for job execution are managed by the Instance Manager. The Instance
Manager allocates or deallocates virtual machines depending on the workload of the
current execution phase. The jobs are executed in parallel by instances, each of which
is controlled by a Task Manager. The Task Manager communicates with the Job
Manager and is assigned jobs for execution. During execution, each Task Manager
sends information about changes in the execution state of the job (completed, failed,
etc.). Task Managers also periodically send heartbeats to the Job Manager, which
are then propagated to the Instance Manager. This way, the Instance Manager is
keeping track of the availability running instances. If a Task Manager has not sent
a heartbeat in the given heartbeat interval, the host is assumed to be dead. The
Instance Manager then removes the respective Task Manager from the set of compute
resources and calls the scheduler to take appropriate actions.
When the Job Manager receives a job graph from the Client, it decides how many and
what types of instances need to be launched. Once all virtual machines have booted
up, execution is triggered. Persistent storage, accessible from both the Job and Task
Managers, is needed to store the jobs’ input and output data.
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4.1.3 Nephele Jobs

Jobs in Nephele are defined as Directed Acyclic Graphs (DAGs). Each graph vertex
represents one task and each edge indicates communication flow between tasks. Three
types of vertices can be defined: Task vertex, Input vertex and Output vertex. The
Input and Output vertices define how data is read or written to disk. The Task
vertices are where the actual user code is executed.
Nephele defines a default strategy for setting up the execution of a job. However,
there is a set of parameters that the user can tune in order to make execution more
efficient. These parameters include the number of parallel subtasks, the number of
subtasks per instance, how instances should be shared between tasks, the types of
communication channels and the instance types that fulfill the hardware requirements
of a specific job.
Nephele offers three types of communication channels that can be defined between
tasks. A Network Channel establishes a TCP connection between two vertices and
allows pipelined processing. This means that records emitted from one task can
be consumed by the following task immediately, without being persistently stored.
Tasks connected with this type of channel are allowed to reside in different instances.
Network channels are the default type of communication channel chosen by the
Nephele, if the user does not specify a type. Subtasks scheduled to run on the same
instance can be connected by an In-Memory Channel. This is the most effective
type of communication and is performed using the instance’s main memory, also
allowing data pipelining. The third type of communication is through File Channels.
Tasks that are connected through this type of channel use the local file system to
communicate. The output of the first task is written to an intermediate file, which
the serves as the input of the second task.

4.2 The PACT Programming Model

The PACT programming model is a generalization of the MapReduce programming
model and aims to overcome its limitations. It extends the idea of the Map and
Reduce second-order functions, introducing the Input Contracts. An Input Contract
is a secondary function that accepts a first-order user-defined function and one or
more data sets as inputs. Input Contracts do not have to form any specific type of
pipeline and can be used in any order that respects their input specifications. In the
context of the PACT programming model, Map and Reduce are Input Contracts.
Apart from these two, three more Contracts are defined:

• The Cross Input Contract accepts multiple inputs of key value pairs and
produces subsets of all possible combinations among them, building a Cartesian
product over the input. Each combination becomes then an independent subset.
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Figure 4.2: The Cross, Match and CoGroup Input Contracts. Same colour represents equal keys.

• The Match Contract operates on two inputs and matches each pair of the first
input with one pair of the second input that has the same key value. This
contract naturally maps to an inner join, in terms of database semantics.

• Finally, the CoGroup function creates independent subsets by combining all
pairs that share the same key.

Figure 4.2 illustrates the functionality of the three Contracts mentioned above.

4.2.1 Output Contracts

In addition to Input Contracts, PACT also offers, Output Contracts. These are
optional compiler hints that can be used for further optimizations, under certain
circumstances. More specifically, Output Contracts assert certain properties of a
PACT’s output data. These assertions can then be exploited by the compiler in
order to create a more effective partitioning strategy and execution plan. Currently,
the following Output Contracts are supported in Stratosphere:

• Same-Key
In order for this Output Contract to be used, each output key-value pair that
is generated by the user function needs to have the same key as the key-value
pair(s) it was generated from. In other words, the function preserves the
partitioning and order on the keys.

• Super-Key
A Super-Key Output Contract can be used when the user function generates
key-value pairs whose keys are superkeys of the input key-value pair(s). This
function will preserve the partitioning and partial oder on the keys.

• Unique-Key
For this Output Contract to be used, it must be guaranteed that the user
function used will generate a unique key for each output key-value pair across
all parallel instances.
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Although Output Contracts are an important feature of the Stratosphere system, they
were not used for our Pig on Stratosphere implementation, due to time limitations.
However, we believe that it would be beneficial to extend the Pig Latin language
in order to include special keywords, which could be translated into Stratosphere
Output Contracts.

4.3 Relational Operations With PACTs

Expressing common relational operations with PACTs is, in most cases, quite straight-
forward. This is not true for MapReduce, whose static pipeline often complicates
the implementation and makes applications hard to write, understand and maintain.
In this section, we present how Stratosphere’s Input Contracts can be used in order
to implement a set of the most typical relational operations.

• Inner-Join
An inner join naturally maps to the Match Input Contract. Match guarantees
that all pairs from the two (or more) inputs that share the same key, will be
processed individually and by exactly one instance. The user function used
with Match will only have to perform the concatenation of the values and emit
the new pair.

• Outer-Join
An outer join can be implemented in Stratosphere using CoGroup. The user
function can be the identity function. If for some key, the set of values is empty
in one of the inputs, the other input’s pairs will be concatenated with null
values.

• Anti-Join
CoGroup can also be used to implement an anti-join. In this case, the user
function will have to ignore all the records from one input if there are records
with the same key in the other input.

• Theta-Join
A theta-join can be realized in Stratosphere using the Cross Contract. The
user function will then have to check the specific conditions of the join and
decide if the record should be emitted or not.

Apart from the different possible join operations, the cartesian product and the the
co-grouping by more than one key can be directly implemented using the Cross and
the CoGroup Input Contracts respectively.
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4.4 Comparison of MapReduce and PACT

The MapReduce programming model was designed with the aim to simplify the
parallelization of simple analytical tasks over large amounts of data and serves this
purpose very well. However, for more complex tasks, PACT makes application
developing easier. Tasks that would require a series of MapReduce jobs can be
naturally implemented using only a few Input Contracts. This is partially achieved
by the design decision of PACT to accept more than one data set as input, in
contrast to MapReduce. Moreover, PACT overcomes the limitation of a static
pipeline, introducing dynamic execution plans and on-the-fly creation of data-flow
graphs.
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5 Chapter 5

Pig and Stratosphere Integration

In this chapter, we describe how we designed and realized the integration between Pig
and Stratosphere. We first present our logic behind the integration strategy chosen.
We discuss difficulties and challenges faced and we provide solutions. We then present
our Pig to PACT translation algorithm and provide an illustrated example. Next,
we provide details on out implementation, describing the structure of the project,
the main packages and classes implemented and the changes we made to the Pig
codebase.

5.1 Integration Alternatives

In this section, we present some alternative design choices concerning the actual
implementation of the project, i.e. the integration of Pig and Stratosphere systems.
The main goal is to have a working system, such that Pig Latin scripts can be
executed on top of the Nephele execution engine. However, performance is also an
issue, and of course, we would not like to construct a system that would be less
effective than the current implementation. The architectures of the two systems are
shown side by side in Figure 5.1. Looking at the architecture flows, it is obvious that
several solutions exist and the integration can be achieved in different ways and on
different levels. Several feasible solutions were evaluated and are presented in this
section.

• Translate MapReduce programs into PACT programs
This is the naive and most straight-forward way of solving the problem, shown
in Figure 5.2. PACT already supports Map and Reduce Input Contracts, which
can be used for the transformation of the Map-Reduce Plan into a one-to-one
PACT Plan. The Logical and Physical Plans that are generated by Pig can
be re-used without modification. However, it is obvious that this solution
would not provide any gains compared to the existing implementation. In fact,
it should be slower, since it adds one more layer to the system architecture.
This approach seems to be the simplest and it was the starting point for our
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Figure 5.1: Pig and Stratosphere Architectures

Figure 5.2: Direct MapReduce to PACT integration solution
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Figure 5.3: Physical to PACT plan integration solution

implementation. However, it proved to be problematic. Although one might
think that the implementation would be a simple task, the dependencies of
Pig with Hadoop on that level made it almost impossible to proceed. On the
MapReduce plan level, all physical operators have already been grouped into
map and reduce phases and Hadoop-specific classes and interfaces are used
extensively in this layer of the Pig codebase. In order to transform the generated
MapReduce plan into a PACT plan, one has to find mapping for these classes
in the Stratosphere context, while also preserving the interfaces to the rest of
the codebase. For example, it is necessary to express the functionality of a
Hadoop Job or a JobControl object in the Stratosphere context. Unfortunately,
there is no such class in Stratosphere that provides the same functionality.
The information that was encapsulated inside these objects could not be easily
mapped to Stratosphere objects. According to our experience, working on this
level is not the correct approach.

• Translate the Physical Plan into a PACT Plan
A second approach would be moving one level up in the Pig architecture flow
and try to translate the Physical plan into a PACT plan, as illustrated in Figure
5.3. Our analysis showed that the Physical Plan is also very dependent on the
MapReduce framework and does not reflect the correct level for integration
with another execution engine. When the Physical Plan is created, the logical
operators have already been translated in a way specific to the underlying
execution engine and it was not possible to use the additional Input Contracts,
such as Match, Cross and CoGroup. For example, the (CO)GROUP operation
is compiled down to three new operators and the CROSS operation is compiled
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Figure 5.4: MapReduce/Physical plan to Nephele Job integration solution

down to four. However, in the case of Stratosphere, they can be mapped
directly to the CoGroup and Cross Input Contracts respectively. On this level,
one would be obliged to re-implement relational operations using only map
and reduce operations. This would lead, of course, into loss of performance
and would not provide any advantages over the current solution.

• Translate the MapReduce / Physical Plan into a Nephele Job
Looking at the two system architectures, one might consider logical that the
more layers we remove the faster the resulting system would be. For example,
one could argue that getting rid of both the high-level programming frameworks,
Map-Reduce and PACT, would speed up things. This alternative is shown in
Figure 5.4. However, merging at that point, would include re-implementing
a job already done, i.e. compiling down to code that can be understood by
an execution engine, such as Nephele (or Hadoop). A speedup in this case is
quite improbable to happen and it should mean that there are inefficiencies
or design flaws in the PACT compiler. We had no reason to believe that this
would be true, so this alternative solution was not investigated further.

• Translate the Logical Plan into a PACT Plan
The evaluation of the solutions discussed above made it clear that we had to
move even higher in the Pig architecture in order to achieve our goal. Such
a decision would mean less dependencies with the Hadoop execution engine,
more implementation freedom, but also a much larger amount of code to be
written and functionality to be implemented. Translating the Logical Plan into
a set of Pact Operators eventually proved to be a reasonable approach. The
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Figure 5.5: Logical to PACT Plan integration solution

solution is shown in Figure 5.5. The translation algorithm used is presented in
detail in the following section.

The solutions discussed here are not the only ones possible. One could think of and
propose several variations on different levels. We chose the last solution after having
evaluated several other and also having in mid that when any kind of abstraction is
made, and this applies as well for high-level languages, there is always an overhead you
have to pay in exchange for simplicity. The underlying system, of which the details
the abstraction aims to hide, will be designed to take several decisions that would
often differ from those an experienced low-level programmer would take. However,
the abstraction only has value, provided that the frustration imposed to the user by
the slow-down of accomplishing their job, is lower than the satisfaction they get by
being able to accomplish this job in a simpler way.

5.2 Pig to PACT Plan Translation Algorithm

Pig Latin offers a large set of commands that are used for input and output, relational
operations, advanced operations and the declaration of user-defined functions. We
chose a subset of these statements, which, according to our judgment, are the most
common and useful ones and we describe here how they could be translated into
PACT operators.

• Input / Output
Pig provides the LOAD and the STORE commands for data input and output.
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These two logical operators can be mapped directly to the GenericDataSource
and the GenericDataSink Input Contracts of Stratosphere. In our implemen-
tation, we only support input and output from and to files, so we have used
the more appropriate Contracts, FileDataSource and FileDataSink. Similar to
a Pig script, a PACT plan can have one or more FileDataSource Contracts,
where the user can specify a file path and several parameters related to the
input data format.

• Relational Operators
As we described in the previous chapter, PACTs offer a natural way to express
most of the common relational operations. A FILTER or a FOREACH state-
ments do not require the creation of a new Input Contract and could be easily
merged in the user-function of the current one. The GROUP logical operator
naturally maps to the Reduce Input Contract, while INNER and OUTER
JOIN operations can be implemented using the Match and CoGroup Input
Contracts as explained in the previous chapter. Pig’s ORDER BY operator
can sort the input records in ascending or descending order, specifying one or
more record fields as the sorting key. As explained in Chapter 3, Pig realizes
the ORDER BY operation by creating 2 MapReduce jobs: During the first
job, it performs a sampling of the input to estimate the key distribution. It
then builds a custom partitioner and uses it to balance the keys among the
reducers. With PACTs, the same functionality can be offered in a much simpler
way. The Stratosphere version 0.2, the GenericDataSink Contract will provide
a setGlobalOrder() method, which will allow the user to specify parameters
similar to the ones Pig offers, i.e. sorting keys and ascending / descending
order.

• Advanced Operators
From the set of the advanced Pig operators, we chose to implement the CROSS
and the UNION. The CROSS operator can be mapped to the Cross Input
Contract, while the Map Input Contract can be used to realize the UNION.
In the Stratosphere version 0.2, the Map Contract will offer an addInput()
method, which could be called once for each input of the UNION operator.

Our Pig to PACT translation algorithm mappings are illustrated in Figure 5.6.

Pig’s logical plan is traversed in a depth-first fashion and a visitor is attached to
each node. Depending on the type of the node operator, a specific visit() method
will be invoked that will create the necessary PACT operators. The traversal starts
from the plan’s roots as following:

r oo t s <− Logica lP lan . getRoots ( )
FOREACH r in roo t s

v i s i t ( r )
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Figure 5.6: Pig to PACT translation algorithm operator mappings
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The visit() method is responsible for recognizing the operator type and creating
the appropriate PACT operator, according to the mappings of Figure 5.6. It is
also responsible for setting the correct parameters, such as data types, operator
alias, result types, as well as connecting the newly created operator to its correct
predecessors. This way, a graph of PACT operators is being gradually constructed.
Finally, the visit() method is also responsible for saving the mapping between the
logical and the PACT operators in a HashMap object. For example, the visit() that
would be invoked in the case of a LOAD operator would perform the actions shown
below:

v i s i t ( loLoad ){
Fi leDataSourceOperator fd s = new Fi leDataSourceOperator ( ) ;
f d s . s e tA l i a s ( ) ;
f d s . s e tLF i l e ( ) ;
f d s . setResultType ( ) ;
f d s . s e tS i gna tu r e ( ) ;
currentPlan . add ( fd s ) ;
logToPactMap . put ( loLoad , fd s ) ;

L i s t<Operator> op = loLoad . getPlan ( ) . g e tPredec e s so r s ( loLoad ) ;
PactOperator from ;

i f ( op != nu l l ) {
from = logToPactMap . get ( op . get ( 0 ) ) ;
currentPlan . connect ( from , fd s ) ;

}
}

5.2.1 Example

We present here a representative example aiming to clarify the translation algorithm
and demonstrate how much PACT simplifies the translation process. The example
chosen is a script taken from the original Pig paper (22). We provide here the Pig
Latin code for the script:

A = LOAD ’ f i l e 1 ’ AS (x , y , z ) ;
B = LOAD ’ f i l e 2 ’ AS ( t , u , v ) ;
C = FILTER A BY y>0;
D = JOIN C BY x , B BY u ;
E = GROUP D BY z ;
F = FOREACH E GENERATE group , COUNT(D) ;
STORE F INTO ’ out ’ ;
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Figure 5.7: Plan generation in Pig

This simple script loads data from two different files into the sets A and B. It then
filters input A and performs a JOIN operation between the two inputs. Next, a
GROUP is performed on the output of the JOIN, a COUNT is calculated and
the final output is stored into a file. The Logical, Physical and MapReduce plans
generated by Pig for this script are shown in Figure 5.7. The Logical Plan is created
directly from the parsed representation of the Pig Latin script and contains one
node for each Pig Latin statement. In order for the Physical Plan to be created, the
Logical Plan is traversed and operators are translated into their Physical equivalents.
In Figure 5.7, the numbers inside the graph nodes are used in order to show the
mappings from Logical to Physical operators. For example, a LOAD Logical operator
is translated into a LOAD Physical operator, while a JOIN Logical Operator will be
translated into a series of four Physical operators: LOCAL REARRANGE, GLOBAL
REARRANGE, PACKAGE and FOREACH. After the Physical Plan has been
created, it is traversed in the same way as the Logical Plan, in order to generate the
MapReduce Plan. In the beginning, a Map phase is created and physical operators
are pushed into it until a blocking operator is found. This is the case for the GLOBAL
REARRANGE in our example. At this point, the GLOBAL REARRANGE will
be removed from the plan, as it is already provided by the MapReduce framework
through the shuffling phase. In its place, a Reduce phase is created and all subsequent
operators are pushed into this phase, until the next blocking operator is found. The
result of this process is a MapReduce Plan consisting of two MapReduce jobs.
Figure 5.8 shows how the same script would be compiled using our Pig to PACT
algorithm. Each one of the LOAD operators become a FileDataSource operator and
the FILTER can be merged in one of them. Next, the JOIN is simply translated into
a Match Operator, while the GROUP becomes a Reduce Operator. The subsequent
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Figure 5.8: Plan generation using PACTs

FOREACH with its user function COUNT can then be merged inside the Reduce
Operator. Finally, the STORE will be mapped into a FileDataSink Operator. The
resulting Plan is much smaller and also reflects much more clearly the script semantics.
Compared to Pig’s logical-to-physical translation algorithm, our algorithm is much
simpler. Most of the operators can be mapped to exactly one PACT and there is no
need for categorizing operators into blocking and non-blocking or keeping track of
phases. In contrast to the MapReduce static pipeline, PACTs can be used in any
order and can be linked to each other creating a directed acyclic graph very similar
to Pig’s logical plan. Consequently, each operator can be compiled individually and
no state needs to be maintained between operator compilation. The only case when
the algorithm needs to be aware of the current operator is this of a FILTER or
a FOREACH statement. However, the algorithm could be simplified even more
and create a Map Input Contract for these operators. In this case, the overhead of
creating a new contract would be equal only to the serialization and de-serialization
overhead of the inputs.

5.3 Implementation

This section discusses some technical details about the implementation of our Pig on
Stratosphere prototype. As both Pig and Stratosphere are written in Java, we also
chose the same implementation language. We started implementing the prototype
as a separate project, which we later merged into the Pig codebase. Since the first
phase of this project included an extended study of the Pig codebase, we were already
familiar with the programming style, conventions and structure of the Pig project
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and we tried to follow the same style in our own implementation. Pig classes were
reused wherever possible or wrappers were created in order to make them compatible
with the new features. As discussed in the beginning of this Chapter, the only parts
of the Pig project that were not tightly coupled to the Hadoop execution engine
were the parser and the Logical Plan. This was the point were we drew the line of
separation and where we started re-implementating the rest of the stack according
to Stratosphere standards.
Following Pig’s style, our implementation can be divided in two stages after the
Logical Plan. The first stage implements the translation of the Logical Plan into
a Plan of PACT operators. This PACT Plan can be seen as the equivalent of
Pig’s Physical Plan. The second stage includes the translation of this PACT Plan
into actual Input Contracts and the submission of the PACT plan to the Nephele
execution engine.
In total, 10 Java packages and 66 new classes were created. Below, we briefly present
the functionality included in the most important of them.

• thesis.operators
This is the package that contains the implementations of the PACT operators,
substitutes for Pig’s Physical Operators. The abstract class PactOperator is the
main superclass of all operators and defines their functionality. It extends Pig’s
org.apache.pig.impl.plan.Operator class. PactOperators are the objects that
are members of the PactPlan. A Logical Plan is translated into a PactPlan,
which is a dataflow graph of PactOperators. Each PactOperator corresponds to
an InputContract, a FileDataSource or FileDataSink. All supported PACT op-
erators inherit from PactOperator. Currently, the implemented classes include
CoGroupOperator, CrossOperator, FileDataSinkOperator, FileDataSourceOper-
ator, MapOperator, MatchOperator and ReduceOperator. PactOperator and its
subclasses offer methods to attach and detach inputs, to fetch the next data
tuple, to perform an operation on a tuple and return a result tuple. A brief
UML diagram of the main classes in this package is shown in Figure 5.9.

• thesis.pactLayer
This is the package that contains the classes necessary for the translation of
the Logical Plan into a PACT Plan. This package contains the PactPlan and
the LogicalToPactCompiler classes. The PactPlan class describes the compiled
graph whose nodes are PactOperator objects corresponding to PACTs. It
is a subclass of Pig’s org.apache.pig.impl.plan.OperatorPlan. PactPlan offers
methods to add, remove and replace a PactOperator from the plan, to con-
nect PactOperator objects, to write a visual representation of the Pact Plan
into the given output stream and to check if the PactPlan is empty. The
LogicalToPactCompiler class is the main Compiler class that translates a Pig
Logical Plan into a Plan of Pact Operators. It is implemented as a subclass
of Pig’s org.apache.pig.newplan.logical.relational.LogicalRelationalNodesVisitor
and overrides the visit methods for the limited set of the supported operations
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Figure 5.9: UML diagram for package thesis.operators
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Figure 5.10: UML diagram for package thesis.pactLayer

of our prototype. The main classes of this package are depicted in the UML
diagram of Figure 5.10.

• thesis.pactLayer.plans
This package contains the PactPlanVisitor class. It is a visitor for navigating
and operating on a plan of PactOperators objects. This class only contains the
logic to traverse the plan, while the actual implementation of visiting individual
nodes is left to the PlanCompiler class.

• thesis.executionengine
This package contains the classes that enable Pig to work with Stratosphere.
First of all, it contains the second system compiler, the PlanCompiler class,
which is a subclass of the PactPlanVisitor class and responsible for translating a
PACT plan into a set of Input Contracts. It generates the Stratosphere plan and
implements the specific visit methods for all PactOperator objects supported.
The ContractImplementations class contains static implementations of the
Stratosphere stubs supported. The SExecutionEngine class is the Stratosphere
execution engine class and contains the public method that a user calls to
compile the Logical Plan into a PACT Plan. Finally, the class PactLauncher of
this package is the class used to create and launch a Stratosphere program. It
contains the functionality to create the necessary jar, the PactProgram object
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Figure 5.11: UML diagram for package thesis.executionengine

and the Client to execute it. It exports the launch method which is called from
the org.apache.PigServer class. Find the main classes of this package and their
relations in more detail in Figure 5.11.

• thesis.io
This package contains classes that are necessary in order to allow Pig to ex-
change data with Stratosphere. The SLoadFunc class is essentially a class for
Stratosphere based on org.apache.pig.LoadFunc and it provides the interface
to load data into Pig. It can read from an HDFS file or other source. Similar
to org.apache.pig.LoadFunc, SLoadFunc is tightly coupled to Stratosphere’s
eu.stratosphere.pact.common.io.RecordInputFormat. It basically sits atop a
RecordInputFormat and translates from PactRecords to Pig’s tuples. It contains
the basic features needed by the majority of load functions. The correspond-
ing functionality for storing data is included inside the SStoreFuncInterface
interface.

Our aim was to make as few changes to the Pig codebase as possible. The necessary
changes made in the Pig codebase in order to support the limited functionality of our
prototype can be found in detail in Appendix Changes in Pig. Also, find in Appendix
Dependencies with Stratosphere all the dependencies with the Stratosphere project
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that were introduced because of the integration.

5.4 Discussion

Evaluating integration alternatives has been a very useful and interesting experience.
We gained a deep understanding of the Pig internals, as well as familiarity with the
codebase and the programming style used in the project. According to our judgment,
the most suitable point for integration of Pig with an alternative execution engine
proved to be the Logical Plan level.
For the implementation, we followed a strategy similar to the one already used by
Pig, i.e. we created a two-stage compiler. During the first stage, an intermediate
Physical Plan, which we called PACT Plan, is created. This Plan os PACT operators
is then translated into the final graph using the actual Input Contracts, during the
second stage. A lot of functionality of Pig was re-used, such as graph implementation
and node visitor classes and methods.
Finally, it is important to remark that even if the implementation of our prototype is
not complete, due to time and resource constraints, the completeness of our proposal
is guaranteed. The PACT programming model is a generalization of the MapReduce
programming model that also offers bigger flexibility in defining dataflows. Since
every Pig Latin program and Logical Plan can be translated into a MapReduce
Plan, it is obvious that is can also be translated into a PACT plan. Moreover, the
translation process into a PACT Plan is more straight-forward and it is also highly
benefited by the fact that PACTs can be combined in order to form arbitrary complex
dataflow graphs (12).
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6 Chapter 6

Evaluation

6.1 Cluster Configuration

For the evaluation of the systems, we had access to a 7-node Ubuntu Linux cluster at
SICS (Swedish Institute of Computer Science). Each cluster node had 30GB of RAM
and 12 six-core AMD Opteron(tm) processors. The nodes had Ubuntu 11.04 - Linux
Kernel 2.6.38-12-server as Operating System and Java(TM) SE Runtime Environment
version 1.6.0. We deployed Hadoop version 0.20.2, Stratosphere development version
0.2 and Pig version 0.9, as well as our prototype on the cluster. The following
common configuration was used for Hadoop and Stratosphere:

• 5GB of RAM maximum memory per node

• Maximum 7 concurrent tasks per node

• 64MB HDFS block size

6.2 Test Data

For our experiments, we generated random data according to the Pig Performance
page on the Pig wiki (7). Using a simple Python script, we created two datasets of
tab delimited data with identical schema: name - string, age - integer, gpa - float.
The first dataset consisted of 200 million rows (4384624709 bytes) and was used for
all our experiments. The second set contained 10 thousand rows (219190 bytes) and
was used as the second set in the join and cross experiments. Since the cluster was
shared by multiple users, we ran each experiment multiple times, on different dates
and times of day and calculated the average execution time and standard deviation
of each measurement. The results presented here are based on measurements with
standard deviation no larger that 0.1.
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6.3 Test Cases

For the evaluation of our prototype, we developed six simple scripts that test basic
functionality. The Pig Latin scripts used are shown below:

• Load and Store

A = LOAD ’200M. in ’ ;
STORE A INTO ’ load_store . out ’ ;

• Filter that removes 10% of data

A = LOAD ’200M. in ’ AS (name , age , gpo ) ;
B = FILTER A BY age > 90 ;
STORE B INTO ’ f i l t e r 1 0 . out ’ ;

• Filter that removes 90% of data

A = LOAD ’200M. in ’ AS (name , age , gpo ) ;
B = FILTER A BY age < 90 ;
STORE B INTO ’ f i l t e r 9 0 . out ’ ;

• Group

A = LOAD ’200M. in ’ AS (name , age , gpo ) ;
B = GROUP A BY age ;
STORE B INTO ’ group . out ’ ;

• Join

A = LOAD ’200M. in ’ AS (name , age , gpo ) ;
B = LOAD ’10K. in ’ AS ( sname , sage , sgpo ) ;
C = JOIN A BY age , B BY sage ;
STORE C INTO ’ j o i n . out ’ ;

• Cross

A = LOAD ’200M. in ’ AS (name , age , gpo ) ;
B = LOAD ’10K. in ’ AS ( sname , sage , sgpo ) ;
C = CROSS A , B;
STORE C INTO ’ c r o s s . out ’ ;

Apart from the Pig Latin scripts, we also developed equivalent native MapReduce
and PACT applications for each one of the test cases. In the case of MapReduce, we
used the Reducer-side algorithm for implementing the Join and Pig’s artificial keys
algorithm for the Cross. Both algorithms are described in 3.3.3. Note that we did
not make use of the distributed cache facility, since we wanted the native MapReduce
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program to be as close as possible to the automatically generated job produced by
Pig. Pig’s default join strategy is identical to the one we used. If the user wants
to make use of the distributed cache in Pig, they need to declare it explicitly, by
using the ’REPLICATED’ keyword in the script. Pig (or Hadoop) has no internal
mechanism on detecting if one of the inputs is small enough so that it can fit in
memory. On the other hand, when using the Match Input Contract in Stratosphere,
the PACT compiler will evaluate all possible execution strategies and will choose the
most effective one. Our results for the Join execution confirm this advantage of the
PACT compiler over Pig/Hadoop.

6.4 Results

In this section we present the results of our experimental evaluation. All following
diagrams illustrate comparisons among the four types of applications we developed
for the test cases of 6.3, i.e. Pig on Hadoop, Native MapReduce, Pig on Stratosphere
and Native PACT applications. In order to make the comparison more clear, all
diagrams have been designed to have a darker area background color below the
barrier of one.

6.4.1 Pig on Hadoop vs. Native MapReduce

We consider native MapReduce applications execution time as the baseline for our
experiments, in order to reveal the value offered by Pig’s abstraction. The same
approach is taken by the Pig paper authors in their evaluation section (22). As a
starting point, we compared the execution time of the Pig on Hadoop scripts with
the one of native MapReduce programs. Our results are shown in Figure 6.1. The
ratio of the execution time of Pig over the native MapReduce execution is depicted
on the vertical axis, in logarithmic scale, while there is one bar for each of the test
cases described in 6.3. The results confirm the ones already published by the Pig
community. That is, Pig is around 1,2 to 1,6 times slower than a native MapReduce
application. This overhead includes setup, compiling, data conversion and plan
optimization time.

6.4.2 Pig on Stratosphere vs. Native PACTs

In order to have a similar comparison and evaluation of our prototype’s compiler,
we drew on Figure 6.2 the ratio of the execution time of Pig on Stratosphere scripts
over native PACT programs. The vertical axis is in logarithmic scale. We observe in
this diagram that the overhead imposed by our system on top of the native PACT
applications is higher compared to the one of Figure 6.1 for the first two scripts.
For the rest of the scripts, it appears that the overhead is significantly lower and
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Figure 6.1: Pig on Hadoop vs. Native MapReduce implementations

smaller than 1,5 in all cases. One could argue that this result suggests that our
compiler is more efficient than Pig’s. However, one should keep in mind that our
system only supports a small subset of Pig’s features and the translation process has
been significantly simplified. We believe that the overhead would be much higher if
our system would have been implemented with full functionality. On the other hand,
the result is still promising and shows that there is a margin big enough for creating
an efficient and complete Pig on Stratosphere compiler.

6.4.3 Pig on Hadoop vs. Pig on Stratosphere

The next comparison, in Figure 6.3, shows how many times faster or slower each of
the scripts is executed in our prototype, to the of Pig on Hadoop execution time. The
upper half corresponds to slower execution, while the lower half depicts advantage
of Pig on Stratosphere. Pig on Stratosphere performs worse for the load/store and
the filtering scripts, while it demonstrates an outstanding performance gain over
Pig on Hadoop for the other three scripts. It runs 1,4 times faster in the case of
grouping and 2,5 times faster in the case of cross. For the join script, it outperforms
Pig on Hadoop almost 4,5 times. This outcome is mainly due to two facts. First,
it seems from our measurements that native PACT programs perform worse than
native MapReduce programs in the case of the first three scripts. Consequently, Pig
on Stratosphere is also expected to perform worse than Pig on Hadoop. Second,
as we already mentioned, we have implemented join using the default Reducer-side
algorithm that does not exploit the distributed cache. On the other hand, just by
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Figure 6.2: Pig on Stratosphere vs. Native PACT implementations

using the Match input contract of Stratosphere, the PACT compiler realizes that the
second input can fit into memory and chooses the broadcasting execution strategy.
This strategy has a very big advantage over the partitioning and shuffling one. As
a result, Pig on Stratosphere benefits from this fact for free. Of course, it would
be interesting to investigate a case where none of the two inputs fit into memory,
but, unfortunately, we have no experimental results for this case in the present
thesis. However, it is our intention to research this issue further in our future work.

6.4.4 Pig on Stratosphere vs. Native MapReduce

The last comparison is that of our Pig on Stratosphere implementation over the
baseline native MapReduce, shown in Figure 6.4. The result is not surprising and is
a direct aftermath of the combination of the previous results. Pig on Stratosphere
performs worse than Pig on Hadoop for the first three test cases and since Pig on
Hadoop is slower than native MapReduce, this implies that also Pig on Stratosphere
will be slower than native MapReduce for these cases. For the group, cross and join
Pig on Stratosphere is faster than Pig on Hadoop. The performance gain in these
cases is greater than the performance loss of Pig on Hadoop over native MapReduce,
which results in Pig on Stratosphere outperforming native MapReduce for these cases.
The main reason behind this outcome is native Stratosphere’s advantage over native
MapReduce for this type of scripts.
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Figure 6.3: Pig on Hadoop vs. Pig on Stratosphere

Figure 6.4: Pig on Stratosphere vs. Native MapReduce implementations
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Figure 6.5: Join execution times compared to native MapReduce implementation

Figure 6.6: Cross execution times compared to native MapReduce implementation

6.4.5 Global Comparison

In order to provide a global comparison, we chose the join and cross scripts and
drew Figures 6.5 and 6.6. In these diagrams, we provide a visual representation
of the ratios of all implementations over the baseline native MapReduce, which is
depicted on the first bar (blue). The second bar (yellow) shows the ratio of the
Pig on Hadoop execution time, the third (orange) shows the ratio of the native
PACT applications and the last bar (green) shows the ratio of Pig on Stratosphere.
In both these diagrams, our argument on native PACT being more efficient than
native MapReduce becomes obvious. It is clear that the margin is large enough for
covering the performance loss that a complete abstraction on top of Stratosphere
would cause.
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Figure 6.7: Execution overhead for different dataset sizes - Filter90

6.4.6 Dataset Size Impact

The overhead introduced by the abstraction in either of the cases (Pig on Hadoop
and Pig on Stratosphere) is a function of several parameters, which cannot be easily
defined, especially if evaluation is performed on one single dataset. This overhead
includes setup time, compilation, plan optimization and transformation time, Pig to
execution engine communication time (e.g. statistics and job monitoring), but also
datatype conversion time. Some of these parameters are highly dependent on the
size of the input data. In order to have a better idea on how the overhead changes
depending on the dataset size, we ran two of the scripts with varying input size.
The results are shown in Figure 6.7 and 6.8, for the script of filtering 90% of the
input data and the grouping script respectively. The datasets chosen are 10 million
rows, 100 million rows and 200 million rows, while the vertical axis corresponds to
execution time ratio.

As expected, it seems that the setup and compilation time has a heavier influence
for smaller datasets. However, profound investigation is necessary in order to more
accurately determine the parameter characteristics.
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Figure 6.8: Execution overhead for different dataset sizes - Group
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Conclusions

Big data analytics and management is one of the biggest trends and challenges of our
era and the requirement for efficient tools is becoming more and more urgent. Existing
programming models like MapReduce and PACT have been a great contribution.
However, in order to fully exploit the possibilities provided by the increasing amounts
of data in business and scientific applications, data analysis should become accessible
to non-experts, users that are used to work with SQL or higher-level languages.
Systems like Pig have made this possible and improving their performance is of great
importance.
In this thesis, we studied Pig’s architecture and examined the possibility of integrating
it with Stratosphere. We concluded that even though Pig is tightly coupled to the
Hadoop execution engine, integration is possible. According to our judgment, the
Pig stack can be separated from the Hadoop execution engine, no lower than the
Logical Plan level. As a consequence, integration with Stratosphere, or any other
execution engine, requires re-implementation of the rest of the stack.
In the case of Stratosphere, the translation of Pig’s Logical Plan into a PACT
plan turned out to be much simpler than the translation to MapReduce jobs. The
reason for this is that Stratosphere is a more general framework than MapReduce,
offers higher flexibility and provides an easy way of expressing common relational
operations through Input Contracts. Moreover, the first results of the performance
evaluation of our prototype reveal Stratosphere’s advantage over MapReduce for
relational operations and allow us to be optimistic that Pig on Stratosphere could
perform even better than native MapReduce.

7.1 Open Issues

Several issues remain unexplored due the limited scope of this project and time
restrictions. First of all, not all Pig operators have been implemented in our prototype.
More specifically, only the narrow set of operators, on which we carried out our
experiments, is supported. Thus, more advanced queries containing nested operators,
SPLIT, DISTINCT, LIMIT etc. cannot be used with our prototype. Also, all
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operators currently support maximum two inputs. However, this could be addressed
by either extending Stratosphere in adding Multi-Input Contracts, or by creating
a pipeline or even binary trees of consequtive Dual-Input Contracts. Secondly,
we acknowledge that a more extensive evaluation is needed in order to draw safe
conclusions. Experiments should be performed on varying sizes of datasets, in order
to define the setup and overhead constants. Also, scalability should be addressed, by
varying the number of available instances for computation.

7.2 Future Work

We certainly believe that creating a system that fully supports Pig Latin and generates
Stratosphere jobs is not the limit of this research. Several optimizations can now be
added to Pig because of the underlying Nephele execution engine. Pig Latin could be
extended to include keywords that would correspond to Output Contracts or PACT’s
compiler hints. Moreover, we believe that it would be of great interest to extend the
PigMix (8) benchmark suite with native PACT applications and evaluate our system
with it, offering a more fair comparison to the existing Pig system. Based on the
results of a wider and more extensive evaluation, we could then identify the type of
applications for which Pig on Hadoop performs better and the type of applications
for which Pig on Stratosphere has an advantage. With this information, it would
be possible to build a "smarter" Pig compiler that could ideally choose the best
execution engine depending on the application type.
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Appendix

Changes in Pig

• org.apache.pig.Main : replaced all the occurrences of the class org.apache.pig.LoadFunc
to thesis.io.SLoadFunc

• org.apache.pig.PigServer : replaced all the occurrences of the class org.apache.pig.builtin.PigStorage,
changed the method lanchPlan() to create a thesis.executionengine.PactLauncher
object and call its launch() method, changed the compilePp() to create a the-
sis.executionengine.SExecutionEngine and return a thesis.pactLayer.PactPlan.

• org.apache.pig.impl.io.FileSpec : replaced all the occurrences of the class
org.apache.pig.builtin.PigStorage to thesis.io.builtin.SPigStorage

• org.apache.pig.newplan.logical.relational.LOLoad : replaced all occur-
rences of org.apache.pig.LoadFunc to thesis.io.SLoadFunc

• org.apache.pig.newplan.logical.relational.LOStore : replaced all occur-
rences of org.apache.pig.StoreFuncInterface to thesis.io.SStoreFuncInterface

• org.apache.pig.newplan.logical.rules.ColumnPruneVisitor : replaced
all occurrences of org.apache.pig.LoadFunc to thesis.io.SLoadFunc

• org.apache.pig.newplan.logical.rules.InputOutputFileValidator : replaced
all occurrences of org.apache.pig.StoreFuncInterface to thesis.io.SStoreFuncInterface

• org.apache.pig.newplan.logical.rules.PartitionFilterOptimizer : replaced
all occurrences of org.apache.pig.LoadFunc to thesis.io.SLoadFunc

• org.apache.pig.parser.FunctionType : replaced all occurrences of org.apache.pig.StoreFuncInterface
to thesis.io.SStoreFuncInterface and all occurrences of org.apache.pig.LoadFunc
to thesis.io.SLoadFunc

• org.apache.pig.parser.LogicalPlanBuilder : replaced all occurrences of
org.apache.pig.StoreFuncInterface to thesis.io.SStoreFuncInterface, all occur-
rences of org.apache.pig.LoadFunc to thesis.io.SLoadFunc and all occurrences
of org.apache.pig.builtin.PigStorage to thesis.io.builtin.SPigStorage
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• org.apache.pig.parser.QueryParserUtils : replaced all occurrences of
org.apache.pig.StoreFuncInterface to thesis.io.SStoreFuncInterface, all occur-
rences of org.apache.pig.LoadFunc to thesis.io.SLoadFunc and all occurrences
of org.apache.pig.builtin.PigStorage to thesis.io.builtin.SPigStorage
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7.2 Future Work

Dependencies with Stratosphere

The following Stratosphere packages had to be exported as jar and included in Pig’s
build path:

• eu.stratosphere.nephele.io

• eu.stratosphere.nephele.ipc

• eu.stratosphere.nephele.jobgraph

• eu.stratosphere.nephele.event

• eu.stratosphere.nephele.instance

• eu.stratosphere.nephele.managementgraph

• eu.stratosphere.nephele.protocols

• eu.stratosphere.nephele.topology

• eu.stratosphere.nephele.util

• eu.stratosphere.nephele.net

• eu.stratosphere.nephele.template

• eu.stratosphere.nephele.types

• eu.stratosphere.pact.client.nephele.api

• eu.stratosphere.pact.common.contract

• eu.stratosphere.pact.common.io

• eu.stratosphere.pact.common.io.stratistics

• eu.stratosphere.pact.common.plan

• eu.stratosphere.pact.common.stubs

• eu.stratosphere.pact.common.types

• eu.stratosphere.pact.common.type.base

• eu.stratosphere.pact.compiler

• eu.stratosphere.pact.runtime

• eu.stratosphere.pact.common.type.base.parser
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