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Abstract 
The vehicle industry is moving towards more and more autonomous vehicles. In order to reduce 
fuel consumption and improve driver experience, driver support functions and vehicle control are 
becoming increasingly important. With information about the different parts of the driving 
resistance, driver support functions and vehicle control can be improved. The driving resistance 
can be divided into rolling resistance, air drag and change in potential energy due to road grade. 
Estimations of the road grade and the vehicle mass have been subject to many research 
publications and are used in numerous functions in heavy duty vehicles of today. With this 
information known, it is interesting to investigate the possibilities to estimate the rolling 
resistance and the air drag separately. 

This thesis presents two methods based on Kalman filters for online estimation of the rolling 
resistance and the air drag. They both use information from sensors that are part of the standard 
equipment for heavy duty vehicles. A vehicle model is used together with measurements of the 
vehicle speed and information about the engine torque, the road grade and vehicle mass to 
generate the estimations. The designs of the estimators are described and the performance is 
evaluated through simulations and experiments with real vehicles.  

The experiments have shown the difficulty in separation of the rolling resistance and air drag. It 
is shown that simultaneous estimations of the two is possible, but in practice a too large variation 
of speed is required to obtain accurate estimates with the investigated methods. It is also shown 
that when estimating one parameter at a time, accurate estimations can be generated. However, it 
is proven to be difficult to base these estimations on each other, to due large temperature 
dependency of the rolling resistance. 
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Sammanfattning 
Fordonsindustrin går mot alltmer autonoma fordon. Funktioner för fordonsreglering och 
förarstöd blir allt viktigare för att minska bränsleförbrukningen och förbättra förarupplevelsen. 
Med information om körmotståndets olika delar kan mer detaljerad information utnyttjas av 
funktioner som reglerar fordonen och deras prestanda kan därmed förbättras. Körmotståndet kan 
delas in i rullmotstånd, luftmotstånd samt förändring i potentiell energi orsakad av väglutning. 
Skattningar av väglutning och fordonets massa har förekommit i många forskningspublikationer 
och används idag i flertalet funktioner i tunga fordon. När information om dessa är känd kvarstår 
att undersöka möjligheten att skatta rullmotstånd och luftmotstånd var för sig. 

I detta examensarbete presenteras två metoder baserade på Kalmanfiltrering för skattning av 
rullmotstånd och luftmotstånd. Båda metoderna använder information från sensorer som är 
vanligt förekommande på moderna tunga fordon. Skattningarna genereras genom att använda en 
fordonsmodell tillsammans med mätningar av fordonets hastighet samt information om 
motormoment, väglutning och fordonsvikt. En beskrivning av skattningsmetoderna ges och deras 
prestanda utvärderas genom simuleringar och experiment med riktiga fordon. 

Experimenten visar att det är svårt att skilja rullmotstånd och luftmotstånd från varandra med de 
föreslagna metoderna. Det visas att simultana skattningar av både rull- och luftmotstånd är 
möjliga men att det i praktiken krävs en stor hastighetsvariation för att bra värden ska erhållas. 
Det visas också att skattning av en del av körmotståndet i taget genererar noggranna resultat. På 
grund av rullmotståndets kraftiga temperaturberoende visar det sig emellertid vara svårt att 
basera dessa skattningar på varandra. 
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Nomenclature

Notations

Symbol Description Unit
– Road grade %
Ï Angle rad
÷ Gear e�ciency -
fla Mass density kg/m2

Aa Area m2

cd Coe�cient of air drag -
cr Coe�cient of rolling resistance -
g Gravity of Earth m/s2

i Gear ratio -
J Moment of inertia kgm2

m Mass kg
r Radius m
T Torque Nm
v Speed m/s

Abbreviations

CAN Controller Area Network
EKF Extended Kalman filter
KF Kalman filter
LSE Least squares estimation
GPS Global positioning system
RMSE Root mean square error
WGN White Gaussian noise
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1 Introduction

The first section in this chapter describes the background to the project. The
purpose of the project, the delimitations made and the method used are de-
scribed in the subsequent sections. The last two sections gives a summary of
results from the project and details the report outline.

1.1 Background
Information about the driving resistance that a vehicle experiences during
driving is used in many functions in today’s heavy duty vehicles in order
to reduce fuel consumption and improve driver experience. The force from
the total driving resistance can be divided into di�erent parts with di�erent
origins:

• the force from the rolling resistance,

• the force from the air drag and

• the force from an increased potential energy due to positive road grade.

By performing online estimations of the di�erent parts of the driving resis-
tance, the fuel e�ciency and driver experience can be improved by providing
more detailed information to functions that are controlling the vehicle.

One common function is to adapt the speed of the vehicle based on infor-
mation about upcoming road topography. The concept is illustrated in figure
1.1.

Figure 1.1: Illustration of a vehicle climbing and descending on a road. By
adjusting the speed prior to uphill and downhill segments fuel savings
can be made. Image courtesy of Scania CV AB.
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Introduction

When the vehicle is reaching the top of a hill and facing a downhill road
segment, it is often advantageous to decrease the speed and utilize the gravity
to obtain an acceleration. When driving on flat road and approaching an
uphill road segment, the overall fuel economy can be improved by increasing
the speed before the hill is reached. If the rolling resistance and air drag
are known, more accurate predictions about the required engine torque at
di�erence speeds can be made and the speed control can be further improved.

Other examples of functions that depend on predictions about future states
are gearbox control for automatic gearboxes, control of auxiliary systems and
control of hybrid vehicles.

There exists a large variety of di�erent vehicle configurations, some of
which are shown in figure 1.2. Due to di�erences in vehicle size, body shape
and number of wheel axles a di�erence in rolling resistance and air drag be-
tween the vehicles could be expected. However, many functions are based on
the assumption that the rolling resistance and air drag are the same regardless
of vehicle configuration.

Therefore, online estimations of the di�erent parts of the driving resis-
tance can provide important information to functions that are controlling the
vehicle.

Figure 1.2: Three di�erent but commonly used vehicle configurations: a
long-haulage timber truck and trailer, a streamlined
tractor-semitrailer combination and a smaller distribution truck.
Images courtesy of Scania CV AB.

1.2 Purpose
The purpose of the thesis is to suggest methods for real time estimation of
rolling resistance and air drag on heavy duty vehicles.

1.3 Delimitations
The following delimitations and assumptions has been made for this thesis.

• Firstly, only longitudinal dynamics are considered. Sharp turns that
introduces lateral forces which may increase the total driving resistance
are not studied in the thesis.

2



1.4. Method

• Secondly, it is assumed that the vehicle mass and the road grade are
known. Estimations of both these parameters are made in the vehicles
used in this thesis, and they are therefore considered to be known.

• Thirdly, no extensive tire modeling is made. Only existing tire models
are studied in this thesis.

• Fourthly, since the suggested methods should be able to implement on
standard modern heavy duty vehicles, they should only use information
from sensors that are commonplace on such vehicles.

1.4 Method
The method used during the thesis starts with a background study includ-
ing the definition of the frame-of-reference. The background study focus on
gaining knowledge on vehicle dynamics and on the driving resistances that
acts on a heavy duty vehicle during driving. Further, investigations of general
methods for parameter estimation is an important part of the study.

After the background study, a number of methods to estimate the di�erent
parts of the driving resistance are developed. Two experiments are conducted
where the first one takes place directly after the methods are formulated. The
result from the first experiment is used to evaluate the suggested methods and
the experiment itself. The focus of this experiment is on developing a good
method for measuring the signals of interest.

Based on the results from the first experiment, the most promising methods
are selected for further development and thereafter is the second experiment
conducted. This experiment is focused on data acquisition from di�erent vehi-
cle configurations and driving scenarios. The planning and conducting of the
second experiment takes advantage of experiences from the first experiment
and thereby are improved results expected. With the use of the results from
the second experiment, the selected methods are further developed.

This enables for an iterative work flow beneficial to the project in order to
select, prioritize and develop the methods for solving the task.

1.5 Summary of Results
In this work it is shown that using an extended Kalman filter together with
the derived nonlinear vehicle model for estimations of rolling resistance and
air drag is possible. However, to obtain convergence of the estimations, a
variation of speed larger than that found during ordinary driving scenarios is
required. It is also shown that a standard Kalman filter when used together
with the derived linearized vehicle model is able to generate accurate results
when estimating only of the rolling resistance or the air drag. Basing estimates
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on each other is proven to be di�cult due to a large temperature dependency
of the rolling resistance.

1.6 Report Outline
Chapter 2 defines the frame-of-reference that has been used in this thesis and
gives a general description of the studied system, details di�erent models for
rolling resistance and air drag, as well as introduces the concept of state recon-
struction through observers and Kalman filters. A vehicle model is derived
and simulated in Chapter 3. Chapter 4 details the design of the suggested
estimations methods and describes the steps taken to tune the filters to gen-
erate accurate estimates. A description of the experiments used to develop
and evaluate the methods is given in Chapter 5. The conclusions drawn from
the experiments and a description of areas for future work is presented in
Chapter 6.

4



2 Frame of Reference

This chapter provides an overview over the heavy duty vehicles (HDVs) used
in this thesis, describes models for the rolling resistance and the air drag and
introduces the concept of estimation through state observers.

2.1 System Description

The vehicles studied in this work are equipped with many di�erent sensors
that are commonly used with modern HDVs. The estimation methods pre-
sented in this thesis uses information from some of these sensors. The vehicles
contain several control units which are connected via a data bus and forms
a distributed system. An overview of some of these control units is given in
figure 2.1.

CAN bus

Engine Transmission Suspension Brakes

Figure 2.1: Schematic figure over a part of the distributed control system found in
the HDVs.

The signals from the control units are broadcast on the data bus which in
this case uses the Controller Are Network (CAN) protocol, a communication
protocol commonly used in the vehicle industry. A description of CAN is
found in the ISO standard (ISO 11898-1:2003, 2003).

For the estimators presented in this thesis, the interesting units are the
engine control unit, the transmission control unit, the air suspension and the
brake system. These are all connected to the CAN bus and broadcast signals
from sensors and from estimations. The engine control unit broadcast the
engine speed and engine torque. The transmission control unit broadcast the
current gear and whether a gear shift occurs or not. From sensors in the
air suspension are vehicle mass estimations performed. The brake system
gives information about if any of the brakes are applied. The vehicle speed is
obtained from sensors on the front axle.

5



Frame of Reference

2.2 Modelling
This section gives a description of the di�erent models for the rolling resistance
studied in this thesis and describes the equation for the force from the air drag.

2.2.1 Tire Modelling
Several tire models are presented in the literature. Common for most models
however, is that the force from the rolling resistance of the tires is modelled
as the normal force on the tires from the ground multiplied with the rolling
resistance coe�cient cr. The equation is given in (Kiencke and Nielsen, 2003)
as

Froll = mgcr cos (–) ¥ mgcr (2.1)

where cr is the rolling resistance coe�cient, m is the vehicle mass, g is the
gravity of earth and – is the road grade in percent. Expressing – in percent is
common, not only in scientific publications but also on road signs. According
to (Sahlholm, 2011), the relationship between road grade in percent and in
radians (–rad) is given by –rad = tan(–/100). Road grades above 15 % are
rare, and for normal roads is the road grade generally not above 6 %. For
those grades, the small angle approximation in equation (2.1) is valid, and the
di�erence between – and –rad is negligible.

A nominal constant value of the coe�cient for trucks as presented in (Sand-
berg, 2001) and (Sahlholm, 2011) is cr = 0.007.

More sophisticated models of cr include a speed dependence. In (Kiencke
and Nielsen, 2003), a linear speed term is included,

cr = cr,1 + cr,2v (2.2)

where v is the vehicle speed.
In (Wong, 2001) the rolling resistance coe�cient instead includes a squared

speed term dependence, given as

cr = 0.006 + 0.23 · 10≠6v2 (2.3)

As presented in (Sandberg, 2001), the tire manufacturer Michelin proposes
a model of cr that includes both a linear and a squared speed dependence,
given by

cr = cr,iso + a
1
v2 ≠ v2

iso

2
+ b (v ≠ viso) (2.4)

where cr,iso, a and b are tire dependent constants and viso = 80 [km/h].
Further in (Sandberg, 2001) a tire model is derived that includes both a

velocity dependence as well as a temperature dependence, i.e.,

cr = f (v, T ) (2.5)

6



2.2. Modelling

The temperature dependence of the rolling resistance is also discussed in
(Wong, 2001). It is shown that cr decreases with an increasing tire tem-
perature. It is stated that cr = 0.020 when the tire temperature is 0¶C, and
approaches cr = 0.007 as the temperature increases towards 80¶C. However,
the actual value of cr also depends on the type of tire, the tire thread and how
worn the tire is, as well as on the road surface.

In (Sandberg, 2001) it is also stated that the number of wheel axles does
not influence cr. Both the rolling resistance of the tires and the bearing losses
from the bearings the wheels are mounted on are proportional to the mass.
Therefore, it is stated that only the vehicle mass a�ects the total force from
the rolling resistance, and not the number of wheel axles.

It can be concluded that several di�erent types of tire models exist with
considerably di�erent behavior. The choice of model is discussed in section
3.2.2.

2.2.2 Air Drag Modelling
The force from the air drag is according to (Hucho et al., 1998) given by the
equation

Fairdrag = 1
2flacdAav2

res (2.6)

where fla is the air mass density, cd the air drag coe�cient and Aa is the
e�ective area of the vehicle. It is from this equation that cd is defined and it
is hence not an approximation of the force from the air drag. It is not specific
for vehicles and is used to determine the force on any object moving through
a fluid regardless of shape.

The vehicle velocity relative to the road is denoted by v, while the velocity
of an occasional wind is denoted vwind. When calculating the air drag, the
resulting velocity, vres, of the flow approaching the vehicle is of interest and
is in (Hucho et al., 1998) given as the vector sum of the two velocities

vres =
Ò

v2 + v2
wind + 2v · vwind cos (—) (2.7)

cos (—) = v2
res ≠ v2 ≠ v2

wind

2vres · v
(2.8)

Here, — is the angle between the vehicle velocity and the wind velocity.
The wind speed is generally di�cult to measure on road since wind speed

and direction sensors, commonly referred to as anemometers, are not easily
mounted on a truck. Due to turbulence from the vehicle, see for example
(Hucho et al., 1998), the anemometer would have to be placed either in front
of, or high above the vehicle. In (Walston et al., 1976) an experiment is
described where the anemometer is placed about 3 meters in front of the
vehicle.

The air drag coe�cient depends on the size and shape of the vehicle. In
(Hucho et al., 1998) some nominal values of cd for di�erent types of vehicles
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Frame of Reference

are presented. For a tractor with a semi-trailer the values are between 0.48 to
0.75. For a truck and trailer the vales are a bit higher, 0.55 to 0.85.

When the vehicle travels in a windless environment, the e�ective vehicle
area simply becomes the frontal area of the vehicle. When experiencing a
crosswind on the other hand, the e�ective area becomes the vehicles projected
area in the direction of the resulting air flow. The e�ect is the same when the
vehicle is turning and a non-zero yaw angle is experienced.

The e�ect on the air drag coe�cient from di�erent yaw angles is presented
in (Hucho et al., 1998). The values are normalized to the air drag coe�cient
at zero yaw angle. For a tractor with a semi-trailer, the normalized values of
cd for yaw angles of 10, 20 and 30 degrees are 1.25, 1.5 and 1.6 respectively.
For a truck with a trailer the values are higher with a normalized value of
1.4 already at 10 degrees yaw angle. It is also stated that yaw angles over 10
degrees are rare when driving at higher speeds.

The value of cd can be determined from wind tunnel tests. By study-
ing typical wind conditions on roads and the size proportions compared to
the speed of the vehicle, a statistically wind-averaged value of cd can be deter-
mined. This is done by sweeping the vehicle with air flow between the relevant
angles. The value of cd is then calculated from equation 2.6 by measuring the
force Fairdrag. A nominal statistically wind-averaged value of cd for a typical
tractor-semitrailer combination is reported by Scania to be cd = 0.6. This
value is based on the reference area Aa = 10.4m2.

2.3 Earlier Related Work on Estimation of Vehicle
Parameters

This section describes the coast down test, a method for o�ine estimations of
the rolling resistance and air drag that is commonly used in the industry. A
description of methods for online estimation of road grade and vehicle mass is
also presented. These are important parameters that in this work are consid-
ered to be known. Further, the studied methods can be used for estimation
of other vehicle parameters as well.

2.3.1 Coast Down Test
One common method to perform o�ine estimation of rolling resistance and
air drag is the coast-down tests, described in (White and Korst, 1972). The
general principle is to let the vehicles freely coast down from an initial speed,
typically around 70-80 [km/h] to a speed of around 20 [km/h]. By measuring
the distance covered, the instantaneous speed and the elapsed time, estima-
tions of the parameters can be generated. If the road grade is unknown, the
test should be performed on a flat road. In order to reduce influence from an
occasional wind, the tests are usually performed several times in two opposite

8
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directions on the test surface. Another solution is presented in (Walston et al.,
1976), where a coast down test procedure with an anemometer is presented.
By using the anemometer to measure the wind speed and direction, the test
can be performed even in windy conditions.

Based on the measured data and a model of the vehicle, a least squares
estimation of the parameters can be performed. If care is taken to the exper-
iment, this method has been showed to generate accurate results.

The coast down test is as mentioned a method for o�ine estimation which
is not the purpose for this project. However, the method can be used to
generate accurate estimations of the rolling resistance and the air drag that
can be compared to online estimates generated with other methods. In section
4.4.2 a coast down test is described where the results are used to tune an online
estimator.

2.3.2 Road Grade and Vehicle Mass

Estimation of road grade and vehicle mass have been subject to many articles
and research papers. In (Sahlholm, 2011) methods for road grade estimation
are presented. Two methods uses the Kalman filter and Extended Kalman
filter, both commonly used for parameter estimation. These are described in
detail in section 2.4.1. A Global Positioning System (GPS) is used to obtain
altitude measurements which are incorporated in the estimators in order to
generate accurate results. More information about GPS is given in (Misra
and Enge, 2006). In (Vahidi et al., 2005) a recursive least squares estimation
of both road grade and vehicle mass is presented. The recursive least squares
estimation algorithm is given in (Kailath et al., 2000).

A method for measuring the road grade and estimating the vehicle mass
as well as rolling resistance and air drag through a recursive least squares
estimation is given in (Bae and Gerdes, 2003). Measurements of the road
grade are obtained from a GPS. Although the suggested method showed good
results for the road grade and vehicle mass, it is concluded that the estimations
of neither the coe�cient of rolling resistance or air drag converged.

In the vehicles used in this thesis, both vehicle mass and road grade es-
timations are performed online and are therefore considered to be known.
Additionally, information about the road grade from map data is available
from a commercial provider and broadcast on the vehicles CAN-network.

Although the estimations presented in the above works are made on di�er-
ent parameters than the ones considered in this thesis, the concept is still the
same. A vehicle model is derived and a Kalman filter (recursive least squares
is a special case of the Kalman filter) is used for the estimation. Studying the
above works therefore gives useful knowledge that is applied in this project.
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2.4 State Reconstruction
A common method for parameter estimation is to use an estimator (or ob-
server). An estimator can be used to reconstruct the states of a system that
cannot be measured (Glad and Ljung, 2000). Estimations of the systems in-
ternal states can be made based on knowledge of the systems input and output
signals. The concept behind estimators is shown in figure 2.2. The systems in-

System

Estimator

uk yk

x̂k

Figure 2.2: Block diagram over a system and estimator.

put and output signals are denoted uk and yk, respectively. Here, k is used to
indicate discrete time. The system can be governed by a nonlinear expression

xk = f (xk≠1, uk, Êk≠1) (2.9)
yk = h (xk, ek) (2.10)

or a linear expression on state space form

xk = Fxk≠1 + Guk + Êk≠1 (2.11)
yk = Hxk + ek (2.12)

where the column vector xk contains the states of the system. The process
noise Êk has covariance Qk = E[Ê2

k] and the measurement noise ek has covari-
ance Rk = E[e2

k], where E is the expected value.
In this work, it is assumed that the noise Ê and e are white Gaussian

noise (WGN). A definition of white noise is given in (Glad and Ljung, 2000).
The interpretation is that white noise has a constant frequency spectrum and
that the noise cannot be predicted, i.e., past noise contains no information on
future noise. With white Gaussian noise it is indicated that the mean of the
noise is zero and that it is normally distributed.

By using a model of the system and with knowledge of the input signal
to the system, the estimator can simulate the states of the system, denoted
x̂k. Since the output of the system is measured, it can be compared to the
simulated output (h(x̂k) or Hx̂k) and the di�erence is used to correct the
simulations. This yields the nonlinear estimator

x̂k = f (x̂k≠1, uk) + K (yk ≠ h(x̂k≠1)) (2.13)

10
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where K is the gain of the estimator. For a linear system the estimator
becomes

x̂k = Fx̂k≠1 + Guk + K (yk ≠ Hx̂k≠1) (2.14)

Since the actual noise in each time step is unknown, the estimators are ap-
proximated without Êk and ek.

In (Glad and Ljung, 2006), it is shown that the estimator gain K a�ects
both the dynamics of the error in the estimates as well as the sensitivity to
measurement noise. This is easiest illustrated by studying the linear system.
The error of the estimates is formed by xe

k = xk ≠ x̂k. Inserting equations
(2.11) and (2.14) it can be shown that the di�erential equation governing the
error dynamics is given by

x̂e
k = (F ≠ KH) x̂e

k≠1 + Êk≠1 ≠ Kek (2.15)

See (Glad and Ljung, 2006) for more details. From the expression it can be
seen that if (F ≠ KH) is stable the estimation error will be reduced and the
estimated states will converge towards the true values. If K is chosen so that
the eigenvalues of (F ≠ KH) are far into the stability region the estimation
error will quickly be reduced.

For a discrete time system, the stability region is defined as inside the
unit circle, and a system is stable when its eigenvalues are inside or on the
boundary of the stability region, (Glad and Ljung, 2000).

However, the size of K also a�ects the influence from the measurement
noise ek. There is hence a trade of between fast dynamics and noise sensitivity.

Several methods can be used to determine K. In the literature, for example
(Glad and Ljung, 2000), it is stated that if the process and measurement noises
are WGN, the corresponding covariance matrices are physically correct and
the system is linear, then the optimal choice of K is given by the Kalman
filter. Kalman filters are commonly used for various purposes and represent a
state of the art method for tasks such as filtering noisy measurements, sensor
fusion and, as in this case, parameter estimation. The next section gives a
detailed description of the Kalman filter.

2.4.1 Kalman Filter
The Kalman filter (KF) is linear and the process model used with the KF
therefore has to be either linear in its nature or a linearized representation
of a nonlinear system. A commonly used method to deal with nonlinear
systems is to perform linearizations at each time step. This results in the
Extended Kalman filter (EKF). The discrete KF and EKF algorithms are
given in (Kailath et al., 2000), and can be divided into two groups: the time
update equations and the measurement update equations.

The notation xk|k≠1 is used to indicate the state x at time k given the
information up until time k ≠ 1. The time update equations predicts the
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estimated states (x̂k|k≠1) and estimated error covariance (Pk|k≠1) for the next
time step, and is for the KF given by

x̂k|k≠1 = Fx̂k≠1|k≠1 + Guk (2.16)
Pk|k≠1 = FPk≠1|k≠1F T + Qk (2.17)

The EKF linearizes the system at each time step, but uses the nonlin-
ear representation of the process model in the time update equation for the
estimated states. The time update equations for the EKF therefore becomes

x̂k|k≠1 = f
1
x̂k≠1|k≠1, uk

2
(2.18)

Pk|k≠1 = FkPk≠1|k≠1F T
k + Qk (2.19)

where Fk = ˆf
ˆx (x̂k≠1|k≠1, uk). This linearization follows the procedure de-

scribed in section 4.1.1.
The measurement update equations are used to correct the estimated

states and error covariance predicted in the time update equations by com-
paring the estimated states with the measurements. The equations are given
by

Kk = Pk|k≠1HT
k

1
HkPkHT

k + Rk

2≠1
(2.20)

x̂k|k = x̂k|k≠1 + Kk

1
yk ≠ Hkx̂x|x≠1

2
(2.21)

Pk|k = (I ≠ KkHk) Pk|k≠1 (2.22)

where Hk = ˆh
ˆx(x̂k≠1|k≠1) for the EKF and Hk = H for the KF, see equations

(2.10) and (2.12).
The time update and measurement update equations are repeated recur-

sively, and is given an initial value of x̂k and Pk, denoted x̂0
k and P 0

k .
Generally, a large initial value of Pk causes the filter react fast to large

estimations errors in the beginning of the filtering. The gain K is calculated
by the filters to minimize Pk. However, if the true value of the estimated state
for some reason changes during estimation, a low value of Pk might cause the
estimator to react slow to the change. The filter will eventually converge but
might do so in a too long time frame.

If the earlier stated requirements on optimality for the filter are fulfilled,
then Pk = [xe

k(xe
k)T ]. The magnitude of the diagonal elements in Pk is inter-

preted as the actual variance of the estimated states. However, as soon as the
the noise becomes colored or Qk and Rk deviates from the true values this
interpretation fails. Therefore, in practical cases, it is often di�cult to draw
conclusions of the actual magnitude of Pk.

In (Höckerdal, 2011), it is stated that Pk for an unobservable mode in-
creases linearly towards some value. This value might however be higher than
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what is possible to reach during estimations in practice. Studying Pk is there-
fore an important part of the analysis. The observability concept is given in
section 2.4.2.

In most practical cases it is di�cult to determine the process noise. There-
fore the physically true Qk and Rk are unknown and becomes tuning parame-
ters for the filter. A large value of Qk will cause the filter to believe less in the
model, while a large Rk causes the filter react slower to the measurements.
Section 4.4 describes the tuning steps for the filters used in this thesis.

2.4.2 Observability
Observability or detectability of the system to be estimated are important
properties to ensure correct estimations from the observer. The observability
criterion states that if a system is observable, the current states of the system
can be reconstructed from measurements, see for example (Kailath et al.,
2000). In the same place, several methods to determine observability are
presented.

Observability of a Linear System

For a linear system in continuous time on state space form with n number of
states

ẋ(t) = Ax(t) + Bu(t) (2.23)
y(t) = Cx(t) (2.24)

the observability of the system can be determined by calculating the rank of
the n ◊ n observability matrix O. One common expression for this matrix
given in (Kailath et al., 2000) as

O =

Q

cccca

C
CA

...
CAn

R

ddddb
(2.25)

If this matrix has full column rank, i.e., if

rank (O) = n (2.26)

then the system is observable and can be used for parameter estimation.
Several other methods for calculating the observability matrix are given in

(Kailath et al., 2000). In (Paige, 1981) numerical properties of these methods
are discussed and it is stated that the matrix (2.25) is not the most numerically
stable. However, since the number of states used in this work is low (two
to three states), the method has shown to generate accurate results for the
systems studied when compared to more numerically stable methods.
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Observability of a Nonlinear System

For a nonlinear system, the observability matrix can be calculated, accord-
ing to (Höckerdal, 2011), as the Jacobian of the matrix spanned by the Lie
derivative L along the vector field f , i.e.,

O =

Q

cccca

dh
dLf h

...
dLn≠1

f h

R

ddddb
(2.27)

A definition of the Lie derivative is given in (Glad and Ljung, 2000).
If the matrix O has full column rank the system is observable. The criterion

hence is the same as for linear systems, i.e., if

rank (O) = n (2.28)

then the system is observable.
As described in section 2.4.1, the EKF linearizes the nonlinear system at

each time step. According to (Glad and Ljung, 2000), a necessary condition
when using an EKF for estimation is that the linearized system, i.e., the pair
Fk and Hk, is detectable. The detectability criterion is given in (Kailath et al.,
2000). There it is stated that if all of the unobservable modes of the system
are stable, then the system is detectable.

The method to determine observability for the linear system used in the
previous section, 2.4.2, can hence also be used to determine detectability.

Condition Number of the Observability Matrix

Even for an observable system, it can be more or less easy for the estimator to
actually observe the states due to numerical properties, (Gustavsson, 2000).
The condition number Ÿ of the observability matrix can be interpreted as how
di�cult it is to observe the system states. One way to determine the condition
number is presented in (Paige, 1981) as

Ÿ(O) = ‡max

‡min
(2.29)

where ‡max and ‡min are the largest and smallest singular values of the ob-
servability matrix. The definition of singular values is given in (Glad and
Ljung, 2000) as ‡ =

Ô
⁄i, where ⁄ are the eigenvalues of the matrix AúA,

given a matrix A. For an ill-conditioned matrix it can be di�cult to observe
the states, even though the system is observable.
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2.4.3 Discretization
Since the estimators are to be implemented on a digital system, derived con-
tinuous time models has to be discretized. For a linear system on state space
form, a method for discretization is given in (Glad and Ljung, 2000) as

F = eATs , G =
⁄ Ts

0
eAtB dt, H = C (2.30)

where Ts is the sampling time and A, B, and C are defined in equations
(2.23) and (2.24). The matrix F is called the state transition matrix, G is the
discrete control matrix and H is the measurement matrix. Further in (Glad
and Ljung, 2000) it is stated that the discretization can be approximated with

F = I + ATs, G = BTs (2.31)

There are several methods to discretize a nonlinear system. In this work
the Euler forward method is used, see for example (Glad and Ljung, 2006),
given by

ẋ (kTs) ¥ 1
Ts

(xk+1 ≠ xk) (2.32)

Although not stated as the most stable discretization method, it is explicit
and therefore used in this work.

In (Kailath et al., 2000) it is stated that the observability of a system, de-
scribed in section 2.4.2, is not lost during discretization as long as the sampling
time is small enough.

2.4.4 Performance Measures
In order to determine the accuracy of the estimations, the root mean squared
error (RMSE) is calculated, see for example (Gustavsson, 2000). It is given
by

RMSE =
ı̂ıÙ 1

N

Nÿ

i=1
(x̂ ≠ x)2 (2.33)

where N is the number of data points, x̂ the estimated state and x the true
state. This method can thus only be used when the true value of the state is
known.
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3 Vehicle Model

This chapter derives the vehicle model which used in the estimations. The first
section derives the equations for the vehicle driveline while the second section
describes the external forces that acts on a vehicle during driving. The third
section presents the complete vehicle model and a simulation of the model is
presented in the last section.

3.1 Driveline Model
The vehicle driveline model used in this thesis is based on the model presented
in (Kiencke and Nielsen, 2003). The equations describing the gear box gear
ratios, e�ciencies and the transmission and final drive are from (Sahlholm,
2011), and hence the final vehicle model presented here becomes identical to
the model in (Sahlholm, 2011). Figure 3.1 shows the engine and driveline for
a rear wheel driven vehicle. The notations used in the following expressions
for the di�erent parts of the driveline are defined in figure 3.2, which is based
on the figures in (Kiencke and Nielsen, 2003) and (Sahlholm, 2011).

Propeller shaft

Engine Clutch Transmission
Wheel

Drive Shaft

Final Drive

Figure 3.1: Schematic figure over the vehicle driveline. This figure is based on the
figure in (Kiencke and Nielsen, 2003).

Engine

The net engine torque (Te) is the resultant torque from engine combustion
(Tcomb,e) after subtracting the torque from engine frictions (Tfric,e) and the
torque used by auxiliary system, such as powersteering and air processor,
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Engine

Tcomb,e

Tfric,e, Taux

Ïcs

Tc
Clutch

Ïc

Tt

Trans-
mission

Tfric,t

Ït

Tp

Ït

Tp

Prop-
shaft

Ïp

Tf

Final
drive

Tfric,f

Ïf

Td

Ïf

Td

Drive
shafts

Ïd

Tw
Wheels

Ïw

Tresistance

Figure 3.2: Block diagram over the di�erent parts of the driveline that is included
in the vehicle model, together with the notations for torques and
angles. The figure is based on the figures for the vehicle models
presented in (Kiencke and Nielsen, 2003) and (Sahlholm, 2011).

(Taux). The dynamics of the engine is given by Newton’s second law

JeÏ̈cs = Tcomb,e ≠ Tfric,e ≠ Taux ≠ Tc = Te ≠ Tc (3.1)

where Je is the engine moment of inertia and Ïcs is the angle of the crank
shaft.

Clutch

The clutch is used to disengage the crank shaft from the gearbox while shifting
gears. The clutch is assumed to be a friction clutch, which is usually found
on vehicles equipped with a manual gearbox. Furthermore it is assumed that
when the clutch is engaged there is no internal friction, and the model for the
clutch thus becomes

Tc = Tt (3.2)
Ï̇cs = Ï̇c (3.3)

Transmission

The transmission is one of the parts of the driveline that stands for a significant
reduction of the overall driveline e�ciency which cannot be neglected.
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3.1. Driveline Model

The friction loss torque in the transmission (Tfric,t) depends on the input
torque to the transmission and on the gear currently in use. For each gear
(t) there is a specific gear ratio, denoted it, and e�ciency, ÷t. In (Sahlholm,
2011), the friction loss is described as a percentage of the output torque (Tt).
The model for the friction loss in the transmission therefore becomes

Tfric,t = (1 ≠ ÷t) itTt (3.4)

The expression for the transmission can thus be written as

Tp = Ttit ≠ Tfric,t = Ttit ≠ (1 ≠ ÷t) itTt = Tt÷tit (3.5)
Ï̇c = itÏ̇t (3.6)

Propeller shaft

The propeller shaft connects the transmission to the final drive. Since there is
no interest in dynamics that occurs during heavy accelerations, the propeller
shaft is considered sti� and assumed to be without friction. Hence resulting
in

Tp = Tf (3.7)
Ïp = Ït (3.8)

Final drive

The propeller shaft is connected to the final drive which contains the di�er-
ential and is used to transfer the torque from the propeller shaft to the drive
shafts. The di�erential consists of a planetary gearbox and in the same way
as for the transmission, the gearbox does not have ideal e�ciency. Contrary
to the transmission, the final drive only has one gear, and thus a fixed gear
ratio and gear e�ciency. The friction loss for the final drive can in the same
way as for the transmission, and according to (Sahlholm, 2011), be written as

Tfric,f = (1 ≠ ÷f ) if Tf (3.9)

Using the model for the friction loss, the expression for the final drive can be
written as

Td = Tf if ≠ Tfric,e = Tf if ≠ (1 ≠ ÷t) if Tf = Tf if ÷f (3.10)
Ï̇p = if Ï̇f (3.11)

Drive Shaft

The driven wheels on each side of the vehicle are connected to the final drive
via the drive shafts. Since there is only interest in the dynamics when driving
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in longitudinal direction, it is assumed that the wheels on each side of the ve-
hicle are rotating with the same speed Ï̇w. Furthermore, as with the propeller
shaft, it is assumed that the drive shafts are sti�. This yields

Td = Tw (3.12)
Ïf = Ïd (3.13)

Wheels

The wheels included in this model are the driven wheels that transforms the
torque from the driveline to a force driving the vehicle. If there is no slipping
between the driven wheels and the road, the speed of the wheels is given by

Ïw = Ïd (3.14)

Ï̇w = v

rw
(3.15)

where rw is the wheel radius.
As described in (Sahlholm, 2011), when the vehicle is accelerating New-

ton’s second law of motion gives that

Ï̈wJw = Tw ≠ Tresistance = Tw ≠ Fresistancerw (3.16)

where Jw is the total moment of inertia of all the wheels and Trestistance is
the torque on the wheels originating from the external forces that acts on
the vehicle during driving. These forces is described in depth in section 3.2.
Equation (3.16) is used to link the external forces via the driven wheels to the
dynamics of the vehicle driveline.

3.2 External Forces
When considering longitudinal dynamics, the external forces acting on a vehi-
cle are according to (Kiencke and Nielsen, 2003) the two resistive forces from
the air drag (Fairdrag) and rolling resistance of the wheels (Froll). The force of
gravity due to road grade (Fgravity), can either be a retarding or accelerating
force depending on if the vehicle is travelling uphill or downhill. In figure 3.3
these forces are shown when the vehicle is travelling uphill on a road with
road grade –, together with the propulsive force from the vehicles powertrain
(Fpowertrain).

3.2.1 Airdrag
The model for the force from the air drag is described in section 2.2.2 and
includes information about the wind velocity. The estimators are as earlier de-
scribed supposed to use sensors commonplace on standard HDVs. Anemome-
ters are not included in the standard sensor range and are as noted di�cult
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Fairdrag

Fgravity

Fpowertrain
Froll –

Figure 3.3: The longitudinal forces acting on a vehicle traveling uphill on a road
with road grade –.

to install on HDVs without violating legal restrictions. Therefore, the wind
speed is not known for the estimators and the model is simplified by assuming
that vwind = 0. The resulting model becomes

Fairdrag = 1
2flacdAav2 (3.17)

Almost all modern HDVs are equipped with sensors that measures the
temperature and pressure of the ambient air. With this information, the air
mass density can be calculated using the ideal gas law, (Ekroth and Granryd,
2006).

Since the calculations of the nominal value of cd is based on a reference
area, only cd needs to be estimated and not Aa.

3.2.2 Rolling Resistance
The model for the rolling resistance is given in section 2.2.1 as

Froll = mg cos (–) cr ¥ mgcr (3.18)

As described in section 2.2.1, several models for cr has been presented in
the literature.

Since the air pressure in the wheels changes with the air temperature ac-
cording to the ideal gas law, (Ekroth and Granryd, 2006), it is reasonable to
use a tire model that includes a temperature dependence. This would how-
ever require that the tire temperature would either be measured or estimated
during driving in order to perform real-time estimations of the rolling resis-
tance. Some vehicles are equipped with air pressure sensors in the tires and
the temperature of the air inside the tires could be approximated using the
ideal gas law. However, not all vehicles are equipped with pressure sensors,
and in the cases where they are present the accuracy is seldom good enough
to determine the actual temperature. Obtaining accurate values of the tire
temperature is di�cult, and falls outside the scope of this thesis.

Several models for cr are presented in section 2.2.1 where the rolling re-
sistance includes a speed dependency. If a squared speed term is included,
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this term would be di�cult to separate from the air drag coe�cient since
both would include the same speed dependency. In the models where a linear
speed term is included, the literature has shown that typical values of the lin-
ear speed coe�cient are considerably lower than both the constant term and
squared speed term. It can on the other hand be argued that some driveline
losses can be modeled as viscous friction and a linear speed term therefore
should be included in the model. Here, they are consider small and are ne-
glected.

The simplest model for the rolling resistance is therefore used in this work,
i.e., ignoring velocity and temperature dependence and only considering the
force from the rolling resistance as a constant in the vehicle model. Another
reason for this choice is the demands on observability, discussed in sections
4.2.1 and 4.3.1.

The sum of the force from the rolling resistance and from the air drag
for di�erent vehicle masses and speeds are illustrated in figure 3.4. It can be
seen that the force from the rolling resistance for vehicles with large mass is
considerably higher than the air drag when travelling at moderate speeds. For
the typical case of a vehicle with a mass of 40 [t] travelling at 80 [km/h] on
flat road, the air drag corresponds to roughly 40% of the total resistive force
while the remaining 60% originates from the rolling resstance.
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for di�erent vehicle masses and speeds.

3.2.3 Change in Potential Energy
When the vehicle travels on a road with grade –, the force of gravity on the
vehicle is according to Newton’s second law

Fgravity = mg sin – (3.19)
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As described in section 2.3.2, information about the road grade and vehicle
mass is known from map data and from online estimations. This means that
Fgravity are also known.

3.3 Complete Vehicle Model
By using the equations from section 3.1 and 3.2 the following expression of
the vehicle motion can be derived by applying Newton’s second law of motion

v̇ = 1
ml

(Fpowertrain ≠ Fgravity ≠ Froll ≠ Fairdrag) (3.20)

where Fgravity, Froll and Fairdrag are defined in section 3.2. From the equations
in section 3.1 the force Fpowertrain becomes

Fpowertrain = itif ntnf

rw
Te (3.21)

and the mass ml becomes

ml = m + Jw

rw
2 + it

2if
2ntntJe

rw
2 (3.22)

This vehicle model is identical to the model presented in (Sahlholm, 2011).

3.4 Simulation
The behavior of the vehicle model (3.20) and the e�ect of incorrect parameter
values for cr and cd is investigated in this section. The vehicle acceleration
is simulated by using data from measurements of a real vehicle in motion
as input signals to the vehicle model. A description of the measurements is
given in section 5.1.2. By integration of the calculated acceleration signal the
simulated vehicle speed is obtained, which in turn is compared to the measured
speed of the real vehicle. The vehicle mass was obtained from measuring the
weight of the vehicle on a scale.

Six di�erent simulations are performed. In the first three simulations, cd is
set to its nominal value while a di�erent values of cr is used in each simulation.
In the last three simulations, cr is set to its nominal value while cd is changed.
Table 3.1 shows the di�erent parameter values used in the simulation.

The nominal value of cd is for vehicles similar to the tractor-semitrailer
combination shown in figure 1.2, a large tractor with wind deflectors and a
four meters high semitrailer.

Data from two di�erent measurements are used in simulations. Both data
sets were collected using the same vehicle driven on the same highway only
minutes apart, but on di�erent road segments and during slightly di�erent
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Table 3.1: Nominal parameter values and deviations used for the simulation.

Parameter Nominal value Deviation
cr 0.007 0.007(1 ± 0.05)
cd 0.6 0.6(1 ± 0.15)

wind conditions. In figure 3.5, four sub-figures shows the measured vehicle
speed (thick solid line) together with the simulation results for the three dif-
ferent parameter values: below nominal (dotted line), nominal (thin solid line)
and above nominal (dashed line). The values used are given in table 3.1. The
two upper sub-figures shows the speed for the first road segment, and the
lower two shows the speed for the second road segment. In the left sub-figures
for each segment has three di�erent values for cr been used while cd is set to
its nominal value. In the right sub-figures has the nominal value for cr been
used, while the value for cd is varied.
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(a) Segment 1. Variations of cr.
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(b) Segment 1. Variations of cd.
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(c) Segment 2. Variations of cr.
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(d) Segment 2. Variations of cd.

Figure 3.5: Measured speed (thick solid line) and simulated speed when using
di�erent values for c

r

and c
d

, below nominal (dotted line), nominal
(thin solid line) and above nominal (dashed line). The two upper
sub-figures corresponds to one road segment and the lower two to
another. The left and the right sub-figures shows the result for
variations in c

r

and c
d

, respectively.

The figures shows that for the first road segment, the nominal parameter
values results in a simulated speed close to the measured speed. Using these
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values, the simulated speed lies within 5 [km/h] of the measured speed.
For the second road segment, the simulation yields a considerably worse

result. Even parameter values below nominal results in a simulated speed well
below the measured. A possible cause of the poor match between simulated
and measured speed is that the model does not include information on wind
speed and direction. Other possible causes is discussed in section 5.2.1. Here
it is mainly noted that using this model and input signals, it is to be expected
that a large variation in cr and cd will be present, even during seemingly
similar environmental conditions. The cause might be due to occasional wind
gusts or simply that the model is not good enough.

When estimating parameters, a large di�erence in the systems dynamic
response for variations in one of the estimated parameters, compared to the
response for variations in another estimated parameter, is beneficial for obtain-
ing accurate estimates. Comparing the two sub-figures for each road segment,
it can be seen that for low variations in vehicle speed, the di�erent values of
cr and cd results in an almost identical dynamic response of the system.
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4 Parameter Estimation

In this chapter two di�erent methods for estimating the rolling resistance and
the air drag are presented. The first method is the Linear Estimator which is
based on a standard Kalman filter and uses a linearized vehicle model. The
second method, the Nonlinear Estimator, is based on an extended Kalman
filter and uses the nonlinear vehicle model.

The first section describes the process model based on the vehicle model
that is used by estimators. The second and third sections details the use of the
KF and EKF for the respective estimators, as well as investigates observability
and describes estimation algorithms. The last section is dedicated to tune the
filters in order to generate accurate estimations.

In case the generated estimations deviate too far from values of cr and cd

that are physically likely, the estimations are discarded and the nominal values
are used. Based on the discussed values of cd in section 2.2.2 the allowed range
for the air drag coe�cient is between 0.4 and 0.9. Values outside this region is
discarded. For the rolling resistance, the allowed range is between 0.004 and
0.025, based on the discussion in section 2.2.1.

4.1 Augmented Vehicle Model
The parameters cr and cd are estimated by augmenting the vehicle model
(3.20) with two states corresponding to the parameters. The parameters
are assumed to change slow in comparison to the vehicle speed and their
derivatives are therefore approximated to zero. The augmentation method is
described in (Gustavsson, 2000) and (Höckerdal, 2011) among others. Aug-
menting the vehicle model thus yields the following process model

S

WU
v̇(t)
ċr(t)
ċd(t)

T

XV

¸ ˚˙ ˝
ẋ(t)

=

S

WU

1
ml

(Fpowertrain ≠ Fgrav ≠ Froll ≠ Fairdrag)
0
0

T

XV

¸ ˚˙ ˝
f(x(t),u(t))

+

S

WU
Êv(t)
Êcr (t)
Êcd(t)

T

XV

¸ ˚˙ ˝
Ê(t)

(4.1)

The model is discretized using the Euler forward method, described in
equation (2.32). With subscript k to indicate discrete time, we get

S

WU
vk+1
cr,k+1
cd,k+1

T

XV

¸ ˚˙ ˝
xk

=

S

WU
vk + Ts

dvk
dt

cr,k

cdk

T

XV

¸ ˚˙ ˝
f(xk,uk)

+Ts

S

WU
Êv

k

Êcr
k

Êcd
k

T

XV

¸ ˚˙ ˝
Êk

(4.2)
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The process noise is denoted Êk is the process noise and the process noise
covariance becomes Qk = E[Êk].

The sample time Ts is multiplied to the noise Êk as a direct result of the
discretization. Since the actual noise at specific sample intervals is unknown,
the column vector Êk is approximated to zero in the Kalman filter, as described
in section 2.4.

4.1.1 Linearized Augmented Vehicle Model
In order to use a standard Kalman filter for parameter estimation, the aug-
mented vehicle model has to be linearized. The equilibrium point of the sys-
tem is denoted by subscript “eq”. The state relative to the equilibrium point
is denoted x̃, while ũ is the input relative to the equilibrium point. Thus
x̃ = x ≠ xeq and ũ = u ≠ ueq. The system is linearized by calculating the
Jacobian matrix of f(x(t), u(t)) in equation (4.1) with respect to the states
x and the inputs u, i.e. Jf (x, u). Written on standard state space form the
linear system becomes

˙̃x(t) = Ax̃(t) + Bũ(t) + Ê(t) (4.3)

The system matrix A is the columns of the Jacobian matrix corresponding to
the partial derivatives with respect to x, i.e., A = Jf (x) |xeq ,ueq . The control
matrix B is the columns from the partial derivatives with respect to u, i.e.
B = Jf (u) |xeq ,ueq . A detailed description of linearization is given in (Glad
and Ljung, 2006).

The model will be used for discrete Kalman filtering and it therefore has
to be discretized. Using the discretization method in equation (2.31) the state
transition matrix F can be approximated by F = I + ATs and the control
matrix by G = BTs, where Ts is the sampling time. This gives

x̃k+1 = Fx̃k + Gũk + Êk (4.4)

where

F =

S

WU
1 ≠ Ts

flaAa
ml,eq

cd,eqveq ≠Ts
mg

ml,eq
≠Ts

flaAa
2ml,eq

v2
eq

0 1 0
0 0 1

T

XV (4.5)

G =

S

WU
Ts

itif ÷t÷f

rwml,eq
≠Ts

mg
ml,eq

cos –eq

0 0
0 0

T

XV (4.6)

Since the dynamics of gear changes are not included in the model, this ap-
proach yields a piecewise linear system that is linear between the gear changes.
Di�erent linearization points are used for each gear and the matrices F and
G thus changes between gears but are otherwise constant.
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4.1.2 Measurement Equation
Since the augmented vehicle model is used in a Kalman filter a measurement
equation is needed (Sahlholm, 2011). In equation (4.2) the input signals are
the net engine torque Te, the air mass density fla, the vehicle mass m and
the road grade –. The only measured signal is the vehicle speed v, and the
measurement equation thus becomes

yk =
Ë
1 0 0

È

¸ ˚˙ ˝
H

S

WU
vk

cr,k

cd,k

T

XV

¸ ˚˙ ˝
xk

+
Ë
ev

k

È

¸˚˙˝
ek

(4.7)

The measurement noise ek is assumed to be WGN, and we get the measure-
ment noise variance Rk = E[e2

k].

4.2 Linear Estimator
In order to investigate the behaviour of the linearized vehicle model, a linear
estimator is designed. This section describes how a standard KF can be used
for the parameter estimation of the rolling resistance coe�cient and the air
drag coe�cient. Since the standard KF is linear, the linearized augmented
vehicle model (4.4) is used. The next section will however show that when the
vehicle model is augmented with two states and linearized, it is not observable,
and that only one parameter can be estimated.

It is therefore interesting to investigate if the parameters can be estimated
one at a time and if these estimations can be based on each other. An estima-
tion algorithm is presented, where the rolling resistance is estimated at low
speeds and the air drag at high speeds.

Hence the linearized system is used, all the input and measurement signals
to the KF are the variation from the respective equilibrium points, i.e.,

ũk = uk ≠ ueq (4.8)
ỹk = yk ≠ Hxeq (4.9)

The estimated states x̂ should therefore be interpreted as the estimated
variation from the equilibrium point xeq. When discussing the results from
the estimation, xeq will be added to x̂ to ease the analysis.

4.2.1 Observability for the Linearized Vehicle Model
In order to ensure that the estimated states from the KF converges towards
the true values, the observability of the linearized system (4.3) is investigated.
The observability criterion for linear systems is given in equation (2.26).
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Calculating the observability matrix for the linearized system system yields

O =

Q

ca
H

HA
HA2

R

db (4.10)

=

Q

cca

1 0 0
1

ml
Aaflcd,eqveq ≠mg ≠ 1

2ml
Aaflcd,eqv2

eq

1
m2

l
(Aaflcd,eqveq)2 ≠ 1

ml
Aaflcd,eqveqmg ≠ 1

2m2
l

1
Aaflcd,eqv

3/2
eq

22

R

ddb (4.11)

where A and H are defined in equations (4.3) and (4.7) respectively.
The rank of this 3 ◊ 3 matrix is 2. The matrix is hence rank deficient

and it can be concluded that the linearized augmented vehicle model is not
observable and should therefore not be used for estimation of the coe�cients.

This agrees with the results presented in (Höckerdal, 2011), where it is
stated that a linear system, on the form of the linearized vehicle model, can
only be augmented with as many states as there are measurement signals in
order to maintain observability. Since only one signal is measured in this case,
the default system can be augmented with only one state.

If the default vehicle model is augmented with one state, corresponding
to either cr or cd, it can be shown that the augmented system is observable
regardless of if cr or cd is chosen for estimation. The next section describes
an estimator where cr and cd are estimated one at a time.

4.2.2 Partial Model Augmentation and Estimation

Since the linearized vehicle model can only augmented to estimate one param-
eter, this section describes a method for estimating the rolling resistance and
air drag one at a time by using the linearized vehicle model and a standard
KF. This yields two di�erent modes of the estimator, denoted by subscript m.

Estimating the Air drag

The default nonlinear vehicle model (3.20) is augmented with a second state
corresponding to the air drag coe�cient cd and then linearized. The rolling
resistance is considered as a known constant and treated as an input signal to
the system, since it would otherwise be lost during the linearization.

Choosing the states x1 = v, x2 = cd, the nonlinear augmented system
becomes

ẋ1 = 1
ml

3
itif ntnf

rw
Te ≠ mg sin – ≠ mgcr ≠ 1

2Aaflax2x2
1

4
+ Êx1 (4.12)

ẋ2 = Êx2 (4.13)
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This expression is linearized and discretized according to the procedure de-
scribed in section 4.1.1, and writing it on the form of equation (4.4) gives

xk =
A

vk

cd,k

B

, uk =

Q

ca
Te,k

–k

cr

R

db (4.14)

Fm =
A

1 ≠ Ts
1

ml
Aaflax2,eqx1,eq ≠Ts

1
2ml

Aaflax2
1,eq

0 1

B

(4.15)

Gm =
A

Ts
itif ntnf

rwml
≠Ts

mg
ml

cos –eq ≠Ts
mg
ml

0 0 0

B

(4.16)

H =
1
1 0

2
(4.17)

The observability criterion in (2.26) is fulfilled for this system, and the
system can thus be used for parameter estimation. The condition number
defined in equation (2.29) becomes Ÿ = 1.24 · 101 which can be considered
fairly well-conditioned.

Estimating the Rolling Resistance

For estimation of the rolling resistance coe�cient cr, the case is similar. The
default nonlinear vehicle model (3.20) is augmented with a second state corre-
sponding to cr. Choosing the states x1 = v, x2 = cr, the nonlinear augmented
model becomes

ẋ1 = 1
ml

3
itif ntnf

rw
Te ≠ mg sin – ≠ mgx2 ≠ 1

2Aaflacdx2
1

4
+ Êx1 (4.18)

ẋ2 = Êx2 (4.19)

Linearizing and discretizing this expression in the same manner as earlier
yields

xk =
A

vk

cr,k

B

, uk =
A

Te,k

–

B

(4.20)

Fm =
A

1 ≠ Ts
1

ml
Aaflacdx1,eq ≠Ts

mg
ml

0 1

B

(4.21)

Gm =
A

Ts
itif ntnf

rwml
≠Ts

mg
ml

cos –eq

0 0

B

(4.22)

H =
1
1 0

2
(4.23)

Calculating the observability matrix (2.25) it can be shown that the observ-
ability matrix has full rank, and the system is hence observable and can be
used for estimation. The condition number defined in equation (2.29) becomes
Ÿ = 9.71, which is roughly the same magnitude as Ÿ for the air drag estimator.
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4.2.3 Estimation Algorithm

The force from the rolling resistance is as earlier discussed in section 3.2.2,
considerably higher than that from the air drag when driving at low speeds.
In such cases, a deviation of cd in equation (3.17) from its true value will only
have a small impact on the force from the air drag.

Hence, the rolling resistance is estimated at lower speeds, below 60 [km/h],
while the air drag is estimated at higher speeds, above 60 [km/h]. This corre-
sponds to the two di�erent modes for the estimator. During each mode, the
parameter that is not being estimated is set to a constant value. If neither
the rolling resistance or air drag has been estimated, for example when the
vehicle is started, both parameters are set to their nominal values, cd = 0.6,
cr = 0.007. Once a parameter has been estimated, the estimated value is used
during the estimation of the other parameter.

The algorithm can be summarized as

1. If v < 60 [km/h] estimate cr.

• If ĉd exists, use cd = ĉd

• Otherwise use cd = 0.6.

2. If v > 60 [km/h] estimate cd.

• If ĉr exists, use cr = ĉr

• Otherwise use cr = 0.007.

Consider the typical scenario where a vehicle is driven at low speeds to-
wards a highway. During this phase the rolling resistance is estimated and the
nominal value of cd is used. When the vehicle reaches the highway and the
speed is increased, the estimation of the rolling resistance is stopped and the
the air drag is estimated, based on the estimated value of the rolling resistance.

However, as described in section 2.2.1, the rolling resistance is dependent
on the tire temperature. In section 5.2.1 this dependency is shown through
experiments. Estimations of the air drag should therefore not be performed
based on estimations of the rolling resistance made with cool tires. By moni-
toring the vehicle speed and the time, estimations of the rolling resistance can
be made after the vehicle has been driven at high speed for at least one hour
and the stationary tire temperature thus has been reached.

Events not covered by the model, such as gear shifts and braking, are han-
dled as detailed in section 4.4.3. If any of the parameters converges to a value
outside the allowed region, the estimation is restarted with the corresponding
nominal value.
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4.3 Nonlinear Estimator
This section describes the use of an EKF for the parameter estimation. Since
the EKF is a nonlinear filter it used the nonlinear augmented vehicle model
(4.2).

4.3.1 Observability for the Nonlinear System
The observability matrix for nonlinear systems is given in equation (2.27) as

O =

Q

cccca

dh
dLf h

...
dLn≠1

f h

R

ddddb
(4.24)

Calculating the observability matrix for the nonlinear augmented vehicle
model (4.1) results in quite cumbersome expressions and are not given ex-
plicitly here. By performing the calculations and applying the observability
criterion (2.28) it can however be shown that the system is observable as long
as the vehicle speed is nonzero.

To further investigate the feasibility to use an EKF, the detectability of the
linearized system (4.3) is calculated. The definition of detectability is given in
section 2.4.2. The observability matrix for the linearized system is calculated
in section 4.2.1, see equation (4.11). There, it is shown that the matrix only
has two linearly independent equations. However, it can also be seen that
the none of the modes are both unstable and unobservable. Therefore, the
necessary detectability criterion is fulfilled and an EKF can be applied.

4.3.2 Algorithm
The nonlinear estimator generate estimations of both coe�cients simultane-
ously and continuously as long as the vehicle speed is higher than 60 [km/h].
Demands on input signals and events such as gear shifts and breaking are
managed through adaption of the process noise covariance matrix, as detailed
in section 4.4.3. If any of the estimated parameters converges to a value out-
side the allowed region, these values are discarded. The estimation is then
restarted and initiated with the nominal values.
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4.4 Filter Tuning

Two of the main challenges that comes with this type of parameter estimations
are that, firstly, the physically correct covariance matrix Q and variance R are
not known. Instead they becomes tuning parameters in order to tune the filters
to generate accurate estimations. Secondly, in order to tune the filter, the the
true values of cr and cd must be known. This is generally not the case.

The process noise covariance Q is chosen as a diagonal matrix in order
to reduce the number of tuning parameters. Together with the measurement
noise variance R this gives four tuning parameters: the process noise variance
for v̂, ĉr, ĉd and the measurement noise variance for v. As earlier described in
section 2.4.1, the initial value of P also e�ects the filter performance.

The filter tuning is performed in two steps. In the first step, the vehicle
model is used to simulate the input and measurement signal. In the second
step, a coast down test is performed, similar to the ones described in 2.3.1.
The steps are described in sections 4.4.1 and 4.4.2, respectively. The purpose
of the two steps is to tune Q and R in order to generate accurate estimations.

4.4.1 Simulation method

The basic concept of the simulation method for the filter tuning is shown in
figure 4.1.

Vehicle Model

WGN

Estimator

Te,sim vsim

v̂
ĉr

ĉd

Figure 4.1: The vehicle model is used to generate a torque signal T
e,sim

and a
speed signal v

sim

. By using these as input signals to the estimator, the
filters can be tuned in order generate accurate estimations.

From the vehicle model (3.20), the engine torque signal is calculated based
on the nominal values for cr and cd. The torque signal is then given as input
to the vehicle model and the vehicle speed is calculated. In other words, it is
assumed that the vehicle model is a perfect description of the true system by
creating input signals based on the model itself. The true values of cr and cd

are therefore known.
When driving at constant speed, the engine torque based on the model
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becomes

Te,sim = rw

itif ntnf

3
mg sin(–) ≠ mgcr ≠ 1

2flaAacdv2
4

(4.25)

where the nominal values for cr and cd is used. For the simulation are two
di�erent torque signals created, based on equation (4.25), T sin

e,sim and T step
e,sim,

where

T sine
e,sim =

Y
]

[
Te,sim + sin (Êt) if t =

Ë
24fi

Ê , 44fi
Ê

È
, Ê = 1

4fi

Te,sim otherwise
(4.26)

T step
e,sim =

I
0 if t = [125, 150]
Te,sim otherwise

(4.27)

To the simulated speed signal, WGN is added and is together with the
generated torque signal given as measurement and input signals to the esti-
mators, respectively. Since the true values for the parameters to be estimated
are known, Q and R can be tuned in order to obtain as accurate estimates as
possible.

The estimation result for torque signals T sine
e,sim and T step

e,sim when used with
the linear estimator are shown in figure 4.2.
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(a) Input signal T sine
e,sim.
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(b) Input signal T step
e,sim.

Figure 4.2: Simulation results for the linear estimator. The estimations of ĉ
r

and
ĉ

d

are done one at a time, based on the nominal value of the
parameter that is not estimated.

The first part of the figures shows the vehicle speed while the second and
third part shows the estimated states, ĉr and ĉd. The corresponding elements
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of the estimated error covariance matrix Pk are not shown in the figure. Here
it is only stated that P(2,2) quickly converges to a low value, close to 5 · 10≠6

if cr is estimated and 3 · 10≠2 if cd is estimated, regardless of input signal.
As described in section 4.2, the linear estimator only estimates one parameter
at a time, during which the nominal value for the other parameter is used.
During these simulation, the two parameters have been estimated using the
same input and measurement signals.

The result when using the nonlinear estimator with the two torque signals
is shown in figure 4.3 where also the diagonal elements of Pk corresponding to
ĉr and ĉd is included.
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0 200 400 600 800 1000
20

40

60

80

100
v
[k
m
/
h
]

0 200 400 600 800 1000
6.8

7

7.2
x 10

−3
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Figure 4.3: Results from noninear estimator used with input signal T sine

e,sim

,
sub-figure (a), and T step

e,sim

, sub-figure (b).
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Both the linear and nonlinear estimator are able to generate accurate es-
timates for the two torque inputs.

When the speed variation is introduced, a reaction in the estimated states
can be noted. For the nonlinear estimator, a reduction in the magnitude of
the estimated error variance for both parameters can be noted when the speed
variation occurs, indicating that the estimator becomes more certain of the
estimations.

A di�erence when comparing the linear and the nonlinear estimator can
be found when studying the curve profile of the estimated states. In the
nonlinear case, after the speed variation is introduced, ĉr displays a linear
decrease while ĉd shows a linear increase. The estimated values are still close
to the true values, but the figures clearly indicate how ĉr and ĉd complement
each other – looking almost like each others mirror images.

The results from the simulations are given in table 4.1, together with
the RMSE value for each estimated parameter. As seen in the table, all
estimations are accurate and the RMSE value is low.

Table 4.1: Kf and EKF estimates of c
r

and c
d

and corresponding RLSE value,
based on simulated signals

Parameter Torque type Estimated value RMSE
ĉKF

r sine 0.007001 6.9968 · 10≠3

ĉKF
d sine 0.6004 5.9945 · 10≠1

ĉKF
r step 0.006999 6.9908 · 10≠3

ĉKF
d step 0.6012 5.9819 · 10≠1

ĉEKF
r sine 0.007006 1.3381 · 10≠5

ĉEKF
d sine 0.5993 1.6201 · 10≠3

ĉEKF
r step 0.006991 6.3160 · 10≠6

ĉEKF
d step 0.6011 7.6795 · 10≠4

As mentioned above, when using the KF to estimate the rolling resistance,
the estimated error covariance P(2,2) quickly converges to a considerably low
value, close to 5 · 10≠6. The e�ect of low values on Pk is discussed in section
2.4.1. Although it is preferable that the estimated value is close to the true
value, a low value of Pk can have drawbacks. If the value of the true state for
some reason would change, a low value of Pk could cause the filter to react
slower to that change than desired. In fact, the convergence could be so low
that it would in practice barely be noticeable.

Several practical issues can cause such behaviour of the true value of the
rolling resistance, for example if the road surface changes from asphalt to
gravel, the road temperature suddenly changes due to variations in weather
condition etc. To account for such events, a lower limit is set to P(2,2). The
limit is chosen to 1 · 10≠5 and when this value is reach, P(2,2) is increased to
1 · 10≠4. The e�ect is shown in figure 4.4. At time t = 100 [s] cr is increased
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Figure 4.4: Estimated rolling resistance and corresponding element of P . The
solid line shows the result when a lower limit is set for P(2,2) and the
dashed line shows the results when any value of P(2,2) is allowed.

from its nominal value 0.007 to 0.008. A constant simulated torque signal is
used causing the vehicle speed to decrease when cr is increased. The first part
of the figure shows ĉr. The dashed line shows the result when the P(2,2) is
allowed to converge at any value, while the solid line shows the result when
the boundary value is used. The second part shows a close up on P(2,2) for
both cases. From the figure it can be seen that as soon P(2,2) reaches the limit
and is increased, the estimated state quickly response. The limit is chosen to
obtain as fast convergence as possible while keeping the ripple in ĉr as low
as possible. If the limit of P(2,2) is set to 1 · 10≠5 and is not increased once
reaching the limit, the estimated state converges slowly. If the limit instead
is set to 1 · 10≠4 the noise originating from the measurement signal is less
suppressed.

Although P(2,2) converges to a low value, it is still high enough for the
filter to respond to changes without the limit.

4.4.2 Coast Down Test
In order to further tune the filters, a coast down test was performed similar
to the ones described in section 2.3.1. A test vehicle was driven on flat road
towards a downhill segment with a constant speed of 60 [km/h]. Upon entering
the downhill segment, the driveline was disengaged and the vehicle was allowed
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to freely coast downhill. This caused the vehicle to accelerate due to the its
mass and the negative road grade. When the topography of the road changed
and an uphill segment was reached, the speed reduced until it reached 60
[km/h] and the test was ended. During the test, signals was measured and
stored as detailed in section 5.1.2.

Based on the measured signals, an o�ine least-squares estimation (LSE)
of cr and cd is performed. For details about LSE, see for example (Kailath
et al., 2000). Writing the vehicle model (3.20) on standard LSE format yields

5
itif ntnf

rw
Te ≠ v̇ml ≠ mg sin –

6
=

51
2flaAav2, mg

6 C
ĉLSE

d

ĉLSE
r

D

(4.28)

The acceleration signal is determined by di�erentiating the measured speed
of the vehicle. Since the LSE does not include any tuning steps, the resulting
parameter values can be seen as the “true” values. Of course, the result is still
be a�ected by wind and other environmental conditions, but can be regarded
as good indicators when tuning the KF and EKF. The results from the LSE
are shown in table 4.2.

Based on the results from the simulations in the last section, Q and R are
further tuned in order to obtain accurate estimations compared to the results
from the LSE. Due to the large speed variation during the coast down test,
only the nonlinear estimator is used for the parameter estimation. For the
linear estimator, the speed variation is too large for the linearization to be
valid.

Using the nonlinear estimator with the further tuned Q and R on the same
data set as the LSE yields the results shown in figure 4.5. The first part of
the figure shows the measured speed. The second part shows the road grade.
The third and fourth parts of the figure shows the estimated states ĉr and
ĉd, while the two last parts shows the corresponding estimated error variances
P(2,2) and P(3,3). The estimation starts at t = 180 [s], and from the figure
it can be seen that both estimated states converges once system is subject
to a high excitation. When the vehicle is coasting at constant speed before
the downhill segment, only a small reduction in the magnitude of P(3,3) can
be noted. It is not until the vehicle is travelling downhill and a large speed
variation is introduced that the magnitude of P(3,3) is considerably reduced.
Studying the plots of the estimated states also shows that it is the large speed
variation that causes the states to converge.

Ideally, the vehicle should have been let to continue to coast until it reached
a lower speed, preferably around 20 [km/h]. Since the mass of a HDV is large,
it needs to cover a long distance in order to reduce the speed when traveling on
roads with moderate grades. Additionally, the test was performed on an open
road with tra�c. Finding a situation ideal for coast down tests is di�cult,
and the figure shows the best case obtained.

The estimated parameter values from the nonlinear estimator are given in
table 4.2, together with the RMSE value for each parameter when assuming
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Figure 4.5: EKF estimation results from coast down test. The measured speed is
shown together with the estimated parameters and corresponding
elements of the estimated error covariance matrix.
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that the LSE generated the true values. It can be seen that after tuning, the
estimator was able to generate accurate results when comparing to the LSE
estimation.

Table 4.2: EKF and LSE estimates of c
r

and c
d

and corresponding RMSE values.

Parameter Estimated value RMSE
ĉLSE

r 0.007182 0.007353
ĉEKF

r 0.007192
ĉLSE

d 0.6167 0.7351
ĉEKF

d 0.6154

4.4.3 Selection of Q, R and P

Based on the simulation method and on training data from typical driving
scenarios, the following process noise covariance, measurement noise variance
and initial value for the estimated error covariance is selected.

For the linear estimator when estimating cr, the Qk, Rk and Pk,0 are chosen
as

QKF,cr
k =

A
1 · 102 0

0 1 · 10≠4

B

RKF,cr
k = 1 · 10≠4

P KF,cr
k,0 =

A
1 · 101 0

0 1 · 10≠1

B

When estimating cd, the following selections were made

QKF,cd
k =

A
1 · 102 0

0 1 · 10≠5

B

RKF,cd
k = 1 · 10≠4

P KF,cd
k,0 =

A
1 · 101 0

0 1 · 10≠1

B

For the nonlinear estimator, the following values was selected based on the
simulation method, the coast-down test and on training data from typical
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driving scenarios

QEKF
k =

Q

ca
1 · 102 0 0

0 1 · 10≠6 0
0 0 1 · 10≠5

R

db

REKF
k = 1 · 10≠4

P EKF
k,0 =

Q

ca
1 · 10≠2 0 0

0 1 · 10≠3 0
0 0 1 · 101

R

db

Since neither the dynamics of gear shifts or braking is included in the vehicle
model, estimations should not be performed during these events. To account
for this, the same method as described in (Sahlholm, 2011) is used. The
process noise variance for the speed state is increased, in this case to 1 · 1010,
causing the filter to act with a large uncertainty on the vehicle model with
the e�ect that the estimations of cr and cd are hold. It is assumed that sharp
turns, also not covered by the model, occurs together with gear shifts, breaking
or when driving at low speeds, below 30 [km/h]. Therefore, no estimations are
performed when driving below 30 [km/h]. Analysis the steering wheel angle
or vehicle yaw rate is left out in order to minimize the signal dependency.
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5 Experiments

This chapter describes the experiments that has been conducted in order to
collect training data and investigate the performance of the estimators. The
first section describes the experimental setup and details the equipment used
and signals measured. The second section describes the results from using the
estimation methods on logged data.

5.1 Experimental Setup
Three di�erent test vehicles was used during a total of three experiments. The
experiments were conducted by driving the test vehicles on public roads and
measuring important signals. These are described in section 5.1.2.

The experiments were conducted on the same roads, but under di�erent
environmental conditions. Some in conditions with both high wind gusts and
windless situations, as well as on both dry and wet asphalt.

Since road testing is quite time consuming, none of the di�erent vehicle
configurations was driven on the same day as another. Consequently, the
environmental conditions were not the same during the di�erent experiments.
The estimation results will hence depend on both the test vehicle but also on
the environmental conditions at the time of the experiment.

In order to investigate how large excitation of the system is required to gen-
erate accurate estimations, the vehicles were driven in three di�erent modes.
The purpose is to obtain data from di�erent variations in vehicle speed and to
be able to detect if the estimations are sensitive to the behaviour of the engine
torque signal. A step-like mode was used where the speed was kept constant
for two minutes, and then changed with 10 [km/h]. The vehicles were driven
at the new speed for another two minutes where upon the speed was changed
again. Another mode was used where the acceleration pedal was used to gen-
erate an engine torque signal that resembles of a square wave with di�erent
frequencies and amplitudes. This caused the vehicle speed to smoothly vary
with 1 to 10 [km/h]. Additionally the vehicles were driven at 80 [km/h] for
longer time periods, typically around 20 minutes, in order to obtain data from
more normal driving scenarios.

5.1.1 Test Vehicles
Since the important parameters of a HDV can display a large variation between
di�erent vehicle configurations, three di�erent test vehicle configurations was

43



Experiments

used during the experiments. These are shown in figure 5.1 and a general
description for each vehicle is given in table 5.1.

It is not di�cult to imagine that the air drag coe�cient for the three test
vehicles are di�erent. Since the value of the coe�cient is as earlier described
based on the same standard area for all the test vehicles, a smaller value
of the estimated cd is expected for vehicle C, since its true area is smaller.
The coe�cient of the rolling resistance is on the other hand more di�cult to
anticipate. As described in section 2.2.1 has earlier work indicated that cr is
not dependent on the number of wheel axles.

Figure 5.1: The three vehicle configurations that was used in the experiments. A
tractor-semitrailer combination (test vehicle A), a box-body truck
(test vehicle B) and a smaller distribution truck (test vehicle C).
Images courtesy of Scania CV AB.

Table 5.1: General information on the test vehicles used for the experiments.

Vehicle Type Configuration Mass [t]
A R480 LA 4x2 MNA Tractor-semitrailer 37.5
B R480 LB 6x2*4 MLB Truck 21.5
C P280 LB 4x2 MNB Distribution truck 12.5

5.1.2 Measured Signals
All the signals that are used by the estimators are broadcast on the vehicles
CAN-bus. During the experiments these signals were logged using a PC laptop
connected to the network via a CAN interface card. This allowed for o�ine
estimations during the development and evaluation of the estimators.

The input signals to the estimators are as described in section 4.1.2, the
net engine torque Te, the ambient air temperature and pressure that are used
to calculate the air mass density fla, the vehicle mass m and road grade –.
The current gear is also broadcast and used together with look-up tables to
determine the gear ratio it and gear e�ciency ÷t. The gear ratio and e�ciency
for the final drive, if and ÷f , are also available on the network. The broadcast
vehicle mass is based on estimations with an accuracy often reasonable close
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to the correct value. The mass used in the experiments are obtained from
measuring the weight using a scale. The net engine torque is given as a
percentage of the maximum torque for that particular vehicle. The measured
vehicle speed originates from the angular velocity of the front axle, which is
accurate assuming that the are no slipping between tires and road.

As described in section 4.4.3, other signals are used to determine the pro-
cess noise covariance matrix of the estimators. Since the vehicle model does
not include dynamics when brakes are used, the brake pedal position is mon-
itored. Estimating the actual force from the brake is di�cult and extending
the model with brake dynamics is left for future work. The model does not
include gear changes either, and a signal reporting when gear shifts occurs is
therefore monitored.

Furthermore, the estimations of cr and cd are as earlier described depen-
dent on weather conditions, such as rain and wind. The Swedish Transport
Administration has several weather stations placed alongside roads in Sweden
in a project called the Road Weather Information. Data from these weather
stations are available from the Swedish Transport Administration homepage1.
These data are updated every thirty minutes and gives information about air
and road temperature as well as mean and maximum wind speed and wind
direction. This information has been useful when evaluating the estimators.

5.2 Experimental Results
The performance of the estimators are evaluated by analyzing the results
from the road tests. The first section investigates the linear estimator and the
nonlinear estimator is investigated in the second section.

5.2.1 Linear Estimator
As described in section 4.2, the linear estimator uses a standard KF and
estimates only one parameter at a time. The rolling resistance at lower speeds
and the air drag at higher. The performance is evaluated by using data from
a typical driving scenario where the driver starts driving on small roads at
lower speeds for a short period of time and thereafter driven on top gear on a
highway at 80 [km/h] for a longer period of time, to finally turn of the highway
and drive on smaller roads again.

Test vehicles B and C was used for the experiments studied in this section.
The experiment were divided into the three following steps,

• Step 1. Immediately after start, the vehicles were driven on a straight
country road at 50 [km/h]. The tire temperature was therefore equal to
the ambient air temperature when the tests were started, close to 10¶

1
http://trafikinfo.trafikverket.se/litmenu/litmenu.htm#id=380. Accessed

March 1, 2012
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Celsius. During the discussion this is referred to as driving with cool
tires. The vehicles were driven at both directions on the same road.
The first direction had a negative road grade and this road segment is
therefore denoted the downhill road segment, the opposite direction is
naturally denoted the uphill road segment. The vehicles were driven at
each direction for close to 2 minutes.

• Step 2. The vehicles were driven on a highway at 60 to 85 [km/h] for
one hour, allowing the temperature in the tires to reach stationary value.
Here, the di�erent driving modes described in section 5.1 was used.

• Step 3. Immediately after the vehicles were driven o� the highway,
they were once again driven on the uphill and downhill road segments
on the country road at 50 [km/h], but now with a tire temperature
corresponding to highway driving. This is referred to as driving with
warm tires.

Figures 5.2 and 5.3 shows the interesting signals when driving with cool tires
on both the downhill and the uphill road segment. The first figure shows
the signals for test vehicle B and the second figure for test vehicle C. As the
two experiments were not conducted on the same day but the environmental
conditions, such as road and wind conditions and temperature, were similar.

The first part of the figures shows the measured vehicle speed while the
second part shows the engine torque, as a percentage of the maximum torque
available from the engine. The third part shows the road grade. Since the
vehicles were driven on the same road the road grade signals are identical,
but the engine torque signals di�ers mainly due to the di�erence in mass and
engine power. The fourth part of the figure shows the current gear (solid line)
and whether the vehicle is braking or not (dashed line). The estimated rolling
resistance ĉr is shown in the last part of the figure. The e�ect from braking
and shifting are highly noticeable, as the estimation is paused during those
events, as well as when driving below 30 [km/h].

A close up on the estimated rolling resistance for the two vehicles is given
in figure 5.4. From these figures an interesting observation can be made. It can
be seen that ĉr quickly converges to seemingly reasonable values. However,
it can also be noted that ĉr converges to a higher value when driving on the
downhill road segment compared to when driving on the uphill road segment.
Test vehicle B uses di�erent gears when driving in the two directions while
test vehicle C uses the same gear in both direction. Despite this, the same
behavior of ĉr is noted for both experiments.

The source of this uncertainty can likely be found in the engine torque
signal. Since the vehicles are traveling slightly downhill in the first segment
and slightly uphill in the second, the force Fgravity is negative in the first
segment and positive in the second. This results in a di�erence in the engine
torque required to keep steady speed between the two segments.
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Figure 5.2: Signals of interest for test vehicle B when driving with cool tires on
the downhill road segment (t = [50 100] [s]) and the uphill road
segment (t = [175 225]) [s]. The vehicle is turned around in a
roundabout during t = [100 175] [s]. Estimation generated by the
linear estimator. P(2,2) converges towards 1.8 · 10≠7.
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Figure 5.3: Signals of interest for test vehicle C when driving with cool tires on
the downhill road segment (t = [75 150] [s]) and the uphill road
segment (t = [225 275] [s]. The vehicle is turned around in a
roundabout during t = [150 225] [s]. Estimation generated by the
linear estimator. P(2,2) converges towards 2.0 · 10≠7.
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(b) Test vehicle C.

Figure 5.4: A closer look at ĉ
r

for test vehicles B and C from figures 5.2 and 5.3
respectively. The estimations are generated by the linear estimator
while the vehicles are driven on the downhill and uphill road segment
with cool tires.

The engine torque signal is based on an estimation and does not describe
the actual torque with perfect accuracy. Furthermore, it is given as a percent-
age of the maximum torque, and consequently decreases the resolution of the
estimation with higher values of the maximum torque. Since the maximum
torque of the engine is known, the torque signal is most reliable when the
engine is producing maximal torque. It is therefore not impossible that the
estimated rolling resistance from the uphill road segment is the most accurate
of the two.

The results from the estimations with both cold and warm tires for the
two vehicles are given in table 5.2. The warm tires corresponds to the tire
temperature after the one hour highway drive. The table shows the estimated
values for both the downhill and uphill road segment.

As seen in the table, it is only when test vehicle C is driven with warm
tires that the estimations generated on the downhill road segment are lower
than for the uphill road segment. A possible cause of this behaviour might be
a high wind speed during the experiment.
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Table 5.2: Estimation results of c
r

generated by the linear estimator.

Test vehicle Tire condition ĉr (downhill segment) ĉr (uphill segment)
B cold 0.0100 0.0092
B warm 0.0057 0.0055
C cold 0.0100 0.0097
C warm 0.0068 0.0082

Comparing the estimated rolling resistance with cold and warm tires, it
can be seen that a higher tire temperature yields a lower value of ĉr. This
corresponds well with the results in (Sandberg, 2001) and (Wong, 2001) as
discussed in section 3.2.2.

Because of this temperature dependency, it can be concluded that the
problem stated for the estimation algorithm in section 4.2.3 is reasonable. It
is di�cult to estimate cd based on earlier estimates of cr, generated at a time
when the tire temperature was di�erent from the tire temperature at which
the estimation of cd is performed.

Another conclusion can be drawn from the values in table 5.2. The es-
timated value of cr is almost identical for the two test vehicles when driven
with cool tires, despite the di�erence in number of wheel axles. This agrees
with the earlier presented work in section 2.2.1. When driving with warm
tires the estimated value is however di�erent for the two vehicles. Once again,
the cause might be wind speeds for the experiment with test vehicle C with
warm tires.

Figure 5.5 shows the interesting signals for test vehicles B and C, when
driving on the highway segment and estimating the air drag cd. No gearshifts
or braking occurs during the presented road segments. The first part of the
figure shows the measured speed (solid line) and the simulated speed (dashed
line). The second part shows the net engine torque while the estimations of
cd is shown in the last. The simulated speed is based on the estimated value
of cd. These estimations are based on the nominal value for cr.

As seen in the figures, ĉd converges to reasonable values for both test
vehicles. As discussed in section 3.4, the nominal value of cd = 0.6 is valid
for the larger test vehicles A and B, while a lower value of cd is expected
for test vehicle C since the its actual area is smaller than the standardized
area. By comparing the two figures, it can be noted that both the speed
and the engine torque signal for test vehicle B displays a larger variation in
magnitude compared to the signals for test vehicle C. The speed for the latter
is close to constant and the engine torque is kept around 50 %. Regardless of
this variation between the two experiments, the estimator is able to generate
accurate results. The variation in the engine torque for vehicle B causes
however the estimation of cd to converge slower. For both cases converges
P(2,2) quickly towards 1 · 10≠4.
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(a) Test vehicle B. At t = 750 s has ĉd converged to 0.60.
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(b) Test vehicle C. At t = 310 s has ĉd converged to 0.48.

Figure 5.5: Signals of interest when using the linear estimator on test vehicle B
(sub-figure a) and C (sub-figure b) when estimating c

d

.
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5.2.2 Nonlinear Estimator

The nonlinear estimator is investigated using the same experimental data
as the linear estimator in the previous section. Additionally, test vehicle A
is used. The experiments with this test vehicle is not used for the linear
estimator, since the vehicle was not driven on the downhill and uphill road
segment.

Two di�erent scenarios of the estimations are shown in figures 5.6 for test
vehicle C and 5.7 for test vehicle A. The first part of the figures shows the
measured and simulated speed. The engine torque is shown in the second
part. Part three and four shows the estimated rolling resistance and air drag,
while the corresponding elements of the estimated error covariance matrix are
shown in the last two parts of the figure. The simulation of the vehicle speed
shown in the first part of the figure is performed o�ine and is based on the
values of the estimated states at the last time step shown in the figures.

As seen from the first figure, both the vehicle speed and engine torque
are close to constant. Although the estimated states converges to reasonable
values, the magnitude of P(2,2) is barely reduced when compared with the
simulations in section 4.4.1.

The second figure shows the opposite case. The vehicle speed is close to
80 [km/h] for the majority of the presented road segment, apart from at time
t = 200 [s] and t = 400 [s] where the speed is increased with 5 [km/h] for
40 seconds and 10 [km/h] for 80 seconds, respectively. In this figure it can
be seen that the estimated states show no sign of convergence, but rather
a divergence. The estimated rolling resistance decreases over time as the
estimated air drag increases. Neither one of the estimated states show any
sign of reaching a boundary value. The magnitude of P(2,2) and P(3,3) is on
the other hand reduced from the initial values and behaves similar to the
simulations in section 4.4.1. It can be noted that the magnitude is further
decreased during the larger speed variation. Although the estimated states
does not converge, the corresponding modes of the system are most likely
observable since neither P(2,2) or P(3,3) increases linearly. By studying P(2,2) for
vehicle A and B it can be seen that the the magnitude is reduced considerably
for vehicle A compared to vehicle B.

However, the di�erence between the simulated speed and the measured
speed is in both figures relatively small, especially when comparing to the
vehicle model simulation in section 3.4. This indicates that the sum of the
forces from the estimated rolling resistance and air drag are accurate, although
they are not individually correct.

During the coast down test described in section 4.4.2, the nonlinear esti-
mator was able to generate accurate results for both cr and cd while the mag-
nitude of P(2,2) and P(3,3) was considerably reduced from the initial values.
Compared to the more common driving scenarios presented in this section,
the two major di�erences are in the vehicle speed and the engine torque sig-

52



5.2. Experimental Results

nals. The speed variation during the coast down test is considerably higher
than those presented here. The torque signal in figure 5.6 is without larger
variations, while the torque signal in figure 5.7 is uneven and reaches all val-
ues between 0 to 100 %. During the coast down test the transmission was in
neutral and no engine torque was transferred through the powertrain.

From this it can be concluded that in order to generate accurate estima-
tions, a speed variation higher than that found during normal driving situa-
tions is required.
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Figure 5.6: Signals of interest for the fist road segment with test vehicle C. The
estimated states shows a convergence at t = 300 [s]. However, only a
small reduction of the magnitude of P can be noted.
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Figure 5.7: Signals of interest for the fist road segment with test vehicle A. The
estimated states ĉ

r

and ĉ
d

show no sign of convergence to values close
to the nominal values.
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6 Conclusions and Future
Work

This chapter presents the conclusions that can be drawn based on the simu-
lations and experiments of the proposed estimations methods and describes
areas for future work.

6.1 Conclusions

A vehicle model has been developed in Chapter 3 which is used by the sug-
gested estimators to generate estimation of the rolling resistance and the air
drag. Simulations have shown that accurate values of the estimated param-
eters are of great importance to obtain a valid model. The presented model
is commonly used in the field of automotive control and accurate parameter
values are important to achieve good vehicle control.

As described in Chapter 4, two di�erent Kalman filters have been used for
the estimations, one being the standard Kalman filter which uses a linearized
vehicle model. The other is an extended Kalman filter which uses the default
nonlinear model. It has been shown that due to demands on observability,
the linearized model can not be used to estimate both parameters at the same
time. Therefore, an estimator based on a standard Kalman filter is proposed,
which estimates one parameter at a time, basing the estimates on each other.

From the experimental results in Chapter 5 it has been shown that when
estimating one parameter accurate results can be obtained. However it is
also shown that the temperature dependency of the rolling resistance makes it
di�cult to base estimations on each other in practice. The estimations of the
air drag should only be based on an earlier estimate of the rolling resistance
if both the following conditions are true: The estimated rolling resistance is
generated at a low speed, during a time when the tire temperature is equal or
close to the corresponding stationary temperature when driving at high speed.
A real case would be to perform the estimation of the rolling resistance shortly
after the vehicle has left a highway after being driven there for one hour or
more.

Additionally, the number of wheel axles has not shown any influence on
the total force from the rolling resistance in the conducted experiments. This
corresponds well with the presented previous work, as does the temperature
dependency of the rolling resistance.
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Further in Chapter 5, it has been shown that the extended Kalman filter
is able to generate accurate estimations. However, due to the complemen-
tary nature of the parameters discovered during the simulations, the extended
Kalman filter is only able to do so if a large speed variation is present. For
the presented coast down test the estimates show accurate convergence, while
no convergence was found for more common driving scenarios. In practice, it
is di�cult to find speed variations that are large enough, since the model is
not valid during hard accelerations and braking.

The purpose of the project is as stated in section 1.2 to suggest methods
for online estimation of the air drag and rolling resistance. With the above,
the purpose has been partly fulfilled since the suggested methods, mainly
the nonlinear estimator, works during the discussed conditions. In practice
however, it has been shown that it is di�cult to find situations ideal for the
estimations. The main thesis contribution has been to describe possible usage
of the standard and the extended Kalman filter to solve the problem.

6.2 Future Work
Other nonlinear filters than the extended Kalman filter used in this thesis,
such as a particle filter, may be more suitable for the estimation problem. In
this work, the possibilities to use di�erent Kalman filters was investigated.
They are commonly used and are relatively easy to implement and requires
reasonable system resources. Investigation of other methods, for example the
particle filter, is proposed for future work.

Variations in rolling resistance and air drag are two error sources for func-
tions controlling the vehicle. However, the wind speed, that has been neglected
in this work, most likely stands for a significant error source as well. Estima-
tions of the wind speed and direction are therefore suggested for future work.
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