
An E-commerce Platform Evaluation based
on the DoSAM Framework

O S K A R L I N D

Degree thesis in Computer Technology
Stockholm, Sweden 2012

An E-commerce Platform Evaluation based
on the DoSAM Framework

Utvärdering av e-handelsplattformar med
ramverket DoSAM

O S K A R L I N D

Degree thesis in Computer Technology (15 credits)
at Softronic AB

Royal Institute of Technology year 2012
Supervisor at Softronic AB was Jimmy Thulin

Examiner was Reine Bergström

TRITA-STH 2012:44

KTH School of Technology and Health
KTH Haninge

Marinens väg 30
SE-136 40 Handen

http://www.kth.se/sth

Abstract

The goal of the thesis work was to give Softronic AB, a management and IT consulting company, an
overview of strengths and weaknesses of the four content management systems Magento CE 1.6.2,
Episerver Commerce 1 R2 SP1, Wipcore eNOVA 5.3 and Umbraco CMS, as platforms for e-
commerce. The evaluation was to be made from a marketing perspective as well as from a user and
in-house developer's perspective. Additionally, the goal was to provide an overview of how certain
functionality from a current project could be implemented on the Magento CE platform.

To be able to evaluate the platforms, a study of current evaluation and comparison models was
performed. This resulted in the choice of the framework Domain-specific Architecture Comparison
Model. A comparison framework was derived and defined from this model, and applied on the
platforms. The choice of what was to be measured, and how, was determined from literature studies
of the e-commerce domain, as well as studies of current e-commerce platforms. The demonstration
of the capabilities of the Magento platform was solved by creating a new Magento store instance,
implementing two components from a reference project, as well as parts of the graphical user
interface, and deploying the solution on a cloud server.

The evaluation resulted in a description of the platforms' strengths and weaknesses, and a table
showing the properties of the platforms. The evaluation indicated that the platforms Magento CE
and Episerver Commerce were the strongest when it came to functionality and market readiness.
Wipcore eNOVA and Umbraco CMS's strongest side was performance efficiency, while none of the
platforms were assessed as particularly strong in terms of maintainability.

Sammanfattning

Målet med examensarbetet var att ge Softronic AB, ett konsultbolag inom IT och management, en
översikt över vilka styrkor och svagheter de fyra CMS-plattformarna Magento CE 1.6.2, Episerver
Commerce 1 R2 SP1, Wipcore eNOVA 5.3 samt Umbraco CMS hade som e-handelssystem.
Utvärderingen skulle ske dels utifrån ett marknads- och kundperspektiv men också från ett
utvecklarperspektiv inifrån företaget. Målet var också att ge en översikt över hur vissa funktioner
för ett befintligt projekt kunde implementeras på plattformen Magento CE.

För att utvärdera plattformarna gjordes en litteraturstudie över befintliga jämförelsemodeller, vilket
resulterade i valet av ramverket Domain-specific Software Architecture Comparison Model. Ett
jämförelseramverk definierades utifrån modellen och applicerades på plattformarna. Vad som skulle
utvärderas och hur det skulle mätas bestämdes utifrån litteraturstudier av affärsområdet samt studier
av befintliga e-handelsplattformar. Demonstrationen av Magentoplattformen löstes genom att sätta
upp en Magento-installation på en molnserver och implementera två komponenter samt delar av det
grafiska användargränssnittet för ett referensprojekt.

Evalueringen resulterade i en beskrivning över plattformarnas styrkor och svagheter samt en
överskådlig tabell som kan vara till nytta för Softronic i inledningsskedet av framtida e-
handelsprojekt. Evalueringen visar att plattformarna Magento CE och Episerver Commerce är
starkast när det gäller funktionalitet och att snabbt få ut en lösning på marknaden. Wipcore eNOVA
och Umbraco CMS har styrkor när det gäller prestanda, medan ingen av plattformarna bedömdes
vara starka när det gäller egenskaper som underlättar underhåll och utveckling.

Contents
1 About this document..1
2 Background..3
3 Introduction...5

3.1 Goals..5
3.2 Limitations...5
3.3 Solution methods...5

3.3.1 Implementing Mataffären.se in Magento CE 1.6.2..6
3.3.1.1 Frontend..6
3.3.1.2 Backend..6
3.3.1.3 Modules..6

4 Software platforms and application frameworks...7
4.1 Episerver Commerce..7
4.2 Wipcore eNOVA..7
4.3 Umbraco...8
4.4 Magento...9

5 Comparison framework and evaluation method..11
5.1 Overview of evaluation methods...11

5.1.1 Early Scenario-based methods...12
5.2 DoSAM – Domain-specific software architecture comparison model....................................13

5.2.1 DACF (Domain Architecture Comparison Framework)..14
5.2.2 CAE (Concrete Architecture Evaluation)...14

5.3 ISO and IEEE standards for software evaluation..16
5.4 Selection of evaluation method..16

6 Domain Architecture Comparison Framework (DACF)...19
6.1 Domain architecture blueprint...19
6.2 Architectural Services..19
6.3 Quality Attributes...20

6.3.1 External sources...21
6.3.2 Selection of quality attributes..22
6.3.3 Market readiness attribute..22
6.3.4 Summary of quality attributes..23

6.4 Quality Attribute Metrics...23
6.4.1 Functional suitability..24
6.4.2 Performance efficiency..25
6.4.3 Maintainability...26
6.4.4 Portability...26
6.4.5 Market readiness..26

6.5 Quality Computation Weights..27
7 Concrete Architecture Evaluation performance (CAE)...29

7.1 Magento Community Edition..29
7.1.1 Blueprint relations and identification of services...29
7.1.2 Application of quality attribute metrics and quality computation....................................30

7.2 Wipcore eNOVA..31
7.2.1 Blueprint relations and identification of services...31
7.2.2 Application of quality attribute metrics and quality computation....................................31

7.3 Episerver Commerce..32
7.3.1 Blueprint relations and identification of services...32
7.3.2 Application of quality attribute metrics and quality computation....................................32

7.4 Umbraco CMS with TeaCommerce...33
7.4.1 Blueprint relations and identification of services...33
7.4.2 Application of quality attribute metrics and quality computation....................................33

8 Magento implementation of mataffären.se..35
8.1 Developer background...35

8.1.1 Code organization..35
8.1.2 MVC implementation..36
8.1.3 Models and Helpers...38
8.1.4 Observers...38
8.1.5 Class overrides...39
8.1.6 Design and customization..39

8.1.6.1 Layouts, blocks and templates..39
8.1.6.2 Packages and themes..40

8.1.7 Websites, stores and store views..40
8.2 Requirements...41
8.3 Environment setup...42

8.3.1 Local environment...42
8.3.2 Production environment...42

8.4 Installation and configuration..43
8.4.1 Configuring websites, stores and store views..45
8.4.2 Creating attributes and attribute groups...46
8.4.3 Creating categories and products...46

8.5 Backend development..48
8.6 Frontend development...50
8.7 Migration to production server..51

9 Conclusion...53
9.1 Magento implementation process in relation to evaluation results..54

10 Discussion..55
11 References..57
 Appendix A: ISO/IEC 25010:2011 Product Quality Model..1
 Appendix B: Evaluation data...5

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

1 About this document
The goal has been to evaluate four e-commerce platforms for the company Softronic, and to
demonstrate the abilities of the Magento platform. In an attempt to achieve objectivity, a
comparison framework has been developed first, to establish what should be measured, and how.
The Magento platform has been demonstrated by implementing certain features found in an existing
project built on another platform.

The reader should keep in mind that the evaluation was intended to be as objective as possible,
however the framework and the metrics used are nevertheless focused on the needs of Softronic. It
could therefore be considered less useful for other businesses than Softronic, although the
description of the process and the solution method might be of interest to someone who is in the
process of selecting a suitable evaluation method for software platforms.

The documents starts with a background (ch. 2) and an introduction of the goals and limitations (ch.
3). An introduction to the platforms is provided in ch. 4.

Chapter 5 provides an overview of different comparison frameworks and a background on why the
DoSAM framework was selected for this comparison. This is followed by the actual establishment
of the comparison framework (ch. 6), describing what attributes will be measured and in what way,
and also how they will be weighed against each other. Chapter 7 describes the appliance of the
metrics on the selected platforms, and presents the individual results for the platforms.

Chapter 8 presents possible solutions to the Magento demonstration goals, by introducing the
platform from a developer's point of view. It also contains a description of how the problem of
implementing selected components of the Mataffären.se system on the Magento platform was
solved.

The last part of the document (chapters 9 and 10) summarizes the results of the evaluation and
provides a brief overview of the strengths and weaknesses found in the platforms. The solution
method is also discussed and evaluated.

Some knowledge on programming and system architecture is required from the reader of the
document.

As a last note, it must be emphasized that e-commerce is a business area that it changing very fast.
During the thesis work, two out of the four platforms in the comparison were released in new
versions that changed the platforms' technical standard considerably (Magento CE 1.7 and Umbraco
CMS 5.1). The reference solution, Mataffären.se, was also upgraded to use a different version of
Wipcore eNOVA, and the solution was thereby subject to a number of architectural changes.
Wipcore even announced in May 2012 that they were planning to integrate Umbraco CMS into the
eNOVA platform1. The consequence of this is that the comparison and implementation could be
considered obsolete already at the time of publishing, and the document should be read with these
facts in mind.

All figures were published with permission from their respective owners.

1 Wipcore/Enova leaks. Kommande release for WebFoundation.

KTH STH 2012 1

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

KTH STH 2012 2

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

2 Background
E-commerce is an emerging business area, growing by large numbers every year. According to a
recent report, the turnover for e-commerce retailing in Sweden increased by 10 percent from 2010
to 2011, to a total of almost 28 billion SEK, and is estimated to reach 31 billion SEK by the end of
20122. It can be assumed that the market for e-commerce platforms is growing with the sector as a
whole, and that the number of platforms is continuing to increase. For companies in the business of
designing e-commerce systems for external clients, it is also safe to assume that the market situation
requires them to stay “on their toes” and to update their offerings to include new platforms and
technologies. One of the companies that currently operates in the area of e-commerce is Softronic.

Founded in 1984, Softronic is a consulting firm that offers services within management and IT.
Their products and services reaches from consulting guidance and tailored software development to
administration and operation of systems. Customers are midsize and large businesses and
organizations in northern Europe3. Softronic currently offers e-commerce solutions mainly based on
two platforms, but would like to extend their offering and explore other platforms. The company
needs a review of existing alternatives to the platforms they are currently using, and also to compare
them to each other with regards to functionality and other properties.

One of the platforms that have been growing in popularity since its 1.0 release in 2008 is Magento.
One of the interesting factors about Magento, from Softronic's point of view, is that it is open source
software. This is not the case with the platforms that the company currently works with, which
makes it an interesting candidate for participating in a comparison with other platforms.

Comparing and evaluating software has, however, proven to be a complicated subject and it can be
difficult to achieve an objective perspective. It it argued that many quality attributes, such as
maintainability and usability, are affected by subjective factors and therefore cannot be measured
objectively4. A suitable comparison framework is therefore needed, to ensure that Softronic's
specific platform needs are taken into account while still keeping the perspective generic enough to
be able to apply non-subjective metrics. Another way of saying it would be that the comparison has
to be as application-independent as possible and instead performing the comparison more on an
architectural level, while still allowing for attributes specific to e-commerce implementations to be
measured, compared and brought to the surface.

If a suitable comparison framework can be established, good opportunities should exist for
contributing to domain knowledge by establishing a comparison framework specifically for e-
commerce platforms, based on evaluation methods whose components and metrics are fetched from
the demands on e-commerce today. This new framework could potentially be helpful not only for
Softronic but also for other developers and businesses.

2 HUI Research AB. E-barometern (2011).
3 Softronic AB. Softronic.se (2012).
4 Sommerville, I. (2011), p. 669.

KTH STH 2012 3

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

KTH STH 2012 4

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

3 Introduction
Softronic has a need for an increased knowledge and improved strategies around e-commerce
projects. Especially, there is a need for increased knowledge on the non-technical aspects such as
customer perception and market-oriented features. One way of contributing to increasing this
knowledge would be to analyze different e-commerce platforms to find out how, and if, they can be
compared, from perspectives that are relevant to both customers and developers. A recently
completed project, Mataffären.se, could be used as a reference for assessing how the conditions for
implementation differ between platforms.

3.1 Goals

The purpose of this thesis is to analyze and compare four different e-commerce platforms:
Umbraco, eNOVA, Episerver Commerce and Magento. The comparison shall present an overview
of the platforms from a number of perspectives which are defined from literature studies, interviews
with employees and field studies of existing e-commerce platforms.

The thesis is also expected to deliver a brief conclusion and comparison chart which will serve as an
overview of the capabilities of the four platforms and which can be used in the early stages of e-
commerce project.

Also, because Softronic is especially interested in analyzing Magento, a selection of components
from the project Mataffären.se, currently based on Wipcore eNOVA, shall be re-implemented on the
Magento platform. The implementation shall be limited to two parts: a frontend and backend. The
frontend part should demonstrate how to design and implement a store frontend view. The backend
should include the development of two components: a module for fetching product attributes
through web services, and a module for sending and receiving shipping information to/from an
external logistics partner.

3.2 Limitations

Only the platforms Episerver Commerce, Magento, Umbraco and Wipcore eNOVA should be
analyzed. Work should be completed by June 1:st.

The Magento implementation should be limited to a selected set of features determined as necessary
to provide an overview of the capabilities of the platform.

3.3 Solution methods

To make the comparison as objective and generic as possible, a comparison framework will be
used. Applicable scenarios and relevant measurable attributes should be determined and developed
primarily by conducting a field study in applicable databases and by looking at current demands for
systems in the application domain. Developers at Softronic can also be interviewed to add relevant
perspectives. The data shall be collected using interviews and applicable measurement methods.
The evaluation data shall be presented separately along with results from the interviews.

The comparison should result in a short overview of the capabilities of the e-commerce platforms.
This overview should be usable for both clients and developers in early stages of e-commerce
projects, when the advantages and disadvantages of different platforms are considered.

Development of the Magento components should be performed in a suitable IDE such as Aptana

KTH STH 2012 5

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

studio or Netbeans. The latest version of Magento Community Edition should be installed on a
LAMP (Linux, Apache, MySQL, PHP) stack, locally or on a remote server.

3.3.1 Implementing Mataffären.se in Magento CE 1.6.2

Because Softronic is interested in analyzing the platform Magento, an implementation of a recent
project, “Mataffären.se”, will be implemented on this platform. Only a selection of the functionality
of the project will be implemented. The implementation should be split up into a frontend-, a
backend and a module-section.

3.3.1.1 Frontend

The store should feature a start page to demonstrate how layouts are used in Magento and how to
work with styles and design, and how the content management system works. The store should also
have multiple categories with products in them, to demonstrate product listings and category design.
Product pages should also be visible with the purpose of displaying how to work with product
attributes in the view.

3.3.1.2 Backend

The backend demonstration should focus on the plugin system called Magento connect, how to
administrate products, customers and orders, which CRM related features that are available, and
how an administrator can make changes to the configuration.

3.3.1.3 Modules

In this section one or several modules should be developed to display the abilitiy of extending the
Magento platform with custom modules. The module(s) should attempt to replicate existing
functionality in the Mataffären.se platform. Two components has been selected for implementation
in Magento:

• A module should be developed that connects to the OPV product database, so that product
attributes such as images, descriptions and other attributes can be updated automatically.

• A second modules should be developed that simulates a connection to the delivery agent
Widrikssons. The module should export a list of orders and retreive a new list that contains
batch numbers and sort orders. The list should be stored locally and be made available to
other components in the system.

The module development should be documented and aimed at developers, providing a good
overview over how module development is done in Magento.

Apart from the three parts “frontend”, “backend” and “modules”, no other components should be
implemented.

KTH STH 2012 6

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

4 Software platforms and application frameworks
This section introduces the software platforms and application frameworks utilized by the e-
commerce frameworks in this study. Unless otherwise stated, the information on the frameworks are
based on the web sites of the solutions. Addresses to the sites can be found in the References
section.

4.1 Episerver Commerce

In this document, Episerver Commerce 1 R2 SP1 is analyzed. The platform runs on Windows
Server, uses Microsoft SQL Server 2008 as database storage solution, and is implemented using the
C# .NET framework 3.5 SP1.

Episerver Commerce is based on the Episerver CMS, a content management system, which is
required for the installation. Fig. 4.1 shows the components of Episerver Commerce and its
relationship to the CMS. Episerver Commerce uses the CMS for presentation, and an additional
module, “Commerce Manager”, for store maintenance and order processing. The platform uses two
different databases for content storage and e-commerce storage.

Episerver AB, the company behind the product, is based in Sweden. Episerver CMS is used in many
intranets and extranets for other purposes than e-commerce, and is used primarily by businesses on
the Swedish market. Episerver has a network of partners which adapts the systems for its clients and
develops modules.

4.2 Wipcore eNOVA

Wipcore eNOVA is built on C# .NET, with the latest version being 5.3, launched in November
2011. This is also the version that will be used in the comparison. Wipcore eNOVA uses a

KTH STH 2012 7

Fig. 4.1: The components of Episerver Commerce and its relationship to Episerver CMS (Episerver,
2012).

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

Web/Business server running IIS on Windows Server OS, and a database server running on
Windows Server OS with Microsoft SQL Server.

Wipcore offers the eNOVA platform as a fully commercial product, meaning there is no open source
alternative of the platform. Developer documentation is available online. Onsite training and
certification is offered for developers. Wipcore is a Swedish-based company which has led to most
of its clients and partners being located in Sweden.

The eNOVA backend differs from many other e-commerce platforms in that it comes with a native
Windows client for administration. The platform also features version control and scheduled
publishing, which traditionally is offered only on pure CMS systems and not in e-commerce
systems. The reason for this is that Wipcore originally was a pure CMS platform, and has since
evolved into offering additional e-commerce functionality.

4.3 Umbraco

Umbraco is an open source CMS written in C#. Umbraco commonly sits on top of a software stack
consisting of the .NET framework, the Microsoft SQL Server and XSLT, although the platform
supports a number of different relational databases for storage. Introduced in 2000, the latest stable
release is now 5.0.1, with version 5.1 to be released as a stable version soon. Umbraco is typically
deployed on an IIS server. The latest version of Umbraco runs on the ASP.NET MVC3 framework.
However, it is assessed that the 5.x version of Umbraco has not been out long enough to be able to
use in this evaluation. For this reason, it is determined that the version 4.7.2, the latest version of the
4.x branch, will be used.

Umbraco has a fairly active community and is one of the most popular .NET based CMS systems.
Although Umbraco is mainly a content management system and not an e-commerce platform, the
open source nature of the framework makes is suitable for extending and merging into different
specializations. There are a number of modifications available for Umbraco which adds e-
commerce functionality as a plugin.

There are three different implementation packages;

• “Umbraco CMS”, which is the free version

• “Confidence” - a commercial package offering more support and bug fixing warranty

• “Complete” - a lower priced commercial alternative offering a number of add-ons such as a
forms builder and a deployment service.

Umbraco is distributed under the MIT license.

The key difference between Umbraco and the other platforms in the evaluation is that Umbraco has
no official e-commerce package. Instead, plugins and extensions are available that adds e-
commerce functionality to the platform. A brief survey found six different e-commerce packages:

• uCommerce (www.ucommerce.dk)

• TeaCommerce (www.teacommerce.dk)

• commerce4umbraco (http://commerce4umbraco.codeplex.com)

• uWebshop

• Umbraco E-commerce Extension

KTH STH 2012 8

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

• Procure eCommerce Engine

From investigating the above alternatives in more depth, it is found that only two of the
(uCommerce and TeaCommerce) have been released in stable versions (non-beta). While
TeaCommerce requires Umbraco CMS version 4.5 or newer, uCommerce supports all 4.x versions.
The .NET and SQL Server requirements are virtually identical, and they both have, at the time of
writing, released new versions within the last month (April 2012).

They only major difference that can be found between uCommerce and TeaCommerce is the
licensing alternatives. TeaCommerce only offer one type of license, while uCommerce offer three
differently prices alternatives; “free”, “pro” and “enterprise”.

With the two above alternatives showing no obvious differences in functionality and system
requirements, the question of which e-commerce extension to choose as representative for the
Umbraco platform does not have a clear answer. They both offer developer's licenses to enable trial
versions to be implemented and tested before buying a license. The licensing options can, however,
be seen as a distinct difference, with TeaCommerce only offering one licensing options. This
enables for less variables in the comparison since only, and not three, variants of the platform can
be evaluated. For this reason, TeaCommerce has been chosen as the extension on which to base the
Umbraco evaluation.

Nevertheless, it must be noted that uCommerce should also be evaluated in the future, to provide a
broader overview and add perspectives on the Umbraco platform evaluation.

4.4 Magento

Magento is an open source e-commerce platform built on PHP and the ZEND framework. The
company behind Magento, Varien, was founded in 2004 and the 1.0 version of Magento was
launched in 2008. In 2011, Magento Inc. was acquired by eBay.

Magento is currently offered as four different packages;

• Magento Community Edition, which is the open-source, free version

• Magento Enterprise, offering support, encryption and several market-centered features not
found in Magento Community Edition

• Magento Enterprise Premium, with all of the standard Enterprise features plus consulting
services, training and multiple licenses

• Magento Go, a hosted solution for small enterprises.

The platform is typically implemented on a LAMP (Linux, Apache, MySQL and PHP) stack and
uses the Entity-attribute-value database model to store data.

In this document, the latest stable release of Magento CE (community edition) will be evaluated
which is 1.6.2.0.

Magento offers a market for plugins called Magento Connect. This allows for external developers to
offer extensions and modules that improves the functionality of the platform, such as checkout
customizations, additional administration features and frontend templates/skins. Magento CE is
distributed under the OSL v3 license.

Magento uses components from the Zend framework, an open source web application framework
written in PHP5. It is object-oriented, uses a loosely coupled architecture and offers an MVC

KTH STH 2012 9

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

structure for implementations. Zend comes with a number of ready-to-use components such as
forms validation, a high performance MVC implementation, HTML rendering and filtering, and a
database abstraction layer. Zend requires a web server with PHP 5.2.x5. Magento developers are
encouraged to use the Zend Studio IDE for development, however this is not free software. Another
option is to use Eclipse with PDT (PHP Development Tools). Zend is distributed under the New
BSD License6.

Zend Technologies, the company behind Zend framework, offers a customized PHP stack called
Zend Server, which is optimized for Zend implementations. The package features improved
caching, diagnostics and an improved PHP installation. Zend Server is available as a free
community edition or as a commercial product which includes support and other extra features7.

5 Zend Technologies Ltd. Zend Programmer's Reference Guide.
6 Zend Technologies Ltd. Zend New BSD Licence.
7 Zend Technologies Ltd. Zend.com.

KTH STH 2012 10

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

5 Comparison framework and evaluation method
Before determining how to compare the platforms, it can be necessary to define what software
evaluation actually is. Banani, R. and Graham, N. say the following:

Software architectural evaluation is a technique which determines properties of
software architectures, or software architectural styles, or design pattern by analyzing
them.8

The authors also state that architectural evaluation is about verification of the properties of the
system so that it fulfills the specifications required of it, and also about determining to which degree
an architecture satisfies the quality requirements.

For this study however, a comparison method is needed that does not evaluate the implementations
but rather the architecture itself, and which only evaluates features that can be considered common
enough among e-commerce platforms that the framework will be applicable to all of them. This
way of analyzing software platforms differ from most studies that has been found, especially
regarding e-commerce platforms, where the comparison tends to fall towards concrete
“can/cannot”-style evaluations, emphasizing on functionality. However, considering that in the case
of Softronic most platforms are heavily modified and customized to a client's needs, it's not a
question of what a platform can or cannot do in its basic form but rather how easily certain
functionality can be implemented and what preconditions the developer faces. It is assumed that this
“soft” way of evaluating a platform requires a comparison framework that is abstract, modifiable
but still concrete enough to be able to draw conclusions around the results.

In “Methods for Evaluating Software Architecture” (Roy and Graham, 2008), a number of software
evaluation methods are evaluated, categorized based on at which stage of a project they're applied,
and if they are scenario-based or based on a mathematical model. Roy/Graham provides an
overview of when a certain evaluation method is suitable, and also gives a brief description on how
the respective methods are applied.

“A Survey On Software Architecture Analysis Methods” by (Dobrica and Niemelä, 2002), provides
valuable insight into evaluation techniques and analysis methods, as well as adding perspectives on
some evaluation methods already mentioned by Roy/Graham, such as SAAM, SAAMCS, ESAAMI,
ATAM and SBAR.

These two publications will be used as the primary sources for the next section, where the
evaluation methods are described in more detail.

5.1 Overview of evaluation methods

The common denominator for all evaluation methods is that they require stakeholder-participation,
requirements list, and a description of the architecture and its artifacts9. The evaluation models can
be identified as Early methods, where the planned system design is evaluated, and Late methods,
where the progress is evaluated to determine whether the present design will be able to meet the
specifications. Late evaluation methods can use data measured on the actual implementation. The
methods can also be categorized as

• scenario-based, an early evaluation method where a scenario is a brief description of a

8 Banani R., and Graham, N. (2008), p. 16.
9 Banani R., and Graham, N. (2008), p. 8.

KTH STH 2012 11

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

single interaction of a stakeholder with the system,

• mathematical model-based, another early evaluation method where a quantitative
assessment is emphasized over the more qualitative assessment-style of the scenario-based
based methods,

• metrics-based, a late evaluation method which uses metrics to prevent degeneration of a
system by measuring and correcting deviations, and

• tool-based, another late evaluation method where algorithms and tools are used to
automatically check compliance of design and source code.

For this study, the early scenario-based methods seems the most interesting since they are meant to
be used in the beginning of a project, allows for a qualitative analysis approach, and features a lot of
well-known and previously verified methods such as SAAM10.

5.1.1 Early Scenario-based methods

According to Roy/Graham11 and Dobrica/Niemelä12, the methods can be summarized as follow:

• SAAM (Scenario-based Software Architecture Analysis Method) is often seen as the
“mother” of all scenario-based methods. Simply put, the method compares the properties of
a system with requirement documents based on the desired properties of the application. The
main characteristic of the method is that quality attributes are concretisized in the form of
scenarios. However, it is considered that modifiability is the quality attribute analyzed by
SAAM.

• ATAM (Architecture-based Tradeoff Analysis Method) has evolved as a way for
understanding the tradeoffs in software architecture, as often improving one quality attribute
comes at a price of reducing another. Dobrica/Niemilä also adds that ATAM can be
considered a framework for different evaluation techniques depending on the quality
attributes. It integrates the best individual theoretical model of each attribute in an efficient
and practical way.

• SBAR (Scenario-Based Architecture Reengineering) provides tools for transforming an
architecture and measure the cost and gain of this transformation, based on quality
attributes. According to Dobrica/Niemilä, the specific goal of the method is to estimate the
potential of the designed architecture to reach the software quality requirements.

• SALUTA (Scenario-based Architecture Level Usability Analysis) specializes on assessing
usability quality attributes, being the only evaluation method that considers usability before
implementation of an architecture. SALUTA extracts two types of information from an
architecture: Usability patterns (design patterns that are used to solve a particular scenario)
and Usability properties (architectural decisions affecting the usability).

• SAAMCS (SAAM for complex scenarios) is, as it sounds, an extension of SAAM for
handling complex implementation scenarios. Roy/Graham states that its main intention is to
expose the boundaries of an architecture and to thereby determine its flexibility. This can be
used to assess which scenarios can be hard to realize on the architecture. Dobrica/Niemilä
expresses that the only goal of SAAMCS is risk assessment, noting that the purpose of the

10 Banani R., and Graham, N. (2008), 20.
11 Banani R., and Graham, N. (2008), 19-36.
12 Dobrica, L. and Niemela, E. (2002), p. 641-648.

KTH STH 2012 12

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

method is to extend the SAAM method and to add specific perspectives rather than offering
a broad perspective.

• ESAAMI (Extending SAAM by Integration in the Domain) aims to facilitate reuse of
scenarios to reduce cost of knowledge-intensive activity.

• ASAAM (Aspectual Software Architecture Analysis Method) is more aspect-oriented than
SAAM. It purpose is to identify problems that can occur when scenarios span across
multiple methods.

• SACAM (Software Architecture Comparison Analysis Method) and DoSAM (Domain
Specific Software Architecture Comparison Model) were specifically developed for the
comparison itself, and to provide a standardized way of performing the comparison so that it
would be independent of the person performing it. SACAM determines a standard
architectural view so that the candidates can be compared at a common level of abstraction.
This, however, can be problematic when comparing architectures from different domains as
it can be difficult finding the right abstraction level. For this purpose, DoSAM was
developed to facilitate comparison of architectures within a specific domain.

From the above descriptions, no comparison framework mentioned by the two publications (Banani
R./Graham, N., 2008) and Dobrica/Niemellä, 2002) appears to be specifically designed for
comparison of e-commerce platforms. A survey of publications around evaluation of e-commerce
platforms also did not suggest that any comparison framework was more used than others for this
software area.

However, as one the goals of the thesis are to analyze platforms from the e-commerce domain, the
DoSAM framework can be regarded as suitable because of its emphasis on facilitating the
comparison of architectures from a specific domain. The following sections describes the method in
more detail.

5.2 DoSAM – Domain-specific software architecture comparison model

Roy/Graham concludes in their study of comparison frameworks that many methods don't allow
standard frameworks for comparing several architectures. Most are focused on evaluating a single
architecture at a given point in time, and the comparison results are often highly dependent on the
person performing the evaluation. The authors state that the aim of the DoSAM method is to
provide the rationale for an architecture selection process by comparing the fitness of candidate
architectures.

DoSAM was introduced by Bergner, K., Rausch, A., Sihling, M. and Ternité, T. in 2005 as part of a
conference on the quality of software architectures. The authors state that:

The method provides an evaluation framework for comparing different software
architectures in a certain domain. After adapting this framework to the application
domain at hand, it can then be used repeatedly for all future evaluations in a
methodical and reproducible way13.

The DoSAM method defines two parts of an evaluation: the establishment of a Domain Architecture
Comparison Framework (DACF) and a Concrete Architecture Evaluation (CAE). Sections 5.2.1 and
5.2.2 aims to describe these two steps of the method and are, unless otherwise stated, based on the
original DoSAM article by Bergner et al.

13 Bergner, K., Rausch, A., Sihling, M. and Ternité, T. (2005), p. 1.

KTH STH 2012 13

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

5.2.1 DACF (Domain Architecture Comparison Framework)

The DACF is performed in three parts:

1. Establishing the domain architecture blueprint and the architectural services, which
combined serves as an abstract description schema for all architectures in the application
domain. In this stage, it is important to find the right level of abstraction so that it's
representative of the applications in the domain and still able to identify distinct differences
between the applications. The proper architecture blueprint is determined by a domain
specialist.

2. Establishing Quality Attributes (QA) and Quality Attribute Metrics (QAM), which serves as
a representation of which qualities are assessed and how the assessment is performed.

3. Establishing a Quality Computation Weight matrix, which is provided to state the relative
importance of each application of a QAM on an architectural service.

5.2.2 CAE (Concrete Architecture Evaluation)

The concrete evaluation of the application is performed using the established DACF. This is also a
three-part activity:

1. The architecture of the application is related to the blueprint, yielding the set of all hardware
and software components and their connections that are relevant for the subsequent steps.

2. The service implementation of the evaluated architecture is assessed with respect to the
QA:s (Quality Attributes). The rating is performed using the QAM:s (Quality Attribute
Metrics) previously defined in the comparison framework.

3. The ratings are weighed using the previously established Quality Computation Weight
Matrix.

KTH STH 2012 14

Fig. 5.1: Domain Architecture Comparison Framework (Bergner et al., 2005).

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

It is important to note that only the components that are relevant to the domain comparison
framework (that is, the components that performs the services specified in the blueprint) are to be
involved in the CAE. This is to ensure that only the attributes and services that are relevant to the
application domain are evaluated, and that no properties outside of the defined comparison
framework are evaluated.

Once a CAE has been performed for each platform, the overall ratings per architectural service for
each platform can be compared. Each service is given a score for each quality attribute, for example
the data store service is evaluated with regards to availability, modifiability and other attributes. The
CAE process is described in Fig. 5.2.

It is clear the DoSAM framework, as well as other frameworks, defines how to measure and
evaluate the properties of a platform. The question of what to measure is left to the author of the
framework to decide. Suitable quality attributes need to be defined, to establish from which
perspectives the platforms should be evaluated.

One of the established standards for software quality evaluation is the ISO 25010 standard. This
standard defines a set of attributes that can be evaluated separately, and also provides a description
of what the attribute stands for. It is assumed that this standard could be able to contribute to
selecting and adding suitable attributes to the comparison framework. To be more precise, the
standard appears to be a good source for quality attributes. In the following section, the ISO/IEC

KTH STH 2012 15

Fig. 5.2: DoSAM application (Bergner et al., 2005).

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

25010:2011 standard will be described.

5.3 ISO and IEEE standards for software evaluation

ISO/IEC 25010:2011, an evolution of ISO 9126, is a standard for the evaluation of software quality.
By clarifying and then agreeing on the project priorities and then converting abstract priorities to
measurable values, ISO/IEC 9126 aims to develop a common understanding of the project's
objectives and goals14.

The standard defines a quality in use model, applicable for products that are already deployed and
in use, and a product quality model, relating to static properties of software and dynamic properties
of computer systems. The model excludes purely functional properties, but includes functional
suitability. It can be used, for example, to identify system design and objectives, or to establish
quality control characteristics15.

The quality model is divided into eight sections with multiple subsections, as described in Fig. 5.3.
Details on the subclasses and what they are intended to measure can be found in Appendix A:
ISO/IEC 25010:2011 Product Quality Model.

5.4 Selection of evaluation method

Among the different evaluation methods presented in the previous section, both SACAM and
DoSAM was specifically developed for the comparison itself, and to provide a standardized way of
performing the comparison so that it would be independent of the person performing it. This is
desirable since it can be assumed that this adds to the objectivity of the comparison. Therefore, the
choice of comparison platforms can be further limited to these two.

The DoSAM method also enables the platforms to be evaluated on an abstract, architectural level
and defines a set of standard specifications that delimits the framework. This makes it possible to
create a comparison framework specifically for e-commerce platforms. SACAM does not allow for
delimiting the field of study to the same degree, which is desirable since the software compared will
all be e-commerce platforms. For this reason, the DoSAM stands out as the stronger candidate
compared to SACAM.

14 Wikipedia. ISO/IEC 9126.
15 ISO/IEC 25010:2011 (ISO.org, 2011)

KTH STH 2012 16

Fig. 5.3: ISO/IEC 25010:2011 Product quality model with subsections (source: the author).

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

Additionally, the ISO/IEC 25010:2011 standard appears to fit well into the DoSAM framework,
where it could be used as a source of quality attributes. Using the ISO/IEC standard is assumed to
provide established and well-known attributes on which to measure, and it is also assumed that the
use of well-known standards in general is always desirable.

For the above reasons DoSAM appears to be well suited for the goals of this theses and has
therefore been selected as comparison method.

KTH STH 2012 17

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

KTH STH 2012 18

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

6 Domain Architecture Comparison Framework (DACF)
This section describes how the Domain Architecture Comparison Framework is established. The
sections starts off by defining the architectural blueprint and the architectural services. This is
followed by defining quality attributes (what to measure) and quality attribute metrics (how to
measure it). The DACF establishment process is finished by defining quality attribute weights,
which should “tweak” the framework so that it emphasizes the features that are important for the
selected application domain.

6.1 Domain architecture blueprint

A component-based style has been identified as a suitable representation method of the architecture
blueprint. The components will form the basis of the platform for the services running on the
system. As most e-commerce systems of today are web-based, standard web components such as
email and database access have to be considered in the blueprint. Also, different service layers for
payment and verification services has to considered.

A complete system is made up of both software and underlying hardware, where for example two
different presentation services can be run on the same hardware platform. Therefore, the base
software and the base hardware has to be evaluated separately.

As previously stated, only components that can be considered as universal for the application
domain are to be included in the blueprint.

Hardware components Software components

Web/business server hardware, responsible for
presentation and content rendering to the user.

Web/business server software (for example
Apache)

Database hardware, for example a server
responsible for persistent data storage.

Database software (for example a MySQL
installation)

Table 6.1: Domain architecture blueprint

Table 6.1 shows the architectural components have been identified as necessary for the architectural
blueprint.

6.2 Architectural Services

According to Bergner et al., the intention of this step is to find constituents of the architectures that
are inherent to the application domain at hand, and therefore inevitably represented in all
imaginable solutions.16

Table 6.2 shows the services that have been identified as inherent to the e-commerce application
domain. A store needs, for obvious reasons, a service that achieves the presentation of the graphical
user interface. It is assumed that all e-commerce systems uses a web page as GUI. Therefore, the
presentation service's main purpose will be to render a html page using the system as a whole. This
includes model representations and views, which are constituents of the core system. The
presentation service can therefore be said to be the largest of the four services identified.

To manage products, customers and orders and to edit store settings and attributes, a management

16 Bergner, K., Rausch, A., Sihling, M. and Ternité, T. (2005), p. 7.

KTH STH 2012 19

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

service must be provided. In most systems, this will probably be called “administration panel”,
“back office” or something similar.

It is also assumed that an e-commerce system offers some sort of Object-relational mapping system
which relies on a database. These components are grouped together to form the Data storage and
transaction service.

The last service to be part of the list is the Data access and system interaction service. It is assumed
here that an e-commerce system offers a core API that other components can make use of to interact
with the system. Also, a system for plug-in components such as modules for payment or shipping
solutions is also assumed to be available. Additionally, an interface for system interaction from
external sources can also be evaluated, such as a SOAP or XML RPC interface.

The last column states from who's perspective the service should be evaluated. This is provided as a
guideline for when identifying and applying metrics that are not quantifiable but instead relies on
qualitative judgment from the person performing the evaluation. For example, when evaluating the
Presentation service, metrics from the customer's point of view might include such components as
product comparison services or navigational aids, and the developer's point of view might include
design patterns and other code-oriented features.

Label Definition and examples Perspective from which the service
is evaluated

Presentation service Achieves the presentation of the GUI,
the store frontend. The service can be
a combination of HTML templates,
CSS, jquery, javascript etc.

Customer and Developer

Store management service Achieves the customer relations
management (CRM) of the store.
Examples of tasks for the service
includes order-, customer- and catalog
management.

Customer and Developer

Data storage and transaction service Achieves the provision of database
services, secure transactions etc.
Examples of components are the
database and database software, and
Object-relational mapping (ORM)
components.

Developer

Data access and system interaction
service

Achieves the provision of data for
external and internal components.
Examples include built-in API:s for
data collection, components that
provide integration with other
services/web services and extension
systems enable the usage of third-
party extensions.

Developer

Table 6.2: Architectural services for the application domain. The table shows the chosen label of
the service, definitions and examples of usage, and from who's perspective the service is evaluated.

6.3 Quality Attributes

Establishing relevant quality attributes and the corresponding quality attribute metrics is the second

KTH STH 2012 20

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

step in the establishment of the DACF17. Bergner et al., as well as Stefani/Xenos, utilizes the ISO
9126 standard to specify relevant quality attributes for the systems analyzed. The authors thus uses
the standard as a base for a tailored, more system-specific, standard specification. The ISO 25010
standard also allows for this, as is expressed in the standard specification:

“[...] the model should be tailored before use as part of the decomposition of
requirements to identify those characteristics and subcharacteristics that are most
important, and resources allocated between the different types of measure depending on
the stakeholder goals and objectives for the product.18”

The DoSAM framework in combination with the ISO 25010 standard thus allows for several
degrees of freedom in the specification of quality attributes, as both models are meant to be adapted
and tailored for a specific domain of applications. It is up to the designer of the comparison
framework to elaborate and argue which quality attributes are relevant to the application domain,
define who the stakeholders are and to act as a domain expert19.

The ISO25010 standard defines a set of factors that can be used to evaluate software quality. The
standard itself has been discussed previously in this document, however the factors need to be
discussed in the context of e-commerce systems, to define which of the factors are to be included as
quality attributes in the DACF.

In the following subchapter, different views on quality attributes for e-commerce systems are
discussed. Following that subchapter, the quality attributes are established as part of the DACF.

6.3.1 External sources

Stefani/Xenos (2001) argues that since users interacts through a web interface, e-commerce quality
is related to the quality of the web pages and the services that are provided to the end user.
Stefani/Xenos relates e-commerce quality to four quality factors: functionality, reliability, usability
and efficiency20.

V.d.Merwe/Bekker proposes a web site evaluation framework for e-commerce sites which focuses
on five main groups: Interface, Navigation, Content, Reliability and Technical. V.d.Merwe/Bekker
focuses on the user experience and presents a framework which essentially does not cover the
underlying architectural solutions. However, V.d.Merwe/Bekker contributes to the selection of
quality attributes by emphasizing the importance of user experience, and how the technical aspects
of a solution forms the center around which all user oriented features derive from21.

Stefani/Xenos (2001) use the ISO 9126 model, and the author's focus on the usability attribute can
be directly translated into the ISO25010 framework, as can reliability. Functionality can be
expressed as functional suitability, and efficiency as performance efficiency.

In their publication from 2008, Stefani/Xenos also uses the ISO 9126 model as their basis for e-
commerce system evaluation. The authors have in this case chosen to evaluate only external metrics
from the ISO 9126 standard, in combination with Belief Networks. Again, the authors focus on the
user-centered qualities of the systems, such as functionality and usability, but also touches on
efficiency and reliability22.

17 Bergner, K., Rausch, A., Sihling, M. and Ternité, T. (2005), p. 8.
18 ISO/IEC 25010:2011 (ISO.org, 2011).
19 Bergner, K., Rausch, A., Sihling, M. and Ternité, T. (2005), p. 7.
20 Stefani, A. and Xenos, M. (2008), p. 2.
21 van der Merwe., R. and Bekker, J. (2003), p. 333.
22 Stefani, A. and Xenos, M. (2008).

KTH STH 2012 21

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

6.3.2 Selection of quality attributes

Based on the sources previously mentioned, a strong focus on user-centered quality factors can be
seen as the prevailing standard. However, the comparison framework for this study also needs to
have a strong developer focus, targeting abstract factors such as extendability, portability and the
degree of standardized code in the platform.

Described in the ISO/IEC 25010 standard, two quality factors can be identified as suitable for
contributing for obtaining a higher degree of developer focus: maintainability and portability.
Maintainability is described as

“a set of attributes that bear on the effort needed to make specified modifications”,23

with the subcategories Modularity, Reusability, Analyzability, Modifiability and Testability all being
focused on the developer side such as if the system can be easily modified, if assets can be easily
reused in other components, and the degree of efficiency to which test criteria can be established24.
Portability, in turn, is described as

“a set of attributes that bear on the ability of software to be transferred from one
environment to another”25.

The subcategories to portability are Adaptability, Installability and Replaceability, which can be
used to evaluate the degree to which a system can be adapted to different or evolving environments,
the degree of effectiveness with which a system can be installed/uninstalled, and the degree to
which a product can be replaced by another product for the same purpose26.

The remaining categories of quality factors of the ISO/IEC 25010:2011 standard are Functional
suitability, Reliability, Usability, Performance Efficiency, Compatibility and Security. However, to
limit the scope of the comparison and to narrow the framework down, Reliability is assumed to be
fulfilled to a satisfactory level and is therefore left out. For the same reason, Security and
Compatibility are also cut from the list of quality factors, and are assumed to be fulfilled to a
satisfactory level.

Measuring Usability is usually done using a panel of participants which performs actions on the
platform. Their actions are supervised and measurements such as the time it takes for the users to
perform certain tasks, how easily they are able to use the services and their general perception of the
system form the basis of the usability analysis27. However, the use of a users panel is out of the
scope of this thesis work. For this reason, the usability quality attribute is judged unsuitable for the
comparison framework since a reasonably objective assessment of the attribute can not be
performed.

The rest of the categories have been linked to e-commerce framework comparisons in previously
mentioned sources and can therefore be seen as necessary to obtain a useful perspective on the
application domain.

6.3.3 Market readiness attribute

The quality factors in the ISO/IEC 25010 standard forms the basis for the comparison framework
used in this analysis. However, as one of the goals are to address more market-oriented factors such

23 ISO/IEC 25010:2011 (ISO.org, 2011).
24 Appendix A: ISO/IEC 25010:2011 Product Quality Model
25 ISO/IEC 25010:2011 (ISO.org, 2011).
26 Appendix A: ISO/IEC 25010:2011 Product Quality Model
27 Wikipedia. Usability (http://en.wikipedia.org/wiki/Usability).

KTH STH 2012 22

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

as payment gateway compatibility, time-to-market and the degree of search engine optimization of
the platforms, an additional quality factor, “market readiness” is suggested. The purpose of this
quality factor is to facilitate the assessment of a platform's inherent conditions for a short
development time, fast deployment and the degree to which the product is ready for production use
without additional tweaking needed for it to hold up to current market standards.

Suggested metrics for the market readiness quality attribute is described later in this document.

6.3.4 Summary of quality attributes

The previous sections of the chapter has attempted to filter out attributes that are relevant for e-
commerce platforms. The categories of quality factors that have been assessed as suitable for the
comparison framework are:

• Functional suitability

• Performance efficiency

• Maintainability

• Portability

• Market readiness

In the DACF, these quality factors will appear as quality attributes.

6.4 Quality Attribute Metrics

As described in the DoSAM specification, corresponding quality attribute metrics are to be
associated to each of the defined quality attributes, to be able to evaluate each architectural service
with respect to each quality attribute. Quality attributes can be evaluated using a single metric, or a
combination of several metrics. For example, a data transfer service can be evaluated with respect
to the performance attribute by assessing the combination of average throughput and average
response time28.

Jarl, M. (2008) uses the Business Readiness Rating (BRR) method to perform the evaluation. Jarl
states that the functionality category needs special treatment, because a certain type of application is
often considered to have a standard set of features and another set that is considered bonus features.
The author states that a “standard list” must be established, from an external source, if available29.
Using Jarl's technique, a combination of the feature lists of the four platforms involved in this
comparison can be seen as sufficient to represent the quality attribute “functional suitability” for e-
commerce platforms.

However, the aim of this thesis is an abstract perspective and to compare the base platforms rather
than the actual implementations. Only using metrics that measures weather or not a feature is
“existent/nonexistent” could therefore be seen as too stiff, not allowing for enough adaptivity of the
evaluation platform, making it less useful. One solution to the problem would be to add factors that
measure the expected time and cost needed to implement the feature. This is exemplified in Bergner
et al.'s DoSAM publication, where the author defines a metric for the Modifiability attribute using
average change effort, number of components to be changed, number of persons affected and other

28 Bergner, K., Rausch, A., Sihling, M. and Ternité, T. (2005), p. 9.
29 Jarl, M. (2008), p. 51.

KTH STH 2012 23

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

estimation variables30. This technique could be further adapted and simplified, for example by using
only one factor, the total change effort. The feature cross-sells would given a value of 0-100 for a
certain platform depending on how much effort is needed to implement the feature. The effort
would represent the cost of implementation. As a result, all platforms would be evaluated using the
same scenarios and therefore be comparable at any given point in time31.

However it is questionable whether the usage of this technique lies within the scope of this thesis
work. The main reason for this is that an insufficient number of metrics have been found in
literature that can be proven to have an effect on the selected quality attributes. It is estimated that a
substantial amount of work would be needed to define which metrics and factors affect the
particular quality attributes selected, and which factors to add, as well as developing formulas to
balance between them. Additionally, it is estimated that the usefulness of the results of the
evaluation, after applying it to the four platforms, would be lower for Softronic since significantly
more effort would be put in establishing the evaluation framework than actually evaluating the
platforms.

It becomes clear that the evaluation framework will be required to offer an acceptable balance
between measuring quantifiable data which can be proven to have an effect on certain quality
attributes, and qualitative data based on interviews and user perception. Additionally, the evaluation
framework will have to be able to be defined within the given time frame, and the application of it
must render data that is useful to Softronic while still being generic enough not to favor any specific
platforms.

The model chosen for this thesis combines Bergner et al.'s standard way of balancing between
factors, and the usage of feature lists. The functionality attribute is measured using a list of features
that the platforms can be expected to have. The rest of the attributes are measured using a
combination of quantitative and qualitative metrics, some of which are extracted through interviews
and some through in-depth studies of the implementations. In addition, some quality attributes can
be given a lower factor in the weighing table in the DACF so that the effect on the overall score is
smaller, thus compensating for the risk of subjectivity when measured.

Interviews will be used to facilitate the assessment of the quality attributes. The interviewees will be
asked to elaborate on the metrics for each of the quality attributes except for Functional suitability.
The interviews, together with additional sources such as product feature lists, documentation and
wiki pages, will be used as sources to determine the metric values. All data, and which sources that
were used, will be provided in the evaluation data section of this document.

In the following sections each attribute, and how it is measured, will be described in detail.

6.4.1 Functional suitability

The ISO/IEC 25010:2011 standard describes Functional suitability as

“A set of attributes that bear on the existence of a set of functions and their specified
properties. The functions are those that satisfy stated or implied needs”.

The subcategories of Functional suitability are completeness, appropriateness and correctness.
Together, the subcategories state that Functional suitability measures the degree to which the set of
functions covers all the specified tasks and user objectives, the degree to which the functions
facilitate the accomplishment of specified tasks and objectives and the degree to which a product or

30 Bergner, K., Rausch, A., Sihling, M. and Ternité, T. (2005), p. 16.
31 Bergner, K., Rausch, A., Sihling, M. and Ternité, T. (2005), p.14.

KTH STH 2012 24

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

system provides the correct results with the needed degree of precision32.

Appendix B: Evaluation data shows the metrics that has been selected as suitable for measuring the
functional suitability for each service in the architecture. From Stefani/Xenos's model from 2001,
the characteristics related to functionality has been adopted and added as quality metrics33, and also
the characteristics described as part of the Functionality subnetwork in their second publication
(Stefani/Xenos, 2008). The DoSAM framework also allows for the domain expert to define metrics
based on current standards for the platforms in the domain. By analyzing the platforms feature lists,
a number of metrics has been added to the list. It can be argued that this method adds a lot of
subjectivity to the comparison framework. However, as has been stated previously by Sommerville,
assessment of software quality is, in itself, a subjective process. Nonetheless, the functionality of a
solution cannot be ignored or it would yield a comparison which would be free of subjectivity but
less usable34.

The services will be evaluated by assessing its features and assigning a binary score (yes/no) on the
metrics associated to it. Each service will then achieve a percentage score (0-100) on the
functionality attribute. The percentage will represent the score for the service in the evaluation. For
example, the Store management service of the Episerver Commerce solution is found to fulfill 40
out of 50 metrics from the metrics section of the service. The score for functional suitability for the
service is then 80%, and the score becomes 80/100.

6.4.2 Performance efficiency

Performance efficiency is described in the ISO/IEC standard as a set of attributes that bear of the
relationship between the performance of the system and the resources used. In other words, the
metrics related to performance efficiency has to to with resource usage, response time, capacity and
other metrics which can be seen as quite common metrics in the software world and which can also
be quantifiable with relative ease.

The metrics suggested are related to common tasks in the e-commerce software domain, such as
handling orders, customers and products. Caching of resources should have alarge impact on user
experience, as it reduces response time.

The suggested metrics for the performance efficiency quality attribute are

1. memory usage on the business server running an identified reference project

100−
memory [GB]∗100

16

2. the degree to which the service utilizes caching of relevant resources (0-100)

3. the degree to which orders, customers and products can be easily manipulated in code (0-
100)

Comments on these metrics can be made regarding the ability to measure them. For example, metric
no. 1. is though of as a way of detecting indications of memory usage, not to identify absolute
numbers. For example, it is estimated that is is out of the scope of this thesis to determine reference
projects that can be applied to all of the solutions and to set up test environments. Instead, the
evaluation will attempt to identify recent projects and their maximum memory usage, on which the
score calculation will be based. 16 GB is assumed to be a suitable figure for a maximum memory

32 ISO/IEC 25010:2011 (ISO.org, 2011).
33 Stefani, A. and Xenos, M. (2008), p. 4.
34 Sommerville, I. (2011), p. 655.

KTH STH 2012 25

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

limit. Scores evaluating to negative values will be interpreted as 0.

Metric 2 will be measured by looking at caching abilities for the platforms, such as weather or not
the service can be cached in full (i.e. full page caching for the presentation service). Metric 3 will be
largely based on interview answers.

6.4.3 Maintainability

The ability to test, analyze, maintain and modify a solution can be seen as a very important attribute
for any software. The developer must be able to make modifications according to customer
preferences, perform regular code maintenance and extend the existing solution.

As Sommerville (2011) describes, software maintenance can be divided into three categories: Fault
repairs, Environmental adaption and Functionality addition, with the last category being the most
effort-demanding activity. Sommerville also relates some internal attributes to maintainability, such
as Length of user manual and Program size, which suggests that the number of source files and
documentation completeness can be used as metrics. Also, intuitively, the use of design patterns
such as MVC should facilitate the analyzability, modifyability and reusability of a solution.

Based on this information, these attributes are suggested as metrics for Maintainability:

1. the number of source files in the base package: 100−
no.of files

500
*

2. the degree to which MVC, or equivalent techniques for separation of responsibility areas in
an application, is used in the architectural design of the service (0-100)

3. the degree of completeness of the documentation for the service (0-100)

4. the degree to which the service implementation can be debugged easily (0-100).

* It is assumed that the number of files in the source package does not exceed 50.000 source files. A
value above 100 will be interpreted as 100, and a value less that 0 will be interpreted as 0.

6.4.4 Portability

The metrics suggested for Portability are;

1. the degree to which the service in question is able to run on different platform
configurations, or the degree to which it is independent of non-generic configurations (0-
100)

2. the degree to which the service is backwards-compatible with earlier versions of the
platforms services on which it depends (0-100)

3. the degree to which the service is easily deployed as a cloud service (0-100)

4. the degree to which installing and setting up the service, as well as uninstalling it, is
independent of external resources such as third-party consultants (0-100).

6.4.5 Market readiness

As described previously, the purpose of the Market readiness quality factor is to facilitate the
assessment of a platform's inherent conditions for a short development time, fast deployment and
the degree to which the product is ready for production use without additional tweaking needed.

KTH STH 2012 26

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

Based on this definition, these metrics are suggested;

1. assessed effort required for adaption of the service until it can be used in a live shop:
100−man days *

2. total cost for licenses needed: 100−
cost

10000
**

3. assessed effort for implementing an analytics tool: 100−man days ***

4. assessed effort for implementing SEO friendly url:s for product pages: 100−man days

5. the degree to which the service supports plug-in modules for at least five different payment

services:
number of alternatives

1/20

* It is assumed that an implementation of the service takes between 0 and 100 days to complete. A
negative value will be interpreted as 0, and a value above 100 will be interpreted as 100.

** It is assumed that the license costs for a system is between 0-1 000 000 SEK. A negative value
will be interpreted as 0, and a value above 100 will be interpreted as 100.

*** It is assumed that the effort required is between 0 and 100 days. A negative value will be
interpreted as 0, and a value above 100 will be interpreted as 100.

**** It is assumed that the service must provide support for at least five payment alternatives,
which will translate to a score of 100. A negative value will be interpreted as 0, and a value above
100 will be interpreted as 100.

6.5 Quality Computation Weights

Architecture Services Functional
suitability [%]

Performance
efficiency [%]

Maintainability
[%]

Portability [%] Market
readiness [%]

Presentation service 40 20 25 50 40

Store management service 40 0 25 0 30

Data storage and transaction
service

10 60 25 50 0

Data access and system
interaction service

10 20 25 0 30

Table 6.3: Quality attribute weighting matrix. Each quality attribute's importance for each
architectural service is assessed and assigned a weight percentage. The score of the evaluation is,
in the last stage of the CAE, multiplied by the attribute weight.

In Table 6.3 the selected weights of the services are shown. The Presentation service is assumed to
be contributing a lot to the functionality factor of the solution, as well as the Store management
service. Therefore, the weight of these on the overall functional suitability factor has been set
relatively high.

As a contrast, performance efficiency is assumed to be largely dependent on the Data storage and
transaction service, for example reading and saving products, customers and orders. This is
reflected in the Performance efficiency column, where the Store management service has been
excluded from the comparison. The reason for this is that it is assumed that the efficiency of the
Presentation service is representable for the efficiency of the Store management service as well.

KTH STH 2012 27

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

The weight of the Maintainability quality attribute is distributed evenly across the different services,
for the reason that it is assumed that the maintainability of each service is equally important.

With the Market readiness factor, the Data storage and transaction service is assumed to be too
difficult to measure. The Data storage service is assumed to be comprised of several low-level
components that are not directly related to the market-oriented factors. It is therefore left out of the
measurement of the quality factor.

KTH STH 2012 28

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

7 Concrete Architecture Evaluation performance (CAE)
According to the DoSAM specification, the Concrete Architecture Evaluation is a three-step-
process, iterating over the first two steps for each architecture in the comparison35:

1. Relate the architecture to the architectural blueprint and identify the services that are to be
assessed. In other words, the task is to identify which of the system's components make up
the services of the application domain.

2. Apply the Quality Attribute Metrics to the identified services, to assess and examine the
architecture with respect to the identified quality attributes of the application domain.

3. Apply Quality Computation Weights to the result, yielding a comparable evaluation result.

The following sections will perform, if possible, step 1 and 2 for each architecture. To make the
CAE comprehensible for the reader, the chapter has been divided into subchapters for each
architecture, which in turn is divided into a Blueprint/Services identification part and a Quality
attribute application part.

The following section presents only the scores that were the result of the evaluation. Complete
evaluation data, showing how the score was calculated, is presented in Appendix B: Evaluation
data. Data sources for the determination of the metric values are primarily official documentation
and the public websites of the platforms. These sources can be found in the References chapter.
Also, where it has been possible to set up a local solution and try out the features, this has been
stated in the beginning of the evaluation chapters. To obtain scores for metrics that require personal
assessments by developers, interviews have been held with developers on Softronic who were asked
to describe how they would rate the platform with regards to the quality metrics defined for the
attribute.

In the evaluation tables, quality attributes who was assigned a weight of 0 for an architectural
service have a dash (“-”) in the evaluation matrix instead of an actual score. The quality
computation weights were determined in chapter 6.5.

7.1 Magento Community Edition

This section relates the architecture to the blueprint and applies the quality attribute metrics for the
Magento CE system. A local solution was set up and was used as a source for metric values, where
applicable.

7.1.1 Blueprint relations and identification of services

Architectural blueprint component Identified architectural component(s)

Web/business server hardware Linux x86 server with 2GB memory and two processor cores

Database server hardware [same as business server]

Web/business server software Apache 2.2.1, PHP 5.3

Database server software MySQL 5.2

Table 7.1: Architecture overview of Magento CE 1.6.2.

Table 7.1 shows the architectural components that have been identified for the Magento CE system.

35 Bergner, K., Rausch, A., Sihling, M. and Ternité, T. (2005), p. 9.

KTH STH 2012 29

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

The components have been extracted from the official requirements36. The following assumptions
have been made:

• The latest version of Apache, PHP and MySQL is used.

• The database server is running on the same hardware instance alongside the business server.

Architectural service component Identified participating components

Presentation service The Magento frontend rendering system, including the
template system, layouts, the MVC implementation and
other components responsible for rendering the GUI.

Store management service The administration panel and its CRM features.

Data storage and transaction service The ORM system, the MySQL database itself, the SSL
services implementation.

Data access and system interaction service The core API (over SOAP or XML RPC), the Magento
Connect system, the administration panel.

Table 7.2: Architectural service components and their implementation in the Magento CE system.

The components providing the architectural services are presented in the right column in Table 7.2.
These are the components on which the quality attribute metrics will be applied.

7.1.2 Application of quality attribute metrics and quality computation

Architectural
Service

Functional
suitability

Performance
efficiency

Maintainability Portability Market readiness

Weig
ht %

Valu
e

Point
s

Weig
ht %

Valu
e

Point
s

Weig
ht %

Valu
e

Point
s

Weig
ht %

Valu
e

Point
s

Weig
ht %

Valu
e

Point
s

Presentation 40 100 40 20 56 11 25 78 19 50 88 44 40 99 40

Store
management

40 94 38 0 - 0 25 83 21 0 - 0 30 97 29

Data storage and
transaction

10 100 10 60 56 34 25 73 18 50 90 45 0 - 0

Data access and
system
interaction

10 100 10 20 56 11 25 66 17 0 - 0 30 100 60

Total 98 56 75 89 99

Table 7.3: Evaluation summary for Magento CE.

The services in Table 7.2 are evaluated by applying the metrics defined for each quality attribute.
An overview of the resulting scores is shown in Table 7.3.

36 Magento Inc. Magento system requirements.

KTH STH 2012 30

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

7.2 Wipcore eNOVA

This section relates the architecture to the blueprint and applies the quality attribute metrics for the
Wipcore eNOVA system.

7.2.1 Blueprint relations and identification of services

Architectural blueprint component Identified architectural component(s)

Web/business server hardware 4 GB RAM, 64-bit processor.

Database server hardware 4 GB RAM, 64-bit processor.

Web/business server software Microsoft Windows Server 2008 Standard Edition x64, IIS 7,
.NET Framework 3.5

Database server software Microsoft Windows Server 2008, Microsoft SQL Server 2000

Table 7.4: Architecture overview of Wipcore eNOVA.

Architectural service component Identified participating components

Presentation service The Wipcore eNOVA Content Management systen renders
content, for example products, categories and pages.

Store management service Wipcore eNOVA has a separate Windows client for store
management, “Wipcore eNOVA BackOffice”.

Data storage and transaction service The SQL server database offers persistent storage. Content
and objects are accessed and modified through the built-in
API.

Data access and system interaction service The built-in API provides internal access to components.
However no standard component for interaction with
external systems could be found.

Table 7.5: Architectural service components and their implementation in Wipcore eNOVA.

7.2.2 Application of quality attribute metrics and quality computation

Architectural
Service

Functional
suitability

Performance
efficiency

Maintainability Portability Market readiness

Weig
ht

Valu
e

Point
s

Weig
ht

Valu
e

Point
s

Weig
ht

Valu
e

Point
s

Weig
ht

Valu
e

Point
s

Weig
ht

Valu
e

Point
s

Presentation 40 75 30 20 63 13 25 63 16 50 73 36 40 80 32

Store
management

40 81 33 0 - 0 25 59 15 0 - 0 30 90 27

Data storage and
transaction

10 100 10 60 90 54 25 59 15 50 73 36 0 - 0

Data access and
system
interaction

10 50 5 20 63 13 25 59 15 0 - 0 30 100 30

Total 78 79 60 73 89

KTH STH 2012 31

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

7.3 Episerver Commerce

This section relates the architecture to the blueprint and applies the quality attribute metrics for the
Episerver Commerce system. A local solution was set up and was used as a source for metric
values, where applicable.

7.3.1 Blueprint relations and identification of services

Architectural blueprint component Identified architectural component(s)

Web/business server hardware 4 GB RAM, 2 64-bit processors

Database server hardware 4 GB RAM, 2 64-bit processors

Web/business server software Microsoft Windows Server 2008 R2 SP1, IIS 7, .NET Framework
3.5

Database server software Microsoft Windows Server 2008 R12 SP1, Microsoft SQL Server
2008 SP2 32/64 bit

Table 7.6: Architecture overview of Episerver Commerce

Architectural service component Identified participating components

Presentation service The Episerver CMS is responsible for rendering the
content, for example products, categories and pages.

Store management service The Commerce Manager handles orders, products etc.

Data storage and transaction service The SQL server database offers persistent storage. Content
nodes and objects are accessed through the Business API.

Data access and system interaction service The Episerver CMS offers a plugin system that enables
extensions of the platform. Episerver Commerce also uses
the Windows Communication Foundation API to enable
system interaction through Web services.

Table 7.7: Architectural service components and their implementation in Episerver Commerce.

7.3.2 Application of quality attribute metrics and quality computation

Architectural
Service

Functional
suitability

Performance
efficiency

Maintainability Portability Market readiness

Weig
ht

Valu
e

Point
s

Weig
ht

Valu
e

Point
s

Weig
ht

Valu
e

Point
s

Weig
ht

Valu
e

Point
s

Weig
ht

Valu
e

Point
s

Presentation 40 100 40 20 67 15 25 56 12 50 80 40 40 91 36

Store
management

40 100 40 0 - 0 25 56 12 0 - 0 30 90 27

Data storage and
transaction

10 100 10 60 67 45 25 56 12 50 88 44 0 - 0

Data access and
system
interaction

10 100 10 20 67 15 25 56 12 0 - 0 30 100 30

Total 100 67 56 84 93

KTH STH 2012 32

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

7.4 Umbraco CMS with TeaCommerce

This section relates the architecture to the blueprint and applies the quality attribute metrics for the
Umbraco CMS/TeaCommerce system. A local solution was set up and was used as a source for
metric values, where applicable.

7.4.1 Blueprint relations and identification of services

Architectural blueprint component Identified architectural component(s)

Web/business server hardware

Database server hardware

Web/business server software Microsoft Windows Server 2008, IIS 7, ASP.NET 4, MVC 3

Database server software Microsoft Windows Server 2008, Microsoft SQL Server 2008

Table 7.8: Architecture overview of Umbraco CMS. No sources could be found that suggested
specific hardware specifications for the architectural blueprint. However, it assessed that the
software specifications of the platform is sufficient to be able to perform an evaluation of the
platform.

Architectural service component Identified participating components

Presentation service The Umbraco CMS is responsible for rendering the
content, for example products, categories and pages.

Store management service Umbraco Content management system, handling orders,
products etc. as content nodes.

Data storage and transaction service The SQL server database offers persistent storage. Content
nodes and objects are accessed through the built-in API of
Umbraco CMS.

Data access and system interaction service The Umbraco CMS offers a plugin system that enables
extensions of the platform. Umbraco also features a Web
services API that enables system interaction.

Table 7.9: Architectural service components and their implementation in Umbraco.

7.4.2 Application of quality attribute metrics and quality computation

Architectural
Service

Functional
suitability

Performance
efficiency

Maintainability Portability Market readiness

Weig
ht

Valu
e

Point
s

Weig
ht

Valu
e

Point
s

Weig
ht

Valu
e

Point
s

Weig
ht

Valu
e

Point
s

Weig
ht

Valu
e

Point
s

Presentation 40 54 22 20 83 17 25 75 19 50 85 43 40 84 34

Store
management

40 69 28 0 - 0 25 75 19 0 - 0 30 97 29

Data storage and
transaction

10 50 5 60 83 50 25 75 19 50 83 41 0 - 0

Data access and
system
interaction

10 67 7 20 83 17 25 75 19 0 - 0 30 20 6

Total 61 83 75 84 69

KTH STH 2012 33

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

KTH STH 2012 34

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

8 Magento implementation of mataffären.se
This chapter provides an overview of the Magento CE platform, as well as a description of the
process for implementing a basic design for a Magento website and how to develop the two
modules selected from Mataffären.se.

8.1 Developer background

This section describes, from a developers perspective, the Magento system including its
components, the code organization and the system design. At the end of the chapter, the
implementation process of the selected components of Mataffären.se is described in detail, to
provide an example of how to set up, configure and design a Magento installation. The section also
provides an overview of how to extend the functionality by creating a module, in this case the two
selected components of the Mataffären.se system.

There are two distinct code repositories where a developer has to look in order to develop for
Magento: the /app/code and the /app/design directory. The /app directory holds the application-
specific code for the installation, which in turn is divided into /code, the directory holding the
application logic, and /design, holding the layouts and templates for the application. The connection
between template files and module code, and how a page's html code is generated, will be explained
later in this chapter.

8.1.1 Code organization

In Magento, files are grouped into modules based on what functionality they offer. This is a bit
different from standard MVC applications, where controllers are in one folder, models in another
and so forts. There are two main catalogs for modules: the core modules are in /app/code/core and
the local, “custom-made” modules are in /app/code/local37.

37 Alan Storm. Magento for developers.

KTH STH 2012 35

Fig. 8.1: Folder structure for
a Magento module.

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

Magento is a configuration-based MVC system, as an alternative to a convention-based system. In
convention-based MVC, new modules would be recognized automatically when files are created
and put in a certain directory. In configuration-based MVC, new modules and components have to
be registered in the configuration files in order to function38. While a lot of things in Magento
applies the convention-over-configuration approach, modules are still required to have a config.xml
file with its configuration parameters specified39.

To customize or extend Magento, rather than editing core files directly, or even placing new
controllers, models or helpers next to Magento code, new modules are created in
app/code/local/Package/Modulename. Package, similar to Namespaces in Java and C#, is a unique
name that identifies your company or organization. As is the case with namespaces in C#40, the
package name is used to declare a scope for the code. It acts as a unique identifier for the company
or person behind the module, to avoid code collisions between developers. Fig. 8.1 shows the folder
structure for a typical Magento module, where /app is located in the root directory of the Magento
installation.

8.1.2 MVC implementation

Sommerville states that:

The MVC pattern separates elements of a system, allowing them to change
independently. For example, adding a new view or changing an existing view can be
done without any changes to the underlying data in the model41.

In a typical MVC architecture for a web application, a controller would trigger state changes to the
model based on user events in the view. The model then notifies the view of the change. Magento,
though, has its own implementation of the MVC design pattern. As in many other MVC-based
systems, Magento uses a single point of entry for all page requests: index.php. The file contains
code that handles routing to the proper method in a controller. It instantiates and calls the action
method, which is called dispatching.

38 Wikipedia. Convention over configuration.
39 Alan Storm. Magento for developers.
40 Microsoft. C# Programming Guide.
41 Sommerville, I. (2011), p. 157.

KTH STH 2012 36

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

Described in Fig. 8.2, the request process starts of with url examination and routing. The action then
loads the layouts and starts the rendering process. Pre-defined templates and blocks loads data from
the models, and the blocks then render into an HTML page. The terms blocks and templates will be
described in more detail later in this chapter.

For example, the url request

http://example.com/foo/bar/view/id/25

contains information about in which module (“foo”) the controller resides, which controller should
be used (“bar”), which action should be called (“view”) and also the arguments to the controller
action (“id=25”).

Controllers are placed in the Controllers folder of a module (see Fig. 8.1). For example, the
controller BarController.php would look like this42:

class Kth_Foo_BarController extends Mage_Core_Controller_Front_Action
{
 public function viewAction()

42 Alan Storm. Magento for developers.

KTH STH 2012 37

Fig. 8.2: Magento MVC implementation (Alan Storm, 2012).

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

 {
 //do something
 }
}

The controller extends the core, and implements the “view” action. “Kth” is the namespace for the
module, see Fig. 8.1.

8.1.3 Models and Helpers

A Magento module can contain several models. In Magento, the term model refers to a structural
model, representing one of the components that make up a system. An example of a module would
be the “category” model of the “catalog” module. Dependencies and logical structure are factors
that has to be considered when determining in which module a model should be placed.

To aid interaction with the datastore and avoid having to write SQL code manually, Magento offers
an Object Relational Mapping system (ORM). The ORM is accessed through models. Helpers
contain utility methods for the models. Helpers are available per module or per model. For example,
the helper class for the category class can be loaded through

$helper = Mage::helper('catalog/data');

providing helper methods such as

$helper->getBreadcrumbPath();
43.

An example of a Magento model would be the catalog/product model. Once a model has been
loaded, it can be used to interact with the datastore and perform basic CRUD
(create/read/update/delete) operations:

$_productId=25;
$_product = Mage::getModel('catalog/product')->load($_productId);
$_product->setPrice(199);
$_product->save();

A product can be loaded up by the model, and the price, manufacturer or other attributes can be set
or retrieved from the object. The setPrice methods is an example of Magento's use of magic get/set
methods, where the method name is mapped to a model attribute. This way, once a product attribute
has been added it can be easily retrieved in the frontend.

8.1.4 Observers

Magento implements an Event/Observer pattern that can be used to pick up and react to certain
events. As certain actions happen during a Page request (a Model is saved, a user logs in, etc.),
Magento will issue an event signal which a module can “listen” to.

Observers are registered in the module's config.xml file. The configuration entry specify which
event that should be listened to and which action in which module that should be triggered. An
example of an observer entry in the config.xml file would be

<events>
 <customer_login>
 <observers>
 <observernamespace>
 <type>singleton</type>
 <class>customerlistener/observer</class>
 <method>exampleAction</method>

43 Magento Inc. Magento Documentation.

KTH STH 2012 38

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

 </observernamespace>
 </observers>
 </customer_login>
</events>

which represents an observer that listens to the customer_login event and triggers the example
action method in the customerlistener module.

8.1.5 Class overrides

Magento offers a way of extending the functionality of the core models by overriding methods in
the original classes. For example, the developer might want to change the behaviour of the login
method in the customer model. By extending the original model in the way of

class Kth_Foo_Model_Barcustomer extends Mage_Core_Model_Customer
{
 public function login()
 {
 // custom login action
 }
}

where the Bar model in the Foo module extends the core Customer model, replacing the original
login method without touching the original methods44.

Following the configuration-over-convention-pattern, the rewrite has to be registered in the
config.xml file of the module:

<models>
 <foo>
 <class>Kth_Foo_Bar</class>
 </foo>
 <catalog>
 <rewrite>
 <customer>Kth_Foo_Model_Bar</customer>
 </rewrite>
 </catalog>
</models>

8.1.6 Design and customization

The Magento design and templating system is arguably one of the more complicated parts of the
framework. Magento separates the model and the view by adding an additional layer using blocks
and templates. This way, the view component directly references system models to get the
information it needs for display.

8.1.6.1 Layouts, blocks and templates

The XML files in the layout directory defines the block structure of pages. Blocks are elements of a
page. The template directory contains phtml files, which consists of xHTML markup and, in some
cases, page logic for visual elements45.

There are two types of blocks: Structural blocks and Content blocks. Structural blocks are for page
structure elements, for example header and footer. Content blocks produce the actual content with
the help of phtml files. For example, there can be a content block that represents the cart element.

44 Alan Storm. Magento for developers.
45 Magento Inc. Magento Designer's Guide, p. 7.

KTH STH 2012 39

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

The cart content block then refers to a phtml file that generates the actual content. A layouts defines
these two different types of blocks into a layout package46.

The layout files generate the html output by referring to content blocks in the layout files. For
example, if the page.pthml template file wants to generate the header content, it can refer to the
header content as

<?php echo $this->getChildHtml('header')?>

and fetch the content named “header” in the current layout file;

<block type="page/html_header" name="header"
template="page/html/header.phtml"/>

which will render the contents in header.phtml.

As seen in Fig. 8.3, the layout and template files are stored under the app/design/frontend/package
directory. An example of a complete layout/blocks/templates system can be found in the
implementation chapter 8.6 Frontend development.

8.1.6.2 Packages and themes

Themes are stored in /app/design/frontend/[package_name] and contains the folders layout,
template and locale. The layout and template directory have been described earlier in this chapter.
The locale directory contains theme-specific translation files in .csv format that allows for
additional customization for the theme.

A package is a collection of themes. As seen in Fig. 8.3, the your_package package contains the
theme default. Packages and Themes can be assigned on a website, store or store view level.
Themes are activated and deactivated in the administration panel.

8.1.7 Websites, stores and store views

The multi-store functionality is one of the core features of the Magento system. In Magento, a
website is a collection of stores, which themselves are collections of store views. The stores share
the same customer information, order information and shopping cart.

46 Magento Inc. Magento Designer's Guide, p. 12.

KTH STH 2012 40

Fig. 8.3: Folder structure for a
Magento theme.

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

Stores are collections of store views and can be setup in a variety of ways. Their main function is to
provide a logical container that allows for grouping related store views together in a website.

Store Views are the actual store instances in Magento. The store views can represent different
languages, design styles or seasonal variations such as a special Christmas version of a store.

For multi-store-functionality implementation in Magento, the system designer can choose to have
multiple websites, stores or store views depending on how much information and configuration
parameters he or she wants to share between the stores47.

The website/store/store view relationship and hierarchy can be used to create several different types
of multi-store configurations. For example

• a single website, a single store and a single store view

• a single website with multiple stores

• multiple websites with multiple stores and store views.

Fig. 8.4 shows the relationship between websites, stores and store views. The multi-store
functionality of Magento can be considered as one of the platform's stronger sides, because of the
flexibility and scalability in the configuration.

8.2 Requirements

To achieve the goal of demonstrating the capabilities of the Magento platform, a sample application
has been developed that mimics some of the functionality of the project Mataffären.se.

Mataffären.se is a B2C (Business to consumer) web shop for groceries. It is built on the platform
Wipcore eNOVA. As part of this thesis, some of the shop's features are to be re-constructed on the
Magento platform. The requirements for the implementation is that it highlights the key components
of developing in Magento. As stated in chapter 3.1 Goals, two modules should be implemented, as
well as a store frontend.

For the frontend part, three views has been defined as necessary to achieve a useful demonstration:

47 Magento Inc. Magento Designer's Guide, p. 3-4.

KTH STH 2012 41

Fig. 8.4: Hierarchy of websites, stores and store views in Magento. Examples of applications are
displayed in the boxes as gray text (source: the author).

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

• Home page, where the catalog, promotions and other information is presented to the user.

• Category listing, where products and/or subcategories are presented and the user can choose
to view products or subcategories in more detail.

• Product page, where a product is presented in more detail such as an image, weight and
other information.

The backend implements two components that are currently part of the Mataffären.se solution;

• a module that acquires product information from OPV

• a module that simulates a connection to the shipping company Widrikssons, providing order
picking information and an API for data exchange.

8.3 Environment setup

To develop the Magento solution, a local and a remote environment have been created. The local
environment is used for development, testing and debugging. The remote environment is a
production environment, where the solution is deployed and also the environment that will be used
for demonstration.

8.3.1 Local environment

The local environment consists of the following;

• A client computer running Windows 7 Enterprise

• NetBeans IDE 7.1.1, for developing and debugging of the solution

• WampServer 2.2D, which provides a web application development stack consisting of
Apache, MySQL and PHP

• Xdebug, a component of WampServer that enables debugging of the solution in NetBeans.

NetBeans, WampServer and Xdebug are all licensed in a way that they are free to use (GPL) and
can be downloaded and installed on the client. Details on the software used can be found on
www.netbeans.org and www.wampserver.com.

8.3.2 Production environment

To provide scalability and sufficient speed for the solution, Glesys (www.glesys.com), a cloud
hosting provider, has been chosen to supply the production environment for the Magento solution.
Glesys provides a payment model where it is possible to instantly edit the specification of the server
to match current needs, which makes the solution suitable for this project.

A server with the specifications

• disk size of 5 GB,

• 2048 MB of memory, and;

• 2 processor cores

has been created to supply the production environment, running Debian 6.0 64bit (Linux) as
operating system.

KTH STH 2012 42

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

Details on installing the LAMP stack is judged as out of the scope of this thesis. However, a general
overview of the procedures will be provided as well as details on the installation steps that are
specifically needed for the Magento solution to be able to run on the environment.

To communicate with the remote server, PuTTY48 is used. Apache 2.2, PHP 5.4 and MySQL 5.3 are
all installed via the command 'apt-get install [php/apache/mysql]' on the console. To enable URL
rewriting in Magento, the module 'rewrite.so' has been activated in Apache. A default site has been
enabled, located in /var/www.

After restarting MySQL and Apache, no additional configuration is needed to achieve a running
web server on the production platform. In the following sections, the steps for installing and
configuring the Magento solution will be described.

8.4 Installation and configuration

To install Magento, the following steps are required:

• Download Magento CE from www.magentocommerce.com.

• Unpack the contents into the public web directory of the web server (in Wamp this is
c:/wamp/www, on Debian this is /var/www).

• Create a database and an associated user.

• Run the Magento installation by browsing to http://[hostname]/magento.

When browsing to the installation page, the user is presented with the Magento Installation Wizard,
the built-in Magento installation guide. Database details and other server options are entered by the
user, such as session storage and rewrite options.

48 http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

KTH STH 2012 43

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

KTH STH 2012 44

Fig. 8.6: Step 4 out of 5 of the Magento Installation Wizard.

Fig. 8.5: Step 3 out of 5 of the Magento Installation Wizard.

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

Fig 8.5 and 8.6 shows two of the five steps of the installation. It is estimated that the installation
procedure takes no more than 10 minutes for a user to complete, without previous experience. Once
the Magento Installation Wizard is completed, user can access the frontend and the administration
panel.

The next step is to configure the solution for the intended purposes. It is assumed that the goal of
the configuration is to have a working platform that is ready to receive orders. To achieve this, the
following steps are needed:

1. Configure websites, stores and store views.

2. Create attributes and attribute groups.

3. Create categories and products.

4. Install and configure payment and shipping options.

The following sections will focus on the steps 1-3 and only touch briefly on step 4, for the reason
that it can be considered to be out of the scope for this theses to apply payment and shipping
options. However, it is useful as a demonstration of Magento Connect, a system for installing third-
party extensions such as payment and shipping options.

8.4.1 Configuring websites, stores and store views

The solution is required to have only one website, one store and a single store view. Therefore, no
additional configuration is required since this is the setup that is already set after installation. Fig.
8.7 shows the settings provided as default under System → Manage stores, where a Main website, a
Main Website Store and a Default Store View is provided.

KTH STH 2012 45

Fig. 8.7: Store configuration view.

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

8.4.2 Creating attributes and attribute groups

In Magento, a product inherits from an attribute group. An attribute group is a collection of
attributes. Attribute groups are created to facilitate the creation of similar products. For example, a
shop that sells clothes might want to create an attribute group called “shirts”, with the attributes
“collar type”, “cotton type”, “chest size” and so forth. Attributes can be of different types, for
example “text”, “integer” and “yes/no”.

A number of attributes are mandatory for products, for example “price”, “sku” and “status”. For this
specific solution, the attribute group “food” has been created, which apart from the mandatory ones
consists of the attributes

• “content” [text]: the contents of the food package

• “allergyinfo” [text]: information about the contents for people with allergies

• “nutrition” [text]: nutrition facts such as calories and protein

• “ean” [integer]: the EAN code of the package

• “anglamark” [yes/no]: whether or not the product is an “Änglamark” product

• “krav” [yes/no]: whether or not the product is marked as “Krav”

• “garanteradhallbarhetstid” [integer]: number of days the product is guaranteed not to out of
date from the time of delivery

• “manufacturer” [text]: product manufacturer.

8.4.3 Creating categories and products

Categories are created in Catalog → Categories. For this solution, category names and the category
hierarchy have been replicated from parts of the catalog on Mataffären.se.

KTH STH 2012 46

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

Fig. 8.8 shows the categories and the category hierarchy as well as two products belonging to the
category “Mejeri”.

When categories attributes and attribute groups has been created, the user can create products
inheriting from the attribute group and assign them to a category. A product must belong to a
category to become visible in the shop.

KTH STH 2012 47

Fig. 8.8: View of the categories and the category
hierarchy.

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

Product are created through Catalog → Manage products. After selecting which attribute group the
product should inherit from, the dialog as seen in Fig. 8.9 is presented to the user. Once the
properties for the product has been entered, user can select which categories the product should
belong to in the tab “Categories”. A product can belong to multiple categories.

8.5 Backend development

This section describes briefly how the goal of demonstrating Magento backend development was
achieved, without going into too much detail on the implementation. Background to the Magento
architecture is provided in chapter 8.1: Developer background.

Component Purpose

Oslind/OPVmodule/etc/config.xml Defines the actions for the module, and that it
should be available to run through the
administration panel.

Oslind/OPVmodule/controller/indexController.p
hp

Holds the action to import product data through
SOAP calls.

Table 8.1: Main components of the OPV module.

The “OPV” module was created using the standard module layout as described in the background
chapter. The model consists of the components described in Table 8.1. The module offers the ability
for a user to, in the administration panel, click a link to trigger the action to import product data
from the OPV database to the local database using SOAP calls. The module utilizes the existing

KTH STH 2012 48

Fig. 8.9: Dialog for creating a new product. Attributes are
inherited from the selected attribute group.

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

Magento API to save and update data for the products.

Fig. 8.10 shows exemplary code from the controller action in the module.

The model for simulating export and import of packing data from the delivery agent contains a bit
more code and has more components than the OPV module.

Component Purpose

Oslind/Widrikssons/Model/etc/api.xml Defines the methods that should be part of the
module's API.

Oslind/Widrikssons/Model/Widorder/Api.php Contains the methods for the module's API.

Oslind/Widrikssons/Model/Widorder.php Contains the import/export order methods made
available to the controllers of the module. This is
the location for the main logic of the module.

Oslind/Widrikssons/Model/Mysql4/Widorder.ph
p

Required for the ability to store the model entity
in the database.

Table 8.2: Main components of the Widrikssons module.

KTH STH 2012 49

Fig. 8.10: Exemple code from the update action in the OPV module's indexController.php.

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

As shown in Table 8.2, a greater amount of components is required to achieve the goals of database
storage of model data, and especially enabling an API for web services to allow for external
processes to exchange data with the module.

Fig. 8.11 shows code from a method made available in the module's public API. The method is then
specified in the module's configuration file, making it available in the public WSDL specification
for the system.

8.6 Frontend development

The frontend example was created using the standard Magento frontend design procedure described
previously in this document. Three templates were developed: A home page, a category view and a
product view.

KTH STH 2012 50

Fig. 8.11: Example code from the Api.php file of the Widrikssons module. The orderBathNr method
is part of the module's public API and can be used to fetch properties for a model entity in the local
database.

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

Fig. 8.12 shows exemple code from the home page template. The “header” block is rendered from
the “header” reference in the layout file. The reference points, in turn, to a .phtml file, which
contains the actual header contents.

Fig. 8.13 shows example code from the layout file. The references “header” and “toplinks”,
previously called upon from the .phtml file, link to other .phtml files whose content will be rendered
on the page, as the final step of the rendering process.

8.7 Migration to production server

After developing the solution on the local environment, the solution can be migrated to the remote
server. To migrate a standard Magento solution, the following steps have identified as required:

1. Transferring the files to the new site.

2. Transferring the contents of the database to the new database.

3. Editing /app/etc/local.xml to reflect the new database properties (mainly database name,
user and password).

4. Setting a new host url in the database to reflect the new location of the solution.

To accomplish this, the solution has been compressed to a .tar file, transferred to the remote location
and unpacked to the public web directory of the web server. Following this, the contents of the local
database have been exported to a .sql file and imported into the remote database. For the solution to
be able to utilize the new database, the local.xml file of the remote installation has been edited to
reflect the changes.

As a final step, the solution needs to be updated with the new host, by editing the field base_url in
the table core_config_data. In this case, the hostname has been updated from localhost to the IP

KTH STH 2012 51

Fig. 8.12: Example code from the main .phtml template file, showing the layout blocks "header"
and "toplinks" being referenced from the page.xml layout file.

Fig. 8.13: Example code from the page.xml layout file holding the references to the blocks referred
to by the main .phtml file.

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

address of the production server.

When the above steps have been performed, a working solution should be up and running on the
production server.

KTH STH 2012 52

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

9 Conclusion
This chapter should present and analyze the evaluation results, as well as describe in short the
solution to the Magento implementation.

Platforms and Architectural Services

Quality Attribute Magento CE Episerver Commerce Wipcore eNOVA Umbraco CMS with
Tea Commerce

P
re

se
nt

at
io

n

S
to

re
 m

an
ag

em
en

t

D
at

a
st

or
ag

e
an

d
tr

an
s.

D
at

a
ac

ce
ss

 a
nd

 s
ys

t.
in

te
r.

T
ot

al
 (

w
ei

gh
ed

 s
co

re
)

P
re

se
nt

at
io

n

St
or

e
m

an
ag

em
en

t

D
at

a
st

or
ag

e
an

d
tr

an
s.

D
at

a
ac

ce
ss

 a
nd

 s
ys

t.
in

te
r.

T
ot

al
 (

w
ei

gh
ed

 s
co

re
)

P
re

se
nt

at
io

n

S
to

re
 m

an
ag

em
en

t

D
at

a
st

or
ag

e
an

d
tr

an
s.

D
at

a
ac

ce
ss

 a
nd

 s
ys

t.
in

te
r.

T
ot

al
 (

w
ei

gh
ed

 s
co

re
)

P
re

se
nt

at
io

n

St
or

e
m

an
ag

em
en

t

D
at

a
st

or
ag

e
an

d
tr

an
s.

D
at

a
ac

ce
ss

 a
nd

 s
ys

t.
in

te
r.

T
ot

al
 (

w
ei

gh
ed

 s
co

re
)

Functional
suitability

100 100 94 100 98 100 100 100 100 100 75 81 100 50 78 54 69 50 67 61

Performance
efficiency

56 - 56 56 56 67 - 67 67 67 63 - 90 63 79 83 - 83 83 83

Maintainability 78 83 73 66 75 56 56 56 56 56 63 59 59 59 60 75 75 75 75 75

Portability 88 - 90 - 89 80 - 88 - 84 73 - 73 - 73 85 - 83 - 84

Market Readiness 99 97 - 100 99 91 90 - 100 93 80 90 - 100 89 84 97 - 20 69

Table 9.1: Summary of the evaluation results. Quality attributes who was assigned a weight of 0 for
an architectural service have a dash (“-”) in the evaluation matrix instead of an actual score. Total
score is calculated after applying the quality computation weights defined in section 6.5.

Table 9.1 presents the score summary for the platforms. A more detailed evaluation result for each
platform can be seen in chapter 7. The results show that while Magento CE 1.6.2 and Episerver
Commerce have a high degree of functional suitability, they both lack in terms of performance
efficiency and maintainability. Wipcore eNOVA and Umbraco CMS/TeaCommerce's strength lies in
performance efficiently, while Umbraco CMS with TeaCommerce also has a high degree of
portability aside from performance. Regarding market readiness, all platforms perform well except
for Umbraco CMS with TeaCommerce.

The results suggest that a solution with Magento CE should be chosen when it is important to set up
a new solution quickly, without having to spend a lot of time adding features that are not present by
default. On the other hand, if a more customized and tailor made system is desirable, Wipcore
eNOVA as well as Umbraco CMS seems like a good choice. Episerver Commerce would maybe
also be a good choice for this type of system, if the high degree of functional suitability is
considered more important than the low degree of maintainability.

To summarize, the evaluation shows that each platform has its strengths and weaknesses, but the
comparison framework that was established has a high level of subjectivity and many of the quality
attributes have an insufficient number of metrics. For future work, I would recommend revising the
framework by doing a separate study on which metrics to use, and then incorporate these metrics
into the existing DoSAM e-commerce comparison framework. Also, more time should be spent
defining the services and components of the platforms, so that they can be evaluated separately to a

KTH STH 2012 53

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

higher degree than what was possible during this evaluation. It would also be desirable to define
criterias for reference systems so that performance and maintainability can be measured more
accurately.

The solution presented in ch. 8 provides an overview of how to develop modules in Magento and
how two modules from an existing system was replicated in Magento CE 1.6.2. The chapter
provides insights into Magento development in general, and how the frontend and backend
components of Mataffären.se can be implemented, specifically. In relation to this, the following
section discusses the implementation process with regards to the evaluation results for Magento.

9.1 Magento implementation process in relation to evaluation results

The evaluation results for the Magento CE platform should be especially interesting since an actual
implementation was part of the goal for this thesis. The evaluation results for the platform indicates
a relatively high degree (a score of 90+) of functional suitability, portability and market readiness
but a lower (-75) degree of performance efficiency and maintainability.

The installation and configuration process of the platform was perceived as relatively straight
forward, with few steps to perform. The technical platform on which the solution had to be installed
was also very common (Apache/MySQL/PHP) for web applications, and required few adjustments
from default environment settings. This can be interpreted as cohesive in relation to the portability
attribute evaluation result.

The functional suitability score of the services can also be seen as quite cohesive with the
implementation process experience, as the components that were needed were all there to extend
and utilize, such as product catalog functionality, availability of product attribute services, and
administration abilities through the administration panel. However to fully assess the correctness of
the evaluation score for this attribute, it is assessed that a more complete implementation process is
needed, for example a project that touches all the necessary steps up to a live release, including
performance test. This can also be said of the Market readiness and Performance efficiency
attribute.

The Maintainability attribute can be considered as the attribute most likely to have been evaluated
most out of all the attributes, since a new design was created from scratch and two new modules
were implemented. The attribute should consider such factors as Modularity, Modifiability and
Reliability. However it is difficult to assess these factors without a risk of a high degree of
subjectivity from the developer. The only thing that can be said for certain is that the functionality
that was intended could be achieved within the given time frame, the solution could be debugged
using the IDE and that the framework's internal MVC implementation was utilized, which were
some of the metrics with which to measure the degree of Maintainability. Weather or not the scores
were accurate or not cannot be assessed by the author.

KTH STH 2012 54

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

10 Discussion
This chapter describes and discusses problems that arose during the evaluation and implementation.

It was very difficult selecting and applying an evaluation method that had a suitable balance
between being practical, having a high degree of objectivity and being able to apply within the
given time frame of the thesis work. For the evaluation to be useful for Softronic, it had to take into
account factors that lay close to the actual implementation of the platforms. On the other hand,
evaluation methods in general tend to abstract things and add a lot of overhead on the evaluation
procedure. Additionally, selecting attributes and defining how to measure them, while maintaining
both an abstract and a practically useful perspective, has proven to be very difficult.

The original intention of the comparison was to make it relatively independent of the
implementations, and only measure the abilities of the architectural foundations. Further into the
work, it was clear that to make the comparison useful, certain implementation-specific attributes
could simply not be left out. This moved the perspective from an abstract viewpoint further and
further into an implementation-specific viewpoint. One of the consequences of this was that the
Umbraco CMS system could no longer be evaluated without selecting an e-commerce
implementation. This was not the original intention of use of the comparison framework, adding to
the complexity of the task and forcing the work into essentially making difficult metrics choices.

For this reason, the biggest weakness of this thesis is probably the subjectivity of the metrics used,
although the application and treatment of them have been according to the comparison framework's
specification. Nevertheless, this is something to consider for those that might want to use the
comparison framework, and especially the author's implementation of it, in the future. One might
add that the subjectivity of the metrics is a bigger risk that the choice of attribute weights, since the
weights are much easier to adjust later in the evaluation.

Regarding functional suitability it has been suggested by, for example, Sommerville, that
functionality in general is very difficult to measure since it tends to be very dependent on the person
performing the evaluation and therefore quite subjectively measured. This thesis work is no
exception. The treatment of the attribute has its weaknesses, for example it takes a certain amount
of metrics to achieve a somewhat reliable result, while the metrics have to be selected very carefully
so that they are not too implementation-specific, in order to maintain an abstract platform-
independent perspective. On the other hand, too few metrics will yield a result that is too abstract
and doesn't say very much about the actual functionality of the platforms.

On some of the quality attributes, the author has had to rely almost solely on qualitative metrics,
which can be said to make the evaluation even more subjective. The other side of this is that,
combined with reasoning about the metrics and the measurements, usage of qualitative metrics
provides a more useful overview of the platforms than measuring purely quantitative attributes such
as call depth, lines of code etc. Once again it is a balance between the limited scope of the thesis,
usefulness of the evaluation and maintaining objectivity.

Some of quality attribute measurements can also be considered more to be valid than others. For
example, the performance efficiency attribute could only be evaluated using three metrics. To
achieve a reliable evaluation result, one would have to test the platforms in a much more systematic
way, using for example stress testing, load testing and spike testing. Also, the market readiness
attribute should be further developed, since only some of the services were able to have the metrics
applied to them. This suggests that a more thorough metrics definition process would be needed, so
that metrics can be developed that reveals strengths and weaknesses to a higher degree.

KTH STH 2012 55

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

It can also be argued that for the maintainability attribute, a present or non-present MVC design
pattern implementation is not something that should be measured as a binary score. Some platforms
may have their own way of separating views from content. Also, the level of documentation can
differ between different parts of a system, meaning that, for example, developers working with the
commerce area does not experience the same issues as a developer working in, for example, only
the CMS area. Also, more metrics would be desirable to measure the complexity of a system,
including the contents of the DLL files, and not just the number of source files. Development tools
have been identified that would be suitable for measuring, for example, cyclomatic complexity and
the number of methods within the source code.49 However it was assessed that this type of
measurement would require a thorough definition and setup of equally complex reference projects
for each of the platforms, which was estimated to be out of the scope of this thesis. For further
work, though, these measurements should be added to the comparison framework to provide a more
accurate estimation of the maintainability attribute.

It can also be noted that, in many cases, the scores are the same for all the services of the platforms.
This can be linked to difficulties in isolating and differentiating what the services actually do,
respectively. It can be discussed weather it is correct to assign the same metric values to all services,
or if the services should not be measured at all in those cases.

In all, the comparison framework can be said to be relatively specific for the task of this thesis and
for the company interested in the platforms. This also applies, of course, to the Magento
implementation solution. Those that want to use the comparison framework in the future, and apply
it to other platforms, should definitely consider redefining parts of the comparison framework,
especially the quality attribute metrics.

49 For example the Code metrics option in Visual studio, or SONAR, an open source alternative.

KTH STH 2012 56

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

11 References
Alan Storm. Magento for developers. http://www.magentocommerce.com/knowledge-base/entry/magento-for-dev-part-
1-introduction-to-magento, retrieved 2012-05-06.

Banani R., and Graham, N. (2008). Methods for Evaluating Software Architecture: A Survey. Queen's University at
Kingston (Ontario, Canada).

Bergner, K., Rausch, A., Sihling, M. and Ternité, T. (2005). DoSAM – Domain-Specific Software Architecture
Comparison Model. First International Conference on the Quality of Software Architectures, and Second International
Workshop on Software Quality, LNCS 3712, pp. 4 – 20, 2005.

Dobrica, L. and Niemela, E. (2002). A survey on software architecture analysis methods. IEEE Transactions on
Software Engineering, July 2002, Vol.28(7), pp.638-653.

Episerver. Episerver Commerce system requirements. http://world.episerver.com/Documentation/Items/System-
Requirements/EPiServer-Commerce/System-Requirements---EPiServer-Commerce-1-R2-SP2-/

Episerver. Episerver Labs. http://labs.episerver.com/en/Blogs/, retrieved 2012-05-31.

Episerver. Episerver World. http://world.episerver.com/, retrieved 2012-04-30.

http://win.wipcore.se/Library/Index/Wipcore.eNOVA.Technical.Overview

HUI Research AB. E-barometern (2011). http://www.hui.se/statistik-rapporter/index-och-barometrar/e-barometern

ISO.org (2011). ISO/IEC 25010:2011. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?
csnumber=35733.

Jajja. SEO-test av Wipcore eNova 5.3. http://seotest.jajja.com/sv/2011/e-handel/svar/wipcore-enova-5-3/, retrieved
2012-05-30.

Jarl, M. (2008). Evaluation of three e-commerce platforms. Datavetenskap och kommunikation, Kungliga Tekniska
högskolan, Stockholm.

Magento Inc. Magento Designer's Guide.
http://info.magento.com/rs/magentocommerce/images/MagentoDesignGuide.pdf., retrieved 2012-05-18.

Magento Inc. Magento Documentation.
http://docs.magentocommerce.com/Mage_Catalog/Mage_Catalog_Helper_Data.html, retrieved 2012-05-18.

Magento Inc. Magento Knowledge base. http://www.magentocommerce.com/knowledge-base, retrieved 2012-04-15.

Magento Inc. Magento system requirements. http://www.magentocommerce.com/system-requirements, retrieved 2012-
05-15.

Microsoft. C# Programming Guide. http://msdn.microsoft.com/en-us/library/dfb3cx8s.aspx, retrieved 2012-05-18.

Softronic AB. Softronic.se (2012). http://www.softronic.se

Sommerville, I. (2011). Software Engineering. Addison-Wesley.

Stefani, A. and Xenos, M. (2008). E-commerce system quality assessment using a model based on ISO 9126 and Belief
Networks. Software Quality Journal, 2008, Vol.16(1), pp.107-129.

Stefani, A. and Xenos, M. (2001). A model for assessing the quality of e-commerce systems. Proceedings of the PC-HCI
2001 Conference on Human Computer Interaction, Patras, pp. 105-109, 2001.

TeaCommerce. TeaCommerce system requirements. http://www.teacommerce.dk/en/documentation/system-
requirements.aspx

Umbraco. The Umbraco documentation wiki. http://our.umbraco.org/wiki/, retrieved 2012-05-21.

Umbraco. Umbraco system requirements. http://our.umbraco.org/wiki/recommendations/recommended-reading-for-it-
administrators/minimum-system-requirements

van der Merwe., R. and Bekker, J. (2003). A framework and methodology for evaluating e-commerce Web sites. Internet
Research: Electronic Networking Applications and Policy, Vol.13(5), p.330-341.

KTH STH 2012 57

An E-commerce Platform Evaluation based on the DoSAM Framework Oskar Lind

Wikipedia. Convention over configuration. http://en.wikipedia.org/wiki/Convention_over_configuration, retrieved
2012-05-06.

Wikipedia. ISO/IEC 25010:2011. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?
csnumber=35733, retrieved 2012-04-10.

Wikipedia. ISO/IEC 9126. http://en.wikipedia.org/wiki/ISO/IEC_9126, retrieved 2012-04-10.

Wikipedia. Usability. http://en.wikipedia.org/wiki/Usability, retrieved 2012-04-10.

Wipcore. API documentation. http://win.wipcore.se/ApiDoc/html/ApiDoc.aspx, retrieved 2012-05-31.

Wipcore. Library: Technical documentation. http://win.wipcore.se/Library/List/Guideline, retrieved 2012-05-31.

Wipcore. Wipcore eNOVA 5.1 system requirements. http://win.wipcore.se/Articles/News/eNOVA51-
release#SystemRequirements

Wipcore. Wipcore Information Network. http://win.wipcore.se/, retrieved 2012-05-21.

Wipcore/Enova leaks. Kommande release for WebFoundation. http://enovaleaks.se/2012/05/15/kommande-release-for-
webfoundation/, retrieved 2012-05-31.

Zend Technologies Ltd. Zend New BSD Licence. http://framework.zend.com/license, retrieved 2012-04-03.

Zend Technologies Ltd. Zend Programmer's Reference Guide.
http://framework.zend.com/manual/en/introduction.overview.html, retrieved 2012-04-03.

Zend Technologies Ltd. Zend.com. http://www.zend.com

KTH STH 2012 58

Appendix A: ISO/IEC 25010:2011 Product Quality Model
Category and description Subcategory Subcategory description

Functional suitability - A set of
attributes that bear on the existence of
a set of functions and their specified
properties. The functions are those
that satisfy stated or implied needs.

Functional completeness Degree to which the set of functions
covers all the specified tasks and user
objectives

Functional appropriateness Degree to which the functions
facilitate the accomplishment of
specified tasks and objectives

Functional correctedness Degree to which a product or system
provides the correct results with the
needed Degree of precision

Reliability - A set of attributes that
bear on the capability of software to
maintain its level of performance
under stated conditions for a stated
period of time.

Maturity Degree to which a system meets needs
for reliability under normal operation

Fault Tolerance Degree to which a system, product or
component operates as intended
despite the presence of hardware or
software faults

Recoverability Degree to which, in the event of an
interruption or a failure, a product or
system can recover the data directly
affected and re-establish the desired
state of the system

Availability Degree to which a system, product or
component is operational and
accessible when required for use

Usability - A set of attributes that bear
on the effort needed for use, and on
the individual assessment of such use,
by a stated or implied set of users.

Appropriateness recognizability Degree to which users can recognize
whether a product or system is
appropriate for their needs

Learnability Degree to which a product or system
can be used by specified users to
achieve specified goals of learning to
use the product or system with
effectiveness, efficiency, freedom
from risk and satisfaction in a
specified context of use

Operability Degree to which a product or system
has attributes that make it easy to
operate and control

User error protection Degree to which a system protects
users against making errors

User interface aesthetics Degree to which a user interface
enables pleasing and satisfying
interaction for the user

Accessibility Degree to which a product or system

1

can be used by people with the widest
range of characteristics and
capabilities to achieve a specified goal
in a specified context of use

Performance Efficiency - A set of
attributes that bear on the relationship
between the level of performance of
the software and the amount of
resources used, under stated
conditions.

Time Behavior Degree to which the response and
processing times and throughput rates
of a product or system, when
performing its functions, meet
requirements

Resource Utilization Degree to which the amounts and
types of resources used by a product
or system when performing its
functions meet requirements

Capacity Degree to which the maximum limits
of a product or system parameter meet
requirements

Maintainability - A set of attributes
that bear on the effort needed to make
specified modifications.

Modularity Degree to which a system or computer
program is composed of discrete
components such that a change to one
component has minimal impact on
other components

Reusability Degree to which an asset can be used
in more than one system, or in
building other assets

Analyzability Degree of effectiveness and efficiency
with which it is possible to assess the
impact on a product or system of an
intended change to one or more of its
parts, or to diagnose a product for
deficiencies or causes of failures, or to
identify parts to be modified

Modifiability Degree to which a product or system
can be effectively and efficiently
modified without introducing defects
or degrading existing product quality

Testability Degree of effectiveness and efficiency
with which test criteria can be
established for a system, product or
component and tests can be performed
to determine whether those criteria
have been met

Portability - A set of attributes that
bear on the ability of software to be
transferred from one environment to
another.

Adaptability Degree to which a product or system
can effectively and efficiently be
adapted for different or evolving
hardware, software or other
operational or usage environments

Installability Degree of effectiveness and efficiency
with which a product or system can be
successfully installed and/or
uninstalled in a specified environment

Replaceability Degree to which a product can be
replaced by another specified software

2

product for the same purpose in the
same environment

Compatibility - Co-Existence Degree to which a product can
perform its required functions
efficiently while sharing a common
environment and resources with other
products, without detrimental impact
on any other product

Interoperability Degree to which two or more systems,
products or components can exchange
information and use the information
that has been exchanged

Security Confidentiality Degree to which a product or system
ensures that data are accessible only to
those authorized to have access

Integrity Degree to which a system, product or
component prevents unauthorized
access to, or modification of,
computer programs or data

Non-repudiation Degree to which actions or events can
be proven to have taken place, so that
the events or actions cannot be
repudiated later

Accountability Degree to which the actions of an
entity can be traced uniquely to the
entity

Authenticity Degree to which the identity of a
subject or resource can be proved to
be the one claimed

3

4

Appendix B: Evaluation data
For metric definitions, see ch. 6.4 Quality Attribute Metrics. Some metric values are market as “-”.
It was assessed during the evaluation that these metrics were unable to be determined for the given
service. This approach, and how it may impact the evaluation, is discussed in ch. 9 Conclusion.

Functional suitability
Architectural
Service

Quality Metric Mag Epi Wip Umb

Presentation
service

1 Ability to fully customize the checkout page 1 1 1 1

2 Popular search terms are stored and made available for display 1 1 0 0

3 Navigation help available (breadcrumbs etc.) 1 1 1 1

4 Customer can create own account 1 1 1 1

5 Store search available 1 1 1 1

6 Electronic shopping cart available 1 1 1 1

7 Customers can add reviews for products 1 1 0 0

8 Customers can add products to a Wishlist 1 1 0 0

9 Electronic payment service available 1 1 1 1

10 Translation services available 1 1 1 1

11 Product categorization is available 1 1 1 1

12 Sales and discounts can be set 1 1 1 1

13 Newsletter integration available 1 1 1 0

14 Customer can view recently viewed, compared and added products 1 1 1 0

15 “Send to friend” feature available 1 1 0 0

16 Customer can be notified by email for new orders and invoices 1 1 1 0

17 Customer can set default shipping and invoice address 1 1 1 1

18 Designs can be set per product category and per product 1 1 1 0

19 Customer can compare products 1 1 0 0

20 Tags can be added to products by customers 1 1 1 0

21 Customer can save shopping cart for later checkout 1 1 1 1

22 Customer can use multiple shipments per order 1 1 1 0

23 Customer can track order on personal page 1 1 1 1

24 Guest checkout is possible 1 1 0 1

Store
management
service

25 Products can be grouped and sold as a bundle 1 1 1 1

26 Support for table based rates for shipping 1 1 1 0

27 Control multiple stores from the same installation 1 1 0 0

28 Standard content pages can be produced and modified through the administrative interface 1 1 1 1

29 Support for multiple currencies and tax rates 1 1 1 1

30 Automatic site map generation 1 1 1 1

31 Ability to add URL rewrites for individual pages and products through the administrative
interface

1 1 0 1

32 Ability to set Meta tags for products 1 1 0 1

33 Ability to generate reports on sales 1 1 1 1

34 Customer can use coupon codes 1 1 1 0

35 Tier pricing available 1 1 1 1

36 Multiple product type relations (grouped, bundled etc.) 1 1 1 0

5

37 Ability to use customer groups for different pricing 1 1 1 1

38 Invoices created separately for orders 1 1 1 0

39 A control panel is available for store management 1 1 1 1

40 The administrator can view, edit and create orders in backend 1 1 1 1

41 The administrator can view, edit and create invoices in backend 1 1 1 1

42 Administrator can track customer carts in backend 1 1 1 1

43 Administrator can edit customer properties 1 1 1 1

44 Order and invoice emails can be customized 1 1 1 1

45 Downloadable product type is available 1 1 0 1

46 Administrator can update multiple products at once (batch updates) 1 1 1 1

47 Inventory options can be set per product 1 1 1 1

48 Different attributes for different product groups can be set 1 1 1 1

49 Special prices for products can be set 1 1 1 1

50 Price between certain dates can be set 1 1 1 0

51 User can receive an email when products become in-stock 1 1 0 0

52 Campaigns based on customer groups 1 1 1 1

53 Individual shipping costs per product 0 1 0 0

54 Restricted product views based on customer group 0 1 1 0

55 Product lists can be included on content pages 1 1 1 1

56 Ability to set catalog promos by percentage or fixed price 1 1 1 0

Data storage
and encryption
service

57 SSL support 1 1 1 1

58 PCI compliance 1 1 1 0

Data access
services

59 Ability to integrate the solution with Google analytics, without having to edit source code 1 1 1 0

60 Ability to retrieve shipping rates from external suppliers 1 1 1 0

61 Web Services API available 1 1 0 1

62 Ability to integrate shop with external payment suppliers 1 1 1 1

63 Ability to install modules and plug-ins through the administrative interface, for example
new payment modules

1 1 0 1

64 Built-in support for import and export of products, orders and customers via text or xml files 1 1 0 1

Performance Efficiency
Architectural
Service

Mag Epi Wip Umb Comments

Presentation
service

1 75 75 0 50 The Magento implementation was used as a reference and load tested with 10 concurrent
user sessions. Additional sources have been found that indicates a memory usage of an
average Magento installation to be around 1-2 GB, which suggests that 4 GB should be a
suitable number for a Magento business server.
For Episerver, no performance issues have been noticed by the interviewed. The platform
has been deployed on large solutions. One of the reference projects have been found to run
on a server with 4 GB of primary memory, although interviews pointed towards a higher
number. 8 GB is estimated as a reasonable figure for the business server of Episerver.
Wipcore's way of increasing performance is to load up almost all of the contents into the
primary memory. This means that the amount of memory used depends on how much data is
in the database (how many products, order etc.). This will entail a high memory usage on
most store instances. For example, on one of the reference projects a solution uses up to 16
GB of memory. No performance issues have been noticed by the interviewed, and the
platform has been deployed on large solutions. For this reason, a score has been given based
on the 16 GB figure that indicates that the platform uses up a relatively large amount of
memory, however it should be noted that has not been identified as a problem by any of the
developers.
Regarding Umbraco, interviews have indicated that indicates that the 4.7 version of the
CMS requires a minimum of 8 GB. It can be noted though that there are indications of a
higher memory usage in the 5.x version.

6

2 50 100 100 100 Magento CE does not feature full page cache, although this is present in the Enterprise
version. There is, however, other types of caching abilities available. Episerver Commerce
provides caching abilities for page requests and, at a deeper level, data cache. Umbraco
provides full page caching, while Wipcore achieves a high score because of the strategy of
caching all relevant content in the primary memory.

3 30 50 90 100 Based on interview answers, it has been estimated that Magento provides, in the context of
the other platforms, the weakest possibilities since the language is not strongly typed.
Interviewees have expressed opinions on Wipcore such that it is assessed as more aimed at
facilitating low-level access to components, thus generating a higher score. While
developers felt that for Episerver, lack of documentation and weaknesses in code structure
should give a lower score for this metric, no such opinions were expressed regarding the
Umbraco CMS. In addition, TeaCommerce implements the XSLT standard used in Umbraco
to facilitate access to content nodes.

Data storage
and encryption
service

1 88 50 80 50 See comments for Presentation service.

2 50 100 100 100

3 30 50 90 100

Data access
services

1 88 50 0 50

2 50 100 100 100

3 30 50 90 100

Maintainability
Architectural
Service

Mag Epi Wip Umb Comments

Presentation
service

1 90 97 10 98 5000 files were found in the /app/code/core/Mage directory. For Episerver, interviewees
claims about 1500 source files, excluding DLL:s. Wipcore's API documentation claims there
are 45.000 files in the API.. 1200 source files were found in the Umbraco 4.7.2 source
package. TeaCommerce, though, adds functionality through DLL:s and Javascript but not
source files directly. It is therefore difficult to measure the total number of files for the CMS
with TeaCommerce.

2 100 0 100 0 Magento CE implements the MVC design pattern, as well as Wipcore eNOVA (ASP.NET
MVC3). Episerver CMS with Episerver Commerce does not, and neither does Umbraco 4.x,
although it is introduced version 5.x.

3 70 50 50 80 For the presentation service, a Magento Designer's guide is the only official documentation.
Several interviewees expresses a lack of documentation for the commerce solutions in
Episerver and Wipcore. Interviewees expresses no issues with the Umbraco documentation,,
although the TeaCommerce plugin is not part of this documentation which lowers the
overall score.

4 50 50 90 100 Since PHP is loosely typed, debugging a Magento solution is assessed as more difficult than
a solution written in a strongly typed language such as C#. The additional layout separation
using layout files and blocks also contributes to a lower score for the platform. For both
Episerver and Wipcore, interviewees have expressed that it is often difficult to debug the
solutions due to the nature of the code. No such issues have been identified with the
Umbraco CMS.

Store
management
service

1 90 97 10 98 See the comments for Presentation service.

2 100 0 100 0

3 90 50 50 80 The Magento frontend documentation can be used to adapt the store management service as
well. There is also additional documentation for the configuration parameters of the service
available. No differences in documentation could be identified for the other platforms.

4 50 50 75 100 It is estimated that the MVC design pattern influences the presentation service to a larger
degree than the other services. For this reason, the Wipcore eNOVA is given a lower score
due to interviewees expressing difficulties in debugging the solution due to the large code
base and lack of documentation.

7

Data storage
and encryption
service

1 90 97 10 98

2 100 0 100 0

3 25 75 50 80 The Magento platform lacks official documentation for this service.

4 50 50 75 100

Data access
services

1 90 97 10 98

2 100 0 100 0

3 25 75 50 80 The Magento platform lacks official documentation for this service.

4 50 50 75 100

Portability
Architectural
Service

Mag Epi Wip Umb Comments

Presentation
service

1 100 80 100 80 The HTML/PHP framework that constitutes the presentation service of Magento is assessed
as a framework built on very common components, using standard configuration parameters
on Apache. It is estimated that this impacts positively on the Portability attribute. The same
can be said about Wipcore, which runs on a generic .NET configuration with IIS. Episerver
and Umbraco, however, are assessed as more vulnerable to configuration changes because
of their dependencies of a separate CMS framework, compared to the other platforms.

2 70 80 80 80 In terms of backwards-compatibility, it is assessed that Wipcore eNOVA and Umbraco are
the platforms that is the most tolerant for earlier generations of environments such as IIS6
and .NET 3.5. Magento requires a newly released PHP version, although it can be run on a
very old version of Apache.

3 100 100 30 100 For Magento, it is assessed that the process of deploying the presentation service as a cloud
service would be fairly straight forward, since the PHP/Apache environment is offered by
many cloud hosting providers. Episerver has build-in support for Amazon S3 cloud
deployment, which is translated into a high evaluation score. The same can be said about
Umbraco, which can easily be transferred and deployed into the Windows Azure
environment using the Windows Azure Accelerator. No similar support or process
information regarding cloud deployment could be found for Wipcore eNOVA.

4 80 80 80 80 Interviewees expresses opinions about some of the platforms that can be interpreted as
indications on metric values, although these opinions are assessed as not necessarily related
to installing and setting up the presentation service. None of the interviewees expresses that
the installation is particularly dependent on external resources such as third-party
consultants. Therefore, it is estimated that all platforms share similar degrees of dependence
on support and external advice.

Data storage
and transaction
service

1 100 80 100 80 No distinct disadvantages could be found regarding the processes of setting up the databases
for the solutions.

2 80 100 80 80 The only difference from the Presentation service is the score for the relatively high
backwards compatibility of the database service (MySQL) for Magento.

3 100 100 30 100 See “Presentation service”.

4 80 70 80 70 The need for setting up separate databases for the CMS and the e-commerce solutions, in
the cases of Episerver and Umbraco, are interpreted as having a negative impact on the
score.

Market Readiness

Architectural
Service

Mag Epi Wip Umb Comments

Presentation
service

1 97 90 90 97 For Magento, tt is estimated that 3 man days is required. That evaluates as 100-3 = 97. For
Episerver and Wipcore, based on interview answers, 10 man days is estimated. In Umbraco,

8

the process of setting up an Umbraco CMS with TeaCommerce is estimated to take about 3
man days, seeing that the process requires fewer configuration steps that both Wipcore and
Episerver.

2 100 75 30 99 Magento CE is licensed as open source, meaning no license costs are required. License costs
(list prices) have been used as metrics for Episerver Commerce, Wipcore eNOVa and
Umbraco with TeaCommerce.

3 99 99 99 99 All systems features a built-in Google Analytics integration, meaning the settings for the
account can be entered directly in the administration panel.

4 99 99 99 40 All systems except Umbraco feature the ability to automatically enable SEO-friendly url:s.
The settings can be edited in the administration panel.

5 - - - -

Store
management
service

1 97 90 90 97 Configuration of CRM related parameters for the applications is estimated to require an
equal amount of days as the Presentation service.

2 - - - -

3 - - - -

4 - - - -

5 - - - -

Data access
services

1 - - - -

2 - - - -

3 - - - -

4 - - - -

5 100 100 100 20 For all the platforms except for Umbraco/TeaCommerce, at least five payment could be
found. It should be added that the Umbraco platform allows for developers to easily create
their own payment plugins, however it is assessed that the platform lacks many out-of-the-
box features for payment modules compared to the other three platforms.

9

	1 About this document
	2 Background
	3 Introduction
	3.1 Goals
	3.2 Limitations
	3.3 Solution methods
	3.3.1 Implementing Mataffären.se in Magento CE 1.6.2
	3.3.1.1 Frontend
	3.3.1.2 Backend
	3.3.1.3 Modules

	4 Software platforms and application frameworks
	4.1 Episerver Commerce
	4.2 Wipcore eNOVA
	4.3 Umbraco
	4.4 Magento

	5 Comparison framework and evaluation method
	5.1 Overview of evaluation methods
	5.1.1 Early Scenario-based methods

	5.2 DoSAM – Domain-specific software architecture comparison model
	5.2.1 DACF (Domain Architecture Comparison Framework)
	5.2.2 CAE (Concrete Architecture Evaluation)

	5.3 ISO and IEEE standards for software evaluation
	5.4 Selection of evaluation method

	6 Domain Architecture Comparison Framework (DACF)
	6.1 Domain architecture blueprint
	6.2 Architectural Services
	6.3 Quality Attributes
	6.3.1 External sources
	6.3.2 Selection of quality attributes
	6.3.3 Market readiness attribute
	6.3.4 Summary of quality attributes

	6.4 Quality Attribute Metrics
	6.4.1 Functional suitability
	6.4.2 Performance efficiency
	6.4.3 Maintainability
	6.4.4 Portability
	6.4.5 Market readiness

	6.5 Quality Computation Weights

	7 Concrete Architecture Evaluation performance (CAE)
	7.1 Magento Community Edition
	7.1.1 Blueprint relations and identification of services
	7.1.2 Application of quality attribute metrics and quality computation

	7.2 Wipcore eNOVA
	7.2.1 Blueprint relations and identification of services
	7.2.2 Application of quality attribute metrics and quality computation

	7.3 Episerver Commerce
	7.3.1 Blueprint relations and identification of services
	7.3.2 Application of quality attribute metrics and quality computation

	7.4 Umbraco CMS with TeaCommerce
	7.4.1 Blueprint relations and identification of services
	7.4.2 Application of quality attribute metrics and quality computation

	8 Magento implementation of mataffären.se
	8.1 Developer background
	8.1.1 Code organization
	8.1.2 MVC implementation
	8.1.3 Models and Helpers
	8.1.4 Observers
	8.1.5 Class overrides
	8.1.6 Design and customization
	8.1.6.1 Layouts, blocks and templates
	8.1.6.2 Packages and themes

	8.1.7 Websites, stores and store views

	8.2 Requirements
	8.3 Environment setup
	8.3.1 Local environment
	8.3.2 Production environment

	8.4 Installation and configuration
	8.4.1 Configuring websites, stores and store views
	8.4.2 Creating attributes and attribute groups
	8.4.3 Creating categories and products

	8.5 Backend development
	8.6 Frontend development
	8.7 Migration to production server

	9 Conclusion
	9.1 Magento implementation process in relation to evaluation results

	10 Discussion
	11 References
	Appendix A: ISO/IEC 25010:2011 Product Quality Model
	Appendix B: Evaluation data

