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Abstract

When simulating mechanical systems the flexibility of the components often has to be
taken into account. This is particularly important for simulations when high detailed
information is demanded, e.g. to calculate stresses. To this end the Finite Element
Method (FEM) is often used. However the models can become very large, containing
millions of degrees of freedom. Solving large linear systems are computationally de-
manding. Therefore ways of reducing the problem is often sought. These reduction
does, however, remove much of the details that was to be investigated. In this thesis
this problem is addressed by creating a reduction scheme, using Proper Orthogonal De-
composition (POD), that significantly reduces a problem but still captures much of the
details.

A novel method for enriching regular POD-based model reduction methods with hi-
erarchically determined enrichment POD-modes is developed. The method is proposed
and validated in a FEM application towards dynamical simulation. The enriched method
is compared against a regular POD reduction technique. An numerical study is made
of a model example of linear elasticity in a gearwheel. The numerical study suggests
that the error of displacements is around ten times smaller, on average, when using the
enriched basis compared to a reference basis of equal dimensionality consisting of only
regular POD modes. Also it is shown that local quantities as the von Mises stress in a
gearwheel tooth is preserved much better using the enriched basis. An a posteriori error
estimate is proposed and proved for the static case, showing that the error is bound.

Keywords: Model reduction, FEM, POD, enrichment, hierarchy, global and local
behaviour
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Sammanfattning

När man simulerar mekaniska system s̊a m̊aste man ofta ta hänsyn till de ing̊aende
komponenternas flexibilitet. Detta är särskilt viktigt d̊a man gör simuleringar med
krav p̊a hög detaljkännedom, s̊asom mätningar av spänningar i kugghjul etc. Till detta
ändam̊al används ofta en Finit Element Metod (FEM). Dock kan modellerna ofta bli
väldigt stora, med över en miljon frihetsgrader. Att lösa linjära system av den storleken
är beräkningsmässigt krävande. Därför är det naturligt att försöka reducera problemen.
Reduktion innebär dock att information försvinner, i synnerhet de detaljer som skulle
beräknas. I detta examensarbete s̊a behandlas problemet genom att skapa en ny metod
för reducering av stora finita element modeller. Metoden bygger p̊a tidigare kunskap om
Proper Orthogonal Decomposition (POD) som ett sätt att reducera modeller. Den nya
metoden reducerar finita ellement modeller samtidigt som den bibeh̊aller hög detalj.

En ny metod utvecklas för att berika en vanlig POD-baserad modellreduktion med
hjälp av hieraktiskt bestämda berikningsmoder. Metoden beskrivs och testas i en
dynamisk FEM-applikation av elasticitet i ett kugghjul i 2 dimensioner. Metoden
för berikning jämförs numeriskt med en metod som använder vanlig POD-reduktion.
Körningar visar att felet i den berikade metoden är omkring 10 g̊anger mindre, i genom-
snitt, jämfört med en vanlig metod. Det visas ocks̊a att spänningar bevaras p̊a ett
mycket bra sätt med den nya berikningsmetoden. Dessutom s̊a formuleras och bevisas
ett a posteriori estimat för statiska lastfall, vilket innebär att felet i metoden är bundet.

Nyckelord: Modellreduktion, FEM, POD, berikning, hirarki, globalt och lokalt be-
teende.
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1 Introduction

This thesis concerns creating a new method of reducing large finite element models using
and hierarchical approach to the Proper Orthogonal Decomposition (POD) for applica-
tion to simulated mechanical systems. Below is a description of the method, followed by
a problem statement together with the thesis objectives and a short summary of results.
After that the thesis is outlined as follows: The 2nd chapter presents the continuous
model of linear elasticity, then a finite element model for linear elastodynamics is de-
rived by first finding the variational form from the continuous model. The 3rd chapter
starts of by describing model reduction and the POD. Then in chapter 4 a proposed
method to do adaptive model reduction in a simulation is proposed. In the 5th chapter
the gearwheel model problem is described together with numerical studies and results
of them. Finally in chapter 6 the results of the evaluation are presented and discussed
together with proposed future work.

Approximation of Partial Differential Equation’s and Reduction
of the Models

Partial Differential Equation’s (PDE) occur everywhere in science. Examples are ther-
modynamics, structural dynamics and fluid dynamics. Trying to solve a PDE on a
complex domain, such as a car body for instance, is hard. Therefore different methods
are used to approximate the continuous problem with a discrete problem that can be
handled by computer software. In this thesis the Finite Element Method(FEM) is used
to approximate a time-dependent elasticity problem.

A matter of concern is that even when a problem is approximated it can consist of
millions of degrees of freedom, making a simulation very computationally demanding.
There is always a struggle between making a simulation as accurate as possible, and
running as fast as possible. It is therefore natural to look for ways to reduce the prob-
lem to make it easier to solve. This is known as model reduction. One set of these
reductions are so called projection reductions. Their aim is to project the problem onto
a subspace that is of significantly lower dimension, to reduce the degrees of freedom, but
still captures the properties of the problem to a satisfactory degree.

The projection method used in this thesis is POD. The use of POD to reduce a problem
is well known [7]. However it is not widely used within the area of elasticity, which this
thesis concerns. The POD returns a set of orthonormal modes, or basis vectors. Thus
they span a subspace to the original problem. An advantage with the POD is that
it captures much of the overall properties of a data set in a few number of modes, or
basis-vectors, and also these modes are ordered by significance. This makes a significant
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reduction possible by creating a basis consisting of the first m modes. How many modes
that are to be used depends on how much a given quantity, e.g. energy, needs to be
preserved. To preserve local properties, like small variations or high frequencies, most
modes need to be used which makes a general POD method badly suited for reduction of
systems that still require good accuracy in local quantities. In this thesis a way around
this problem is developed by creating a reduced model using a hierarchical approach to
create a POD-based basis enriched with POD-modes that captures local behaviour.

When simulating mechanical systems the flexibility of the components often has to be
taken into account. This is particularly important for simulations when high detailed
information is demanded, e.g. to calculate stresses. The problem studied in the thesis is
a 2D gearwheel with the coordinate system fixed at the centre. The gear tooth boundary
will be under the influence of a sliding contact. This sliding contact is modelled as a
non-elastic gearwheel constantly in contact with the wheel considered. The contact force
is pointing inwards, normal to the tooth boundary in the point of contact. A force acting
on a point is said to be the load case for that point.

Local and Global Displacements

When a force acts on a body it is displaced. If the body is fixed there will be deforma-
tion. Note the difference between displacements and deformation. A deformation is a
displacement but a displacement does not need to be a deformation. The key difference
is that deformations give rise to stresses, pure displacements do not. When a force acts
on a gear tooth the tooth will be displaced. It will be indented at the point of contact
and also the whole tooth will get bent. In addition the entire gear wheel will also get
deformed as the force tries to rotate the wheel around the fixed axis. With this in mind
it is possible to classify deformations as global or local. Global deformation would be
deformations that occur on a large scale in the gear wheel. In this thesis it is more pre-
cisely defined as the deformations that can arise from all forces. In other words if there
exists deformations that are common to all the forces acting on the gear boundary, they
are to be considered as global. Thus the local deformation would be the rest, the ones
that only a subset of all forces contribute to. Examples of global deformation would, in
this case, be the deformation of the inner parts of the gear wheel. On the other hand
the bending of a gear tooth is not global. Because this deformation is tied only to the
forces acting on that specific tooth. This is a hierarchical approach in one step. Where
the global deformations would be the parent and the local deformation the children. Of
course it is possible to incorporate more levels of hierarchy where some deformation will
be children and parents giving a tree-like structure. However this is depending on the
domain and in this case it suffices to use only one level of children.

The Chosen Method of Model Reduction

To do a reduction of this model the method of static load cases is used [2]. The static
elasticity problem is solved for a set of load cases that are considered to mimic the
expected forces acting on the gear wheel. Therefore there exists as many load cases
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as gear tooth boundary points. The static solution of the load cases yields a set of
static responses, telling how the model gets displaced. Then the POD is invoked on
the solution of the static case to generate POD-modes that capture the properties of
the static solutions. Global POD modes will be those that captures the global static
displacements to a satisfactory degree, generally relatively few modes are needed for this.
But to get a good representation of the local displacements almost all remaining POD-
modes need to be used. To get around this problem a routine that enables hierarchical
adaptive reduction of the problem is created. Essentially there is a global basis created
using global POD-modes. This is then used to get an idea of where there are local
variations that gets lost. The variations are then clustered, indicating where a reduction
refinement is needed. From the clusters enrichment POD-modes are obtained. The
enrichment modes will then represent the part that was lost in the global reduction.
Then the enrichment POD-modes are appended to the global basis, yielding an enriched
basis. Since the clusters are not identical the simulation will be using different bases for
reduction during different time-steps. In the case of the model problem studied in this
thesis the clusters will correspond to the gear teeth.

All of the reduction refinement is carried out in the off-line phase of the simulation
as a pre process step. This means that there are really no constraints on how expensive
calculations can be. A FEM time dependent solver is created and a reduction scheme is
incorporated into the solver. The scheme dictates when a new basis should be used. This
means that the only part of the enriched method that is used in the on-line phase is the
re-projection of the system of equations from one basis to another. This re-projection is
usually an expensive operation so there is a need to construct the clusters in a way that
they are not changed often.

1.1 Problem Statement

When simulating mechanical systems the components flexibility often has to be regarded.
This is particularly important for simulations when high detail is demanded, i.e. to
calculate stresses. To do this a finite element model is created. However since the model
contains a large number of degrees of freedom it is not practical to use it in a dynamical
simulation. Therefore it is necessary to reduce the model to a small number of modes
that preserves the system properties to a satisfactory degree. Unfortunately a reduction
means that information is lost, and in the case of POD the local details that is used to
calculate stresses are lost. The problem then becomes to develop a reduction method
based on the POD that offers a significant reduction and also preserves local quantities
to a satisfactory degree.

1.2 Thesis Objectives

The aim of the master thesis is to develop a new model reduction technique for elastody-
namics problems, based on static load case POD. The reduction technique shall better
capture local variations than conventional model reduction methods using POD. It will
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then be implemented in a simulation software and tested against a reference reduction
technique.

1.3 Summary of Results

• An enrichment technique using local modes based on local clusters of the error from
a global POD projection is shown to generate greatly more accurate solutions in the
von Mises stresses and also in the displacements than a reference POD reduction
based only global modes.

• An a posteriori error estimate for the static load case is formulated and proved. The
a posteriori estimate is used in the clustering routine in the enrichment algorithm.

1.4 Literature

For this thesis several articles and books were studied. The Ph.D. thesis by Jakobsson
[2] has been an invaluable resource for this thesis not only for the technical aspects of
POD in solid mechanics but also for insights into several reduction methods and research
into these. For a deeper understanding of POD the book by Holmes and Lumley [7] was
studied. For the use of FEM the book by Larson and Bengzon [6] is used. The article by
Kerfriden, Passieux and Bordas[8] was studied to get insights into model reduction, POD
and a method of local refinement of reduced models. The use of clustering techniques
for arrangement of snapshots was briefly studied through the Ph.D. thesis by Cardoso
[1]. Also Chakrabarti and Mehrotra [5] have studied the use of clustering snapshots
and global/local reduction of data sets. The study of contact mechanics, dynamics of
structures and computational solid mechanics was done using the books by Johnson [4],
Shabana [9], Humar [3] and Fung and Tong [10]
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2 Model of Linear Elasticity

This chapter involves the continuous model of linear elastodynamics. Then via the
variational form a Finite Element Model is presented.

2.1 Continuous Model of Linear Elastodynamics

The linear elastic dynamic problem of a homogeneous isotropic body Ω ⊂ Rd under the
assumption of small deformations and strains reads: find the symmetric stress tensor
σ(u) and the displacement vector u, such that

ρü−∇ · σ = f , x ∈ Ω, t > 0 (2.1a)

σ(u) = 2µε(u) + λ(∇ · u)I, x ∈ Ω, t > 0 (2.1b)

u = uD, x ∈ ΓD, t > 0 (2.1c)

σ(u) · n = g, x ∈ ΓN , t > 0 (2.1d)

u = u0, x ∈ Ω, t = 0 (2.1e)

u̇ = v0, x ∈ Ω, t = 0 (2.1f)

where ρ is the density. For simplicity ρ = 1. u = u(x, t), u0 and v0 are initial conditions
for displacements and velocities. The Cauchy strain tensor is written ε(u) = 1/2(∇u +
∇uT ) and is used in e.q. (2.1b), which is Hooke’s law, to get the stress tensor σ. Also
f is a body force, i.e. acting in every point of the domain Ω, g a given traction load
acting along a segment ΓN of the boundary. The boundary has outward unit normal
n. Assuming that along the rest of the boundary, ΓD the body is clamped and cannot
be displaced then uD = 0. The elastic properties of the body are given by the positive
Lame parameters: µ = E[2(1 + ν)]−1 and λ = Eν[(1 + ν)(1− ν)]−1 where E is Poisson’s
ratio and ν is Young’s modulus. Ω is the continuous domain of the body. In this case Ω
is to be partitioned to obtain a the finite dimensional space V h.

2.2 Weak Formulation

The derivation of a finite element method always starts by rewriting the differential
equation as a variational equation. That is done to get the PDE on a weak form from
which a discrete form can be obtained. The weak form is obtained by multiplying
equation (2.1a) with a test function v ∈ V = {w ∈ [H1(Ω)]d : w|ΓD

= 0} and integrate
by parts over Ω1. The derivation of the variational form is not included. Assuming that

1H1(Ω) = {v : v ∈ L2 ∂v
∂xi
∈ L2, ∀i = 1, 2..d}. H1 ⊂ L2 is a Hilbert space. A Hilbert space has a norm

and an inner product. All functions v ∈ H1 require that their partial derivatives exist in L2. For
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uD = 0 and that ρ(x) is constant the variational form of (2.1a) reads: Find u ∈ V , such
that ∫

Ω
ü(x)v(x)dx+ (σ(u) : ε(v)) = (f ,v) + (gN ,v)ΓN

, ∀v ∈ V (2.2)

The notation A : B = AijBij is the inner product of two second order tensors, with
summation over repeated indices. Formally the variational form (2.2) reads: for t > 0
find u ∈ V , such that

(ü,v) + a(u,v) = l(v), ∀v ∈ V (2.3)

Which is an abstract weak form of the problem (2.1). Here a(u,v) = (σ(u) : ε(v)) is a
a coercive bounded bilinear form. l(v) = (f ,v) + (gN ,v)ΓN

is a linear form[6]. A linear
form is mapping V → R such that

1. l(u+ v) = l(u) + l(v)

2. l(xu) = xl(u), x ∈ R

for all u, v ∈ V A bilinear form is mapping V × V → R such that

1. a(u+ v, w) = a(u,w) + a(v, w)

2. a(u,w + v) = a(u,w) + a(u, v)

3. a(xu, v) = xa(u, v), x ∈ R

4. a(u, xv) = xa(u, v), x ∈ R

A bilinear form is said to be symmetric if a(u, v) = a(v, u). If also a(u, u) ≥ 0 with
equality if and only if u = 0 then a(·, ·) defines a scalar product in V . Given the scalar
product a norm can be defined by

|‖v‖|E =
√
a(v,v) (2.4)

This norm is called the energy norm. In this thesis the energy norm is denoted as ||| · ‖|,
the Euclidean norm2 is denoted as ‖ · ‖. Functions existing in L2 are measured by the
L2-norm

‖v‖L2 = (v,v)L2 =

∫
Ω

(vv)1/2dx (2.5)

The L2-norm is denoted ‖ · ‖L2 when used in this thesis.
It can be shown that a solution to the abstract weak problem exists and that it is

unique via use of the Lax-Milgram lemma [6].

more information see [6] or any other textbook on FEM.
2Since the n-dimensional space Rn is called an Euclidean space the intuitive associated norm ‖v‖ =√

v21 + v22 . . . + v2n R is also known as the Euclidean norm
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2.3 Finite Element Model

The idea of FEM is to approximate solutions of weak problems in a finite dimensional
subspace V h ⊂ V of the corresponding infinite dimensional object. This subspace is
constructed by partitioning the the domain Ω into elements like for instance triangles
in 2 dimensions. Then the finite element approximation of (2.3) can be written: find
U ∈ Vh such that

(Ü,v) + a(U,v) = b(v), ∀v ∈ Vh (2.6)

U exists in V h so an ansatz can be made

U =

N∑
j=1

ξjϕi (2.7)

where N is the number of degrees of freedom. This together with the fact that v also
exists in V h and can be written as a linear combination of basis functions ϕi yields the
equivalent problem: Find ξj , j = 1, 2..N such that

N∑
j=1

ξ̈j(ϕj ,ϕi) +

N∑
j=1

ξja(ϕj ,ϕi) = b(ϕi), i = 1, ..., N (2.8)

which is the linear system of equations

Mξ̈ + Kξ = b (2.9)

where M is the N ×N matrix called the Mass matrix, including the density. K is the
N × N matrix called the stiffness matrix and b is the N × 1 vector called the load
vector and. u is the time dependent N × 1 vector containing the nodal coefficients,
displacements in the elasticity case. This model has not included a damping, or friction,
factor. Usually a damping factor is proportional to a velocity, therefore damping may
be introduced into the finite element model in the form of Rayleigh damping [10]

C = c1M + c2K (2.10)

Rayleigh damping is a linear combination of the mass and stiffness matrices. By adding
this to (2.9) the FEM is complete

Mξ̈ + Cξ̇ + Kξ = b (2.11)

This system of second order ordinary differential equation’s(ODE) need to be solved for
every time-step of the simulation. A solver for first order systems will be used, therefore
the system need to be reduced into first order ODE’s

Mη̇ + Cη + Kξ =b (2.12a)

η =ξ̇ (2.12b)
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this system is, in this thesis, solved by the use of the Crank Nicholson time-stepping
scheme.

The finite element model for the elastostatic problem is derived in the same way.
The derivation is omitted but it is obvious that a model of elastostatics is obtained by
omitting the time-dependent terms from equation (2.9). It is presented here because it
is used to do the model reduction.

Kξ = b (2.13)
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3 Model Reduction

The full FEM dimension, N , might be too large to be used practically. In those cases
model reduction, also called model order reduction, is of great use. The goal is to find
a subspace V h,m ⊂ V h, m << N , that is sufficiently small but still maintain adequate
approximation properties of the original problem.

There are several ways of constructing a low dimensional subspace. In this thesis the
method of reduction used is through projection, where the problem is projected onto a
subspace, see figure 3.1. In this thesis the Proper Orthogonal Decomposition (POD) is
used to find the basis of that subspace. The POD is widely used within fluid dynamics
and to some extent within structural dynamics. One downside with the POD is that it
does not handle local variations very well. When invoking the POD a set of so called
modes are obtained. Modes are basis functions that ideally capture properties of the
problem.

Reduction of the model of course introduces errors in the solution. To get control
of the error a priori or a posteriori error estimations may be used[6]. An a priori error
estimation can be used when the full solution is known beforehand, like for instance when
an analytical solution can be obtained. However in general the full solution of a problem
is not known and then an a posteriori error estimate is needed. For an a posteriori
estimate the residual of the problem is used to estimate the error. The a posteriori error
estimate is used in this thesis as an indicator to refine the reduction. Below is a short
introduction to model reduction and then a summary of the POD and the POD snapshot
method. After that two a posteriori error estimates for the elastostatic problem (2.13)
is proposed and proved.

3.1 Reduced Model

The construction of the reduced model from the finite element model is analogous to the
construction of the finite element model from the continuous model. Consider the finite

Figure 3.1: Projection of the full finite element solution U onto a subspace Vr,h. Note that the
error e is orthogonal to Vr,h and exists in the original space Vh
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element model (2.6). Then the reduced problem reads: Find the reduced displacements
Um ∈ Vh,m such that

(Üm,v) + a(Um,v) = b(v), ∀v ∈ Vh,m (3.1)

Given a basis {ψi}mi=1 in V h,m make the ansatz

Um =

m∑
j=1

ξjψj (3.2)

which yield the [m×m] linear system of equations

m∑
j=1

ξ̈j(ψj ,ψi) +

m∑
j=1

ξja(ψj ,ψi) = b(ψi), i = 1, 2, .., N (3.3)

this together with the fact that ψi can be written ψi =
N∑
k=1

ci,kϕk, where ci,k ∈ R makes

it possible to write equation (3.1) like

m∑
j=1

ξ̈j

N∑
k=1

ci,k

N∑
l=1

ci,l(ϕk,ϕl)+
m∑
j=1

ξj

N∑
k=1

ci,k

N∑
l=1

ci,la(ϕk,ϕl) =
N∑
l=1

ci,lb(ϕk), i = 1, 2, .., N

(3.4)
By introducing the [N ×m] coefficient matrix

W =

 c1,1 · · · c1,m
...
. . .

...
cN,1 · · · cN,m

 (3.5)

where c are the reduced basis coefficients. This is from now on referred to as a basis
matrix. Inserting it into equation (3.4) the following system is obtained

ρW TMWξ̈ +W TKWξ = W T b (3.6)

which is the reduced version of equation (2.9). The reduced damping term is just the
linear combination of the reduced mass and stiffness matrices. The reduced equation of
the static solution is given by removing the time-dependent terms.

W TKWξ = W T b (3.7)

3.2 The Error of Reduction and the Static Residual

The total error in a reduced model can be described by

E = (u−U) + (U−Um) (3.8)
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where Ed = u−U represents a discretization error and Er = U−Um represents a re-
duction error. The discretization error arises when the continuous problem is discretized
using finite elements and it is controlled by refining the mesh where needed. The reduc-
tion error arises as a result of the reduction of the finite full dimensional model. The
reduction error is controlled by adding modes to the reduced basis and thus increasing
the dimensionality of the reduced model. In this thesis the concern is focused only on
the reduction error and it will henceforth be referred to as the error e. By subtracting
equation (3.1) from equation (2.6) the following expression for the error is obtained

ρ(ë,v) + a(e,v) = 0, ∀v ∈ V h,m (3.9)

which is known as Galerkin orthogonality. It states that if the form ρ(·, ·) + a(·, ·) is
considered an inner product then the error in the approximation is orthogonal to the
reduced space V h,m. In this way it is the best approximation possible [6].

The full solution is not always available to measure the error. In that case the error
in a static load can be estimated based on the residual of the static problem (2.13)

Ri(U
r) = bi −KUr (3.10)

where bi is load and Ur is the solution to corresponding reduced static problem. The
residual will be used in the a posteriori estimate derived in section 3.4.

3.3 Proper Orthogonal Decomposition

The POD, sometimes referred to as Karhunen-Loeve transformation or Principal Com-
ponent Analysis(PCA), is a method to construct low dimensional representation of high
dimensional data. The idea is to create an orthonormal basis that spans a given set of
data optimally with regard to the mean square error.

Assume there is an ensemble of functions, U = {uk}. Representations of uk will be
sought by projecting uk onto a basis. Therefore assume that uk belong to a Hilbert
space V . The POD concerns finding a basis {ϕj} ⊂ V that is optimal in the sense that
finite dimensional representations on the form

un(x) =
n∑
j=1

(u, ϕj)ϕj (3.11)

describe typical members u ∈ U better than representations, of the same dimension,
of any other basis [7]. Optimality is formalized by claiming that the mean square error
〈‖u−uN‖2〉 is minimized, 〈·〉 denote an averaging operation. This leads to a variational
eigenvalue problem

〈(u,ϕ)(u,v)〉 = λ(ϕ,v) (3.12)

for which the solution yield the sought basis. More details on this are found in the book
[7]. Also it is shown in [2] that when V is a general separable Hilbert space the solution
to the variational problem is a basis in that space that fulfils the optimality requirement.
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This essentially means that it is easy to create a basis {ϕj}mj=1 for the low dimensional

space V h,m ⊂ V h that will contain a good approximation of the original problem. When
the POD is invoked on a data set with dimension [N × M ] the result is M modes
obtained, arranged by significance. This means that the first mode, e.g. the mode of
lowest rank, is the most significant. So by including as many modes m as necessary a
basis {ϕj}mj=1 is the optimal basis of dimension m1. This calls for a definition of what
necessary means. In this context it would be a relative measure of some quantity of the
problem being preserved when invoking the POD as a reduction method.

3.3.1 Snapshot POD of Static Deformations

For transient processes u(x, t) a widely used application of the POD would be to first
collect M samples of the process from a full dimensional simulation. The samples could
be, in the case of linear elasticity, the N nodal displacements that are the solution of
(2.9). These samples are called snapshots and are arranged into a [N ×M ] matrix. By
invoking the POD on the snapshot matrix a set of M so called POD-modes are obtained,
together with singular values for each mode. These modes are used to create a new basis
V h,m ⊂ V , m << N and used for a simulation. This method is commonly referred to
as the snapshot POD.

Many applications run a short full scale, thus slow, simulation to capture all the
possible, or probable, dynamics of the system and save the states of the system in
the snapshot matrix. Another method could be to collect real experimental data in the
snapshot matrix. Then the basis can be constructed and used for the reduced simulation.
However this might not be desirable as it might be too time consuming to run a full
scale simulation or hard to obtain real and accurate measurements. Also there is no
known method of choosing snapshots that are considered good. Usually snapshots are
chosen in an arbitrary way by for instance saving every, or every other time step of a
simulation. There are methods as in [1] that aim at getting the snapshots evenly spaced
in state-space by using a k-means clustering technique.

The snapshot POD method is used in this thesis, but the snapshots are captured in
a different way. A data set of static load deformations is created by first setting up a
load matrix B. The columns bi are the different load cases that act on the body, i.e.
traction loads along the teeth of a gear wheel. Then the static load deformations ui
are determined by solving the static linear equations of elasticity for each load case bi.
By collecting all the static deformations ui a [N ×M ] matrix U is obtained and is the
snapshot matrix of static deformations. By invoking the POD on this matrix a reduced
basis can be constructed that is based on the possible static deformations modes of the
body. This method differs in one fundamental way from the method above, in that a full
scale simulation, or experimental measurement, is not needed to be done. Instead the
method of static load cases requires good knowledge of the forces that act on the body.

In [2] the eigenvalue problem of a snapshot POD with static load cases is derived

1

M
UTZUc = Σc, (3.13)

1In the sense argued around (3.11)

17



where Σ = [σii] is a diagonal matrix of singular values and Z is a matrix used to base the
inner product on, for instance by setting Z as the identity matrix the POD is based on
the Euclidean inner product. If Z is set to the stiffness matrix K or the mass matrix M
then the POD is based on the energy inner product or the L2 inner product respectively.

3.3.2 Optimality and Preservation of Properties

In [7] it is shown that the first n POD basis functions capture more energy on average
than the first n basis functions of any other basis. This is however based on the fact that
ui are velocities and then the singular values translates to kinetic energy content of their
corresponding mode. In the case of deformations the energy analogy is lost, however in
[2] it is shown that the energy analogy can be retained by basing the POD on the energy
inner product. In that case the quantity preserved is the strain energy. The linear strain
energy in elastic displacement u ∈ H1(Ω)3 is given by the energy functional

S(u) =
1

2
a(u,u) (3.14)

where a(v, v) is the energy inner product. The total strain energy in the projection is
then given by

〈S(Un)〉 =
1

2
〈a(Un, Un)〉 =

1

2

∑
j

σj (3.15)

where Un is from equation (3.11). This shows that the singular values are proportional
to the energy content in the corresponding POD mode. This makes it possible to state
a measurement for the relative energy preservation in a projection

Q =

n∑
j=1

σj∑
j
σj
. (3.16)

It is important to remember that this holds, for elastic deformations, as an average
energy preservation if the POD is based on the energy inner product. If some other
inner product,i.e. the Euclidean, is used the energy analogy is again lost. However it
can be argued that this quantity still is an indicator of how well a POD basis captures
the properties of the problem but there cannot be any conclusion drawn based upon
physical quantities.

3.4 A Posteriori Error Estimation

Two a posteriori error estimates are proved. The first theorem provides a way to find
the norm of the error exactly and the second estimates it. The first theorem make use
of the Cholesky factorization of A. A = LLT where L is a lower triangular matrix.
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Also in both theorems, since the static residual is used, the matrix A corresponds to the
stiffness matrix, making this an error estimate in the energy norm2.

Theorem 1 Let R(Ur) be the static residual (3.10). If A a [N×N ] symmetric positive
definite matrix and L is the square root of the stiffness matrix A then the error e is
bound: |||e||| = ‖L−1R(Ur)‖

Proof. The proof starts by first showing that |||e||| ≤ ‖L−1R(Ur)‖ and then continue
by proving that in fact |||e||| = L−1R(Ur)

|||e|||2 =eTAe (3.17a)

=eTA(U−Ur) (3.17b)

=eTR(Ur) (3.17c)

=eTLL
−1

R(Ur) (3.17d)

≤‖eTL‖‖L−1R(Ur)‖ (3.17e)

=(eTLLTe)1/2‖L−1R(Ur)‖ (3.17f)

=|||e|||‖L−1R(Ur)‖ (3.17g)

=‖L−1R(Ur)‖ (3.17h)

which concludes the first part. The second part shows that |||e||| = ‖L−1R(Ur)‖

‖L−1R(U)‖ =||L−1LLT(U−Ur)‖ (3.18a)

=||LTe‖ (3.18b)

=(eTLLTe)1/2 = |||e||| (3.18c)

which concludes the proof. �
The first part make use of the Cholesky factorization and Cauchy-Schwarz inequality

and then the norm is explicitly calculated. The second part shows that there is in fact
equality with the error in the theorem when the equation is solved.

Theorem 2 Let R(Ur) be the static residual (3.10). If A is a [N × N ] symmetric
positive definite matrix and λ = [λo, λ1...λN ] are the eigenvalues of A then the error is
bound by: |||e||| ≤ 1

λ
1/2
min

R(Ur)

Proof. As in the above proof assume that L is the square root of A. The proof starts at
the end of part 1 in the proof above.

‖L−1R(U)‖ =‖A−1/2R(Ur)‖ (3.19a)

≤‖A−1/2‖‖R(Ur)‖ (3.19b)

=
1

λ
1/2
min

‖R(Ur)‖ (3.19c)

2The energy norm is defined as |||v||| = (vTAv)1/2 where A is the positive definite stiffness matrix.
The regular 2-norm of a matrix is denoted ‖ · ‖.
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�
An explanation of the above proof may be needed. The first step is simply Cauchy-

Schwarz inequality. The second step makes use of the fact that A−1 is symmetric and
can be eigen-decomposed. For a symmetric N by N matrix the following holds:

A = QΛQ−1 (3.20a)

A−1 = QΛ−1Q−1 (3.20b)

[Λ]−1
ii =

1

λi
(3.20c)

where Q is a square matrix N by N that contain the eigenvectors column-wise, Λ is
the diagonal matrix with N eigenvalues λ as entries. Also for the Euclidean norm of a
symmetric matrix it holds that:

‖A‖ = |λmax| (3.21)

where λmax is the greatest eigenvalue of A. Thus the greatest eigenvalue of A−1 is the
smallest eigenvalue of A.
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4 Method of Basis Enrichment using
Hierarchical POD

In this chapter a hierarchical method to enrich a regular POD model reduction method
is presented. First there is a general outline then it follows by more detailed explanations
of the parts involved in the algorithm.

POD-modes are used to create a basis which spans a reduced space, V r,h ⊂ V h.
Normally a snapshot POD captures global behaviour to a high degree and the local
behaviour gets lost. For instance in a gearwheel the contact between two gears occur in
a point in the 2D case, and in a line in the 3D case. Due to this contact there will be a
smooth large scale deformation of the gearwheel and sharp small scale deformations that
are localized around the point of contact. The large scale and small scale deformations
are henceforth called global and local behaviour respectively. Much of the local behaviour
disappear when a POD based model reduction is used, which can be seen in figure 4.1.
This might not be desirable. For instance if it is important to measure the stress in a
gear tooth then a regular POD based model reduction is not recommended as stresses
are highly dependant on the local behaviour. Then the problem is to find a basis that
captures both global and local behaviour. To this end the snapshot POD is used in a
hierarchical setting. In this case a snapshot is the same as the static solution to a load
case. A central idea is that the point of contact will be localized. Therefore it should be
possible to capture the local variations in a small number of enrichment modes.

First POD-modes are obtained from all snapshots and thus capture the global be-
haviour. The local behaviour corresponds to the error from the reduction, e.g the in-
formation in each snap shot that was not captured by the reduction, see fig 4.2 and fig
3.1. Therefore the error in the reduced model is studied to determine which snapshots
that loose too much information in the reduction. These snapshots are then clustered to
find groups of snapshots to create an enriched basis for. More on the clustering is found
in section 4.3. The error in the clusters are used as a new set of snapshots on which
the POD is invoked. This set of POD modes capture the overall behaviour within a
given cluster. The behaviour in a cluster will then correspond to local behaviour. Thus
a set of regular POD modes, Wg = {ϕgj}

mg

j=1, capturing global behaviour and a set of

enrichment modes,Wl = {ϕlj}
ml
j=1, capturing local behaviour are obtained. mg and ml

denote the number of global and enrichment modes.
Appending the enrichment modes onto the regular modes yields an enriched basis

that can be used to reduce the model and still capture both global and local behaviour,
within the snapshots forming the cluster used for enrichment. It is important to clarify
that the enrichment modes still have global support on the domain.

The enrichment process is done in an offline phase of the simulation, therefore it is not
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Figure 4.1: Shows the solution after ten time-steps of a gear that’s been subjected to a sliding
contact. The left figure shows the full finite element solution and the right figure
shows the solution when the model has been reduced using regular POD. In both
cases the gear is bent but in the reduced version the local variations, especially near
the point of contact disappear.

of priority to make it as fast as possible. However there will be changes of basis during
the online phase. The change of basis means that the equations need to be re-projected,
which is an expensive operation.

4.1 Algorithm for Basis Enrichment

The POD reduction method for static load cases uses the solutions of all the predefined
static load cases as a snapshot matrix. Thus each snapshot represents the static solution
to a specific load. It is then possible to identify snapshots that does not get well repre-
sented with the global reduction. This is done by using one of the a posteriori estimates
from section 3.4 as an indicator. Provided the load cases have been ordered in a chrono-
logical way, there will appear to be clusters in the indicator, representing sequences of
snapshots that need to be refined, illustrated in figure 4.4. When the snapshots needing
refinement have been identified the error in those snapshots is used to create local en-
richment POD-modes that capture the error. Appending the enrichment modes to the
global modes yield the enriched basis. In addition a scheme describing when the clusters
should be activated during runtime is created in the same process. This is a hierarchical
enriched model reduction method and it is described in algorithm 1.

In the on-line phase, during runtime, of the simulation there will be instances when
the reduced space changes. This occurs when clusters are activated and deactivated.
This requires the equations to be re-projected which is a costly operation. Also the
solution from the previous time-step needs to be re-projected. Due to the cost of the
operation and the fact that re-projection introduces errors the implementation must se to
it that there are not too many cluster changes. The damping of the model will neutralize
error arising from cluster change within a certain amount of time steps, therefore the
damping should decide the minimum amount of time steps that need to pass before a
cluster change can be allowed.
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Figure 4.2: Example vector field of the error in the first 100 snapshots. The domain is in this
case only represented by the first 100 boundary nodes. The reduction is based on
20 global modes.

Algorithm 1

1: Define a set of appropriate load cases B.
2: Solve for the static deformation modes U = K−1B.
3: Generate modes {ϕ}i by invoking POD on the static deformations U.
4: Identify and select the mg global modes with largest singular values and create a

new global basis Wg = {ϕ}mg

i=1.
5: Construct a reduced representation, Ur, of the statics solution using equation (3.7).

Then obtain the error snapshot matrix E by removing the global representation from
the original snapshot matrix E = U−Ur

6: Use a clustering algorithm to determine which snapshots in E that correspond to a
local variation that was not captured by the global approximation.

7: Create new local snapshot matrices Eli for each cluster i.
8: Invoke POD on each local cluster to generate local POD modes ϕli with global

domain support.
9: Create an enriched basis We by selecting appropriate modes from ϕli and appending

them to Wg

10: Use the enriched basis in transient simulation

Basically algorithm 1 consists of five parts: Defining load cases, finding the global
modes, clustering the indicator values, selecting the local enrichment modes. Finally
use the information to create locally enriched bases and a scheme that change basis in
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a transient simulation. Assuming the load cases are known the algorithm takes three
parameters: Static load cases B, relative tolerance for error clustering ζ and an approx-
imative tolerance, η, determining how many modes are included in the global base. To
make the method as generic as possible it is important to find a method to identify global
modes that works. It is of even greater importance that correct clusters of snapshots are
found with the indicator.

4.2 Identifying Global Modes

In this thesis it is argued that there should be a transition between global and local
modes in a POD. This argument is based on the fact that the lowest order modes from
a POD represents global behaviour and the local behaviour is captured within the high
order modes. To identify a transition between global and local behaviour the property
conservation, Q, in equation (3.16) might be used. This is however not a complete
indication of the transition, since it requires a knowledge of how much of the quantity
is contained within global behaviour.

In this thesis the argument is that an indicator of a transition between global and
local modes can be seen as the points where there are significant change in the singular
values. I.e. points where the derivative of the singular values are large in comparison to
its neighbours. This is illustrated in figure 4.3. Of course there will be large derivatives
for the first few singular values. Therefore it is suggested to use this indicator together
with Q to find a transition. A basic algorithm is stated below.

Algorithm 2

1: Find the number of modes, m, satisfying Q ≥ η
2: Look for large derivatives in the singular values beyond mode m
3: IF a mode found: set it as the last global mode, mg

4: ELSE: set mg = m

This routine includes a vague notion of the derivative being large that needs to be
specified during implementation. Also Q needs to be large enough too, however now
only an estimate is needed. In figure 4.3 a distinct drop in significance is shown around
mode 20 and in table 4.1 it is stated that more than 99% of the models properties
are captured in 20 global modes. It should be mentioned that there might not exist a
distinct transition between global and local modes. In that case Q will determine where
to introduce a cut off for global modes.
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Figure 4.3: Semi-log of the singular values for the first 30 modes, illustrates a distinct drop in
significance between modes 19 and 22.

Table 4.1: The quantity Q for different sizes of the basis

n Q

1 0.5049
5 0.8912
10 0.9408
15 0.9725
20 0.9929

4.3 Clustering

In this implementation the pre-defined load cases are arranged chronologically. The a
posteriori estimate (2) is used as an indicator, ν, to find clusters of snapshots that are
to be refined using enrichment. To this end the max-norm of ν is used together with a
tolerance parameter, ζ. Then it is determined that the i : th snapshot need refinement if
the following inequality is satisfied νi > ζ‖ν‖Max. In the implementation the inequality
is rewritten as νi

‖ν‖Max
> ζ where the left-hand side is called the relative indicator and the

right hand side the tolerance. In figure 4.4 an example of the relative indicator together
with a tolerance is shown.

If there is a sequence that is long enough consisting of snapshots needing refinement
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then a cluster is found corresponding to that sequence. The notion of a sequence being
wide enough is connected to the fact that a cluster cannot be too small, since this would
mean changing clusters too often in the simulation.
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Figure 4.4: The relative error indicator and the tolerance ζ of the first 100 snapshots. 20 global
modes and 10 enrichment modes are used and the tolerance is set to 0.01, meaning
the error indicator in one snapshot should not exceed 1 percent of the max error.
Clusters appear as the snapshots with error greater than the tolerance.

In this implementation there will be snapshots in between clusters that do not need
refinement, depending on the tolerance. This causes a problem of small clusters that only
contain global modes. The implementation is chosen so that the clusters are extended
towards each other so that there are no snapshots in between. In other words there will
always be and enriched basis active. One could chose to use non enriched bases when the
enrichment is not needed however in this case the clusters containing only global modes
would be so small that there would be a lot of re-projections of the equations going on.

Also if for some reason the load cases are not ordered in a chronological order one sim-
ply needs to sort them before applying the simple linear clustering technique described.

4.4 Transient Simulation

When a new basis is to be used the system of equations need to be re-projected. The new
reduced form of the mass and stiffness matrices are obtained by projecting the original
matrices onto the new basis as described in section 3.1. However to solve the reduced
system (3.6) in time-step t = tn requires the solution, from t = tn−1. Thus the solution
vector needs to be projected from the current space to the next space being used. Let ξa
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be the solution vector at time-step t = tn belonging to the space V a,r and let ξb be the
solution vector at the same time-step belonging to the space V b,r. Also let Wa and Wb

denote the basis matrices1 that span the spaces V a,r and V b,r respectively. Equation
(3.2) states the full finite dimensional representation, U r of the reduced solution. Then
the full dimensional solution for ξa is found

Ur,a = Waξa. (4.1)

When changing basis the the full dimensional solution should approximately be the same
when originating from either ξa or ξb. Then the problem becomes:

Wbξb ≈Waξa. (4.2)

Projecting onto the second subspace and solving for ξb yields

ξb ≈ ((Wb)TWb)−1(Wb)TWaξa (4.3)

It is intuitive that there is an approximative relation in the above equation since
there is projection done with reduced bases, meaning that there will be reduction errors.
Therefore cluster transitions should occur when the displacements are as small as pos-
sible, making the error small. There might be ways to overcome this error or at least
dampen the effect of it by introducing overlapping clusters or activating several clusters
at the same time.

1A basis matrix was introduced in section 3.1 as the matrix of the mode coefficients of the basis
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5 A Gearwheel Model for Validation

As stated in the introduction the problem concerns finding a method that handle sliding
contacts. To this end a gearwheel model problem is set up in Matlab R2011a. In the
first section the gearwheel model is presented. In the second section the simulations run
to collect data and comparisons made are presented.

5.1 The Gearwheel
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Figure 5.1: The gearwheel mesh used to solve the FEM problem on

The gearwheel domain is a triangular mesh of a gearwheel contour consisting of 19
gear teeth. The inner boundary is considered clamped by the method of penalty in the
stiffness matrix. The body-force is f = 0. Then a set of traction loads are applied to
the gears in such a way that it would simulate the gear rotating counter-clockwise and
being in constant contact with another inelastic gearwheel. Since it is a 2D problem the
contact is always in one point. The mesh will not rotate to simulate the gears moving,
instead the point of contact will be sliding over the boundary. In figure 5.2 the forces
defining the traction loads are visualized on the boundary of the three topmost gear
teeth. During a transient simulation the forces will act in sequence from right to left.
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The forces used are in not the result of an accurate contact simulation. Instead they are
artificially constructed. The direction of the force is normal to the boundary in the point
of contact. It is computed as a mean value of the normals to the boundary segments
neighbouring the point. The magnitude of the force is smallest at the bottom and top
of each tooth and largest at the middle of the tooth. This is a crude model but suffices
for validation of the enriched reduction method. During the dynamical simulation the
forces are not dynamic, instead the sliding contact is simply simulated as a set of static
forces being applied in a chronological order. This essentially means that a force in a
point of contact does not depend on any prior deformation in its neighbouring points.
To do real force dynamics would involve solving a contact problem. All in all the model
consists of approx. 650 load cases, meaning that the POD will create approx. 650 modes
ordered by significance. The finite element model of the elastic gearwheel is presented in
chapter 2 and damping is included. The mesh consists of around 8000 points, resulting
in around 16000 degrees of freedom.
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Figure 5.2: The boundary of the three topmost gear teeth together with the applied traction
forces

5.2 Numerical Studies

Several simulations are run to get results and validate the enriched POD based reduction
method. First a full finite element simulation is run to determine a solution that is
considered true. The aim with most simulations is to compare the error of the enriched
POD based reduction with the error of a reference POD based reduction method. In
this case a reference method means that it should consist of only regular, e.g. global,
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POD-modes and the basis should be of the same dimension as the enriched basis. In
this section the numerical studies and their results are presented. Conclusions on the
results are found in the next chapter.

Combinations of Regular and Enrichment Modes

There are many combinations of global and local modes that add up to a basis of the
same dimension. In chapter 4 a method of choosing a good global mode number is
presented and it is tested here.

The runs are made with the global modes varying from 1 to 30 and local modes varying
from 0 to 20. The runs are made over 200 time-steps, involving the sliding of the contact
over 6 gears. A time-mean error of the displacements is measured in the L2-norm and
illustrated as a surface, see figure 5.3.

Displacements over Time

The time mean value of displacements do not really indicate how good the approximation
is, only that it is good on average. In order to get an idea of how the enriched reduction
method behaves compared to a reference reduction the absolute error is measured for a
specific combination of global and local modes and the error in displacement is shown
over time, figure 5.4.

Von Mises Stress

The reason for enrichment was to find a way to preserve local quantities. The von Mises
stress is such a quantity. It is used as a way to measure stress. It is usually mentioned in
connection with deformation and plasticity. More about von Mises stress can be found
in the book [10]. The von Mises stress is measured and visualized at a specific time-step
when the sliding contact is in the middle of a gear tooth. Figures 5.5, 5.6 and 5.7 and
5.8 show the results. Note that the mesh is refined to get a higher resolution, roughly
the number of modes are doubled.
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0 and 20.
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Figure 5.5: The von Mises stress for the full finite element solution.

Figure 5.6: The von Mises stress for the enriched reduction method. Using 3 global modes and
20 local modes. Corresponding to around 30% of the enrichment modes available
in this cluster.

32



Figure 5.7: The von Mises stress for the enriched reduction method. Using 3 global modes and
45 local modes. Corresponding to around 66% percent of the enrichment modes
available in this cluster.

Figure 5.8: The von Mises stress for the reference solution, using 48 regular POD modes.
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6 Conclusions

A method to enrich a regular POD based reduction method with local POD modes
has been developed, implemented and validated. An a posteriori error estimate for the
static load case has been stated and proved. A numerical study is done on several
combinations of global and local modes showing faster convergence of the error when
using a hierarchical enriched POD. It is shown numerically that the enriched method
captures local variations, such as von Mises stress, to a much greater degree than a
reference method, as was expected. More detail of conclusions and issues of concern and
possible solutions to them together with suggested future work is presented below.

6.1 Transition from Global to Local Behaviour

The discussion in this section concerns the results shown in figure 5.3. From this it is
evident that introducing local clusters and increasing the number of local modes in them
increases the precision of the reduction method to a higher degree than simply adding
global modes. It was theorized that a threshold for global modes could be found by
looking at table 4.1 for property conservation1, together with the sharp decrease of the
magnitude of the singular values around mode number 19− 22 illustrated by figure 4.3.
However when using enrichment it is clear from figure 5.3 that a lot fewer global modes
might be needed. In fact it seems that it would suffice with three global modes and as
little as ten local modes to get very good results as a time average.

This indicates that the original assumption about global threshold is incorrect. By
looking at the shape of the first 6 modes, figure 6.1, one can see that the first mode
concerns rotation and the second and third translation of the entire gearwheel. The
modes 4-6 and 7-22, figure 6.2, show modes that affect the gear teeth. There is one
mode associated to each gear tooth but this is not evident by inspection. These modes
are L2-orthogonal. One important conclusion here is that to get all gear teeth to behave
nicely with a general POD reduction all the 22 modes are needed. 3 for the overall
behaviour and one for each of the 19 gears. On the other hand the enriched reduction
method get a very good average error when using as little as 13 modes, in other words
less that is actually needed to get a working method with a regular POD. This is a great
result. As of this result the numerical study of the displacements over time, and stresses,
is carried out with 3 global modes and 10 enrichment modes as a first step.

The average error increases when more than 20 global modes are added. This is
attributed to a systematic error in the clustering regime, where the transition between

1Table 4.1 states that 20 modes should preserve 99.3% of the properties
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clusters are not set correctly. This fault generates a spike in the error when there is a
change of basis, for combinations with more than 20 global modes.

6.2 Behaviour, Change of Clusters and Preservation of Local
Properties

This section concerns the results and conclusions around the simulations run to test the
behaviour of the error of displacement, and the meassurement of stress. In figure 5.4
it can be seen that the enriched solution seem to generate solutions with much smaller
errors in displacement than the reference method. It was said in section 4.4 that the
change of clusters would introduce errors. In figure 5.4 the cluster changes takes place
at time-steps 36 and 70. It is not evident from this study that there are any sudden
spikes in the error, which is good.

The preservation of local properties, in this case the von Mises stress, is illustrated in
a good way in figures 5.5, 5.6, 5.7 and 5.8. Notice that the reference solution seem to
capture some behaviour quite well. That is the stresses going through the gear tooth
and the stresses in the valleys. The enriched method does however capture the sharper
local deformations, especially near the point of contact, much better. Note how much
larger the stresses are that are captured by the enriched method. Also note that there
appear to be some artificial stresses around the valley in the enriched method in figure
5.6. It has been observed that the artificial stresses also arise in a regular POD based
reduction. They disappear if more modes are added. It has also been observed that they
disappear in the enriched method if just a few more modes are used in the enrichment,
as in figure 5.7. This is good and shows that the artificial stresses are part of the POD
and not an effect due to the enrichment.

To summarize the enriched method behaves well and captures local variations very
nicely using a lot of fewer modes than a regular reduction method. The enrichment
method gives a reduction that is around 10 times more accurate than a conventional
POD reduction with the same dimension. This will of course lead to computational
efficiency increasing with at least a factor of 10. The use of this reduction method
seems very appealing in industrial software and will be implemented and tested i SKF’s
software BEAST.

6.3 Future Work

There are many things that can be done to continue the work on this subject, a few are
listed.

• Investigate problems arising when changing the basis, such as the numerical error
in the projection.

• The enriched and global parts are currently not orthogonal to each other. Sug-
gested solutions are to orthogonalize the the basis or to solve the global and local
parts one at a time and then adding the solutions together.
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• Study the method when damping is decreased to investigate how vibrations in
previously loaded gears are captured.

• Implementation in SKF’s software BEAST to test the enrichment method on better
constructed models in 3D.

• Research other areas of implementation. How can the technique be generalized to
cover other applications or even multiphsyic problems?

• implement the a posteriori indicator to automatically add enough enrichment
modes to keep the error below a certain tolerance in the clusters.

• Implement generic clustering and test it on a generic irregular domain. Also more
levels of hierarchy should be implemented to gain further efficiency.
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Figure 6.1: Visualisation of the first 6 POD modes. Indicating that the three first POD modes
might concern the rotation and translation of the whole of the gearwheel. The
mode displacements are exaggerated.
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Figure 6.2: Visualisation of POD modes 7 to 22.
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