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Abstract

Econometrics of high-frequency data aims often to model processes, which are de-
fined on the positive support and exhibit strong persistence, e.g. conditional dura-
tions of intraday transactions. The dynamics of these positive valued processes are
mostly described with (univariate) multiplicative error models (MEM), even though
market microstructure theory suggests contemporaneous relations between several
variables, e.g. trading volume and volatility. To get a better understanding of stock
market’s mechanisms, this master’s thesis aims to develop a multivariate MEM
based on hierarchical Archimedean copula (HAC), which is estimated by a two-step
procedure: MEMs are calibrated to the univariate processes to obtain the residuals,
whose dependencies are assessed by a HAC. The empirical analysis supports the
hypothesis of positive and nearly stable dependence over time.

Keywords: multiplicative error model, hierarchical Archimedean copula, adaptive
estimation, local change points
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Zusammenfassung

Die ökonometrische Analyse hochfrequenter Daten befasst sich oft mit der Model-
lierung von Prozessen, die auf den positiven reellen Zahlen definiert sind und eine
starke Persistenz aufweisen, zum Beispiel die bedingte Zeit zwischen Transaktionen.
Die Dynamik dieser Prozesse wird meistens durch (eindimensionale) “multiplicati-
ve error models” (MEM) beschrieben, obwohl die Theorie über die Mikrostruktur
der Märkte eine simultane Beziehung zwischen verschiedenen Variablen impliziert,
zum Beispiel zwischen dem Handelsvolumen und der Volatilität. Um ein besseres
Verständnis von den Mechanismen der Aktienmärkte zu erhalten, zielt diese Mas-
terarbeit darauf ab, ein mehrdimensionales MEM, basierend auf einer hierarchisch
Archimedischen Copula (HAC), in einem zweistufigen Verfahren zu schätzen: MEMs
werden an die eindimensionalen Prozesse kalibriert um die Residuen zu erhalten,
deren Abhängigkeiten durch eine HAC geschätzt werden. Die empirische Analyse
unterstützt die Hypothese von positiven und fast stabilen Abhängigkeiten über die
Zeit.

Schlagwörter: multiplicative error model, hierarchisch Archimedische Copula, ad-
aptive Schätzverfahren, lokale Wechselpunkte
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1 Introduction

There exists a variety of surveys, which focus on theory and applications of persistent
and/or positive valued univariate processes, see for example Baillie et al. (1996) and
Engle and Russell (1998). The modelling of a d-dimensional positive valued process
xi = (xi1, . . . , xid)>, for i = 1, . . . , n, is challenging for several reasons: (i) As discussed
in Cipollini et al. (2006), who proposed the vector multiplicative error model (VMEM),
there exists no flexible multivariate distribution defined on Rd+ appropriate to describe
the stochastic of a d-dimensional error term. The problem is solved by “coupling”
univariate error term distributions with a normal copula in order to apply Maximum
Likelihood (ML) estimation to obtain estimates of the model parameters. (ii) The mod-
els of several surveys in the context of multivariate positive valued processes rely on
a multivariate conditional mean equation, e.g. Cipollini et al. (2006), Hautsch (2008)
and Cipollini and Gallo (2010). This mean equation provides the advantage, that the
parameters enter the model linearly and the marginal effects are clearly identifiable. On
the other hand, the number of parameters to estimate rapidly increases, if an additional
random variable (RV) is included in the model.

The price series exhibits the most important characteristic of stocks. Modern risk
management as well as asset pricing models are often not implementable without ad-
equate volatility measures, which are usually constructed from the price series. Engle
and Gallo (2006) and Cipollini et al. (2006) employed the high-low-range (HL) besides
the absolute returns as an indicator for the realized volatility. Although cross-sectional
predictability is detected, the variables are transformations of the price series and rely
on identical information. Besides, the trading intensity and the size of traded items
provide useful information about the state of the market and exhibit factors driving
the price process. Engle and Russell (1998) investigated the relationship between the
transaction intensity and price movements, motivated by market microstructure theory.
Their results support the model of Easley and O’Hara (1992), who suggested an impact
of persistent trading intensity on the price process. The transactions are clustered due
to asymmetric allocated information among traders. Contemporaneous positive relation
between the daily aggregated volume and price variability is found in several surveys.
For example, Tauchen and Pitts (1983) modelled the daily price change and trading vol-
ume by a joint normal distribution conditional on the random variable of intraday price
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1 Introduction

equilibria. The proposed theory cannot be carried over to a reliable high-frequency
framework, since the aggregated daily variables do not imply a clear dependence for
lower frequencies. Easley and O’Hara (1992) predicted a positive dependency between
the trading volume and volatility induced by the effect of information event uncertainty
on the price process. Extensions of this theory are for example discussed in Easley et al.
(1997) and Easley et al. (2002).

This thesis offers a two-step estimation procedure for VMEM, which generally com-
bines univariate multiplicative error models as proposed by Engle (2002) with the theory
of copulae. To incorporate strong persistence, fractionally integrated MEMs (FIMEM)
are calibrated to the observed processes. The corresponding residuals potentially contain
information about the impact of other processes, since the mean equation of FIMEMs
disregards any spill-over effects. The accompanied cross-sectional dependence of the
residuals is investigated by hierarchical Archimedean copulae (HAC). In general, ev-
ery suitable dependence concept can be applied, but HACs provide advantages among
alternatives as discussed below. Furthermore, the dynamics of the contemporaneous
dependencies are investigated by applying the time varying HAC developed by Härdle
et al. (2010). The estimation of time varying HAC relies on the adaptive estimation of a
homogenous interval, in which the HAC-parameter and -structure are nearly constant.
Evidence suggests, if the parameters and the structure of the HAC are almost stable, the
results of the two-step procedure do not differ significantly from one-step ML-estimation
as discussed by Cipollini et al. (2006). However, it remains to verify this conjecture in
the future.

The realized variance, measured as squared log-returns over equidistant time inter-
vals (5 and 10 min), is found to be nearly uncorrelated with the constructed aggregated
variables for the trading intensity and volume per interval. For this reason, the HL
is selected to describe the dynamics of the price series. The variables for the trading
intensity and volume are constructed in accordance with Hautsch (2008) as the number
of trades (NoT) and average trade size (Vol) per time interval. To obtain cross-sectional
evidence the method is applied to ten stocks of companies, which differ in their market
capitalization (CAP). The static estimation results suggest mutual positive dependen-
cies of the variables. The time varying analysis enhances these findings, since there
are no structural changes in the relations. Furthermore, sampling from the estimated
HAC allows for computing the quantiles of the univariate EDFs by incorporating cross-
correlations. Strictly speaking, these quantiles are estimates of the error terms which
can improve the forecasts of the pure univariate models.
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The next section attends to the econometric theory of MEM, FIMEM, VMEM and
the estimation of the corresponding parameters. It is followed by an excursion to the
theory of the test for superior predictive ability (SPA), whereupon important aspects of
HAC and the adaptive estimation technique for time varying HAC are presented. Af-
terwards, the data-cleaning procedure of high-frequency data and the estimation results
are discussed.
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2 Multiplicative error model

The main idea of MEMs is to describe a positive valued process by a mean equation
multiplied with a randomly distributed error term defined on R+. The multiplicative
structure became popular due to the work of Engle (1982) and Bollerslev (1986) in the
context of (generalized) autoregressive conditional heteroskedasticity ((G)ARCH) mod-
els. Engle and Russell (1998) adopted the multiplicative approach of GARCH-models to
analyze the conditional duration of irregular spaced financial transaction data under the
assumption that the error term follows an Exponential and Weibull distribution, respec-
tively. This autoregressive conditional duration (ACD) model extends automatically to
MEMs by considering different variables, e.g. trading volumes, etc.

2.1 Linear MEM

Let xi be a non-negative univariate stochastic process, with time index i = 1, . . . , n.
Then, the MEM conditional on the information set Fi−1 is defined as

xi = µi εi,

µi
def= E (xi|Fi−1; θ) ,

(2.1)

where θ denotes theM -dimensional vector of parameters and µi is assumed to be measur-
able with respect to Fi−1. Furthermore, assume εi follows an iid process with E (εi) = 1
and known density f : R+ → R+. The conditional expectation can be specified in
several ways. In the simple linear case, E (xi|Fi−1; θ) is parametrized as

µi = ω +
P∑
j=1

αjxi−j +
Q∑
j=1

βjµi−j ,

where ω ≥ 0, αj ≥ 0 and βj ≥ 0, ∀ j, θ = (ω, α1, . . . , αP , β1, . . . , βQ)>. The parame-
ters are required to be bigger or equal than zero to assure µi being positive for all i.
Defining the filters φ (L) =

∑R
j=1 φjL

j =
∑R
j=1 (αj + βj)Lj , β (L) =

∑Q
j=1 βjL

j and the
martingale difference series ηi = xi − µi, the linear MEM can be transformed into the
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2 Multiplicative error model

ARMA(R,Q) representation

xi = ω + φ (L)xi + {1− β (L)} ηi, (2.2)

where R = max (P,Q) and L denotes the lag operator with Ljxi = xi−j . Accord-
ing to the conditions, which ensure the weak (or covariance) stationarity of GARCH
models, the linear MEM is guaranteed to be weakly stationary, if the roots of the
characteristic polynomial of φ (L) are outside the unit circle, which is equivalent to∑P
j=1 αj +

∑Q
j=1 βj < 1. The unconditional (centered) moments of the MEM(P,Q)

can be derived from the ARMA(R,Q) representation. Its well developed estimation
procedure is one of the major advantages of linear MEM(1, 1). It can be consistently
estimated under the assumption of a standard exponentially distributed error term, see
section (2.4). However, given the above set of assumptions an exponential decay of the
autocorrelation function is implicitly assumed, i.e. liml→∞

∑l
j=−l |ρ (j)| < ∞, where ρ

denotes the autocorrelation function of the discrete series xi and its argument denotes
the lag. If the assumption of an exponential decay is not fulfilled, the standard MEM
becomes inappropriate and other (nonlinear) specifications of the conditional expecta-
tion of formula (2.1) should be considered. A comprehensive overview of several MEM
specifications and their applications is documented in Hautsch (2012).

2.2 Fractionally integrated MEM

High persistence of financial variables can be accurately modelled by the FIMEM. For
example, Baillie et al. (1996) proposed the fractionally integrated GARCH (FIGARCH)
model, which captures persistence of the conditional volatility. Formally, xi exhibits
long memory, if liml→∞

∑l
j=−l |ρ (j)| = ∞. Jasiak (1999) adopted the FIGARCH-

framework and specified the fractionally integrated ACD (FIACD) model by introducing
the fractional difference operator (1− L)δ to equation (2.2), i.e.

{1− φ (L)} (1− L)δ xi = ω + {1− β (L)} ηi, (2.3)

with fractional integration parameter δ ∈ [0, 1]. Hosking (1981) defined the fractional
difference operator by a binomial series, i.e.

(1− L)δ =
∞∑
j=0

(
δ

j

)
(−1)j Lj =

∞∑
j=0

πjL
j .

6



2.3 Vector MEM

Substituting the martingale difference series ηt in equation (2.3) leads to

{1− β (L)}µi = ω +
[
1− β (L)− {1− φ (L)} (1− L)δ

]
xi

⇐⇒ µi = ω {1− β (1)}−1 + λ (L)xi,
(2.4)

where λ (L) =
∑∞
j=1 λjL

j . The linear filter λ (L) implies an infinite number of parameter
restrictions to guarantee the non-negativity of µi, i.e. λj ≥ 0, ∀ j. As long as δ is
correctly specified, i.e. δ ∈ [0, 1], it follows that πj < 0, for j > 0. This induces,
however, an unclearly defined sign of µi even if all parameters of the FIMEM are bigger
than zero. Furthermore, certain FIMEM specifications exist, where µi becomes positive
∀ i, although all parameters except δ are negative. To ensure the non-negativity of the
FIMEM(1, δ, 1), the sufficient parameter constraints proposed by Baillie et al. (1996)
can be imposed, i.e. ω > 0, 1 − 2φ1 ≥ δ ≥ 0 and δ + φ1 ≥ β1 ≥ 0. Further sets of
sufficient conditions are suggested by Chung (1999) and Bollerslev and Mikkelsen (1996),
e.g. 1 > δ ≥ β1 ≥ φ1 ≥ 0. Nevertheless, these constraints share the risk to reject a
correctly specified model, since the (estimated) parameters do not support one of the
previous conditions. Conrad and Haag (2006) eliminated this risk by deriving necessary
and sufficient conditions for several FIMEM(P, δ,Q) specifications, which include all of
the above cases. In particular, the constraints of the FIMEM(1, δ, 1) are summarized in
Corollary 1 of Conrad and Haag (2006).
The first unconditional moment of xi, i = 1, . . . , n, is not defined, because the frac-

tional difference operator equals zero, evaluated at L = 1. Consequently, the FIMEM is
not covariance stationary. If the coefficients are non-negative and

∑P
j=1 αj+

∑Q
j=1 βj < 1,

the stationarity of the FIMEM is implied by the strict stationarity of the integrated
GARCH-model, see Bougerol and Picard (1992). Following Baillie et al. (1996), the
FIMEM(∞) representation of equation (2.4) “may be dominated in an absolute values
sense by the corresponding coefficients” of the integrated MEM.

2.3 Vector MEM

Cipollini et al. (2006) formalized the VMEM conditional on the information set Fi−1 as

xi = µi � εi, (2.5)

where � denotes the Hadamard product and xi = (xi1, . . . , xid)> is the vector of positive
valued processes xij , for j = 1, . . . , d and i = 1, . . . , n. The multivariate conditional
mean equation µi

def= E (xi|Fi−1) and the vector of error terms εi are of dimension
(d× 1). Any short run effects enter the mean equation through the (d× d) matrices
A and B. Contrary to Cipollini et al. (2006), the conditional mean equation permits

7



2 Multiplicative error model

non-cross-sectional long memory effects, i.e.

[Id −B (L)]µt = ω + {Id −B (L)−D [Id −Φ (L)] N}xt, (2.6)

where Id denotes the d-dimensional identity matrix and Φ (L) = A (L)+B (L). Long run
effects enter the model by the diagonal matrix diag (D) =

[
(1− L)δ1 , · · · , (1− L)δd

]>
,

which contains the individual fractional difference operators, with δj ∈ [0, 1] and j =
1, . . . , d. To ensure that the j-th fractional difference operator only applies to the past
of the process xij , i = 1, . . . , n, the matrix N eliminates cross-sectional influences. The
diagonal elements of N are equal to one and the elements of the j-th column are
N(−j,j) = (1− L)−δj , where −j refers to all rows except the j-th, for j = 1, . . . , d.
If any δj = 0, the j-th mean equation in (2.6) collapses to that of Cipollini et al. (2006).
The individual constants are contained in ω and the model is assumed to be stationary.

The error term process, εi, is assumed to follow a d-dimensioal distribution defined
on Rd+ = [0,∞)d, with E (εij) = 1 for j = 1, . . . , d and i = 1, . . . , n. As long as
the multivariate density function is known, the efficient approach to obtain parameter
estimates is given by (one-step) ML-estimation. Still, there are several drawbacks to
this method: (i) the specification of a flexible multivariate distribution defined on Rd+
and (ii) the curse of dimensionality. For these reasons, a two-step procedure is applied
in the empirical analysis. The first estimation step neglects spill-over effects reducing
the problem to the calibration of a univariate MEM. Secondly, the dependence structure
of the residuals is estimated by HACs.

2.4 Estimation of MEM

The estimation of linear MEM, integrated MEM and FIMEM reveals similar problems
as the estimation of the ARMA-GARCH class of models. ML-estimation would lead to
efficient and asymptotically unbiased estimates, if the distribution of the disturbance
terms, εi, is correctly specified. In general, all distributions defined on R+ are potential
candidates. Although the standard exponential distribution seems to be a suboptimal
choice due to its restrictions, its selection avoids the risk of misspecification, since quasi
ML (QML) arguments can be applied. The QML-approach proposed by Engle and
Russell (1998) is the dominating estimation procedure for MEMs and integrated MEMs.
The approach is based on the asymptotic theory of the integrated GARCH(1, 1)-model
and is formalized in the following corollary:

Corollary 1 (Following Engle and Russell (1998) and Lee and Hansen (1994)). Iff

1. µ0,i
def= E (xi|Fi−1; θ0) = ω0 + α0xi−1 + β0µ0,i−1

8



2.4 Estimation of MEM

2. εi = xi/µ0,i , is (i) strictly stationary and ergodic, (ii) nondegenerate, (iii) has
bounded conditional second moments, (iv) supi E {log (β0 + α0 εi)|Fi−1} < 0 al-
most surely;

3. θ0 = (ω0, α0, β0) is in the interior of the parameter space Θ;

4. L (θ) =
∑n
i=1 li (θ) = −

∑n
i=1 (logµi + xi/µi), where µi = ω + αxi + βµi−1, for

i > 1 and µ1 = ω/ (1− β);

5. L∗ (θ) =
∑n
i=1 l

∗
i (θ) = −

∑n
i=1 (logµ∗i + xi/µ

∗
i ); µ∗i (θ) = ω + α

∑∞
k=0 β

kxi−k−1 is
the model of the conditional variable when the infinite past history of the data is
observed,

then θ̂ = arg max
θ∈Θ

L (θ) will be consistent and asymptotically normal, i.e.

n1/2
(
θ̂ − θ0

) L→ N
(
0, B (θ0)−1A (θ0)B (θ0)−1

)
,

with B (θ0) = −E
{

∂2

∂θ∂θ>
l∗i (θ0)

}
and A (θ0) = E

{
∂
∂θ l
∗
i (θ0) ∂

∂θ>
l∗i (θ0)

}
.

The recognition of Corollary 1 relies on three advantages: (i) the estimates are con-
sistent even if εi does not follow the standard exponential distribution (QML property),
(ii) assumptions 1.– 5. are weak compared, for example, to those of Bollerslev and
Wooldridge (1992) and (iii) the result is also valid for the integrated case. The dis-
advantage is often disregarded, because the calibration of a linear MEM(1, 1) leads to
satisfying results for a considerable amount of practical applications. However, Corol-
lary 1 does not guarantee consistent estimates, if the conditional mean equation differs
from µi = ω + αxi−1 + βµi−1. Bollerslev and Wooldridge (1992) suggested a further
QML-setup assuring the consistency and asymptotic normality of the estimates for more
general specifications of µi. But the underlying assumptions are quite strong and do
not allow the conditional mean equation to be integrated. According to Corollary 1,
statistical inference is based on the finite sample approximation

θ̂
a.∼ N

(
θ0, n

−1Bn(θ̂)−1An(θ̂)Bn(θ̂)−1
)
, (2.7)

with Bn(θ̂) = −n−1∑n
i=1

{
∂2

∂θ∂θ>
li(θ̂)

}
and An(θ̂) = n−1∑n

i=1

{
∂
∂θ li(θ̂)

∂
∂θ>

li(θ̂)
}
, where

An(θ̂) and Bn(θ̂) are consistent estimates.

None of the above QML-arguments ensures the estimated parameters of the FIMEM
to be consistent and in the limit normally distributed. The asymptotic theory of Boller-
slev and Wooldridge (1992) cannot be applied, since the FIMEM includes the inte-
grated case. Following Baillie et al. (1996) and Jasiak (1999), the result of Corollary
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2 Multiplicative error model

(1) should be directly transfered to the FIMEM(1, δ, 0) due to a dominance type argu-
ment. The evidence confirming consistency and asymptotic normality for the estimated
FIMEM(p, δ, q) parameter is not supplied yet and needs an extension of the theory of
Lee and Hansen (1994).
In practice, the log-likelihood-function should be optimized without constraints in

order to maximize the flexibility of the model. The appropriateness of the estimates has
to be verified afterwards by applying Corollary 1 of Conrad and Haag (2006) or similar
arguments. A disadvantage of this procedure is the remaining risk that the combination
of estimates does not lie within the feasible parameter space in a way that the model
should consequently be rejected. On the other hand, linear restrictions as suggested
by Baillie et al. (1996), Chung (1999) and Bollerslev and Mikkelsen (1996) are easily
implemented, so that the estimates are finally in a feasible space and the non-negativity
of µi is ensured.
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3 Test for superior predictive ability

Measuring the performance of an estimated model is often based on in-sample criteria,
which frequently suggest a satisfying fit, even though the real out-of-sample performance
is rather bad. For this reason, the performance of forecast models (FM) can also be
regarded as a criterion to evaluate estimated models. In the considered context the
term “forecast model” reflects all rules, methods and decisions accomplished with the
forecast, e.g. the estimation method. Diebold and Mariano (1995) proposed a general
framework to test competing forecast models (FM) for equal predictive ability. Yet, the
most prominent drawbacks of the test are the following: firstly, it does not account for
parameter uncertainty in the sense, that the underlying forecast is a function of the true
parameter or the probability limit of the estimates, respectively. Secondly, a simulation
study of Harvey et al. (1998) revealed that the test is oversized for small sample sizes
and suggested a modified test statistic, which improves the small-sample properties.
White (2000) developed a framework to test for SPA, known as White’s reality check

(RC). In contrast to the framework of Diebold and Mariano (1995) the RC tests, whether
a benchmark FM is outperformed by at least one FM out of a set of m competing mod-
els. Especially in the presence of data snooping, the RC increases the confidence, that
well performing FMs are not spurious results. Hansen (2005) suggested a further test
for SPA, where the considered framework is identical to the framework of White (2000).
The difference is reflected by the test statistics. Hansen (2005) showed that the power
of the RC can be artificially driven to zero by including irrelevant FMs in the set of
alternatives. The problem is fixed by “studentizing” the test statistics and imposing
a sample dependent distribution under the null hypothesis. Hence, the SPA test of
Hansen (2005) is explored in more detail in the following.

Let
{
xk,i+h|i, k = 0, . . . ,m

}
denote the set of h-step ahead forecasts conditional on the

information set at time point i and Lk,i,h
def= L

(
xi+h, xk,i+h|i

)
denote a real-valued loss-

function to weight the k-th forecast. For example L
(
xi+h, xk,i+h|i

)
=
(
xi+h − xk,i+h|i

)2

in the case of squared error loss, where xi+h is the realization of the underlying RV at
time point i + h, unknown at time point i. Moreover, let k = 0 always refer to the
benchmark and let dk,i,h = L0,i,h − Lk,i,h measure the relative forecast performance
at time point i + h. To keep the notation simple the subscript h is dropped in the
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3 Test for superior predictive ability

following, because only forecasts with equal horizon are compared. The elements are
collected in the m-dimensional vector of relative performances di = (d1,i, . . . , dm,i)>

with expectation µ def= E (di) <∞. Then, the composite hypothesis testing whether the
benchmark does not perform worse than any of the alternatives can be formulated as

H0 : µ ≤ 0. (3.1)

In order to define certain moments of the random sequence of relative loss variables well,
{di}ni=1 is assumed to be (strictly) stationary and α-mixing of size
− (2 + δ) (r + δ) / (r − 2), for some r > 2 and δ > 0, where E |di|r+δ <∞ and Var (dk,i) >
0 for all k = 1, . . . ,m. Given the previous assumptions, a central limit theorem can be
applied, such that

n1/2
(
d̄− µ

) L−→ Nm (0,Ω) ,

where d̄ = n−1∑n
i=1 di and Ω denotes the asymptotic variance. The asymptotic normal-

ity does not hold, if the benchmark is nested in all of the alternatives or if the recursive
forecasting scheme is used, see Hansen (2005). If a consistent estimate of Ω exists,
the asymptotic normality can be exploited to construct an asymptotic “quadratic-test”.
However, the SPA-test should also be applicable, if the amount of alternative FMs is
large and no reliable estimate of Ω is available. The test-statistic TSPAn is therefore
constructed to require the diagonal elements of Ω̂. Equivalently to the null hypothesis
in formula (3.1) one can ask, whether the best FM performs better than the benchmark,
i.e.

TSPAn
def= max

(
max

k=1,...,m

n1/2d̄k
ω̂k

, 0
)
, (3.2)

where ω̂k is some consistent estimate of the k-th diagonal element of Ω. Hansen (2005)
advised to choose the variance estimator

ω̂2
k = γ̂0,k + 2

n−1∑
i=1

κ (n, i) γ̂i,k,

with

γ̂i,k = n−1
n−i∑
j=1

(
dk,j − d̄k

) (
dk,j+i − d̄k

)
,

for i = 0, . . . , n − 1. The kernel κ is is chosen according to κ (n, i) = n−i
n (1− q)i +

i
n (1− q)n−i, where q−1 is the mean block length of the stationary bootstrap of Politis
and Romano (1994). The individual test-statistics in (3.2) are studentized, i.e. divided
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by ω̂ , to increase the power of the test, since quantities measured at the same scale are
compared.

The second important aspect of the testing problem is the distribution under the null
hypothesis. White (2000) imposed the least favorable configuration (LFC), n1/2d̄ as.∼
Nm

(
0, Ω̂

)
, under the null hypothesis where Ω̂ denotes a consistent estimate of Ω. The

disadvantage of this asymptotic distribution relies on the explicit setting, µ = 0, be-
cause all values smaller than zero satisfy the null hypothesis, as well. Hansen (2005)
argued that employing a uniquely determined distribution under the null hypothesis
can erode the power of the test to zero by adding poor forecasts to the set of al-
ternatives. For this reason, a sample dependent null distribution is to be prefered
when testing for SPA. In particular, it is recommendable to choose Nm (µ̂c,Ω), where
µ̂ck = d̄kI

{
n1/2d̄k/ω̂k ≤ − (2 log logn)1/2

}
for k = 1, . . . ,m with indicator function I {·}.

The advantages of µ̂c over the LFC µ = 0 are the following: (i) the influence of ir-
relevant alternatives, i.e. d̄k << 0, is reduced, so that they do not have a substantial
impact on the final p-values. (ii) The influence of forecasts, which do not perform much
worse than the benchmark, is still incorporated. A mathematical justification of the
chosen estimator, µ̂c, is based on the law of the iterated logarithm, which provides the
following convergence results

P

lim inf
n→∞

n1/2
(
d̄k − µk

)
ω̂k

= − (2 log logn)1/2

 = 1

P

lim sup
n→∞

n1/2
(
d̄k − µk

)
ω̂k

= + (2 log logn)1/2

 = 1.

Two pivotal conclusions can be drawn from the previous convergence statements: (i) if
the true value µk equals zero, for the estimator holds µ̂ck = 0 almost surely. (ii) If the
true value is smaller than zero, µk < 0, for the estimator holds µ̂ck << 0 almost surely.

However, different threshold rates result in different estimators and not necessarily in
µ̂c. In addition to the p-value induced by the distribution with estimated expectation
µ̂c, a lower and an upper p-value are to be determined. To obtain these p-values,
the estimators µ̂l and µ̂u have to be computed, where the former corresponds to the
estimator with the lowest threshold rate and the latter to the estimator with the upper
threshold rate. Define µ̂lk

def= min
(
d̄k, 0

)
. Then, it can be shown, that the different

estimators are naturally ordered, i.e. µ̂l ≤ µ̂c ≤ µ̂u = 0, where “≤” refers to component-
by-component comparison. Note, µ̂u corresponds to the LFC treating all forecasts as
good as the benchmark.

Let F0 denote the CDF of the test statistic TSPAn under the null hypothesis and let F jn
denote the CDF of the test statistic, which relies on the estimator µ̂j , with j = l, c, u.
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3 Test for superior predictive ability

Given certain assumptions regarding the test statistic, it is shown in Theorem 3 of
Hansen (2005), that F cn → F0 for all continuity points of F0 as n → ∞ and that the
CDF F cn is bounded, i.e. F ln (x) ≤ F cn (x) ≤ F un (x). Based on this result, Hansen (2005)
showed, that the empirical p-value, p̂cn (t) = 1 − F̂ cn (t), converges in probability, i.e.
p̂cn (t) P→ p0 (t) ,∀ t > 0, with F̂ cn (t)− F cn (t) = O (1). In general, the boundary p-values,
p̂ln and p̂un, are no consistent estimates. The latter p-value coincides with that of the
LFC. It should be consistent, if no alternative forecast performs worse than the bench-
mark.

A further challenge is handling the dependence of TSPAn on the nuisance parameters
ωk, for k = 1, . . . ,m. White (2000) and Hansen (2005) addressed this problem by
applying the stationary bootstrap of Politis and Romano (1994), which (implicitly)
accounts for the nuisance parameter. The resampling procedure is based on composing
fragments of the original time series with random length. The pseudo time series d∗b,i,
with b = 1, . . . , B and i = 1, . . . , n, relies on a rearrangement of the original data with
subscript τb,i ∈ {1, . . . , n}. Let q denote the parameter of the geometric distribution,
with q ∈ (0, 1] and (mean) block length q−1. Then, the subscript, τb,i, follows the
recursion

τb,i =

dnub,ie , if vb,i < q

I {τb,i−1 < n} τb,i−1 + 1 , if vb,i ≥ q,

where τb,1 = dnub,1e, ub,i ∼ U (0, 1) and vb,i ∼ U (0, 1). The latter RVs are elements of
the (B × n)-matrices U and V. Finally, the pseudo time series is defined as d∗b,t = dτb,t

.
There are different ways to define the varying block length, but the mean block length
should increase according to the sample size. If q is chosen to minimize the mean squared
error of the estimated variance, then q = c n−

1
3 with constant c, see Politis and Romano

(1994).
Since the CDF under the null hypothesis is to be mimicked, the pseudo sample ele-

ments are centered around the estimators µ̂l, µ̂c and µ̂u, leading to the variables

Zjk,b,i = d∗k,b,i − gj
(
d̄k
)
,

where k = 1, . . . ,m, j = l, c, u, b = 1, . . . , B and i = 1, . . . , n. The function gj is defined
in the following way: gl (x) = max (x, 0), gc (x) = x I

{
n1/2x/ω̂k ≥ − (2 log logn)1/2

}
and gu (x) = x. Moreover, let P ∗ be the bootstrap probability measure and Z̄jk,b =
n−1∑n

i=1 Z
j
k,b,i. Then, Corollary 3 of Hansen (2005) states

sup
z∈Rn

∣∣∣P ∗ {n1/2
(
Z̄jb − µ̂

j
)
≤ z

}
− P

{
n1/2

(
d̄− µ

)
≤ z

}∣∣∣ P→ 0,
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which allows to approximate the CDF of the test statistics under the null hypothesis
by the EDF of the pseudo time series Zjb,i. In the final step, the test statistics of the B
pseudo samples are computed, i.e.

T jb,n
def= max

 max
k=1,...,m

n1/2 Z̄
j
k,b

ω̂k
, 0

 ,
so that the three (different) p-values are computed as

p̂j
def= 1− F̂ jn

(
TSPAn

)
= B−1

B∑
b=1

I
{
T jb,n > TSPAn

}
,

for j = l, c, u.
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4 Copulae

In particular, the contribution of Sklar (1959) extends the possibilities for modelling
multivariate distributions via copulae.

Theorem 1 (Sklar (1959)). Let F be a joint distribution function with margins
F1, . . . , Fd. Then there exists a copula C : [0, 1]d → [0, 1] such that, ∀x1, . . . , xd ∈
R = [−∞,∞],

F (x1, . . . , xd) = C {F1 (x1) , . . . , Fd (xd)} .

If the margins are continuous, then C is unique; otherwise C is uniquely determined on
RanF1 × · · · × RanFd, where RanFj = Fj

(
R
)
denotes the range of Fj.

Theorem 1 allows splitting multivariate CDFs into the marginal distribution func-
tions and a dependency component, which is defined by the copula function C. Hence,
copulae allow for modelling more complex stochastic dependencies than the correlation
coefficient restricted to linear dependencies.

4.1 Hierarchical Archimedean copula

In addition to the class of elliptical copulae, there exists the class of ACs providing
the following advantages: (i) the modelling of non-elliptical dependence structures, (ii)
depending on the underlying family, ACs can describe different types of tail dependence
and (iii) they have a closed form expression. Let φ be the Laplace transform (LT) of
the univariate CDF M defined on the positive support and without probability mass at
zero, i.e.

φ (s) =
∫ ∞

0
exp (−s ω) dM (ω) ,

with s ≥ 0 and

φ ∈ L =
{
φ : [0,∞)→ [0, 1] |φ (0) = 1, φ (∞) = 0, (−1)k ∂

k

∂tk
φ (t) ≥ 0, k ∈ N, t ∈ (0,∞)

}
.
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4 Copulae

Additionally, the class of functions containing compositions of the form φ−1
1 ◦ φ2, with

φ1, φ2 ∈ L, is defined as

L∗ =
{
ω : [0,∞)→ [0,∞) |ω (0) = 0, ω (∞) =∞, (−1)k−1 ω(j) (t) ≥ 0, k ∈ N

}
.

Moreover, there exists a unique CDF G for an arbitrary univariate CDF F such that

F (x) =
∫ ∞

0
Gα (x) dM (α)

=
∫ ∞

0
exp [α log {G (x)}] dM (α) = φ {− logG (x)} ,

implying G (x) = exp
[
−φ−1 {F (x)}

]
. This result can be extended to the bivariate case.

Consider the bivariate distribution F (x1, x2) with margins Fj (xj) and let Gj (x) =
exp

[
−φ−1 {Fj (xj)}

]
, with j ∈ {1, 2}. Then, the bivariate CDF can be rewritten as

F (x1, x2) =
∫ ∞

0
Gα1 (x1)Gα2 (x2) dM (α) = φ {− logG1 (x1)− logG2 (x2)}

= φ
[
φ−1 {F1 (x1)}+ φ−1 {F2 (x2)}

]
, (4.1)

and the corresponding copula C : [0, 1]2 → [0, 1] is given by

C (u1, u2) = φ
{
φ−1 (u1) + φ−1 (u2)

}
. (4.2)

Formulae (4.1) and (4.2) can be generalized in two directions: (i) analogous to the
extension to the bivariate case, the natural extension of relation (4.1) is given by

F (x1, . . . , xd) = φ
[
φ−1 {F1 (x1)}+ · · ·+ φ−1 {Fd (xd)}

]
= φ

 d∑
j=1

φ−1 {Fj (xj)}

 .
(ii) Especially the restricted dependence structure induced by Archimedean genera-
tors exhibits a disadvantage of d-dimensional ACs, because this assumption is mostly
violated in practice – even in moderate dimensions. To permit more flexibility, the ar-
guments of an AC can be substituted by HAC(s), which leads to the concept of HAC
introduced by Joe (1997). To stress this point, define the functions G1.2 (u1, u2) =
exp

[
−φ−1

3 ◦ φ1.2
{
φ−1

1.2 (u1) + φ−1
1.2 (u2)

}]
, G3 (u3) = exp

{
−φ−1

3 (u3)
}

and the distribu-
tion M (α) with LT φ3. If additionally φ−1

3 ◦ φ1.2 ∈ L∗ and Gα1.2 is a CDF, equation
(4.1) can be extended via the mixture representation of the copula C to the trivariate
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4.1 Hierarchical Archimedean copula

case, i.e.

C (u1, u2, u3) =
∫ ∞

0
Gα1.2 (u1, u2)Gα3 (u3) dM (α)

= φ3
{
φ−1

3 ◦ φ1.2
{
φ−1

1.2 (u1) + φ−1
1.2 (u2)

}
+ φ−1

3 (u3)
}
.

As illustrated by Schweizer and Sklar (1983), general conditions concerning the LTs and
their inverses, which ensure the d-dimensional HAC being a multivariate CDF, are given
by φ−1

d−i ◦φd−j ∈ L∗ for i < j. In general, generators within a single HAC are allowed to
come from different families, but the conditions assuring that the final model is a CDF
are not straightforwardly fulfilled. In the following, Archimedean generators within a
single HAC are restricted to come from the same family, so that the generators differ
in their parameters only. Furthermore, only generators with one dependency parameter
are considered, even though generators with two determining parameters exist. Nelsen
(2006) discussed generator families depending on two parameters.

The major advantage of HAC compared to AC is the non-exchangeability of the
arguments beyond a single node, which is imposed by the structure of a HAC. ACs
are permutation-symmetric in their arguments, i.e. C (u1, u2) = C (u2, u1) in the two-
dimensional case. Like the dependency parameters, the structure is generally unknown
and can therefore be regarded as further component, which determines the dependency
produced by the copula. Before the notation of the structure is introduced, consider the
following example to get a simple access.

Assume the vector of variables u = (u1, . . . , u4)> should be modelled with known
generator function φj

def= φ (·; θj), with j = 1, 2, 3 and φi 6= φj for i 6= j. One option of
modelling is given by the fully nested HAC

C1 (u) = φ3
{
φ−1

3 ◦ φ2
{
φ−1

2 ◦ φ1
{
φ−1

1 (u1) + φ−1
1 (u2)

}
+ φ−1

2 (u3)
}

+ φ−1
3 (u4)

}
,

for φ−1
3 ◦ φ2 and φ−1

2 ◦ φ1 ∈ L∗. Let C2 depend on the same variables and generators,
but assume a partially nested structure, i.e.

C2 (u) = φ3
[
φ−1

3 ◦ φ1
{
φ−1

1 (u1) + φ−1
1 (u2)

}
+ φ−1

3 ◦ φ2
{
φ−1

2 (u3) + φ−1
2 (u4)

}]
,

with φ−1
3 ◦ φ1 and φ−1

3 ◦ φ2 ∈ L∗. The arguments at the same node are still ex-
changeable, e.g. u1 and u2, but the dependence structure cannot be uniquely deter-
mined, even though the generators are known. The most important property of the
structure is its recursive determination. This means in the case of the 4-dimensional
partially nested HAC, that the bivariate copulae u∗1

def= φ1
{
φ−1

1 (u1) + φ−1
1 (u2)

}
and

u∗2
def= φ2

{
φ−1

2 (u3) + φ−1
2 (u4)

}
are modelled at the lowest nesting level. Proceeding

with the recursion implies for the second lowest hierarchy level, which is equivalent to
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4 Copulae

the initial node in this case, that the modelling of four variables reduces to a bivariate
AC, i.e. C (u) = φ3

{
φ−1

3 (u∗1) + φ−1
3 (u∗2)

}
. Figure (4.1) gives a graphical representation

of the copulae C1 and C2 with fixed parameter values.

! = 2

! = 3

! = 4

u1 u2

u3

u4

! = 2

! = 3

u1 u2

! = 4

u3 u4

Figure 4.1: Fully and partially nested HAC.

The structure is denoted by s = (. . . (j1 . . . jlk) . . . (. . .) . . .), which indicates permuta-
tion symmetry of the variables nested at the same node, with jk ∈ {1, . . . , d}. To con-
tinue the previous example, the structure associated with C1 equals s = (u4 (u3 (u1 u2)))
and C2 is s = ((u1 u2) (u3 u4)). In the following, let C (θ, s) (u1, . . . , ud) denote a d-
dimensional HAC and c the respective copula density with identical arguments. Some
properties considered in the previous example can be generalized for d ≥ 3: (i) all nest-
ing levels of a HAC provide at least one margin, which is determined by a HAC. (ii)
If all generators stem from the same family, the values of the dependency parameter
mostly increase from the highest to the lowest nesting level. (iii) If a d-dimensional
HAC shows a fully nested structure, the distribution model contains (d− 1) hierarchies
and the same amount of parameters, which decreases for more complex structures.

4.2 HAC estimation

A natural starting point for the parametric estimation of a HAC is the ML-approach. If
the structure and the true generator family are known, ML-estimation leads to efficient
estimates, since the underlying density function is clearly determined. If the structure
is unknown, all possible structures can be determined and the parameter vector, θ, can
be estimated for all of them. Finally, the model with the best fit is chosen. This method
maybe works for three or four variables, but the more variables are included the more
difficult the implementation of the procedure becomes. As a result, the central questions
are: (i) which method should be applied in order to endow the estimates with desirable
asymptotic properties and (ii) which (efficient) procedure returns an estimated structure
close to the true structure. Okhrin et al. (2011) discussed a multi-stage ML-procedure
for estimating the parameters and the structure simultaneously, which is explored in
more detail in the following.
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4.2 HAC estimation

Let X be the data matrix containing n realizations of the d-dimensional random vector
X = (X1, . . . , Xd)>, whose iid RVs Xj follow an arbitrary continuous distributions, with
j = 1, . . . , d. Let H (x1, . . . , xd) be the true CDF defined on the d-dimensional Euclidian
space with measurable density h. Furthermore, let F (x1, . . . , xd,θ) denote a specified
parametric family of CDFs with measurable, continuous densities f (x1, . . . , xd,θ) for
every θ, where θ denotes the parameter vector with θ ⊂ Θ and Θ is referred to a
subspace of the Euclidian space. Then, the quasi-log-likelihood-function can be written
as

L (X,θ) = n−1
n∑
i=1

log {f (xi1, . . . , xid,θ)} . (4.3)

Since the assumed CDF is specified through a HAC, equation (4.3) splits into the copula
density and the product of marginal densities, which is maximized by the QML-estimator

θ̂ = arg max
θ∈Θ

n∑
i=1

log

c (θ, s) {F1 (xi1) , . . . , Fd (xid)}
d∏
j=1

fj (xij)

 .

Okhrin et al. (2011) discussed estimation methods for parametric and nonparametric
estimated margins, but only the nonparametric case is considered here, which divides
the estimation of HAC into two parts. At first, the margins are estimated while the
parametric multi-stage ML-procedure is carried out in a second estimation step using
the estimated margins as variables. The margins can be estimated non-parametrically
by the modified estimator

F̂j (x) = (n+ 1)−1
n∑
i=1

I {xij ≤ x} , (4.4)

or by any other kernel estimator with certain asymptotic properties, where xij de-
notes the j-th element of the i-th realization of the corresponding random vector xi =
(xi1, . . . , xid), for j = 1, . . . , d and i = 1, . . . , n. The corresponding densities are also
estimated by an appropriate kernel density estimator, given by f̂j , j = 1, . . . , d. Since
margins are analyzed independently of the HAC, assume, that they are specified cor-
rectly.

Two grouping criteria are proposed for determining the structure of a HAC. One
criterion relies on goodness of fit tests, whereas the other is based on grouping binary
structures. Since the former procedure exhibits some disadvantages, this thesis focuses
on the method relying on binary structures. Define the quantities ûij

def= F̂j (xij),
û′ij

def= f̂j (xij) and the set J , which contains the different subscripts of the variables.
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Set the index, p = 1, . . . , d− 1, to p = 1. Then, the system

(
∂L1
∂θ1

, · · · , ∂Ld−1
∂θd−1

)>
= 0 (4.5)

is solved by the (d− 1)-step procedure:

1. Let l refer to the l-th subset of the set C = {cl}
(d−p+1

2 )
l=1 , which contains all dis-

tinct, binary combinations of the set J . Optimize the quasi-log-likelihood with
dependence structure sl = (cl1 cl2), i.e.

Lp =
n∑
i=1

log
{
c (θpl

, sl)
(
{ûim}m∈cl

) ∏
m∈cl

û′im

}
,

with respect to θpl
=
(
θ1 = θ̂1, . . . , θp−1 = θ̂p−1, θpl

)>
for all l.

2. Choose θ̂p = max
l
θ̂pl

. Assume the combination cl∗ , l∗ ∈
{

1, . . . ,
(d−p+1

2
)}

, leads to

the desirable fit and define the binary structure s∗ =
(
cl∗1cl∗2

)
.

3. Compute the values of the pseudo variable ûis∗ = C
(
θ̂p, s

∗
) (
{uim}m∈cl∗

)
as

well as the values of the corresponding density û′is∗ and redefine the set J =
{{s∗} ∪ J \ cl∗}. Properties of bivariate pseudo variables are discussed in Genest
and Rivest (1993).

4. Set p = p + 1. If p < (d− 1), go back to step one; else the algorithm ends with
θ̂ =

(
θ̂1, . . . , θ̂p

)>
and s∗ as results.

If the parametric family F is correctly specified, i.e. ∃ θ0 : F (x1, . . . , xd,θ0) =
H (x1, . . . , xd), the maximizer of the quasi-log-likelihood (4.3), θ̂, shares the usual prop-
erties of ML-estimates as consistency, asymptotic normality and achieves asymptotically
the Cramer-Rao lower bound. Still, there are sources for potential incorrect specifica-
tions: (i) the distribution model itself might be misspecified; if the distribution model
belongs to the HAC-family (ii) the chosen HAC-family (e.g. Gumbel or Clayton) or
(iii) the structure can be misspecified. A measure for the difference of two probability
measures is the Kullback-Leibler divergence defined as

K{h, f (θ)} = EH
{

log h (x1, . . . , xd)
f (x1, . . . , xd,θ)

}
, (4.6)

where EH refers to the expectation of the true distribution. Analogous to Okhrin
et al. (2011), assume that F is misspecified, EH {log h (x1, . . . , xd)} exists and the H-
integrable function m (x1, . . . , xd) limits | log f (x1, . . . , xd,θ) | from above for all θ. If
K has an unique minimum at θ∗, the maximizer of system (4.5), θ̂, minimizes K as well
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4.2 HAC estimation

and is strongly consistent, i.e. θ̂ a.s.−→ θ∗. The QML-properties of the estimator θ̂ are
summarized in Theorem 3 of Okhrin et al. (2011).

A static ML-estimation would require constrained optimization, since the conditions
φ−1
d−i◦φd−j ∈ L∗ for i < j have to be fulfilled. When the multi-stage procedure is applied,

it can be shown, that equivalent conditions, i.e. θ̂1 > θ̂2 > · · · > θ̂d−1, are incorporated
by construction. According to the nature of this method, the parameters estimated at
lower hierarchy levels are regarded as known quantities at higher nesting levels. Hence,
there exists only one parameter to estimate at each estimation stage, so that the multi-
stage ML-procedure leads to stable solutions. Furthermore, the challenging asymptotic
theory reasoned by static, constrained optimization of the quasi-log-likelihood is avoided,
if the multi-stage procedure is used.
At first sight, a disadvantage of the procedure is, that it cannot result in the true

structure, if the true structure is not binary. In spite of this, (i) the estimated struc-
ture might differ from the structure of the true copula model, but the values of corre-
sponding distribution functions should be close and (ii) the structure can be aggregated
by exploiting the so called associativity property of ACs explored in the following,
see Theorem 4.1.5 of Nelsen (2006). For example, consider the 3-dimensional HAC
C1
{

(θ1, θ2)> , ((12)3)
}

(u1, u2, u3). If the values of the parameter at the initializing
node and the parameter at the lower hierarchy level are close, e.g. |θ1 − θ2| < ε, 0 < ε,
then C1 ≈ C2 {θ, (123)} (u1, u2, u3), where θ can determined in several ways, e.g. min

i=1,2
θi

or max
i=1,2

θi. The associativity property can be utilized to construct general HACs based
on the estimated binary approximations. The previous example refers to the threshold
approach. Variables are aggregated in a joined node, if the difference of two subsequent
parameters does not exceed a certain threshold. A further approach exploits the asymp-
totic normality of the estimates. Their difference can be tested for being significantly
different from zero, i.e. H0 : θp − θp+1 = 0, where p corresponds to an arbitrary nesting
level except for the highest. If the null hypothesis cannot be rejected, the variables
should be aggregated.

The following relationship provides a direct link between bivariate AC and Kendall’s τ ,
which allows to interpret the dependence of ACs on the familiar scale. This relationship
can also be used to estimate HAC, if the grouping criteria is based on binary trees.

Theorem 2 (Genest and Rivest (1993)). For the copula given by equation (4.2),
Kendall’s τ can be written as the one-dimensional integral:

τ = 1 + 4
1∫

0

φ−1 (t)
(φ−1)′ (t)

dt. (4.7)
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The right hand side of equation (4.7) has a closed form expression which is typically for
Archimedean generators, e.g. τ = 1− 1/θ for the Gumbel generator. This relationship
induces an estimator for Kendall’s τ , if an estimator of θ is available. To formalize
convergence results for estimators of Kendall’s τ , let τ̂ denote the estimator. Dengler
(2010) derived the asymptotic variance and asymptotic normality for τ̂ under weak
conditions. For two continuous distributed RVs X1, X2, with ui

def= Fi (Xi) , i ∈ {1, 2},
the asymptotic variance expressed in terms of the copula C is given by

σ2
τ

def= Var (τ̂) = 64
[
E
{
C2 (·, ·) (u)

}
− E {u1C (·, ·) (u)} − E {u2C (·, ·) (u)}

]
+ 32 E (u1 u2) + 20

3 + 8 τ − 4 τ2,

with u = (u1, u2)>. Afterwards, the asymptotic normality of τ̂ is used to construct
confidence intervals,

[
τ̂ − n−1/2 στ z1−α/2, τ̂ + n−1/2 στ z1−α/2

]
, where (1− α) is a fixed

confidence level, zα denotes the α-quantile of the standard normal distribution, with
α ∈ (0, 1), and sample size n ≥ 2.

4.3 Time varying HAC

Giacomini et al. (2009) estimated time varying dependence induced by AC with a local
adaptive estimation method, which is closely related to the local change point (LCP)
procedure like applied in Spokoiny (2009). Härdle et al. (2010) proposed a similar frame-
work for HACs, where the true HAC-parameters θi, si are assumed to change over time.
The aim of this chapter is to present the main ideas of the data driven LCP proce-
dure, which tests whether the dependencies of a d-dimensional multivariate process are
“nearly” stable, i.e. the underlying process can be locally described by a HAC whose
parameters are approximated by constants on interval Ik = [i0 −mk, i0], with reference
point i0 and mk > 0. If the null hypothesis of stable dependency (homogeneity) is not
rejected for interval Ik, the interval length is extended and interval Ik+1 is tested for
homogeneity, with Ik ⊂ Ik+1. If the null hypothesis is rejected at (k + 1), the local
adaptive estimates are given by θ̂ = θ̃k and ŝ = s̃k, where θ̃k, s̃k denote fixed sam-
ple estimates. In this thesis, time varying dependencies are used for classical causality
analysis and for improving forecasts, see chapter (5.2) and (5.3). There are several ad-
vantages of the time varying HAC compared to other time varying models: (i) since the
underlying copula is defined through a HAC, the functional form of the dependency (the
structure of the HAC) is allowed to change over time. (ii) The sequence of estimates
may contain discontinuities and jumps and does not require assumptions like smooth
transitions of the time varying parameter. (iii) Changes in the dependence structure
are detected with short delay, whereas the rolling window approach shows a slower re-
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4.3 Time varying HAC

sponse time. This section is organized in three parts. First, theoretical properties of
the adaptive estimator are claimed. Secondly, the test of homogeneity is presented and
thirdly, critical values are proposed.

To formalize the idea of local adaptive estimation, let θi and si be the time varying and
unknown parameters of the HAC C and let ∆Ik

(θ, s) =
∑
i∈Ik
K{c (θi, si) (·) , c (θ, s) (·)}

be a random quantity, where K (·, ·) refers to the Kullback-Leibler distance as defined in
(4.6). Furthermore, let ∆Ik

(θ, s) ≤ ∆ be the small modelling bias (SMB) condition with
∆ ≥ 0 and some constant θ, s. Under the SMB condition the data generating process can
be well approximated by the copula C (θ, s) (·) on Ik. Let L(θ̃Ik

, s̃Ik
)−L (θ0, s0) measure

the difference between the log-likelihood L evaluated at the ML-estimates θ̃Ik
, s̃Ik

and
at time constant parameters θ0, s0. As illustrated in Härdle et al. (2010), if the SMB
condition holds for some interval Ik and θ, s, then

Eθi,si
log

1 +

∣∣∣L (θ̃Ik
, s̃Ik

)
− L (θ, s)

∣∣∣r
Rr (θ, s)

 ≤ 1 + ∆, (4.8)

where the non-asymptotic parametric risk bound Rr (θ, s) satisfies the inequality

Eθ0,s0

∣∣∣L (θ̃Ik
, s̃Ik

)
− L (θ0, s0)

∣∣∣r ≤ Rr (θ0, s0) .

Relation (4.8) limits the risk, that the estimated model with parameters θ̃Ik
, s̃Ik

deviates
from the local constant model with parameters θ, s. Furthermore, let Ik∗ = [i0−mk∗ , i0]
denote the “oracle” choice interval, which is defined as largest interval Ik fulfilling the
SMB condition with ∆ > 0, but the SMB condition does not hold for k > k∗.

Since the true time varying parameter θi and si are unknown, the “oracle” choice
interval cannot be implemented. The LCP procedure aims to find this optimal interval
by sequentially testing a finite sequence of nested intervals for homogeneity. If the null
hypothesis is not rejected, the structure of the HAC is constant and the parameter
does not vary significantly on the accepted interval. The quantity ∆Ik

increases with
k by definition, so that the SMB condition holds for all k ≤ k∗, where k∗ denotes the
“oracle” choice. Let k̂ be a detected interval of homogeneity, so that a “false alarm”
is observed if k̂ < k∗. The practical pendant refers to the situation, when a change in
the dependency structure or the parameters is detected within interval Ik̂ with k̂ ≤ k∗,
although the true change point occurs within interval (k∗ + 1). In the following assume
that max

k≤k∗
Eθ,s

∣∣∣L (θ̃Ik
, s̃Ik

)
− L (θ, s)

∣∣∣r ≤ Rr (θ, s) holds. Then, it follows directly from
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inequality (4.8), that

Eθi,si
log

1 +

∣∣∣L(θ̃Ik̂
, s̃Ik̂

)− L (θ, s)
∣∣∣r

Rr (θ, s)

 ≤ 1 + ∆, (4.9)

where θ̃Ik̂
, s̃Ik̂

denote the fixed-sample QML-estimates and θ, s fulfill the SMB condition.
Relation (4.9) guarantees an upper boundary for the risk induced by the estimates, if
θ̃Ik̂

, s̃Ik̂
are based on the fixed interval Ik̂. Additionally, Härdle et al. (2010) proposed

Eθi,si
log

1 +

∣∣∣L (θ̃Ik̂
, s̃Ik̂

)
− L

(
θ̂Ik̂

, ŝIk̂

)∣∣∣r
Rr (θ, s)

 ≤ 1 + ∆, (4.10)

where θ̂Ik̂
, ŝIk̂

denote the adaptive estimates of interval Ik̂. If a false alarm is observed,
relation (4.10) provides the same upper boundary for the loss, measured by∣∣∣L (θ̃Ik̂

, s̃Ik̂

)
− L

(
θ̂Ik̂

, ŝIk̂

)∣∣∣r ,
as for the inequality (4.9). Following the interpretation of the main literature, it can be
concluded that the adaptive estimator, relying on interval Ik̂, with k̂ < k∗, is of the same
quality as the QML-estimator itself. Hence, the LCP procedure performs well as long
as the estimated interval is not larger than the “oracle” interval. But if the procedure
does not detect a change point, the more elaborate type of error occurs, because the
estimated interval Ik̂, k̂ > k∗, is based on a violated SMB condition.

Härdle et al. (2010) achieved the following “oracle” result by applying Theorem
4.3 of Čìžek et al. (2009), which provides an upper limit for the random deviation
L
(
θ̃Ik∗ , s̃Ik∗

)
− L

(
θ̂Ik̂

, ŝIk̂

)
, normalized by the parametric risk, i.e.

Eθi,si
log

1 +

∣∣∣L (θ̃Ik∗ , s̃Ik∗

)
− L

(
θ̂Ik̂

, ŝIk̂

)∣∣∣r
Rr (θ, s)

 ≤ 1 + ∆ + log
{

1 + zrk∗

Rr (θ, s)

}
,

where zk denotes the k-th critical value of the test for homogeneity discussed below,
k = 1, . . . ,K. Thus, if k̂ > k∗, the adaptive estimators θ̂Ik̂

, ŝIk̂
belong with high proba-

bility to the confidence intervals of the “oracle” estimates θ̃Ik∗ , s̃Ik∗ .

In the following the test for homogeneity is explained in more detail. Assume under
the null hypothesis, that the SMB condition is fulfilled for interval I and parameters
θ, s. Consequently, there is no reason against an approximation of the data generating
process by a local constant HAC on I. Let i0 denote the reference point of the interval
candidate I = [i0 −m, i0]. Additionally, let TI be the set containing all possible change
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4.3 Time varying HAC

points τ of interval I, which is checked for containing a single but unknown change
point. Härdle et al. (2010) formalized the hypotheses as

H0 : ∀ τ ∈ TI ,θi = θ, si = s, ∀ i ∈ I = J ∪ JC = [τ, i0] ∪ [i0 −m, τ)

H1 : ∃ τ ∈ TI ,θi = θ1, si = s1, ∀ i ∈ J = [τ, i0] ,

and θi = θ2 6= θ1 or si = s2 6= s1, ∀ i ∈ JC = [i0 −m, τ).

(4.11)

Note, it is sufficient under the alternative that either the vector of parameters or the
structure changes at the intermediate point τ . The test for a single and fixed change
point τ ∈ I can be performed by employing the Likelihood Ratio (LR) test statistic

TI,τ = max
θ1,s1,θ2,s2

{LJ (θ1, s1) + LJC (θ2, s2)} −max
θ,s
{LI (θ, s)} .

Since τ is generally unknown, |TI | different LR-statistics have to be computed for one
interval. To avoid testing each of them, the maximum of the LR-statistics is checked
for exceeding the critical value, so that the final test statistic for interval I is defined as

TI = max
τ∈TI

(TI,τ ) .

The specified test is applied to search for the largest interval of homogeneity. Define the
set I, which contains the growing sequence of nested interval-candidates Ik = [i0−mk, i0]
with arbitrary but fixed i0, i.e. I0 ⊂ I1 ⊂ · · · ⊂ Ik ⊂ · · · ⊂ IK , and the sets TIk

for
all Ik ∈ I. Let the null hypothesis of (4.11) hold for I0. At first, interval I1 is checked
for containing a change point. If the null hypothesis is accepted, I2 is tested and so
on. This procedure is continued until a change point is identified at interval

(
k̂ + 1

)
,

i.e. TIk
≤ zIk

for k ≤ k̂ and TIk̂+1
> zIk̂+1

, or interval IK is accepted as interval of
homogeneity, i.e. k̂ = K. To attain θ̂, ŝ, the QML-estimates θ̃Ik̂

, s̃Ik̂
are computed, as

proposed in section (4.2), and employed as adaptive estimates, i.e. θ̂ = θ̃Ik̂
, ŝ = s̃Ik̂

and
set θ̂Ik̂+1

= · · · = θ̂IK
= θ̂, ŝIk̂+1

= · · · = ŝIK
= ŝ, if k̂ ≤ K.

Finally, a well performing choice for the critical values zk, which define the “signif-
icance level” of the underlying test statistics Tk = TIk

, for k = 1, . . . ,K, is proposed,
see Spokoiny (2009). The critical values of a classical statistical test are chosen to re-
ject the true null hypothesis with predetermined probability α ∈ (0, 1). It is essential
to assure, that the (multiple) testing procedure performs as described under the null
hypothesis. Since the test of homogeneity assumes stable dependencies, the largest
possible homogeneous interval IK should coincide with the “oracle” choice interval un-
der the null hypothesis. If k̂ < K, a correct null hypothesis is rejected due to a false
alarm. If k̂ is small, the estimates provide a higher variability than the “oracle” es-
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timates. This increases the probability of a false test decision, for which reason the
classical condition on the first type error are slightly modified and the critical values zk
are chosen in order to incorporate the volatility. Let θ̂, ŝ denote the adaptive estimates
of some interval k̂ < K. The corresponding loss of a false alarm can be measured by
L
(
θ̃IK

, s̃IK

)
− L

(
θ̂, ŝ

)
, which is bounded by

Eθ0,s0

∣∣∣L (θ̃IK
, s̃IK

)
− L

(
θ̂, ŝ

)∣∣∣r ≤ ρRr (θ0, s0) , (4.12)

where θ̃IK
, s̃IK

are the “oracle” estimates under the null hypothesis and θ0, s0 are the
time constant parameter. Inequality (4.12) shows, that the loss of a false alarm is
bounded by the ρ-th fraction of the loss of the “oracle” estimates, θ̃IK

, s̃IK
, for the

non-time varying situation with θ0, s0. According to Čìžek et al. (2009), this reveals an
implicit condition on the critical values {zk}Kk=1. Instead of condition (4.12) a slightly
different condition needs to be fulfilled during the LCP, i.e.

Eθ0,s0

∣∣∣L (θ̃Ik
, s̃Ik

)
− L

(
θ̂Ik

, ŝIk

)∣∣∣r ≤ ρkRr (θ0, s0) (4.13)

with ρk = ρ k/K and k = 1, . . . , ,K. The adaptive estimates differ only from θ̃IK
, s̃IK

, if
a change point is detected at k ≤ K. Condition (4.13) describes an upper boundary for
each step of the estimation procedure. If interval Ik is accepted as homogeneous interval,
the subsequent interval is accepted with high probability, as well. The condition endows
the first steps of the procedure with larger critical values. In general, the robustness
and sensitivity of the test is adjusted by the parameter ρ. If ρ is close to zero, on the
one hand the probability that a false alarm occurs within the first steps decreases (the
critical values increase) leading to a more robust procedure. On the other hand the
procedure reacts less sensitive to parameter changes.

Neither condition (4.12) nor (4.13) provide a direct linkage to the critical values. In
accordance with Härdle et al. (2010), the sequential choice of critical values proposed
by Spokoiny (2009) are employed in the practical application. After k steps of the LCP
procedure, two different cases can be distinguished: (i) change point is detected at l ≤ k
or (ii) no change point is detected. Let B1 denote the event that a change point is
detected at step one, i.e. B1 = {T1 > z1}, which implies

(
θ̂k, ŝk

)
=
(
θ̃0, s̃0

)
∀ k ≥ 1.

Therefore, the critical value for the first interval I1 is found as the smallest value z1

satisfying

max
k≥1

Eθ0,s0

∣∣∣L (θ̃Ik
, s̃Ik

)
− L

(
θ̃I0 , s̃I0

)∣∣∣r I {B1} ≤ ρkRr (θ0, s0) .
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In general, let Bl denote the event that a change point is detected at step l ≤ k, i.e.

Bl = {T1 ≤ z1, . . . , Tl−1 ≤ zl−1, Tl > zl} ,

and
(
θ̂k, ŝk

)
=
(
θ̃l−1, s̃l−1

)
on Bl for l = 1, . . . , k. Since the sequence {zk}l−1

k=1 is already
fixed at step l, the event Bl is controlled only by zl, which is the minimal value satisfying
the condition

max
k≥l

Eθ0,s0

∣∣∣L (θ̃Ik
, s̃Ik

)
− L

(
θ̃Il−1 , s̃Il−1

)∣∣∣r I {Bl} ≤ ρkRr (θ0, s0) . (4.14)

The values of {zk}Kk=1 are found via Monte-Carlo simulations from the parametric model
C (θ0, s0) (·). Härdle et al. (2010) showed in a simulation study, that the procedure
detects changes in the structure with short delay.
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5.1 Data

To emphasize the cross-sectional applicability of the developed model, ten stocks are
analyzed. The corresponding companies are deliberately chosen to have a different CAP,
such that stocks of non-blue-chip companies are included in the empirical analysis,
as well. They are arranged in decreasing order by their CAP: Apple, Inc. (AAPL),
Northern Trust Corporation (NTRS), Perrigo Company (PRGO), Skyworks Solutions,
Inc. (SWKS), TW Telecom, Inc. (TWTC), Aruba Networks, Inc.(ARUN), ViaSat,
Inc. (VSAT), Veeco Instruments Inc. (VECO), Plexus Corp. (PLXS) and The Hain
Celestial Group, Inc. (HAIN). The time span of the trade data starts at the 2nd of
January 2009 and ends at the 31th of December 2009. As data-provider served the data
generating tool LOBSTER developed at the Chair of Econometrics, School of Business
and Economics, Humboldt-Universität zu Berlin.1

Raw tick-by-tick high-frequency data sets often contain errors and bad records, be-
cause of which the data have to be cleaned carefully before the models are calibrated.
Similar to the cleaning of TAQ data sets as for example applied in Barndorff-Nielsen
et al. (2009), all non-executed trades and trades with a price smaller or equal to zero
are removed. To overcome the phenomenon of simultaneous observations, trades with
the same time stamp are merged. The corresponding values are aggregated by their
median. Outliers are detected and removed according to the proposal in Brownlees and
Gallo (2006), i.e. observation j of the tick-by-tick price series {pj}n

∗

j=1 of one day is kept,
if

|pj − p̄j (k) | < 3 σ̂j (k) + γ,

with k = 40 and γ = 0.02. The estimates p̄j and σ̂j denote the sample mean and the
sample standard deviation, which are based on the k observations around j. Finally,
all trades before 10:00:00 and after 16:00:00 are removed. Selecting 10:00:00 instead
of the official NYSE opening (09:30:00) should reduce the impact of abnormal market
behavior in the beginning of the day. The trading days 27.11.2009 and the 24.12.2009
are excluded from the sample due to illiquid trading in the afternoon.

1http://lobster.wiwi.hu-berlin.de/Lobster/
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5 Results

A cleaned tick-by-tick data set provides information about (i) the price series pj ,
(ii) the amount of traded shares sj and (iii) the time stamp of the trades tj , i.e.
{(pj , sj , tj)}n

∗

j=1. To investigate the relationships between these series, the aggregated
variables HL, Vol and NoT are created on a lower sampling frequency, i.e.
{(HLi,Voli,NoTi, ti)}ni=1, where ti denotes the time stamp of the lower frequent time
series, n ≤ n∗. The aggregated variables are constructed following the suggestions in
Brownlees and Gallo (2006) as

HLi = max {pj |tj ∈ (ti−1, ti]} −min {pj |tj ∈ (ti−1, ti]} ,

NoTi = # {tj |tj ∈ (ti−1, ti]} ,

Voli = NoT−1
i

∑
tj∈(ti−1,ti]

sj .

If there are no observations within the i-th interval, the value of the interval (i− 1)
is taken over. Other variables, which provide information about the price series could
replace the high-low-range. But variables like the squared log-returns or absolute returns
are found to be nearly uncorrelated with NoT and Vol.
The variables defined above usually exhibit a U-shaped daily seasonal pattern, e.g.

more trades occur at the beginning and at the end of the day than around lunch time. For
this reason, the observed data are split in a deterministic and a stochastic component,
i.e.

xi = x̆i
di
, for i = 1, . . . , n, (5.1)

where x̆i denotes the constructed equi-distant time series and di
def= g (Fi−1) denotes the

deterministic seasonal factor, which is a function of past observations. The seasonally
adjusted time series xi results from a two-step procedure. First, a cubic spline with five
knots is fitted to the equi-distant data to estimate the seasonal pattern. Secondly, the
data is divided by the deterministic component as in relationship (5.1).

Stocks of companies with high CAP are typically liquid, so that the regularly spaced
time series can be sampled on a high frequency, e.g. 5 minutes. However, comparing
the empirical autocorrelation functions of the seasonally adjusted data for aggregation
levels of 2, 5, 10 and 15 minutes does not indicate substantial differences in their decay.
To retain as much intraday information as possible combined with handy sample sizes,
an aggregation level of 10 minutes is selected for the five (more) liquid stocks. In the
case of lower liquid stocks, an aggregation level of 15 minutes is used, because less
data are available for higher sampling-frequencies around afternoon. According to the
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aggregation levels the samples of AAPL, NTRS, PPRGO, SWKS and TWTC contain
8856 observations and 5904 observations are contained in the samples of ARUN, VSAT,
VECO, PLXS and HAIN. Summary statistics of all seasonally adjusted time series are
presented in chapter (6).

5.2 Estimation setup

The estimation results of AAPL and ARUN are discussed in detail, because they are
representative for the ten stocks. The results of all considered stocks are found in
chapter (6), which consists of ten sections, one for each stock. Minor results, like plots
of the empirical autocorrelation functions or of the estimated seasonal factors, are not
included in this thesis, but available upon request.
Firstly, FIMEMs are calibrated to the variables NoT, HL and Vol under the assump-

tion of a standard exponentially distributed error term whose choice can be justified by
the following arguments: (i) the objective is not necessarily to find an optimal model,
e.g. by selecting the model with the smallest AIC, but to obtain uncorrelated residuals.
(ii) The used two-step methodology implies a misspecified conditional mean equation,
such that the estimated error term process does not coincide with the assumed one
even if the marginal error term CDF is correctly specified. A seemingly well specified
marginal EDF is either caused by the absence of true spill-over effects or by a univariate
distribution model, which comprises the spill-over effects but does not correspond to
the marginal CDF of the data generating process. The problem of the infinite sum of
the mean equation of the FIMEM is tackled by increasing the amount of summands
until the estimated coefficients are not affected by an additional summand. Hence, the
infinite sum is truncated to contain 400 lagged coefficients. Statistical inference is based
on the covariance matrix proposed by equation (2.7), yet the associated p-values are not
presented, since the p-values of all estimates are close to zero.
Secondly, the univariate EDFs of the residuals are estimated non-parametrically as

suggested through (4.4). Due to the misspecification in the first step, the EDFs are
estimates of transformations of the true CDFs. To formalize this argument, let Fεj

denote the true CDF of RV j and let gj be a continuous and non-decreasing function
with gj : [0, 1] → [0, 1], gj (0) = 0 and gj (1) = 1, j = 1, . . . , d. Then, the univariate
EDFs are estimates of Fε∗j = gj ◦ Fεj .
Thirdly, the time varying HACs are fitted, which still lead to consistent estimates, even

though the margins might be misspecified. Cipollini et al. (2006) preferred covariance
and correlation based copulae compared to a multivariate gamma distribution, since
they permit positive and negative dependence. The imposed Gumbel-HAC does not
allow for negative dependence, which are negligible in the considered context, since
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the theoretical market microstructure foundation does not indicate mutual negative
relations. Although the tails of the distribution are of minor interest, it might be
favourably, that the Gumbel generator allows positive upper tail dependence, which
admits a positive probability for joint extreme events.

In order to execute the LCP, the necessary parameters are defined according to the
configuration of Härdle et al. (2010). First, a geometric grid mk =

[
m0 c

k
]
for c > 1,

k = 1, . . . ,K, is defined where [x] refers to the integer part of x. The multiplier of the
grid is fixed by c = 1.25 and the length of the initial interval by m0 = 40, which has
to support the hypotheses of homogeneity. Second, define the set of possible interval-
candidates I and for each interval Ik ∈ I the set of possible change points Tk = TIk

.
The elements contained in I are determined by Ik = [t0 −mk, t0] and the sets Tk are
determined as Tk = [t0 −mk−1, t0 −mk−2]. Finally, the power of |·|r, used to evaluate
the estimation loss, is defined as r = 0.5 and the parameter ρ is fixed ρ = 0.5. The
critical values are adopted from Härdle et al. (2010), who discussed in a simulation study
that this configuration leads to conservative critical values.

5.3 Forecasting setup

This forecasting survey aims to assess the relative forecast performance of the HAC-
FIMEM compared to the FIMEM. Predictions of the FIMEM are based on the infinity
representation truncated to the recent 400 estimated coefficients and multiplied with
the respective value of the seasonal pattern.

Forecasts of the HAC-FIMEM are generated in the following way: (i) determine the
interval of homogeneity at time point i. (ii) Let Ĉi denote the HAC, which is fitted
to the data contained in the interval and assume Ĉi is constant for the next trading
day. (iii) To simulate from HAC, at first the vector u = (u1, u2) of the two dimensional
nested component is sampled by the algorithm of Marshall and Olkin (1988). Second,
the variable nested at the initial node is sampled conditional on the realized vector u,
i.e. u3

def= C−1
3

[
(θ1, θ2)> , ((12)3)

]
(v|u1, u2), where v ∼ U (0, 1) and

C3
[
(θ1, θ2)> , ((12)3)

]
(u3|u1, u2) = P (U3 ≤ u3|U1 = u1, U2 = u2)

=
∂2C3[(θ1,θ2)>,((12)3)](u1,u2,u3)

∂u1∂u2
∂2C2(θ1,·)(u1,u2)

∂u1∂u2

.

The described method is known as conditional inverse method. Further sampling algo-
rithms for HAC are considered in McNeil (2008) and Hofert (2011). (iv) Conditional on
the estimations at time point i, the inverse univariate EDFs are employed to transform
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5.3 Forecasting setup

the elements of the sampled random vectors into quantiles, i.e.

ε·|i,l,j
def= F̂−1

j

(
u·|i,l,j

)
,

for l = 1, . . . , 104 and j = NoT,HL,Vol. The median across a specific margin, m·|i,j =
median

(
ε·|i,l,j , l = 1, . . . , 104

)
, is taken as a point forecast for the error term. (v) Finally,

a h-step ahead forecast of the HAC-FIMEM is computed as

xi+h|i,j = µi+h|i,jm·|i,j ,

where µi+h|i,j denotes the forecast of the j-th FIMEM conditional on the observations
up to time point i and h denotes the forecast horizon of one day, h = 1, . . . , 24 (36),
which depends on the sampling frequency.

Three advantages are expected from this approach: (i) sampling from the copula
takes the dependency component into account, whereas any complete univariate ap-
proach neglects the mutual relations. (ii) The estimated HAC corresponds to the actual
dependence structure due to selecting the interval of homogeneity, which disregards
irrelevant past impacts on the dependence structure. (iii) The effect of a skew error
term distribution is incorporated. Assume, the conditional mean equation is correctly
specified, the error term follows a standard exponential distribution and forecasts are
produced by this mean equation. Then, the variable of interest is over-predicted in
more than 60% of the cases, since 60% of the values of the presumed error term CDF
are smaller than one. Note, that this framework is easily extended to construct interval
forecasts by selecting an upper and a lower quantile instead of the median.

The forecasts are weighted with squared error loss and the performances of the vari-
ables are assessed individually, which is possibly not the best approach to identify,
whether the HAC has an impact on the forecasts. Since the median of the margins is
computed, improvements can be caused by the margins or the copula. On the other
hand, a joint evaluation of the three variables would not incorporate, whether the copula
can improve the forecasts of a single variable.

Pseudo-out-of-sample forecasts are produced for all time points of the last 96 days of
the sample and for all variables. The estimated FMs rely on the data of the previous 150
trading days, which constitute a huge amount of data, i.e. 3600 (5400) observations.
Nonetheless, these are in particular required to yield accurate estimates of the long
memory models. In contrast to recursive estimation schemes the rolling window method
is explicitly allowed and conforms to the stationarity assumptions required for the SPA-
test. The recursive estimation of HACs applies to the cross-section and should not be
mistaken for the recursive estimation scheme of forecasting. The mean block length
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of the stationary bootstrap is chosen as q−1 = 3.15n1/3, where n refers the number
of forecasts. Hansen (2005) suggested to increase the number of bootstrap samples
until the estimated p-values are not affected by an additional draw. The number of
pseudo-samples, B = 104, is found to be sufficiently large. The following scenario is
considered:
All forecasts, required for the next trading day, are produced “overnight”, so that

each of the 24 (36) forecasts per day offer a different forecast horizon. Accordingly,
each of the h subsamples contains 96 observations, with h = 1, . . . , 24 (36). To figure
out, whether the FIMEM is outperformed by the HAC-FIMEM for a specific forecast
horizon, the SPA-test is applied to each of the 24 (36) subsamples.

5.4 Apple, Inc.

Table (1) provides the summary statistics of the seasonally adjusted data of AAPL.
Obviously, the data cleaning procedure applies well, since the means are one. The last
row of the table presents the test statistics of the Portmanteau-tests. From their high
values can be deduced, that the data exhibit the typical strong autocorrelation of high
frequency data. The results of the estimated univariate models are presented in table
(2). The first important aspect is, that the estimated fractional integration parameters
are significantly bigger than zero. Hence, fitting a standard MEM would definitely lead
to dissatisfactory results. Note, that the MEM is nested in the FIMEM for δ = 0. Sec-
ond, the row “Feasible” suggests, that the combinations of coefficients are suitable for all
estimated models, which is verified by applying Corollary 1 of Conrad and Haag (2006)
to the estimated parameters. The estimates presented in the third column indicate,
that the NoT process is mainly driven by the long memory component and relatively
unaffected by the short run components, since α and β are small in their absolute value.
Remarkably, the values of the estimated fractional integration parameters are very close,
so that the hypothesis of a common long memory component might be supported. In
any case, this hypothesis remains for potential extensions, when the variables are an-
alyzed in a multivariate one-stage setup and the fractional integration parameters are
estimated simultaneously. The presented Portmanteau test statistics does not provide
any reasons to reject the null hypotheses of uncorrelated residuals.

The first panel of figure (1) shows the changing HAC-structure estimated for a fixed
historic period. The second shows the transformed time varying parameters. The two
thick lines (grey and black) represent values of Kendall’s τ̂ constructed from the es-
timated HAC parameters. Since the estimates are close and the estimated structure
frequently changes, the real structure corresponds probably to a simple Archimedean.
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5.5 Aruba Networks, Inc.

The HAC based on the whole sample is given by s∗ = ((NoT HL)0.363 Vol)0.291, where
the subscripts are related to Kendall’s τ . Conversely, if the threshold approach of
the associativity property is applied, with ε = 0.2, the structure changes to s∗ =
(NoT HL Vol)0.329. At first view, the value ε = 0.2 seems to be high, but it refers to the
HAC parameters, which are defined on [1,∞) and not bounded by the unit interval like
Kendall’s τ for the Gumbel generator. From this point of view, two conclusion can be
drawn: (i) either, following the direct interpretation of the upper panel, the structure
is regarded as unstable or (ii) the HAC is characterized as almost stable simple AC.
The third and fourth panel illustrate the performance of the LCP procedure. The

lower panel presents the length of the accepted interval of homogeneity. As proposed
in subchapter (4.3), the LR-test statistic measures the stability of the fitted model.
Therefore, the length of the accepted intervals continuously increase in periods of stable
fit, whereas the interval length is typically short in volatile periods. The dynamic of
the ML-process is presented in the third picture and allows to reproduce this relation-
ship. The ML-process exhibits a higher volatility in the last two month of the observed
sample. This implies shorter intervals, for which the hypotheses of homogeneity are
accepted, since the LR-test statistics are smaller.

The relative multiple-step forecast performance is illustrated in figure (2). In general,
an overnight h-step forecast produced by the HAC-FIMEM is not significantly better
than predictions of the FIMEM, because the thick black lines are volatile and rarely
beneath the grey dashed line at 0.1. The null hypothesis, that the benchmark is su-
perior to the alternative (HAC-FIMEM) is rejected for small p-values. Nevertheless,
the aim of the two-step procedure is to approximate a model as defined in (2.5) with
mean equation (2.6). Since one-step ML-estimation is not considered in this thesis, it
remains unclear, whether an estimate of the multivariate conditional mean equation
demonstrates a better forecast performance than the FIMEM and the HAC-FIMEM.
Interestingly, the secondary liquid stock, NTRS, exhibits similar results regarding the
univariate models, HAC structure and forecast performance.

5.5 Aruba Networks, Inc.

The short and long run effects of the fitted univariate models are similar to those of
AAPL and thus not discussed here, see table (4). The first panel of figure (3) indicates
a nearly stable HAC-structure. Time points are present at which the structure sponta-
neously changes, but these events are of minor importance, since the changes are not
persistent. Reasons for these unexpected changes might be found in the news concern-
ing ARUN. For example, the stock’s rating were upgraded by two companies during a
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short period at the end of August and the beginning of September. RBC Capital Mar-
kets upgraded the rating from “sector perform” to “outperform” at the 2009-08-28 and
the analysts of Wedbush Morgan Securities Inc. from “neutral” to “outperform” at the
2009-09-09. These announcements were enhanced by the ratings of further institutions.2

The corresponding HAC for the whole period is given by s∗ = ((NoT HL)0.34 Vol)0.16.
The second panel shows the estimates of Kendall’s τ , which slightly vary over time,
but do not follow any trend. The identical dependence structure is found for all stocks
except AAPL and NTRS. The most important conclusion is, that the average trade size
provides more explanatory power for the price process, if the considered asset is liquid.

Figure (4) provides the p-values to evaluate the relative multiple-step forecast per-
formance indicating an inferior performance of the HAC-FIMEM. The black solid line
corresponds to the consistent p-values and the boundaries of the grey area refer to the
upper and the lower p-value, respectively. The three p-values are identical for unambigu-
ous results, which is the case for the upper panel and forecast horizon h ≥ 4. On closer
inspection, the HAC-FIMEM cannot be regarded as bad forecast alternative for these
horizons, since the distribution under the null hypothesis is affiliated with expectation
µ̂u1 = 0, which discards bad alternatives. In other words, the HAC-FIMEM performs
worse, but not much worse. In contrast, the black line is close to zero in the lower panel
from 14:15:00 to 16:00:00 and the centered p-value coincides with the lower p-value. At
first view, the HAC-FIMEM outperforms the FIMEM for these forecast horizons, since
the null hypothesis is rejected for small p-values. But the expectation of the distribu-
tion under the null equals µ̂l1 = µ̂c1 = d̄1 << 0 for these time points, which implies the
HAC-FIMEM performs better than a worse Benchmark.

2Jefferies & Company Inc. did not change the rating, but still advised to “buy” the stock at the
2009-08-28. See: http://www.finanzen.net/analysen/Aruba_Networks-Analysen
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6 Conclusions

This thesis is motivated by the demand for modelling multivariate positive valued pro-
cesses. The discussed estimation approach is based on a two-step procedure. Depending
on the decay of the estimated autocorrelation functions accurate univariate MEMs are
fitted to the individual processes, while the link to the multivariate model is imposed
by a Gumbel HAC, which is fitted to the residuals.

The empirical analysis involves three characterizing variables of ten stocks with a dif-
ferent CAP: the number of trades, the high-low-range and the average trade volume per
interval. Applying the time varying HAC to the estimated multivariate error process
indicates stable dependencies. The liquid stocks show a simple Archimedean structure,
whereas the medium and lower liquid stocks reveal the structure s = ((NoTHL)Vol).
Furthermore, the overall estimated copula parameters are similar and the results sup-
port the predictions of market microstructure theory. The forecasting survey does not
indicate that the benchmark is outperformed by the alternative.

In particular the forecasting survey provides room for improvements. For example,
instead of using a constant quantile as error term forecasts for the next trading day, the
copula itself can be forecasted to yield more precise predictions. To affirm the conjecture,
the proposed estimation procedure leads to similar results as one-step ML-estimation
of the VMEM remains for future research. There, the time varying HAC will play a
more important role, since the one-step ML-procedure can only be compared with the
two-step procedure, if the distribution is constant over time. From an empirical point
of view, it would be interesting to extend this method to higher-dimensional problems,
where standard approaches are difficult to apply or fail.
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Figures & Tables

1 Apple, Inc.

High-Low-Range Average Volume Number of Trades
Min 0.17 0.36 0.25
1st Quantile 0.67 0.80 0.75
Median 0.90 0.95 0.95
Mean 1.00 1.00 1.00
3rd Quantile 1.20 1.15 1.20
Max 8.26 4.56 2.73
SD 0.49 0.30 0.33
Kurtosis 16.17 8.07 0.77
χ2
LB30 13453 25861 59705

Table 1: Summary statistics of AAPL.

High-Low-Range Average Volume Number of Trades
ω 0.04 0.02 0.04
α −0.24 −0.09 0.08
β 0.35 0.71 −0.02
δ 0.43 0.41 0.44
Feasible Yes Yes Yes
AIC 16391 16419 16053
BIC 16505 16533 16167
χ2
LB10 6.83 11.85 14.43
χ2
LB20 19.52 25.47 30.79
χ2
LB30 27.21 39.84 47.43

Table 2: Estimated FIMEM-parameters of AAPL with sample size 8856.
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Figure 1: Results of the LCP-procedure of AAPL. The first panel shows changes in
the structure, the second the estimates of Kendall’s τ and the third variations of the
maximum-likelihood over the intervals of homogeneity, whose varying length is presented
in the lower panel.
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Figure 2: The panels show the estimated p-values of the SPA-test based on the 36
subsamples of AAPL. Every subsample contains 96 observations. The first panel is
related to NoT, the second to HL and the third to Vol. The boundaries of the grey area
correspond to the estimated upper and lower p-values, respectively.
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2 Aruba Networks, Inc.

High-Low-Range Average Volume Number of Trades
Min 0.00 0.02 0.03
1st Quantile 0.54 0.80 0.44
Median 0.86 0.79 0.78
Mean 1.00 1.00 1.01
3rd Quantile 1.34 1.18 1.32
Max 6.80 72.25 8.88
SD 0.78 1.29 0.82
Kurtosis 4.16 1625.13 6.68
χ2
LB30 4900 216 17805

Table 3: Summary statistics of ARUN.

High-Low-Range Average Volume Number of Trades
ω 0.07 0.04 0.12
α −0.08 −0.05 0.07
β 0.53 0.73 −0.26
δ 0.31 0.28 0.32
Feasible Yes Yes Yes
AIC 10686 10721 10226
BIC 10793 10828 10333
χ2
LB10 8.11 12.41 10.79
χ2
LB20 13.90 22.45 29.72
χ2
LB30 23.86 25.14 47.90

Table 4: Estimated FIMEM-parameters of ARUN with sample size 5904.
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Figure 3: Results of the LCP-procedure of ARUN. The first panel shows changes in
the structure, the second the estimates of Kendall’s τ and the third variations of the
maximum-likelihood over the intervals of homogeneity, whose varying length is presented
in the lower panel.
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Figure 4: The panels show the estimated p-values of the SPA-test based on the 24
subsamples of ARUN. Every subsample contains 96 observations. The first panel is
related to NoT, the second to HL and the third to Vol. The boundaries of the grey area
correspond to the estimated upper and lower p-values, respectively.
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3 The Hain Celestial Group, Inc.

High-Low-Range Average Volume Number of Trades
Min 0.00 0.02 0.04
1st Quantile 0.54 0.70 0.56
Median 0.89 0.90 0.86
Mean 1.00 1.00 1.00
3rd Quantile 1.30 1.30 1.26
Max 6.91 6.90 6.69
SD 0.64 0.64 0.65
Kurtosis 4.98 12.21 7.28
χ2
LB30 6657 6657 12409

Table 5: Summary statistics of HAIN.

High-Low-Range Average Volume Number of Trades
ω 0.05 0.10 0.07
α −0.12 −0.09 −0.02
β 0.35 0.32 0.06
δ 0.36 0.30 0.36
Feasible Yes Yes Yes
AIC 10146 10934 10204
BIC 10253 11041 10311
χ2
LB10 0.91 11.94 8.11
χ2
LB20 18.16 23.55 21.69
χ2
LB30 27.21 34.10 37.84

Table 6: Estimated FIMEM-parameters of HAIN with sample size 5904.
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Figure 5: Results of the LCP-procedure of HAIN. The first panel shows changes in
the structure, the second the estimates of Kendall’s τ and the third variations of the
maximum-likelihood over the intervals of homogeneity, whose varying length is presented
in the lower panel.
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Figure 6: The panels show the estimated p-values of the SPA-test based on the 24
subsamples of HAIN. Every subsample contains 96 observations. The first panel is
related to NoT, the second to HL and the third to Vol. The boundaries of the grey area
correspond to the estimated upper and lower p-values, respectively.
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4 Northern Trust Corporation

High-Low-Range Average Volume Number of Trades
Min 0.03 0.18 0.09
1st Quantile 0.43 0.76 0.63
Median 0.74 0.94 0.90
Mean 1.00 1.00 1.00
3rd Quantile 1.18 1.30 1.27
Max 7.90 4.03 5.26
SD 0.80 0.36 0.52
Kurtosis 4.68 4.32 3.15
χ2
LB30 78603 19208 65769

Table 7: Summary statistics of NTRS.

High-Low-Range Average Volume Number of Trades
ω 0.01 0.03 0.05
α −0.27 −0.13 0.02
β 0.57 0.59 −0.22
δ 0.50 0.41 0.43
Feasible Yes Yes Yes
AIC 13197 16537 15543
BIC 13311 16651 15657
χ2
LB10 8.07 3.15 11.88
χ2
LB20 26.51 14.95 20.83
χ2
LB30 36.96 24.50 33.57

Table 8: Estimated FIMEM-parameters of NTRS with sample size 8856.
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Figure 7: Results of the LCP-procedure of NTRS. The first panel shows changes in
the structure, the second the estimates of Kendall’s τ and the third variations of the
maximum-likelihood over the intervals of homogeneity, whose varying length is presented
in the lower panel.
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Figure 8: The panels show the estimated p-values of the SPA-test based on the 36
subsamples of NTRS. Every subsample contains 96 observations. The first panel is
related to NoT, the second to HL and the third to Vol. The boundaries of the grey area
correspond to the estimated upper and lower p-values, respectively.

56



5 Plexus Corp.
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High-Low-Range Average Volume Number of Trades
Min 0.00 0.01 0.04
1st Quantile 0.55 0.72 0.53
Median 0.88 0.90 0.84
Mean 1.00 1.00 1.01
3rd Quantile 1.29 1.15 1.29
Max 8.26 13.62 10.61
SD 0.66 0.53 0.73
Kurtosis 10.29 116.64 15.99
χ2
LB30 5394 1124 14107

Table 9: Summary statistics of PLXS.

High-Low-Range Average Volume Number of Trades
ω 0.08 0.10 0.07
α −0.12 0.01 −0.02
β 0.24 0.53 0.59
δ 0.35 0.30 0.42
Feasible Yes Yes Yes
AIC 10514 10943 10213
BIC 10620 11050 10320
χ2
LB10 10.94 10.98 8.47
χ2
LB20 23.37 17.96 18.02
χ2
LB30 39.35 21.17 35.30

Table 10: Estimated FIMEM-parameters of PLXS with sample size 5904.
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Figure 9: Results of the LCP-procedure of PLXS. The first panel shows changes in
the structure, the second the estimates of Kendall’s τ and the third variations of the
maximum-likelihood over the intervals of homogeneity, whose varying length is presented
in the lower panel.
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Figure 10: The panels show the estimated p-values of the SPA-test based on the 24
subsamples of PLXS. Every subsample contains 96 observations. The first panel is
related to NoT, the second to HL and the third to Vol. The boundaries of the grey area
correspond to the estimated upper and lower p-values, respectively.
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6 Perrigo Company

High-Low-Range Average Volume Number of Trades
Min 0.00 0.00 0.04
1st Quantile 0.52 0.74 0.59
Median 0.85 0.92 0.88
Mean 1.00 1.00 1.00
3rd Quantile 1.29 1.16 1.25
Max 17.53 13.08 11.64
SD 0.76 0.45 0.68
Kurtosis 51.99 68.47 43.04
χ2
LB30 19432 5068 34389

Table 11: Summary statistics of PRGO.

High-Low-Range Average Volume Number of Trades
ω 0.04 0.08 0.05
α −0.13 −0.13 0.01
β 0.61 0.28 0.30
δ 0.37 0.34 0.36
Feasible Yes Yes Yes
AIC 15540 16656 15427
BIC 15653 16769 15541
χ2
LB10 8.75 4.38 4.82
χ2
LB20 15.58 11.38 21.07
χ2
LB30 28.66 24.21 41.53

Table 12: Estimated FIMEM-parameters of PRGO with sample size 8856.
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Figure 11: Results of the LCP-procedure of PRGO. The first panel shows changes in
the structure, the second the estimates of Kendall’s τ and the third variations of the
maximum-likelihood over the intervals of homogeneity, whose varying length is presented
in the lower panel.
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Figure 12: The panels show the estimated p-values of the SPA-test based on the 36
subsamples of PRGO. Every subsample contains 96 observations. The first panel is
related to NoT, the second to HL and the third to Vol. The boundaries of the grey area
correspond to the estimated upper and lower p-values, respectively.
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7 Skyworks Solutions, Inc.

High-Low-Range Average Volume Number of Trades
Min 0.00 0.01 0.03
1st Quantile 0.59 0.74 0.60
Median 0.90 0.86 0.89
Mean 1.00 1.00 1.00
3rd Quantile 1.23 1.16 1.28
Max 5.80 25.64 7.75
SD 0.60 0.71 0.58
Kurtosis 2.86 279.52 6.55
χ2
LB30 8895 4766 23226

Table 13: Summary statistics of SWKS.

High-Low-Range Average Volume Number of Trades
ω 0.09 0.04 0.06
α −0.10 −0.12 −0.04
β 0.24 0.54 −0.04
δ 0.32 0.40 0.41
Feasible Yes Yes Yes
AIC 16615 16076 16186
BIC 16729 16190 16299
χ2
LB10 6.82 14.08 6.92
χ2
LB20 13.29 21.04 23.69
χ2
LB30 30.39 30.14 41.04

Table 14: Estimated FIMEM-parameters of SWKS with sample size 8856.
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Figure 13: Results of the LCP-procedure of SWKS. The first panel shows changes in
the structure, the second the estimates of Kendall’s τ and the third variations of the
maximum-likelihood over the intervals of homogeneity, whose varying length is presented
in the lower panel.
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Figure 14: The panels show the estimated p-values of the SPA-test based on the 36
subsamples of SWKS. Every subsample contains 96 observations. The first panel is
related to NoT, the second to HL and the third to Vol. The boundaries of the grey area
correspond to the estimated upper and lower p-values, respectively.
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8 TW Telecom, Inc.

High-Low-Range Average Volume Number of Trades
Min 0.00 0.00 0.03
1st Quantile 0.48 0.62 0.51
Median 0.84 0.85 0.85
Mean 1.00 1.00 1.00
3rd Quantile 1.37 1.19 1.32
Max 9.19 16.57 8.45
SD 0.73 0.69 0.69
Kurtosis 6.07 84.65 6.06
χ2
LB30 16474 3987 25011

Table 15: Summary statistics of TWTC.

High-Low-Range Average Volume Number of Trades
ω 0.03 0.04 0.02
α −0.17 −0.15 −0.08
β 0.58 0.63 0.73
δ 0.40 0.34 0.42
Feasible Yes Yes Yes
AIC 15209 16323 15032
BIC 15322 16436 15145
χ2
LB10 10.19 16.63 12.22
χ2
LB20 19.12 25.52 20.01
χ2
LB30 28.75 41.76 28.58

Table 16: Estimated FIMEM-parameters of TWTC with sample size 8856.
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Figure 15: Results of the LCP-procedure of TWTC. The first panel shows changes in
the structure, the second the estimates of Kendall’s τ and the third variations of the
maximum-likelihood over the intervals of homogeneity, whose varying length is presented
in the lower panel.
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Figure 16: The panels show the estimated p-values of the SPA-test based on the 36
subsamples of TWTC. Every subsample contains 96 observations. The first panel is
related to NoT, the second to HL and the third to Vol. The boundaries of the grey area
correspond to the estimated upper and lower p-values, respectively.
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9 Veeco Instruments Inc.

High-Low-Range Average Volume Number of Trades
Min 0.00 0.02 0.03
1st Quantile 0.40 0.577 0.47
Median 0.80 0.88 0.79
Mean 1.00 1.00 1.00
3rd Quantile 1.34 1.17 1.27
Max 13.17 13.68 15.20
SD 0.84 0.55 0.83
Kurtosis 14.67 69.71 34.06
χ2
LB30 16862 4157 18755

Table 17: Summary statistics of VECO.

High-Low-Range Average Volume Number of Trades
ω 0.03 0.09 0.09
α −0.15 −0.06 0.05
β 0.50 0.40 −0.19
δ 0.45 0.28 0.36
Feasible Yes Yes Yes
AIC 9927 10833 10058
BIC 10034 10940 10165
χ2
LB10 9.72 6.41 9.62
χ2
LB20 15.72 25.06 24.93
χ2
LB30 19.89 32.27 50.03

Table 18: Estimated FIMEM-parameters of VECO with sample size 5904.
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Figure 17: Results of the LCP-procedure of VECO. The first panel shows changes in
the structure, the second the estimates of Kendall’s τ and the third variations of the
maximum-likelihood over the intervals of homogeneity, whose varying length is presented
in the lower panel.
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Figure 18: The panels show the estimated p-values of the SPA-test based on the 24
subsamples of VECO. Every subsample contains 96 observations. The first panel is
related to NoT, the second to HL and the third to Vol. The boundaries of the grey area
correspond to the estimated upper and lower p-values, respectively.
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10 ViaSat, Inc.

High-Low-Range Average Volume Number of Trades
Min 0.00 0.01 0.07
1st Quantile 0.49 0.68 0.51
Median 0.87 0.89 0.82
Mean 1.00 1.00 1.00
3rd Quantile 1.16 1.17 1.28
Max 21.63 17.80 10.39
SD 0.76 0.56 0.78
Kurtosis 98.19 160.81 15.42
χ2
LB30 3843 769 5528

Table 19: Summary statistics of VSAT.

High-Low-Range Average Volume Number of Trades
ω 0.12 0.17 0.12
α −0.04 −0.08 0.04
β 0.18 0.21 0.04
δ 0.29 0.24 0.28
Feasible Yes Yes Yes
AIC 10242 10877 10415
BIC 10349 10984 10522
χ2
LB10 12.36 6.99 6.40
χ2
LB20 23.52 14.64 10.37
χ2
LB30 30.16 27.41 15.39

Table 20: Estimated FIMEM-parameters of VSAT with sample size 5904.
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Figure 19: Results of the LCP-procedure of VSAT. The first panel shows changes in
the structure, the second the estimates of Kendall’s τ and the third variations of the
maximum-likelihood over the intervals of homogeneity, whose varying length is presented
in the lower panel.
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Figure 20: The panels show the estimated p-values of the SPA-test based on the 24
subsamples of VSAT. Every subsample contains 96 observations. The first panel is
related to NoT, the second to HL and the third to Vol. The boundaries of the grey area
correspond to the estimated upper and lower p-values, respectively.
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