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Abstract

Shape morphometry is the quantitative analysis on the shape of geometric subjects,

usually human organs and other organism. As a field of mathematics, it consists of

surface reconstruction, surface processing, landmark extraction, surface registration

and shape analysis. In this thesis, we will focus on surface registration and landmark

extraction by using Riemannian geometry. A registration between surfaces is needed

for the one-one correspondence between them so that the local shape difference be-

tween specimens can be analysed. Conformal maps have been widely used as the

registration between surfaces. As conformal maps preserve angles, the local geometry

can be preserved well. However, the existence of a conformal map is not guaranteed

when landmark are required to be matched. Therefore, the quasi-conformal map,

which is a generalization of conformal maps, are usually used as a landmark-based

registration. We propose to apply the Quasi-conformal (QC) iteration developed in

[15] to find the landmark-matching registration between medical images. The Te-

ichmüller extremal maps (T-maps), which is the quasi-conformal map minimizing the

maximal conformality distortion among all diffeomorphism between the surfaces, can

be effectively computed by the QC iteration. For a landmark-based registration, the

landmark points, which are points of correspondence on each specimen that match

between and within populations, are needed to be extracted before the registration.

Automatic or semi-automatic algorithm is needed for large-scale experiment. In this

thesis, we will apply the QC algorithm to find registrations between some human

organs, and develop a semi-automatic landmark extraction algorithm on brainstem

surfaces.
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摘要: 

 形態計量學是幾何形狀的定量分析，對象通常是人體器官和其他生命體。作為一個數學領域，它包含表面重建，表面處理，地標提取，表面配準和形狀分析。在這篇論文中，我們將專注於通過使用形幾何來進行表面配準和地標提取。為分析樣本之間的局部形狀差異，我們需要表面之間的配準作為一一對應。共形映射已被廣泛用作表面之間的配準，由於共形映射保存角度，局部的幾何形狀可以保存完好。然而，當地標須配對時，我們不能保證一個形映射的存在。因此，擬共形映射，共形映射的一般化，會被用作於地標配對配準上。我們建議使用一個名為 Quasi-conformal（QC）的疊代法 [15]，來用於醫療圖像之間的地標配對配準。QC 疊代法可以有效地計算出
Teichmüller Extremal映射（T-map），此映射在所有配對地標的擬共形映射中擁有最小的共形失真。地標點是每個樣本和種群之間的對應點，他們都需要在基於地標的配準前提取。在進行大規模的實驗時，都需要自動或半自動的地標提取算法。在這篇論文中，我們將運用 QC疊代法找到一些人體器官之間的配準，並開發一種腦幹表面上的半自動地標提取算法。 



Acknowledgements

I would like to thank Professor Lui Lok Ming Ronald, my supervisor, for his

guidance and support during this research. Lam Ka Chun and Wen Chengfeng also

helped a lot on the research. I would also like to thank Lee Yin Tat for his brilliant

suggestions. Without them, this thesis would be a dream.

Next, I would also like to thank Leung Wing Tak, Chow Yat Tin , Yu Tang Fei and

Wang Shiping for their many helpful suggestion throughout my graduate studies.

Many thanks are also due to Choi Chi Po, Ng Tsz Ching, Cho Chi Lam, Yuen Man

Chun, Mak Tsz Fan, Lam Chi Yeung, Chan Chi Ming, Lam Wai Kit, Lam Yi Chun,

Lin Jessey, Wong Chun Yin, Mak Tsz Kin and many others for their many discussions.

Last but not least, I would also like to thank my parents for their endless support

and love throughout my life.

Tsang Man Ho

June 7, 2013

iv



Introduction

In the field of biology and physiology, shape morphometry is the quantitative analysis

on the shape of geometric subjects, usually human organs and other organism. It

includes the statistical analysis of shape variation among a species and the analysis of

shape change as a result of growth, experimental treatment, evolution or diseases [25].

Traditionally, the lengths, widths, masses, angles, ratios and areas are often analysed.

Landmark points are taken from the specimen and the distance between specific

landmark points are measured as data. Statistical analysis, such as the principal

component analysis (PCA) are done on the data collected. The drawback of the

traditional approach is that the length collected are usually highly correlated. Very

little information about the shape and size is collected [23]. In modern morphometry,

the 2- or 3-dimensional coordinates of the landmark and semilandmark points on the

specimen are collected as data. The spatial information and the geometry of the

specimen can then be analysed [29].

However, shape morphometry is a much wider topic in mathematics. It consists

of surface reconstruction (reconstruction of a surface from a set of point cloud taken

from medical images, such as MRIs), surface processing (including denoising, smooth-

ing, inpainting, mesh reconstruction, etc.), landmark extraction, surface registration

(finding the one-one correspondence between surfaces) and shape analysis (statistical
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analysis on the shape difference between surfaces, usually by comparing a shape in-

dex). In this thesis, we will focus on surface registration and landmark extraction by

using Riemannian geometry.

A registration is needed for the one-one correspondence between different speci-

mens. The registration methods can be divided into two types: landmark-based and

non-landmark-based. A non-landmark-based registration usually utilize geometric

structures, such as the curvature of a surface, as the reference for the registration. An

energy functional measuring the curvature mismatch, for example, can be constructed

for a surface registration problem and the diffeomorphism between the surfaces that

minimizes the energy functional can be used as the registration. On the other hand,

a landmark-based registration will map landmark points of a specimen to the corre-

sponding landmark points of another, or map the landmark points of different speci-

mens to the same spots on the parametric domain. An energy functional measuring

the landmark mismatch, for example, can be constructed for a landmark-matching

registration problem and the diffeomorphism between the surfaces that minimizes the

energy functional will be the landmark-matching registration. With the registration,

statistical analysis can be performed. An overview of different registration method

for medical images can be found in [22].

Conformal maps have been widely used for registration between two surfaces

[11, 8, 27, 9]. As conformal maps preserve angles, the local geometry can be preserved

well. Given two simply-connected surfaces, there exists a unique conformal map up

to a Mobiüs transform. However, if landmark matching are required, a conformal

map may not exist. Therefore, the quasi-conformal map, which is a generalization of

conformal maps, are usually used as a landmark-based registration between surfaces.
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We propose to apply the Quasi-conformal (QC) iteration developed in [15] to find the

landmark-matching registration between medical images. The Teichmüller extremal

maps (T-maps), which is the quasi-conformal map minimizing the maximal confor-

mality distortion among all diffeomorphism between the surfaces, can be effectively

computed by the QC iteration.

For a landmark-based registration, the landmark points are needed to be ex-

tracted before the registration. Landmarks are points of correspondence on each

specimen that match between and within populations. They are biologically homol-

ogous anatomical loci recognizable on all specimens in the study. Landmarks can be

defined both locally and globally, either anatomically or geometrically. Locally de-

fined landmark includes the intersection of different components of an organism and

the local minima and maxima of curvature of a surface. Globally defined landmarks

are usually the points that are furthest away, such as the two tips of a structure.

Semilandmarks are points along a curve, usually forming a curve joining the land-

marks. They are usually ridges, valleys or geodesics on a surface [1] [4] [28]. For

simplicity, we will call both the landmarks and semilandmark as landmarks in this

paper.

Landmark points can be extracted manually. It is accurate, but the process will

be very slow for a large-scale morphometry. Therefore developing an automatic or

semi-automatic method for landmark extraction is important. Automatic landmark

extraction is fast, but we have not much control on landmark extracted. The target

landmarks may not be extracted while the extracted curves may not be landmarks.

Therefore, we propose a semi-automatic landmark extraction algorithm, which re-

quires background knowledge on the specific surface to assign different parameters
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for each landmark. For each landmark, some times are needed to spend on assigning

the parameters, but the computation will be automatic and it can deal with any

number of specimens.

In this thesis, we will apply the QC iteration developed in [15] to find registrations

between some human organs, and develop a semi-automatic landmark extraction

algorithm on brainstem surfaces.

0.1 Previous Works

Surface registration, which aims at finding meaningful one-one correspondence be-

tween surfaces, has been studied extensively by different groups. Conformal surface

registration is widely used [11, 8, 27, 9]. For example, Hurdal et al. [11] proposed

to compute the conformal parametrization using circle packing and applied it to

human brain surface registration. Gu et al. [8, 27, 9] proposed to compute the con-

formal parametrization of Riemann surfaces for registration using harmonic energy

minimization and holomorphic 1-forms. Using conformal parametrization for surface

registrations is advantageous as they preserve local geometry well.

Sometimes, the deformations between surfaces may not be conformal. For ex-

ample, the normal growth of human brains may be conformal, but in case of some

diseases, the growth may be abnormal and the deformation may not be conformal.

There may not certain amounts of conformality distortion. Therefore, quasi-conformal

mappings are proposed as the smooth one-one correspondence with bounded confor-

mality distortion. Lui et al. [19] proposed to compute the quasi-conformal maps

between hippocampal surfaces which minimize curvature mismatch. The Beltrami

Holomorphic flow is used to obtain the optimal Beltrami coefficient associated to
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the registration [20]. Wei et al. [30] proposed to compute quasi-conformal map-

ping for feature matching face registration. The Beltrami coefficient associated to

the landmark matching parametrization is approximated. However, exact landmark

matching and bijectivity of the mapping cannot be guaranteed, especially when the

deformations is very large. In order to find the quasi-conformal maps from the associ-

ated Beltrami coefficient effectively, the Quasi-Yamabe method is introduced, which

applies the curvature flow method to compute the quasi-conformal maps [31]. The

algorithm can deal with surfaces with general topologies. The Linear Beltrami Solver

(LBS) is introduced in [15]. It can compute the quasi-conformal mapping from its

associated Beltrami coefficient more effectively.

Landmark-based diffeomorphisms are often used to compute, or adjust, cortical

surface parameterizations [7, 13]. For example, Glaunes et al. [7] proposed to generate

large deformation diffeomorphisms of the sphere onto itself, given the displacements

of a finite set of template landmarks. Leow et al. [13] proposed a level-set based

approach to match different types of features, including points and 2D or 3D curves

represented as implicit functions. These methods provide good registrations when

the corresponding landmark points on the surfaces can be labeled in advance. On

surfaces without well-defined landmarks, some authors have proposed driving features

into correspondence based on shape information. Lyttelton et al. [21] computed

surface parameterizations that match surface curvature. Fischl et al. [5] improved

the alignment of cortical folding patterns by minimizing the mean squared difference

between the average convexity across a set of subjects and that of the individual.

Lord et al. [14] matched surfaces by minimizing the deviation from isometry. Wang

et al. [26, 18] proposed to compute the optimized conformal parameterizations of
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brain surfaces by minimizing a compounded energy. The features of the surfaces are

aligned, but the landmarks are not exactly matched. Besides, the resultant mapping

may not be a diffeomorphism when the number of landmarks is large. Lui et al.

[16, 17] proposed to use vector fields to represent surface maps. The registrations

are reconstructed by the integral flow equations. A shape-based landmark matching

harmonic maps is obtained by looking for the best vector fields minimizing a shape

energy. The use of vector fields makes optimization easier, although it cannot describe

all surface maps. Landmarks are exactly matched by the resultant mapping. Zhang

et al. [32] parameterized brainstem surface conformally onto the quadrilaterally-faced

hexahedron by discrete Ricci flow method. Landmarks are exactly matched but the

mapping is not continuous at the landmarks. Lui et al. [15] proposed to use the

Teichmüller extremal maps (T-map) as the one-one correspondence between surfaces

while matching landmarks. T-map is a class of quasi-conformal maps, and the T-map

with minimal conformality distortion can be found iteratively by an iterative scheme

called the Quasi-conformal (QC) iteration. Large number of landmark constrains can

be enforced, and the bijectivity is ensured even with large deformation.



Chapter 1

Mathematical Backgrounds

1.1 Riemannian Manifold

Definition 1.1.1. A manifold is a topological space S covered by a set of open sets
{Uα}. A homeomorphism φα : Uα −→ R

n maps Uα to the Euclidean space R
n.

(Uα, φα) is called a coordinate chart of M , the set of all charts {(Uα, φα)} form the
atlas of M . Suppose Uα ∩ Uβ 6= ∅. Then

φαβ = φβ ◦ φ−1α : φα (Uα ∩ Uβ) −→ φβ (Uα ∩ Uβ)

is called a transition map.
If all transition functions φαβ are smooth, then the manifold is called a differential

manifold, or a smooth manifold. The atlas is a differential atlas. The maximal
differential atlas is called a differential structure.

Suppose M is a smooth manifold embedded in R
n, a curve on the manifold is a

map

γ : (−ε, ε) −→M.

Definition 1.1.2. A vector v ∈ R
n+1 is said to be tangent to M ⊂ R

n+1 at a point
p ∈M , if there exists a smooth curve γ with γ (0) = p and γ′ (0) = v.

The set TpM of all the vectors tangent to the manifold M ⊂ R
n+1 at the point p

is a vector space. It is called the tangent space. A tangent vector can be abstractly
defined without embedding as follows.

Definition 1.1.3. A tangent vector is represented by elements of Rn for each co-
ordinate chart transforming via differentials of a coordinate change at the reference

7
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point.
Mathematically, a tangent vector ξ at the point p is an n-tuple (ξ1, ξ2, · · · , ξn)

of real numbers associate to a coordinate chart (x1, x2, · · · , xn) at p, such that if
(

ξ̃1, ξ̃2, · · · , ξ̃n
)

is associated with another coordinate system (x̃1, x̃2, · · · , x̃n) , then

it satisfies the transition rule

ξ̃i =
n

∑

j=1

∂x̃i

∂xj
(p) ξj.

A smooth vector field ξ assigns a tangent vector for each point of M , it has a local
representation

ξ
(

x1, x2, · · · , xn
)

=
n

∑

i=1

ξi
(

x1, x2, · · · , xn
) ∂

∂xi

.

where
{

∂
∂xi

}

represents the vector fields associate with the iso-parametric curves of

M . They form a basis of all vector field.
Suppose φ : M −→ N is a differentiable map from M to N , γ : (−ε, ε) −→ M is

a curve, γ (0) = p, γ′ (0) = v ∈ TpM . Then φ ◦ γ is a curve on N , φ ◦ γ (0) = φ (p).
We define the tangent vector

φ∗ (v) = (φ ◦ γ)′ (0) ∈ Tφ(p)N,

as the push-forward tangent vector of v induced by φ.

Definition 1.1.4. The tangent space TpM is an n-dimensional vector space, its dual
space T ∗pM is called the cotangent space of M at p. Suppose ω ∈ T ∗pM . Then
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ω : TpM −→ R is a linear function defined on TpM , ω is called a differential 1-form
at p.

Similarly, we can define the differential 1-form field, it has the local representation

ω
(

x1, x2, · · · , xn
)

=
n

∑

i=1

ωi

(

x1, x2, · · · , xn
)

dxi

where {dxi} are the dual differential 1-forms to
{

∂
∂xj

}

, such that

dxi

(

∂

∂xj

)

= δij

where

δij =

{

1, i = j

0, i 6= j
.

Definition 1.1.5. A tensor Θ of type (n,m) on a manifold M is a correspondence
that associates to each point p ∈M a multi-linear map

Θp : TpM × TpM × · · · × TpM × T ∗pM × · · · × T ∗pM −→ R,

where the tangent space TpM appears m times and the cotangent space T ∗pM appears
n times.

Definition 1.1.6. A Riemannian manifold (M, g) is a smooth manifold M equipped
with a Riemannian metric g. A Riemannian metric on M is a family of positive
definite inner products gp : TpM ×TpM −→ R, p ∈M , such that for all differentiable
vector fields X,Y on M , p 7→ gp (X (p) , Y (p)) defines a smooth function M −→ R.

The Riemannian metric is a symmetric (0, 2)-tensor that is positive definite, i.e.
g (X,X) > 0 for all X 6= 0. Under the local coordinate system

{

∂
∂xj

}

, the metric
tensor can be expressed locally at p ∈M as

gij (p) = gp

((

∂

∂xi

)

,

(

∂

∂xj

))

.

Equivalently, the metric tensor can be written in terms of the dual basis {dx1, · · · , dxn}
of the cotangent bundle as

g =
∑

i,j

gijdx
i ⊗ dxj.

Definition 1.1.7. Suppose φ : M −→ N is a differential map and (N, g) is a Rie-
mannian manifold. The pullback metric φ∗g is a (0, 2)-tensor defined as
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φ∗g (v, w) = g (φ∗ (v) , φ∗ (w))

for v, w ∈ TpM , where φ∗ (v) is the push-forward of v by φ. [10]

1.2 Conformal Mapping

Definition 1.2.1. Let u : D → R be a real-valued function defined on a domain
D ⊂ C. If u ∈ C2 (D) and

∆u (z) =
∂2u (z)

∂x2
+

∂2u (z)

∂y2
= 0

for all z ∈ D, then u is called a harmonic function. ∆ is called the Laplace operator.

We denote

dz = dx+ idy

dz̄ = dx− idy

∂

∂z
=
1

2

(

∂

∂x
− i

∂

∂y

)

∂

∂z̄
=
1

2

(

∂

∂x
+ i

∂

∂y

)

The Laplace operator can be expressed as

∆ = 4
∂2

∂z∂z̄

Definition 1.2.2. A function f : C→ C, f (x+ iy) = u+ iv is called a holomorphic
function if it satisfies the Cauchy-Riemann equation:

∂u

∂x
=

∂v

∂y
∂u

∂y
= −∂v

∂x
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As a consequence, if a function f is holomorphic, then

∂f

∂z̄
= 0

and both u and v are harmonic.
A function f : D → C is called biholomorphic if it is bijective and its inverse f−1

is holomorphic.

Definition 1.2.3. A Riemann Surface represents a two-dimensional manifoldM with
an atlas {(Uα, zα)}, such that

1. {Uα} is an open covering, i.e. M ⊂ ⋃

Uα,

2. zα : Uα → C is a homeomorphism from an open set Uα ⊂ M to an open set
zα (Uα) ⊂ C, and

3. If Uα ∩ Uβ 6= ∅, then

zβ ◦ z−1α : zα (Uα ∩ Uβ)→ zβ (Uα ∩ Uβ)

is biholomorphic.

Definition 1.2.4. Let M and M̃ be two Riemann surfaces. A mapping f : M → M̃
is called a conformal mapping, if for any p ∈ M, p̃ = f (p) ∈ M̃ , and for any local

parameter charts (U, φ) and
(

Ũ , φ̃
)

, z = φ (p), z̃ = φ̃ (p̃), then

z̃ = φ̃ ◦ f ◦ φ−1 (z)
is holomorphic in U .

Theorem 1.2.1. Let f : C→ C be a holomorphic function and w = f (z). Then

dw =
∂f (z)

∂z
dz +

∂f (z)

∂z̄
dz̄

=
∂f (z)

∂z
dz

as ∂f(z)
∂z̄

= 0. Therefore

dw2 = dwdw̄ =

∣

∣

∣

∣

∂f (z)

∂z

∣

∣

∣

∣

2

dzdz̄ = λ
(

dz2
)
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which implies that the pull back metric dw2 induced by f is equal to the original metric

up to a scaling factor λ =
∣

∣

∣

∂f(z)
dz

∣

∣

∣

2

, which is also called the conformal factor, and thus a

holomorphic function between planar domains preserves angles. Similarly, conformal
mappings between Riemann surfaces with metrics also preserve angles.

Theorem 1.2.2. (Riemann Mapping Theorem) Let D ⊂ C be a simply-connected
domain in the complex plane, with an interior point z0 ∈ D. There exists a unique
conformal mapping φ from domain D to the unit disk ∆, such that φ (z0) = 0 and
φ′ (z0) > 0

There are several ways to find the conformal map, which will be briefly explained

below:

For a topological disk D, a conformal map u : D −→ Ω ⊂ R
2 can be computed

by minimizing the harmonic energy.

Definition 1.2.5. (Harmonic Energy) Let (M, g), (N, h) be Riemann surfaces
with metrics g and h respectively, and u : M −→ N is continuously differentiable.
We denote the metrics as

ds2M =
∑

gαβ (x) dx
αdxβ, ds2N =

∑

hij (u (x)) du
iduj.

The pull-back metric of h, u∗ (ds2N) is defined as

u∗
(

ds2N
)

=
∑

α,β

(

∑

i,j

hij (u (x))
∂ui

∂xα

∂uj

∂xβ

)

dxαdxβ.

The trace of the pull-back metric is called the energy density. It can be represented
in the local coordinate system as

|du|2 = Trg (u
∗h) =

∑

i,j,α,β

gαβhij
∂ui

∂xα

∂uj

∂xβ
.

where
∑

j g
ijgjk = δik.

The harmonic energy is defined as

E (u) =

∫

M

|du|2 dVM

where dVM =
√
det gdx is the area element of M . The critical points of E in the

space of maps are called the harmonic maps.
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If the target surface N is embedded in R
3 and h is the Euclidean metric, the

harmonic energy can be simplified as

E (u) =
3

∑

i=1

∫

M

∣

∣∇ui
∣

∣

2
dVM .

Definition 1.2.6. (Harmonic Map Equation) The Euler-Lagrange equation of
the harmonic energy is called the Harmonic Map Equation. It can be expressed in
the local coordinates on N as

∆ui +
∑

α,β,j,k

gαβΓi
jk (u (x))

∂uj

∂xα

∂uk

∂xβ
, i = 1, 2

where Γi
jk is the Christoffel symbols of N .

By solving the harmonic map equation, a harmonic map can be found.

Theorem 1.2.3. (Radó’s Theorem) Assume Ω ⊂ R
2 is a convex domain with a

smooth boundary ∂Ω and D is a topological disk with a Riemannian metric g. Given
any homeomorphism φ : S1 −→ ∂Ω, there exists a unique harmonic map u : D −→ Ω,
such that u = φ on ∂D = S

1 and u is a diffeomorphism.

A conformal map can be computed by minimizing the harmonic energy E over all

orientation preserving diffeomorphism from D to Ω. Please refer to [8] for the details

of the algorithm.

For a Riemann surface with genus ≥ 1, a conformal map can be found by the

holomorphic 1-form.

Definition 1.2.7. Let M be a Riemann surface with conformal atlas {(Uα, φα)}.
For each local coordinate zα = φα (p), two smooth complex functions fα and gα are
assigned,

fαdzα + gαdz̄α

is a complex differential 1-form if it is invariant under coordinate changes, i.e. if
Uα ∩ Uβ 6= ∅, then

fαdzα + gαdz̄α = fβdzβ + gβdz̄β

where zα = φα ◦ φ−1β (zβ).
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Definition 1.2.8. (Holomorphic 1-form) Suppose M is a Riemann surface with
conformal atlas and ω is a complex differential 1-form. If on every local coordinate,
ω has the representation

ω = fdz,

where f is a holomorphic function, then ω is called a holomorphic 1-form. For a genus
g closed surface, all holomorphic 1-forms form a 2g real dimensional linear space.

A point p ∈ M is called a zero point of a holomorphic 1-form ω if for any local
parametric representation ω = f (uα) dzα, f |p = 0. According to the Riemann-Roch
theorem, there are, in general, 2g−2 zero points for a holomorphic 1-form on a surface
of genus g.

A holomorphic 1-form ω can be visualized by a texture map f : M −→ C, which
can be computed by integrating the holomorphic 1-form on the local parametric
domain. A curve that is mapped to a horizontal line on the complex plane by f is
called a horizontal trajectory, while a curve that is mapped to a vertical line is called
a vertical trajectory. The horizontal and vertical trajectories that connect the zero
points or a zero point and the boundary is called critical trajectories, which segment
the surfaces into patches that are either topological disks or topological cylinders. A
conformal mapping can then be easily found. Please refer to [27, 9] for the details of
the algorithm.

Ricci flow is also a widely-used method for conformal mapping, which deforms the

Riemannian metric of a surface conformally by its curvature.

Definition 1.2.9. (Ricci Flow) Suppose M is a smooth surface with a Riemannian
metric g = (gij). The Ricci flow deforms the metric g (t) conformally according to
the Gaussian curvature K (t) by

∂gij (t)

dt
= −2K (t) gij (t)

If the Riemannian metric is represented in the form g (t) = e2u(t)g (0), then the
Ricci flow can be written as

∂u (t)

∂t
= −2K (t) .

It can be modified to

∂u

∂t
= −2

(

K̄ −K
)

so that the resultant metric will have the target curvature K̄.
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The algorithm for discrete Ricci flow is detailed in [3, 12].

1.3 Quasi-conformal Mapping

Definition 1.3.1. A diffeomorphism f : D1 → D2 is called a quasi-conformal map-
ping if and only if f is the solution to the Beltrami equation:

∂f

∂z̄
= µ (z)

∂f

∂z

for some complex-valued function µ with ‖µ (z)‖∞ < 1. If µ (z) = 0, then the Beltrami
equation becomes the Cauchy-Riemann equation, and the mapping is conformal. µ
is called the Beltrami coefficient of f , and is usually denoted as µf .

K [f ] =
1 + ‖µf‖∞
1− ‖µf‖∞

is called the maximal dilation of f .
In the local parameter domain around a point p, the diffeomorphism f can be

approximated with respect to the local parameter by f (z) = f (p)+fz (p) z+fz̄ (p) z̄ =
f (p) + fz (p) (z + µ (p) z̄). It can be viewed as a translation to f (p), together with
a stretch map S (z) = z + µ (p) z̄ multiplied by fz (p). The translation and the
scalar multiplication is conformal, so the conformality distortion of f (z) is due to
S (z). The map S (z) will stretch an infinitesimal circle to an infinitesimal ellipses,
and the axis and magnitude of the maximal magnification and maximal shrinkage
can be determined by µ (p). The angle of the maximal magnification direction is
arg (µ (p)) /2 with magnitude 1 + |µ (p)|, while the axis of maximal shrinkage is the
orthogonal direction (arg (µ (p)) − π)/2 with magnitude 1 − |µ (p)|. Therefore, the
Beltrami coefficient µ contains all the information about the map. See figure 1.1 for
an illustration.

Theorem 1.3.1. (Riemann Mapping Theorem for Quasi-conformal Map-
ping) Let D be a simply-connected domain in C and µ (z) : D → C be a complex-
valued function with ‖µ (z)‖∞ < 1. Then there exists a quasi-conformal mapping
g : D → ∆ whose Beltrami coefficient is equal to µ.

The theorem states that there is a one-one correspondence between the space

of quasi-conformal mappings and the space of Beltrami coefficient. We can recon-

struct the quasi-conformal map from the associated Beltrami coefficient by solving

the Beltrami equation.
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Figure 1.1: (A) shows a face mesh with the circle packing. (B) shows the conformal
map from the face to a unit disk. The small circles on the face are mapped to small
circles on the unit disk. (C) shows the quasi-conformal map. The small circles are
mapped to small ellipses on the unit disk. (D) illustrates the effect of the Beltrami
coefficient on the conformality distortion.

The Beltrami holomorphic flow is one of the method for computing the quasi-

conformal maps from Beltrami coefficients.

Theorem 1.3.2. (Beltrami Holomorphic Flow) There is a one-one correspon-
dence between the set of all quasi-conformal mapping of the unit sphere S2 = C̄ that fix
the points 0, 1 and ∞ and the set of all smooth complex-valued function µ on S

2 such
that ‖µ‖∞ < 1. The solution fµ of the Beltrami equation depends holomorphically on
µ.

Let {µ (t)} be a family of Beltrami coefficient with t as a parameter, and that µ
can be written as

µ (t) (z) = µ (z) + tν (z) + tε (t) (z)

for all z ∈ C, where µ ∈ C∞ (C) and ν, ε (t) ∈ L∞ (C) with ‖ε (t)‖∞ → 0 as t → 0.
Then for all w ∈ C, we have

fµ(t) (w) = fµ (w) + tV (fµ, ν) (w) + o (|t|)
on C as t→ 0, where

V (fµ, ν) (w) = −fµ (w) (fµ (w)− 1)

π

∫

C

ν (z) ((fµ)z (z))
2

fµ (z) (fµ (z)− 1) (fµ (z)− fµ (w))
dxdy.

It gives us the variation of fµ under the variation of µ explicitly.
Given the target µ, we can then flow the initial map f0, usually the identity map,

iteratively to fµ by

fk+1 = fk + V
(

fk,
µ

N

)

, k = 0, 1, · · · , N − 1
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where N is the number of iterations.

The fixed points can be arbitrarily chosen. Given a quasi-conformal map f :

S
2 −→ S

2, and three points a, b, c ∈ S
2, we can find the unique Möbius transformations

φ1, φ2 : S
2 −→ S

2 such that φ1 (a) = 0, φ1 (b) = 1, φ1 (c) = ∞ and φ2 (f (a)) = 0,

φ2 (f (b)) = 1, φ2 (f (c)) =∞. Then the composition map f̃ = φ2 ◦ f ◦φ−11 is a quasi-

conformal map fixing the points 0, 1 and∞. Thus, with the given Beltrami coefficient

µ and a three points correspondence, we can reconstruct the quasi-conformal map by

the Beltrami holomorphic flow.

The Beltrami holomorphic flow can be extended to the unit disk D, where there is

a one-one correspondence between the set of all quasi-conformal mappings with points

0 and 1 fixed and the set of Beltrami coefficient, with the variation of fµ changed to

V (fµ, ν) (w) = −fµ (w) (fµ (w)− 1)

π
(

∫

D

ν (z) ((fµ)z (z))
2

fµ (z) (fµ (z)− 1) (fµ (z)− fµ (w))
dxdy

+

∫

D

ν (z)((fµ)z (z))
2

fµ (z)
(

1− fµ (z)
)(

1− fµ (z)fµ (w)
)dxdy



 .

For details about the Beltrami holomorphic flow, please refer to [20].

The reconstruction of the quasi-conformal maps from the Beltrami coefficient can

also be done by the Linear Beltrami Solver (LBS), which is developed in [15]. The

basis idea is to discretize and approximate the Beltrami equation to a linear system,

which is symmetric positive definite. The quasi-conformal map corresponding to the

given Beltrami coefficient can be computed by solving the linear system. Landmark

constrains can also be added to the linear system, and the linear Beltrami solver will
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look for the best quasi-conformal mapping whose Beltrami coefficient is closest to the

target one.

Definition 1.3.2. Under a boundary condition, a quasi-conformal map f : D1 → D2

is called extremal if it satisfies

K [f ] ≤ K [g]

for all quasi-conformal map g : D1 → D2 with the same boundary condition. It gives
the least conformality distortion among all such mapping.

Definition 1.3.3. Let f : D1 → D2 be a quasi-conformal map with Beltrami co-
efficient µ. f is said to be a Teichmüller map if there exist holomorphic function
ϕ : D1 → C such that

µ = k
ϕ̄

|ϕ|
for some constant k < 1. Therefore, the norm of the Beltrami coefficient of a Te-
ichmüller map is constant, ie. |µ (v)| = k for all v ∈ R1.

Teichmüller map is closely related to extremal map between simply connected

surfaces. Under suitable boundary condition, an extremal map is a Teichmüller map.

Therefore, by searching for a Teichmüller map with minimum norm, we can obtain

an extremal map. [10, 6]

1.4 Laplace-Beltrami operator

Definition 1.4.1. Let f be a real-valued function defined on a Riemannian surface,
the Laplace-Beltrami operator is defined by ∆f = div(grad(f)). In the discrete case
with triangular mesh T with vertices V = {pi : i = 1, . . . , n}, functions are usually
approximated by piece-wise linear functions. The function value of a point on a face
is defined by linearly interpolating the value f (pi) for vertices pi of the face. The
discrete Laplace-Beltrami operator is expressed as

(∆f) (pi) =
∑

j∈N(i)

wij [f (pj)− f (pi)]

where N(i) is the neighborhood of the vertex pi, i.e. the vertices that are connected
to vertex pi by an edge, and wij is the weight defined on the edge pipj. The edge
weight is determined by the cotangent formula
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Figure 1.2:

wij =

{

cotα if pipjis on the boundary
cotα+cotβ

2
otherwise

where α (and β) is the angle(s) against the edge pipj, see figure 1.2.

The eigenfunctions of the discrete Laplace-Beltrami operator have some good

properties regarding the global shape of the surface. We will rearrange the eigen-

functions according to the ascending order of the absolute value of the corresponding

eigenvalues. The eigenfunction with the smallest eigenvalue is a constant function

with eigenvalue zero and contains no information. The first non-trivial eigenfunction

with smallest eigenvalue, also called the Fiedler vector, describes the longitudinal

extension of the shape. For a snake-like structure, the Fiedler vector will attain its

minimum value at one tip. The function will then increase following the shape and

attain its maximum value at the other tip. The second and third non-trivial eigen-

functions share similar properties as the Fiedler vector, as they also increase from

one end to another, but along the other two dimensions. Figure 1.3, showing the first

three non-trivial eigenfunctions of a brainstem surface, illustrates this property.

When the surfaces are of similar shape and structure, such as the surfaces of a hu-

man organ of different people, the corresponding eigenfunctions will behave similarly.
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Figure 1.3: (a), (b) and (c) show the first three non-trivial eigenfunctions of a brain-
stem surface respectively. The first eigenfunction increases from bottom to top as
shown in (a). The second eigenfunction increases from left to right as shown in (b).
The third eigenfunction increases from back to front as shown in (c).
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Figure 1.4: The first eigenfunction and the corresponding eigenloops of three different
brainstem are plotted on the surfaces.

Figure 1.4 shows the first eigenfunction of three different brainstem surfaces, with the

function value normalized to [0, 1]. Nine eigenloops, which are loops joined by points

with the same function value, are drawn on each brainstem surface in figure 1.4. The

eigenloops are choosen to be with function values 0.1, 0.2, . . . , 0.9. We can see that

the corresponding eigenloops of different brainstem surface are located at the same

region of the brainstem. The eigenloops of the second and third eigenfunction are

shown in figure 1.5 and 1.6 respectively, and the same properties can be observed.

With the above mentioned properties, we propose to use the first three non-trivial

eigenfunction of the Laplace-Beltrami operator as a reference to different regions of

the brainstem surface.

Definition 1.4.2. The discrete Laplace-Beltrami operator can be expressed in matrix
form ∆f = L × f (V ), where f (V ) is a column vector with the value f (pi) in the
i-th entry, and the matrix L is given by
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Figure 1.5: The second eigenfunction and the corresponding eigenloops of three dif-
ferent brainstem are plotted on the surfaces.

Figure 1.6: The third eigenfunction and the corresponding eigenloops of three different
brainstem are plotted on the surfaces.
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Lij =















wij if pipj is an edge

− ∑

k∈N(i)

wik if i = j

0 otherwise

The problem of finding eigenfunctions of Laplace-Beltrami operator is equivalent

to finding eigenvectors of the matrix L. In this paper, we solve the eigenvectors by

the built-in function of MATLAB. [24]



Chapter 2

Quasi-conformal Mapping For

Medical Surface Registration

2.1 Introduction

In morphometry, when comparing two surfaces, we always want to find a one-one

correspondence between the surfaces. There are two different types of registration:

landmark-based and non-landmark-based. We will focus on landmark-based registra-

tion is this paper. A good landmark-based registration should be smooth and match

the landmark points exactly, while the conformality distortion of the maps should be

small. We proposed to apply the Quasi-conformal (QC) iteration developed in [15]

to compute the Teichmüller extremal maps (T-map) on medical surfaces.

2.2 Quasi-conformal (QC) iteration

Recall that there is a one-one correspondence between quasi-conformal maps and Bel-

trami coefficient, and with the Linear Beltrami Solver (LBS) developed in [15], we can

reconstruct the diffeomorphism from the associate Beltrami coefficient effectively by

24
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solving a linear system. The space of Beltrami coefficient is easier to be manipulated

than the space of quasi-conformal mappings. Therefore, Lui et. al. [15] proposed to

find the Teichmüller map by finding the optimal Beltrami coefficient that minimize an

energy functional measuring the conformality distortion. The Teichmüller extremal

map is then reconstructed from the optimal Beltrami coefficient by LBS.

2.2.1 Computing Beltrami coefficient

Given the triangular mesh (V, F ) of a domain D ⊂ C, and the diffeomorphism f =

(f1, f2) : D −→ C, we would like to compute the Beltrami coefficient of f on each

face of D. The Beltrami equation ∂f
∂z̄
= µf

∂f
∂z

can be explicitly written as

µf =

((

∂f1
∂x

− ∂f2
∂y

)

+ i

(

∂f2
∂x

+
∂f1
∂y

))

/

((

∂f1
∂x

+
∂f2
∂y

)

+ i

(

∂f2
∂x

− ∂f1
∂y

))

,

where the partial derivatives ∂fi
∂x

and ∂fi
∂y

on a face T can be found by solving the

gradient ∇Tfi =
(

∂fi
∂x

, ∂fi
∂y

)T

:

(

v1 − v0

v2 − v0

)

∇Tfi =





fi(v1)−fi(v0)
|v1−v0|

fi(v2)−fi(v0)
|v2−v0|



 ,

where v0, v1 and v2 are the three vertices of T . Then the Beltrami coefficient on each

face can be found.

2.2.2 Main algorithm

Given the triangular mesh (V, F ) of a domain D1 ⊂ C, a domain D2 ⊂ C of the same

topology, and the boundary condition g : ∂D1 → ∂D2, we would like to compute
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the Teichmüller extremal mapping f : D1 → D2 such that f |∂D1
= g with minimum

conformality distortion.

Finding a Teichmüller map is equivalent to finding a function f : D1 → D2 that

satisfies

∂f

∂z̄
= k

ϕ̄

|ϕ|
∂f

∂z
, f |∂D1

= g

for some constant k and holomorphic function ϕ : D1 → C. A Teichmüller map f is

called extremal if the infinite norm of the Beltrami coefficient associated is minimum

among all Teichmüller maps with the same boundary constrain, i.e. for all h : D1 →

D2, satisfying h|∂D1
= g, we have

‖µ (f)‖∞ ≤ ‖µ (h)‖∞ .

The Teichmüller extremal mapping can be formulated as the following optimiza-

tion problem:

min
f
‖µ (f)‖∞ + ‖∇ |µ (f)|‖22

subject to f |∂D1
= g. The first term of the energy functional is measuring the maximal

conformality distortion, while the second term measures the smoothness of |µ (f)|.

For a Teichmüller extremal map, the first term of the energy functional is minimized,

while the second term will be zero, as the norm of the Beltrami coefficient is constant.

Therefore, the minimizer of the energy functional is the Teichmüller extremal map.

Since there is a one-one correspondence between the set of quasi-conformal map-

pings and the set of Beltrami coefficient, the optimization problem is equivalent to
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min
ν
‖ν‖∞ + ‖∇ |ν|‖22

subject to ν = µ (f), ‖ν‖∞ < 1, and f |∂D1
= g.

The advantage of minimizing the energy functional with respect to the Beltrami

coefficient instead of the mapping is that the diffeomorphic property can be controlled

easier. The mapping is guaranteed to be diffeomorphic if the norm of the Beltrami

coefficient is less than 1. Therefore, by enforcing that ‖ν‖∞ < 1, the map f ν must

be a diffeomorphism.

In order to find the Teichmüller extremal map, the Beltrami coefficient is itera-

tively modified through an iterative scheme called the Quasi-conformal (QC) iteration.

An initial map f0 is constructed by the Linear Beltrami Solver (LBS) with the

boundary constrain g and the target Beltrami coefficient µ0 = 0. As boundary

constrains are enforced, the mapping found may not be conformal, i.e. µ(f0) 6= 0.

LBS simply find the best quasi-conformal map whose Beltrami coefficient is closest

to the desire one. Secondly, the Beltrami coefficient of f0 is computed and denoted

as ν0. Thridly, we apply the Laplace smoothing L, defined by

L (ν (v)) =

∑

u∈N(v) ν (u)
∑

u∈N(v) 1

where N (v) is the neighborhood of face v, on ν0 to get µ̃1, which replaces the value of

each face by the average value of the neighboring faces. Then, we apply an averaging

A, defined by

A (µ (v)) =
µ (v)

∑

u∈F |µ (u)|
|µ (v)|∑u∈F 1
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on µ̃0 to obtain µ1, where the norm of the complex-valued µ1 is re-scaled to the

average of the norm of µ̃0. The Laplace smoothing aims at lowering the norm of the

Beltrami coefficient, which correspond to the first term of the energy functional, while

the averaging aims at minimizing the second term of the energy functional, ensuring

the Beltrami coefficient to be of Teichmüller type. The next mapping f1 is then

computed by LBS with the boundary constrain and the target Beltrami coefficient

set to be µ1. These steps are repeated until the Beltrami coefficient converges. The

resultant fn will be the Teichmüller map, and its Beltrami coefficient νn will be the

smallest among all quasi-conformal maps satisfying the boundary conditions. The

algorithm is summarized in algorithm 1.

Algorithm 1 Quasi-conformal iteration

Input: Triangular meshes (V, F ) and the boundary constrains g
Output: Teichmüller extremal map f and the corresponding Beltrami coefficient ν

1: Compute the initial mapping f0 = LBS(µ0 := 0, g)
2: Set ν0 = µ(f0)
3: while ||νn − νn−1|| ≥ ε do
4: Set µn+1 = A(L(νn))
5: Set fn+1 = LBS(µn+1, g)
6: Set νn+1 = µ(fn+1)
7: end while

8: return fn, νn

Additional landmark constrains can be added to the algorithm as the Linear Bel-

trami Solver can tackle with lots of landmarks even with large deformation. See [15]

for more details about the Linear Beltrami Solver and the QC iteration.
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2.3 Experimental result and conclusion

In this paper we applied the QC iteration to find the Teichmüller extremal map (T-

map) between brainstem surfaces and teeth surfaces taken from MRI. Landmarks are

manually taken from the surfaces.

2.3.1 Brainstem

The brainstem is a part of the human brain. It is a key organ in the body balance con-

trol system and plays an important role in the regulation of cardiac and respiratory

function. It may also contribute to the Adolescent Idiopathic Scoliosis (AIS). There-

fore, we would like to find a one-one corresponding registration between brainstem

surfaces in order to detect the local shape difference.

Landmark points are drawn on three brainstem surfaces manually, as shown in

figure 2.1, 2.2 and 2.3 respectively.

As the bottom part of a brainstem surface contains not much information, it is

removed from the surface. The open surface is then mapped to the unit disk by

conformal mapping. This process is shown in figure 2.4. The mean curvature of the

brainstem surface is calculated. It is then plotted on the surfaces and disk as texture,

with color red representing positive mean curvature and blue representing negative

mean curvature. The red dots are the landmark points.

With the brainstem surfaces and corresponding landmark points mapped to unit

disk, we applied the QC iteration to find the Teichmüller maps from brainstem surface

A to B, and from A to C.

For simplicity, we further pick 4 landmark points on the boundary of each unit
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Figure 2.1: The landmark points are plotted on brainstem surface A as red dots.

Figure 2.2: The landmark points are plotted on brainstem surface B as red dots.
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Figure 2.3: The landmark points are plotted on brainstem surface C as red dots.

Figure 2.4: The bottom part of the brainstem surface B is removed and then mapped
to the unit disk. The mean curvature is plotted to better visualize the mapping.
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Figure 2.5: The three brainstem surfaces A, B and C are mapped to squares. The
mean curvature and landmark points are plotted on each square as texture and red
dots respectively.

disk and map them to a square with the 4 landmark points as corners. Figure 2.5

shows the brainstem surfaces mapped to squares, with mean curvature as texture and

landmark points plotted on the squares

Figure 2.6 shows the Teichmüller extremal map from A to B found by the QC

iteration. (a) shows the mesh grid and landmark points of A mapped by the T-map,

while (b) shows the original mesh grid and landmark points of B. It can be shown

that the landmark points of A are mapped exactly to the landmark points of B. The

histogram in (c) shows that the norm of the Beltrami coefficient is concentrated in

one value, and all values are less than 1, which indicate that it is a Teichmüller map

and there is no overlapping in the mapping.

Figure 2.7 shows the diffeomorphism found by the QC iteration from brainstem

surface A to C. The histogram shows that the norm of the Beltrami coefficient is

concentrated in one value, which indicate that it is a Teichmüller map. There is no

overlapping.

By linear interpretation, we can reconstruct the brainstem surfaces from the square
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Figure 2.6: Teichmüller extremal map from brainstem A to B. (a) shows the mesh
grid and landmark points of A mapped by the T-map. (b) shows the original mesh
grid and landmark points of B. (c) shows the histogram of the norm of the Beltrami
coefficient of the map.

Figure 2.7: Teichmüller extremal map from brainstem A to C. (a) shows the mesh
grid and landmark points of A mapped by the T-map. (b) shows the original mesh
grid and landmark points of C. (c) shows the histogram of the norm of the Beltrami
coefficient of the map.
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Figure 2.8: (A) shows the original brainstem surface A. (B) and (C) show the recon-
structed brainstem surface from the Teichmüller maps from A, by the QC iteration.
The red dots are the landmark points.

mesh. The resultant meshes will have the same number of vertices and the same

connection between vertices. The one-one correspondence between the brainstem

surfaces can then be achieved. Figure 2.8 show the reconstructed brainstem surfaces

B and C, along with the original brainstem surface A. It can be observed that the

structure of the triangular mesh are the same.

2.3.2 Teeth

Tooth A and tooth B are two molars of the same position taken from two different

people. The triangular meshes are taken from the crown of the two teeth. Land-

mark points, such as the cusps, ridges and valleys, are manually located on the teeth

surfaces. 4 points are taken from the boundary of the teeth surfaces, and the teeth

surfaces are then mapped conformally to a square, with those 4 points as the corners.
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Figure 2.9: The upper images are the teeth surfaces taken from tooth A and B. The
lower images are the square meshes mapped conformally from the teeth surfaces.
Landmark points are plotted on the surfaces as red dots. Mean curvature of the teeth
surfaces are plotted on the meshes as texture.

Figure 2.9 shows the teeth surfaces A and B, and the square meshes mapped

by conformal maps. Landmarks points are plotted on the meshes as red dots, and

the mean curvature of the teeth surfaces are plotted on the meshes as texture, with

color red indicating region of positive curvature and blue indicating region of negative

curvature.

Figure 2.10 shows the Teichmüller extremal map from tooth A to tooth B found

by the QC iteration. (a) shows the mesh grid and landmark points of A mapped

by the T-map, while (b) shows the original mesh grid and landmark points of B. It

can be shown that the landmark points of A are mapped exactly to the landmark
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Figure 2.10: Teichmüller extremal map from tooth A to B. (a) shows the mesh grid
and landmark points of A mapped by the T-map. (b) shows the original mesh grid
and landmark points of B. (c) shows the histogram of the norm of the Beltrami
coefficient of the map.

Figure 2.11: (A) shows the original tooth A. (B) shows the reconstructed tooth surface
B from the Teichmüller extremal map obtained by the QC iteration. The red dots
are the landmark points.

points of B. The histogram in (c) shows that the norm of the Beltrami coefficient is

concentrated in one value, and all values are less than 1, which indicate that it is a

Teichmüller map and there is no overlapping in the mapping.

By linear interpretation, we can reconstruct the teeth surfaces from the square

mesh. The resultant meshes will have the same number of vertices and the same

connection between vertices. The one-one correspondence between the teeth surfaces

can then be achieved. Figure 2.11 shows the reconstructed tooth surface B and the

original tooth A. It can be observed that the structure of the triangular mesh are the

same.
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Figure 2.12: (L) shows the landmark points plotted on tooth L as red dots. (R) shows
the landmark points plotted on tooth R and the flipped tooth R as red dots.

Tooth L and tooth R are two molar of the same position but on different side

of the same person. The tooth L is taken from the left side, while the tooth R is

taken from the right side. The images in the left and middle in Figure 2.12 shows

the triangular meshes of the two teeth respectively, with landmark points plotted on

the surfaces as red dots. The two meshes are of opposite orientation, so the mesh of

tooth R is flipped, by taking negative on the x-coordinate of the vertices and flipping

the faces. The flipped tooth R is shown in the images in the right in Figure 2.12. 4

points are taken from the boundary of the teeth surfaces, and the surfaces are then

mapped conformally to squares with those 4 points as corners. Figure 2.13 shows the

mapping from the teeth surfaces to squares. The mean curvature of the teeth surfaces

are plotted on the meshes as texture.

Figure 2.14 shows the Teichmüller extremal map from tooth L to tooth R found

by the QC iteration. The landmark points are exactly matched.

By linear interpretation, we can reconstruct the teeth surfaces from the square

mesh. The resultant meshes will have the same number of vertices and the same
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Figure 2.13: The upper images are the teeth surfaces taken from tooth L and R.
The lower images are the square meshes mapped conformally from the teeth surfaces.
Landmark points are plotted on the surfaces as red dots. Mean curvature of the teeth
surfaces are plotted on the meshes as texture.

Figure 2.14: Teichmüller extremal map from tooth L to tooth R. (a) shows the mesh
grid and landmark points of L mapped by the T-map. (b) shows the original mesh
grid and landmark points of R. (c) shows the histogram of the norm of the Beltrami
coefficient of the map.
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Figure 2.15: (L) shows the original tooth L. (R) shows the reconstructed tooth surface
R from the Teichmüller extremal map obtained by the QC iteration. The red dots
are the landmark points.

connection between vertices. The one-one correspondence between the teeth surfaces

can then be achieved. Figure 2.15 shows the reconstructed tooth surface B and the

original tooth A. It can be observed that the structure of the triangular mesh are the

same.

2.3.3 Conclusion

Experimental results show that the QC iteration developed in [15] is effective in

finding landmark-matching registrations for shape morphometry of medical images.

The Teichmüller extremal maps (T-maps) between surfaces are found effectively.

The landmarks are exactly matched by the T-map and there are no overlaps in the

maps. The surfaces can be reconstructed with meshes having the same number of

vertices and the same connection between vertices. The one-one correspondence be-

tween the surfaces can then be achieved. The diffeomorphism is extremal and the

conformality distortion is minimized among all diffeomorphism with the same land-

mark constrains. Table 2.1 shows the computation time for finding the Teichmüller

extremal maps along with the number of vertices and landmarks for the four pairs of

surfaces.
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Time (s) # of vertices # of landmarks
Brainstem A and B 2.903 8132 40
Brainstem A and C 2.228 8132 40
Tooth A and B 3.316 10572 32
Tooth L and R 3.313 11087 29

Table 2.1: The computation time for finding the Teichmüller extremal maps along
with the number of vertices and landmarks for the four pairs of surfaces.



Chapter 3

Feature Extraction of Anatomic

Structure

3.1 Introduction

There are three kinds of method to extraction landmarks on a surface: manually, auto-

matically, and semi-automatically. Manual landmark extraction is the most accurate,

as it can utilize the most of the knowledge of medical experts to locate the landmark

exactly. However, it is very time-consuming. It is good for small-scale experiment,

but not suitable for a large-scale one. An automatic landmark extraction method usu-

ally utilize the local geometric structures, such as the gaussian, mean and principal

curvature and the principal directions, to locate ridges, valleys and other features on

the surface. Those vertices and edges are then filtered, joined and smoothed to form

feature curves. Automatic landmark extraction is fast, but we have not much control

on the landmarks extracted. For most automatic landmark extraction algorithm, the

“best” feature curves will be selected based on some criteria, but there is no guarantee

that the “best” ones are consistent features instead of abnormalities, whereas some

of the desire features may not be in the best five or ten. Labeling the features will
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be another problem for an automatic landmark extraction algorithm. Some curves

can be extracted, but it is usually difficult to ask a computer to distinguish which

curve is the specific landmark. Therefore, we propose a semi-automatic landmark

extraction algorithm, which requires background knowledge on the specific surface to

assign different parameters for each landmark. For each landmark, some times are

needed to spend on assigning the parameters, but the computation will be automatic

and it can deal with any number of samples.

There are some consistent landmarks with high mean curvature on a brainstem

surface. We will develop an algorithm using the eigenfunction of Laplace-Beltrami

operator and Chan-Vese segmentation to extract the landmarks semi-automatically.

The eigenfunction of Laplace-Beltrami operator are consistent on surfaces with similar

structure and can be used as a reference to obtain the search region for a specific

landmark. The high curvature landmark can then be segmented from the search

region by the Chan-Vese segmentation by using the curvature as intensity of an image.

3.2 Chan-Vese segmentation

The Chan-Vese segmentation is a widely-used segmentation method that segment an

image based on the intensity of the image. It can separate higher-intensity objects

from the lower-intensity background of an image.

The basic idea is to use a level-set function to represent a contour, with positive

value in the region inside the contour, and negative value outside the contour. The

zero level-set of the function is the contour, lying in the boundary between the two

regions. We find the function φ by minimizing the following energy functional:
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F (c1, c2, φ) =µ

∫

Ω

|∇H (φ)| dA+ ν

∫

Ω

H(φ)dA+ λ1

∫

Ω

|u− c1|2 H (φ) dA

+ λ2

∫

Ω

|u− c2|2 (1−H (φ)) dA

where u is the input image, and the Heaviside function H : R→ {0, 1} is defined as

H(x) =







1 if x ≥ 0

0 if x < 0.

The first and second term of the energy functional are the regularization terms, mea-

suring the length of the contour, and the area inside the contour respectively. Since

φ is positive in the region inside the contour and negative outside, the value H (φ) is

1 inside the contour and 0 outside. Therefore, the third term of the energy functional

is measuring the intensity difference |u− c1|2 among the region inside the contour,

and the last term is measuring the intensity difference |u− c2|2 outside the contour.

When the image is consist of a background with lower intensity of an average c2 and

an object with higher intensity of an average c1, then c1, c2 and φ with positive value

in the higher-intensity region, negative value in the lower-intensity region, and value

zero on the boundary, will minimize the energy functional. Therefore, by minimizing

the energy functional, we can find a level-set function to represent the contour and

segment the image.

For details, please refer to [2].
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3.3 Proposed algorithm

There are some consistent high-curvature landmark feature located at the same region

on brainstem surfaces. The first three non-trivial Laplace-Beltrami eigenfunctions, as

discussed in section 1.4, will be able to locate each feature curve.

Let S be a brainstem surface with F , E, V be the triangular mesh, where F is the

set of faces, E is the set of edges, and V = {pi : i = 1, 2, . . . , n} is the set of vertices.

Let L be the Laplace-Beltrami matrix defined by

Lij =



























wij if pipj ∈ E

− ∑

k∈N(i)

wik if i = j

0 otherwise

where wij is the edge weight defined above in (1.4). We calculate the first three non-

trivial eigenvector, denoted f̃1, f̃2 and f̃3 respectively, of L. Then we normalize the

eigenvectors to the interval [0, 1], with the value 0 assigned to a specific end and 1 to

the other, for each of the three directions, ie.

fi =
f̃i −min

(

f̃i

)

max
(

f̃i

)

−min
(

f̃i

)

for i = 1, 2, 3.

Then, by referring to a few controls, we find the appropriate set of ranges for each

landmark. For example, the red curve in figure 3.1 (a) lies in the region with the first

eigenvector in the range [0.25, 0.75], the second eigenvector in the range [0, 0.5], and

the third eigenvector in the range [0.25, 0.75]. Let V ′ = {v ∈ V : f1 (v) ∈ [0.25, 0.75] ,

f2 (v) ∈ [0, 0.5] , f3 (v) ∈ [0.25, 0.75]} and F ′ be the set of faces with all three vertices
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Figure 3.1: (a) shows the brainstem surface, with the red curve indicating a landmark
feature curve. (b) is the separated new mesh, which contains the target feature curve.
Mean curvature is plotted on the meshes as texture.

in V ′. Then the vertices V ′ and faces F ′ in this search region is separated to form a

new mesh, as shown in figure 3.1 (b).

By construction, the new mesh will be similar to a quadrilateral, and four corners

can be easily located by eigenvectors, such as by finding the vertices that minimize

f1+ f3, f1− f3, −f1− f3 and −f1+ f3 respectively for the example mentioned above.

It is then mapped to a square with the four corners mapped to the corresponding

corners and boundary vertex mapped to the corresponding edge. It can be done

by the Linear Beltrami Solver with the above boundary condition and the target

Beltrami coefficients set to zero. This is shown in figure 3.2.

The mean curvature of the vertices on the brainstem surface, denoted as Cmean :

V → R, is then calculated. It is then smoothen by gaussian smoothing to get a wider
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Figure 3.2: (a) and (b) show the first and third eigenvectors on the separated mesh.
(c) shows the square mesh, with mean curvature of the brainstem surface as texture.

region of high-curvature points so that it can be segmented easier. It can done by

C = G × Cmean, where C and Cmean are both arranged by the same order of V , and

G is a matrix defined by

Gij =























1√
2πσ2

e−|pi−pj |
2/2σ2

if pipj ∈ E

1√
2πσ2

if i = j

0 otherwise

where σ is the standard deviation.

Together with the mean curvature as intensity, the square mesh computed above

can be treated as an image. By the Chan-Vese segmentation, we can segment the

high-curvature region from the square. This region will be corresponding to the

specific high-curvature landmark on the brainstem surfaces. Two end points are then

located on the high-curvature region with the criteria that the mean curvature of the

two end points should be high and they should be farthest apart. A curve is then

drawn to join the two end points by finding the geodesic or the shortest path on the

brainstem surface. The resultant curves will be the desired landmark curves.
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Figure 3.3: From left to right, the first, third, fourth and second landmarks are drawn
manually on the brainstem surfaces as red curves.

3.4 Results and conclusion

17 brainstem surfaces taken from MRI is used to test the algorithm. There are four

ridge that can be used as landmarks on each brainstem surface (see figure 3.3 ). The

first and second ridges are two curves located on the edge of the ear-shape regions.

The third and fourth are two straight ridges alongside the valley in the middle of the

front side of the brainstem surface.

The first landmark is located in the set V1 = {v ∈ V : f1 (v) ∈ [0.25, 0.75] ,

f2 (v) ∈ [0, 0.5] , f3 (v) ∈ [0.25, 0.75]} and F1 as the set of faces with all three vertices

in V1. The surface S1 ⊂ S formed by V1 and F1 are of quadrilateral shape, and

with f1 increasing from one edge to the opposite, and f3 increasing from the other

direction. Figure 3.4 shows the surface S1 with f1, f3 plotted on it. Then f1 and f3

are normalized to [0, 1] again on V1, by

f ′1 =
f1−minV1 f1

maxV1 f1−minV1 f1

f ′3 =
f3−minV1 f3

maxV1 f3−minV1 f3

The vertices that minimize f ′1 + f ′3, f
′
1 − f ′3, −f ′1 − f ′3 and −f ′1 + f ′3 respectively
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Figure 3.4: (a) and (b) show the surface S1 with the first eigenvector f1 and the third
eigenvector f3 plotted on it respectively.

are the 4 corners of the quadrilateral in counter-clockwise direction. By the Linear

Beltrami Solver (LBS), we can find a quasi-conformal mapping g : S1 → [0, 1]× [0, 1]

with the four corners mapped to the corresponding corners and boundary mapped

to the corresponding boundary. With the mean curvature C : V → R calculated

and smoothed as in Section 3.3, we can find a piecewise linear intensity function

C1 : [0, 1]× [0, 1]→ R with C1 (g (v)) = C (v) ∀ v ∈ V1 and the value of point inside a

face be linearly interpolated by the value of the three vertices of the face. Using the

intensity function C1, we get an image I with a background of lower-intensity and a

crescentic object with higher-intensity (see figure 3.5). The latter corresponds to the

high curvature landmark that we want to extract.

By Chan-Vese segmentation, the higher-intensity object R̃1 can be segmented.

By removing the smaller disconnected parts, we obtain a simply-connected region R1

that contains the desire landmark. We map the region back to the brainstem surface

S by g−1 (see figure 3.6). In figure 3.7, the normalized f1, f2, f3 is plotted on the

region. We find that the vertices that maximize f1+f3 and −f1+f2+f3 can be used

as the starting and ending vertices of the landmark. By the Dijkstra’s algorithm with
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Figure 3.5: The square mesh S1 with the intensity function C1. It consists of the
red region of higher-intensity landmark and the greenish-blue background of lower-
intensity.

edge weight of edge pipj being wij =
|pi−pj |
Cij+1

, where Cij is the average mean curvature

of pi and pj normalized to [0, 1], we find a path in R1 from the starting to the ending

vertex that has a short distance while following the highest-curvature vertices. The

resultant path is the desired landmark. Figure 3.8 shows the extracted landmark on

three different brainstem surfaces.

The second landmark is in the opposite side of the first landmark, with regard

to the second eigenvector, located in the set V2 = {v ∈ V : f1 (v) ∈ [0.25, 0.75] ,

f2 (v) ∈ [0.5, 1] , f3 (v) ∈ [0.25, 0.75]} and F2 as the set of faces with all three ver-

tices in V2. The surface S2 ⊂ S formed by V2 and F2 are of quadrilateral shape, and

with f1 increasing from one edge to the opposite, and f3 increasing from the other

direction. Figure 3.9 shows the surface S2 with f1, f3 plotted on it.

Then f1 and f3 are normalized to [0, 1] on V2 by the similar way as on V1. The

vertices that minimize f ′1 + f ′3, −f ′1 + f ′3, −f ′1 − f ′3 and f ′1 − f ′3 respectively are the 4

corners of the quadrilateral in counter-clockwise direction. The surface S2 is mapped
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Figure 3.6: (a) shows the region segmented by the Chan-Vese segmentation. By
removing the smaller disconnected parts and then mapped back to the brainstem
surface, we obtained the region in (b).

Figure 3.7: The first three eigenvectors f1, f2 and f3 are plotted on the segmented
region in (a), (b) and (c) respectively.

Figure 3.8: The first extracted landmarks of three different brainstem surfaces.
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Figure 3.9: (a) and (b) show the surface S2 with the first eigenvector f1 and the third
eigenvector f3 plotted on it respectively.

to the square [0, 1]× [0, 1] by a quasi-conformal mapping found by LBS, and a piece-

wise linear intensity function C2 can be found by similar way as C1. The figure

3.10 shows the image formed by the intensity function C2. We segment the higher-

intensity region R̃2 from the image by Chan-Vese segmentation, and obtained R2 ⊂ S

that contains the desire landmark as shown in figure 3.11. Two end points defined

as the vertices that maximize f1 + f3 and −f1 − f2 + f3 respectively are joined by

a path found by Dijkstra’s algorithm. Figure 3.12 shows the extracted landmark on

different brainstem surfaces.

By choosing the set V3 = {v ∈ V : f1 (v) ∈ [0.22, 0.75] , f2 (v) ∈ [0.25, 0.55] ,

f3 (v) ∈ [0.5, 1]} and V4 = {v ∈ V : f1 (v) ∈ [0.22, 0.75] , f2 (v) ∈ [0.45, 0.75] ,

f3 (v) ∈ [0.5, 1]}, we can define surfaces S3, S4 ⊂ S that contains the third and fourth

landmark respectively. Figure 3.13 shows the surfaces S3, S4 cut from the brainstem

S. By the above algorithm, we can extract the third and fourth landmarks, as shown

in figure 3.14 and 3.15, respectively.

Figure 3.16 shows the four landmarks plotted on three brainstem surfaces. 17
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Figure 3.10: The square mesh S1 with the intensity function C1. It consists of the
red region of higher-intensity landmark and the greenish-blue background of lower-
intensity.

Figure 3.11: The region segmented by the Chan-Vese segmentation. The smaller
disconnected parts are removed and it is mapped back to the brainstem surface.

Figure 3.12: The second extracted landmarks of three different brainstem surfaces.
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Figure 3.13: (a) and (b) show the surface S3 and S4 respectively.

Figure 3.14: The third extracted landmarks of three different brainstem surfaces.

Figure 3.15: The fourth extracted landmarks of three different brainstem surfaces.
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Figure 3.16: The four extracted landmarks of three different brainstem surfaces.

1st landmark 2nd landmark 3rd landmark 4th landmark
Time(s) 2.45 3.23 2.30 2.14

Table 3.1: The average compute time to extract the 4 landmarks.

brainstem surfaces are tested with the algorithm. The resultant landmarks are con-

sistent and lying on the ridges on the respective regions. It takes an average of 2.53

seconds to extract a landmark from a brainstem surface. Table 3.1 shows the average

compute time to extract each of the 4 landmarks.

By customizing the search region and the search criteria for end points and land-

mark points, other feature landmarks can extracted. The algorithm can also be

applied to other surfaces.



Chapter 4

Conclusion

We proposed to apply the Quasi-conformal (QC) iteration proposed in [15] for land-

mark matching registration of medical images. The Teichmüller extremal maps (T-

maps) between specimens are computed by the algorithm as the one-one correspond-

ing registration. The idea of the QC iteration is to represent a quasi-conformal

mapping by its associated Beltrami coefficient through the use of the Linear Beltrami

Solver (LBS). The Beltrami coefficient is then optimized iteratively to minimize an

energy functional measuring the conformality distortion and other factors. The resul-

tant mappings are obtained from LBS with the optimal Beltrami coefficients. T-maps

are advantageous as it minimizes the maximal conformality distortion. In this pa-

per, real brainstem surfaces and Teeth surfaces taken from MRIs are used as the

experiment subjects. Experimental results show that the algorithm is effective for

computing the T-maps. Landmarks are exactly matched by the mappings. The

computation time of the algorithm is short.

We also proposed a semi-automatic landmark extraction algorithm for brainstem

surfaces, utilizing the geometric information on the surface. The first three non-trivial

eigenvectors of the Laplace-Beltrami operator are used as a reference to indicate the
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search region for a specific landmark feature curve. Then, by conformal mapping

and the mean curvature of the surfaces, we created an image of the landmark in the

search region. The Chan-Vese segmentation algorithm is applied on the image to

segment the landmark, which can then be traced back to the brainstem surface. The

experimental results show that the algorithm can extract the target landmark feature

curves consistently and effectively.
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Mathematical Society, 2000.

[7] J. Glaunès, M. Vaillant, and M.I. Miller, Landmark matching via large deforma-

tion diffeomorphisms on the sphere, Journal of Mathematical Imaging and Vision

20 (2004), no. 1-2, 179–200.

57



58

[8] X. Gu, Y. Wang, T.F. Chan, P.M. Thompson, and S.-T. Yau, Genus zero sur-

face conformal mapping and its application to brain surface mapping, Medical

Imaging, IEEE Transactions on 23 (2004), no. 8, 949–958.

[9] X. Gu and S.-T. Yau, Computing conformal structure of surfaces, Communica-

tion in Information System 2 (2002), no. 2, 121–146.

[10] , Computational conformal geometry, Intl Pr of Boston Inc, 2008.

[11] M.K. Hurdal and K. Stephenson, Discrete conformal methods for cortical brain

flattening, Neuroimage 45 (2009), no. 1, 86–98.

[12] M. Jin, J. Kim, F. Luo, and X. Gu, Discrete surface ricci flow, Visualization and

Computer Graphics, IEEE Transactions on 14 (2008), no. 5, 1030–1043.

[13] A. Leow, C.L. Yu, S.J. Lee, S.C. Huang, H. Protas, R. Nicolson, K.M. Hayashi,

A.W. Toga, and P.M. Thompson, Brain structural mapping using a novel hybrid

implicit/explicit framework based on the level-set method, NeuroImage 24 (2005),

no. 3, 910–927.

[14] N.A. Lord, J. Ho, B.C. Vemuri, and S. Eisenschenk, Simultaneous registration

and parcellation of bilateral hippocampal surface pairs for local asymmetry quan-

tification, Medical Imaging, IEEE Transactions on 26 (2007), no. 4, 471–478.

[15] L.M. Lui, K.C. Lam, S.-T. Yau, and X. Gu, Teichmüller extremal mapping and its

applications to landmark matching registration, arXiv preprint arXiv:1211.2569

(2012).

[16] L.M. Lui, S. Thiruvenkadam, Y. Wang, T.F. Chan, and P.M. Thompson, Opti-

mized conformal parameterization of cortical surfaces using shape based match-

ing of landmark curves, Medical Image Computing and Computer-Assisted

Intervention–MICCAI 2008, Springer, 2008, pp. 494–501.



59

[17] L.M. Lui, S. Thiruvenkadam, Y. Wang, P.M. Thompson, and T.F. Chan, Opti-

mized conformal surface registration with shape-based landmark matching, SIAM

Journal on Imaging Sciences 3 (2010), no. 1, 52–78.

[18] L.M. Lui, Y. Wang, T.F. Chan, and P.M. Thompson, Landmark constrained

genus zero surface conformal mapping and its application to brain mapping re-

search, Applied numerical mathematics 57 (2007), no. 5, 847–858.

[19] L.M. Lui, T.W. Wong, X. Gu, P.M. Thompson, T.F. Chan, and S.-T. Yau,

Hippocampal shape registration using beltrami holomorphic flow, Medical Image

Computing and Computer Assisted Intervention (MICCAI), Part II. LNCS, vol.

6362, 2010, pp. 323–330.

[20] L.M. Lui, T.W. Wong, W. Zeng, X. Gu, P.M. Thompson, T.F. Chan, and S.-

T. Yau, Optimization of surface registrations using beltrami holomorphic flow,

Journal of Scientific Computing 50 (2012), no. 3, 557–585.

[21] O. Lyttelton, M. Boucher, S. Robbins, and A. Evans, An unbiased iterative group

registration template for cortical surface analysis, Neuroimage 34 (2007), no. 4,

1535–1544.

[22] J.B.A. Maintz and M.A. Viergever, An overview of medical image registration

methods, UU-CS (1998), no. 1998-22.

[23] L.F. Marcus, Traditional morphometrics, Proceedings of the Michigan morpho-

metrics workshop, vol. 2, University of Michigan Museum of Zoology, Ann Arbor,

1990, pp. 77–122.

[24] M. Reuter, F.-E. Wolter, and N. Peinecke, Laplace–beltrami spectra as “shape-

dna” of surfaces and solids, Computer-Aided Design 38 (2006), no. 4, 342–366.

[25] F.J. Rohlf and L.F. Marcus, A revolution morphometrics, Trends in Ecology &

Evolution 8 (1993), no. 4, 129–132.



60

[26] Y. Wang, L.M. Lui, T.F. Chan, and P.M. Thompson, Optimization of brain

conformal mapping with landmarks, Medical Image Computing and Computer-

Assisted Intervention–MICCAI 2005, Springer, 2005, pp. 675–683.

[27] Y. Wang, L.M. Lui, X. Gu, K.M. Hayashi, T.F. Chan, A.W. Toga, P.M. Thomp-

son, and S.-T. Yau, Brain surface conformal parameterization using riemann

surface structure, Medical Imaging, IEEE Transactions on 26 (2007), no. 6, 853–

865.

[28] M. Webster and H.D. Sheets, A practical introduction to landmark-based geomet-

ric morphometrics, Paleontol Soc Papers 16 (2010), 163–188.

[29] M.L. Zelditch, D.L. Swiderski, and H.D. Sheets, Geometric morphometrics for

biologists: a primer, Academic Press, 2012.

[30] W. Zeng and X. Gu, Registration for 3d surfaces with large deformations us-

ing quasi-conformal curvature flow, Computer Vision and Pattern Recognition

(CVPR), 2011 IEEE Conference on, IEEE, 2011, pp. 2457–2464.

[31] W. Zeng, L.M. Lui, F. Luo, T.F. Chan, S.-T. Yau, and D. Gu, Computing

quasiconformal maps using an auxiliary metric and discrete curvature flow, Nu-

merische Mathematik 121 (2012), no. 4, 671–703.

[32] M. Zhang, F. Li, Y. He, S. Lin, D. Wang, and L.M. Lui, Registration of brainstem

surfaces in adolescent idiopathic scoliosis using discrete ricci flow, Medical Image

Computing and Computer-Assisted Intervention–MICCAI 2012, Springer, 2012,

pp. 146–154.


	1008609731-tsang man ho-201306-mphil-abstract
	1
	2



