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Abstract

The critical need for clean and economical sources of energy is transforming data

centers that are primarily energy consumers to also become energy producers. We

focus on minimizing the operating costs of next-generation data centers that can

jointly optimize the energy supply from on-site generators, renewable sources and the

power grid, and the energy demand from servers as well as power conditioning and

cooling systems. We formulate the cost minimization problem and present an offline

optimal algorithm. For “on-grid” data centers that use the grid and renewable, we

devise a deterministic (resp., randomized) online algorithm that achieves a cost of

within 2−αs (resp., e/(e− 1 +αs)) of the offline optimal, where αs is a normalized

look-ahead window size. For “hybrid” data centers that have additional on-site

power generators, we develop an online algorithm that achieves a cost of at most
Pmax(2−αs)
co+cm/L

[
1 + 2 Pmax−co

Pmax(1+αg)

]
of the offline optimal, where αs and αg are normalized

look-ahead window sizes, Pmax is the maximum grid power price, and L, co, and cm

are parameters of an on-site generator.

Using extensive workload traces from Akamai with the corresponding grid power

prices, we simulate our offline and online algorithms in a realistic setting. Our offline

(resp., online) algorithm achieves a cost reduction of 13.1% (resp., 7.5%) for an

on-grid data center and 26.5% (resp., 20.3%) for a hybrid data center. The cost

reductions are quite significant and make a strong case for a joint optimization of

energy supply and energy demand in a data center. A hybrid data center provides

about 13% additional cost reduction over an on-grid data center representing the

additional cost benefits that on-site power generation provides over using the grid

and renewable alone.
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摘要 

对于清洁经济能源的迫切需要，使得主要是能源消耗者的数据中心也成为了能源 

生产者。本论文专注于最小化下一代数据中心的经营成本。这些数据中心可以联 

合优化来自发电机、可再生能源和公共电网的能源，以及来自服务器、功率调节 

和冷却系统的能源需求。我们提出了成本最小化问题并且设计了一个离线最优算 

法。对于依赖于电网和可再生能源的数据中心，我们设计了一个成本在离线最 

优2 - αs (或e / (e - 1 +αs)）倍之内的确定性（或随机）在线算法，其中是归一 

化的前瞻窗口大小。对于有额外发电机的“混合”数据中心，我们设计了一个成 

本在离线最优 P m a x ( 2 - α s ) 

c
o +cm/L 

1 + 2. 
P
max —

co 

Pmax(l+αg) ]倍之内的在线算法，其中αs和αg是归一化 

的 前 瞻 窗 口 大 小 ， P m a x 是 电 网 的 最 高 电 价 ， L 、 c o 和 c m 是 发 电 机 的 参 数 。 

使用来自Akamai公司的工作量数据以及相应的电网价格，我们在一个真实环 

境中模拟了离线和在线算法。对于依赖于电网和可再生能源的数据中心，我们的 

离线（或在线）算法节省了 13.1% (或7 .5%)的成本；对于有额外发电机的“混 

合”数据中心，我们的离线（或在线）算法节省了26.5% ( 或 2 0 . 3 % ) 的 成 本 。 降 

低成本是相当显著的，这体现了联合优化数据中心的能源供应和能源需求的重要 

性。混合数据中心提供了相对于依赖于电网和可再生能源的数据中心约13%的额 

外成本节约，这些额外的成本节约是由现场发电机提供的。 
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Chapter 1

Introduction

1.1 Motivation

Internet-scale cloud services that deploy large distributed systems of servers around

the world are revolutionizing all aspects of human activity. The rapid growth of

such services has lead to a significant increase in server deployments in data centers

around the world. Energy consumption of data centers accounts for roughly 1.5% of

the global energy consumption and is increasing at an alarming rate of about 15%

on an annual basis [24]. The surging global energy demand relative to its supply

has caused the price of electricity to rise, even while other operating expenses of a

data center such as network bandwidth have decreased precipitously. Consequently,

the energy costs now represent a large fraction of the operating expenses of a data

center today [12], and decreasing the energy expenses has become a central concern

for data center operators.

The emergence of energy as a central consideration for enterprises that operate

large server farms is drastically altering the traditional boundary between a data

center and a power utility (c.f. Fig. 1.1). Traditionally, a data center hosts servers

but buys electricity from an utility company through the power grid. However,

the criticality of the energy supply is leading data centers to broaden their role to

also generate much of the required power on-site, decreasing their dependence on a

third-party utility. While data centers have always had generators as a short-term

backup for when the grid fails, on-site generators for sustained power supply is a

newer trend. For instance, Apple recently announced that it will build a massive

data center for its iCloud services with 60% of its energy coming from its on-site

1



CHAPTER 1. INTRODUCTION 2

generation that uses “clean energy” sources such as fuel cells with biogas and solar

panels [28]. As another example, eBay recently announced that it will add a 6

MW facility to its existing data center in Utah that will be largely powered by

on-site fuel cell generators [20]. Besides, Bloom Energy Servers (a kind of fuel

cell generator) has been installed at various customers including Google, Wal-Mart,

AT&T, Staples, The Coca-Cola Company and notable non-profits including Caltech

and Kaiser Permanente to provide on-site power [10].

The trend for hybrid data centers that generate electricity on-site (c.f. Fig. 1.1)

with reduced reliance on the grid is driven by the confluence of several factors. This

trend is also mirrored in the broader power industry where the centralized model for

power generation with few large power plants is giving way to a more distributed

generation model [14] where many smaller on-site generators produce power that

is consumed locally over a “microgrid”. A key factor favoring on-site generation is

the potential for cheaper power than the grid, especially during peak hours. On-site

generation also reduces transmission losses that in turn reduces the effective cost,

because the power is generated close to where it is consumed. In addition, many

enterprises have a mandate to use cleaner renewable energy sources, such as Apple’s

mandate to use 100% clean energy in its data centers [8]. Such a mandate is more

easily achievable with the enterprise generating all or most of its power on-site,

especially since recent advances such as the fuel cell technology of Bloom Energy [9]

make on-site generation economical and feasible. Finally, the risk of service outages

caused by the failure of the grid, as happened recently when thunderstorms brought

down the grid causing a denial-of-service for Amazon’s AWS service for several hours

[21], has provided greater impetus for on-site power generation that can sustain the

data center for extended periods without the grid.

In the traditional scenario, the utility is responsible for energy provisioning (EP)

that has the goal of supplying energy as economically as possible to meet the energy

demand, albeit the utility has no detailed knowledge and no control over the server

workloads within a data center that drive the consumption of power. The energy
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provisioning problem takes as input the demand for electricity from the consumers

and determines which power generators should be used at what time to satisfy

the demand in the most economical fashion. Optimal energy provisioning by the

utility in isolation is characterized by the unit commitment problem (UC) [11, 33],

including a mixed-integer programming approach [31] approach and a stochastic

control approach [37]. All these approaches assume the demand (or its distribution)

in the entire horizon is known a priori, thus they are applicable only when future

input information can be predicted with certain level of accuracy. In contrast,

in this thesis we consider an online setting where the algorithms may utilize only

information in the current time slot or in the near future (limited look-ahead).

Further, in a traditional scenario, a data center is responsible for capacity provi-

sioning (CP) that has the goal of managing its server capacity to serve the incoming

workload from end users while reducing the total energy demand of servers [30][13],

but without detailed knowledge or control over the power generation. In particular,

dynamic provisioning of server capacity by turning off some servers during period-

s of low workload to reduce the energy demand has been studied in recent years

[26][29]. However, none of these two explicitly considers power supply from renew-

able sources, or power consumption from power conditioning and cooling systems.

It is important yet remains open to consider these two factors.

• Renewable energy as a clean and environment friendly energy is widely used

in newly built data centers. Yet, renewable energy (e.g., solar and wind en-

ergy) often exhibits large uncertainty that adds to the difficulty in designing

dynamic provisioning algorithms since it now needs to take into account both

the demand uncertainty (caused by workload uncertainty) and supply uncer-

tainty.

• Energy consumed by power conditioning and cooling systems contributes about

38% of the total energy consumption of a typical data center, as a consequence

of which it is important to take into account these two systems. From the mod-

eling perspective, power consumption from these two is usually modeled as a
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convex and increasing function of server utilization [35]. Thus, the data center

operating cost optimization problem (including the operating cost of server-

s, the cooling systems, and the power conditional system) has a convex and

increasing objective and integer variables. Designing dynamic provisioning al-

gorithms for problems of this type in face of input uncertainty has not been

studied in the literature, including [26] and [29].

This thesis addresses the challenges and designs dynamic provisioning algorithms

for minimizing data center operational cost taking into account the renewable supply

as well as the power consumption from power conditioning and cooling systems. The

algorithms is for solving problems with convex-and-increasing objective function and

integer variables, thus filling in a gap between what theory can offer and what is

needed in practice.

In addition to the difference of this thesis and existing works in capacity provi-

sioning and energy provisioning, this thesis is also unique in that it jointly optimizes

both problems while existing works focus on only one of them. It focuses on the

key challenges that arise in the emerging hybrid model for a data center that is

able to simultaneously optimize both the generation and consumption of energy (c.f.

Fig. 1.1 ). The convergence of power generation and consumption within a single da-

ta center entity and the increasing impact of energy costs requires a new integrated

approach to both energy provisioning (EP) and capacity provisioning (CP).

1.2 Contributions

Online vs. Offline Algorithms In designing algorithms for optimizing the op-

erating cost of a hybrid data center, there are four time-varying inputs: the server

workload a(t) generated by service requests from users, the price of a unit energy

from the grid p(t), the available renewable energy h(t) and the total power con-

sumption function gt for each time t where 1 ≤ t ≤ T . We begin by investigating

offline algorithms that minimize the operating cost with perfect knowledge of the
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Figure 1.1: While an “on-grid” data center derives all its power from the grid,

next-generation “hybrid” data centers have additional on-site power generation.

entire input sequence a(t), p(t), h(t) and gt, for 1 ≤ t ≤ T . However, in real-life,

the time-varying input sequences are not knowable in advance. In particular, the

optimization must be performed in an online fashion where decisions at time t are

made with the knowledge of inputs a(τ), p(τ), h(τ) and gτ , for 1 ≤ τ ≤ t+w, where

w ≥ 0 is a small (possibly zero) look-ahead window. Specifically, an online algorith-

m has no knowledge of inputs beyond the look-ahead window, i.e., the inputs for

time t + w < τ ≤ T , are unknown. We assume the inputs within the look-ahead

are perfectly known when analyzing the algorithm performance. In practice, short-

term demand or grid price can be estimated rather accurately by various techniques

including pattern analysis and time series analysis and prediction [22][17]. As is

typical in the study of online algorithms [15], we seek theoretical guarantees for our

online algorithms by computing the competitive ratio that is the maximum ratio

(over all possible inputs) between the online algorithm’s cost (with no or limited

look-ahead) and the offline optimal assuming complete future information. Thus, a

small competitive ratio provides a strong guarantee that the online algorithm will

achieve a cost close to the offline optimal even for the worst case input.
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Our Contributions A key contribution of this thesis is to formulate and study

data center cost minimization (DCM) that integrates energy procurement from

the grid and the renewable sources, energy production using on-site generators,

and dynamic server capacity management. Our work jointly optimizes the two

components of DCM: energy provisioning (EP) from the grid and generators and

capacity provisioning (CP) of the servers. We summarize contributions of this thesis

as follows.

• We theoretically evaluate the benefit of joint optimization by showing that

optimizing capacity provisioning (CP) and energy provisioning (EP) sequen-

tially results in a factor loss of optimality ρ = LPmax/ (Lco + cm) compared

to optimizing them jointly, where Pmax is the maximum grid power price, and

L, co, and cm are the capacity, incremental cost, and sunk cost of an on-site

generator respectively. Further, leveraging the idea of dynamic programming,

we derive an efficient offline optimal algorithm for hybrid data centers that

jointly optimize EP and CP to minimize the data center’s operating cost.

• For on-grid data centers, we devise a deterministic (resp., randomized) al-

gorithm that achieves a competitive ratio of 2 − αs (resp., e/(e − 1 + αs)),

where αs ∈ [0, 1] is the normalized look-ahead window size. Further, we show

that our algorithm has the best competitive ratio of any deterministic (re-

sp., randomized) online algorithm for the problem (c.f. Tab. 1.1). For hybrid

data centers, we devise an online deterministic algorithm that achieves a com-

petitive ratio of Pmax(2−αs)
co+cm/L

[
1 + 2 Pmax−co

Pmax(1+αg)

]
, where αs and αg are normalized

look-ahead window sizes. All the online algorithms perform better as the look-

ahead window increases, as they are better able to plan their current actions

based on greater knowledge of future inputs. Interestingly, in the on-grid case,

we show that there exists a fixed threshold value for the look-ahead window for

which the online algorithm matches the offline optimal in performance achiev-

ing a competitive ratio of 1, i.e., there is no additional benefit gained by the

online algorithm if its look-ahead is increased beyond the threshold.
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Competitive Ratio On-grid Hybrid

No Look-ahead 2 & e
e−1

2Pmax

co+cm/L

[
1 + 2Pmax−co

Pmax

]
With Look-ahead 2− αs & e

e−1+αs

Pmax(2−αs)
co+cm/L

[
1 + 2 Pmax−co

Pmax(1+αg)

]
Table 1.1: Summary of algorithmic results. The on-grid results are the best possible.

• Using extensive workload traces from Akamai and the corresponding grid

prices and renewable energy supply, we simulate our offline and online al-

gorithms in a realistic setting with the goal of empirically evaluating their

performance. Our offline (resp., online) algorithm achieves a cost reduction

of 13.1% (resp., 7.5%) for an on-grid data center and 26.5% (resp., 20.3%)

for a hybrid data center. The cost reduction is computed in comparison with

the baseline cost achieved by the current practice of statically provisioning

the servers and using the power grid and the renewable energy. The cost re-

ductions are quite significant and make a strong case for utilizing our joint

cost optimization framework. Furthermore, our online algorithms obtain al-

most the same cost reduction as the offline optimal solution even with a small

look-ahead of 6 hours, indicating the value of short-term prediction of inputs.

• A hybrid data center provides about 13% additional cost reduction over an

on-grid data center representing the additional cost benefits that on-site power

generators provide over using the grid and renewable energy. Interestingly, it

is sufficient to deploy a partial on-site generation capacity that provides 60%

of the peak power requirements of the data center to obtain over 95% of the

additional cost reduction. This provides strong motivation for a traditional

on-grid data center to deploy at least a partial on-site generation capability

to save costs.
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1.3 Thesis Organization

This thesis is organized as follows. In Chapter 2, we formulate the data center cost

minimization problem and present a dynamic programming based offline optimal

algorithm. Chapter 3 discusses the benefit of joint optimization over optimizing

capacity provisioning and energy provisioning sequentially. In Chapter 4, we present

our deterministic and randomized algorithms for on-grid data centers. Chapter

5 discusses how to design online algorithms for hybrid data centers. In Chapter

6, we carry out extensive real-world trace based simulations to demonstrate the

effectiveness of our algorithms in practice. Chapter 7 concludes the thesis with

discussions and future work.

2 End of chapter.



Chapter 2

The Data Center Cost Minimiza-

tion Problem

We consider the scenario where a data center can jointly optimize energy production,

procurement, and consumption so as to minimize its operating expenses. We refer to

this data center cost minimization problem as DCM. To study DCM, we model how

energy is produced using on-site power generators and renewable sources, how it can

be procured from the power grid, and how data center capacity can be provisioned

dynamically in response to workload. While some of these aspects have been studied

independently, our work is unique in optimizing these dimensions simultaneously as

next-generation data centers can. Our algorithms minimize cost by use of techniques

such as: (i) dynamic capacity provisioning of servers – turning off unnecessary

servers when workload is low to reduce the net energy consumption (ii) opportunistic

energy procurement – switching between the on-site and grid energy sources to

exploit price fluctuation, and (iii) dynamic provisioning of generators – orchestrating

which generators produce what portion of the energy demand. While prior literature

has considered these techniques in isolation, we show how they can be used in

coordination to manage both the supply and demand of power to achieve substantial

cost reduction.

2.1 Model Assumptions

We adopt a discrete-time model whose time slot matches the timescale at which

scheduling decisions are performed.

9
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Notation Definition

T Number of time slots

N Number of on-site generators

βs Switching cost of a server ($)

βg Startup cost of an on-site generator ($)

cm Sunk cost of maintaining a generator in its active state per

slot ($)

co Incremental cost for an active generator to output an

additional unit of energy ($/Wh)

L The maximum output of a generator (Watt)

a(t) Workload at time t

p(t) Price per unit energy drawn from the grid at t

(Pmin ≤ p(t) ≤ Pmax) ($/Wh)

h(t) Renewable energy at time t

x(t) Number of active servers at t

v(t) Grid power used at t (Watt)

y(t) Number of active on-site generators at t

u(t) Total power output from active generators at t (Watt)

gt(x(t), a(t)) Total power consumption as a function of x(t) and a(t) at t

(Watt)

Note: we use bold symbols to denote vectors, e.g., x = 〈x(t)〉. Brackets indicate

the unit.

Table 2.1: Key notation.

Workload model. Similar to existing work [16, 36, 19], we consider a “mice”

type of workload for the data center where each job has a small transaction size and

short duration. Jobs arriving in a slot get served in the same slot. Workload can be

split among active servers at arbitrary granularity like a fluid. These assumptions

model a “request-response” type of workload that characterizes serving web content

or hosted application services that entail short but real-time interactions between
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the user and the server. Without loss of generality, we assume there are totally T

slots, and each has a unit length. The workload to be served at time t is represented

by a(t). Note that we do not make any stochastic assumption about a(t).

Server model. We assume that the data center consists of a sufficient number

of homogeneous servers, and each has unit service capacity, i.e., it can serve at most

one unit workload per slot. Let x(t) be the number of active servers. We model

the aggregate server power consumption as b(t) , fs (x(t), a(t)), an increasing (i.e.,

non-decreasing) and convex function of x(t) and a(t). That is, the first and second

order partial derivatives in x(t) and a(t) are all non-negative. In addition, to get

the workload served in the same slot, we must have x(t) ≥ a(t).

This power consumption model is quite general and captures many common

server models. One example is the commonly adopted standard linear model [12]:

fs (x(t), a(t)) = cidlex(t) + (cpeak − cidle)a(t),

where cidle and cpeak are the power consumed by an server at idle and fully utilized

state, respectively. Most servers today consume significant amounts of power even

when idle. A holy grail for server design is to make them “power proportional” by

making cidle zero [34].

Besides power costs, turning a server on entails switching cost [30], denoted as

βs, including the amortized service interruption cost, wear-and-tear cost, e.g., com-

ponent procurement, replacement cost (hard-disks in particular) and risk associated

with server switching. It is comparable to the energy cost of running a server for

several hours [26].

In addition to servers, power conditioning and cooling systems also consume

a significant portion of power. The three contribute about 94% of overall power

consumption and their power draw vary drastically with server utilization [35]. Thus,

it is important to model the power consumed by power conditioning and cooling

systems.

Power conditioning system model. Power conditioning system usually in-

cludes power distribution units (PDUs) and uninterruptible power supplies (UPSs).
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PDUs transform the high voltage power distributed throughout the data center to

voltage levels appropriate for servers. UPSs provides temporary power during out-

age. We model the power consumption of this system as fp(b(t)), an increasing and

convex function of the aggregate server power consumption b(t).

This model is general and one example is a quadratic function adopted in a

comprehensive study on the data center power consumption [35]: fp(b(t)) = C1 +

π1b
2(t), where C1 > 0 and π1 > 0 are constants depending on specific PDUs and

UPSs.

Cooling system model. We model the power consumed by the cooling sys-

tem as f tc(b(t)), a time-dependent (e.g., depends on ambient weather conditions)

increasing and convex function of b(t).

This cooling model captures many common cooling systems. According to [27],

the power consumption of an outside air cooling system can be modelled as a time-

dependent cubic function of b(t): f tc(b(t)) = Ktb
3(t), where Kt > 0 depends on

ambient weather conditions (e.g., air temperature) at time t. According to [35], the

power draw of a water chiller cooling system can be modelled as a time-dependent

quadratic function of b(t): f tc(b(t)) = Qtb
2(t) + Ltb(t) + Ct, where Qt, Lt, Ct ≥ 0

depend on outside air and chilled water temperature at time t.

On-site generator model. We assume that the data center has N units of

homogeneous on-site generators, each having a maximum output of L. Similar to

generator models studied in the unit commitment problem [23], we define a generator

startup cost βg, which typically involves heating up cost, additional maintenance

cost due to each startup (e.g., fatigue and possible permanent damage resulted by

stresses during startups), cm as the sunk cost of maintaining a generator in its active

state for a slot, and co as the incremental cost for an active generator to output an

additional unit of energy. Thus, the total cost for y(t) active generators that output

u(t) units of energy at time t is cmy(t) + cou(t).

Renewable energy model. We assume that the data center is also equipped

with renewable energy sources, such as solar panels and wind farms. At each time
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t, the renewable sources generate an arbitrary h(t) amount of energy available for

use. Note that we do not make any stochastic assumption about h(t). It is clear

that the data center should use the renewable energy to satisfy its demand first

before seeking alternative supply since the renewable energy is clean and its price

is zero. The available renewable energy is usually not enough to satisfy the entire

data center energy demand at any given time. However, if it exceeds the energy

requirements of the data center, it could be stored for later use. We do not consider

energy storage in our current work and is an interesting direction for future research.

Grid model. The grid supplies energy to the data center in an “on-demand”

fashion, with time-varying price p(t) per unit energy at time t, where 0 ≤ Pmin ≤
p(t) ≤ Pmax. Thus, the cost of drawing v(t) units of energy from the grid at time t

is p(t)v(t).

To keep the study interesting and practically relevant, we make the following

assumptions: (i) the server and generator turning-on cost are strictly positive, i.e.,

βs > 0 and βg > 0. (ii) the cost of generating L units of energy using a single

generator, which is coL + cm, is less than the maximum cost of buying the same L

units of power from the grid at a cost of PmaxL, i.e., co + cm/L < Pmax. Otherwise,

it should be clear that it is optimal to always buy energy from the grid, because in

that case the grid energy is always cheaper and incurs no startup costs.

2.2 Problem Formulation

Based on the above models, the total power consumption of the data center is

the sum of the power consumed by servers, power conditioning system and cooling

system. We express the total power consumption as a time-dependent function

gt(x(t), a(t)) , b(t) + fp(b(t)) + f tc(b(t)),

where b(t) = fs(x(t), a(t)) is the power consumed by servers, and fp(b(t)) and

f tc(b(t)) represent power consumed by power conditioning and cooling systems, re-

spectively. We remark that gt(x(t), a(t)) is increasing and convex in x(t) and a(t),
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because it is the sum of three increasing and convex functions. Note that all re-

sults we derive in this thesis apply to any gt(x, a) as long as it is increasing (i.e.,

non-decreasing) and convex in x and a.

Our objective is to minimize the total cost of the data center in entire horizon

[1, T ], which is given by

Cost(x, y, u, v) ,
T∑
t=1

{v(t)p(t) + cou(t) + cmy(t) (2.1)

+βs[x(t)− x(t− 1)]+ + βg[y(t)− y(t− 1)]+
}
,

which includes the cost of grid electricity, the running cost of on-site generators,

and the switching cost of servers and on-site generators in the entire horizon [1, T ].

Throughout this thesis, we set our initial condition to be x(0) = y(0) = 0.

We formally define the data center cost minimization problem as a non-linear

mixed-integer program, given the workload a(t), the grid price p(t), the renewable

energy h(t) and the time-dependent function gt(x, a), for 1 ≤ t ≤ T , as time-varying

inputs.

min
x,y,u,v

Cost(x, y, u, v) (2.2)

s.t. u(t) + v(t) + h(t) ≥ gt(x(t), a(t)), (2.3)

u(t) ≤ Ly(t), (2.4)

x(t) ≥ a(t), (2.5)

y(t) ≤ N, (2.6)

x(0) = y(0) = 0, (2.7)

var x(t), y(t) ∈ N0, u(t), v(t) ∈ R+
0 , t ∈ [1, T ],

where [·]+ = max(0, ·), and N0 and R+
0 represent the set of non-negative integers

and real numbers, respectively.

Constraint (2.3) ensures the total power consumed by the data center is jointly

supplied by the generators, the grid and the renewable sources. Constraint (2.4)

captures the maximal output of the on-site generator. Constraint (2.5) specifies that
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there are enough active servers to serve the workload. Constraint (2.6) ensures the

number of active generators is at most N . Constraint (2.7) is the initial condition.

Note that this problem is challenging to solve. First, it is a non-linear mixed-

integer optimization problem. Further, the objective function values across different

slots are correlated via the switching costs βs[x(t)−x(t−1)]+ and βg[y(t)−y(t−1)]+,

and thus cannot be decomposed. Finally, in practice we need to solve the problem in

an online fashion; more specifically, at each time, we don’t know the inputs beyond

the look-ahead window.

Next, we introduce a proposition to simplify the structure of the problem. Note

that if (x(t))Tt=1 and (y(t))Tt=1 are given, the problem in (2.2)-(2.7) reduces to a

linear program and can be solved independently for each slot. We then obtain the

following.

Proposition 1. Given any x(t) and y(t), the u(t) and v(t) that minimize the cost

in (2.2) with any gt(x, a) that is increasing in x and a, are given by: ∀t ∈ [1, T ],

u(t) =

0, if p(t) ≤ co,

min (Ly(t), [gt(x(t), a(t))− h(t)]+) , otherwise,

and

v(t) = [gt(x(t), a(t))− h(t)]+ − u(t).

Note that u(t), v(t) can be computed using only x(t), y(t) at current time t,

thus can be determined in an online fashion. For the ease of presentation, denote

dt(x(t)) = [gt(x(t), a(t))−h(t)]+, which is also increasing and convex in x(t). dt(x(t))

represents the residual power demand after using the renewable energy available at

time t1.

1In case the renewable supply is abundant and exceeds the entire data center energy demand

at time t, the unused renewable is discarded. In practice, it is conceivable that the data center

can store the unused renewable into energy storage devices for later use. Our current model does

not incorporate energy storage devices and it is a limitation of our current study. Extending our

study beyond the limitation is an interesting future direction.
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Intuitively, the above proposition says that we should first use the renewable

energy to satisfy the overall electricity demand. Then for the residual demand, if

the on-site energy price co is higher than the grid price p(t), we should buy energy

from the grid; otherwise, it is the best to buy the cheap on-site energy up to its

maximum supply L · y(t) and the rest (if any) from the more expensive grid. With

the above proposition, we can reduce the non-linear mixed-integer program in (2.2)-

(2.7) with variables x, y, u, and v to the following integer program with only

variables x and y:

DCM :

min
T∑
t=1

{
ψ (y(t), p(t), dt(x(t))) + βs[x(t)− x(t− 1)]+

+βg[y(t)− y(t− 1)]+
}

(2.8)

s.t. x(t) ≥ a(t),

(2.6), (2.7),

var x(t), y(t) ∈ N0, t ∈ [1, T ],

where ψ (y(t), p(t), dt(x(t))) replaces the term v(t)p(t)+cou(t)+cmy(t) in the original

cost function in (2.2) and is defined as

ψ (y(t), p(t), dt(x(t))) (2.9)

,



cmy(t) + p(t)dt(x(t)), if p(t) ≤ co,

cmy(t) + coLy(t)+ if p(t) > co and

p(t) (dt(x(t))− Ly(t)) , dt(x(t)) > Ly(t),

cmy(t) + codt(x(t)), else.

As a result of the analysis above, it suffices to solve the above formulation of

DCM with only variables x and y, in order to minimize the data center operating

cost.
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2.3 An Offline Optimal Algorithm

We present an offline optimal algorithm for solving problem DCM using Dijkstra’s

shortest path algorithm [18]. We construct a graph G = (V,E), where each vertex

denoted by the tuple 〈x, y, t〉 represents a state of the data center where there are

x active servers, and y active generators at time t. We draw a directed edge from

each vertex 〈x(t−1), y(t−1), t−1〉 to each possible vertex 〈x(t), y(t), t〉 to represent

the fact that the data center can transition from the first state to the second state.

Further, we associate the cost of that transition shown below as the weight of the

edge:

ψ (y(t), p(t), dt(x(t))) + βs[x(t)− x(t− 1)]+

+βg[y(t)− y(t− 1)]+.

Next, we find the minimum weighted path from the initial state represented by vertex

〈0, 0, 0〉 to the final state represented by vertex 〈0, 0, T + 1〉 by running Dijkstra’s

algorithm on graph G. Since the weights represent the transition costs, it is clear

that finding the minimum weighted path in G is equivalent to minimizing the total

transitional costs. Thus, our offline algorithm provides an optimal solution for

problem DCM.

Theorem 1. The algorithm described above finds an optimal solution to problem D-

CM in time O (M2N2T log (MNT )), where T is the number of slots, N the number

of generators and M = max1≤t≤T da(t)e.

Proof. Since the numbers of active servers and generators are at most M and

N , respectively, and there are T + 2 time slots, graph G has O(MNT ) vertices

and O(M2N2T ) edges. Thus, the run time of Dijkstra’s algorithm on graph G is

O (M2N2T log (MNT )).

Remark: In practice, the time-varying input sequences (p(t), a(t), h(t) and gt)

may not be available in advance and hence it may be difficult to apply the above
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offline algorithm. However, an offline optimal algorithm can serve as a benchmark,

using which we can evaluate the performance of online algorithms.

2 End of chapter.



Chapter 3

The Benefit of Joint Optimization

Data center cost minimization (DCM) entails the joint optimization of both server

capacity that determines the energy demand and on-site power generation that

determines the energy supply. Now consider the situation where the data center

optimizes the net energy demand and supply separately.

3.1 Problem Decomposition

First, the data center dynamically provisions the server capacity according to the

grid power price p(t) and the net power consumption function dt(x) (recall that

dt(x) = [gt(x, a(t)) − h(t)]+). More formally, it solves the capacity provisioning

problem which we refer to as CP below.

CP : min
T∑
t=1

{
p(t) · dt(x(t)) + βs[x(t)− x(t− 1)]+

}
s.t. x(t) ≥ a(t),

x(0) = 0,

var x(t) ∈ N0, t ∈ [1, T ].

Solving problem CP yields x̄. Thus, the total net power demand at time t

given x̄(t) is dt(x̄(t)). Note that dt(x̄(t)) is residual power demand of servers, power

conditioning and cooling systems after using the renewable energy at time t.

Second, the data center minimizes the cost of satisfying the net power demand

due to dt(x̄(t)), using both the grid and the on-site generators. Specifically, it solves

19
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the energy provisioning problem which we refer to as EP below.

EP : min
T∑
t=1

{
ψ (y(t), p(t), dt(x̄(t))) + βg[y(t)− y(t− 1)]+

}
y(0) = 0,

var y(t) ∈ N0, t ∈ [1, T ].

3.2 Price of Decomposition

Let (x̄, ȳ) be the solution obtained by solving CP and EP separately in sequence

and (x∗,y∗) be the solution obtained by solving the joint-optimization DCM. Fur-

ther, let CDCM(x,y) be the value of the data center’s total cost for solution (x,y),

including both generator and server costs as represented by the objective function

(2.8) of problem DCM. The additional benefit of joint optimization over optimizing

independently is simply the relationship between CDCM(x̄, ȳ) and CDCM (x∗,y∗). It

is clear that (x̄, ȳ) obeys all the constraints of DCM and hence is a feasible solution

of DCM. Thus, CDCM (x∗,y∗) ≤ CDCM(x̄, ȳ). We can measure the factor loss in

optimality ρ due to optimizing separately as opposed to optimizing jointly on the

worst-case input as follows:

ρ , max
all inputs

CDCM(x̄, ȳ)

CDCM (x∗,y∗)
.

The following theorem characterizes the benefit of joint optimization over optimizing

independently.

Theorem 2. The factor loss in optimality ρ by solving the problem CP and EP in

sequence as opposed to optimizing jointly is given by ρ = LPmax/ (Lco + cm) and it

is tight.

Proof. Refer to Appendix A.

The above theorem guarantees that for any time duration T , any workload a,

any grid price p, any renewable energy h and any power consumption function
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gt(x, a) as long as it is increasing and convex in x and a, solving problem DCM

by first solving CP then solving EP in sequence yields a solution that is within

a factor LPmax/ (Lco + cm) of solving DCM directly. Further, the ratio is tight

in that there exists an input to DCM where the ratio CDCM(x̄, ȳ)/CDCM (x∗,y∗)

equals LPmax/ (Lco + cm) .

The theorem shows in a quantitative way that a larger price discrepancy between

the maximum grid price and the on-site power yields a larger gain by optimizing the

energy provisioning and capacity provisioning jointly. Over the past decade, utilities

have been exposing a greater level of grid price variation to their customers with

mechanisms such as time-of-use pricing where grid prices are much more expensive

during peak hours than during the off-peak periods. This likely leads to larger price

discrepancy between the grid and the on-site power. In that case, our result implies

that a joint optimization of power and server resources is likely to yield more benefits

to a hybrid data center.

Besides characterizing the benefit of jointly optimizing power and server re-

sources, the decomposition of problem DCM into problems CP and EP provides

a key approach for our online algorithm design. Problem DCM has an objec-

tive function with mutually-dependent coupled variables x and y indicating the

server and generator states, respectively. This coupling as expressed in function

ψ (y(t), p(t), dt(x(t))) makes it difficult to design provably good online algorithms.

However, instead of solving problem DCM directly, we devise online algorithms

to solve problems CP that involves only server variable x and EP that involves

only the generator variables y. Combining the online algorithms for CP and EP

respectively yields the desired online algorithm for DCM.

2 End of chapter.



Chapter 4

Online Algorithms for On-grid Da-

ta Centers

We first develop online algorithms for DCM for an on-grid data center, where

there are grid power and renewable sources, but no on-site power generators. This

captures most data centers operational scenarios today. Since an on-grid data center

has no on-site power generators, solving DCM for it reduces to solving problem CP

described in Sec. 3.1.

Problems of this kind have been studied in the literature (see e.g., [26][29]). The

differences of our work from [26][29] are as follows (also summarized in Tab. 4.1).

From the modelling aspect, we explicitly take into account power consumption of

both cooling and power conditioning systems, in addition to servers, and power

supply from renewable energy sources. From the formulation aspect, we are solving

a different optimization problem, i.e., an integer program with convex and increasing

objective function. From the theoretical result aspect, we develop a deterministic

online algorithm with competitive ratio 2 − αs and a randomized online algorithm

with competitive ratio e/(e−1+αs), where αs is the normalized look-ahead window

size. Both ratios quickly decrease to 1 as look-ahead window w increase.

4.1 Decompose CP into sub-problems CP is

Recall that CP takes as input the workload a, the grid price p, the renewable

energy h and the time-dependent function gt, ∀t and outputs the number of active

servers x. We construct solutions to CP in a divide-and-conquer fashion. We first

22
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Pow. cond., Optimization Problem C.R.

Cooling Objective Variable Deter. Rand.

Renewable Function Type Alg. Alg.

LCP [26] No convex continuous 3 ×
CSR/RCSR [29] No linear integer 2− αs e

e−1+αs

GCSR/RGCSR Yes convex & integer 2− αs e
e−1+αs

this thesis increasing

Note: Here Pow. Cond. stands for Power Conditioning. C.R. stands for Competitive

Ratio. Deter. stands for Deterministic. Rand. stands for randomized. Alg. stands

for Algorithm. αs is the normalized look-ahead window size, whose representations

are different under the different settings of [29] and this thesis.

Table 4.1: Summary of the differences between algorithms that we developed in

this thesis and previous ones.

decompose the demand a into sub-demands, define a sub-problem associated with

each sub-demand for each server, and then solve capacity provisioning separately

for each sub-problem. Note that the key is to correctly decompose the demand

and define the subproblems so that the combined solution is still optimal. More

specifically, we slice the demand as follows: for 1 ≤ i ≤ M = max1≤t≤T da(t)e,
1 ≤ t ≤ T,

ai(t) , min {1,max {0, a(t)− (i− 1)}} . (4.1)

And the corresponding sub-problem CPi is defined as follows.

CPi : min
T∑
t=1

{
p(t) · dit · xi(t) + βs[xi(t)− xi(t− 1)]+

}
s.t. xi(t) ≥ ai(t),

xi(0) = 0,

var xi(t) ∈ {0, 1}, t ∈ [1, T ],

where xi(t) indicates whether the i-th server is on at time t and dit , dt(i)−dt(i−1).

dit can be interpreted as the power consumption increment due to using the i-th
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Figure 4.1: An example of how workload a is decomposed into 4 sub-demands.

server at t. Problem CPi solves the capacity provisioning problem with inputs

workload ai, grid price p and dit. The key reason for our decomposition is that CPi

is easier to solve, since ai take values in [0, 1] and exactly one server is required

to serve each ai. As the following theorem states, the individual optimal solutions

for problems CPi can be put together to form an optimal solution to the original

problem CP. Denote CCPi
(xi) as the cost of solution xi for problem CPi and CCP(x)

the cost of solution x for problem CP.

Theorem 3. Consider problem CP with any dt(x) that is convex in x. Let x̄i be

an optimal solution and xoni an online solution for problem CPi with workload ai,

then
∑M

i=1 x̄i is an optimal solution for CP with workload a. Furthermore, if ∀ai, i,
we have CCPi

(xoni ) ≤ γ · CCPi
(x̄i) for a constant γ ≥ 1, then CCP(

∑M
i=1 x

on
i ) ≤

γ · CCP(
∑M

i=1 x̄i), ∀a.

Proof. Refer to Appendix B.1.

4.2 Deterministic Online Algorithm GCSR

According to Theorem 3, it remains to design algorithms for each CPi. To solve

CPi in an online fashion one need only orchestrate one server to satisfy the workload

ai and minimize the total cost. When ai(t) > 0, we must keep the server active



CHAPTER 4. ONLINE ALGORITHMS FOR ON-GRID DATA CENTERS 25

to satisfy the workload. The challenging part is what we should do if the server is

already active but ai(t) = 0. Should we turn off the server immediately or keep it

idling for some time? Should we distinguish the scenarios when the grid price is

high versus low?

Inspired by “ski-rental” [15] and [29], we solve CPi using the following “break-

even” idea. During an idle period, i.e., ai(t) = 0, we accumulate an “idling cost”

(
∑t

τ=t′ p(τ)diτ , where t′ is the first slot of the idle period and t is the current slot)

and when it reaches βs, we turn off the server; otherwise, we keep the server idling.

Specifically, our online algorithm GCSR
(w)
s (Generalized Collective Server Rental)

for CPi has a look-ahead window w. At time t, if there exist τ ′ ∈ [t, t + w] such

that the idling cost till τ ′ is at least βs, we turn off the server; otherwise, we keep it

idling. An illustration of GCSR
(w)
s is shown in Fig. 4.2.

Algorithm 1 GCSR(w) for problem CP

1: initial condition: Ci = 0,xi(0) = 0, ∀i ∈ [1,M ]

2: at current time t, do

3: decompose (a(τ))t+wτ=t into (a1(τ), a2(τ), . . . , aM(τ))t+wτ=t according to Eqn. (4.1)

and obtain (diτ )
t+w
τ=t , ∀i ∈ [1,M ]

4: for i = 1 to M do

5: set τ ′ ← min{t′ ∈ [t, t+ w] | Ci +
∑t′

τ=t p(τ)diτ ≥ βs}
6: if ai(t) > 0 then

7: xi(t) = 1 and Ci = 0

8: else if τ ′ = NULL or ∃τ ∈ [t, τ ′], ai(τ) > 0 then

9: xi(t) = xi(t− 1) and Ci = Ci + p(t)ditxi(t)

10: else

11: xi(t) = 0 and Ci = 0

12: end if

13: end for

14: x(t) =
∑M

i=1 xi(t)
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Our online algorithm for CP, denoted as GCSR(w), first employs GCSR
(w)
s to

solve each CPi on workload ai, 1 ≤ i ≤M , in an online fashion to produce output

xoni and then simply outputs
∑M

i=1 x
on
i = xon as the output for the original problem

CP. More formally, we have Algorithm 1. The competitive analysis of GCSR(w) is

in Theorem 4.

Theorem 4. GCSR(w) achieves a competitive ratio of 2− αs for CP, where αs ,

min (1, wdminPmin/βs) ∈ [0, 1] is a “normalized” look-ahead window size and dmin ,

mint{dt(1) − dt(0)}. Further, no deterministic online algorithm with a look-ahead

window w can achieve a smaller competitive ratio.

Proof. Refer to Appendix B.2.

If dt(x) is strictly increasing in x, we must have dmin > 0. In this case, the com-

petitive ratio decreases as the look-ahead window size w increases. Further, when

the look-ahead window size w reaches a break-even interval ∆s , βs/(dminPmin),

GCSR(w) has a competitive ratio of 1. That is, having a look-ahead window larger

than ∆s will not decrease the cost any further. Intuitively, this is because when w

is no less than ∆s, GCSR(w) can tell whether the cumulative idling cost will reach

βs at the beginning of an idle period, thus it will perform exactly the same as the

offline optimal.

If dt(x) is not strictly increasing in x (e.g., there is enough renewable energy to

satisfy the entire data center energy demand), then dmin may be 0. In this case,

the competitive ratio of GCSR(w) does not decrease as w increases (remains 2).

However, the competitive ratio 2 is for the worst case inputs. In practice, GCSR(w)

can still benefit from looking ahead. As long as power consumption gt(x, a) is

not always less than renewable energy h(t), there exists an index i such that dit is

not 0. Then, for the i-th server, with look-ahead, GCSR(w) can tell whether the

cumulative idling cost will reach βs earlier than without look-ahead. In this way, it

benefits from future information.

In addition, according to the realistic setting in Chapter 6, we observe that
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gt(x, a) is strictly increasing in x and is always larger than the renewable h(t).

Consequently, dmin > 0.

( )ia t

( )i
td p t

sβ< sβ=

Figure 4.2: An example of ai(t) and corresponding solutions obtained by GCSR
(w)
s

and RGCSR
(w)
s . During the first idle period, the cumulative idling cost does not

reach βs, thus RGCSR
(0)
s and RGCSR

(w)
s keep server idling (i.e., xi = 1). Mean-

while, RGCSR
(0)
s turns off the server when the cumulative idling cost reaches the

threshold randomly chosen by it. With looking ahead, RGCSR
(w)
s see the job

comes before cumulative idling cost reaches βs, thus it keeps server idling. During

the second idle period, GCSR
(0)
s turns off the server when cumulative idling cost

reaches βs. With looking ahead, GCSR
(w)
s turns off the server w slots earlier than

GCSR
(0)
s . RGCSR

(0)
s turns off the server when cumulative idling cost reaches the

threshold it chooses. RGCSR
(w)
s takes actions w slots earlier than RGCSR

(0)
s .

4.3 Randomized Online Algorithm RGCSR

Then we develop a randomized online algorithm RGCSR(w) with a look-ahead

window size of w. The idea behind GCSR
(w)
s is to track the offline optimal in an

online fashion. However, it is too conservative in making decisions: when it is sure
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that the idling cost will reach βs, it turns off the server. In fact, it may be better

to be more aggressive in making decisions: we may turn off xi before seeing idling

cost will reach βs.

More specifically, RGCSR
(w)
s for problem CPi performs as follows: it accumu-

lates an “idling cost” and when it is less than threshold Λ, which is a random variable

to be introduced later, it keeps the server idling; otherwise, it will see whether the

job will comes, i.e., ai > 0, before the “idling cost” reaches βs within the look-ahead

window w. If so, it keeps the server idling; else it turns off the server. An example

is in Fig. 4.2.

The randomized online algorithm for CP, denoted as RGCSR(w), first employs

RGCSR
(w)
s to solve each CPi, 1 ≤ i ≤ M , in an online fashion to produce output

xoni and then simply outputs
∑N

i=1 x
on
i as the output for the original problem MP.

Formally, RGCSR(w) is presented in Algorithm 2. The competitive analysis of

RGCSR(w) is in the following theorem.

Denote Λ as a continuous random variables with PDF fΛ(λ) (shown in Fig. ):

fΛ(λ) =


eλ/[βs(1−αs)]

βs(1−αs)(e−1+αs)
+ αs

(e−1+αs)
δ(λ), if 0 ≤ λ ≤ (1− αs)βs,

0, otherwise,
(4.2)

where αs = min{1, wdminPmin/βs} and δ(λ) is Dirac Delta function.

0 0.2 0.4 0.6
0

1

2

3

λ/βs

f Λ
(λ
)

Figure 4.3: PDF fΛ(λ). Here αs = 0.4.
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Algorithm 2 RGCSR(w) for problem CPi

1: initial condition: Ci = 0,xi(0) = 0, ∀i ∈ [1,M ]

2: at current time t, do

3: decompose (a(τ))t+wτ=t into (a1(τ), a2(τ), . . . , aM(τ))t+wτ=t according to Eqn. (4.1)

and obtain (diτ )
t+w
τ=t , ∀i ∈ [1,M ]

4: for i = 1 to M do

5: if ai(t) > 0 then

6: xi(t) = 1, Ci = 0, generate Λ according to fΛ(λ)

7: else if Ci < Λ then

8: xi(t) = xi(t− 1) and Ci = Ci + p(t)ditxi(t)

9: else

10: set τ ′ ← min{t′ ∈ [t, t+ w] | Ci +
∑t′

τ=t p(τ)diτ ≥ βs or ai(t
′) > 0}

11: if ai(τ
′) > 0 then

12: xi(t) = xi(t− 1) and Ci = Ci + p(t)ditxi(t)

13: else

14: xi(t) = 0 and Ci = 0

15: end if

16: end if

17: end for

18: x(t) =
∑M

i=1 xi(t)

Theorem 5. RGCSR(w) for problem CP has a competitive ratio of e
e−1+αs

, where

αs = min{1, wdminPmin/βs}. Further, no randomized online algorithm with a look-

ahead window w can achieve a smaller competitive ratio.

Proof. Refer to Appendix B.3.

A consequence of Theorem 5 is that when the look-ahead window size w reaches

a break-even interval ∆s = βs/(dminPmin), RGCSR(w) has a competitive ratio of 1

as with GCSR(w).

In addition, Theorems 4 and 5 imply that the worst-case performances of our
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online algorithms are determined by how much we can see into the future. Algo-

rithms perform better in the worst-case with larger look-ahead window. In practice,

we have similar observations: the empirical performances (to be shown in Sec. 6.4)

of our algorithms quickly improve to the offline optimal as look-ahead window size

w increases. This indicates the value of short-term prediction of inputs to reduce

the total cost of the data center.

2 End of chapter.



Chapter 5

Online Algorithms for Hybrid Data

Centers

Unlike on-grid data centers, hybrid data centers have on-site power generators and

therefore have to solve both capacity provisioning (CP) and energy provisioning

(EP) to solve the data center cost minimization (DCM) problem. We first briefly

present how to solve problem EP and then develop our online algorithm DCMON

for problem DCM.

5.1 A useful structure of an offline optimal solu-

tion of EP

We first reveal an elegant structure of an offline optimal solution which is very useful

in the design of our online algorithm CHASE.

5.1.1 Decompose EP into sub-problems EP is

For the ease of presentation, we denote e(t) = dt(x
on(t)). Similar as the decompo-

sition of workload when solving CP, we decompose the energy demand e into N

sub-demands and define a sub-problem for each generator, then solve energy provi-

sioning separately for each sub-problem, whereN is the number of on-site generators.

Specifically, for 1 ≤ i ≤ N, 1 ≤ t ≤ T ,

ei(t) , min {L,max {0, e(t)− (i− 1)L}} . (5.1)

31
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The corresponding sub-problem EPi is in the same form as EP except that dt(x̄(t))

is replaced by ei(t) and y(t) is replaced by yi(t) ∈ {0, 1}. Using this decomposition,

we can solve EP on input e by simultaneously solving simpler problems EPi on input

ei that only involve a single generator. Theorem 6 shows that the decomposition

incurs no optimality loss. Denote CEPi
(yi) as the cost of solution yi for problem

EPi and CEP(y) the cost of solution y for problem EP.

Theorem 6. Let ȳi be an optimal solution and yoni an online solution for EPi with

energy demand ei, then
∑N

i=1 ȳi is an optimal solution for EP with energy demand

e. Furthermore, if ∀ei, i, we have CEPi
(yoni ) ≤ γ · CEPi

(ȳi) for a constant γ ≥ 1,

then CEP(
∑N

i=1 y
on
i ) ≤ γ · CEP(

∑N
i=1 ȳi), ∀e.

Proof. Refer to Appendix C.1.

5.1.2 Solve each sub-problem EP i

Based on Theorem 6, it remains to design algorithms for each EPi. Define

ri(t) = ψ (0, p(t), ei(t))− ψ (1, p(t), ei(t)) . (5.2)

ri(t) can be interpreted as the one-slot cost difference between not using and using

an on-site generator. Intuitively, if ri(t) > 0 (resp. ri(t) < 0), it will be desirable to

turn on (resp. off) the generator. However, due to the startup cost, we should not

turn on and off the generator too frequently. Instead, we should evaluate whether

the cumulative gain or loss in the future can offset the startup cost. This intuition

motivates us to define the following cumulative cost difference Ri(t). We set initial

values as Ri(0) = −βg and define Ri(t) inductively:

Ri(t) , min {0,max {−βg, Ri(t− 1) + ri(t)}} . (5.3)

Note that Ri(t) is only within the range [−βg, 0]. An important feature of Ri(t)

useful later in online algorithm design is that it can be computed given the past and

current inputs. An illustrating example of Ri(t) is shown in Fig. 5.1.
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Figure 5.1: An example of ei(t), Ri(t) and the corresponding solution obtained by

CHASE
(w)
s for EPi.

Intuitively, when Ri(t) hits its boundary 0, the cost difference between not using

and using the generator within a certain period is at least βg, which can offset the

startup cost. Thus, it makes sense to turn on the generator. Similarly, when Ri(t)

hits −βg, it may be better to turn off the generator and use the grid. The following

theorem formalizes this intuition, and shows an optimal solution ȳi(t) for problem

EPi at the time epoch when Ri(t) hits its boundary values −βg or 0.

Theorem 7. There exists an offline optimal solution for problem EPi, denoted by

ȳi(t), 1 ≤ t ≤ T , so that:

• if Ri(t) = −βg, then ȳi(t) = 0;

• if Ri(t) = 0, then ȳi(t) = 1.

Proof. Refer to Appendix C.2.
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5.2 Online algorithm CHASE

The online algorithm CHASE
(w)
s with look-ahead window w exploits the insights

revealed in Theorem 7 to solve EPi. The idea behind CHASE
(w)
s is to track the

offline optimal in an online fashion. In particular, at time 0, Ri(0) = −βg and we

set yi(t) = 0. We keep tracking the value of Ri(t) at every time slot within the

look-ahead window. Once we observe that Ri(t) hits values −βg or 0, we set the

yi(t) to the optimal solution as Theorem 7 reveals; otherwise, keep yi(t) = yi(t− 1)

unchanged. An example of CHASE
(w)
s is shown in Fig. 5.1.

Algorithm 3 CHASE(w) for problem EP

1: initial condition: Ri(0) = 0,yi(0) = 0, ∀i ∈ [1, N ]

2: at current time t, do

3: decompose (e(τ))t+wτ=t into (e1(τ), e2(τ), . . . , eM(τ))t+wτ=t according to Eqn. (5.1)

4: for i = 1 to N do

5: obtain (Ri(τ))t+wτ=t according to Eqn. (5.3)

6: set τ ′ ← min{τ ∈ [t, t+ w] |Ri(τ) = 0 or − βg}
7: if τ ′ = NULL then

8: yi(t) = yi(t− 1)

9: else if Ri(τ
′) = 0 then

10: yi(t) = 1

11: else

12: yi(t) = 0

13: end if

14: end for

15: y(t) =
∑N

i=1 yi(t)

The online algorithm for EP, denoted as CHASE(w), first employs CHASE
(w)
s

to solve each EPi on energy demand ei, 1 ≤ i ≤ N , in an online fashion to produce

output yoni and then simply outputs
∑N

i=1 y
on
i as the output for the original problem
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EP. More formally, we have Algorithm 3. The competitive analysis of CHASE(w)

is in Theorem 8.

Theorem 8. CHASE(w) for problem EP with a look-ahead window w has a com-

petitive ratio of

1 +
2βg (LPmax − Lco − cm)

βgLPmax + wcmPmax

(
L− cm

Pmax−co

) .
Proof. Refer to Appendix C.3.

5.3 Combining GCSR and CHASE

Our online algorithm DCMON(w) (Algorithm 4, also shown in Fig. 5.2) for prob-

lem DCM first uses GCSR(w) from Sec. 4.2 to solve problem CP and then uses

CHASE(w) in Sec. 5.2 to solve problem EP.

Algorithm 4 DCMON(w) for problem DCM

1: run GCSR(w) to solve CP that takes
(
a(τ), p(τ), h(τ), gτ

)t+w
τ=t

as inputs and

produces the number of active servers
(
xon(τ)

)t+[w−∆s]+

τ=t
at each time t.

2: run CHASE(w) to solve EP that takes
(
dτ (x

on(τ)), p(τ)
)t+[w−∆s]+

τ=t
as inputs and

produces the number of active generators yon(t) at each time t.

As shown in Algorithm 4, an important observation is that the available look-

ahead window size for GCSR(w) to solve CP is w, i.e., knows p(τ), a(τ), h(τ) and

gτ , 1 ≤ τ ≤ t + w, at time t; however, the available look-ahead window size for

CHASE(w) to solve EP is only [w −∆s]
+, i.e., knows p(τ) and e(τ) = dτ (x

on(τ)),

1 ≤ τ ≤ t + [w −∆s]
+ , at time t (∆s = βs/(dminPmin) is the break-even interval

defined in Sec. 4.2).

This is because at time t, CHASE(w) knows grid prices p(τ), workload a(τ),

renewable energy h(τ) and the function gτ , 1 ≤ τ ≤ t + w. However, not all

the energy demands (e(τ))t+wτ=1 are known by CHASE(w). Because we derive the
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Figure 5.2: The flow chart of DCMON.

server state xon by solving problem CP using our online algorithm GCSR(w) us-

ing p(τ), a(τ), h(τ), gτ , 1 ≤ τ ≤ t + w. A key observation is that at time t

it is not possible to compute xon for the full look-ahead window of t + w, since

xon(t + 1), . . . , xon(t + w) may depend on inputs p(τ), a(τ), h(τ), gτ , τ > t + w

that our algorithm does not yet know. Fortunately, for w ≥ ∆s we can deter-

mine all xon(τ), 1 ≤ τ ≤ t + [w −∆s]
+ given inputs within the full look-ahead

window. That is, while we knows the grid prices p, the workload a, renewable

energy h and the function gt for the full look-ahead window w, the server state

xon is known only for a smaller window of [w −∆s]
+. Thus, the energy demand

e(τ) = dτ (x
on(τ)) = [gτ (x

on(τ), a(τ)) − h(τ)]+, 1 ≤ τ ≤ t + [w −∆s]
+ is available

for CHASE(w) at time t.

The competitive ratio of DCMON(w) is shown in Theorem 9. It is the product

of competitive ratios for GCSR(w) and CHASE([w−∆s]+) from Theorems 4 and

8, respectively, and the optimality loss ratio LPmax/ (Lco + cm) due to the offline-

decomposition stated in Sec. 3.2.

Theorem 9. DCMON(w) for problem DCM has a competitive ratio of

Pmax (2− αs)
co + cm/L

1 +
2 (LPmax − Lco − cm)

LPmax + αgPmax

(
L− cm

Pmax−co

)
 .
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The ratio is also upper-bounded by

Pmax (2− αs)
co + cm/L

[
1 + 2

Pmax − co
Pmax

· 1

1 + αg

]
,

where αs = min (1, w/∆s) ∈ [0, 1] and αg , cm
βg

[w −∆s]
+ ∈ [0,+∞) are “normal-

ized” look-ahead window sizes.

Proof. Refer to Appendix D.

As the look-ahead window size w increases, the competitive ratio in Theorem

9 decreases to LPmax/ (Lco + cm) (c.f. Fig. 5.3), the inherent optimality loss intro-

duced by our decomposition approach stated in Sec. 3.2. However, the real trace

based empirical performance 1 of DCMON(w) is quite close to the offline optimal,

i.e., ratio close to 1 (c.f. Fig. 5.3).
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Figure 5.3: Theoretical and empirical ratios of algorithm DCMON(w) vs. look-

ahead window size w.

This is because in practice the inputs are usually not the worst case inputs to our

online algorithm and thus the empirical ratio is much smaller than the theoretical

ratio. In practice, our online algorithm aligns quite well with the offline optimal.

As we can see from Fig. 5.4, for generator #1, R1(t) (cumulative cost difference

1The parameter settings are in Chapter 6.
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functions (Eqn. 5.3) of three generators
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Figure 5.5: Comparison of x(t), y(t) ob-

tained by DCMON(w) and the offline

optimal.

function) remains 0 most of the time and does not decrease to −βg. Thus, both

our online and the offline optimal keep the generator on most of the time. Similar

observations can be found for generator #4. For generator #7, although R7(t) goes

to 0 some time and decreases to −βg some time, it does not bounce forth and back

between the two boundaries very often. Thus, our online can still align with the

offline optimal well. For servers, we have similar observation and we skip the details

here.

In addition, from Fig. 5.5, we see that our online solution (i.e., the number of

active servers x(t) and the number of active on-site generators y(t)) always track

the offline optimal. Thus, the former lags behind the latter. However, most of the

time, our online performs exactly the same as the offline optimal. Consequently, the

cost achieved by our online is quite close to that achieved by the offline optimal.

2 End of chapter.



Chapter 6

Empirical Evaluations

In this chapter, we evaluate the performance of our algorithms by simulations based

on real-world traces with the aim of (i) corroborating the empirical performance

of our online algorithms under various realistic settings and the impact of having

look-ahead information, (ii) understanding the benefit of opportunistically procuring

energy from on-site generators, the grid and the renewable sources, as compared to

the current practice of using the grid and the renewable sources, (iii) studying how

much on-site generation is needed for substantial cost benefits, (iv) studying the

impact of renewable penetration.

6.1 Parameters and Settings

Workload trace: We use the workload traces from the Akamai network [1, 32] that

is the currently the world’s largest content delivery network. Specifically, the traces

record the hourly average load served by each deployed server in New York and

San Jose over 22 days from Dec. 21, 2008 to Jan. 11, 2009. The New York trace

represents 2.5K servers that served about 1.4× 1010 requests and 1.7× 1013 bytes of

content to end-users during our measurement period. The San Jose trace represents

1.5K servers that served about 5.5× 109 requests and 8× 1012 bytes of content. We

show the workload in Fig. 6.1, in which we normalize the load by the server capacity.

Grid price: We use traces of hourly grid power prices in New York [3] and San

Jose [4] for the same time period, so that it can be matched up with the workload

traces (c.f. Fig. 6.1). Both workload and grid price traces show strong diurnal

properties: in the daytime, the workload and the grid price are relatively high; at

39
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Figure 6.1: Real-world workload from Akamai and the corresponding grid power

prices and renewable energy within the same time period.

night, on the contrary, both are low. This indicates the feasibility of reducing the

data center cost by using the energy from the on-site generators during the daytime

and using the grid at night.

Renewable trace: We use traces of hourly solar radiation (wh/m2) in New York

central park and San Jose international airport observation stations within the same

time period (Dec. 21, 2008 to Jan. 11, 2009) from National Solar Radiation Data

Base [2]. By assuming a solar panel array with area 1000m2 and a conversion rate of

20% [5], we obtain the renewable energy h(t) (c.f. Fig. 6.1). Roughly speaking, for

the New York trace, the renewable supplies about 4% of the overall energy demand.

For the San Jose trace, the number is about 10%.

Server model : Similar to a typical setting in [34], we use the standard linear

server power consumption model. According to [34], each server consumes 0.25KWh

power per hour at full capacity and has a power proportional factor (PPF=(cpeak −
cidle)/cpeak) of 0.6, which gives us cidle = 0.1KW , cpeak = 0.25KW . In addition,

we assume the server switching cost equals the energy cost of running a server for

3 hours. If we assume an average grid price as the price of energy, we get about
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βs = $0.08.

Cooling and power conditioning system model : We consider a water chiller cool-

ing system. According to [7], during this 22-day winter period the average high and

low temperatures of New York are 41◦F and 29◦F , respectively. Those of San Jose

are 58◦F and 41◦F , respectively. We take the high temperature as the daytime tem-

perature and the low temperature as the nighttime temperature. Thus, according

to [35], the power consumed by water chiller cooling systems of the New York and

San Jose data centers are about

f tc,NY (b) =

(0.041b2 + 0.144b+ 0.047)bmax, at daytime,

(0.03b2 + 0.136b+ 0.042)bmax, at nighttime,

and

f tc,SJ(b) =

(0.06b2 + 0.16b+ 0.054)bmax, at daytime,

(0.041b2 + 0.144b+ 0.047)bmax, at nighttime,

where bmax is the maximum server power consumption and b is the server power

consumption normalized by bmax. The maximum server power consumption of the

New York and San Jose data centers are bNYmax = 2500× 0.25 = 625KW and bSJmax =

1500 × 0.25 = 375KW . Besides, the power consumed by the power conditioning

system, including PDUs and UPSs, is fp(b) = (0.012b2 + 0.046b+ 0.056)bmax [35].

Generator model : We adopt generators with specifications the same as the one

in [6]. The maximum output of the generator is 60KW, i.e., L = 60KW . The

incremental cost co is set to be $0.08/KWh, which is calculated according to the

gas price [3] and the generator efficiency [6]. Similar to [38], we set the sunk cost

(maintenance cost) cm to be $1.2. We set the startup cost βg equivalent to the

amortized capital cost, which gives βg = $24. Besides, we assume the number of

generators N = 10, which is enough to satisfy all the energy demand for the trace

and model we use.

Cost benchmark : Current data centers usually do not use dynamic capacity

provisioning and on-site generators. Thus, we use the cost incurred by static capacity
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provisioning with only grid power as the benchmark. This static provisioning runs

a fixed number of servers, without dynamically turning on/off the servers, that

minimizes the costs incurred based on full knowledge of the entire workload. Using

such a benchmark gives a conservative evaluation of the cost reduction achieved by

our algorithms.

Comparisons of Algorithms : We consider two scenarios: the on-grid and hybrid

scenarios. In each scenario, we compare three algorithms: the offline optimal al-

gorithm, our online algorithm and the Receding Horizon Control (RHC) algorithm

(also summarized in Tab. 6.1). RHC is a heuristic algorithm commonly used in the

control literature [25]. It works by solving, at each time t, the cost minimization

problem over window [t, t+w] given the initial state x(t−1), y(t−1), and then using

the first step of the solution, discarding the rest. We note that because at each step

RHC does not consider any adversarial future dynamics beyond the time-window w,

there is no guarantee that RHC is competitive.

On-gird Hybrid

Offline Optimal CPOFF DCMOFF

Our Online GCSR & RGCSR DCMON

RHC CPRHC DCMRHC

Table 6.1: Compared Algorithms.

6.2 Impact of Model Parameters on Cost Reduc-

tion

We study the cost reduction provided by our offline and online algorithms for both

on-grid and hybrid data centers using the New York trace unless specified other-

wise. We assume no look-ahead information is available when running the online

algorithms. We compute the cost reduction (in percentage) as compared to the

cost benchmark which we described earlier. When all parameters take their default
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Figure 6.2: Variation of cost reduction with model parameters.

values, our offline (resp. online) algorithms provide up to 13.1% (resp., 7.5%) cost

reduction for on-grid and 26.5% (resp., 20.3%) cost reduction for hybrid data cen-

ters (c.f. Fig. 6.2). Note that the online algorithms provide cost reduction that are

6% smaller than offline algorithms on account of their lack of knowledge of future

inputs. Further, note that cost reduction of a hybrid data center is larger than that

of a on-grid data center, since hybrid data center has the ability to generate energy

on-site to avoid higher grid prices. Nevertheless, the extent of cost reduction in all

cases is high providing strong evidence for the need to perform energy and server

capacity optimizations.

Data centers may deploy different types of servers and generators with different

model parameters. It is then important to understand the impact on cost reduction

due to these parameters. We first study the impact of varying co (c.f. Fig. 6.2).

For a hybrid data center, as co increases the cost of on-site generation increases

making it less effective for cost reduction (c.f Fig. 6.2a). For the same reason, the

cost reduction of a hybrid data center tends to that of the on-grid data center with

increasing co as on-site generation becomes less economical.

We then study the impact of power proportional factor (PPF). More specifically,

we fix cpeak = 0.25KW , and vary PPF from 0 to 1 (c.f. Fig. 6.2b). As PPF

increases, the server idle power decreases, thus dynamic server provisioning has lesser

impact on the cost reduction. This explains why CP achieves no cost reduction
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Figure 6.3: Relative values of CP, EP, and DCM.

when PPF=1. Since DCM involves CP problem, its performance degrades with

increasing PPF as well.

6.3 The Relative Value of Energy versus Capacity

Provisioning

In this subsection, we use both New York and San Jose traces. For a hybrid data

center, we ask which optimization provides a larger cost reduction: energy provi-

sioning (EP) or server capacity provisioning (CP) in comparison with the joint

optimization of doing both (DCM). The cost reductions of different optimization

are shown in Fig. 6.3.

For the New York scenario in Fig. 6.3a, overall, we see that EP, CP, and DCM

provide cost reductions of 16%, 7.5%, and 20.3%, respectively. However, note that

during the day doing EP alone provides almost as much cost reduction as the joint

optimization DCM. The reason is that during the high traffic hours in the day,

solving EP to avoid higher grid prices provides a larger benefit than optimizing

the energy consumption by server shutdown. The opposite is true during the night

where CP is more critical than EP, since minimizing the energy consumption by

shutting down idle servers yields more benefit.

For the San Jose scenario in Fig. 6.3b, overall, EP, CP, and DCM provide
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cost reductions of 6.1%, 19%, and 23.7%, respectively. Compared to the New York

scenario, the reason why EP achieves so little cost reduction is that the grid power

is cheaper and thus on-site generation is not that economical. Meanwhile, CP

performs closer to DCM, which is because the workload curve is highly skew (shown

in Fig. 6.1b) and dynamic server provisioning saves a lot of server idling cost as well

as cooling and power conditioning cost.

In a nutshell, EP favors high grid power price while workload with less regular

pattern makes CP more competitive.

6.4 Benefit of Look-ahead

We evaluate the cost reduction benefit of increasing the look-ahead window. From

Fig. 6.4a, we observe that the performance of our online algorithms DCMON and

GCSR are already very good when there is no or little look-ahead information (e.g.,

w = 0, 2, and 4). In contrast, DCMRHC performs poorly when the look-ahead

window is small. When w is large, (e.g., w ≥ 8), both DCMON and DCMRHC

performs close to the offline optimal DCMOFF.

An interesting observation is that it is more important to design intelligent online

algorithms when no or little look-ahead information is available. When there is

abundant look-ahead information, both DCMON and DCMRHC achieve good

performance and it is less critical to carry out sophisticated algorithm design.

6.5 How Much On-site Power Production is E-

nough

Thus far, in our experiments, we assumed that a hybrid data center had the ability

to supply all its energy from on-site power generators (N = 10). However, an

important question is how much investment should a data center operator make in

installing on-site generator capacity to obtain largest cost reduction.



CHAPTER 6. EMPIRICAL EVALUATIONS 46

0 5 10 15 20 24
0

20

40

w (h)

%
C

os
t R

ed
uc

tio
n

 

 

DCMOFF DCMON DCMRHC

 

 

CPOFF GCSR CPRHC

(a) Cost Reduction vs. look-ahead window size

w

0 20 40 60 80 100
0

20

40

On−site Capacity (%)

%
C

os
t R

ed
uc

tio
n

 

 

DCMOFF

 

 

DCMON w=0 DCMON w=5h

 

 

DCMRHC w=0 DCMRHC w=5h

(b) Cost Reduction vs. percentage of on-site

power production capacity

Figure 6.4: Variation of cost reduction with look-ahead and on-site capacity.

More specifically, we vary the number of on-site generators N from 0 to 10 and

show how the algorithms perform. Interestingly, in Fig. 6.4b, our results show that

provisioning on-site generators to produce 80% of the peak power demand of the

data center is sufficient to obtain all of the cost reduction benefits. Further, with

just 60% on-site power generation capacity we can achieve 95% of the maximum

cost reduction. The intuitive reason is that most of time the power demand of the

data center is significantly lower than their peaks.

6.6 Impact of Renewable Penetration

We evaluate the impact of renewable penetration on the data center cost reduction.

More specifically, we vary the renewable penetration by scaling up/down the solar

trace and show how our algorithms perform. Note that renewable penetration X%

means the total renewable energy is X% of the total energy consumption.

From Fig. 6.5, we observe that the performances of DCMOFF and DCMON

degrade as renewable penetration increases. Intuitively, this is because with more

renewable energy, the net energy demand needed to be satisfied by the grid or

on-site generators is lower. Consequently, energy provisioning is less important.

Meanwhile, the performances of CPOFF and GCSR are hardly influenced by

the renewable penetration. The reason is that the benchmark algorithm (static
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istic Algorithms.

provisioning) and capacity provisioning (CPOFF and GCSR) benefit roughly the

same from increasing renewable penetration, and thus the cost reductions of capacity

provisioning against the benchmark remain almost unchanged.

6.7 Randomized Algorithms vs. Deterministic Al-

gorithms

We evaluate performances of our randomized online algorithm RGCSR for the

on-grid scenario. The cost reductions compared to the benchmark are shown in

Fig. 6.6.

The randomized (resp. deterministic) algorithm achieves 9% (resp., 7.3%) cost

reduction for on-grid data centers. The randomized algorithm performs a little bet-

ter than the deterministic algorithm in both scenarios. This is because randomized

algorithm is more aggressive in decision making as discussed in Sec. 4.3. It aligns

with the offline optimal better and thus achieve a larger cost reduction.

2 End of chapter.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

This work focuses on the cost minimization of data centers achieved by jointly

optimizing both the supply of energy from on-site power generators, the grid and

the renewable sources, and the demand for energy from its deployed servers as well as

power conditioning and cooling systems. We show that such an integrated approach

is not only possible in next-generation data centers but also desirable for achieving

significant cost reductions. Our offline optimal algorithm and our online algorithms

with provably good competitive ratios provide key ideas on how to coordinate energy

procurement and production with the energy consumption.

Our empirical work answers several of the important questions relevant to data

center operators focusing on minimizing their operating costs. We show that an

on-grid and hybrid data center can achieve a cost reduction between 7.5% to 13.1%

and 20.3% to 26.5%, respectively, by employing our joint optimization framework.

We also show that on-site power generation can provide an additional cost reduction

of about 13%, and that most of the additional benefit is obtained by a partial on-site

generation capacity of 60% of the peak power requirement of the data center.

7.2 Discussion

Previously, we assume homogeneous servers and homogeneous generators. However,

in reality, a data center may consist of multiple types of servers as well as generators.

Thus, it is of great interest to study the heterogeneous setting. In this section, we

48
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discuss how to extend our algorithm DCMON to be able to solve data center cost

minimization problem in heterogeneous scenario.

Notation Definition

Ts Number of types of servers

N i
s Number of type-i servers, i ∈ {1, . . . , T s}

βis,L
i
s Parameters of a type-i server, Lis is the service capacity

xi(t) Number of active type-i servers

ai(t) Workload distributed to type-i servers

f is (xi(t), ai(t)) Type-i servers’ power consumption as a function of xi(t) and

ai(t)

Tg Number of types of generators

N j
g Number of type-j generators, j ∈ {1, . . . , T g}

βjg ,L
j
g ,cjm,cjo Parameters of a type-j generator

yj(t),uj(t) Variables associated with type-j generators

Table 7.1: Notation for the heterogeneous scenario.

7.2.1 The Heterogeneous Scenario

Based on Tab. 2.1, we add superscripts i, j to denote parameters and variables of

different types of servers and generators (c.f. Tab. 7.1).

According to Chapter 2 and above notations, the total power consumption gt is:

Ts∑
i=1

f is
(
xi(t), ai(t)

)
+ fp

(
Ts∑
i=1

f is
(
xi(t), ai(t)

))
+ f tc

(
Ts∑
i=1

f is
(
xi(t), ai(t)

))
, gt

(
x1(t), a1(t), . . . , xTs(t), aTs(t)

)
Our objective is to minimize the total cost of the data center in entire horizon
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[1, T ], which is given by

Cost(x, y, u, v) ,
T∑
t=1

{
v(t)p(t) +

Ts∑
i=1

βis[x
i(t)− xi(t− 1)]+

+

Tg∑
j=1

(
cjou

j(t) + cjmy
j(t) + βjg [y

j(t)− yj(t− 1)]+
)}

.

Then the data center cost minimization problem in heterogeneous scenario is

DCM-HET :

min
x,y,s,u,v

Cost(x, y, u, v)

s.t.

Tg∑
j=1

uj(t) + v(t) + h(t) ≥ gt
(
x1(t), a1(t), . . . , xTs(t), aTs(t)

)
, (7.1)

Ts∑
i=1

ai(t) = a(t), (7.2)

uj(t) ≤ Ljgy
j(t),

Lisx(t) ≥ ai(t),

yj(t) ≤ N j
g , x

i(t) ≤ N i
s,

xi(0) = 0, yj(0) = 0,

var xi(t), yj(t) ∈ N0, uj(t), v(t), ai(t) ∈ R+
0 , i ∈ [1, T s], j ∈ [1, T g], t ∈ [1, T ].

Note that this problem is much more challenging than DCM to solve. Because

it involves multiple types of servers and generators. Different types of generators

are correlated by constraint (7.1). Correlation between different types of servers are

imposed by constraint (7.2). This kind of correlation makes it difficult for us to

design online algorithms with provable good performance.

7.2.2 A Heuristic Extension of DCMON

We extend the online algorithm DCMON designed for hybrid data center with

homogeneous servers and generators to the heterogeneous scenario. To begin with,
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we define efficiency index :

Ei
s , f is(N

i
s, N

i
s · Lis)/

(
N i
s · Lis

)
, ∀i ∈ {1, . . . , T s}

and

Ej
g , cjo + cjm/L

j
g, ∀j ∈ {1, . . . , T g},

where Ei
s measures the average power consumption of type-i servers to process one

unit workload and Ej
g measures the average cost of type-j generators to output one

unit energy. Lower power consumption or cost means higher efficiency. Without

loss of generality, we assume E1
s ≤ E2

s ≤ · · · ≤ ETs
s and E1

g ≤ E2
g ≤ · · · ≤ ETg

g , i.e.,

the one with smaller index has smaller efficiency index.

Intuitively, the servers with small Ei
s and the generators with small Ej

g should

be used with high priority, because of their low power consumption/cost. Based on

this idea, our online algorithm solves problem DCM-HET as follows: at each time,

the servers with small Ei
s and generators with small Ej

g are used first. In another

word, workload is distributed to servers with small Ei
s first and energy demand

is distributed to generators with small Ei
g first. Unless all the ones with smaller

efficiency index are used, the ones with larger efficiency index will not be used.

More formally, the workload distributed to type-i servers is ∀t ∈ {1, . . . , T}, i ∈
{1, . . . , Ts},

ai(t) , min

{
N i
sL

i
s,max

{
0, a(t)−

i−1∑
k=1

N i
sL

i
s

}}
.

Denote e(t) as the total net energy demand at t, then the energy demand dis-

tributed to type-j generators is ∀t ∈ {1, . . . , T}, j ∈ {1, . . . , Tg},

ej(t) , min

{
N j
gL

j
g,max

{
0, e(t)−

j−1∑
k=1

N j
sL

j
s

}}
.

Our algorithm DCMON
(w)
het for solving problem DCM-HET with a look-ahead

window of w ≥ 0 works as follows.

1. Run GCSR(w) from Sec. 4.2 to solve a series of CPs, each of which is with N i
s

type-i servers, workload ai and dt(x
i(t)) = [gt (N1

s , N
1
sL

1
s, . . . , N

i−1
s , N i−1

s Li−1
s ,
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xi(t), ai(t), 0, 0, . . .)− h(t)]+, 1 ≤ i ≤ Ts. We obtain number of active servers

of each type x1,x2, . . . ,xTs. And the energy demand is determined by e(t) =

[gt
(
x1(t), s1(t), . . . , xTs(t), sTs(t)

)
− h(t)]+.

2. Run algorithm CHASE(w) from Sec. 5.2 to solve a series of EPs, each of

which is with N j
g type-j generators and energy demand ej , 1 ≤ j ≤ Tg. We

obtain number of active generators of each type y1,y2, . . . ,yTg. Besides, the

output from each type of generators uj(t) and power drawn from the grid v(t)

is determined by

uj(t) =

0, if p(t) ≤ cjo,

min
(
Ljgy

j(t), ej(t)
)
, otherwise,

and

v(t) = e(t)−
Tg∑
j=1

uj(t).

7.2.3 Empirical Performances

Servers Type Ns βs($) Ls cidle(KW ) cpeak(KW )

1 700 0.08 1 0.1 0.25

2 700 0.05 0.5 0.06 0.14

3 700 0.15 1.5 0.16 0.45

Generators Type Ng βg($) Lg(KW ) cm($) co($/KWh)

1 3 24 60 1.2 0.08

2 3 46 100 1.8 0.07

3 4 14 80 2 0.09

Note that Ls is normalized by the service capacity of the Type-1 server.

Table 7.2: Parameters of servers and generators.

We use the same parameter settings as Sec. 6.1 except parameters of servers and

generators. Here, we assume the data center has 3 types of servers and 3 types of

generators, whose parameters are shown in Tab. 7.2.
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We first evaluate the cost reduction benefit of increasing the look-ahead window

obtained by DCMONhet and DCMRHChet and compare it with DCMOFFhet.

From Fig. 7.1a, we observe that while the performance of DCMONhet is already

good when there is no look-ahead information, it quickly improves to the offline

optimal when a small amount of look-ahead is available. In contrast, DCMRHChet

performs poorly when the look-ahead window is small as with the homogeneous case

in Sec. 6.4. Note that while DCMONhet is a heuristic extension of DCMON to

the heterogeneous scenario, it performs very close to the offline optimal for realistic

inputs. The reason may be that DCMONhet always uses servers and generators

with small efficiency index (defined in Sec. 7.2.2) first. Remark that efficiency index

for server measures the average power consumption of a type of servers to process

one unit workload and efficiency index for generators measures the average cost of

a type of generators to output one unit energy. This “smallest first” strategy of

DCMONhet may not be optimal but is very cost efficient in most cases.

We then evaluate performance of DCMONhet against DCMOFFhet under

different heterogeneity settings. More specifically, based on Tab. 7.2, we fix the

parameters of type-1 server and type-1 generator and set the parameters of other

types of servers and generators in Tab. 7.3. We vary values of γs and γg from 1 to

4 and show the corresponding ratio of DCMONhet against DCMOFFhet. Note

that the larger γs and γg are, the larger the differences between different servers. So

are the generators.

From Fig. 7.1b, we observe that the ratio between DCMONhet and DCMOFFhet

increases as the heterogeneity parameters γs and γg increase. Even so, the per-

formance of DCMONhet is always within about 1.2 times the offline optimal

DCMOFFhet, which demonstrates the effectiveness of our online algorithm DCMONhet.
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Servers Type Ns βs Ls cidle cpeak

1 700 0.08 1 0.1 0.25

2 700 0.08γs 1 0.1/γs 0.25/γs

3 700 0.08/γs 1 0.1γs 0.25γs

Generators Type Ng βg Lg cm co

1 3 24 60 1.2 0.08

2 3 24γg 60 1.2/γg 0.08/γg

3 4 24/γg 60 1.2γg 0.08γg
γs, γg ≥ 1 measures the heterogeneity of servers and generators, respectively.

Table 7.3: Parameters of servers and generators.
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Figure 7.1: Performance in the heterogeneous scenario.

7.3 Future Work

There are several promising directions for future research. First, it is interesting to

study the competitive ratio of the algorithm for heterogeneous scenarios proposed

in Sec. 7.2.2. Second, studying how energy storage devices can be used to further

reduce the data center operating cost is of great interest. Third, it is desirable to

generalize our analysis to take into account deferrable workloads.

2 End of chapter.



Appendix A

Proof of Theorem 2

First, we prove that the factor loss in optimality is at most LPmax/ (Lco + cm).

Then, we prove that the factor loss is tight.

Let (x̄, ȳ) be the solution obtained by solving CP and EP separately in sequence

and (x∗,y∗) be the solution obtained by solving the joint-optimization DCM. De-

note CDCM(x,y) to be cost of DCM of solution (x,y) and CCP(x) to be cost of

CP of solution x.

It is straightforward that

CDCM(x̄, ȳ) ≤ CDCM(x̄,0). (A.1)

Because CDCM(x, 0) = CCP(x), we have

CDCM(x̄,0) = CCP(x̄) ≤ CCP(x∗) = CDCM(x∗,0). (A.2)

By Eqns. (A.1) and (A.2), we obtain

CDCM(x̄, ȳ)

CDCM(x∗,y∗)
≤ CDCM(x∗,0)

CDCM(x∗,y∗)
. (A.3)

Then, according to the following lemma, we get

ρ =
CDCM(x̄, ȳ)

CDCM(x∗,y∗)
≤ LPmax

Lco + cm
.

Lemma 1. CDCM(x∗,0)/CDCM(x∗,y∗) ≤ LPmax/ (Lco + cm) .

Proof. By plugging solutions (x∗,0) and (x∗,y∗) into DCM separately, we have

CDCM(x∗,0) =
T∑
t=1

{p(t)dt (x∗(t))

+βs[x
∗(t)− x∗(t− 1)]+

}
(A.4)
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and

CDCM(x∗,y∗) =
T∑
t=1

{ψ (y∗(t), p(t), dt (x∗(t)))

+βs[x
∗(t)− x∗(t− 1)]+

+βg[y
∗(t)− y∗(t− 1)]+

}
≥

T∑
t=1

{ψ (y∗(t), p(t), dt (x∗(t)))

+βs[x
∗(t)− x∗(t− 1)]+

}
. (A.5)

By Eqns. (A.4), (A.5) and (2.9), we obtain

CDCM(x∗,0)

CDCM(x∗,y∗)

≤
∑T

t=1 p(t)dt (x∗(t))∑T
t=1 ψ (y∗(t), p(t), dt (x∗(t)))

≤ max
t∈{1,..,T}

p(t)dt (x∗(t))

ψ (y∗(t), p(t), dt (x∗(t)))

≤

1, if p(t) ≤ co,

Pmaxdt(x∗(t))
codt(x∗(t))+cmddt(x∗(t))/Le , otherwise

≤ Pmaxdt (x∗(t))

codt (x∗(t)) + cmdt (x∗(t)) /L

=
Pmax

co + cm/L
.

Next, we prove that the factor loss is tight.

Lemma 2. There exist an input such that CDCM(x̄, ȳ)/CDCM(x∗,y∗) = LPmax/ (Lco + cm) .

Proof. Consider the following input:

gt(x, a) = emx, h(t) = 0, p(t) = Pmax, ∀t,

and

a(t) =


L
em
, if t = 1 + k(1 + βs

emPmax
), k ∈ N0,

0, otherwise,
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where em > 0 is a constant such that L/em is an integer.

Then for the above input and setting, it is not difficult to see that an optimal

solution to problem CP is given by

x̄(t) =


L
em
, if t = 1 + k(1 + βs

emPmax
), k ∈ N0,

0, otherwise.

Besides, we can also see that the following x∗ is an optimal solution to problem

CP and also problem DCM whatever y∗ is.

x∗(t) =
L

em
, ∀t.

Intuitively, this is because with on-site generation in problem DCM, unit power

cost may be reduced from Pmax to co, consequently, servers tends to be idling longer

when there is no workload.

Then, we consider the following parameter setting:

L(Pmax − co)− cm < βg,

L(Pmax − co)− cm −
βs

emPmax

cm < 0,

and

L(Pmax − co)− cm −
βs

emPmax

cm +
βsL

emPmax

(Pmax − co) > 0.

Since x̄ and x∗ have been determined by us, we can apply Theorem 10 to obtain

the corresponding ȳ and y∗. According to the definition of Ri(t) (Eqn. (5.3)) and

the above parameter setting, given x̄ and a, the corresponding Ri(t) never reaches

0. However, given x∗ and a, the corresponding Ri(t) will soon reach 0 and never

fall back to −βg. So we have

ȳ(t) = 0 and y∗(t) = 1,∀t.

See Fig. A.1 as an example. By plugging the above (x̄, ȳ) and (x∗,y∗) into
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( )a t

( )x t

max

s

me P

β

*( )x t
( )y t

*( )y t

...

...

...

...

...

Figure A.1: An example of a(t), x̄(t), x∗(t), ȳ(t) and y∗(t). x̄(t), ȳ(t) are obtained

by solving CP and EP sequentially. x∗(t), y∗(t) are obtained by solving DCM

directly.

DCM, we have

CDCM(x̄, ȳ)

CDCM(x∗,y∗)
=

LPmax + βsL/em
Lco + cm + (Lco + cm)βs/(emPmax)

=
LPmax [1 + βs/(emPmax)]

(Lco + cm) [1 + βs/(emPmax)]

=
LPmax

Lco + cm
.

Theorem 2 follows from Eqn. (A.3), lemmas 1 and 2.

2 End of chapter.



Appendix B

Proofs of Theorems 3, 4 and 5

B.1 Proof of Theorem 3

First, we show that the combined solution
∑M

i=1 x̄i is optimal to CP.

Denote CCP(x) to be cost of CP of solution x. Suppose that x̃ is an optimal

solution for CP. We will show that we can construct a new feasible solution
∑M

i=1 x̂i

for CP, and a new feasible solution x̂i for each CPi, such that

CCP(x̃) = CCP(
M∑
i=1

x̂i) =
M∑
i=1

CCPi
(x̂i) +

T∑
t=1

p(t)dt(0). (B.1)

x̄i is an optimal solution for each CPi. Hence, CCPi
(x̂i) ≥ CCPi

(x̄i) for each i.

Thus,

CCP(x̃) =
M∑
i=1

CCPi
(x̂i) +

T∑
t=1

p(t)dt(0)

≥
M∑
i=1

CCPi
(x̄i) +

T∑
t=1

p(t)dt(0). (B.2)

Besides, we also can prove that

M∑
i=1

CCPi
(x̄i) +

T∑
t=1

p(t)dt(0) ≥ CCP(
M∑
i=1

x̄i). (B.3)

Hence, CCP(x̃) = CCP(
∑M

i=1 x̄i), i.e.,
∑M

i=1 x̄i is an optimal solution for CP.

Then, we show CCP(
∑M

i=1 x
on
i ) ≤ γ · CCP(

∑M
i=1 x̄i).

Because CCPi
(xoni ) ≤ γ · CCPi

(x̄i) and x̄i is optimal for CPi, we have γ ≥ 1.

According to Eqn. (B.2), we obtain

γ · CCP(x̃) ≥
M∑
i=1

CCPi
(xoni ) +

T∑
t=1

p(t)dt(0).

59
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Besides, we also can prove that

M∑
i=1

CCPi
(xoni ) +

T∑
t=1

p(t)dt(0) ≥ CCP(
M∑
i=1

xoni ). (B.4)

Hence, CCP(
∑M

i=1 x
on
i ) ≤ γ · CCP(

∑M
i=1 x̄i).

It remains to prove Eqns. (B.1), (B.3) and (B.4), which we show in Lemmas 3

and 4.

Lemma 3. CCP(x̃) = CCP(
∑M

i=1 x̂i) =
∑M

i=1 CCPi
(x̂i) +

∑T
t=1 p(t)dt(0).

Proof. Define x̂i based on x̃ by:

x̂i(t) =

1, if i ≤ x̃(t)

0, otherwise.

It is straightforward to see that

x̃(t) =
M∑
i=1

x̂i(t)

and x̂i is a feasible solution for CPi, i.e., x̂i ≥ ai.

So we have CCP(x̃) = CCP(
∑M

i=1 x̂i).

Note that x̂1(t) ≥ ... ≥ x̂M(t) is a decreasing sequence. Because x̂i(t) ∈
{0, 1}, ∀i, t, we obtain

M∑
i=1

[x̂i(t)− x̂i(t− 1)]+

=

0, if
∑M

i=1 x̂i(t) ≤
∑M

i=1 x̂i(t− 1)∑M
i=1 x̂i(t)−

∑M
i=1 x̂i(t− 1), otherwise

=
[ M∑
i=1

x̂i(t)−
M∑
i=1

x̂i(t− 1)
]+

, (B.5)
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and

M∑
i=1

dit · x̂i(t) + dt(0) =

x̃(t)∑
i=1

dit · 1 + dt(0)

=

x̃(t)∑
i=1

[dt(i)− dt(i− 1)] + dt(0)

= dt(x̃(t))− dt(0) + dt(0)

= dt(x̃(t)) = dt(
M∑
i=1

x̂i(t)). (B.6)

By Eqns. (B.5) and (B.6),

CCP(
M∑
i=1

x̂i) =
M∑
i=1

CCPi
(x̂i) +

T∑
t=1

p(t)dt(0).

This completes the proof of this lemma.

Lemma 4.
∑M

i=1 CCPi
(xi)+

∑T
t=1 p(t)dt(0) ≥ CCP(

∑M
i=1 xi), where xi is any feasible

solution for problem CPi.

Proof. First, it is straightforward that

M∑
i=1

[xi(t)− xi(t− 1)]+ ≥
[ M∑
i=1

xi(t)−
M∑
i=1

xi(t− 1)
]+

. (B.7)

Denote x(t) =
∑M

i=1 xi(t). Then, ∀t,

M∑
i=1

dit · xi(t) + dt(0) ≥
x(t)∑
i=1

dit + dt(0)

= dt(x(t))− dt(0) + dt(0)

= dt(x(t)) = dt(
M∑
i=1

xi(t)), (B.8)

where the first inequality comes from xi(t) ∈ {0, 1} and d1
t ≤ d2

t ≤ · · · ≤ dMt . This

is because dit = dt(i)− dt(i− 1) and dt(x) is convex in x.

This lemma follows from Eqns. (B.7) and (B.8).
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B.2 Proof of Theorem 4

First, we will characterize an offline optimal algorithm for CPi.

Then, based on the optimal algorithm, we prove the competitive ratio of our

future-aware online algorithm GCSR
(w)
s .

Finally, we prove the lower bound of competitive ratio of any deterministic online

algorithm.

In CPi, the workload input ai takes value in [0, 1] and exactly one server is

required to serve each ai. When ai(t) > 0, we must keep xi(t) = 1 to satisfy the

feasibility condition. The problem is what we should do if the server is already

active but there is no workload, i.e., ai(t) = 0.

To illustrate the problem better, we define idling interval I1 as follows: I1 ,

[t1, t2], such that (i) ai(t1 − 1) > 0; (ii) ai(t2 + 1) > 0; (iii) ∀τ ∈ [t1, t2], ai(τ) = 0.

Similarly, define the working interval I2: I2 , [t1, t2], such that (i) ai(t1 − 1) = 0;

(ii) ai(t2 + 1) = 0; (iii) ∀τ ∈ [t1, t2], ai(τ) > 0. Define the starting interval Is:

Is , [0, t2], such that (i) ai(t2 + 1) > 0; (ii) ∀τ ∈ [0, t2], ai(τ) = 0. Define the

ending interval Ie: Ie , [t1, T + 1], such that (i) ai(t1 − 1) > 0; (ii) ∀τ ∈ [t1, T + 1],

ai(τ) = 0.

Based on the above definitions, we have the following offline optimal algorithm

CPOFFs for problem CPi.

Lemma 5. CPOFFs is an offline optimal algorithm to problem CPi.

Proof. It is easy to see that it is optimal to set xi = 0 during Is and Ie and set

xi = 1 during each I2.

During an I1, an offline optimal solution must set either xi(τ) = 0 or xi(τ) =

1,∀τ ∈ I1; otherwise, it will incur unnecessary switching cost and can not be optimal.

The cost of setting xi = 1 during an I1 is
∑

t∈I1 d
i
tp(t). The cost of setting xi = 0

during I1 is βs, because we must pay a turn-on cost βs after this I1. Thus the above

algorithm CPOFFs is an offline optimal algorithm to CPi.
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Algorithm 5 An offline optimal Algorithm CPOFFs for CPi

1: According to ai, find Is, Ie and all the I1 and I2.

2: During Is and Ie , set xi = 0.

3: During each I2, set xi = 1.

4: During each I1,

5: if
∑

t∈I1 p(t)d
i
t ≥ βs then

6: set xi(τ) = 0,∀τ ∈ I1.

7: else

8: set xi(τ) = 1,∀τ ∈ I1.

9: end if

Lemma 6. GCSR
(w)
s is (2− as)-competitive for problem CPi, where

αs , min (1, wdminPmin/βs) ∈ [0, 1] and dmin , mint{dt(1) − dt(0)} ≥ 0. Hence,

according to Theorem 3, GCSR(w) achieves the same competitive ratio for CP.

Proof. We compare our online algorithm GCSR
(w)
s and the offline optimal algo-

rithm CPOFFs described above for problem CPi and prove the competitive ratio.

Let xon
i and x̄i be the solutions obtained by GCSR

(w)
s and CPOFFs for problem

CPi, respectively.

Since dt(x(t)) is increasing and convex in x(t) , we have

dit = dt(i)− dt(i− 1)

≥ dt(i− 1)− dt(i− 2)

...

≥ dt(1)− dt(0)

≥ min
t
{dt(1)− dt(0)} = dmin ≥ 0. (B.9)

Let x̄i and xoni be the solutions obtained by CPOFFs and GCSR
(w)
s , respec-

tively. for problem CPi. It is easy to see that during Is and I2, GCSR
(w)
s and

CPOFFs have the same actions. Since the adversary can choose the T to be large

enough, we can omit the cost incurred during Ie when doing competitive analysis.
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Thus, we only need to consider the cost incurred by the GCSR
(w)
s and CPOFFs

during each I1. Notice that at the beginning of an I2, both algorithm may incur

switching cost. However, there must be an I1 before an I2. So this switching cost will

be taken into account when we analyze the cost incurred during I1. More formally,

for a certain I1,denoted as [t1, t2],

CostI1(xi)

=

t2∑
t=t1

p(t)dit (xi(t)− dai(t)e) + βs

t2+1∑
t=t1

[xi(t)− xi(t− 1)]+

=

t2∑
t=t1

p(t)ditxi(t) + βs

t2+1∑
t=t1

[xi(t)− xi(t− 1)]+ . (B.10)

GCSR
(w)
s performs as follows: it accumulates an “idling cost” and when it

reaches βs, it turns off the server; otherwise, it keeps the server idle. Specifically, at

time t, if there exists τ ∈ [t, t + w] such that the idling cost till τ is at least βs, it

turns off the server; otherwise, it keeps it idle. We distinguish two cases:

Case 1: w ≥ βs/(dminPmin). In this case, GCSR
(w)
s performs the same as

CPOFFs . Because

If
∑

t∈I1 d
i
tp(t) ≥ βs, CPOFFs turns off the server at the beginning of the I1,

i.e., at t1. Since w ≥ βs/(dminPmin) and dit ≥ dmin according to Eqn. (B.9), at t1

GCSR
(w)
s can find a τ ∈ [t1, t1 +w] such that the idling cost till τ is at least βs, as

a consequence of which it also turns off the server at the beginning of the I1. Both

algorithms turn on the server at the beginning of the following I2. Thus, we obtain

CostI1(x
on
i ) = CostI1(x̄i) = βs. (B.11)

If
∑

t∈I1 d
i
tp(t) < βs,CPOFFs keeps the server idling during the whole I1.

GCSR
(w)
s finds that the accumulate idling cost till the end of the I1 will not reach

βs, so it also keeps the server idling during the whole I1. Thus, we have

CostI1(x
on
i ) = CostI1(x̄i) =

∑
t∈I1

ditp(t).
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Case 2: w < βs/(dminPmin). In this case, to beat GCSR
(w)
s , the adversary will

choose p(t), ai(t) and dit so that GCSR
(w)
s will keep the server idling for some time

and then turn it off, but CPOFFs will turn off the server at the beginning of the

I1. Suppose GCSR
(w)
s keeps the server idling for δ slots given no workload within

the look-ahead window and then turn it off. Then according to Algorithm 1, we

must have
∑

δ+w d
i
tp(t) < βs and

∑
δ+w+1 d

i
tp(t) ≥ βs. In this case, CostI1(x̄i) = βs

and

CostI1(x
on
i ) =

∑
δ

ditp(t) + βs

=
∑
δ+w

ditp(t)−
∑
w

ditp(t) + βs

≤ βs − dminPminw + βs

= βs(2−
dminPmin

βs
w).

So

CCPi
(xon

i )

CCPi
(x̄i)

≤ CostI1(x
on
i )

CostI1(x̄i)

≤ 2− dminPmin

βs
w.

Combining the above two cases establishes this lemma.

Furthermore, we have some important observations on xon
i and x̄i, which will

be used in later proofs.

T∑
t=1

[xoni (t)− xoni (t− 1)]+ =
T∑
t=1

[x̄i(t)− x̄i(t− 1)]+ . (B.12)

This is because during an I1 with
∑

t∈I1 d
i
tp(t) ≥ βs, x

on
i keeps the server idling for

some time and then turn it off. x̄i turns off the server at the beginning of the I1.

Both xon
i and x̄i turn on the server at the beginning of the following I2. During an

I1 with
∑

t∈I1 d
i
tp(t) < βs, both xon

i and x̄i keep the server idling till the following

I2. Thus, xon
i and x̄i incur the same server switching cost. Besides, in both above

cases, xoni (t) is no less than x̄i(t), we have

xon
i ≥ x̄i. (B.13)
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We also observe that

T∑
t=1

ditp(t) (xoni (t)− dai(t)e)

≤
T∑
t=1

ditp(t) (x̄i(t)− dai(t)e) +

(1− αs)
T∑
t=1

[x̄i(t)− x̄i(t− 1)]+ . (B.14)

By rearranging the terms, we obtain

T∑
t=1

ditp(t) (xoni (t)− x̄i(t)) ≤ (1− αs)
T∑
t=1

[x̄i(t)− x̄i(t− 1)]+ . (B.15)

Notice that
∑T

t=1 d
i
tp(t) (xi(t)− dai(t)e) can be seen as the total server idling cost

incurred by solution xi. Since idling only happens in I1, Eqn. (B.14) follows from

the cases discussed above.

Lemma 7. (2− as) is the lower bound of competitive ratio of any deterministic

online algorithm for problem CPi and also CP, where αs , min (1, wdminPmin/βs) ∈
[0, 1].

Proof. First, we show this lemma holds for problem CPi. We distinguish two cases:

Case 1: w ≥ βs/(dminPmin). In this case,(2− as) = 1, which is clearly the lower

bound of competitive ratio of any online algorithm.

Case 2: w < βs/(dminPmin). Similar as the proof of Lemma 6, we only need to

analyze behaviors of online and offline algorithms during an idle interval I1.

Consider the input: dit = dmin and p(t) = Pmin,∀t ∈ [1, T ]. Under this input,

during an I1, we only need to consider a set of deterministic online algorithms with

the following behavior: either keep the server idling for the whole I1 or keep it idling

for some slots and then turn if off until the end of the I1. The reason is that any

deterministic online algorithm not belonging to this set will turn off the server at

some time and turn on the server before the end of I1, and thus there must be an
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online algorithm incurring less cost by turning off the server at the same time but

turning on the server at the end of I1.

We characterize an algorithm ALG belonging to this set by a parameter δ,

denoting the time it keeps the server idling for given ai ≡ 0 within the lookahead

window. Denote the solutions of algorithms ALG and CPOFFs for problem CPi

to be xalg
i and x̄i, respectively.

If δ is infinite, the competitive ratio is apparently infinite due to the fact that

the adversary can construct an I1 whose duration is infinite. Thus we only consider

those algorithms with finite δ. The adversary will construct inputs as follows:

If δ + w ≥ βs/(dminPmin), the adversary will construct an I1 whose duration is

longer than δ + w. In this case, ALG will keep server idling for δ slots and then

turn if off while CPOFFs turns off the server at the beginning of the I1 (c.f. Fig.

B.1a). Then the ratio is

CCPi
(xalg

i )

CCPi
(x̄i)

=

∑
δ dminPmin + βs + dminPmin

βs + dminPmin

> 1 +
[βs/(dminPmin)− w] dminPmin

βs + dminPmin

= 2− dminPmin(w + 1)

βs + dminPmin

.

If δ + w < βs/(dminPmin), the adversary will construct an I1 whose duration is

exactly δ + w. In this case, ALG will keep server idling for δ slots and then turn

if off while CPOFFs keeps the server idling during the whole I1 (c.f. Fig. B.1b).

Then the ratio is

CCPi
(xalg

i )

CCPi
(x̄i)

=

∑
δ dminPmin + βs + dminPmin

dminPmin(δ + w) + dminPmin

=
dminPmin(δ + w + 1) + βs − wdminPmin

dminPmin(δ + w + 1)

≥ 1 +
βs − wdminPmin

βs + dminPmin

= 2− dminPmin(w + 1)

βs + dminPmin

.
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When dmin → 0 or βs →∞, we have

2− dminPmin(w + 1)

βs + dminPmin

→ 2− dminPminw

βs
.

Combining the above two cases establishes the lower bound for problem CPi.

)(tai

)(txi

1I wδ> +

CPOFFs

ALG

δ δ ...

...

...

(a) δ + w ≥ βs/(dminPmin)

)(tai

)(txi

1I wδ= +

δ δ ...

...

...CPOFFs

ALG

(b) δ + w < βs/(dminPmin)

Figure B.1: Worst case examples.

For problem CP, consider the case that dt(0) = 0 and a(t) ∈ [0, 1], ∀t. In this

case, it is straightforward that CP1 is equivalent to CP. Thus, the lower bound for

CPi is also a lower bound for CP.

Theorem 4 follows from lemmas 6 and 7.

B.3 Proof of Theorem 5

Similar as the proof of Theorem 4, we only need to focus on the idling interval I1,

[t1, t2]. RGCSR
(w)
s performs as follows: it accumulates an “idling cost” and when

it is less than Λ, it keeps the server idling; otherwise, it will see whether the job will

comes, i.e., ai > 0, before the “idling cost” reaches βs within the look-ahead window

w. If so, it keeps the server idling; else it turns off the server. Let x̄i and xoni be

the solutions obtained by CPOFFs (Algorithm 5) and RGCSR
(w)
s (Algorithm 2),

respectively. As shown in the proof of Theorem 4, the cost of the offline optimal
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CPOFFs is

CostI1(x̄i) =

Di, if Di < βs,

βs, else,

where Di ,
∑

t∈I1 d
i
tp(t).

According to Algorithm 2, when Di < αsβs, we have

E[CostI1(x̄i)] = Di;

when αsβs ≤ Di < βs, we have

E[CostI1(x
on
i )] ≤

Di−αsβs∫
0

(βs + Λ)fΛ(λ)dΛ +

(1−αs)βs∫
Di−αsβs

DifΛ(λ)dΛ;

when Di ≥ βs, we have

E[CostI1(x
on
i )] ≤

(1−αs)βs∫
0

(βs + Λ)fΛ(λ)dΛ;

According to PDF fΛ(λ) (Eqn. (4.2)), we can calculate E[CostI1(x
on
i )] and the

ratio between E[CostI1(x
on
i )] and E[CostI1(x̄i)]:

E[CostI1(x
on
i )]

CostI1(x̄i)
≤

1, if Di < αsβs,

e
e−1+αs

, else.

So
E[CCPi

(xon
i )]

CCPi
(x̄i)

≤ E[CostI1(x
on
i )]

CostI1(x̄i)
≤ e

e− 1 + αs
.

Hence, according to Theorem 3, RGCSR(w) achieves the same competitive ratio

e
e−1+αs

for CP.

Next, we prove no randomized algorithm can achieve a smaller competitive ratio.

We set dt(x) = dminx, p(t) = Pmin,∀t ∈ [1, T ], then problem CP becomes the

problem in [29]. According to [29], e
e−1+α

is the competitive ratio lower bound for

any randomized online algorithms.

2 End of chapter.



Appendix C

Proofs of Theorems 6, 7 and 8

C.1 Proof of Theorem 6

First, we show that the combined solution
∑N

i=1 ȳi is optimal to EP.

Denote CEP(y) to be cost of EP of solution y. Suppose that ỹ is an optimal

solution for EP. We will show that we can construct a new feasible solution
∑N

i=1 ŷi

for EP, and a new feasible solution ŷi for each EPi, such that

CEP(ỹ) = CEP(
N∑
i=1

ŷi) =
N∑
i=1

CEPi
(ŷi) +

T∑
t=1

p(t) [e(t)−NL]+ . (C.1)

ȳi is an optimal solution for each EPi. Hence, CEPi
(ŷi) ≥ CEPi

(ȳi) for each i.

Thus,

CEP(ỹ) =
N∑
i=1

CEPi
(ŷi) +

T∑
t=1

p(t) [e(t)−NL]+

≥
N∑
i=1

CEPi
(ȳi) +

T∑
t=1

p(t) [e(t)−NL]+ . (C.2)

Besides, we also can prove that

N∑
i=1

CEPi
(ȳi) +

T∑
t=1

p(t) [e(t)−NL]+ ≥ CEP(
N∑
i=1

ȳi). (C.3)

Hence, CEP(ỹ) = CEP(
∑N

i=1 ȳi), i.e.,
∑N

i=1 ȳi is an optimal solution for EP.

Then, we show CEP(
∑N

i=1 y
on
i ) ≤ γ · CEP(

∑N
i=1 ȳi).

Because CEPi
(yoni ) ≤ γ · CEPi

(ȳi) and ȳi is optimal for EPi, we have γ ≥ 1.

According to Eqn. (C.2), we have

γ · CEP(ỹ) ≥
N∑
i=1

CEPi
(yoni ) +

T∑
t=1

p(t) [e(t)−NL]+ .

70
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Besides, we also can prove that

N∑
i=1

CEPi
(yoni ) +

T∑
t=1

p(t) [e(t)−NL]+ ≥ CEP(
N∑
i=1

yoni ). (C.4)

Hence, CEP(
∑N

i=1 y
on
i ) ≤ γ · CEP(

∑N
i=1 ȳi).

It remains to prove Eqn. (C.1), (C.3) and (C.4), which we show in Lemmas 8

and 9.

Lemma 8. CEP(ỹ) = CEP(
∑N

i=1 ŷi) =
∑N

i=1 CEPi
(ŷi) +

∑T
t=1 p(t) [e(t)−NL]+.

Proof. Define ŷi based on ỹ by:

ŷi(t) =

1, if i ≤ ỹ(t)

0, otherwise.
(C.5)

It is straightforward to see that

ỹ(t) =
N∑
i=1

ŷi(t). (C.6)

So we have CEP(ỹ) = CEP(
∑N

i=1 ŷi).

According to EP,

CEP(
N∑
i=1

ŷi) =
T∑
t=1

{
ψ

(
N∑
i=1

ŷi(t), p(t), e(t)

)

+βg[
N∑
i=1

ŷi(t)−
N∑
i=1

ŷi(t− 1)]+

}
,

and

N∑
i=1

CEPi
(ŷi) =

T∑
t=1

{
N∑
i=1

ψ (ŷi(t), p(t), ei(t))

+βg

N∑
i=1

[ŷi(t)− ŷi(t− 1)]+

}
.
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Note that ŷ1(t) ≥ ... ≥ ŷN(t) is a decreasing sequence. Because ŷi(t) ∈ {0, 1}, ∀i, t,
we obtain

N∑
i=1

[ŷi(t)− ŷi(t− 1)]+

=

0, if
∑N

i=1 ŷi(t) ≤
∑N

i=1 ŷi(t− 1)∑N
i=1 ŷi(t)−

∑N
i=1 ŷi(t− 1), otherwise

=
[ N∑
i=1

ŷi(t)−
N∑
i=1

ŷi(t− 1)
]+

. (C.7)

Also, according to Eqn. (2.9), ψ (y(t), p(t), e(t)) can be rewritten as:

ψ (y(t), p(t), e(t))

,


cmy(t) + p(t)e(t), if p(t) ≤ co,

cmy(t) + p(t)e(t)+ else.

[co − p(t)] min{e(t), Ly(t)}

(C.8)

Next, we distinguish two cases:

Case 1: e(t) < NL. In this case,
∑N

i=1 ei(t) = e(t) and

[e(t)−NL]+ = 0. According to the definition of ei(t), denoting N̄ = be(t)/Lc < N ,

we have

ei(t) =


L, if i ≤ N̄ ,

e(t)− N̄L, if i = N̄ + 1,

0, else.

Because ŷ1(t) ≥ ... ≥ ŷN(t) is a decreasing sequence and ŷi(t) ∈ {0, 1}, ∀t, we

have

N∑
i=1

min{ei(t), Lŷi(t)} =

L
∑N

i=1 ŷi(t), if
∑N

i=1 ŷi(t) ≤ N̄ ,

e(t) else.

= min{e(t), L
N∑
i=1

ŷi(t)}.
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Thus, by Eqn. (C.8), we have

ψ

(
N∑
i=1

ŷi(t), p(t), e(t)

)
=

N∑
i=1

ψ (ŷi(t), p(t), ei(t))

+p(t) [e(t)−NL]+ . (C.9)

Case 2: e(t) ≥ NL. In this case, ei(t) = L, ∀i ∈ [1, N ], we have

N∑
i=1

min{ei(t), Lŷi(t)} = L

N∑
i=1

ŷi(t) = min{e(t), L
N∑
i=1

ŷi(t)}.

Thus, by Eqn. (C.8), we have

ψ

(
N∑
i=1

ŷi(t), p(t), e(t)

)
=

N∑
i=1

ψ (ŷi(t), p(t), ei(t))

+p(t) [e(t)−NL]+ . (C.10)

By Eqns. (C.7), (C.9) and (C.10), we have CEP(
∑N

i=1 ŷi) =
∑N

i=1 CEPi
(ŷi) +∑T

t=1 p(t) [e(t)−NL]+ .

This completes the proof of this lemma.

Lemma 9.
∑N

i=1 CEPi
(yi) +

∑T
t=1 p(t) [e(t)−NL]+ ≥

CEP(
∑N

i=1 yi), where yi is any feasible solution for problem EPi

Proof. First, it is straightforward that

N∑
i=1

[yi(t)− yi(t− 1)]+ ≥
[ N∑
i=1

yi(t)−
N∑
i=1

yi(t− 1)
]+

. (C.11)

Then by Eqn. (C.8) and the fact that
∑N

i=1 ei(t) = min{e(t), NL} and

N∑
i=1

min{ei(t), Lyi(t)} ≤ min{
N∑
i=1

ei(t), L
N∑
i=1

yi(t)}

≤ min{e(t), L
N∑
i=1

yi(t)},
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we have

ψ

(
N∑
i=1

ȳi(t), p(t), e(t)

)
≤

N∑
i=1

ψ (ȳi(t), p(t), ei(t))

+p(t) [e(t)−NL]+ . (C.12)

This lemma follows from Eqns. (C.11) and (C.12).

C.2 Proof of Theorem 7

Instead of proving this theorem directly, we prove a stronger theorem that fully

characterizes an offline optimal solution. Then Theorem 7 follows naturally. An

very important structure of an offline optimal solution is “critical segments”, which

are constructed according to Ri(t).

Definition 1. We divide all time intervals in [1, T ] into disjoint parts called critical

segments:

[1, T c1 ], [T c1 + 1, T c2 ], [T c2 + 1, T c3 ], ..., [T ck + 1, T ]

The critical segments are characterized by a set of critical points: T c1 < T c2 < ... <

T ck . We define each critical point T cj along with an auxiliary point T̃ cj , such that the

pair (T cj , T̃
c
j ) satisfy the following conditions:

(Boundary): Either
(
Ri(T

c
j ) = 0 and Ri(T̃ cj ) = −βg

)
or
(
Ri(T

c
j ) = −βg and Ri(T̃ cj ) = 0

)
.

(Interior): −β < Ri(τ) < 0 for all T cj < τ < T̃ cj .

In other words, each pair of (T cj , T̃
c
j ) corresponds to an interval where Ri(t)

goes from -βg to 0 or 0 to -βg, without reaching the two extreme values inside the

interval. For example, (T c1 , T̃
c
1 ) and (T c2 , T̃

c
2 ) in Fig. C.1 are two such pairs, while the

corresponding critical segments are (T c1 , T
c
2 ) and (T c2 , T

c
3 ). It is straightforward to see

that all (T cj , T̃
c
j ) are uniquely defined, and hence critical segments are well-defined.

See Fig. C.1 for an example.
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Figure C.1: An example of critical segments.

Once the time horizon [1, T ] is divided into critical segments, we can now char-

acterize the optimal solution.

Definition 2. We classify the type of a critical segment by:

Type-start (also call type-0): [1, T c1 ]

Type-1: [T cj + 1, T cj+1], if Ri(T
c
j ) = −βg and Ri(T

c
j+1) = 0

Type-2: [T cj + 1, T cj+1], if Ri(T
c
j ) = 0 and Ri(T

c
j+1) = −βg

Type-end (also call type-3): [T ck + 1, T ]

For completeness, we also let T c0 = 0 and T ck+1 = T .

Then the following theorem characterizes an offline optimal solution.

Theorem 10. An optimal solution for EPi is given by

yOFA(t) ,

0, if t ∈ [T cj + 1, T cj+1] is type-start/-2/-end,

1, if t ∈ [T cj + 1, T cj+1] is type-1.
(C.13)

Theorem 7 follows from Theorem 10 and Definition 2. Thus, it remains to prove

Theorem 10.

Proof of Theorem 10:

Before we prove the theorem, we introduce a lemma.
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We define the cost with regard to a segment j by:

CEPsg−j
i

(y)

,

T cj+1∑
t=T cj +1

ψ (y(t), p(t), ei(t)) +

T cj+1+1∑
t=T cj +1

βg · [y(t)− y(t− 1)]+

and define a subproblem for critical segment j by:

EPi
sg-j(ylj, y

r
j) : min CEPsg−j

i
(y)

s.t. y(T cj ) = ylj, y(T cj+1 + 1) = yrj ,

var y(t) ∈ {0, 1}, t ∈ [T cj + 1, T cj+1].

Note that due to the startup cost across segment boundaries, in general CEPi
6=∑

CEPsg−j
i

(y). In other words, we should not expect that putting together the solu-

tions to each segment will lead to an overall offline optimal solution. However, the

following lemma shows an important structure property that one optimal solution of

EPsg−j
i (ylj, y

r
j ) is independent of boundary conditions (ylj, y

r
j ) although the optimal

value depends on boundary conditions.

Lemma 10. (yOFA(t))
T cj+1

t=T cj +1 in (C.13) is an optimal solution for EPsg−j
i (ylj, y

r
j ),

despite any boundary conditions (ylj, y
r
j).

We first use this lemma to prove Theorem 10 and then we prove this lemma.

Suppose (y∗(t))Tt=1 is an optimal solution for EPi. For completeness, we let y∗(0) = 0

and y∗(T + 1) = 0. We define a sequence (y0(t))Tt=1, (y1(t))Tt=1, ..., (yk+1(t))Tt=1 as

follows:

1. y0(t) = y∗(t) for all t ∈ [1, T ].

2. For all t ∈ [1, T ] and j = 1, ..., k

yj(t) =

yOFA(t), if t ∈ [1, T cj ]

y∗(t), otherwise
(C.14)
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3. yk+1(t) = yOFA(t) for all t ∈ [1, T ].

We next set the boundary conditions for each EPsg−j
i by

ylj = yOFA(T cj ) and yrj = y∗(T cj+1 + 1) (C.15)

It follows that

CEPi
(yj)− CEPi

(yj+1) = CEPsg−j
i

(y∗)− CEPsg−j
i

(yOFA) (C.16)

By Lemma 10, we obtain CEPsg−j
i

(y∗) ≥ CEPsg−j
i

(yOFA) for all j. Hence,

CEPi
(y∗) = CEPi

(y0) ≥ ... ≥ CEPi
(yk+1) = CEPi

(yOFA) (C.17)

This completes the proof of Theorem 10.

Proof of Lemma 10: Consider given any boundary condition (ylj, y
r
j) for EPsg−j

i .

Suppose (ŷ(t))
T cj+1

t=T cj +1 is an optimal solution for EPsg−j
i w.r.t. (ylj, y

r
j), and ŷ 6= yOFA.

We aim to show CEPsg−j
i

(ŷ) ≥ CEPsg−j
i

(yOFA), by considering the types of critical

segment.

(type-1): First, suppose that critical segment [T cj + 1, T cj+1] is type-1. Hence,

yOFA(t) = 1 for all t ∈ [T cj + 1, T cj+1]. Hence,

CEPsg−j
i

(yOFA) = βg · (1− ylj) +

T cj+1∑
t=T cj +1

ψ
(
1, p(t), ei(t)

)
(C.18)

Case 1: Suppose ŷ(t) = 0 for all t ∈ [T cj + 1, T cj+1]. Hence,

CEPsg−j
i

(ŷ) = βg · yrj +

T cj+1∑
t=T cj +1

ψ
(
0, p(t), ei(t)

)
(C.19)

We obtain:

CEPsg−j
i

(ŷ)− CEPsg−j
i

(yOFA)

= βg · yrj +

T cj+1∑
t=T cj +1

ri(t)− βg(1− ylj) (C.20)

≥ βg · yrj +Ri(T
c
j+1)−Ri(T

c
j )− βg(1− ylj) (C.21)

= βg · yrj + βg − βg + βgy
l
j ≥ 0 (C.22)
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where Eqn. (C.20) follows from the definition of ri(t) (see Eqn. (5.3)) and Eqn.

(C.21) follows from Lemma 11. This completes the proof for Case 1.

(Case 2): Suppose ŷ(t) = 1 for some t ∈ [T cj + 1, T cj+1]. This implies that

CEPsg−j
i

(ŷ) has to involve the startup cost βg.

Next, we denote the minimal set of segments within [T cj + 1, T cj+1] by

[τ b1 , τ
e
1 ], [τ b2 , τ

e
2 ], [τ b3 , τ

e
3 ], ..., [τ bp , τ

e
p ]

such that ŷ(t) 6= yOFA(t) for all t ∈ [τ bl , τ
e
l ], l ∈ {1, ..., p}, where τ el < τ bl+1.

Since ŷ 6= yOFA, then there exists at least one t ∈ [T cj +1, T cj+1] such that ŷ(t) = 0.

Hence, τ b1 is well-defined.

Note that upon exiting each segment [τ bl , τ
e
l ], ŷ switches from 0 to 1. Hence, it

incurs the startup cost βg. However, when τ ep = T cj+1 and yrj = 0, the startup cost

is not for critical segment [T cj + 1, T cj+1].

Therefore, we obtain:

CEPsg−j
i

(ŷ)− CEPsg−j
i

(yOFA) (C.23)

=

τe1∑
t=τb1

ri(t) + βg · 1[τ b1 6= T cj + 1] (C.24)

+

p−1∑
l=2

( τel∑
t=τbl

ri(t) + βg

)
(C.25)

+

τep∑
t=τbp

ri(t) + βgy
r
j · 1[τ ep = T cj+1] + βg · 1[τ ep 6= T cj+1]. (C.26)

Now we prove the terms (C.24) (C.25) and (C.26) are all no less than 0.

First, if τ b1 = T cj + 1, then

τe1∑
t=τb1

ri(t) + βg · 1[τ b1 6= T cj + 1] =

τe1∑
t=T cj +1

ri(t)

≥ Ri(τ
e
1 )−Ri(T

c
j )

≥ Ri(τ
e
1 ) + βg ≥ 0.
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else then

τe1∑
t=τb1

ri(t) + βg · 1[τ b1 6= T cj + 1] =

τe1∑
t=τb1

ri(t) + βg

≥ Ri(τ
e
1 )−Ri(τ

b
1 − 1) + βg

≥ Ri(τ
e
1 ) + βg ≥ 0.

Thus, we proved (C.24)≥ 0.

Second,

τel∑
t=τbl

ri(t) + βg ≥ Ri(τ
e
l )−Ri(τ

b
l − 1) + βg

≥ Ri(τ
e
l ) + βg ≥ 0.

Thus, we proved (C.25)≥ 0.

Last, if τ ep = T cj+1, then

τep∑
t=τbp

ri(t) + βgy
r
i · 1[τ ep = T cj+1] + βg · 1[τ ep 6= T cj+1]

≥
T cj+1∑
t=τbp

ri(t) ≥ Ri(T
c
j+1)−Ri(τ

b
p − 1)

= −Ri(τ
b
p − 1) ≥ 0.

else then

τep∑
t=τbp

ri(t) + βgy
r
i · 1[τ ep = T cj+1] + βg · 1[τ ep 6= T cj+1]

=

τep∑
t=τbp

ri(t) + βg ≥ Ri(τ
e
p )−Ri(τ

b
p − 1) + βg

≥ 0.
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Thus, we proved (C.26)≥ 0.

So we obtain

CEPsg−j
i

(ŷ)− CEPsg−j
i

(yOFA) ≥ 0.

(type-2): Next, suppose that critical segment [T cj + 1, T cj+1] is type-2. Hence,

yOFA(t) = 0 for all t ∈ [T cj +1, T cj+1]. Note that the above argument applies similarly

to type-2 setting, when we consider (Case 1): ŷ(t) = 1 for all t ∈ [T cj + 1, T cj+1] and

(Case 2): ŷ(t) = 0 for some t ∈ [T cj + 1, T cj+1].

(type-start and type-end): We note that the argument of type-2 applies sim-

ilarly to type-start and type-end settings.

Therefore, we complete the proof by showing CEPsg−j
i

(ŷ) ≥ CEPsg−j
i

(yOFA) for all

j ∈ [0, k].

Lemma 11. Suppose τ1, τ2 ∈ [T cj + 1, T cj+1] and τ1 < τ2. Then,

Ri(τ2)−Ri(τ1)

≤
∑τ2

t=τ1+1 ri(t), if [T cj + 1, T cj+1] is type-1

≥∑τ2
t=τ1+1 ri(t), if [T cj + 1, T cj+1] is type-2

(C.27)

Proof. We recall that

Ri(t) , min
{

0,max{−βg, Ri(t− 1) + ri(t)}
}

(C.28)

First, we consider [T cj + 1, T cj+1] as type-1. This implies that only Ri(T
c
j ) = −βg,

whereas Ri(t) > −βg for t ∈ [T cj + 1, T cj+1]. Hence,

Ri(t) = min{0, Ri(t− 1) + ri(t)} ≤ Ri(t− 1) + ri(t) (C.29)

Iteratively, we obtain

Ri(τ2) ≤ Ri(τ1) +

τ2∑
t=τ1+1

ri(t) (C.30)

When [T cj + 1, T cj+1] is type-2, we proceed with a similar proof, except

Ri(t) = max{−βg, Ri(t− 1) + ri(t)} ≥ Ri(t− 1) + ri(t) (C.31)

Therefore,

Ri(τ2) ≥ Ri(τ1) +

τ2∑
t=τ1+1

ri(t). (C.32)
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C.3 Proof of Theorem 8

First, we focus on a sub-problem EPi with energy demand ei. We denote the set of

indexes of critical segments for type-h by Th ⊆ {0, .., k}. Note that we also refer to

type-start and type-end by type-0 and type-3 respectively.

Define the sub-cost for type-h by

Cty-h
EPi

(y) ,
∑
j∈Th

T cj+1∑
t=T cj +1

ψ (y(t), p(t), ei(t))

+βg · [y(t)− y(t− 1)]+.

Hence, CEPi
(y) =

∑3
h=0 Cty-h

EPi
(y). We prove by comparing the sub-cost for each

type-h. We denote the outcome of CHASE
(w)
s by

(
yCHASE(w)(t)

)T
t=1
.

(type-0): Note that both yOFA(t) = yCHASE(w)(t) = 0 for all t ∈ [1, T c1 ]. Hence,

Cty-0
EPi

(yOFA) = Cty-0
EPi

(yCHASE(w)).

(type-1): Based on the definition of critical segment (Definition 1), we recall

that there is an auxiliary point T̃ cj , such that either
(
Ri(T

c
j ) = 0 and Ri(T̃ cj ) = −βg

)
or
(
Ri(T

c
j ) = −βg and Ri(T̃ cj ) = 0

)
. We focus on the segment T cj + 1 +w < T̃ cj . We

observe

yCHASE(w)(t) =

0, for all t ∈ [T cj + 1, T̃ cj − w),

1, for all t ∈ [T̃ cj − w, T cj+1].

We consider a particular type-1 critical segment, i.e., k-th type-1 critical segment:

[T cj + 1, T cj+1]. Note that by the definition of type-1, yOFA(T cj ) = yCHASE(w)(T
c
j ) = 0.

yOFA(t) switches from 0 to 1 at time T cj +1, while yCHASE(w) switches at time T̃ cj −w,

both incurring startup cost βg. The cost difference between yCHASE(w) and yOFA
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within [T cj + 1, T cj+1] is

T̃ cj−w−1∑
t=T cj +1

(
ψ (0, p(t), ei(t))− ψ

(
1, σ(t), ei(t)

))
+ βg − βg

=

T̃ cj−w−1∑
t=T cj +1

ri(t) = Ri(T̃
c
j − w − 1)−Ri(T

c
j ) = q1

k + βg,

where q1
k , Ri(T̃

c
j − w − 1).

Recall the number of type-h critical segments mh , |Th|.

Cty-1
EPi

(yCHASE(w)) ≤ Cty-1
EPi

(yOFA) +m1 · βg +

m1∑
k=1

q1
k.

(type-2) and (type-3): We derive similarly for h = 2 or 3 as

Cty-h
EPi

(yCHASE(w)) ≤ Cty-h
EPi

(yOFA)−
mh∑
k=1

qhk

≤ Cty-h
EPi

(yOFA) + βgmh.

The last inequality comes from that qhk ≥ −βg for all h, k.

Furthermore, we note m1 = m2 +m3. Overall, we obtain

CEPi
(yCHASE(w))

CEPi
(yOFA)

=

∑3
h=0 Cty-h

EPi
(yCHASE(w))∑3

h=0 Cty-h
EPi

(yOFA)

≤ m1βg +
∑m1

k=1 q
1
k + (m2 +m3)βg +

∑3
h=0 Cty-h

EPi
(yOFA)∑3

h=0 Cty-h
EPi

(yOFA)

= 1 +
2m1βg +

∑m1

k=1 q
1
k∑3

h=0 Cty-h
EPi

(yOFA)

≤ 1 +


0 if m1 = 0,

2m1βg +
∑m1

k=1 q
1
k

Cty-1
EPi

(yOFA)
otherwise.
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By Lemma 12 and simplifications, we obtain

CEPi
(yCHASE(w))

CEPi
(yOFA)

≤ 1 +
2βg
(
LPmax − Lco − cm

)
βgLPmax + w · cmPmax

(
L− cm

Pmax−co

))
≤ 1 +

2
(
Pmax − co

)
Pmax(1 + wcm/βg)

. (C.33)

Hence, according to Theorem 6, CHASE(w) achieves the same competitive ratio

for problem EP.

Lemma 12.

Cty-1
EPi

(yOFA) ≥ m1βg +

m1∑
k=1

((q1
k + βg)(Lco + cm)

LPmax − Lco − cm

+w · cm +
co(−q1

k + w · cm)

Pmax − co

)
≥ m1Pmax(βg + wcm)

Pmax − co
.

Proof. Consider a particular type-1 segment [T cj +1, T cj+1]. Denote the costs of yOFA

during [T cj + 1, T̃ cj − w − 1] and [T̃ cj − w, T cj+1] by Costup and Costpt respectively.

Step 1: We bound Costup as follows:

Costup

= βg +

T̃ cj−w−1∑
t=T cj +1

ψ (1, p(t), ei(t))

= βg + (T̃ cj − w − 1− T cj )cm +

T̃ cj−w−1∑
t=T cj +1

(
ψ (1, p(t), ei(t))− cm

)
. (C.34)
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On the other hand, we obtain

T̃ cj−w−1∑
t=T cj +1

(
ψ (1, p(t), ei(t))− cm

)

=

∑T̃ cj−w−1

t=T cj +1

(
ψ (1, p(t), ei(t))− cm

)
∑T̃ cj−w−1

t=T cj +1

(
ψ (0, p(t), ei(t))− ψ (1, p(t), ei(t)) + cm

)
×

T̃ cj−w−1∑
t=T cj +1

(
ψ (0, p(t), ei(t))− ψ (1, p(t), ei(t)) + cm

)
≥ min

τ∈[T cj +1,T̃ cj−w−1]

ψ (1, p(τ), ei(τ))− cm
ψ (0, p(τ), ei(τ))− ψ (1, p(τ), ei(τ)) + cm

×
T̃ cj−w−1∑
t=T cj +1

(
ψ (0, p(t), ei(t))− ψ (1, p(t), ei(t)) + cm

)
≥ co

Pmax − co
(C.35)

×
T̃ cj−w−1∑
t=T cj +1

(
ψ (0, p(t), ei(t))− ψ (1, p(t), ei(t)) + cm

)
.

The last inequality follows from Lemma 13.

Next, we bound the second term by

T̃ cj−w−1∑
t=T cj +1

(
ψ (0, p(t), ei(t))− ψ (1, p(t), ei(t)) + cm

)

≥
T̃ cj−w−1∑
t=T cj +1

(
ri(t) + cm

)
≥ Ri

(
T̃ cj − w − 1

)
−Ri

(
T cj
)

+ (T̃ cj − w − 1− T cj )cm

= q1
k + βg + (T̃ cj − w − 1− T cj )cm.
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Together, we obtain

Costup

≥ βg + (T̃ cj − w − 1− T cj )cm +

co
Pmax − co

(
q1
k + βg + (T̃ cj − w − 1− T cj )cm

)
= βg +

(q1
k + βg)co + (T̃ cj − w − 1− T cj )Pmaxcm

Pmax − co
. (C.36)

Furthermore, we note that
(
T̃ cj − w − 1− T cj

)
is lower bounded by the steepest

descend when p(t) = Pmax and ei(t) = L,

T̃ cj − w − 1− T cj ≥
q1
k + βg

L
(
Pmax − co

)
− cm

(C.37)

By Eqns. (C.36)-(C.37), we obtain

Costup

≥ βg +
(q1
k + βg)co + (T̃ cj − w − 1− T cj )Pmaxcm

Pmax − co
≥ βg +

(q1
k + βg)(Lco + cm)

L
(
Pmax − co

)
− cm

. (C.38)

Step 2: We bound Costpt as follows.

Costpt =

T cj+1∑
t=T̃ cj−w

ψ (1, p(t), ei(t))

= (T cj+1 − T̃ cj + w + 1)cm +

T cj+1∑
t=T̃ cj−w

(
ψ (1, p(t), ei(t))− cm

)
≥ w · cm +

co
Pmax − co

T cj+1∑
t=T̃ cj−w

(
ψ (0, p(t), ei(t))− ψ (1, p(t), ei(t)) + cm

)
.



APPENDIX C. PROOFS OF THEOREMS 6, 7 AND 8 86

On the other hand, we obtain

T cj+1∑
t=T̃ cj−w

(
ψ (0, p(t), ei(t))− ψ (1, p(t), ei(t)) + cm

=

T cj+1∑
t=T̃ cj−w

ri(t) + (T cj+1 − T̃ cj + w + 1)cm

≥ Ri(T
c
j+1)−Ri(T̃

c
j − w − 1) + w · cm = w · cm − q1

k.

Therefore,

Costpt ≥ w · cm +
co(w · cm − q1

k)

Pmax − co
. (C.39)

Since there are m1 type-1 critical segments, according to Eqns. (C.38)-(C.39),

we obtain

Costty-1(yOFA)

≥ m1βg +

m1∑
k=1

((q1
k + βg)(Lco + cm)

L
(
Pmax − co

)
− cm

+w · cm +
co(−q1

k + w · cm)

Pmax − co

)
≥ m1βg +

m1∑
k=1

( (q1
k + βg)co(
Pmax − co

)
+w · cm +

co(−q1
k + w · cm)

Pmax − co

)
= m1βg +

m1(βgco + Pmaxwcm)

Pmax − co
=

m1Pmax(βg + wcm)

Pmax − co
.

Lemma 13.

ψ (1, p(τ), ei(τ))− cm
ψ (0, p(τ), ei(τ))− ψ (1, p(τ), ei(τ)) + cm

≥ co
Pmax − co

.
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Proof. We expand ψ (y(τ), p(τ), ei(τ)) for each case:

Case 1: co ≥ p(τ). By Eqn. (2.9) and ei(τ) ≤ L,∀i, τ ,

ψ (1, p(τ), ei(τ)) = p(τ)ei(τ) + cm,

ψ (0, p(τ), ei(τ)) = p(τ)ei(τ).

Therefore,
ψ (1, p(t), ei(t))− cm

ψ (0, p(t), ei(t))− ψ (1, p(t), ei(t)) + cm
=∞.

Case 2: co < p(τ). By Eqn. (2.9) and ei(τ) ≤ L,∀i, τ ,

Thus,

ψ (1, p(τ), ei(τ)) = coei(τ) + cm,

ψ (0, p(τ), ei(τ)) = p(τ)ei(τ).

Therefore,

ψ (1, p(τ), ei(τ))− cm
ψ (0, p(τ), ei(τ))− ψ (1, p(τ), ei(τ)) + cm

≥ coei(τ)

p(τ)ei(τ)− coei(τ)

≥ co
Pmax − co

.

Combining both cases, we complete the proof of this lemma.

2 End of chapter.



Appendix D

Proof of Theorem 9

Let (x̄, ȳ) be an offline optimal solution obtained by solving CP and EP separately

in sequence and (x∗,y∗) be an offline optimal solution obtained by solving the joint-

optimization DCM. Let xon be the solution obtained by GCSR(w) and yoff be

an offline optimal solution of EP given input xon. Let (xon,yon) be the solution

obtained by DCMON(w). Denote CDCM(x,y) to be cost of DCM of solution (x,y)

and CCP(x) to be cost of CP of solution x.

According to Theorem 8, equation (C.33) and the fact that the available look-

ahead window size is only [w −∆s]
+ for DCMON(w) to solve EP (discussed in Sec.

5.3), we have

CDCM(xon,yon)

CDCM(xon,yoff )

≤ 1 +
2βg (LPmax − Lco − cm)

βgLPmax + [w −∆s]
+ cmPmax

(
L− cm

Pmax−co

)
≤ 1 +

2 (LPmax − Lco − cm)

LPmax + αgPmax

(
L− cm

Pmax−co

)
≤ 1 + 2

Pmax − co
Pmax

· 1

1 + αg
, (D.1)

where 4s , βs/(dminPmin) and αg , cm
βg

[w −∆s]
+ is a “normalized” look-ahead

window size that takes values in [0,+∞).

According to Theorem 2, we have

CDCM(x̄, ȳ)

CDCM (x∗,y∗)
≤ LPmax

Lco + cm
. (D.2)

Then if we can bound CDCM(xon,yoff )/CDCM(x̄, ȳ), we obtain the competitive

ratio upper bound of DCMON(w). The following lemma gives us such a bound.

88
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Lemma 14. CDCM(xon,yoff )/CDCM(x̄, ȳ) ≤ 2 − αs, where αs , min (1, w/4s)

and 4s , βs/(dminPmin).

Proof. It is straightforward that

CDCM(xon,yoff ) ≤ CDCM(xon, ȳ). (D.3)

So we seeks to bound CDCM(xon, ȳ)/CDCM(x̄, ȳ).

For solution xon and x̄, denote

CW (x) = βs

T∑
t=1

[x(t)− x(t− 1)]+ , (D.4)

and

CI(xon, x̄) =
T∑
t=1

p(t) (dt(x
on(t))− dt(x̄(t))) . (D.5)

According to Eqn. (B.12), we have

CW (xon
i ) = CW (x̄i). (D.6)

According to lemma 15 and the fact that xoni (t), x̄i(t) ∈ {0, 1}, ∀t, i, we have

CW (xon) = CW (
M∑
i=1

xon
i ) =

M∑
i=1

CW (xon
i )

=
M∑
i=1

CW (x̄i) = CW (
M∑
i=1

x̄i)

= CW (x̄), (D.7)
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and

CI(xon, x̄) =
T∑
t=1

p(t) (dt(x
on(t))− dt(x̄(t)))

=
T∑
t=1

p(t)

xon(t)∑
i=1

dit −
x̄(t)∑
i=1

dit


=

M∑
i=1

T∑
t=1

p(t)dit(x
on
i (t)− x̄i(t))

≤ (1− αs)
M∑
i=1

CW (x̄i)

= (1− αs)CW (x̄), (D.8)

where the last and second last inequalities come from Eqns. (D.7) and (B.15),

respectively.

According to Eqn. (2.9), we have ∀b ∈ [0, xon(t)],

ψ (ȳ(t), p(t), dt (xon(t)))− ψ (ȳ(t), p(t), dt (b))

≤ p(t) (dt (xon(t))− dt (b)) . (D.9)

By the definition of DCM, Eqns. (B.13), (D.4), (D.5) and (D.9),

CDCM(xon, ȳ)

=
T∑
t=1

{ψ (ȳ(t), p(t), dt (xon(t)))

+βs[x
on(t)− xon(t− 1)]+ + βg[ȳ(t)− ȳ(t− 1)]+

}
≤

T∑
t=1

{ψ (ȳ(t), p(t), dt (x̄(t))) + p(t) (dt (xon(t))− dt (x̄(t)))

+βs[x
on(t)− xon(t− 1)]+ + βg[ȳ(t)− ȳ(t− 1)]+

}
=

T∑
t=1

{
ψ (ȳ(t), p(t), dt (x̄(t))) + βg[ȳ(t)− ȳ(t− 1)]+

}
+CW (xon) + CI(xon, x̄). (D.10)
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Then, by Eqns. (D.7), (D.8) and (D.10), we have

CDCM(xon, ȳ)

CDCM (x̄, ȳ)

≤
∑T

t=1 ψ (ȳ(t), p(t), dt (x̄(t))) + CI(xon, x̄) + CW (xon)∑T
t=1 ψ (ȳ(t), p(t), dt (x̄(t))) + CW (x̄)

≤ (1− αs)CW (x̄) + CW (xon)

CW (x̄)

=
(1− αs)CW (x̄) + CW (x̄)

CW (x̄)

= 2− αs. (D.11)

This lemma follows from Eqns. (D.3) and (D.11).

Theorem 9 follows from Eqns. (D.1), (D.2) and lemma 14.

Lemma 15. x̄1, x̄2, . . . x̄M and xon
1 ,xon

2 , . . .xon
M are decreasing sequences, i.e.,

∀t, x̄1(t) ≥ ... ≥ x̄M(t) and xon1 (t) ≥ ... ≥ xonM (t).

Proof. Recall that x̄i and xon
i are offline and online solutions obtained by CPOFFs

and GCSR
(w)
s for problem CPi, respectively. According to the definition of CPi,

a1(t) ≥ a2(t) ≥ ... ≥ aM(t) is a decreasing sequence and d1
t ≤ d2

t ≤ ... ≤ dMt is

an increasing sequence. Thus, for problem CPi, the larger the index i is, the more

sparse workload tends to be and the higher power consumption tends to be. Hence,

for a larger index i, there are more “idling intervals”, meanwhile both CPOFFs and

GCSR
(w)
s tends to keep servers idling less during idling intervals (because idling cost

is higher). So, x̄1, x̄2, . . . x̄M and xon
1 ,xon

2 , . . .xon
M are decreasing sequences, i.e.,

∀t, x̄1(t) ≥ ... ≥ x̄M(t) and xon1 (t) ≥ ... ≥ xonM (t).

2 End of chapter.
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