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Abstract  of  thesis  entitled:  Supervised  Ridge  Regression  for  High  Dimensional

Linear Regression

In the field of statistical learning, we usually have a lot of features to determine the

behavior of some response. For example in gene testing problems we have tons of

genes  as  features  and their  relations  with  certain  disease  need to  be  determined.

Without  specific  knowledge  available,  the  most  simple  and  fundamental  way to

model  this  kind of  problem would be a linear  model.  There are  tons of  existing

methods to solve linear regression, like conventional ordinary least squares, ridge

regression  and  LASSO  (least  absolute  shrinkage  and  selection  operator).  Let  N

denote the number of samples and p denote the number of predictors, in ordinary

settings where we have enough samples (N > p),ordinary linear regression methods

like  ridge  will  usually  give  reasonable  predictions  for  the  future  values  of  the

response. In the development of modern statistical learning, it's quite often that we

meet high dimensional problems (N << p), like microarray data testing problems. In

these kinds of high-dimensional problems it is generally quite difficult to identify the

relationship  between  the  predictors  and  the  response  without  any  further

assumptions. 

Despite the fact that tons of predictors exist for prediction, most of the predictors are

actually spurious in a lot of real problems. A predictor being spurious means that it is

not directly related to the response. Conventional techniques in linear regression like

LASSO and ridge both  have their  limitations  in  high-dimensional  problems.  The

LASSO is one of  the state  of  the art"  technique for sparsity recovery,  but  when

applied to high-dimensional problems, LASSO's performance is degraded a lot due

to  the  presence  of  the  measurement  noise,  which  will  result  in  high  variance

prediction and large prediction error. Ridge on the other hand is more robust to the



additive measurement noise, but also has its obvious limitation of not being able to

separate true predictors from spurious predictors. As mentioned previously in many

high-dimensional problems a large number of the predictors could be spurious, then

in these cases ridge's disability in separating spurious and true predictors will result

in poor interpretability of the model as well as poor prediction performance. The new

technique that I will propose in this thesis aims to accommodate for the limitations of

both of the above two methods thus resulting in more accurate and stable prediction

performance  in  a  high-dimensional  linear  regression  problem  with  significant

measurement noise. The idea is simple, instead of the doing a single step regression,

we divide the regression procedure into two steps. In the first step we try to do a

separation between the seemingly relevant predictors and those that are obviously

spurious by calculating the uni-variant correlations between the predictors and the

response, and discard those predictors that have very small or zero correlation with

the response. After the first step we should have obtained a reduced predictor set,

then we will perform a ridge regression between the reduced predictor set and the

response, the result of this ridge regression will then be our desired output.
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ABSTRACT

In the field of statistical learning, we usually have a lot of features to determine

the behavior of some response. For example in gene testing problems we have

lots of genes as features and their relations with certain disease need to be deter-

mined. Without specific knowledge available, the most simple and fundamental

way to model this kind of problem would be a linear model. There are many ex-

isting method to solve linear regression, like conventional ordinary least squares,

ridge regression and LASSO (least absolute shrinkage and selection operator).

Let N denote the number of samples and p denote the number of predictors,

in ordinary settings where we have enough samples (N > p), ordinary linear

regression methods like ridge regression will usually give reasonable predictions

for the future values of the response. In the development of modern statistical

learning, it’s quite often that we meet high dimensional problems (N << p),

like documents classification problems and microarray data testing problems. In

high-dimensional problems it is generally quite difficult to identify the relation-

ship between the predictors and the response without any further assumptions.

Despite the fact that there are many predictors for prediction, most of the pre-

dictors are actually spurious in a lot of real problems. A predictor being spurious

means that it is not directly related to the response. For example in microarray

data testing problems, millions of genes may be available for doing prediction,

but only a few hundred genes are actually related to the target disease. Conven-



tional techniques in linear regression like LASSO and ridge regression both have

their limitations in high-dimensional problems. The LASSO is one of the “state

of the art technique for sparsity recovery, but when applied to high-dimensional

problems, LASSO’s performance is degraded a lot due to the presence of the

measurement noise, which will result in high variance prediction and large pre-

diction error. Ridge regression on the other hand is more robust to the additive

measurement noise, but has its obvious limitation of not being able to separate

true predictors from spurious predictors. As mentioned previously in many high-

dimensional problems a large number of the predictors could be spurious, then

in these cases ridge’s disability in separating spurious and true predictors will re-

sult in poor interpretability of the model as well as poor prediction performance.

The new technique that I will propose in this thesis aims to accommodate for

the limitations of these two methods thus resulting in more accurate and stable

prediction performance in a high-dimensional linear regression problem with sig-

nificant measurement noise. The idea is simple, instead of the doing a single step

regression, we divide the regression procedure into two steps. In the first step

we try to identify the seemingly relevant predictors and those that are obviously

spurious by calculating the uni-variant correlations between the predictors and

the response. We then discard those predictors that have very small or zero cor-

relation with the response. After the first step we should have obtained a reduced

predictor set. In the second step we will perform a ridge regression between the

reduced predictor set and the response, the result of this ridge regression will

then be our desired output. The thesis will be organized as follows, first I will

start with a literature review about the linear regression problem and introduce

in details about the ridge and LASSO and explain more precisely about their
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limitations in high-dimensional problems. Then I will introduce my new method

called supervised ridge regression and show the reasons why it should dominate

the ridge and LASSO in high-dimensional problems, and some simulation results

will be demonstrated to strengthen my argument. Finally I will conclude with the

possible limitations of my method and point out possible directions for further

investigations.
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論文摘要：高維線性回歸的監督嶺回歸 

在機器學習領域，我們通常有很多的特徵變量，以確定一些回應變量的行為。例如在基因

測試問題，我們有數以萬計的基因用來作為特徵變量，而它們與某些疾病的關係需要被確

定。沒有提供具體的知識，最簡單和基本的方法來模擬這種問題會是一個線性的模型。有

很多現成的方法來解決線性回歸問題，像傳統的普通最小二乘回歸法，嶺回歸和套索回歸。

設 N 為樣本數和，p 為特徵變量數，在普通的情況下，我們通常有足夠的樣本（N> P）。

在這種情況下，普通線性回歸的方法，例如嶺回歸通常會給予合理的對未來的回應變量測

值的預測。隨著現代統計學的發展，我們經常會遇到高維問題（N << P），如 DNA 芯片

數據的測試問題。在這些類型的高維問題中，確定特徵變量和回應變量之間的關係在沒有

任何進一步的假設的情況下是相當困難的。在很多現實問題中，儘管有大量的特徵變量存

在，但是完全有可能只有極少數的特徵變量和回應變量有直接關係，而大部分其他的特徵

變量都是無效的。 套索和嶺回歸等傳統線性回歸在高維問題中有其局限性。套索回歸在

應用於高維問題時，會因為測量噪聲的存在而表現得很糟糕，這將導致非常低的預測準確

率。嶺回歸也有其明顯的局限性。它不能夠分開真正的特徵變量和無效的特徵變量。我提

出的新方法的目的就是在高維線性回歸中克服以上兩種方法的局限性，從而導致更精確和

穩定的預測。想法其實很簡單，與其做一個單一步驟的線性回歸，我們將回歸過程分成兩

個步驟。第一步，我们丟棄那些預測有相關性很小或為零的特徵變量。第二步，我們應該

得到一個消減過的特徵變量集，我們將用這個集和回應變量來進行嶺回歸從而得到我們需

要的結果。

朱張向晨

信息工程課程

哲學碩士論文

香港中文大學（2013 年 7 月）
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1. BASICS ABOUT LINEAR REGRESSION

1.1 Introduction

A linear regression model is a model that assumes a linear relation between the

input predictors X1, X2, X3, ......, Xp and the output response Y . Linear models

have been well developed in the old ages of statistics when computers were not

invented. But even today, linear regression models are still of great importance

in many practical problems. Moreover, despite the existence of many fancy non-

linear regression methods, linear regression models still give better results in many

situations especially when we have small training set or sparse input data. In this

chapter, we will start with the introduction to the basic problem formulation of

linear regression, and then demonstrate how least squares can be used to solve

for the regression coefficients. Then we will introduce two penalized least squares

methods called ridge and LASSO in details. A complete understanding of these

two methods is crucial to uncover the motivations and rationales of the new

technique that will be proposed in this thesis.

1.2 Linear Regression and Least Squares

1.2.1 Standard Notations

Let y be the real valued output response that we wish to predict. And let vector

xT = (x1, x2, ....xp) be the input predictors. The linear model assumes that the



relationship between predictors and the responses is linear or we can use a linear

relationship to do a reasonable approximation. The model has the form:

y = β0 +

p∑
j=1

xjβj

(1.1)

Here the βj’s are the unknown coefficients, and the purpose of linear regression

is to find a good technique to estimate the values of βj’s so as to predict the future

values of the response y. To be more general, let’s introduce the matrix notation

for the model. Let N denote the number of samples we have in the training set,

the responses are represented by a 1 × N vector YT = (y1, y2, .....yN) and the

input predictors are denoted as an N × p + 1 matrix X = (~1, X1, X2, .....Xp),

with each Xi denoting an N by 1 column vector consisting of all N samples of

a single predictor. Let βT = (β0, β1, β2, ..., βp) be the p + 1 unknown regression

coefficients. Now we can express the linear model in (1.1) in the following matrix

form.

Y = Xβ

(1.2)

Now before we move into the actual techniques to solve for this kind of regression

problem, a few common assumptions and justifications of the data must be made.

First of all, the solutions of β are not equi-variant under the scaling of the inputs,

so we normalize the inputs using z-score standardization(which means that we

will normalize the inputs to be zero mean and unit variance) to simplify the

3



problem. The β0 is a constant intercept term in the model, which we want to get

rid of for computational convenience. To accomplish this task, we perform the

following centering procedure.

1. Calculate the mean of each predictor and response

x̄j =
1

N

N∑
i=1

xij, ȳ =
1

N

N∑
i=1

yi

2. Replace each xij by xij − x̄j, and each yi by yi − ȳ, at the same time we

remove the first column of 1s of the input design matrix X so it would now be of

size N × p instead of (N + 1)× p and also we remove the β0 from β so it would

have p elements rather than p+ 1 elements.

After z-score standardization, the predictors now have zero mean and unit

variance and the intercept term is zero. This will be held as a common assumption

for the rest of the discussions if not mentioned specifically.

1.2.2 Least Squares and Its Geometric Meaning

The most popular and traditional estimation method to find the values of the

regression coefficients βjs is called Least Squares. The Least Squares method

aims to find β that minimizes the residual sum of squares, which is represented

in the following equation:

β̂ = arg min
β

RSS(β). =
N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2

(1.3)

The β0 in (1.3) is actually zero following the centering and standardization as-

sumption we made in the previous subsection. Before solving the coefficients,
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let’s look at the geometric meaning of minimizing the residue sum of squares.

Since Xβ = X1β1 + X2β2 + ...Xpβp, we can see that it’s a linear combination

of the columns of the design matrix X. The result is a vector that lies in the

column space of the matrix X. As a result, to minimize RSS(β) = ||Y−Xβ||2,

we are actually seeking the vector in the column space of X that is closest to

the observed response Y, which should simply be the linear projection of Y onto

the column space of X. The resulting β̂ is thus the coordinates of that projected

vector Ŷ = Xβ̂ using the columns of X as basis vectors. Figure 1.1 illustrates

this geometry in a two-dimensional case.

Fig. 1.1: Two dimensional geometry for least squares estimates

Now to solve for the regression coefficients β̂ we write the residual sum-of-

squares in its matrix form:

RSS(β) = (Y−Xβ)T (Y−Xβ)

(1.4)
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It’s clear that this is actually a quadratic function of p unkown variables. To

minimize this function, we differentiate it with respect to β and get the following

result

∂RSS(β)

∂β
= −2XT (Y−Xβ)

∂2RSS(β)

∂β∂βT
= 2XTX

(1.5)

First of all we assume that the matrix X is of full rank, which might not be

true generally and we only assume it for this moment. Then the matrix XTX is

positive definite, so to minimize (1.4), we only need to set the first order derivative

to zero.

XT (Y−Xβ) = 0

(1.6)

The solution we obtained from this equation is unique

β̂ = (XTX)−1XTY

(1.7)

The resulting least squares estimate for the response will be of the following form:

Ŷ = Xβ̂ = X(XTX)−1XTY

(1.8)

The matrix H = X(XTX)−1XT is the projection matrix that projects the original
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response Y onto the column space of the design marix X. It is called the hat

matrix in the literature since it puts a hat onto the observed response.

As we have already mentioned that the columns of X may not be linearly

independent in the reality, which may occur when some predictors are correlated.

In this case, we cannot find a closed form unique solution like (1.7), but neverthe-

less the predicted response Ŷ = Xβ̂ is still the projection of Y onto the column

space of X, while the representation β̂ is not unique. So far we have omitted the

possible randomness observed together with the true response Y, now let’s put

this randomness back into the model as an additive Gaussian measurement noise:

Y = Xβ + ε

(1.9)

Where ε is an i.i.d Gaussian noise with E[ε] = 0 and E[εεT ] = σ2IN (the IN

here is a N by N identity matrix). With these settings, we can now derive some

statistical properties of the ordinary least squares estimate β̂. From (1.7), we can

easily derive the expectation and variance-covariance matrix of β̂

E(β̂) = β

(1.10)

V ar(β̂) = σ2(XTX)−1

(1.11)

As we can see from (1.10) the ordinary least squares estimate is actually an
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unbiased estimation since the expectation is the true underlying coefficients β.

However, as we will illustrate in the next chapter the variance of the least squares

estimates could become a serious problem when the input predictors are correlated

or in other words when the matrix XTX is ill-conditioned. Then we will describe

a penalized least squares technique called ridge regression(Hoerl, 1996) that can

deal with ordinary least squares’ deficiency in the correlated predictors case.
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2. PENALIZED LINEAR REGRESSION

2.1 Introduction

In linear regression, it has been shown that estimates based on the ordinary

least squares method have a very high probability of being undesirable, when

the predictor vectors are not orthogonal (orthonormal under our general assump-

tion that the predictors have been centered and standardized). Also note that

in the case when the predictors are orthonormal, the correlation matrix XTX

should be nearly an identity matrix and all of its eigenvalues should be around

one. In the situation where certain correlations exist between the predictors, the

correlation matrix XTX starts to deviate from the identity matrix and could be

ill-conditioned and the eigenvalues are not uniformly one anymore. We will show

in the following section that due to the existence of the additive measurement

noise ε, the distance between the ordinary least squares estimate β̂ and the true

coefficients β can be very far if the smallest eigenvalue of the correlation matrix

is close to zero.

2.2 Deficiency of the Ordinary Least Squares Estimate

Using the additive Gaussian linear model in (1.9) and let β̂ denote the ordinary

least squares estimate, β the true regression coefficients and σ2 the variance of the

additive measurement noise. In this section we will provide a concise argument



about why the ordinary least squares estimate would fail when the predictors

are not independent. In order to demonstrate the behavior of the least squares

estimate, we will analyze the quantity that represents the distance between β̂ and

β:

L1 ≡ Distance from β̂ to β

L2
1 = (β̂ − β)T (β̂ − β)

(2.1)

Recall the mean and variance-covariance matrix of the ordinary least squares

estimate that we have already derived in the end of the previous chapter:

E(β̂) = β

(2.2)

V ar(β̂) = σ2(XTX)−1

(2.3)

From (2.1), (2.2) and (2.3) we can calculate directly the mean and variance of

the squared distance measure L2
1, the result is as follows:

E[L2
1] = σ2Trace

[
(XTX)−1

]

(2.4)

V ar[L2
1] = 2σ4Trace

[
(XTX)−2

]
10



(2.5)

When correlations exist in the predictors, the correlation matrix XTX deviates

from the identity matrix and becomes ill-conditioned. As a result, the sizes of the

eigenvalues become non-uniform. Let us denote the eigenvalues of the correlation

matrix as:

λmax = λ1 ≥ λ2 ≥ ... ≥ λp = λmin ≥ 0

(2.6)

Then the expectation and variance of the squared distance between the ordinary

least squares estimate and the true coefficients can be expressed explicitly in the

following form.

E[L2
1] = σ2

p∑
i=1

(1/λi)

(2.7)

V ar[L2
1] = 2σ4

p∑
i=1

(1/λi)
2

(2.8)

From (2.7) and (2.8) we can easily find the lower bounds for both the expecta-

tion and variance of the squared distance. The expectation is lower bounded by

σ2/λmin, while the variance is lower bounded by 2σ4/λ2min. With the data col-

lected in the design matrix X, if one or more small eigenvalues (λmin → 0) exist

for the correlation matrix XTX, the distance between our ordinary least squares

estimates and the true regression coefficients could be very far, thus resulting

in poor prediction performance. Moreover if one or more λi becomes exactly

zero then the regression result would be completely random and uncontrollable,
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so without loss of generality we will assume that none of the eigenvalues of the

correlation matrix will hit exactly zero. This kind of deficiency has been ob-

served by those working on non-orthogonal data problems. In the next section

we will introduce a very important regularized linear regression technique called

ridge regression to deal with the limitation of the above ordinary least squares

estimate.

2.3 Ridge Regression

2.3.1 Introduction to Ridge Regression

To deal with the possible limitation and general instability of the least squares

estimate, A.E.Hoerl proposed a new linear regression technique called ridge re-

gression[1]. Instead of using the possible ill-conditioned correlation matrix to

calculate the estimation, Hoerl proposed to add positive values to the diagonal of

the correlation matrix, the ridge estimate β̂∗ is expressed in the following formula

(The I in the formula represent the p× p identity matrix):

β̂∗ = [XTX + kI]−1XTY; k ≥ 0

(2.9)

This estimate was first proposed by Hoerl in 1962 and later revised by Hoerl

and Kennard in 1968 and named it “ridge regression” because the family of

estimates given by k ≥ 0 has many mathematical similarities with the portrayal

of quadratic response functions, which is also proposed by Horel in 1964. The

above explicit form of the ridge estimate is also the closed form solution to the

12



following minimization problem:

β̂∗ = arg min
β

{
N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + k

p∑
j=1

β2
j

}

(2.10)

This minimization problem above can be written in its Lagarangian dual form to

give us a clearer idea of what optimization problem ridge regression is trying to

solve:

β̂∗ = arg min
β

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2,

subject to

p∑
j=1

β2
j ≤ t

(2.11)

Here we can see that the ridge regression is actually a regularized version of the

least squares regression, by adding a constraint to the L2 norm of the regression

coefficients. With a larger value of k (smaller value of t), a larger amount of

shrinkage is applied to the coefficients and the problem of high-variance and

instability caused by correlations between the predictors can be alleviated through

this process. We will give a more precise argument about how ridge would solve

ordinary least squares’ problem by analyzing its expected prediction error in the

next subsection.

2.3.2 Expected Prediction Error And Noise Variance Decomposition of Ridge

Regression

First of all, we need to define some symbols and notations in order to facilitate

our analysis of the expected prediction error (mean square error) of the ridge

13



estimate. Using the notations we have used previously, let β̂ denote the least

squares estimate, β denote the true regression coefficients, and let β̂∗ denote the

ridge estimate:

β̂ = [XTX]−1XTY

(2.12)

β̂∗ = [XTX + kI]−1XTY; k ≥ 0

(2.13)

From the above two formulas we can easily derive the relation between these two

estimates

β̂∗ = [Ip + k(XTX)−1]−1β̂ = Zβ̂

(2.14)

We will use Z to represent the above matrix [Ip + k(XTX)−1]−1 in our following

discussion for convenience’s sake (where Ip is the p dimensional identity matrix).

The eigenvalues for this matrix is easy to calculate just by finding the solution to

the characteristic equation |Z− ξI|. Let λi denote the eigenvalues of the original

correlation matrix XTX, the resulting eigenvalues are as follows:

ξi(Z) =
λi

λi + k

(2.15)

Now we have obtained all the notations we need to write out the expression for
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the mean square error E[L2
1(k)] (expected square distance from the ridge estimates

β̂∗ to the true coefficients β) by simply applying the expectation operator on

(β̂∗ − β)T (β̂∗ − β). The result is as follows:

E[L2
1(k)]

= E[(β̂∗ − β)T (β̂∗ − β)]

= E[(β̂ − β)TZTZ(β̂ − β)] + (Zβ − β)T (Zβ − β)

= E[(β̂∗ − E(β̂∗))T (β̂∗ − E(β̂∗))] + (E[β̂∗]− β)T (E[β̂∗]− β)

(2.16)

Here we can see that the two terms in this decomposition stand for the total

variance and the squared bias for β̂∗, let’s expand these two terms by applying

(2.4) to (2.16) and see how they change with the value of the tuning parameter

k. We can show that:

R1(k) = σ2
∑p

1
λi

(λi+k)2

R2(k) = k2βT (XTX + kI)−2β

(2.17)

Here we use the two terms R1(k) and R2(k) to represent the total variance (sum

of the variances of the parameter estimates) and the squared bias (the squared

distance from β̂∗ to β). Referring back to the original paper by Hoerl and Ken-

nard 1994, they gave a plot in quantitative form of the relationship between the

parameter k, R1(k) and R2(k), this plot is shown as follows:
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Fig. 2.1: Noise-variance decomposition for the mean square error of the ridge estimate

Here the dotted line represents the summation of R1(k) and R2(k), which is

exactly the mean squared error of the ridge estimate. We can see that in the case

drawn in the above plot, with a proper choice of the tuning parameter k, the ridge

estimate can achieve a much smaller mean square error than the ordinary least

squares estimate ( the horizontal line marked as Least Squares). We will now give

an explanation for why this can be achieved when the correlation matrix XTX

is ill-conditioned. Note that we will only list and demonstrate the mathematical

properties sufficient for the understanding of our following up discussions, for

more precise and detailed proof, please refer back to the original paper by Hoerl

and Kennard 1994 [1]. First of all, it’s straight-forward that the total variance

R1(k) is a monotonic decreasing function of the tuning parameter k and the

squared bias R2(k) is a monotonic increasing function of the tuning parameter k.

To see how their sum varies, we take the derivatives of these two functions with
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respect to k and see how they change in the neighborhood of the origin.

lim
k→0+

(
dR1(k)

dk
) = −2σ2Σ(

1

λ2i
)

(2.18)

lim
k→0+

(
dR2(k)

dk
) = 0

(2.19)

From (2.18) we can see that if the correlation matrix XTX is orthonormal then

the negative derivative of the total variance approaches the constant −2pσ2 as

k → 0+. However, if the matrix XTX becomes ill-conditioned and the smallest

eigenvalue comes close to zero, the derivative of R1(k) will approach −∞. As

a result, the change of the total variance around zero could be very sharp. The

situation is completely different for the squared bias. We can see from (2.19) that

the derivative of R2(k) around 0 is always going to be 0, which means that the

function is flat and changes slowly around zero. Concluding from the properties

of these two derivatives, if the correlation matrix XTX is ill-conditioned, it’s then

not hard to believe that we can find a k > 0, resulting in a significant decrease

of the total variance while at the same time sacrificing only a small amount of

bias. As a result, a proper choice of k will result in an improvement in the mean

square error over the ordinary least squares estimate. The original paper offered

a much more detailed proof for the above argument, interested reader can refer

to [1] for more information.

Summarizing from the above argument, we can see that when there exist

correlations between the predictors and additive measurement noise, the ordinary
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least squares estimate tends to have large variance. Ridge regression can deal

with this issue caused by the correlation between the predictors by adding an L2

constraint to the ordinary least squares problem. Moreover, through a proper

choice of k, ridge regression controls the mean square error by trading a large

total variance off with a small increase in squared bias. Despite the fact that

the additive measurement noise ε introduces randomness and variability to the

estimation of the regression parameters, ridge regression is robust to this noise

and shrinks the total variance to achieve a small prediction error. In the next

subsection we will offer another angle to look at how ridge regression shrinks and

constrains different predictors.

2.3.3 Shrinkage effects on different principal components by ridge regression

In this subsection, we will offer a deeper insight into the nature of the ridge

regression. To accomplish this, we first perform a singular value decomposition

(SVD) on the input design matrix X. :

X = UDVT

(2.20)

In this decomposition, U and V are orthogonal matrices of size N × p and

p × p, with the columns of V spanning the row space of X and the columns

of U spanning the column space of X. Also we will define uj and vj to be

the jth column of U and V respectively. Moreover the columns of U are also

the eigenvectors of the correlation matrix XTX. The middle matrix D is a p× p

diagonal matrix, with the diagonal entries d1 ≥ d2 ≥ ... ≥ dp ≥ 0, which are called
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the singular values of the matrix X. More precisely, these singular values are

actually the square roots of the eigenvalues λmax = λ1 ≥ λ2 ≥ ... ≥ λp = λmin ≥ 0

of the correlation matrix XTX. If one or more values of djs equal to zero, then

the design matrix X is singular, in this case we can infer from (2.7) and (2.8)

that the prediction error based on minimizing the residue sum of squares will be

out of control. As we have already pointed out in the previous section, without

loss of generality we assume that none of the singular values will hit zero. Having

obtained the singular value decomposition of the design matrix, we will rewrite

the ordinary least squares estimate and the ridge estimate of the response in the

following forms:

Ŷ = Xβ̂ = X(XTX)−1XY = UUTY

(2.21)

Ŷ
∗

= Xβ̂∗ = X(XTX+kI)−1XTY = UD(D2+kI)−1DUTY =

p∑
j=1

uj
d2j

d2j + k
uTj Y

(2.22)

The ujs are the columns of the matrix U, in the literature they are also known

as the principal components of the column space of the design matrix X, and

they are actually an orthonormal basis for the column space of X. Recall in

1.2.2 we have explained that, least squares is actually projecting Y on to the

column space of X and the regression coefficients are just the coordinates of the

projected vector using the columns of X as basis. Now by doing a SVD on the

matrix X we represent the estimated response using the orthonormal basis uj

instead of the original basis of the columns of X. From (2.21) UTY are the

coordinates of Ŷ with respect to the orthonormal basis uj using ordinary least
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squares. Comparing 2.20 and 2.21 we can see that ridge also compute the estimate

by finding the coordinates with respect to the orthonormal basis uj, the essential

difference here is that ridge shrinks these coordinates by the factors d2j/(d
2
j + k).

Now let’s take a closer look at the effect of these shrinkage coefficients d2j/(d
2
j+

k), it’s easy to observe that for the principal components uj associated with a

smaller value of dj a greater amount of shrinkage is then applied. To have a more

precise understanding of what the sizes of these singular values dj represent, we

need to first understand the relationship between the principal components and

the original basis formed by the columns of X. From (2.21), by multiplying the

orthogonal matrix V to the right of both sides of the equation we can then easily

derive the following equation:

XV = UD

(2.23)

Xvj = ujdj, for j = 1...p

(2.24)

Here vj and uj are the columns of V and U, we can easily see from (2.24) that the

new orthonormal basis vectors (principal components) are linear combinations of

the column vectors of the design matrix X. Also we can calculate from (2.21),

and find the eigen-decomposition of the correlation matrix XTX and obtain the

following results:

XTX = VD2VT

(2.25)

VTXTXV = D2
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(2.26)

From (2.25) we can then derive the variance of the N samples of each principal

component as follows:

V ar(ujdj) = V ar(Xvj) =
d2j
N

=
λj
N

(2.27)

Up to this point, we can see that a small singular value dj or a small eigenvalue

λj of the correlation matrix XTX correspond to directions (uj) in the column

space of X having small variance, and ridge regression shrinks the effect of these

directions most. The following figure illustrates the two principal components in

a two-dimensional data case.

Fig. 2.2: Principal components in a two dimensional data set

Recall in the previous chapter we stated that the ordinary least squares will

have large mean square error when there exists small eigenvalues λj for the cor-
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relation matrix XTX, and we now see that these small eigenvalues correspond to

small variances for the principal components and it’s now quite clear why ridge

regression can alleviate the effect of these small eigenvalues, since it will apply

a larger shrinkage on these small variance directions (principal components) and

the impact of these directions on the regression will be shrunken a lot more as

compared to those directions that establish large variances.

In conclusion, we have introduced a traditional regularized linear regression

technique called the ridge regression that can compensate for the ordinary least

squares’ high variability and instability due to the existence of the additive mea-

surement noise and the correlations between the input predictors. By choosing a

suitable value for the tuning parameter k, ridge regression can reduce the total

variance for the mean squared error substantially by incurring only a little in-

crease in the squared bias. We also explained why ridge can accomplish this by

exploring its nature of shrinkage to different principal components. In the next

section we will introduce another traditional linear regression technique call the

LASSO which will also be of critical importance for the understanding of our new

technique.

2.4 The LASSO

2.4.1 Introduction to the LASSO

The ordinary least squares estimate has the problem of being unstable and hav-

ing high variance, and we have introduced the ridge regression in the previous

section to accommodate for this limitation of the ordinary least squares estimate.

However we didn’t mention another very crucial problem for the ordinary least

squares estimate, which is its poor model interpretability. The regression coeffi-
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cients for all of the predictors of the least squares estimate are non-zero. When

there are a large number of predictors, the resulting linear model will be very

hard to interpret. Actually, there are a number of regression techniques in the

literature, known as subset selection methods specially designed to accommo-

date for this interpretability issue and produce estimates where the coefficients

of many “unimportant” predictors will be exactly zero. For convenience’s sake,

we will refer to the ability of producing sparse and more interpretable models as

being able to do variable selection. As the name of the subset selection methods

suggests, they choose a subset of the predictors to perform the least squares re-

gression. The criterions and methods in finding these subsets will not be talked

about in details here, interested reader can refer to [2] for more information. Due

to the discrete nature (predictors are either completely retained or dropped from

the model) of the subset selection methods, some small changes in the data can

result in very different set of predictors being selected and this means that subset

selection methods can have very high variance and have poor prediction accuracy.

Ridge regression has strong stability and good prediction performance. However,

it cannot be used for variable selection. Due to the above reasons, researchers

want to find a continuous regression technique to produce interpretable regression

models while exhibiting reasonable stability. One very obvious method to find a

continuous variable selection technique is to directly constrain the least squares

problem with an L0 constrain (the number of none-zero regression coefficients):

β̂ideal = arg min
β

N∑
i=1

(yi −
p∑
j=1

xijβj)
2

subject to ||β||0 ≤ t.
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(2.28)

Even though the formulation seems to be easy, it is generally an N-P hard

problem to solve. Since constraining using L0 norm is not generally solvable,

Tibshirani[3] in 1996 proposed a regression technique called the LASSO (short

for least absolute shrinkage and selection operator) that uses the L1 norm to

approximate the effect of the L0 norm. The LASSO is also known as basis pursuit

in the signal-processing literature. The exact formulation of the LASSO method

is as follows:

β̂lasso = arg min
β

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2

subject to

p∑
j=1

|βj| ≤ t.

(2.29)

By applying the Lagarangian duality on (2.29) we can rewrite it by putting the

constraint into the objective function, then LASSO will also have a form similar

to the ridge regression:

β̂lasso = arg min
β

{
0.5

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + k

p∑
j=1

|βj|

}

(2.30)

Recall the common assumption that the data are centered and standardized, so

the β0 in (2.29) and (2.30) are zero and can be deleted. This optimization prob-

lem can be converted into a standard quadratic programming problem for which

there exist efficient algorithms to solve for the values of the regression coefficients
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for all values of k > 0. These algorithms are called “path-algorithms” for LASSO.

Famous and efficient path algorithms include the “least angle regression (LAR)”

and the “coordinate descent” from [4] and [5]. Later we will introduce the coor-

dinate descent algorithm in detail to offer a clearer idea of how the solution to a

LASSO problem might be computed. But before doing that, we will first give an

intuitive explanation offered [3] why LASSO can perform variable selection.

2.4.2 The Variable Selection Ability and Geometry of LASSO

Why the L1 penalty of LASSO can set some of the regression coefficients to be

exactly zero ? According to Tibshirani[3], if the design matrix X is orthonormal,

then the solution to (2.30) can be expressed explicitly in terms of soft-thresholding

the ordinary least squares estimates by k. Let β̂o denote the ordinary least squares

estimate. The LASSO solution to (2.30) is given by:

β̂lassoj = sign(β̂oj )(|β̂oj | − k)+

(2.31)

We can see from (2.31) that the LASSO solution for an orthonormal design ma-

trix case is just a soft thresholding of the ordinary least squares estimate by an

amount k. The operation of soft thresholding is quite straight forward, if the

absolute value of the coefficient exceeds k we will shrink its absolute value by k,

otherwise the coefficient will be set to zero. The following figure illustrates the

relations between the least squares coefficients and the LASSO coefficients, in

the orthonormal design case. The dashed line stands for the original values (the

coefficient values from ordinary least squares estimate) of the coefficient and the
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k is set to be two.

Fig. 2.3: Soft-thresholding effect for the LASSO estimate in the orthonormal design

case

We can see an obvious difference between the shrinkage effect for the LASSO

and Ridge. It is easy to calculate that in an orthonormal design case, the ridge

estimate (solution to 2.10) only divides the ordinary least squares estimate by a

constant value, β̂∗j = β̂oj /(1+k), thus none of the regression coefficients will be set

to zero. On the other hand the coefficients for some of the LASSO estimate will

be zero when the absolute value of the original least squares estimate is smaller

than the threshold k.

The situation becomes somehow complicated when the design matrix X is not

orthonormal since we don’t have a closed form solution for (2.30). We here show

a geometric explanation by Tibshirani in a two dimensional case and compare it

with the ridge estimate in the same geometric plot. In the two dimensional case

the unknown coefficients will contain only two values β = (β1, β2). To pinpoint

the solutions to (2.30) and (2.10) in a two-dimensional graph, we first draw the

equi-contours of the residual sum of squares centered at the ordinary least squares
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estimate:

(β − β̂o)TXTX(β − β̂o) = γ2, γ ∈ R

(2.32)

In the two-dimensional case, the contours will be of elliptical shape. The next

thing to draw on the 2-D plot is the constrained region induced by the LASSO

and ridge constrains from (2.29) and (2.11). The resulting constrained region

for LASSO is a diamond (|β1| + |β2| ≤ t), while constrained region for ridge is

a disk (β2
1 + β2

2 ≤ t2). Then the solutions to (2.30) and (2.10) will be the first

intersection of the contours with the constrained regions. The following figure

shows the geometry described above:

Fig. 2.4: LASSO( left) and ridge (right) estimates in a two-dimensional regression.

In the 2-D LASSO situation, the constrained region is a diamond which has

corners, so it is all the more likely for the solution to occur at a corner and then

one parameter βj will be equal to zero. But for ridge regression, as we can see that

the constrained region is a disk which doesn’t have any corners, so it is not likely

that the intersection between a disk and an elliptical curve will have any axis

being zero. When p > 2, the diamond will become a rhomboid, which will have
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many hyperplanes and there are many more opportunities for the intersections

to contain zero coordinates. The above is only an intuitive illustration that why

LASSO may be able to perform variable selection while ridge regression can’t.

But we didn’t show the precise conditions for which LASSO might give out sparse

solutions. For more detailed proofs, interested reader can refer back to original

paper [4] of Tibshirani.

2.4.3 Coordinate Descent Algorithm to solve for the LASSO

In this subsection we will introduce a very recently developed path algorithm

called “coordinate descent” by Hastie and Tibshirani to solve the LASSO prob-

lem. Apart from its high efficiency in computing the result of LASSO (much

faster than the least angle regression algorithm), this algorithm will also provide

us some more insights into the characteristics of the LASSO estimate.

The general idea of coordinate descent is very simple, for each value of the

tuning parameter k, instead of solving (2.30) for all βjs at the same time, the

coordinate descent algorithm tries to optimize each βj one by one while holding

all the other p − 1 regression coefficients fixed. This operation is cycled until

the values of all βj’s converge, namely until the values of βj’s stay unchanged

for two consecutive iterations. The beauty of coordinate descent is to break the

optimization problem (2.30) into sequences of p uni-variant regression problems

which are very simple to solve individually. We now give a concise mathematical

description of coordinate descent to solve (2.30) with a given value of k:

Cycle the following steps over j = 1, 2, ...p till convergence with the initial

values of all βj’s equal to zero:

1. Compute the partial residue. rij = yi −
∑

k 6=j Xikβk , denote the vector
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(r1j, r2j, ...., rNj)
t as Rj.

2. Compute the simple uni-variant regression coefficient of these residuals on

the jth predictor.

βuj =
1

N
× < Xj, Rj >

< Xj, Xj >
=

1

N

N∑
i=1

xijrij

(2.33)

3. Update βj by soft-thresholding β∗j , this is the step where the penalty is

taken into account. (Subtract its absolute value by λ, if it hits 0 the value will

be changed to 0, otherwise decrease the absolute value by λ).

βj ←− S(βuj , k) = sign(βuj )(|βuj | − k)+

(2.34)

We can repeat the above iteration for all values of k, which will then result

in the entire LASSO path. Here we offer an intuitive explanation for why the

coordinate descent is a very fast algorithm. If the true underlying model is the

kind of sparse model that we desired for LASSO, during the soft-thresholding step

many βjs as long as they hit zero will stay at zero for the rest of the iterations

so that we can immediately skip to the next round. The asymptotic analysis

of the convergence and computational complexity of this algorithm will not be

demonstrated here, interested readers can refer back to the original paper [5],

where greater details are presented.

This coordinate descent algorithm also offers us some additional insights into

the behavior of the LASSO (2.30) when the dimension p becomes large. Recall in
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the beginning of the thesis we have mentioned that the true linear model of con-

cern will be of the form (1.9) which contains the additive Gaussian noise ε. Then

for each iteration where we compute the partial residues and the corresponding

regression coefficient, the effect of this additive noise is counted in. When the

variance of this additive measurement noise is significant and the dimension p is

large, the effect of this noise is accumulated and magnified by the many rounds

of iterations. As a result the LASSO estimate could establish high variance and

instability together with a poor prediction performance in this situation. Apart

from the above problem of LASSO, for the usual cases when N > p if there are

high correlations between the predictors, it has been empirically observed (Tibshi-

rani 1996) that the prediction performance of the LASSO is dominated by ridge

regression, which means that LASSO also can’t deal with the correlated predictors

very well. In the next chapter we are going to offer a more detailed description to

the high-dimensional linear regression and demonstrate more precisely how tra-

ditional regression techniques would behave under the high dimensional setting,

which will then offer us the motivation for our new technique.
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3. LINEAR REGRESSION IN HIGH-DIMENSIONAL

PROBLEMS

3.1 Introduction

With the vast development pace of modern science and technologies, it’s quite

often that we meet problems with extreme large feature space (p very large),

which may be in the order of tens of thousands while the available sample size

may be only a few hundred. Survival analysis is one of the typical example for

a high-dimensional problem. In this problem the set of predictors X1, X2, ...Xp

represent the gene expression measurements collected from DNA microarrays

and the output response Y is a quantitative variable related to the survival time

(or just the survival time itself) of the patients. The task is then to find the

relationship between the gene-expressions and the survival time in order for the

doctors to diagnose more accurately. In this kind of survival analysis problem, the

typical magnitude of the number of gene expressions would be a few thousands

while the number of patients investigated would be at most a hundred or two.

The survival analysis is only one of the many important applications for high-

dimensional linear regression, so finding a good high-dimensional linear regression

technique has become a very important and hot research topic in the statistics

society. In this chapter we will give the common assumptions, notations and set

up the model for the typical type of high-dimensional linear regression problems



of our concern and will then discuss limitations of the usual regression techniques

(ridge and LASSO) when applied to problems in a high-dimensional situation.

3.2 Spurious Predictors and Model Notations for

High-dimensional Linear Regression

In the survival analysis problem mentioned above, though we have a huge pool

of genes available as predictors, it is quite possible that only a very small number

of the genes may truly have effects on the occurrence of that specific disease.

In this thesis, we will call the predictors that don’t have any direct connection

with the response the “spurious predictors”. In many problems (for example in

survival analysis), the majority of the predictors are actually spurious, so apart

from the poor prediction performance when the spurious predictors are counted

in, the interpretability of the resulting model will also be unacceptable. Due

to the above reason, being able to filter out those spurious predictors would be

a critical step towards a good regression technique in high-dimensional linear

regression problems.

Just as what we have done before, we will give the model formulation, com-

mon assumptions and notations for the type of high-dimensional linear regression

problems of our concern. And these assumptions and notations will be used for

the rest of the discussions in this thesis. Let X = (X1, X2, ..., Xp) denote the

N × p design matrix and Y denote the N × 1 observed response, moreover the

predictor data is assumed to come from a multivariate Gaussian distribution with

a certain covariance structure. The difference here between the high-dimensional

problems and the usual type of problems lies in the relationship between p and

N. For usual low dimensional problems we have p < N , while in high dimensional
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problems we have p >> N . Let m denote the number of true predictors in the

model which means that in the true underlying model the regression coefficients

of all the other p − m predictors should be exactly zero. We also assume the

following relationship between N, p and m:

m < N << p

(3.1)

Let ε denote the additive measurement noise and we further assume that this

noise follows a Gaussian distribution that is independent of all the other random

quantities in the model with mean zero and variance σ2. As a result the high-

dimensional linear model of our concern will be of the same form as (1.9), and

all the data is also assumed to be centered and standardized.

Y = Xβ + ε, where β is a p× 1 vector

(3.2)

Moreover we also assume that all the spurious predictors are statistically inde-

pendent from (ie, if we regard each predictor as a random variable they should

be not correlated) the true predictors (we will call this as the ideal-separation as-

sumption). Under this assumption, a true predictor will have a more substantial

marginal correlation with the response than a spurious predictor. Though the

above assumption may not be always true in practice, it will often be a very good

working hypothesis in many practical problems (We can also see from (3.2) that

the marginal correlation between a spurious predictor and the response should be
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approaching zero). These general notations and assumptions will be used latter

on for the discussion of our new technique. Before that let’s first have a brief

look at how the traditional linear regression techniques would behave under the

high-dimensional situation.

3.3 Ridge and LASSO in High-dimensional Linear Regression

First of all, let’s see what the performance of ridge regression will be when it is

applied to a high-dimensional problem. As we have stated in the above section

that when p >> N many of the predictors in the design matrix will be spurious, an

obvious disadvantage of ridge regression is that the interpretability of the resulting

model will be very poor. For example in the microarray data problem described

above, if we uses ridge regression, then we are trying to interpret the behavior of

a certain disease by analyzing thousands of genes, which is not so acceptable and

meaningful. In addition to this, the poor interpretability of ridge regression is not

the only problem that occurs when the dimension grows high. Recall that ridge

regression can deal with the correlation between the predictors very well because

it shrinks different principal components based on the variance of each principal

component, the smaller the variation leads to the larger the shrinkage. In this way

the ridge estimate shrinks the coefficients of the co-expressing predictors towards

similar values and the high-variance correlation structures (which are the high-

variance principal components) between the predictors are retained because a

smaller shrinkage is applied. Coming back to the high-dimensional problem where

p >> N . Despite the fact that the spurious predictors are actually not related

to the response, there might exist some serious correlations between the spurious

predictors themselves which as a result can represent some large variance principal
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components. Let’s illustrate this problem of ridge regression in a high-dimensional

problem more clearly through a simple example from [6]. Figure 3.1 shows some

simple fictitious microarray data for our illustration purpose only. This figure is

a heat map for the observed gene expressions with each gene representing a row

and the data from one patient on one microarray representing a column (which

means columns are samples and rows are genes). The gene expression (or the

value of the data) is represented by the color from blue (low) to yellow (high).

Moreover, there are totally 20 patients divided into four equally sized blocks. The

second and fourth block of patients are sick with a certain disease while the others

are healthy. The first two blocks of patients have blood type A while the others

have blood type B. For the genes marked as A the second half set of 10 patients

have a significantly higher expression than the first set of ten patients, resulting

in the largest variation. For the genes marked as B, the second and fourth part of

patients have higher gene expressions than the first and third part of the patients

(this variation is not as large as the genes in A, cause the color difference is not

as large as in A). Other non-marked genes don’t show any obvious variations.

In the bottom of the figure we showed the first two principal components of the

expressing data, with u1 consisting of the genes in A and u2 consisting of the genes

in B. When ridge regression is applied to this problem, the principal component

u2 will be shrunken more as compared to the principal component u1 because u1

has a larger variance than u2. In this situation, we could have poor prediction

performance if the genes in A are actually spurious, which is possible when the

variation in the genes from A represent some biological process (blood type in

this case) that is not related to the disease of our concern (ie the genes in A are

not actually correlated with our response Y).
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Fig. 3.1: The fictitious data for microarray data

In a word, in a high-dimensional linear regression problem, ridge regression

can’t produce an interpretable model since the regression coefficients for all the

predictors will be non-zero. Moreover, when some spurious predictors are cor-

related and exhibit high variance, the prediction performance (the smaller the

expected prediction error, the better the prediction performance) of ridge re-

gression could also be poor. This concludes the two major limitations of ridge

regression in a high-dimensional linear regression problem.

As for the LASSO, we have already offered some insights into the problems

of LASSO when p >> N . We have explained that the prediction error increases

rapidly when the variance of the additive measurement noise starts to increase.

Apart from the high-variance and instability of LASSO in high-dimensional prob-

lems, we want to know if LASSO can produce a true or consistent sparsity pattern.

To clarify the problem and make things precise, we offer a brief mathematical def-
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inition for variable selection consistency. Let A ( a subset of {1, 2, ..., p}) be the

index set of true predictors whose regression coefficients are not zero. A variable

selection technique in linear regression is said to be consistent if

P (
{
j : β̂j 6= 0

}
= A) −→ 1 as N −→∞

(3.3)

In our high-dimensional linear regression problems where p >> N , p is allowed

to grow with N in the above definition of variable selection consistency. Due to

the importance of LASSO in high-dimensional linear regression problems, many

researches have studied its asymptotic behavior and consistency. In [7], a sharp

threshold for LASSO was proposed to indicate the condition that LASSO has to

satisfy in order to be consistent. Let m denote the true number of predictors that

are related to the response, σ2 denote the noise variance, N,p,k still follow the

same definition as before. Then the LASSO will perform a consistent variable

selection of the coefficients only if the following relationship is satisfied,

N

2m log p−m
> 1 +

σ2

k2m

(3.4)

which means that only when the above inequality holds will LASSO be able to

recover the true sparsity pattern with a probability converging to one (when N

and p → ∞ ). The development of this inequality is extremely complicated.

Since it’s used only for illustration here, it will not be explored in details. In-

terested readers can refer to [7] for details. It can be seen that this condition
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(3.4) can be easily violated when p and σ2 are large, in which case LASSO can

select spurious predictors and discard relevant predictors resulting in a model

with a wrong set of predictors. Apart from this, it has also been mentioned in

the original paper by Tibshirani[3] that LASSO also can’t deal with correlated

groups of predictors very well. LASSO will tend to select only one predictor from

a correlated group and not care about which one is selected. This means that

the correlated structures and relations between these predictors are completely

ignored by LASSO. In conclusion, in a high-dimensional linear regression prob-

lem with a significant measurement noise, the prediction result of the LASSO

is unstable and the prediction error could be very large. In addition, variable

selection has a large probability of being inconsistent and one predictor out of a

group of correlated predictors could be selected.

Due to these limitations of LASSO and ridge regression, we are motivated to

seek a linear regression technique that can offer us interpretable linear models in

high-dimensional problems, while being more robust to the measurement noise.
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4. THE SUPERVISED RIDGE REGRESSION

4.1 Introduction

In this chapter we will propose a regression technique called “supervised ridge

regression” (SRR) for high dimensional problems. The purpose of introducing

SRR in high-dimensional problems is to accommodate for the limitations of both

LASSO and ridge regression while preserving both of their advantages. The idea

of SRR is actually quite straight forward. Instead of doing regression directly on

the huge high-dimensional design matrix X, we first perform a cleaning operation

on the predictors to filter out those predictors whose estimated uni-variant corre-

lation with the observed response Y is small. We then perform ridge regression

on the resulting reduced data matrix. Using the example from figure (3.1), the

genes marked as A would have been filtered out during the cleaning step, so they

now would not be counted in the regression model anymore.

4.2 Definition of Supervised Ridge Regression

We will directly use the notations and assumptions from (3.2) with X and Y

representing the N × p observed design matrix and the N × 1 observed response

and ε representing the additive Gaussian measurement noise with mean zero and

variance σ2. Also all the data used are assumed to have been centered and



standardized. First of all we will give a brief description for the proposed SRR:

Supervised Ridge Regression

1. Compute the uni-variant (marginal) regression coefficients for each predic-

tor Xj with respect to the observed response Y.

2. Compose a reduced data matrix made of by only those predictors whose

uni-variant regression coefficient computed in step 1 exceeds a threshold θ. The

value of this θ can be estimated by cross-validation (this will be explained in

details later).

3. Perform ridge regression on the reduced data matrix to get the estimate

for the regression parameters that can be used to make the prediction.

4. Set the coefficients for all the predictors that are not used in step 3 to be

zero.

From the above description, we can see that the idea of SRR is actually quite

simple to understand. We call our method “supervised” ridge regression because

before we actually fit the data we offered some additional information to the

ridge estimator about what are probably the right set of predictors to operate

on. Due to this reason we call the steps of getting the reduced data matrix the

“supervision steps”, which as a result produces the name of “supervised ridge

regression” for our technique. We now give a more detailed description of this

method. For step 1, we denote the uni-variant regression coefficient of predictor

Xj with the response Y as sj, and the value of sj can be calculated using the

following equation.

sj =
XT
j Y

||Xj||
, where ||Xj|| =

√
XT
j Xj
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(4.1)

This formula is valid because we are considering a Gaussian linear model, for

some more generalized model, we may use the partial log-likelihood relating the

data forXj and Y to compute this uni-variant regression coefficient. Nevertheless,

using the sj in (4.1) already suffices for the problem of our concern ( which is

described clearly in 3.2).

We use the following procedure to estimate the value of θ using cross-validation.

1. Using all of the N data samples at hand and then compute the uni-variant

regression coefficients |sj|s in (4.1). We then find the mean and standard devi-

ation of |sj|s (here we take the absolute values to accommodate for the possible

situations where there are clusters of variables that influence the function in op-

posite ways), for which we will use θ̃ and σ̃ to represent respectively.

2. For k-fold cross-validation, we will divide the N samples into k equally

sized subsets. Each time when we try to compute the cross-validation error for

a specific value of θ, we will use k − 1 subsets as training samples and the one

set left as the validation set out of which we can compute the prediction error

from the trained model. We will do this k times by leaving out each one of the k

subsets and the cross-validation error will be the average value of the k prediction

errors.

3. Compute the cross-validation error for values of θ within the range of θ̃−2σ̃

to θ̃ + 2σ̃, we don’t have to compute every value of θ within this range, we can

manually adjust the step size. It is already accurate enough if we use small step

sizes like 0.1σ̃. The desired value of θ is the θ that gives us the smallest k-fold

cross-validation error.

Let Aθ be the collection of indices such that |sj| > θ. One thing to notice
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here is that, it should turn out that we have the same index set Aθ for a range

of values of θ, then what is the exact value of θ within that optimal range would

not really matter. Later in the simulation section we will demonstrate in details

about how to find the reduced data matrix and we will plot the cross-validation

error against the number of predictors we choose for Aθ.

We can now continue with the ridge regression step. Let us use Xθ to denote

the matrix consisting of the columns of X corresponding to the index set Aθ.

Then we will compute the regression coefficients for the predictors in the set Aθ

by ridge regression.

β̂∗ = arg min
β

{
N∑
i=1

(yi −
∑
j∈Aθ

xijβj)
2 + k

∑
j∈Aθ

β2
j

}

(4.2)

Then the final result from SRR for the complete set of regression coefficients is

as follows:

β̂SRRj = β̂∗j , if j ∈ Aθ β̂SRRj = 0, if j /∈ Aθ

(4.3)

After we have obtained the estimated coefficients β̂SRR, for a given input test

data x∗ the predicted response is then ŷ∗ = (x∗)T β̂SRR. Up to this point we have

clearly defined the supervised ridge regression and how to do the regression and

prediction using SRR.
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4.3 An Underlying Latent Model

In this section we will describe a latent variable model that relates the predictors

and the responses through a couple of latent quantities to support our supervised

ridge regression method. For our response Y we assume that it is related to a set

of latent variables U1,U2, ...UM through the following linear model:

Y = γ0 +
M∑
m=1

γmUm + ε

(4.4)

Also, for the predictors we assume that spurious predictors are not related to the

latent quantities Um while the true predictors are related. Let Q be the index

set (which is a subset of {1, 2, 3....p}) for the true predictors. Then for j ∈ Q the

relationship between the latent quantities and the predictors Xj is as follows:

Xj = α0j +
M∑
m=1

α1jmUm + ηj, j ∈ Q

(4.5)

For those Xj where j /∈ Q, they are independent of all the latent quantities

Um. Bringing this latent variable model into the microarray data testing prob-

lem we talked about in the previous chapter, we can actually think of the latent

quantities Um as some specific biological processes or data representation of some

cell types that affect the occurrence of the cancer of interest. The subset Q will

represent the set of genes that are related to the forming of these cell types. ε

and ηjs are additive Gaussian noise that are independent of all the other random

quantities. Moreover we also assume that Ums are orthogonal (linearly indepen-
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dent) to each other and var(U1) > var(U2) > var(U3) > .... > var(Um). The

variance here is the N sample scalar variance of each latent vector just like in

(2.26) These are reasonable assumptions for practical problems, but they need

not be always true. After we have introduced this model, we can now regard the

supervised ridge regression as a method for fitting this model.

1. The first supervision step in SRR gives an estimation of the set of true

predictors by Q̂ = Aθ

2. With the above estimated Q̂, we get the reduced data matrix Xθ. Then we

can perform a SVD on this reduced data matrix and get its principal components

Uθ,j, which are then used to estimate the latent quantities Um.

3. Finally, the ridge regression that fits (4.2) gives an estimate for (4.4).

The first step above is very natural, since from (4.4) and (4.5) we can see that

for each true predictor Xj ∈ Q, its correlation with Y should be larger than those

spurious predictors not in the set Q. Step 2 is also natural since using principal

components to approximate latent quantities is the most adequate approach when

no additional information is available. For the last step, in order to deal with the

possible correlation between the true predictors we use ridge regression (in page

19 and 20 we have explained that ridge fits the model using principal components

of the design matrix as basis vectors) to fit the coefficients. As a result we can

see that the proposed SRR is a regression technique that can fit the above latent

model. Though this model is somehow artificial, it still offers some useful insights

into the internal tasks that the supervised ridge regression accomplishes while

dealing high-dimensional linear regression problems.
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4.4 Ridge LASSO and Supervised Ridge Regression

In this section, we will compare the SRR with our two traditional linear regression

techniques ridge regression and LASSO, which will then reveal the value for our

new SRR in high-dimensional linear regression problems.

4.4.1 LASSO vs SRR

First of all let’s recall what we have mentioned in 3.3 and 2.4.3 about LASSO’s

limitations when applied to a high-dimensional linear regression problem. The

main limitations of LASSO can be summarized as the two points:

1. The LASSO estimate is very sensitive to the variance of the additive

Gaussian noise. When the noise variance increases the LASSO estimate becomes

more unstable with very random variable selection behavior. As a result, the

prediction performance degrades rapidly.

2. LASSO can’t deal with correlated group of predictors and it only tends to

select one predictor out of a group of correlated predictors, while the better way

is to select the whole group.

Let’s look at the first problem of LASSO and how the supervised ridge re-

gression can avoid it. In 2.4.3, we have provided an explanation for why LASSO

is so sensitive to noise. Using the coordinate descent algorithm, in each iteration

we are actually performing uni-variant regression for a specific predictor with the

current residue. As such, the additive Gaussian noise attached to the residue is

considered in the calculation for every single iteration. Due to this reason the

effect of the noise is accumulated and magnified, leading to the instability and

variability of the LASSO estimate. However in our method of SRR, we only have

one iteration of uni-variant screening (the supervision step), where we calculate
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the uni-variant regression coefficient between the response Y and each of the

predictors Xj, and the effect of the noise is only counted in this step and not

iteratively calculated as in LASSO. As a result our SRR is not sensitive to the

effect of the additive noise and the prediction error only increases slowly when the

noise increases, which is much better than the rapid increase of prediction error in

LASSO. We can actually think of the first supervision step of the SRR to be very

similar to the first iteration of coordinate descent for LASSO. So the first step of

supervision actually adopts partially the principle of LASSO to screen out those

predictors that are obviously spurious. For the second weakness of selecting only

one out of a group of correlated predictors, SRR uses the ridge regression to fit

the reduced data matrix and the ridge regression will shrink groups of correlated

predictors together. The SRR will only drop the predictors that are spurious in

the first step of supervision and will tend to select and shrink correlated true

predictors together. This means that the SRR will not drop any one of a group

of correlated predictor as long as this group of predictors are true. Of course if

a group of correlated predictors are spurious the SRR would have dropped the

whole group during the supervision step. From the above discussion, we can see

that the SRR is much more robust to the additive Gaussian noise than LASSO

and can deal with the groups of correlated true predictors very well. The SRR

retains the most important advantage of LASSO is preserved, which is the ability

to produce a sparse and interpretable linear model.

4.4.2 Ridge regression vs SRR

Now let’s compare the ridge regression with the supervised ridge regression. It

seems that the ridge regression should be quite close to SRR. However, it is the
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supervision step that makes SRR different and standing out in a high-dimensional

linear regression problem. Let’s first recall the two limitations of ridge regression

in high-dimensional problems described in 3.3:

1. Ridge regression will select every single predictor into the model no-matter

how large the dimension p is, so in a high-dimensional problem, the interpretabil-

ity of a ridge estimate is unacceptably low.

2. When there are groups of correlated spurious predictors that have a large

variance as one of the principal components for the design matrix X, the ridge

estimator will tend to apply only a very small amount of shrinkage to these

predictors (In the microarray example, the set of genes marked as A would be

such predictors as described). As a result these set of spurious predictors will have

significant effect on the ridge estimate, which will then result a poor prediction

performance.

For the first interpretability problem of ridge regression, the supervision step

of SRR solves it automatically by only choosing those predictors whose uni-variant

regression coefficient with the response exceeds θ. As a result most of the spuri-

ous predictors would have been removed from the model during this supervision

step and we can arrive at a reasonably interpretable model. For the second prob-

lem of ridge, in which there exist groups of correlated spurious predictors we

will use the microarray data testing problem shown in figure 3.1 as an example.

For the original ridge regression, we have already mentioned that it will treat

the set of genes in A as very important predictors since they represent the first

principal component and the least amount of shrinkage will be applied to them,

while more shrinkage would be applied to the genes in B as they only represent

the second principal component. Unfortunately the genes in A are actually not
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related to our desired target disease at all, so the prediction performance of ridge

regression would be quite poor. In high-dimensional problems there could exist

many groups of correlated spurious predictors like A, which would then become

a serious problem for ridge regression. In SRR, the supervision step will help us

get rid of the genes in A before we pass the regression problem to ridge regres-

sion. As a result the genes in B would form the first principal component for

the reduced data matrix and receive the most attention by ridge regression. In

conclusion, the supervision step in SRR help us clean those obviously spurious

predictors before the data is fitted by ridge regression, and the limitation caused

by correlated groups of spurious predictors are then naturally alleviated.

Up to this point, we can see that the SRR does preserve both of the advantages

of LASSO and ridge by producing a sparse linear model that can deal with the

correlations between the predictors very well. The SRR is much more robust to

the additive Gaussian noise than LASSO and also unlike ridge SRR would not

get affected by groups of correlated spurious predictors. In the next section we

will demonstrate and test the function of SRR through some simulation results

on a high-dimensional Gaussian linear model, and the result will be compared

with both ridge and LASSO to testify the arguments provided above.
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5. TESTING AND SIMULATION

In this chapter, we will do experiments on several models in order to test the

performance of the proposed supervised ridge regression compared with the orig-

inal ridge regression and LASSO. We will compare the performance of the three

methods based on two critical aspects: 1. the expected prediction error 2. the

number of predictors they selected into the model. We will start with a typical

high-dimensional Gaussian linear model to illustrate the general behavior followed

by a series of modified experiments to test the behavior of SRR under different

situations.

5.1 A Simulation Example

In this first section we will give a simple illustration for the actual effect of SRR

when applied to a typical high-dimensional Gaussian linear model. The result

will be compared with both ridge and LASSO running on the same model, so

that the arguments provided in the previous section could then be tested. First

of all, let’s introduce the exact high dimensional Gaussian linear model where we

generate our data from. The mathematical formulation is actually the same as

what we have already defined in 3.2:

y = x1β1 + x2β2 + ....+ x800β800 + ε

(5.1)



So here the dimension we use is p = 800 and x1, x2, ...x800 come from a multivari-

ate Gaussian distribution (each individual predictor has mean 0 and variance 1)

with pairwise correlation specified as follows:

x1 to x5 pairwise correlation 0.8, x20 to x30 pairwise correlation 0.8, x45 to

x50 pairwise correlation 0.9. x51 to x100 pairwise correlation 0.9. All the other

predictors are pairwise independent.

Also in our data model, most of the predictors are spurious, we have β51 =

β52, ...,= β800 = 0, and the first 50 predictors are true while their corresponding

regression coefficients β1 to β50 are fixed constants with values between 0 and 1 (In

this way the correlation structure mentioned above guarantees that we have both

correlated groups of spurious and true predictors). The additive measurement

noise ε also comes from a uni-variant Gaussian distribution with mean 0 and

variance σ2 (This is the parameter that we control and the expected prediction

error will be plotted against this variance of the noise). To satisfy the needs for

a high-dimensional linear regression problem we will take 300 samples (which is

much smaller than 800) from the above model, we use a 6-fold cross validation to

compute the average square error (cross-validation error) which means that we

will divide the 300 samples into 6 subsets with each containing 50 samples and

we will use each subset as the validation set while the others as the training set

to compute the prediction error (which is the average value of (y−Xβ̂)2, here the

β̂ is the fitted coefficient vector for a certain method) . The average square error

will then be the average value of the six prediction errors computed previously.

Moreover the values of θ (the thresholding parameter for the supervision step of

SRR) should also be chosen to be the one that minimizes the cross-validation

error (see details in section (4.2)). As we have already pointed out in 4.2 that
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many values for θ could correspond to the same number of predictors chosen by

SRR, we will plot the cross-validation error (expected prediction error) against

the number of predictors chosen in the supervision step (we will plot the instance

when the noise variance is 14, which is a significant noise level under this case).

The actual number of predictors chosen should be the one that minimizes the

prediction error. For convenience’s sake we will refer to this graph as the EPE-

V-THETA graph.

Fig. 5.1: EPE-V-THETA

From the figure above, we can see that the cross-validation error reaches the

lowest value when we choose the 38 predictors whose uni-variant correlation with

the response are larger than those that are not chosen. Any θ which results in

exactly 38 predictors satisfying |sj| > θ is optimal. As a result the 38 predictors

will be chosen to form the reduced data matrix and perform the following-up

ridge regression.

Next we shall plot the expected square prediction error against the variance

51



of the additive noise and show how this noise will affect the prediction of different

methods, and we will call this graph the EPE-v-N graph for convenience’s sake.

The following figure shows what we have described:

Fig. 5.2: EPE-V-N for SRR, LASSO and Ridge

Here we plotted the EPE-v-N graphs for all three different methods on the

same picture with purple standing for LASSO, teal standing for ridge and red

standing for SRR. We can see that when the variance of the additive noise is small,

the prediction errors of all three methods are small. LASSO seems to deliver quite

satisfactory prediction performance and SRR only slightly outer-performs ridge

when the noise is small. The difference between these three methods starts to

reveal itself when the noise level increases. LASSO as what we have explained in

previous chapters, starts to become more and more unstable and the prediction

error increases rapidly when the noise variance increases. On the other hand the

prediction error of ridge regression also increases (since ridge regression doesn’t

52



choose predictors, larger noise will make ridge regression more vulnerable to the

effect of spurious predictors) but in a less aggressive way than LASSO, which then

results in ridge’s better performance over LASSO when the noise becomes large.

Finally, we can see that the SRR’s prediction error increases very slowly when

the noise variance increases and an obvious improvement over both LASSO and

ridge can be observed. The above simulation result demonstrates our claim about

SRR’s robustness to noise in high-dimensional linear regressions, the prediction

performance of SRR also as expected dominates both ridge and LASSO.

In addition, SRR not only has better prediction performance over ridge and

LASSO, it also does better in terms of producing a sparse interpretable model

when the noise is large. The improvement of interpretability over ridge regression

is obvious since we have already mentioned early on that ridge will select all of

the 800 predictors into the resulting model. This means that the regression coef-

ficients of ridge for all of the 800 predictors will be non-zero, which is actually a

model without any reasonable interpretability. Let’s compare SRR and LASSO

in terms of how many predictors they select into the model and how many of the

selected predictors come from the true set of the first 50 true predictors. Taking

the instance where the noise variance is 14 for illustration, SRR selects 38 predic-

tors (through the supervision steps) out of the 800 predictors, all of the selected

predictors comes actually from first 50 true predictors. Even though there are still

quite a few true predictors not chosen, this result is already acceptable enough as

compared to what LASSO offers. Under this same noise level the LASSO selects

as many as 139 predictors and only 18 of those selected predictors are actually

true. This poor selection performance of LASSO can be easily explained in this

situation. Since there are a lot of correlated predictors in the first 50 true predic-
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tors and LASSO only tends to select one out of a group of correlated predictors,

so only a small part of the true predictors will be actually selected by LASSO.

Moreover, due to the significance of the noise and LASSO’s sensitivity to it in

high-dimensional problems, it tends to select a lot of spurious predictors into the

model (recall in 3.3 LASSO can easily become inconsistent when noise is large).

SRR on the other hand preserves groups of correlated true predictors and filters

out most of the spurious predictors during the supervision step, so the variable

selection quality of SRR also dominates both ridge and LASSO when the additive

measurement noise is large.

Up to this point we have demonstrated through the above simulation example

about our motivations and rationales for the supervised ridge regression. We

have shown that the SRR preserves the advantages for both LASSO and ridge by

producing a sparse interpretable model. The most important improvement for

SRR over LASSO and ridge is its robustness against the variance of the additive

noise, the prediction error for SRR also increases with the enlarging of the noise

but comparably in a much slower speed than ridge and LASSO. In later sections

we will perform a number of further tests to find possible limitations of SRR.

5.2 More Experiments

So far, we have illustrated the satisfying performance of SRR under a few assump-

tions for the high-dimensional Gaussian linear model (for example, we assume

that the spurious and true predictors are completely independent with respect to

each other). This illustrative example alone is still not sufficient for us to draw

convincing arguments. So in this section we will focus on each critical assump-

tions and conditions we set for SRR and try to test the significance of each of the

54



assumptions for the performance of SRR.

5.2.1 Correlated Spurious and True Predictors

We have been assuming that the spurious predictors and true predictors are

ideally separated (completely uncorrelated). In the supervision step for SRR we

are trying to distinguish spurious and true predictors based on their uni-variant

correlation with the response. As a result, the ideal-separation assumption of

spurious and true predictors should improve the significance of the supervision

step in SRR. So in this modification, we design an experiment where we add a

significant pairwise correlation between a small number of spurious predictors and

true predictors to test the sensitivity of SRR’s variable selection and prediction

performance with respect to the correlation between spurious and true predictors.

More precisely, we add a pairwise correlation of 0.9 from x40 to x80 while all

the other settings remain the same with respect to the original model. Under this

modification, we expect more predictors to be chosen by SRR, since inevitably

some of the spurious predictors (those correlated with true predictors) will be

chosen into the model because they might also have a significant correlation with

the response. First of all, to see how this change can affect the variable selection

performance of SRR, we will plot the EPE-V-THETA graph under a specific

noise level (we will still choose a relatively large noise level of 14 in order to be

consistent with the previous case).
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Fig. 5.3: EPE-V-THETA2 in modified case 1

In this case, we choose 57 predictors in the first supervision step that gives us

the smallest cross-validation error. Out of the 57 predictors chosen, 37 of them

are true predictors while others are spurious. This performance is no surprising

to what we have expected. Due to the correlation between the two kinds of

predictors and the existence of the additive noise, the uni-variant correlation

between some of the spurious predictors and the response may be close to or

even larger than some true predictors. As a result the SRR will select some

of the spurious predictors into the model. Nevertheless, SRR still gives a better

variable selection performance than the LASSO which selects up to 134 predictors

in this situation.

Next, it is also important to investigate how the correlations between spurious

and true predictors will affect the prediction performance of SRR. In order to

do this, we will plot the EPE-V-N graph for this correlated true and spurious

predictor case and see how the expected prediction error for the three methods
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vary with the noise variance:

Fig. 5.4: EPE-V-N for SRR, LASSO and Ridge in modified case 1

From the above figure, we can see that the prediction performance of SRR

still starts to dominate both ridge and LASSO when the noise variance becomes

larger and larger and the general behavior of all of the three methods are not

significantly different from the original case (the first illustrative example). More

precisely, the prediction performance for SRR has been degraded very slightly as

compared to the original case while the LASSO and ridge somehow have even

smaller prediction error. As a result we can see that in the original model SRR

starts to dominate when the noise variance exceeds 9 while in this case it starts

to dominate when the noise variance exceeds 11. In a word, both the prediction

and variable selection accuracy of SRR are affected by the correlations between

spurious and true predictors. The effect on the variable selection accuracy is

more significant, the more the correlations are, the more the number of spurious
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predictors will be chosen into the model regardless of the noise level (ie, when

compared to the original case, under the same noise level this modified case will

choose more predictors into the model). To demonstrate this point more clearly,

we now try to look at an extreme case where a large of number spurious predictors

are correlated with the true predictors. We add a pairwise correlation of 0.9 from

x40 to x300. Now, the resulting EPE-V-THETA graph is as follows:

Fig. 5.5: EPE-V-THETA in modified case 1
′

Due to this strong correlation between true and spurious predictors, we can see

that our cross-validation error stabilizes to a low level only after we have chosen

more than 250 predictors, which actually results in a lot of mistakes in terms of

variable selection accuracy. On the other hand, when we have already chosen 250

predictors into the model the cross-validation error is only around 40, which is

very close to the prediction error in the original case when the noise variance is

14. So we can see that the correlations between spurious and true predictors have

only a very slight effect on the prediction accuracy of SRR. Nevertheless, SRR
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performs better in cases where spurious and true predictors are not correlated.

Let’s look at another variation of the original model where the number of samples

is smaller than the number of true predictors.

5.2.2 Insufficient Amount of Data Samples

Let’s recall in our original definition of a high-dimensional linear model in (3.1),

we assumed that the number of data samples is much smaller than the total

number of predictors while being larger than the number of true predictors. This

original assumption was made mainly to ensure that we have sufficient amount of

data to reasonably recover the true regression model. In this modified experiment

we will test the robustness of SRR under the situation where the amount of data

is not sufficient (N < m). The modified model will preserve all the settings of the

original model while the only difference is that the sample size N is 50 instead of

the original 300 (The number of true predictors in the original model is 50, and

some part of the 50 samples will be used as the validation set so in the training

set we actually have N < m). We will use a 5-fold cross-validation to estimate

the threshold parameter θ and the prediction error. So the training sample size

is only 40. To evaluate the performance change of SRR under this situation we

will use the same approach as before, i.e., we will first test the change on variable

selection accuracy and then test the change on the prediction performance. So

as the first step, the EPE-V-THETA graph for SRR at the noise level 14 will be

plotted to see how many predictors the supervision step would tend to choose

when there are not enough samples:
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Fig. 5.6: EPE-V-THETA in modified case 2

From the above graph we can see that unlike the previous few cases, there

is no obvious stable minimum for any range of predictors chosen and it becomes

very difficult to determine exactly how many predictors should be chosen in the

supervision step. This nondeterministic behavior is reasonable since the lack of

information will result in spurious correlations between the response and spurious

predictors thus making it very difficult to distinguish between true and spurious

predictors. As a result the behavior of SRR in this situation is very random and

problematic. Of course, due to this lack of sample points, ridge and LASSO also

behave very poorly. Let’s again plot the EPE-V-N graph, which will demonstrate

more clearly how undesirably the performance for all of the three methods could

be under this situation.
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Fig. 5.7: EPE-V-N for SRR, LASSO and Ridge in modified case 2

Here we can see that the expected prediction errors for all three methods

are very large even when the noise is small. The variable selection accuracy for

LASSO is also very low. For instance, when noise variance is 14, LASSO selects

34 predictors out of which only 2 are actually from the true set of 50 predictors.

As for SRR, out of the 22 chosen predictors only 8 of them are actually true

predictors. The other 14 chosen spurious predictors have some spurious high

correlation with the response due to the lack of data samples. These kinds of poor

behavior for all of the three methods are easy to understand since we don’t have

enough information to recover a reasonably true model thus it is quite acceptable

for any method to behave poorly under this situation (Since we are trying to

do regression and predict the future based on the past data using regression.

Without enough information for the past it is difficult to build a reasonably good

prediction model). In a word, from what we have observed in the above test,
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when the number of samples is smaller than the number of true predictors, the

set of predictors SRR chooses in the supervision step tends to be very random

and moreover the prediction error is also very large.

5.2.3 Low Dimensional Problem

Recall that the typical type of problem for which we propose the supervised ridge

regression is based on the high-dimensional assumption p >> N > m, and SRR

has been demonstrated to be able to dominate both ridge regression and LASSO

in this situation when the noise is large. It is interesting to see whether SRR

can retain its significantly better performance over both ridge regression and

LASSO under a usual low dimensional problem. To perform this experiment we

make a simple modification to the original model. Also it is important that p is

larger than m, in order to keep the significance of the supervision step of SRR

since it would become meaningless to try to filter out any predictor when all of

them are actually true. Thus, the actual relationship between m, p, and N is

N > p > m. Particularly, in this experiment we let p = 100, which is smaller

than N = 300 and greater than m = 50, and all the other settings will remain

the same with respect to the original model. Same as before, we will first plot

the EPE-V-THETA graph and see how many predictors will SRR choose during

the supervision step (In order to be consistent with the previous few cases, we

also only show the particular case where the noise variance is equal to 14 ):
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Fig. 5.8: EPE-V-THETA in modified case 3

We can see that the cross-validation error rapidly stabilizes to a very low

level, in this case 64 predictors were selected in the supervision step. We can

see that even if all the 100 predictors were selected into the model (which would

just correspond to the ridge regression) the prediction error is still small, which

actually means that under this low dimensional situation the effect of the super-

vision step is not as effective as it is in the high dimensional problem. To look

at the prediction performance under this low dimensional situation, let’s plot the

EPE-V-N graph for LASSO, ridge regression and SRR:
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Fig. 5.9: EPE-V-N for SRR, LASSO and Ridge in modified case 3

From the above graph, we can see clearly that SRR in this low dimensional

problem does not significantly dominate the performance of either ridge regression

or LASSO. In terms of variable selection, for the case where noise variance is 14

LASSO selects 36 predictors in total and 24 of them are true while SRR selects

64 predictors and 44 of them are true. This is still a reasonable improvement

but it is already far less significant as compared to what happened in the high-

dimensional case. For the prediction error, we can see that the ridge regression

somehow has an even slightly better performance. From the observations above,

we can see that we do need a high dimensional situation for the advertised effects

of the supervised ridge regression to take place. Nevertheless, we propose the

SRR specifically for high-dimensional problems mainly because the effect of the

supervision step will become significant in this situation and SRR is more robust

to the additive noise than LASSO and ridge regression when dimension is high.
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As a result, it is not a surprise that the performance of SRR is not too different

from ridge regression and LASSO when the dimension is low.
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6. CONCLUSIONS AND DISCUSSIONS

6.1 Conclusions

In this section, we will present a brief summary of the properties of the SRR

introduced in this thesis. The proposed SRR applies ridge regression on a re-

duced data matrix Xθ that is determined from a supervision step which chooses

predictors based on their uni-variant correlation with the response. We have

demonstrated that the SRR is able to compensate for both the limitations of

ridge and LASSO. Moreover, the improvement is more significant when the noise

variance is larger. The advantages of SRR over both of the methods include bet-

ter prediction performance and better variable selection accuracy. To evaluate

the performance of SRR, we did a series of experiments based on different model

assumptions and conditions. Here we will summarize the conclusions drawing

from the observations of those experiments.

1. When the spurious and true predictors are not ideally separated, the cor-

relation between these two kinds of predictors will result in spurious high cor-

relations between the response and some spurious predictors. Such correlation

will affect the selection accuracy in the supervision step because those spurious

predictors could be chosen into the model. On the other hand, the prediction

performance of SRR is only degraded slightly due to this correlation between

spurious and true predictors. Therefore even though many spurious predictors

might be chosen into the regression model doing regression and prediction includ-



ing those spurious predictors will not result in a much larger prediction error.

2. When the number of data samples are not sufficient (ie, when p >> m > N

), the variable selection step for SRR (namely, the supervision step) behaves in a

very random and nondeterministic fashion, and many spurious predictors can be

chosen into the model while only a small number of true predictors are actually

chosen. Also, the prediction performance of SRR under this situation is very poor

and not any significant improvement over ridge regression or LASSO is observed.

Thus, to recover a reasonably good model (fair interpretability and prediction

accuracy) using SRR, we need to at least make sure that the number of samples

is no less than the number of true predictors.

3. In a low-dimensional problem (namely the relationship between N, m, p is

N > p > m), the variable selection steps for both LASSO and SRR have very

good accuracy and SRR only out-performs LASSO a little bit when the noise vari-

ance is relatively large. This improvement is much less significant as compared

to what has been observed in a high-dimensional problem. Moreover, the predic-

tion performance of the SRR is not too different from both ridge regression and

LASSO. Under our particular test example, ridge regression has an even slightly

smaller prediction error. Thus, the SRR is especially useful for high-dimensional

problems.

When we compared the mechanisms of variable selection for LASSO and SRR

we have found that the first supervision step of SRR is quite similar to the first

iteration of the coordinate descent algorithm for LASSO (which is actually one of

the reasons why SRR is more robust to the noise since the noise is only computed

once). Thus the SRR can be regarded as an implicit combination of part of

LASSO with ridge regression, which turns out to be able to beat both methods
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when the additive noise is large and the dimension is high. There are also some

other ways to combine ridge and LASSO, one very popular combination is called

the elastic-net which combines the L1 and L2 penalties together, interested readers

can refer to [8] for more information.

Moreover, despite all of the reasoning and rationales we provided to demon-

strate the functionality of the supervised ridge regression, we didn’t show suf-

ficient mathematical analysis for the asymptotical behavior and the conditions

of the variable selection consistency for our technique. Detailed mathematical

proofs and analysis are also an important direction for further research work.
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