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Abstract

We investigate theoretically the quantum effects of optomechanical couplings be-

tween a single-mode cavity field and a mechanical oscillator in the single-photon

strong coupling regime. In such a regime, we examine a driven optomechanical

system and derive a two-level model under certain conditions. Such a model

gives rise to a scheme of generating a single photon in the cavity, which is verified

by numerical calculations based on the Schrödinger equation. For an optome-

chanical cavity driven by two lasers, we discover a class of dark states that are

eigenvectors of the Hamiltonian of the driven optomechanical system. Such dark

states leads to the decoupling of the cavity field from the external driving, which

is analogous to coherent population trapping (CPT) in atomic physics. In ad-

dition, we demonstrate with numerical simulation based on the master equation

that these dark states can be prepared with high fidelities by optical pumping.

For a driven optomechanical cavity with a two-level atom inside, we achieve an

effective coupling between the atom and mechanical oscillator, which is mediated

by the cavity field. Such an effective coupling leads to a Rabi oscillation in which

the excitation of the atom is accompanied by the excitation of a phonon. Specif-

ically, we observe these Rabi oscillations and quantify the effects of dissipations

in numerical simulations.
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摘要 

 

我們從理論上探究在單光子強耦合領域中一個單模腔場與一個力學振子的光力

學耦合的量子效應。在該領域，我們考察一個被驅動的光力學系統並在一定條

件下匯出一個二能級模型。這個模型引出了一個在腔中生成一個單光子的方

案，而此方案得到了基於薛定諤方程的數值計算的確認。對於一個受到兩束鐳

射驅動的光力學系統，我們發現了一類暗態，這些暗態是系統哈密頓量的本征

態。這些暗態導致腔場與外界驅動場之間去耦合，而這是原子物理學中相干布

居囚禁的類推。另外，我們用基於主方程的數值模擬展示了可以通過光泵浦製

備出具有高保真度的暗態。對於一個腔內有一個二能級原子的受驅動光力學系

統，我們獲得了由腔場媒介的原子與力學振子的有效耦合。這種有效耦合展現

出拉比振盪，其中原子的激發伴隨著一個聲子的激發。確切地，我們在數值模

擬中觀察到了這些拉比振盪並量化了耗散的效應。 
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4.4 Exact solution of gN satisfying Eq. (4.17) as a function of N

(points) and result of asymptotic behavior based on Eq. (4.18)(solid

line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Exact solution of gN satisfying Eq. (4.17) as a function of N

(points) and result of asymptotic behavior based on Eq. (4.18)(solid

line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



viii

4.6 Evolution of fidelity F = |⟨D(t)|Ψ(t)⟩|2 with initial state set as a

dark state. The |Ψ(t)⟩ is the numerical solution of the Schrödinger

equation defined by the Hamiltonian Hr. The parameters are:

g/ωM = 0.37, Ω1/ωM = 0.01, Ω2/ωM = 0.03, ∆1/ωM = −0.14,

∆2/ωM = −1.14. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.7 An illustration of some phonon statistics of dark states. (a) Phonon

number probability distribution Pm = |Cβm|2 of dark states for dif-

ferent ratios of driving strengths, with gN = 0.37ωM and N = 10.

(b) ⟨(∆n)2⟩/⟨n⟩ as a function of Ω1/Ω2 for g/ωM = 0.17, 0.64, 0.76

corresponding to N = 20, 3, 2 respectively. . . . . . . . . . . . . 49

4.8 Preparation of dark states by optical pumping. The fidelities F

for various Ω2/Ω1 ratios are plotted as a function of time. The

parameters are: gN/ωM = 0.37, N = 10, κ/ωM = 0.05, Ω2/ωM =

0.01, ∆1/ωM = −0.14, ∆2/ωM = −1.14. . . . . . . . . . . . . . . . 52

4.9 Time evolution of the fidelities F for various g in the vicinity of

gN = 0.37ωM . The parameters are: κ/ωM = 0.05, Ω1 = Ω2 =

0.01ωM , ∆1/ωM = −0.14, ∆2/ωM = −1.14. . . . . . . . . . . . . 53

4.10 Evolution of fidelity F for a mechanical damping rate γM/ωM =

5 × 10−5 and thermal phonon number n̄M = 0. The inset figure

shows the final fidelity Ff (at ωM t = 104) for various γM , with

thermal phonon numbers are n̄M = 0 (red squares) and n̄M = 1

(blue circles). The parameters are: g/ωM = 0.37, κ/ωM = 0.05,

Ω1 = Ω2 = 0.01ωM , ∆1/ωM = −0.14, ∆2/ωM = −1.14. . . . . . . 54

5.1 Schematic diagram of an optomechanical system with a two-level

atom inside, driven by an external field. . . . . . . . . . . . . . . 59

5.2 (a)Energy-level structure of the atom assisted optomechanical sys-

tem, driven by an external field. (b) Scheme of the Λ type three-

level model under the large detuning and resonance conditions. . 61



ix

5.3 The product of Franck-Condon factors A0,0A1,0 as a function of

g/ωM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Evolution of the probability P of the system being in the state

|e⟩ |1⟩M ⊗ |0⟩C , for different detuning ∆2. Other parameters are:

∆3 = 0, g = 0.4ωM , Ω = G = 0.05ωM . . . . . . . . . . . . . . . . 68

5.5 Evolution of the probability P of the system being in the state

|e⟩ |1⟩M ⊗|0⟩C based on the numerical simulations (blue lines), the

primary model (green dashed lines) and the improved model (red

lines). The parameters are: (a) ∆2 = 0.4ωM , (b) ∆2 = 0.6ωM ;

with the other parameters: ∆3 = 0, g = 0.4ωM , Ω = G = 0.05ωM . 69

5.6 Dependence of the maximal probability Pm on ∆3. Other param-

eters are: g = 0.4ωM , Ω = G = 0.05ωM . . . . . . . . . . . . . . . 70

5.7 Damping effects of the atom (a), mechanical oscillator (b) and

cavity field (c) on the atom-mirror Rabi oscillation. In each figure,

the blue line is the probability of the system in the excited state

|g⟩ |0⟩M ⊗ |0⟩C , and red line is the total probability of being in the

ground state |g⟩ |0⟩M ⊗ |0⟩C and the excited state |e⟩ |1⟩M ⊗ |0⟩C .

Other parameters are: g = 0.4ωM , Ω = G = 0.05ωM , ∆2 = 0.4ωM . 73



Chapter 1

Introduction

Cavity optomechanics is a thriving subject that studies the coupling between

an optical field in a cavity and a mechanical oscillator via radiation pressure

[1, 2, 3, 4, 5, 6]. The study of optomechanical coupling is mainly aimed at con-

trolling quantum states of a macroscopic mechanical oscillator and its prospective

applications in quantum information processing. For such a purpose, a number

of proposals have been made, such as the storage of optical information as a

mechanical excitation [7], quantum state transfer between light and macroscopic

oscillators [8] and optomechanical transducers for long-distance quantum commu-

nications [9]. Besides, the study of optomechancs provides a route to fundamental

tests of quantum mechanics in the macroscopic regime. Related studies include

quantum entanglements [10, 11, 12, 13, 14, 15, 16, 17], Schrödinger cat states

[18, 19, 20, 21], and the modification of uncertainty relations due to quantum

gravity [22].

The study of cavity optomechanics dates back to late 1960s, when Bragin-

sky investigated the effect of radiation pressure on a macroscopic harmonically

bounded cavity mirror [23]. Starting from 1990s, this field goes into fast devel-

oping. An important achievement in this field is laser cooling of the mechanical

oscillator to near its ground state, which lays the foundation for further control

1



CHAPTER 1. INTRODUCTION 2

of the quantum state of the mechanical oscillator. Besides, various schemes of

high sensitive detections of mechanical motions have been developed [24, 25, 26].

Notably, an effect of optomechanically induced transparency has been proposed

and experimentally demonstrated [27, 28, 29, 30, 31, 32, 33], which is an anal-

ogy of electromagnetically induced transparency (EIT) in atomic physics. Other

achievements includes: optical spring effect [34], parametric instability [35], gen-

erating squeezed states of light [36] and mechanical oscillators [37, 38], etc.

In addition, cavity optomechanics is approaching the single-photon strong

coupling regime, in which the radiation pressure of a single photon displaces the

mechanical oscillator by a distance comparable to its zero-point fluctuation. In

experiments, great progresses have been made in increasing single-photon op-

tomechanical coupling strength [25, 39, 40, 41, 42, 43, 44, 45, 46]. In particular,

in optomechanical system with a cloud of ultracold atoms as a mechanical os-

cillator, the single-photon strong coupling regime has already been reached [47].

A sufficiently strong single-photon optomechanical coupling strength is essential

to the observation of the nonlinear quantum nature of optomechanical couplings.

Remarkably, theorists have put forward a number of interesting phenomena in

this regime of cavity optomechanics, such as photon blockade effect [48], gener-

ation of nonclassical states of the mechanical oscillator [49], multiple mechanical

sidebands [50], and mechanical backaction effects on photon statistics [51]. Moti-

vated by such trends, we devote this thesis to the study of interesting phenomena

of optomechanical systems in this single-photon strong coupling regime.

The organization of the thesis is as follows. After a general introduction of

cavity optomechanics in Chapter 1, we provide basic experimental setups and the-

oretical descriptions of optomechanical systems in Chapter 2. Then, in Chapter

3 we investigate the generation of a single cavity photon via an optomechanical

resonance. In Chapter 4, we examine an optomechanical cavity driven by two

lasers, and discover a class of dark states that is a superposition of mirror Fock
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states. In these dark states, the cavity field is decoupled from the two driving

lasers and remain in vacuum, which is an effect of quantum destructive interfer-

ence. In Chapter 5, we study a composite system consisting of an optomechanical

cavity and a two-level atom inside the cavity. In such a system, the cavity field is

coupled to the mechanical oscillator and the atom separately. However, we find

that an effective coupling between the atom and the mechanical oscillator can be

achieved with the cavity field serving as a medium. Such an effective coupling

exhibits Rabi oscillations involving atomic and mechanical states, which leads to

a full atom-mirror entanglement and a quantum state transfer scheme between

the atom and the mirror. Finally, we conclude the thesis in Chapter 6.



Chapter 2

Basic Description of

Optomechanical Systems

In this chapter, we provide a background of cavity optomechanical systems. We

first describe the basic settings and Hamiltonian models. Then, we review basic

theoretical approaches in studying the quantum dynamics.

2.1 The Physical System: Basic Components

A generic cavity optomechanical system is formed by a Fabry-Perot cavity with

a harmonically bounded cavity mirror, while the other mirror is fixed, as shown

in Fig. 2.1. The resonant frequencies of electromagnetic fields inside the cavity

are determined by the cavity length L. Generally, the frequency of the n-th

cavity mode ωn can be expressed as ωn = ωn(L), where the function ωn(L) is

related to specific details of a cavity. In typical studies of optomechanics, we are

interested in the situation where only a single cavity field mode is involved, since

the separation of mode frequencies is set to be large enough to avoid exciting

other modes when the cavity is driven by a laser at a frequency near resonant to

the cavity mode of interest. In this thesis, we denote the frequency of the cavity

4
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Spring

Mω
Cω

xL +0

Fixed  mirror Movable  mirror 

Figure 2.1: Schematic diagram of an optomechanical system consisting of a Fabry-

Perot cavity with one harmonically bounded mirror.

field mode as ωC . The length of the cavity typically is in the range of 10−2m, but

it can be as small as 10−5m in a photonic crystal setup [6].

The harmonically bounded end mirror is regarded as a simple harmonic os-

cillator, with an oscillating frequency ωM ranging from kHz [52] to GHz [40].

In experiments, the effective mass of the mechanical oscillator M spans a wide

range of scales. For example, the mechanical oscillator can be a cloud of ultracold

atoms with a mass as small as 10−22kg [47]. On the other hand, a macroscopic

suspended mirror in a gravitational wave detector has a mass in kilogram scale

[53]. In typical experiments, the effective mass is around M ∼ 10−12kg [46]. The

mass and frequency of the oscillator determine an important length scale of the

quantum system, namely zero-point fluctuation of the position:

xzpf =
√

~/(2MωM), (2.1)

which shall be used in the derivation of optomechanical coupling in the following

section.

In the optomechanical system depicted in Fig. 2.1, the cavity field and the

movable mirror are coupled with each other via radiation pressure of the field on
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the mirror. Such an interaction is characterized by the single-photon coupling

strength g (to be defined in the next section), which ranges from 1Hz [54], to

106Hz as realized in a photonic crystal cavity where the dimension of the cavity

is of order 1µm and the mass of the mechanical oscillator is about 300fg, which

are relatively small [40].

We remark that optomechanical couplings can be realized with a variety

of configurations, not limited to the Fabry-Perot cavity [55]. In fact, experi-

ments have been performed in other systems such as microtoroids with whisper-

ing gallery modes [57], waveguides and photonic crystal cavities [39], suspended

membrane inside a cavity [24, 25, 58] and ultracold atoms in a cavity [47]. These

different implementations share the same principle that a mechanical motion is

forced by an optical field, and the frequency (energy) of the optical field is mod-

ulated by the mechanical motion, thus leading to an optomechanical coupling.

2.2 Hamiltonian Model

To study the quantum effects, we need to set up the Hamiltonian first. The

Hamiltonian of a cavity optomechanical system under single-mode adiabatic ap-

proximation is given by

H = ~ωCa
†a+ ~ωMb

†b, (2.2)

where a (b) and a† (b†) are respectively the annihilation and creation operator

the cavity field (mechanical) modes, with ωC = ωC(L0 + x) the frequency of the

cavity mode when the cavity is at its length L0 + x (Fig. 2.1). The dependence

of cavity field resonant frequency ωC on mirror displacement x due to radiation

pressure is the key to optomechanical coupling. We assume that the displacement

of the mirror is much smaller than the wavelength of the cavity field mode, i.e.,

x≪ λ (this condition automatically leads to x≪ L0), therefore the frequency of
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the cavity field mode with a cavity length L0 + x can be expanded as:

ωC (L0 + x) ≈ ωC (L0) +
∂ωC

∂x

∣∣∣∣
L0

· x, (2.3)

where we have made a linear approximation by neglecting higher order corrections

in the expansion since x is much smaller than L0. In addition, we assume that the

mirror is moving adiabatically slow so that scattering of the cavity field mode to

other modes are negligible. This requires the mirror frequency be much smaller

than the frequency separations of neighboring cavity field modes. Under such

conditions, the Hamiltonian of a single cavity field mode coupled to a moving

mirror via radiation pressure is approximated by

H = ~ωC (L0 + x) a†a+ ~ωMb
†b

≈ ~ωC(L0)a
†a+ ~

∂ωC

∂x
xzpfa

†a
(
b+ b†

)
+ ~ωMb

†b, (2.4)

where we have used the relation x = xzpf
(
b+ b†

)
. We emphasize that ωC(L0)

in Eq. (2.4) is the frequency of the cavity mode at the rest length of the cavity.

Thus, we identify the single-photon coupling strength

g = −∂ωC

∂x
xzpf , (2.5)

which represents the modification of resonant frequency when the mirror is dis-

placed by a distance of zero-point fluctuation, and the minus sign is added fol-

lowing the usual treatments. For a one dimensional Fabry-Perot cavity, we have

approximately ∂ωC/∂x ≈ −ωC/L0, therefore the single-photon coupling strength

reads

g ≈ xzpf
L0

ωC . (2.6)

To summarize, after making the linear and adiabatic approximation which is valid

under the conditions of small mirror displacement and slow mirror motion, we

achieve the Hamiltonian of an cavity optomechanical system:

H = ~ωCa
†a− ~ga†a

(
b+ b†

)
+ ~ωMb

†b, (2.7)
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in which we see the field-mirror interaction (−~ga†a
(
b+ b†

)
) involves products

of three operators, showing the nonlinear nature of the interaction. Alternatively,

the Hamiltonian (2.7) can be expressed with the position x and momentum p of

the mechanical oscillator as:

H = ~ωCa
†a− ~ga†a

1

xzpf
x+

1

2M
p2 +

1

2
Mω2

Mx
2. (2.8)

Here the term −~ga†a 1
xzpf

x stands for the potential energy due to radiation pres-

sure, from which we see the radiation pressure force is

F = ~
g

xzpf
a†a, (2.9)

which is proportional to coupling strength and photon number.

We note that a rigorous formulation of the Hamiltonian without single-mode

adiabatic approximation is provided by Ref. [59]. We also remark that in

some schemes the modulation of cavity frequency by the mirror position can

be nonlinear [24, 25, 58]. For example, cavity frequency can be modulated as:

ω(L0 + x) − ω(L0) ∝ x2, which has been realized in an optomechanical cavity

with a membrane inside [25]. In Ref. [25], it is reported that by positioning the

membrane at a node or antinode of the cavity wave, the linear dependence term

can be turned off, i.e., ∂ωC/∂x = 0, such that the second order term becomes

dominant.

2.3 Energy-level Structure

In this section, we discuss the energy levels of the Hamiltonian of an optome-

chanical system. In a displaced picture defined by a displacement operator:

D
(
a†ag/ωM

)
= exp[g

a†a

ωm

(
b† − b

)
], (2.10)

the Hamiltonian in Eq. (2.7) can be diagonalized as:

H̃ = D†HD = ~ωCa
†a+ ~ωMb

†b− ~
g2

ωM

(
a†a
)2
, (2.11)
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which represents two decoupled quantum harmonic oscillators. Therefore, the

eigenvectors of H̃ in the displaced picture are products of Fock states of the

cavity field and mirror: |n⟩C ⊗ |p⟩M , where n(p) is the cavity photon (phonon)

number. The corresponding energy eigenvalues are:

εn,p = nωC + pωM − n2g2/ωM , (2.12)

which depend nonlinearly on photon number n, and linearly on phonon number

p. Here we have set ~ = 1, and we will always use this convention for simplicity

hereafter. Equivalently, the eigenvectors in the undisplaced picture are given by

|ψn,p⟩ = D
(
a†ag/ωM

)
|n⟩C ⊗ |p⟩M = |n⟩C ⊗D (ng/ωM) |p⟩M = |n⟩C ⊗ |p̃(n)⟩M ,

(2.13)

where |p̃(n)⟩M denotes the n-photon displaced Fock state of the mirror. Thus,

the Hamiltonian can be expressed in the eigenbasis as:

H =
∑
n,p

εn,p |ψn,p⟩ ⟨ψn,p|, (2.14)

which will be used in later studies.

The whole Hilbert space is divided into many subspaces, labeled by photon

numbers. A part of the energy-level structure is illustrated in Fig. 2.2. The

energy levels represent the eigenvectors ψn,p for phonon number n = 0, 1, 2. In

the states of an n-photon subspace, the cavity field is in n-photon Fock state |n⟩C ,

while the mirror is in n-photon displaced Fock state |p̃(n)⟩M , as are shown in the

figure. Moreover, the energy levels inside each subspace are equally spaced, with a

common separation ωM . However, there is a nonlinear energy shift −n2g2/ωM of

each state due to the optomechanical coupling. As a result, energy levels between

corresponding neighboring subspaces are not equally spaced. In Fig. 2.2, we only

show the lowest three subspaces since the energy-level structures of subspaces

with more photons are similar.
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Figure 2.2: The energy-level structure of the optomechanical system up to two-

photon subspaces. We define δ = −g2/ωM for convenience.

2.4 Weak Coupling Regime: Linearized Theory

We now introduce a linearized theory of cavity optomechanics [62], which works

in the weak optomechanical coupling regime: g ≪ ωM . This theory is based

on the assumption that the fluctuation of cavity field amplitude is much smaller

than its average.

We consider a driven optomechanical system, whose Hamiltonian is given by:

H = ωca
†a+ ωmb

†b− ga†a(b† + b) + Ωe−iωLta† + Ω∗eiωLta, (2.15)

where the term Ωe−iωLta†+Ω∗eiωLta describes that the cavity photons are driven

by a laser with an amplitude Ω and a frequency ωL. To eliminate the time-

dependence in this Hamiltonian, we go to a rotating frame with a transformation

operator: T1(t) = e−iωLa
†at. Consequently, the transformed Hamiltonian (H ′ =

T †
1HT1 − iT †

1 Ṫ1) reads

H ′ = ∆a†a+ ωmb
†b− ga†a(b† + b) + Ωa† + Ω∗a, (2.16)

where the laser detuning ∆ = ωc − ωL is defined. Therefore, we obtain the
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Heisenberg’s equations of motion of a and b: ȧ = −i∆a+ iga(b† + b)− iΩ,

ḃ = −iωmb+ iga†a.
(2.17)

In the linearized theory, we separate the operators into two parts: a c-number

part that accounts for the average and the operator part that reveals the quantum

fluctuation. Specifically, we decompose the operators as: a(t) = α(t) + δa(t),

b(t) = β(t) + δb(t),
(2.18)

where α (t) = ⟨a (t)⟩ (β (t) = ⟨b (t)⟩) is a c number that describes the expec-

tation value of a(t) (b(t)), while δa(t) and δb(t) are operators that take care of

the quantum fluctuations upon the averages. Substituting Eq. (2.18) into the

Heisenberg’s equations (2.17), we obtain the (classical) equations for the mean

values:  α̇(t) = −i∆α+ ig (β + β∗)α− iΩ,

β̇(t) = −iωmβ + ig |α|2 ,
(2.19)

and the operator equations for the quantum fluctuation are given by d
dt
δa(t) = −i [∆− g (β + β∗)] δa+ igα

(
δb† + δb

)
+ igδa

(
δb† + δb

)
,

d
dt
δb(t) = −iωmδb+ ig

(
α∗δa+ αδa†

)
+ igδa†δa.

(2.20)

We can view the operator equations (2.20) as Heisenberg’s equations of motion

for δa and δb in a new Hamiltonian, i.e., the effective Hamiltonian for δa and δb.

Such an effective Hamiltonian takes the form:

Heff = [∆− g (β + β∗)] δa†δa+ ωmδb
†δb− gδa†δa

(
δb† + δb

)
−g
(
α∗δa+ αδa†

) (
δb† + δb

)
. (2.21)

We can take a linear approximation to neglect the nonlinear term−gδa†δa(δb† + δb)

in the Hamiltonian (2.21) under condition that

|α|2 ≫
⟨
δa†δa

⟩
. (2.22)
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Therefore, the effective Hamiltonian in linear approximation becomes

Heff ≈ [∆− g (β + β∗)] δa†δa+ ωmδb
†δb− g

(
α∗δa+ αδa†

) (
δb† + δb

)
, (2.23)

which can be interpreted as two linearly coupled oscillators. As a result, the

linearized equations of motion for the fluctuations reads d
dt
δa(t) = −i [∆− g (β + β∗)] δa+ igα

(
δb† + δb

)
,

d
dt
δb(t) = −iωmδb+ ig

(
α∗δa+ αδa†

)
.

(2.24)

Thus, by solving mean value equation (2.19) and linearized fluctuation equation

(2.24), the evolution of field operator can be obtained approximately.

The linearized theory has been applied to study various phenomena in cavity

optomechanics. In particular, three types of interaction schemes can be real-

ized corresponding to separate detunings of laser driving [6, 4]. First, when

∆ = ωC − ωL ≈ ωM , i.e., the laser driving is red-detuned by about one mechani-

cal frequency, we have two harmonic oscillators of similar frequencies coupled with

each other according to the effective Hamiltonian [Eq. (2.23)]. Thus, the resonant

interaction terms under rotating wave approximation is: −g
(
α∗δaδb† + αδa†δb

)
.

Such an interaction allows energy exchange between the two harmonic oscilla-

tors, which has been used to achieve cooling of the mechanical excitations down

to near its ground state [63, 64]. In the second scheme, we set ∆ ≈ −ωM , which

means that the laser driving is blue-detuned by about one mechanical frequency.

For this case, the resonant interaction under rotating wave approximation is:

−g
(
α∗δa†δb† + αδaδb

)
, which leads to ”two-mode squeezing”. This is the key to

parametric amplification [65], in which energies of both the cavity field and me-

chanical oscillator grows exponentially in the absence of dampings. Third, when

∆ ≈ 0, we have the interaction −g
(
α∗δa+ αδa†

) (
δb† + δb

)
. Such an optome-

chanical coupling results in a phase shift of the cavity field proportional to the

position of mechanical oscillator. By measuring this phase shift, the motion of the

mechanical oscillator can be detected (optomechanical displacement detection)
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[26]. Besides, an interesting phenomenon called optomechanically induced trans-

parency has been discovered using the linearized theory [27, 30], which is anal-

ogous to the electromagnetically induced transparency (EIT) in atomic physics.

In summary, the linearized theory has been proven to be successful in the weak

coupling regime. However, the linearized theory is not sufficient in describing sys-

tems with a single-photon coupling strength comparable to mechanical frequency,

i.e., the linearization condition (2.22) breaks down when g ∼ ωM , which is going

to be discussed in the following section.

2.5 Single-photon Strong Coupling Regime

In this section, we introduce the single-photon strong coupling regime, in which

the radiation pressure of a single photon displaces the mirror to a distance com-

parable to its zero-point fluctuation. Explicitly, the displacement of mirror equi-

librium position by a single photon can be evaluated by considering the new

potential of the mirror, which consists of the original harmonic bounding and ra-

diation pressure of a photon. According to Eq. (2.8), the potential of the mirror

is:

V (x) =
1

2
Mω2

Mx
2 − g

xzpf
x, (2.25)

where we have let ⟨a†a⟩ = 1 for a single photon radiation pressure. Consequently,

the new equilibrium position of the mirror can be obtained:

x′ = 2
g

ωM

xzpf , (2.26)

which is proportional to the single-photon coupling strength g. Therefore, the

single-photon strong coupling regime is characterized by a single-photon coupling

strength comparable to the mechanical frequency, i.e., g ∼ ωM . In such a regime,

the nonlinear optomechanical coupling becomes significant so that the linearized

theory described in the previous section is inadequate [56]. However, various
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interesting phenomena have been proposed in this regime, such as the photon

blockade effect [48], non-Gaussian mechanical steady states [50], and statistical

features of transmitted photons [51]. In addition, experimentalists have also been

pursuing this regime with different configurations of optomechanical systems [40,

46, 39, 25, 41, 42, 43, 44, 45]. In this thesis, we will focus on phenomena in this

regime without exploiting the linearized theory.

Before going into specific studies, we first indicate the limitations of the lin-

earized theory by a comparison between results of the linearized theory and exact

numerical solution of Schrödinger equation. In Eq. (2.16), we have obtained the

Hamiltonian of a driven optomechanical system in a rotating frame. Numerically

we solve the Schrödinger equation governed by this Hamiltonian

i|Ψ̇ (t)⟩ = H ′ |Ψ(t)⟩ , (2.27)

with the state of the system in the form

|Ψ(t)⟩ =
∑
m,n

cmn |m,n⟩, (2.28)

where |m,n⟩ is a Fock state of the system with m photons and n phonons. Sub-

stituting into Schrödinger equation, the equations for the coefficients cmn are:

iċmn(t) = (∆m+ ωmn) cmn − gm
√
ncm,n−1 − gm

√
n+ 1cm,n+1

+Ω
√
mcm−1,n + Ω∗√m+ 1cm+1,n, (2.29)

which can be solved after a proper truncation of the Hilbert space.

We solve the mean value equations (2.19) according to the linearized theory,

and the quantum equations (2.29) separately for the system initially in its ground

state. The quantum equations are solved in a Hilbert space with largest photon

number 9 and largest phonon number 7, at which the numerical results converge.

After then, we plot in Fig. 2.3 the evolutions of cavity photon numbers ⟨a†a⟩ and

phonon numbers ⟨b†b⟩ with different values of coupling strength g. Generally, we
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Figure 2.3: Comparison between the linearized theory (red lines) and the exact

quantum equations (blue lines) in cavity photon numbers ⟨a†a⟩ and phonon num-

bers ⟨b†b⟩. Common parameters: ∆/ωm = 1.01, Ω/ωm = 0.2. Tuned parameter:

(a) and (b): g/ωm = 0.1; (c) and (d): g/ωm = 0.2; (e) and (f): g/ωm = 0.3.
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see that the cavity photons build up rapidly because of the external driving field,

while the phonon numbers gradually grow due to the optomechanical coupling,

i.e., the mechanical motion is driven by the radiation pressure of the cavity field.

Notably, the fast oscillating patterns in the evolution curves of photon number is

mainly caused by the detuning ∆ in the linearized equations (2.19), which leads

to a fast rotating phase factor. Accordingly, the period of such patterns is about

2π/∆ ≈ 2πω−1
M since ∆/ωM = 1.01, which agrees well with the Fig. 2.3 (a).

In addition, one can see that there are some fast oscillating patterns with small

amplitudes in the phonon number evolution curves, which are associated with

the fast oscillations of photon number. This is because the phonons are driven

by the cavity photons with a rate proportional to photon number, such that the

slopes of the phonon number curves also oscillates with the oscillations of pho-

ton numbers. Now we compare the results of linearized theory and the exact

quantum equations. Note that the differences between the two curves represent

the quantum fluctuation accounted by the operator equations (2.20), which is ne-

glected in the linearized theory. First, in Fig. 2.3 (a) and (b), we set the coupling

strength as g = 0.1ωM , which is much smaller than mechanical frequency. We

see that the two sets of evolution curves of photon and phonon numbers from

the two approaches agree quite well with each other. Next, we tune the coupling

strength two times larger: g = 0.2ωM in Fig. 2.3 (c) and (d), where we see

the difference between the two approaches becomes notable. In Fig. 2.3 (e) and

(f), the coupling strength is set to be even larger: g/ωM = 0.3. In this case,

the difference between the two approaches turns out to be so significant that the

curves are hardly comparable. For instance, we compare the phonon number at

a time ωM t = 80 in Fig. 2.3 (f), the quantum equation result shows the phonon

number is at a minimum, however, the result of linearized theory appears to be

a peak value, which is right on the contrary. Hence, we demonstrate that when

the coupling strength g become nearly comparable to the mechanical frequency
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ωM , the linearized theory indeed breaks down, or in other words, the linearization

condition (2.22) is no longer satisfied. As a result, in the strong coupling regime

where coupling strength is comparable to the mechanical frequency (g ∼ ωM), we

need to go beyond the linearized theory and take into account the intrinsic non-

linearity of the optomechanical coupling so as to explore interesting phenomena

of this regime, which is the theme of the studies in this thesis.

2.6 Damping of the System

In this section, we discuss the usual approaches in studying the dissipation of op-

tomechanical systems, including a cavity field damping and a mechanical damp-

ing. First, we introduce the Born-Markov master equation, with discussions on

approximations made in its derivation and the requirements on physical systems.

Then, we provide the specific form of the master equation for our optomechanical

systems, which will be used in the studies in this thesis. In addition, we briefly

discuss another approach, namely quantum Langevin equation.

The Born-Markov master equation is an approximate equation that describes

the dissipative evolution of quantum open systems. The dissipation of a quantum

open system is caused by its coupling to the environment, which contains a large

number of degrees of freedom. Since an exact calculation of the evolution of the

whole system consisting of the concerned system and its environment is neither

necessary nor practically accessible, the Born-Markov master equation exploits a

strategy to focus on the concerned system only and take into account the effects

of the environment without involving its degrees of freedom. To do so, the Born-

Markov master equation makes use of two basic assumptions: Born approximation

that takes the environment as in a steady state, and Markov approximation that

assumes the two-time correlation functions of noise operators to be Dirac delta

functions. Such assumptions lead to some requirements on the properties of
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the physical system. First, the environment should be large so that it contains

a wide spectrum and the environmental state is not affected when coupled to a

much smaller system. Additionally, the coupling of the system to its environment

should be weak, so that the system density matrix is approximately unchanged

within the correlation time.

Now we turn to the damping of optomechanial systems. For the cavity field,

damping is caused by the coupling to the outside field, or in other words, the

finite cavity mirror transparency. We define the cavity damping rate κ, which

means the cavity photons have a lifetime 1/κ. Another source of damping is the

mechanical damping of the mirror motion, which origins from various aspects such

as viscous damping due to coupling to surrounding gas atoms and excitations of

elastic waves in its environments [6]. The dissipation of the mechanical oscillator

(mirror) is characterized by a mechanical damping rate γM , i.e., the mechanical

excitations (phonons) have a lifetime of 1/γM . Hence, we model the damping of

optomechanical system as two harmonic oscillators coupled to two thermal baths,

with the total Hamiltonian given by

HW = HS +HB +HSB, (2.30)

where HS and HB are respectively the Hamiltonian of the optomechanical system

and the baths, while HSB describes the coupling between the system and baths.

To focus on the evolution of the optomechanical system, we trace out the baths

to obtain the reduced density matrix of the system:

ρ (t) = TrB [ρW (t)] , (2.31)

where ρW is the density matrix of the whole system including the system and

baths. We model the baths as consisting of a large number of harmonic oscillators

and the system-bath couplings are linear [66]. Under the assumptions that both

the cavity field damping and mechanical damping are Markovian processes [50,

35, 67, 68, 70], the evolution of the optomechanical system is described by a
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Born-Markov master equation, which is specifically:

dρ

dt
= −i [HS, ρ]−

κ

2

(
a†aρ− 2aρa† + ρa†a

)
− γM(n̄M + 1)

2

(
b†bρ− 2bρb† + ρb†b

)
−γM n̄M

2

(
bb†ρ− 2b†ρb+ ρbb†

)
, (2.32)

where n̄M is thermal phonon number of the bath, and we have assumed thermal

photon number n̄C = 0.

For completeness, we mention another widely used approach in studying the

dissipative evolution of an optomechanical system: quantum Langevin equation

[50, 68, 70]. In contrast to the master equation approach that works in the

Schrödinger picture, the Langevin equations are equations of motion of operators

in Heisenberg picture [66, 69]. Specifically, for a driven optomechanical system

with Hamiltonian given by Eq. (2.16), the quantum Langevin equations describ-

ing the dissipative evolution of the annihilation operators of the cavity field mode

a and mechanical mode b are [70]: ȧ = −i∆a+ iga
(
b+ b†

)
− iΩ− κ

2
a+ ain,

ḃ = −iωMb+ iga†a− γM
2
b+ bin,

(2.33)

where ain and bin are respectively the input random noise operator of the cavity

field and mechanical modes, with zero expectation values. For a Markovian bath,

the noise operators are δ-correlated, with correlation functions given by:

⟨ain(t)a†in(t′)⟩ = κδ(t− t′),

⟨a†in(t)ain(t′)⟩ = 0,

⟨bin(t)b†in(t′)⟩ = γM (n̄thm + 1) δ (t− t′) ,

⟨b†in(t)bin(t′)⟩ = γM n̄thmδ (t− t′) .

(2.34)

Note that we have also assumed the thermal photon number of the bath is zero.



Chapter 3

Single-photon Generation in a

Cavity via an Optomechanical

Resonance

3.1 Introduction

To manipulate quantum transitions is essential in quantum information process-

ing, which is a prospective application of cavity optomechanics. For such a pur-

pose, researchers have proposed to use optomechanical systems as single-photon

sources and single-phonon single-photon transistors [71]. In this chapter, we

investigate how one can manipulate quantum transitions between zero- and one-

photon states via an optomechanical resonance. An optomechanical resonance is

established by a driving laser with its frequency matching the energy difference

between a couple of eigenstates of the optomechanical system. We will set up a

two-level model and then numerically demonstrate Rabi oscillations between two

states of the system. With these Rabi oscillations, we can manipulate the quan-

tum transition from a zero- to one-photon state, such that the optomechanical

system can serve as a single-photon source.

20
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Figure 3.1: Energy-level diagram of an optomechanical system with a laser driving

(green arrays) for illustrating photon blockade effect. Here the parameter δ =

g2/ωM .
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3.2 Two-level Model

In this section, we build up a two-level model of the driven optomechanical system

based on the rotating wave approximation (RWA), which operates under the con-

ditions of near-resonance and weak-driving in the single-photon strong coupling

regime. Under RWA, we neglect the off-resonant transitions, i.e., the system is

confined in a Hilbert space accessed by resonant transitions only.

We consider an optomechanical system driven by an external field with a

frequency ωL and an amplitude Ω. The Hamiltonian of such a driven optome-

chanical system is given by Eq. (2.15). In a frame rotating at the laser frequency,

the Hamiltonian becomes

H ′ = ∆a†a+ ωMb
†b− ga†a

(
b† + b

)
+ Ωa† + Ω∗a, (3.1)

where ∆ = ωC − ωL is the laser detuning, a and b are the annihilation operators

of the electromagnetic and mechanical modes, with respective resonant frequency

ωC and ωM . The first three terms of H ′ in Eq. (3.1) represent the Hamiltonian

of the optomechanical system without the external driving, which can be diago-

nalized with eigenvectors |ψn,p⟩ [defined by Eq. (2.13)]. In such eigen basis, the

Hamiltonian for the driven optomechanical system can be expressed as

H ′ =
∑
n,p

ϵn,p |ψn,p⟩ ⟨ψn,p|+ Ω

(∑
n,p,p′

A
(n)
p,p′ |ψn−1,p′⟩ ⟨ψn,p|+ h.c.

)
, (3.2)

where Ω is assumed to be real for convenience and ϵn,p = n∆− n2 g2

ωM
+ pωM . In

addition, we have expressed the annihilation operator a in the eigen basis as

a =
∑
n,p

∑
n′,p′

|ψn,p⟩ ⟨ψn,p| a |ψn′,p′⟩ ⟨ψn′,p′| =
∑
n,p,p′

A
(n)
p,p′ |ψn−1,p⟩ ⟨ψn,p′|, (3.3)

with the coefficients defined as A
(n)
p,p′ =

√
n ⟨p|D† (g (n− 1) /ωm)D (gn/ωM) |p′⟩.

Explicitly, the coefficients are given by [72]

A
(n)
p,p′ =


√
n
√

p!
p′!
e−

ξ2

2 (−ξ)p
′−p Lp′−p

p (ξ2) , p ≤ p′,
√
n
√

p′!
p!
e−

ξ2

2 (ξ)p−p′Lp−p′

p′ (ξ2) , p > p′,
(3.4)
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Figure 3.2: Schematic diagram of the two-level model of a driven optomechanical

system (δ = g2/ωM).

where ξ = g/ωM and Ls
r(x) are associated Laguerre polynomials. Note that

for n = 1, the coefficient A
(1)
p,p′ is also known as a Franck-Condon factor that

represents the overlap between a Fock state and a displaced Fock state. In the

literature of molecular physics, a Franck-Condon factor determines the probability

of electronic transitions between two states in a vibrational molecule.

Our task is to achieve a two-level model of the driven optomechanical system

that only involves the two states: an initial zero-photon state |ψ0,i⟩ and a single-

photon state |ψ1,j⟩, with i and j being integers. For such a purpose, the transition

between the two states should be set in resonance, while the transitions to states

out of the two states are off-resonance. Thus, under rotating wave approximation,

we can ignore the off-resonance transitions and take the driven optomechanical

system as a two-level system approximately. In order to achieve the resonance,

the laser driving frequency should be set to match the energy difference between

the two states. This is illustrated in Fig. 3.2, which is drawn in the original frame

for simplicity. Hence, we get the resonance condition: ωL = ωC − δ + (j − i)ωM .
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Equivalently, the specific laser detuning ∆0 = ωC − ωL satisfying this resonance

condition is:

∆0 = (i− j)ωM +
g2

ωM

. (3.5)

Now that the two states |ψ0,i⟩ and |ψ1,j⟩ are set in resonance, we have to show

that the transitions from these two states to other states are off-resonance. The

transition from |ψ0,i⟩ to another single-photon state |ψ1,p⟩ (p ̸= j) has a detuning

|(p − j)ωM |. Similarly, the transition from |ψ1,j⟩ to another zero-photon state

|ψ0,q⟩ (q ̸= i) is detuned by |(r − i)ωM |. Additionally, we consider the detunings

of further excitation from the single-photon state |ψ1,j⟩ to a two-photon state

|ψ2,r⟩. Since the energies of the states depend nonlinearly on photon number:

ϵn,p = n∆− n2 g2

ωM
+ pωM (as shown in Fig. 3.1), we obtain the detuning of such

higher excitation after minor algebra: |2 g2

ωM
+ (r − 2j + i)ωM |, which is non-zero

generally.

Hence, we see that the dynamics of the system involves two parts: a reso-

nant transition between two states and off-resonant transitions. Accordingly, the

Hamiltonian of the system [Eq. (3.1)] can be decomposed into two separate parts:

H ′ = H̃ ′ + V, (3.6)

where H̃ ′ is resonant part that involves only the two resonant states:

H̃ ′ = ϵ0,i |ψ0,i⟩ ⟨ψ0,i|+ ϵ1,j |ψ1,j⟩ ⟨ψ1,j|+ ΩA
(1)
i,j (|ψ0,i⟩ ⟨ψ1,j|+ |ψ1,j⟩ ⟨ψ0,i|) , (3.7)

and V accounts for the rest off-resonant part of the Hamiltonian, i.e., V = H ′−H̃ ′.

In the weak driving limit, the off-resonant transitions can be neglected according

to rotating wave approximation. Specifically, to prevent off-resonant excitations

from |ψ0,i⟩ to |ψ1,p⟩ (p ̸= j), the driving strength should be much smaller than the

detuning between the two states: |(p−j)ωM |, i.e., Ω ≪ |(p−j)ωM |. In addition, to

avoid excitations to 2-photon states |ψ2,q⟩, the weak driving condition is explicitly:

Ω ≪
∣∣2g2/ωM −KωM

∣∣ , (3.8)
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where K is the nearest integer to 2(g/ωM)2. For example, if g < ωM/2 then

K = 0. Note that since |2g2/ωM −KωM | is always smaller than ωM , therefore

Eq. (3.8) fully describes the weak driving condition. However, we remark that

there are some special values of g that leads to the resonance of higher excitations

to two-photon states [75]. For a positive integerK, the detuning |2g2/ωM −KωM |

can be zero at gK =
√
K/2ωM , such that the excitations of two-photon states

become significant. Hence, rigorously speaking, the Eq. (3.8) represents the weak

driving condition except for these special values of coupling strength.

In reality, the finite lifetime of the cavity photon should be taken into account.

This is because in presence of cavity field damping, the frequency of the cavity

photon has a line width, which is equal to the cavity field decay rate κ. In order to

have a sharp resonance between the two states, the mechanical sidebands should

be resolvable, i.e., κ ≪ ωM (resolved sideband limit). Besides, to prevent higher

excitations to two-photon states, the detuning 2g2/ωM should also be resolved,

i.e., κ ≪ 2g2/ωM . Hence, we require a strong single-photon coupling strength

satisfying:

g2 ≫ κ · ωM , (3.9)

which characterizes the single-photon strong coupling regime that is needed to

avoid the off-resonant transitions.

To summarize, with the driving laser satisfying the resonance condition [Eq.

(3.5)] and weak-driving condition [Eq. (3.8)] and a strong optomechanical cou-

pling [Eq. 3.9], the optomechanical system can be modeled by a two-level sys-

tem consisting of the two resonant states |ψ0,i⟩ and |ψ1,j⟩, neglecting all the

off-resonant transitions to other states. Consequently, the Hamiltonian of the

system is represented by the resonant part: H ′ ≈ H̃ ′, i.e., we have

H ′ ≈ ϵ0,i |ψ0,i⟩ ⟨ψ0,i|+ ϵ1,j |ψ1,j⟩ ⟨ψ1,j|+ ΩR (|ψ0,i⟩ ⟨ψ1,j|+ |ψ1,j⟩ ⟨ψ0,i|) , (3.10)

where we define ΩR = ΩA
(1)
i,j (note that ϵ0,i = ϵ1,j). Thus, we obtain the two-level
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model of the driven optomechanical system.

3.3 Rabi Oscillations in an Ideal Cavity

In this section, we investigate a direct implication of the two-level Hamiltonian:

Rabi oscillations between two states. In order to clearly study the efficiency of

the two-level model, we first focus on the coherent evolution of the system in an

ideal cavity without damping.

As an representative example, we study a specific Rabi oscillation between the

two states: the ground state |ψ00⟩ and an excited state |ψ11⟩. For this case, the

resonant condition [Eq. (3.5)] is specifically: ∆0 =
g2

ωM
− ωM . Together with the

weak driving condition Eq. (3.8), we achieve the two-level Hamiltonian H ′ given

by Eq. (3.10) with i = 0 and j = 1. Thus, the time evolution of the system is

governed by the Schrödinger equation (with ~ = 1): i|Ψ̇(t)⟩ = H ′ |Ψ(t)⟩, with H ′

the two-level Hamiltonian. Let the initial state of the system be: |Ψ(0)⟩ = |ψ0,0⟩,

then the system state at time t is given by

|Ψ(t)⟩ = cosΩRt |ψ00⟩ − i sinΩRt |ψ11⟩ , (3.11)

which exhibits Rabi oscillations with the Rabi frequency ΩR = ΩA
(1)
0,1 = −Ωξe−

ξ2

2

according to Eq. (3.4), and we have ϵ0,0 = ϵ1,1 = 0. In addition, the system

evolves into the single-photon state ψ11 at the time T0:

T0 =
π

2ΩR

=
π

2Ωξ
e

ξ2

2 , (3.12)

which is inversely proportional to the driving strength Ω and the Franck-Condon

factor A
(1)
0,1. Hence, such Rabi oscillations can be used to generate a single cavity

photon starting from vacuum.
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3.4 Numerical Results

In this section, we perform numerical calculations to verify the validity of the two-

level model and quantitatively study the efficiency of single-photon generation.

Since the optomechanical system actually consists of a large number of eigen-

states, there can be many possible transitions in reality. In order to verify the

approximate Hamiltonian and to show that the off-resonant transitions can in-

deed be neglected, we perform numerical simulations of the coherent dynamics

based on the original Hamiltonian in an ideal cavity without cavity field and me-

chanical dampings. The observation of Rabi oscillations in the evolution of the

system is regarded as the signature of the two-level Hamiltonian. In addition,

we compare the oscillation periods between the numerical simulation results and

model prediction as a quantitative evidence of the efficiency of the model. Af-

ter then, we investigate the dependence of the single-photon generation on the

driving strength and its sensitivity to small variations of laser detuning.

We solve numerically the Schrödinger equation i|Ψ̇(t)⟩ = H ′ |Ψ(t)⟩ with H ′

the original Hamiltonian given by Eq. (3.1). Expanded in a certain basis, the

Schrödinger equation is equivalent to a set of coupled differential equations of the

probability amplitudes, which can be solved numerically with MATHEMATICA

after an appropriate truncation of the Hilbert space. In the simulations discussed

below, we use a Hilbert space in which the largest photon number is set as 3 and

the largest phonon number is 8, which we find the results converge.

In order to demonstrate the Rabi oscillations between the two states, we plot

in Fig. 3.3 time evolutions of probability P of being in the single-photon state

|ψ11⟩:

P = |⟨ψ1,1| Ψ(t)⟩|2 . (3.13)

Particularly, for a system whose time evolution is given by Eq. (3.11), the single-

photon probability is P (t) = sin2ΩRt, i.e., a sinusoidal function of time.
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Figure 3.3: Time evolution of single-photon probability. Parameters are set as:

g/ωM = 0.5, ∆0/ωM = −0.75; (a) Ω/ωM = 0.05; (b) Ω/ωM = 0.1; (c) Ω/ωM =

0.2.
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Fig. 3.3 (a) shows a typical Rabi oscillation that the probability P of being in

single-photon state oscillates sinusoidally and the maximum value reaches near 1.

Hence, our two-level model fits well for this case where Ω/ωM = 0.05. In Fig. 3.3

(b) and (c), we plot the single-photon probability P curves with two larger driving

strengths. One can see that some small oscillation patterns appear in the roughly

sinusoidal curves. Such patterns are caused by off-resonant transitions, which

become more significant with larger driving strengths. Moreover, the maximal

values of single-photon probability decline significantly, especially for the case

with Ω/ωM = 0.2, whose maximal probability is about 0.85. Note that the

weak driving condition Eq. (3.8) requires: Ω ≪ 0.5ωM . The numerical results

demonstrate that such a requirement is indeed necessary and the two-level model

is indeed effective when such weak driving condition is satisfied.

To further confirm the validity of the two-level model, we compare in Fig. 3.4

the dependence of T0 on driving amplitude Ω and coupling strength g between

numerical results and model predictions. The curves are drawn according to the

prediction of the two-level model given in Eq. (3.12). It is shown that T0 declines

both with larger Ω and g (for 0 < g/ωM < 1) and the analytical and numerical

results agree well with each other. Notice that the small deviations between the

numerical and analytical results are caused by off-resonance transitions. Such

consistence provides an additional evidence for the validity of the two-level model.

Finally, we investigate the performance of the single-photon generation with

small deviations of the laser detuning ∆ from ∆0. For such a purpose, we plot in

Fig. 3.5 the maximal single-photon probabilities Pmax during a Rabi oscillation

versus off-resonance value of the laser detuning: ∆̃ = ∆ −∆0. It is shown that

the maximal single-photon probabilities Pmax peaked at the resonance detuning

(∆̃ ≈ 0), and declines when the |∆̃| becomes larger. Notice that the peak does

not locate exactly at ∆̃ = 0, because the energy difference in the two-level model

is slightly shifted due to off-resonant couplings with other states. As a theoretical
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Figure 3.4: Compare of T0 between analytical result of the model (lines) and

numerical calculations (dots). Parameters are set as: (a)Red line: g/ωM = 0.5,

Blue line: g/ωM = 0.3; (b) Green line: Ω/ωM = 0.1, blue line: Ω/ωM = 0.05, red

line: Ω/ωM = 0.01.
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Figure 3.5: Maximal probability of the single-photon state Pmax as a function of

off-resonance detuning ∆̃. Parameters are set as: square: g/ωM = 0.5, Ω/ωM =

0.1; circle: g/ωM = 0.7, Ω/ωM = 0.05.

expectation, if the two-level model is exact, i.e., there are no off-resonance effects,

then the maximal probability should be Pmax = Ω2
R/(Ω

2
R + ∆̃2), which means

the performance is determined by the ratio between the detuning and driving

amplitude and quantitatively the half value of Pmax locates at |∆̃| = ΩR. This is

consistent with our numerical results. For example, Pmax decreases faster in the

case Ω/ωM = 0.05 (circles) than that in Ω/ωM = 0.1 (square). In addition, for

the case Ω/ωM = 0.05 (circles), Pmax decreases to about the half value 0.5 at the

detuning ∆̃ = Ω.

3.5 Effects of Cavity Field Damping

In this section, we study the performance of single-photon generation against

cavity field damping, which is inevitable in experiments. Here we ignore the

mechanical damping, because mechanical damping rate is usually much smaller

than cavity field damping. In typical experiments, the lifetime of a mechanical
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excitation (phonon) is of the order 104ω−1
M , which is much longer than the time

period of single-photon generation T0 ∼ 100ω−1
M . However, the lifetime of a cavity

photon can be comparable to the time period T0. Hence, we focus on the effects

of cavity field damping on a single-photon generation process.

The dissipative evolution of the optomechanical system with cavity field damp-

ing governed by the master equation:

dρ

dt
= −i [H ′, ρ]− κ

2

(
a†aρ− 2aρa† + ρa†a

)
, (3.14)

where ρ is the density matrix of system defined as ρ =
∑
m,n

∑
m′,n′

ρm,n,m′,n′ |m,n⟩ ⟨m′, n′|,

with |m,n⟩ being a Fock state with m photons and n phonons. κ is the decay

rate of the cavity field, and H ′ is the Hamiltonian describing the driven optome-

chanical system given by Eq. (3.1). In order to do numerical calculations, we

substitute the ρ into the master equation (3.14) and then obtain the equations

of motion for the elements ρm,n,m′,n′ . To show explicitly the cavity photon decay

process, here we set the driving field as a pulse, which is turned off at the time T0

when the maximal single-photon probability P is reached. Here we use the same

size of Hilbert space as the simulations done in the previous section: the largest

photon number is set as 3 and the largest phonon number is 8.

To study the influences of cavity field damping to the performance of single-

photon generation, we set the optomechanical system be driven by a pulse with

the driving amplitude defined as a step function: Ω(t) = Ω0 · θ(T0 − t). Such

a setting means that when t < T0, the system is constantly driven by a laser

with an amplitude Ω0; however, the laser driving is turned off at t = T0 when

the maximal probability of the single-photon state is reached. In Fig. 3.6, we

plot the evolutions of the single-photon state probability P for different decay

rates, together with a zero-damping case (black line) for reference. It is shown

that in the constant driving period (t < T0), the fidelities keep growing and reach

the maximal values at t = T0. After the laser driving is turned off (t > T0),

the single-photon state fidelities decay due to the cavity field damping, i.e., the
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Figure 3.6: Evolution of the single-photon state probability P for different decay

rates in a pulse-driving optomechanical system. Parameters are set as: g/ωM =

0.55, Ω/ωM = 0.055 ·θ(T0− t), where θ(T0− t) is a step function and T0 = 34ω−1
M .

cavity photon gradually leaks out of the cavity. Notably, the maximal value of

the fidelities for the case without cavity field damping (black curve) is the largest,

reaching about 0.98. However, when the cavity field damping rate becomes larger,

the maximal probability decreases significantly. In particular, the maximal prob-

ability decreases to about 0.85 for κ/ωM = 0.010. But for a smaller decay rate

κ/ωM = 0.001, the maximal probability still reaches more than 0.95, i.e., the

single-photon state is reached largely. Hence, the effects of cavity field damping

to single-photon generations can be negligibly small when the field decay rate is

sufficiently small. Specifically, the decay rate should satisfy: 1/κ≫ T0, meaning

that the lifetime of the cavity photons should be much larger the time period T0.

3.6 Connection to Photon Blockade Effect

The mechanism of the two-level model is closely related to the photon blockade

effect, which has been identified by P. Rabl [48]. For this reason, we describe
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Rabl’s work and then make a connection of our study to this effect. Rabl iden-

tified photon blockade effect as a fundamental mechanism in the single-photon

strong coupling regime of cavity optomechanics. It is claimed that for a weakly

driven optomechanical system in the combined regime of single-photon strong

coupling and resolved sidebands, the existence of a single cavity photon resists

the excitation of a second photon inside the cavity.

Rabl provided an intuitive picture of the photon blockade effect by analyzing

the photon excitations based on the energy level diagram. The arguments are

similar to our discussion in section 2. Basically, when a single-photon excitation is

set in resonance, then the excitation of a second photon off-resonant by 2g2/ωM .

Thus, two-photon excitations can be suppressed under the condition g2/ωM > κ

in the weak driving limit, leading to the photon blockade effect. Such a mechanism

is essentially the same with our two-level model, together with similar conditions

shown in Eq. (3.5), Eq. (3.8) and Eq. (3.9).

In addition, to justify such photon blockade effect, Rabl performed analytic

calculations of two-photon equal time correlation function g(2)(0) upon some lead-

ing term approximations. The physical meaning of the g(2)(0) function is the ratio

between two-photon joint detection probability and the product of single-photon

detection probability. For a single-mode cavity field at the same space-time point,

the g(2)(0) function is defined as

g(2) (0) =

⟨
a†a†aa

⟩
⟨a†a⟩2

=
Tr
(
ρa†a†aa

)
[Tr (ρa†a)]2

, (3.15)

which is an indicator of antibunching effect when g(2)(0) < 1, and g(2)(0) → 0

means a full photon blockade. According to the calculation result, the correlation

function g(2)(0) indeed has values smaller than 1, i.e., photon antibunching effects

are observed. In addition, it is found that to achieve the photon antibunching

g(2)(0) < 1, the conditions of strong coupling g > κ and resolved sidebands

κ < ωM are necessary.

We evaluate the two-photon equal time correlation function g(2)(0) in our Rabi
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Figure 3.7: Evolutions of (a) average photon numbers and (b) two-photon equal

time correlation function g(2)(0). The green line in (a) is the total number of

photons in the cavity, while the blue one is the number only takes into account

photons in single-photon states. Parameters are set as: g/ωM = 0.50, Ω/ωM =

0.05, ∆/ωM = 0.25, κ/ωM = 0.05.

oscillations. Based on the master equation simulation, we plot in Fig. 3.7 the

cavity photon numbers and correlation function g(2) (0) as functions of time. The

initial state of the system is set to be the ground state, i.e., |Ψ(0)⟩ = |ψ00⟩ and

the parameters are so set to achieve the Rabi oscillation between |ψ00⟩ and |ψ10⟩.

In Fig. 3.7 (a), the green curve represents the evolution of total cavity photon

number, while the blue curve is the evolution of photon number which only takes

into account photons in single-photon states but excludes multi-photon states.

We can see that the difference between the two curves are very small, meaning

that most photons are in single-photon states and the excitation of multi-photon

states are very low. Fig. 3.7 (b) shows the evolution of the correlation function

g(2) (0). We see that g(2) (0) decreases quickly from 1 to about 0.1 in a time t =

20ω−1
M and then maintains such a small value. Thus, we indeed observe significant

features of photon blockade effect in the Rabi oscillation process. In addition,

the system is set in the strong coupling regime that g = 0.5ωM ≫ κ = 0.05ωM

and the resolved sideband regime that κ < ωM , which is consistent with the

requirements of Rabl’s photon blockade theory.
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3.7 Conclusion

To conclude, we have built up a two-level model with a resonant condition [Eq.

(3.5)] under the weak driving condition [Eq. (3.8)] and a strong optomechanical

coupling strength [Eq. 3.9]. With such a model, we are able to generate a

single cavity photon from a zero-photon state of the system via Rabi oscillations.

We demonstrate these Rabi oscillations with numerical simulations based on the

Schrödinger equation. In addition, we investigate the dependence of the Rabi

oscillations on driving strength and its sensitivity to small deviation of the laser

detuning. Moreover, we study the effects of cavity field damping to the single-

photon generation with master equation (3.14) simulations and show that when

the decay rate κ ≪ 1/T0 the effect of cavity field damping is negligible. At last,

we make a connection of our study in this chapter to a closely related phenomenon

called photon blockade effect. Specifically, we illustrate with numerical examples

that the photon blockade effect is observed in the Rabi oscillation process.



Chapter 4

Optomechanical Dark States

4.1 Introduction

Coherent population trapping (CPT) in a dark state [80, 81] is a quantum coher-

ent effect in which a system does not absorb photons from external driving fields

because of a destructive interference. A closely related phenomenon is electro-

magnetically induced transparency (EIT) [82], which shares the same underlying

mechanism of quantum interference but with a different realizing scheme. CPT

and EIT has been comprehensively studied in atomic systems, which can lead

to dramatic modifications of optical properties of a medium. As an analogy in

cavity optomechanics, researchers have proposed optomechanically induced trans-

parency that in presence of a strong control laser, the absorption of a weak probe

laser by the optomechanical system can be very small [27, 28]. Notably, such an

optomechanically induced transparency phenomenon has been observed in exper-

iments recently [30, 29, 31, 32]. In such a process, there are significant excitations

of cavity photons and phonons (mechanical excitations) due to the strong control

laser, which can be analyzed by the linearized theory (see chapter 2.4).

In this chapter, we investigate dark states of cavity optomechanical systems

in the single-photon strong coupling regime [86], where the linearized theory

37
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is not applicable. We study an optomechanical system that is driven by two

laser fields. We first achieve an effective Hamiltonian under some resonance

conditions, and then we show that with a set of special values of optomechanical

coupling strengths we can confine the effective Hamiltonian in a finite Hilbert

space. Furthermore, we derive an analytical form of the dark state, which is a

special eigenvector of the effective Hamiltonian with zero eigenenergy. Such dark

states are stable states of the driven system with zero photon in the cavity. In

addition, we illustrate with numerical simulations that these dark states can be

prepared by optical pumping, which makes use of the decay of cavity photons.

Besides, we also study the influence of mechanical damping to the efficiency of

optical pumping into a dark state.

4.2 Review of Dark States in Three-level Sys-

tems

In this section, we make a brief review of the background of dark states and

coherent population trapping [80] in atomic physics.

Typically, dark states are discussed in a Λ-type three-level atom, with the

energy-level structure shown in the Fig. 4.1. The states |1⟩ and |2⟩ are two

ground states, the transition between which is dipole-forbidden. The state |3⟩ is

an excited state, and the atomic transitions |1⟩ → |3⟩ and |2⟩ → |3⟩ are dipole-

allowed. Such a Λ atom is driven by two laser fields, with comparable driving

strengths Ωp and Ωq. The frequencies of the lasers ωp and ωq are set to be

near-resonant with |1⟩ → |3⟩ and |2⟩ → |3⟩ transition respectively, with a small

common detuning ∆. Consequently, a Raman resonance between the state |1⟩

and |2⟩ is achieved. The Hamiltonian of such a driven atom under rotating wave
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Figure 4.1: Energy-level diagram of a Λ-type three-level atom driven by two

near-resonant lasers.

approximation is:

H = ω1 |1⟩ ⟨1|+ ω2 |2⟩ ⟨2|+ ω3 |3⟩ ⟨3|

+
(
Ωpe

−iωpt |3⟩ ⟨1|+H.c.
)
+
(
Ωqe

−iωqt |3⟩ ⟨2|+H.c.
)
. (4.1)

To obtain a time-independent Hamiltonian, we go to a rotating frame defined

by the unitary operator U = exp {−i[ω1 |1⟩ ⟨1|+ ω2 |2⟩ ⟨2|+ (ωp + ω1) |3⟩ ⟨3] t}.

The transformed Hamiltonian is

H̃ = ∆ |3⟩ ⟨3|+ (Ωp |3⟩ ⟨1|+H.c.) + (Ωq |3⟩ ⟨2|+H.c.) , (4.2)

where we have used the Raman resonance condition: ∆ = ω3 − ω1 − ωp = ω3 −

ω2 − ωq. The Hamiltonian H̃ has a special eigenvector |D⟩ with zero eigenvalue,

satisfying:

H̃ |D⟩ = 0. (4.3)

Explicitly, this eigenvector is given by (assuming real Ωp and Ωq for convenience):

|D⟩ = 1√
Ω2

p + Ω2
q

(Ωq |1⟩ − Ωp |2⟩) , (4.4)

which only involves the two ground states |1⟩ and |2⟩, while the probability in

the excited state |3⟩ is zero. Such an eigenstate of a Λ-type three-level system is
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called a dark state in the sense that it is a stable state in which the atom does not

absorb or emit photons during its interaction with the driving lasers. Intuitively,

such a non-absorption is because the excitations to |3⟩ have contributions from

the states |1⟩ and |2⟩ separately with a phase difference, such that the summation

of the two contributions cancels exactly. Therefore, the coherence in the atomic

state is the basis of the dark states phenomenon. Note that the dark states are

closely related to electromagnetically induced transparency (EIT) [84, 85]. If the

atom is in the dark state, then it is transparent to external driving fields.

In addition, dark states can be prepared by optical pumping in experiments

[81, 83]. An optical pumping scheme makes use of the spontaneous decay of the

excited state |3⟩. Since there is always probability that the excited state decays

into the dark state and the dark state is stable, then the probability of the system

being in the dark state will accumulate to 1, i.e., the system is optically pumped

into the dark state gradually.

4.3 The Model

We consider an optomechanical cavity which is driven by two lasers with frequen-

cies ω1 and ω2, as shown in Fig. 4.2. The Hamiltonian of such a driven system is

given by

H = ωca
†a+ ωMb

†b− ga†a
(
b† + b

)
+
[(
Ω1e

−iω1t + Ω2e
−iω2t

)
a† +H.c.

]
, (4.5)

where a (b) and ωc (ωM) are respectively the annihilation operator and resonant

frequency of the cavity field (mechanical) modes, and we have set ~ = 1. The

Ω1 and Ω2 are proportional to the amplitudes of the external fields. Generally,

without specifically chosen laser frequencies, the system will be driven such that

both numbers of cavity photons and phonons keep growing. However, we will

shall that with specially chosen laser frequencies, the system can evolve into a

stable dark state. In the frame rotating at the frequency ωc, the transformed
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Figure 4.2: Schematic diagram of an optomechanical system consisting of a fixed

end mirror and a movable end mirror with two driving fields.

Hamiltonian reads

Hr = ωMb
†b− ga†a

(
b† + b

)
+
[(
Ω1e

−i∆1t + Ω2e
−i∆2t

)
a† +H.c.

]
, (4.6)

where the detunings ∆1 = ω1 − ωc and ∆2 = ω2 − ωc are defined. The first

two terms of Hr correspond to the Hamiltonian H0 without driving, and it can

be diagonalized in the displaced basis as Eq. (2.14), with the eigenvectors of

H0: |ψn,p⟩ given in Eq. (2.13). Here the energy eigenvalues of H0 are εn,p =

pωM − n2g2/ωM , which depend nonlinearly on photon number n, and linearly on

phonon number p.

In the eigenbasis of H0, the Hamiltonian Hr in Eq. 4.6 is given by

Hr =
∑
n,p

εn,p |ψn,p⟩ ⟨ψn,p|+
∑
n,p,p′

[
A

(n)
p,p′

(
Ω1e

−i∆1t +Ω2e
−i∆2t

)
|ψn,p′⟩ ⟨ψn−1,p| +H.c.] ,

(4.7)

where we have expressed the annihilation operator a in the eigenbasis as Eq.

3.3 with the coefficients A
(n)
p,p′ =

√
n ⟨p|D (g/ωM) |p′⟩. The explicit form of the

coefficients is given by Eq. 3.4. For simplicity, we go to the interaction picture
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where the Hamiltonian in Eq. 4.7 is transformed to be:

H ′
r = eiH0tHre

−iH0t −H0

=
∑
n,p,p′

[
A

(n)
p,p′

(
Ω1e

i(εn,p′−εn−1,p−∆1)t + Ω2e
i(εn,p′−εn−1,p−∆2)t

)
|ψn,p′⟩ ⟨ψn−1,p|

+H.c.] , (4.8)

with H0 the Hamiltonian of the system without driving.

4.4 Effective Hamiltonian in a Confined Hilbert

Space

In this section, we derive an effective Hamiltonian that operates in a finite di-

mensional Hilbert space. This is achieved by making use of resonance transitions

and the dependence of transition matrix elements on the coupling strength g.

4.4.1 Resonant Hamiltonian under RWA

Now we show that under conditions of resonance and weak driving, we can achieve

a resonant Hamiltonian according to rotating wave approximation (RWA).

First of all, we assume that the cavity field decay rate κ is much smaller

than ωM , i.e., in the resolved sidebands regime that κ ≪ ωM . To achieve a

set of resonant transitions, we set the laser frequencies ω1 and ω2 such that the

detunings of the lasers ∆1 and ∆2 satisfying the following resonance conditions:

∆1 = ε1,p − ε0,p = −g2/ωM , (4.9)

∆2 = ε1,p − ε0,p+1 = −ωM − g2/ωM . (4.10)

which means that the laser with frequency ω1 matches the energy difference be-

tween the states |ψ0,p⟩ and |ψ1,p⟩, while the other laser establishes a resonance

transition between the states |ψ1,p⟩ and |ψ0,p+1⟩, with p = 0, 1, 2, · · ·. Such a reso-

nant coupling scheme is illustrated in Fig. 4.3. Hence, we see that the transitions



CHAPTER 4. OPTOMECHANICAL DARK STATES 43

0
c

1
c

0
M

0
M

%

1
M

1
M

%

2
M

2
M

%

M
N

N%

1
c

1
c

0
c

0
c

0
c

…

M
1

c

1ω
2ω

Figure 4.3: The coupling scheme between energy levels of the optomechanical

system (only zero- and one-photon states are shown). Here each laser is used to

establish a set of resonant transitions, and |p⟩M = |p̃(0)⟩M and |p̃⟩M = |p̃(1)⟩M
for simplicity. By choosing g = gN , there is no transition between |0⟩c|N⟩M and

|1⟩c|Ñ⟩M .

between the states can be divided into two kinds: one is the resonant transitions

and the other is off-resonant transitions. In such a spirit, we can decompose the

Hamiltonian of the driven system into two parts as:

H ′
r = H̃ ′

r + V, (4.11)

where H̃ ′
r is the composition that describes resonant transitions, which is explic-

itly

H̃ ′
r =

∑
p

[(
A(1)

p,pΩ1 |ψ1,p⟩ ⟨ψ0,p| +A
(1)
p+1,pΩ2 |ψ1,p⟩ ⟨ψ0,p+1|

)
+H.c.

]
, (4.12)

while V describes the off-resonance transitions, which can be expressed as

V =
∑
n,p,p′

′ [
A

(n)
p,p′

(
Ω1e

iδ1(n,p,p′)t + Ω2e
iδ2(n,p,p′)t

)
|ψn,p′⟩ ⟨ψn−1,p|+H.c.] . (4.13)

Here the primed summation in V excludes those terms in H̃ ′
r, i.e., V = H ′

r − H̃ ′
r.

In particular, we have defined the off-resonance detunings of these transitions as:

δ1(n, p, p
′) = (p′ − p)ωM − 2g2

ωM

(n− 1), (4.14)

δ2(n, p, p
′) = (p′ − p+ 1)ωM − 2g2

ωM

(n− 1). (4.15)
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If these detunings δj(n, p, p
′) are sufficiently large compared with the driving

strengths Ωj, then the off-resonant transitions described by V can be neglected

according to the rotating wave approximation. In other words, under a weak

driving limit that Ωj ≪ δj(n, p, p
′), only the resonant transitions described by

H̃ ′
r are significant. As a result, if the cavity is initially in the ground state, then

there will only be those significant transitions shown in Fig. 4.3, i.e., the system is

confined to the zero and single photon states. Such a phenomenon shares the same

mechanism as the photon blockade effect [48], which relies on the fact that the

excitations from 1- to 2-photon states are far off-resonance. In particular, in order

to neglect the transitions from 1-photon to 2-photon states, the matrix element

coupling the states should be much smaller than the corresponding detuning,

i.e., A
(2)
p,p′Ωj ≪ δj(2, p, p

′). Since the coefficient A
(2)
p,p′ ∼ 1, then the weak driving

condition is merely

Ωj ≪ min(
∣∣2g2/ωM −KωM

∣∣) (4.16)

for j = 1, 2, and the minimum is evaluated among positive integers K. For

example, if g < ωM/2 then K = 0 leads to the minimum.

After setting the driving lasers in resonance with weak driving amplitudes,

the Hamiltonian of the system can be approximated by the resonant part, i.e.,

we have Hr ≈ H̃ ′
r.

4.4.2 Truncation of Hilbert Space by Using g = gN

In this subsection, we show that a resonant transition described by the resonant

Hamiltonian H̃ ′
r can be cut off by setting the optomechanical coupling strength

at some specific values. Thus, we can achieve a resonant Hamiltonian that acts

on a confined Hilbert space.

As shown in the resonant Hamiltonian Eq. (4.12, the matrix element coupling

two resonant states is A
(1)
p,p′Ωj, which involves a Franck-Condon coefficient A

(1)
p,p′ .

Note that the Franck-Condon coefficient A
(1)
p,p′ is proportional to a Laguerre poly-
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Figure 4.4: Exact solution of gN satisfying Eq. (4.17) as a function of N (points)

and result of asymptotic behavior based on Eq. (4.18)(solid line).

nomial of g/ωM , which vanishes at some special values of g/ωM . Therefore, we

can cut off a transition from |ψ0,N⟩ to |ψ1,N⟩ by setting A
(1)
N,N = 0 with a special

value of g. Thus, if the system is initially in the ground state, then the system

can not be excited to a state with phonon number beyond N . Since the reso-

nant Hamiltonian only involves zero- and one-photon states, so the Hilbert space

becomes finite. Specifically, to have the Hamiltonian truncated within a phonon

number N , we need to set the optomechanical coupling strength specifically at

g = gN , where gN is the the smallest positive value to have the coefficient vanish:

A
(1)
N,N = exp(− g2N

2ω2
M

)L0
N

(
g2N/ω

2
M

)
= 0 (4.17)

for a given positive integer N .

To show the specific values of gN for different N , we plot in Fig. 4.5 the

value of gN that is the exact solution of Eq. (4.17) (points) for N from 1 to 100.

We see that gN decreases, slower and slower with larger N . In addition, we plot

the values of gN according to the asymptotic behavior of the associated Laguerre
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Figure 4.5: Exact solution of gN satisfying Eq. (4.17) as a function of N (points)

and result of asymptotic behavior based on Eq. (4.18)(solid line).

polynomial in the large N limit (solid line). Specifically, we obtain that

gN ≈ 3πωM

8
√
N
, (4.18)

From the Fig. 4.5, we see that Eq. (4.18) provides a good approximation for

N > 5.

With the driving lasers satisfying the resonance condition [Eq. (4.9) and

Eq. (4.10)] and the weak-driving condition [Eq. (4.16)], together with a specific

optomechanical coupling strength set as g = gN , we have obtained the effective

Hamiltonian:

Heff =
N−1∑
p=0

[(
A(1)

p,pΩ1 |ψ1,p⟩ ⟨ψ0,p|+ A
(1)
p+1,pΩ2 |ψ1,p⟩ ⟨ψ0,p+1|

)
+H.c.

]
, (4.19)

which is confined in a finite subspace involving only zero- and one-photon states

with phonon numbers no larger than N .

4.5 Dark States

In this section, we give an analytical form of a class of dark states based on the

effective Hamiltonian in Eq. (4.19) and then study some properties of these dark
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Figure 4.6: Evolution of fidelity F = |⟨D(t)|Ψ(t)⟩|2 with initial state set as a dark

state. The |Ψ(t)⟩ is the numerical solution of the Schrödinger equation defined

by the Hamiltonian Hr. The parameters are: g/ωM = 0.37, Ω1/ωM = 0.01,

Ω2/ωM = 0.03, ∆1/ωM = −0.14, ∆2/ωM = −1.14.

states. We find that the effective Hamiltonian Heff has an eigenvector |D⟩ with

a zero eigenvalue, i.e., Heff |D⟩ = 0. Now we give a brief derivation of the explicit

form of such an eigenvector. Formally, we set the eigenvector as:

|D⟩ = C

N∑
p=0

βp|p⟩M ⊗ |0⟩c , (4.20)

with C a normalization constant and βp the coefficient of the state |p⟩M ⊗ |0⟩c
(i.e., |ψ0,p⟩). Thus, the equation Heff |D⟩ = 0 is explicitly:

Heff |D⟩ =
N−1∑
p=0

C
(
A(1)

p,pΩ1 · βp + A
(1)
p+1,pΩ2 · βp+1

)
|ψ1,p⟩ = 0, (4.21)

which reveals the fact that the excitation of a single-photon state |ψ1,p⟩ is a

interference from two pathways: one from |ψ0,p⟩, the other from |ψ0,p+1⟩. In order

to achieve a fully destructive interference such that the Eq. (4.21) is satisfied,

the coefficient should obey the recurrence relation:

βp+1

βp
= − Ω1A

(1)
p,p

Ω2A
(1)
p+1,p

. (4.22)
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For simplicity, we set β0 = 1. Thus, for 1 ≤ p ≤ N , the coefficients are obtained:

βp = (−1)p
(
Ω1

Ω2

)p p−1∏
i=0

A
(1)
i,i

A
(1)
i+1,i

. (4.23)

Such an eigenvector is a coherent superposition of phonon number states with the

cavity field being in vacuum. In such a state, the destructive interference fully

forbids excitations of cavity field even though the cavity is constantly driven by

the two external fields. Therefore, it is a dark state of the optomechanical system

induced by quantum coherence of the mirror. Note that in the frame where the

system is governed by the Hamiltonian given in Eq. (4.6), the dark state evolves

as

|D(t)⟩ = e−iH0t|D⟩ = C
N∑
p=0

βpe
−ipωM t|p⟩M ⊗ |0⟩c (4.24)

under the approximations made in the last section.

To test the validity of the dark state as well as the effective Hamiltonian, we

solve the evolution of the system state |Ψ(t)⟩ based on the Schrödinger equation

under the exact Hamiltonian [Eq. (4.6)] without making the approximations, i.e.,

Hr|Ψ(t)⟩ = i|Ψ̇(t)⟩. Specifically, we let the system be in a dark state initially:

|Ψ(0)⟩ = |D(0)⟩, and then calculate the fidelity F = |⟨D(t)|Ψ(t)⟩|2 between |Ψ(t)⟩

and |D(t)⟩. Given that the effective Hamiltonian Heff is valid, then |Ψ(t)⟩ should

be well described by |D(t)⟩, i.e., F ≈ 1. We find that this is indeed the case when

the condition in Eq. 4.16 is satisfied. As shown in the numerical example in

Fig. 4.6, the fidelity F > 0.99 over a long period of time. In addition, the high

frequencies patterns in Fig. 4.6 are due to off-resonant transitions, which have

been ignored in Heff .

Now we consider the phonon number distribution of the dark states, which

is complicated by the Laguerre functions in Eq. (4.23). Although the explicit

values of |βp|2 involve a numerical evaluation of Eq. (4.23), we find that |βp|2 is

largely controlled by the ratio of the strengths of driving fields. Such a feature

is illustrated in Fig. 4.7 (a) for various ratios of Ω2/Ω1. For example, when
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Figure 4.7: An illustration of some phonon statistics of dark states. (a) Phonon

number probability distribution Pm = |Cβm|2 of dark states for different ratios of

driving strengths, with gN = 0.37ωM and N = 10. (b) ⟨(∆n)2⟩/⟨n⟩ as a function

of Ω1/Ω2 for g/ωM = 0.17, 0.64, 0.76 corresponding to N = 20, 3, 2 respectively.

Ω2/Ω1 = 3, the probability Pm of mth mirror Fock state decreases quickly with

phonon number m. However, when the ratio becomes Ω2/Ω1 = 1, a peak appears

in the probability distribution. Moreover, when the ratio further decreases to

Ω2/Ω1 = 1/3, the peak is shifted towards higher phonon numbers.

In order to further study the statistical property of the distributions, we plot

in Fig. 4.7 (b) the ratio ⟨(∆n)2⟩/⟨n⟩ as a function of Ω1/Ω2, which shows that

phonon number distributions of dark states exhibit a sub-Poissonian statistics.

One can see that ⟨(∆n)2⟩/⟨n⟩ decreases with Ω1/Ω2 and is always less than 1
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(i.e., sub-Poisson distribution) except for the small region Ω1/Ω2 near zero. Ad-

ditionally, we find that the curves are quite insensitive to different values of gN .

Here we make a theoretical analysis on the influence of small deviation of gN

to the dark states. Note that the specific optomechanical coupling strength gN

has been used in order to obtain the effective Hamiltonian Heff applicable to

mirror states of phonon numbers in the range 0 ≤ p ≤ N . When g ̸= gN , A
(1)
N,N

is nonzero, then the Hamiltonian cannot be exactly truncated. Let us consider

the system with g slightly deviated from gN , if the initial state is a dark state

|D⟩, then the system will make a transition to |1⟩c|Ñ⟩M by the driving field of

frequency ω1, and subsequent interactions with the driving fields could excite the

mirror to phonon number states higher than N . However, we point out that since

the transition rate from to |1⟩c|Ñ⟩M is proportional to |βN |2 × |A(1)
N,N |2 according

to first order perturbation theory, the transition probability out of |D⟩ would be

negligible in a finite time duration as long as the product of |βN |2 and |A(1)
N,N |2 is

sufficiently small. If such a condition is satisfied, then |D⟩ may still be treated as

a dark state approximately even though g is slightly deviated from gN . Indeed, as

we have illustrated the phonon number distribution of |D⟩ in Fig. 4.7 (a), |βN |2

can be highly suppressed by using Ω2 > Ω1, such that the dark state can still be

valid with small deviation of g from gN .

4.6 Preparation of Dark States by Optical Pump-

ing

In this section, we study how the system can be optically pumped into the dark

states in presence of cavity-field damping. In the frame where the system Hamilto-

nian is given by Eq. (4.6), the evolution of the system under cavity field damping

is governed by the master equation:

dρ

dt
= −i [Hr, ρ]−

κ

2

(
a†aρ− 2aρa† + ρa†a

)
, (4.25)
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where ρ is the density matrix of the optomechanical system, and κ is the cavity-

field damping rate. Note that the mechanical dissipation is not included in the

master equation (4.25). The ignorance of mechanical damping can be justified if

the mechanical damping rate γM is much smaller than κ and the time interval

of interest is restricted to t ≪ 1/γM . In particular, there is a time interval

κ−1 ≪ t ≪ γ−1
M where the optically pumping is almost completed before the

mechanical dissipation becomes significant. To support our arguments, we will

also discuss the effect of mechanical damping on the dark state preparation later.

First of all, we note that if the approximation H ′
r ≈ Heff is perfect, then by

going back to the original frame governed by the system Hamiltonian Hr in Eq.

(4.6), ρ = |D(t)⟩⟨D(t)| is already a solution of the master equation Eq. (4.25).

This is because cavity field is in vacuum in the dark states, such that the cavity

field damping has no effect on |D⟩ (which has zero photon) at all. However, we

use the exact Hamiltonian Hr instead of Heff in the master equation so as to

study the evolution of the system without relying on the approximations.

The master equation Eq. (4.25) is equivalent to a set of coupled ordinary

differential equations, which can be solved numerically with an initial ground state

of the system. To perform numerical calculations, we truncate the dimension of

the density matrix, which is sufficiently larger than that of the dark state density

matrix. For the parameters used in the figures in this section, ρ(t) appears to be

converging when the photon and phonon number states are kept up to 2 and 15

respectively. In particular, we are interested in the fidelity F defined by

F = Tr (|D(t)⟩ ⟨D(t)| ρ (t)) , (4.26)

which represents the probability of the system in the dark state. In Fig. 4.8, the

preparations of the dark states by optical pumping are demonstrated in various

cases. It is shown that the fidelity F increases with time and gradually approaches

a steady value close to 1. For the three cases shown in Fig. 4.8, the fidelities can

reach F ≈ 0.99 with gN/ωM = 0.37 (N = 10) at the time T ≈ 8000ω−1
M .
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Figure 4.8: Preparation of dark states by optical pumping. The fidelities F

for various Ω2/Ω1 ratios are plotted as a function of time. The parameters

are: gN/ωM = 0.37, N = 10, κ/ωM = 0.05, Ω2/ωM = 0.01, ∆1/ωM = −0.14,

∆2/ωM = −1.14.

Such a scheme of preparing dark states indeed shares the same principle as

optical pumping to a certain atomic states in atomic physics. Specifically, the

increase of F is understood because when a photon leaks out of the cavity, the

mirror always has a non-zero transition probability going to the dark state. Since

the dark state is decoupled from the driving fields, it can no longer be excited, and

hence the occupation of the dark state accumulates as time increases. However,

we remark that during the optical pumping process, there is a loss due to the

cavity field decay, which makes the mirror make a transition to phonon number

states higher than N . But such a loss, which amounts to about 1% in Fig. 4.8,

can be reduced if N is chosen to be large enough.

In the previous section, we have analyzed that if g is slightly deviated from

gN , then the quantity |βN |2 × |A(1)
N,N |2 would characterize the degradation of |D⟩

as a dark state. This is because this quantity is proportional to the probability

leakage rate out of the state |D⟩ when g ̸= gN . In addition, we have pointed out
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Figure 4.9: Time evolution of the fidelities F for various g in the vicinity of

gN = 0.37ωM . The parameters are: κ/ωM = 0.05, Ω1 = Ω2 = 0.01ωM , ∆1/ωM =

−0.14, ∆2/ωM = −1.14.

that a large ratio between driving strengths Ω2/Ω1 can make |βN |2 insignificant

for Nth Fock state, which is at the boundary of the dark state. Such a effect of

small deviations of g can be revealed in the dark states preparation process. We

have tested numerically the sensitivity of dark states fidelity to small variations

of g values when Ω2 ≥ Ω1. In particular, we provide an example in Fig. 4.9,

which shows that the fidelities still reach about F ≈ 0.99 in presence of about 3%

deviations from the gN value. Such results suggests that dark state preparation

is indeed insensitive to small variations of g values.

Now we consider the influence of mechanical damping on preparation of the

dark states. Generally, mechanical damping leads to the decoherence of the quan-

tum state of the mirror, thus damaging the preparation of dark states. To quan-

tify such influence, we take into account the mechanical damping into the master
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Figure 4.10: Evolution of fidelity F for a mechanical damping rate γM/ωM = 5×

10−5 and thermal phonon number n̄M = 0. The inset figure shows the final fidelity

Ff (at ωM t = 104) for various γM , with thermal phonon numbers are n̄M = 0

(red squares) and n̄M = 1 (blue circles). The parameters are: g/ωM = 0.37,

κ/ωM = 0.05, Ω1 = Ω2 = 0.01ωM , ∆1/ωM = −0.14, ∆2/ωM = −1.14.

equation:

dρ

dt
= −i [Hr, ρ]−

κ

2

(
a†aρ− 2aρa† + ρa†a

)
− γM(n̄M + 1)

2

(
b†bρ− 2bρb† + ρb†b

)
−γM n̄M

2

(
bb†ρ− 2b†ρb+ ρbb†

)
, (4.27)

where γM is the mechanical damping rate, n̄M is the thermal average phonon

number, and we have assumed that the damping is due to the coupling to a

Markovian bath.

We solve the master equation numerically and plot in Fig. 4.10 the evolution

of fidelity with a mechanical damping rate γM/ωM = 5 × 10−5, while the other

parameters and size of Hilbert space are the same to the case of the green curve in

Fig. 4.8. It is shown that the fidelity grows to about 0.97 finally, which is slightly

lower than that of Fig. 4.8. Such a result indicates that, a mechanical damping at

this magnitude has a small influence to the preparation of dark states. Moreover,

we provide the dependence of final dark state fidelity on the mechanical damping
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rate for thermal phonon numbers n̄M = 0 and n̄M = 1 respectively in the inset

figure, which shows that final fidelity declines as the mechanical damping rate

increases and average thermal phonon number increases. Hence, a mechanical

damping rate γM/ωM < 10−4 is essential to successful preparation of dark state

at the time scale of ωM t = 104. In other words, the life time of the phonons

should be longer than the time interval of dark states preparation.

4.7 Conclusion

In conclusion, we have addressed a quantum interference effect in the single-

photon strong-coupling regime of cavity optomechanics. In such a regime, we

discover a class of dark states of a moving mirror that are coherent superpositions

of mirror Fock states, under the conditions [Eq. (4.9), Eq. (4.10), Eq. (4.16)]. In

Particular, for dark states involving N mirror Fock states with N < 20 as we have

explored, we require a strong single-photon coupling strength g that is comparable

to the mechanical frequency ωM , and the cavity field decay rate κ should be much

smaller than ωM so as to achieve resolved sidebands. In such dark states, the

cavity field remains in vacuum state though driven by two external fields, and this

is due to a quantum destructive interference effect. In other words, the cavity field

is decoupled from two driving fields. An analytical expression of the dark states is

provided, which indicates the dependence of phonon number distribution on the

ratio of the driving amplitudes Ω2/Ω1 and the optomechanical coupling strength

g. In addition, numerical calculations show that phonon number distributions of

the dark states exhibit sub-Poissonian statistics. Furthermore, we demonstrate

that the dark states can be prepared with high fidelity by optical pumping. In

particular, our numerical simulations indicate that such preparation of the dark

states is insensitive to small deviations of g values if Ω2 ≥ Ω1, and the effect of

mechanical damping is negligible when the lifetime of phonons is longer than the
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preparation time.

We note that in literature, there is a related study on a different type of

dark states phenomena in two-mode optomechanical systems by Hailin Wang

and coworkers [33]. Their type of dark states is termed optomechanical dark

mode, which is a coherent superposition of two optical modes of the cavity field.

It is claimed that when the cavity field is set in such a dark mode, then the

mechanical oscillator and the cavity field will be decoupled from each other.

However, the cavity field is still coupled to the external driving fields, such that

the cavity contains a number of photons. On the contrary, our type of dark states

involve coherent superpositions of mechanical number states and exist in a single-

mode cavity. Moreover, in our dark states the cavity is decoupled from external

fields and contains no photons. Hence, our type of dark states is different from

the optomechanical dark mode, even though both involve quantum interference

effects. We also remark that the optomechanical dark mode exists in the weak

coupling regime and is experimentally observed by Hailin Wang and coworkers.



Chapter 5

Optomechanical Cavity with an

Atom: an Effective Atom-mirror

Coupling

5.1 Introduction

In this chapter, we investigate an effective coupling between a two-level atom and

a mesoscopic mechanical oscillator mediated by an optical field. Such a coupling

implies a possible scheme of quantum state transfer between the atom and me-

chanical oscillator. With the help of well developed techniques in atomic physics,

such a state transfer can be used to prepare, manipulate and detect the quan-

tum state of a mesoscopic mechanical oscillator. In literature of optomechanics,

there have been various schemes of state transfers between a Bose-Einstein con-

densate and an optomechanical mirror [89], cavity photons and phonons [8, 90],

a solid state qubit and photons [?], as well as two different cavity field modes

[73, 91], which are aimed at possible applications of cavity optomechanical sys-

tem in quantum information. In addition, there is a closely related study on the

coupling between the spatial motions of a single atom and a mechanical oscillator

57
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[92].

For an optomechanical cavity with a fixed atom inside, the cavity field inter-

acts with both the atom and the moving mirror, such that the cavity field can

serve as a medium for an indirect coupling between the atom and the mirror. Our

task is to achieve a coupling between the atom and mirror effectively, exhibiting

a Rabi oscillation:

|Ψ(t)⟩ = cosωt |g⟩ |0⟩M ⊗ |0⟩C − i sinωt |e⟩ |1⟩M ⊗ |0⟩C , (5.1)

where an atomic excitation is accompanied by an excitation of a phonon, while

the cavity field is kept in the vacuum state. Such an oscillation leads to a full

atom-mirror entanglement and quantum state transfer scheme between the atom

and the mirror.

5.2 The Model

We investigate an optomechanical system formed by an optical cavity with one

harmonically bounded end mirror and a two-level atom inside, where the movable

end mirror and the atom are coupled to cavity field separately. Additionally, the

cavity is externally driven by a laser with a frequency ωL and an amplitude Ω

(Fig. 5.1). The Hamiltonian of such a driven system under RWA is

H = ωCa
†a+ωMb

†b+ωAσee−ga†a
(
b† + b

)
+Gσgea

†+Gσega+Ωe−iωLta†+Ω∗eiωLta,

(5.2)

where a (b) and ωc (ωM) are respectively the annihilation operator and resonant

frequency of the cavity field (mechanical) modes, and we have set ~ = 1. The

frequency ωA is the energy difference between the excited state |e⟩ and ground

state |g⟩ of the atom, and σij = |i⟩ ⟨j| with |i⟩ and |j⟩ denoting states of the

atom. The parameters g and G are respectively, the mirror-photon and atom-

photon coupling strengths. Specifically, the atom-photon coupling strength is
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Figure 5.1: Schematic diagram of an optomechanical system with a two-level

atom inside, driven by an external field.

given by G = i
√

~ωC

2ε0
d⃗ge · f⃗C (r⃗0), where f⃗C (r⃗0) is the cavity field mode function

at the atom position r⃗0, and d⃗ge = ⟨g| d⃗ |e⟩ is an element of dipole moment. By

appropriately choosing the phases of atomic states, we set G as real.

To eliminate the time-dependence of the Hamiltonian, we go to a rotating

frame, where the Hamiltonian becomes

H ′ = ∆Ca
†a+ωMb

†b+∆Aσee−ga†a
(
b† + b

)
+Gσgea

†+Gσega+Ωa†+Ω∗a, (5.3)

where we have defined the detunings ∆C = ωC − ωL and ∆A = ωA − ωL. As has

been discussed in chapter 2.3, the Hamiltonian H0 of the optomechanical system

without driving can be diagonalized as

H0 = ∆Ca
†a+ ωMb

†b− ga†a
(
b† + b

)
=
∑
n,p

εn,p |ψn,p⟩ ⟨ψn,p|. (5.4)

where |ψn,p⟩ = |n⟩C⊗|p̃⟩M are eigenvectors with energy eigenvalues εn,p = n∆C+

pωM − n2g2/ωM and |p̃⟩M are displaced number states of the mirror. In such a

basis, the Hamiltonian of the system takes an alternative form:

H ′ =
∑
n,p

εn,p |ψn,p⟩ ⟨ψn,p|+∆A |e⟩ ⟨e|+
∑
n,p,p′

[
A

(n)
p,p′Gσge |ψn,p′⟩ ⟨ψn−1,p|+ h.c.

]
+
∑
n,p,p′

[
A

(n)
p,p′Ω |ψn,p′⟩ ⟨ψn−1,p|+ h.c.

]
, (5.5)
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in which the quantum transitions due to the atom-field coupling and external

driving are specified and the nonlinear optomechanical coupling is diagonalized.

As a result, there are only two coupling channels in this basis, rather than three

channels in the Fock state basis, thus leading to the simplicity in analyzing the

dynamics of the system. The energy level structure of the system is shown in

Fig. 5.2 (a).

5.3 Effective Two-level Hamiltonian

In this section, we show that under certain resonance and large detuning condi-

tions, we can achieve an effective two-level Hamiltonian that involves only the

ground state |ψ0,0⟩ |g⟩ (|0⟩C |0⟩M |g⟩) and an excited state |ψ0,1⟩ |e⟩ (|0⟩C |1⟩M |e⟩).

The driven system can be captured by a Λ-type three-level system involving

the states: |ψ0,0⟩ |g⟩, |ψ0,1⟩ |e⟩ and |ψ1,0⟩ |g⟩ (|1⟩C |0̃⟩M |g⟩), as shown in Fig. 5.2.

The key is to specifically set the laser driving frequency ωL, such that the transi-

tion from |ψ0,0⟩ |g⟩ to |ψ1,0⟩ |g⟩ is detuned by ∆2, while the combined excitation

from |ψ0,0⟩ |g⟩ to |ψ0,1⟩ |e⟩ is in resonance, i.e., a Raman resonance between these

two states is established. Together with the weak coupling strengths Ω and G,

we obtain a three-level system [Fig. 5.2 (b)] with the Hamiltonian

HΛ = ∆2σgg |ψ1,0⟩ ⟨ψ1,0|+∆3σee |ψ0,1⟩ ⟨ψ0,1|

+(A0,0Ωσgg |ψ1,0⟩ ⟨ψ0,0|+ A1,0Gσge |ψ1,0⟩ ⟨ψ0,1|+ h.c.) , (5.6)

where we have introduced two detunings: ∆2 = ωC − ωL − g2/ωM , and ∆3 =

ωA − ωL + ωM ; and we denote Ai,j = A
(1)
i,j for simplicity. ∆2 is the detuning of

a transition from the ground state to the intermediate state, while ∆3 represents

the detuning of the Raman transition between |ψ0,0⟩ |g⟩ and |ψ0,1⟩ |e⟩. Thus, the

large detuning and weak driving condition is explicitly

Ω ≪ ∆2, G≪ ∆2. (5.7)
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Figure 5.2: (a)Energy-level structure of the atom assisted optomechanical system,

driven by an external field. (b) Scheme of the Λ type three-level model under the

large detuning and resonance conditions.
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In addition, to have a near resonant Raman transition, we also require |∆3| ≪

|∆2|.

For such a three-level system, the intermediate state |ψ1,0⟩|g⟩ can be effectively

eliminated under the condition in Eq. (5.7) such that the system is modeled by

a two-level Hamiltonian. To see this, we let the state of the system be:

|Ψ(t)⟩ = c1 (t) |ψ0,0⟩ |g⟩+ c2 (t) |ψ1,0⟩ |g⟩+ c3 (t) |ψ0,1⟩ |e⟩ . (5.8)

Therefore, the Schrödinger equation defined by the three-level Hamiltonian in

Eq. (5.6) yields

iċ1 (t) = A0,0Ω
∗c2 (t) , (5.9)

iċ2 (t) = ∆2c2 (t) + A0,0Ωc1 (t) + A1,0Gc3 (t) , (5.10)

iċ3 (t) = ∆3c3 (t) + A1,0Gc2 (t) . (5.11)

Under the large detuning and weak driving condition that Ω ≪ ∆2, G≪ ∆2, one

can make the adiabatic approximation that ċ2 (t) ≈ 0. According to Eq. (5.10),

the amplitude of the intermediate state is approximately

c2 (t) ≈ − 1

∆2

[A0,0Ωc1 (t) + A1,0Gc3 (t)] , (5.12)

which is much smaller than 1 due to the large detuning and weak driving condi-

tion. Therefore, the equations of motion reduce to

iċ1 (t) = −A0,0Ω
∗

∆2

[A0,0Ωc1 (t) + A1,0Gc3 (t)] , (5.13a)

iċ3 (t) = ∆3c3 (t)−
A1,0G

∆2

[A0,0Ωc1 (t) + A1,0Gc3 (t)] , (5.13b)

which only involve the ground state and the third state. Eq. (5.13) implies an

effective Hamiltonian that governs the evolution of these two states:

Heff = −|A0,0Ω|2

∆2

σgg |ψ0,0⟩ ⟨ψ0,0|+
(
∆3 − |A1,0G|2 /∆2

)
σee |ψ0,1⟩ ⟨ψ0,1|

+

(
−A0,0ΩA1,0G

∆2

σeg |ψ0,1⟩ ⟨ψ0,0| −
A0,0Ω

∗A1,0G

∆2

σge |ψ0,0⟩ ⟨ψ0,1|
)
.

(5.14)
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Hence, exact resonance between the two states requires the detuning ∆3 be:

∆3 =
(
|A1,0G|2 − |A0,0Ω|2

)
/∆2. (5.15)

Now we go to a frame rotating at the frequency − |A0,0Ω|2 /∆2, such that the

effective two-level Hamiltonian takes a neat form:

Heff = Ωeffσeg |ψ0,1⟩ ⟨ψ0,0|+ Ω∗
effσge |ψ0,0⟩ ⟨ψ0,1| , (5.16)

with

Ωeff = −A0,0A1,0ΩG/∆2 (5.17)

being the effective driving strength.

Here we discuss the single-photon optomechanical coupling strength g required

for the effective Hamiltonian. The coupling strength g is related to the magnitude

of the effective driving strength, because the Franck-Condon factors A0,0 and A1,0

are determined by g according to Eq. (3.4). Explicitly, we have A0,0A1,0 = ξe−ξ2

with ξ = g/ωM . To show such a dependence directly, we plot in Fig. 5.3 the

product A0,0A1,0 as a function of g/ωM . We see that A0,0A1,0 increases from zero

at g/ωM = 0 and reaches a peak at about g/ωM = 0.8, then declines gradually and

approaches to zero in the large g limit. In particular, there is a region roughly

0.1ωM < g < 1.5ωM to have a significant magnitude of the product A0,0A1,0

above 0.1. Note that a sufficiently large effective driving strength is needed in

order to have the coherent evolution process overwhelms all kinds of dissipations.

Hence, an appropriate optomechanical coupling strength g in the single-photon

strong coupling regime is required to have a significant effective driving strength

Ωeff , such that the dynamical evolution of the system is modeled by the effective

Hamiltonian [Eq. (5.16)].
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Figure 5.3: The product of Franck-Condon factors A0,0A1,0 as a function of g/ωM .

5.4 Improvement of the Two-level Model

In the previous section, we have kept only |ψ1,0⟩ |g⟩ and neglected the effects of

states |ψ1,r⟩ |g⟩ (r ≥ 1) as intermediate states. In order to improve the model, we

need to include |ψ1,r⟩ |g⟩ states into the equations before the adiabatic elimination

procedure is performed. As we shall see below, the intermediate states |ψ1,r⟩ |g⟩

have very small population but they can generate an appreciable energy shift.

Let the state of the system (initially in ground state |ψ0,0⟩ |g⟩) be

|Ψ(t)⟩ = a0 (t) |ψ0,0⟩ |g⟩+ b1 (t) |ψ0,1⟩ |e⟩+
N∑
r=0

cr (t) |ψ1,r⟩ |g⟩+
∑
s

ds (t) |ψ1,s⟩ |e⟩,

(5.18)

where a0(t), b1(t), cr(t) and ds(t) are respectively the time-dependent coefficients

of |ψ0,0⟩|g⟩, |ψ0,1⟩|e⟩, |ψ1,r⟩|g⟩ and |ψ1,s⟩|e⟩. According to the Schrödinger equa-
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tion i|Ψ̇ (t)⟩ = H ′ |Ψ(t)⟩, the equations of motion for the coefficients are obtained

iȧ0 (t) = ε0,0a0 (t) +
N∑
r=0

A
(1)
0,rΩ

∗cr (t), (5.19)

iḃ1 (t) = (ε0,1 + ωA − ωL) b1 (t) +
N∑
r=0

A
(1)
1,rGcr (t) +

∑
s

A
(1)
1,sΩ

∗ds (t),(5.20)

iċr (t) = ε1,rcr (t) + A
(1)
0,rΩa0 (t) + A

(1)
1,rGb1 (t) , (5.21)

iḋs (t) = (ε1,s + ωA − ωL) ds (t) + A
(1)
1,sΩb1 (t) . (5.22)

In the large detuning limit, we again have ċr (t) ≈ 0, ḋs (t) ≈ 0, such that we

obtain the relations

ds (t) = −
A

(1)
1,sΩ

ε1,s + ωA

b1 (t) , (5.23)

cr (t) = − 1

ε1,r

(
A

(1)
0,rΩa0 (t) + A

(1)
1,rGb1 (t)

)
. (5.24)

Therefore, the equations of motion reduce to

iȧ0 =

(
ε0,0 −

∑
r

|A(1)
0,rΩ|2

ε1,r

)
a0 (t)−

∑
r

A
(1)
0,rΩ

∗A
(1)
1,rG

ε1,r
b1 (t), (5.25)

iḃ1 (t) =

(
∆3 −

∑
r

|A(1)
1,rG|2

ε1,r
−
∑
s

|A(1)
1,sΩ|2

∆2 +∆3 + (s− 1)ωM

)
b1 (t)

−
∑
r

A
(1)
1,rGA

(1)
0,rΩ

ε1,r
a0 (t), (5.26)

in which the states |ψ0,0⟩ |g⟩ and |ψ0,1⟩ |e⟩ are coupled effectively, and ∆3 = ωA +

ωM − ωL is defined. We interpret Eq. (5.26) and (5.26) as the Schrödinger

equation governed by an effective Hamiltonian, which can be expressed in matrix

form as

Heff =


(
ε0,0 −

∑
r

|A(1)
0,rΩ|2

ε1,r

)
−
∑
r

A
(1)
0,rΩ

∗A
(1)
1,rG

ε1,r

−
∑
r

A
(1)
1,rGA

(1)
0,rΩ

ε1,r

(
∆3 −

∑
r

|A(1)
1,rG|2

ε1,r
−
∑
s

|A(1)
1,sΩ|2

∆2+∆3+(s−1)ωM

)
 ,
(5.27)

which describes the interaction of the two-level system. Particularly, we are

interested in the case where the two states are in resonance, with the resonance
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condition given by

∆3 =
∑
r

(
|A(1)

1,rG|2 − |A(1)
0,rΩ|2

∆2 + rωM

+
|A(1)

1,rΩ|2

∆2 + (r − 1)ωM

)
, (5.28)

where we have used the relations: ε0,0 = 0 and ε1,r = ∆2 + rωM . Besides, we

have taken an approximation based on |∆3| ≪ |∆2|. Note that this resonance

condition is different from the one [Eq. (5.15)] derived in the previous section.

The extra summation terms in Eq. (5.28) result from the off-resonant couplings

of the two states |ψ0,0⟩|g⟩ and |ψ0,1⟩|e⟩ with the serials of states |ψ1,r⟩|g⟩ and

|ψ1,s⟩|e⟩. Such off-resonant couplings have an effect of causing energy shifts to

the two states |ψ0,0⟩|g⟩ and |ψ0,1⟩|e⟩, leading to the modification of the resonance

condition. In addition, we obtain the effective driving strength in this improved

model:

Ω′
eff = −

∑
r

A
(1)
1,rGA

(1)
0,rΩ

ε1,r
, (5.29)

which is different from the previous one in Eq. (5.17).

Hence, we have shown that under large detuning and resonant condition, an

effective coupling between the ground state and an excited state can be achieved.

We remark that, the excited state can be set as any state |ψ0,q⟩ |e⟩ with q =

0, 1, 2, · · · by adjusting the laser frequency ωL according to separate the resonance

condition. Here we choose |ψ0,1⟩ |e⟩ to be the excited state as an representative

example, which contains general features as we will discuss later.

5.5 Atom-mirror Rabi Oscillations

Let the system be prepared in the ground state initially, i.e., |Ψ(0)⟩ = |g⟩ |0⟩M ⊗

|0⟩C . According to the effective two-level Hamiltonian, the time evolution of the

system reads

|Ψ(t)⟩ = cos (|Ωeff | t) |g⟩ |0⟩M ⊗ |0⟩C − i sin (|Ωeff | t) |e⟩ |1⟩M ⊗ |0⟩C , (5.30)
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which exhibits itself as a typical Rabi oscillation with a probability oscillation

period T = π/ |Ωeff |.

In order to explore the performance of the above model and test whether such

Rabi oscillations exist under the conditions, we now turn to numerical simulations

of coherent evolution of the system under the exact Hamiltonian [Eq. (5.3)]

without making the approximations in Sec.3 and Sec. 4. We solve numerically the

Schrödinger equation governed by this Hamiltonian under the resonance condition

[Eq. (5.28)] with a Hilbert space truncated at largest photon number 2 and largest

phonon number 3, with which we find the numerical results converge.

In Fig. 5.4, we plot the probability of the system being in the excited state

|e⟩ |1⟩M ⊗ |0⟩C according to the numerical calculations. It is shown that the

probability oscillates as a sinusoidal function. Note that the small fast oscillation

patterns are due to anti-RWA effects. One can see that the larger the detuning

∆2 is, the smaller the amplitudes of the anti-RWA patterns are. And this is

understood, because larger detuning makes our approximation of eliminating the

intermediate states more precise.

In order to show the improvement of the second model in Sec. 4, we plot in

Fig. 5.5 the comparison between the numerical results and predictions of the two

models. As is shown, the improved model results (green lines) are quite close

to the numerical simulations (blue lines) in both cases, while the results of the

primary model in Sec. 3 (red lines) exhibits significant errors. In particular,

we compare the oscillation periods of numerical results with those theoretical

prediction that T = π/ |Ωeff |. It turns out that the oscillation period of the

primary model has an error of about 25 percents. Hence, we see that the primary

model is not accurate, though it is simple and do capture the main feature of

the system. In addition, the improved model indeed makes significant progress

in accuracy beyond the primary model.

Additionally, we are interested in the dependence of the oscillation on ∆3. As
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Figure 5.4: Evolution of the probability P of the system being in the state

|e⟩ |1⟩M ⊗ |0⟩C , for different detuning ∆2. Other parameters are: ∆3 = 0,

g = 0.4ωM , Ω = G = 0.05ωM .
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Figure 5.5: Evolution of the probability P of the system being in the state

|e⟩ |1⟩M⊗|0⟩C based on the numerical simulations (blue lines), the primary model

(green dashed lines) and the improved model (red lines). The parameters are: (a)

∆2 = 0.4ωM , (b) ∆2 = 0.6ωM ; with the other parameters: ∆3 = 0, g = 0.4ωM ,

Ω = G = 0.05ωM .



CHAPTER 5. OPTOMECHANICAL CAVITY WITH AN ATOM: AN ... 70

   
 












 
 

 

 

 

 

 

 













-0.004 -0.002 0.000 0.002 0.004
0.0

0.2

0.4

0.6

0.8

1.0

P

wM/

wM= 0.6

wM= 0.4

wM= 0.2





3∆

2∆

2∆

2∆

Figure 5.6: Dependence of the maximal probability Pm on ∆3. Other parameters

are: g = 0.4ωM , Ω = G = 0.05ωM .

is known for typical Rabi oscillations, the existence of an off-resonance detuning

leads to a reduced amplitude of the oscillation. That is to say, the decrease in

amplitude of the Rabi oscillation can be regarded as an indicator of its dependence

on the off-resonance detuning. Therefore, we plot in Fig. 5.6 the dependence of

oscillation amplitude (maximal probability in the excited state Pm) on variations

of ∆3. It is shown that generally, the oscillation amplitudes decrease when |∆3|

becomes larger and larger, with the peaks of the oscillation amplitudes all locating

at ∆3 ≈ 0, which is expected. Besides, we find that when ∆2 is larger, the

amplitude decreases faster. This is because the effective driving strength Ωeff =

−
∑
r

A
(1)
1,rGA

(1)
0,rΩ

ε1,r
becomes smaller with larger ∆2, as ε1,r = ∆2 + rωM . As a result,

the effect of an off-resonance detuning becomes relatively more significant when

∆2 is larger.

5.6 Effects of Damping

In this section, we quantitatively study the effects of dampings on the atom-mirror

Rabi oscillations via numerical simulations based on the master equation. Gen-
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erally speaking, dampings will destroy coherence of the quantum states. Hence,

sufficiently low damping rates are essential to observe the Rabi oscillations.

Under Born-Markov approximation, the dissipative evolution of the whole

system is governed by the following master equation:

dρ

dt
= −i [H ′, ρ]− κ

2

(
a†aρ− 2aρa† + ρa†a

)
− γM

2

(
b†bρ− 2bρb† + ρb†b

)
−γA

2
(σ+σ−ρ− 2σ−ρσ+ + ρσ+σ−) , (5.31)

where κ, γM and γA are respectively, the damping rates of cavity field, mechanical

motion and the atom excited state. ρ is the density matrix of the system, and H ′

is the Hamiltonian that governs the coherent evolution of the system given by Eq.

(5.3). We have also denoted σ+ = σeg and σ− = σge for simplicity. In addition,

we assume a low temperature, such that thermal excitations of the cavity field,

mechanical oscillator and the atom are zero.

First of all, we make a theoretical estimation on the magnitudes of the decay

rates required in order to observe the oscillations. Generally, the population P of

an excitation decays exponentially over time, i.e., P ∼ e−Γt with Γ the decay rate.

To avoid significant influences from the decay, we therefore require a small decay

rate satisfying Γt0 ≪ 1 for a time period t0 of interest, such that the decline of

excitation population is insignificant. Now we apply the above general argument

to our specific case of Rabi oscillations, which involve excitations of the atom

and the mirror. Consequently, we require both the decay rates of the atom and

mirror obey: γAT ≪ 1 and γMT ≪ 1. The time period of the oscillations T

is roughly: T ∼ Ω−1
eff , with Ωeff ∼ ΩG/∆2. Thus, we obtain: γA ≪ ΩG/∆2

and γM ≪ ΩG/∆2, under which the decay effects of the atom and mirror are

negligible.

On the contrary, cavity field remains in vacuum state in the Rabi oscillations,

which means that ideally the damping of cavity field has no effect. However, there

is always a small number of photons in the cavity that mediates the coupling

between the atom and the mirror. According to the three-level model in Sec.
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3, a single-photon state |1⟩C |0̃⟩M |g⟩ serve as an intermediate state, which has a

small occupation given by Eq. (5.12). Hence, the damping of cavity field still

causes a loss of population out of the oscillating states. In particular, the net

effect of cavity field damping is roughly described by an effective damping rate:

κeff ∼ κ(Ω/∆2)
2, which is the product of the original damping rate and the

photon number. Therefore, the requirement for the cavity field damping rate is

estimated: κ≪ ∆2.

Now we turn to numerical evaluations by solving the master equation (5.31)

numerically with the initial state of the system being the ground state Ψ(0) =

|g⟩ |0⟩M ⊗ |0⟩C . In the calculations, we use a Hilbert space with largest photon

number 2 and largest phonon number 3, with which we find the numerical results

converge.

In Fig. 5.7, we provide numerical results showing the damping effects of the

the two-level atom, mechanical oscillator (mirror) and cavity field, separately. In

order to obtain the net effect of each damping, we always focus on one kind of

damping in each figure with the other two damping rates set zero. Generally,

we see that the oscillation amplitudes of the Rabi oscillations decline gradually,

showing a typical feature of a damped harmonic oscillator.

In Fig. 5.7 (a), we see that an atom decay rate of γA/ωM = 1 × 10−4 causes

a notable decline of oscillation amplitude to about 0.9 for the first peak. In

order to show directly the leakage of probability out of the two-level states, we

plot the total probability of the two state: |g⟩ |0⟩M ⊗ |0⟩C and |e⟩ |1⟩M ⊗ |0⟩C
in the red line, which indeed keeps declining over time. In Fig. 5.7 (b) we see

that the damping of the mirror cause a similar effect to the oscillations. Such

a similarity is understood, because the dampings of the atom and mirror plays

a comparable role in the master equation (5.31). In Fig. 5.7 (c), we explore

the effect of cavity field damping on the atom-mirror Rabi oscillations. We find

that the oscillations are much more robust against the cavity field damping than
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Figure 5.7: Damping effects of the atom (a), mechanical oscillator (b) and cavity

field (c) on the atom-mirror Rabi oscillation. In each figure, the blue line is the

probability of the system in the excited state |g⟩ |0⟩M ⊗ |0⟩C , and red line is the

total probability of being in the ground state |g⟩ |0⟩M ⊗ |0⟩C and the excited
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atomic and mechanical dampings. It is shown that the oscillation amplitude still

remains about 0.95 for the first peak when field damping rate κ reaches 0.005ωM ,

which is 50 times bigger for the cases of atomic and mechanical damping. Such a

result is consistent with the estimation that the cavity field damping is described

by a effective damping rate: κeff ∼ κ(Ω/∆2)
2, with the factor (Ω/∆2)

2 ∼ 10−2.

Consequently, the cavity field damping rate is about two orders larger to cause a

comparable influence.

5.7 Conclusion

To conclude, we have addressed an effective coupling issue between a two-level

atom and a mesoscopic mirror in a driven optomechanical system with an in-

tracavity atom in the single-photon strong coupling regime. We find that the

dynamics of such a system can be described by a Λ-type three-level model under

conditions of resonant laser driving [Eq. (5.15)] and weak coupling amplitudes

[Eq. (5.7)]. Moreover, by eliminating the intermediate state, the three-level

model further reduces to an effective two-level Hamiltonian, which leads to Rabi

oscillations between two atom-mirror states with the cavity field kept in vacuum.

Thus, we achieve the atom-mirror coupling effectively. Note that since the atom

and mirror do not couple directly, the cavity field plays an important role as a

medium of their effective coupling. Therefore, the cavity photon number is very

small but can not be exactly zero during the Rabi oscillations. To support our

model, we perform numerical simulations according to the Schrödinger equation

governed by the exact Hamiltonian. It turns out that our model agrees well with

the numerical results and the atom-mirror Rabi oscillations are observed in vari-

ous cases. In addition, we quantify the influences of the atomic, mechanical and

cavity field dampings via numerical simulations based on the master equation.



Chapter 6

Conclusion

In this thesis, we have addressed several quantum effects of the optomechanical

coupling between a single-mode cavity field and a mechanical oscillator (harmon-

ically bounded mirror) in the single-photon strong coupling regime theoretically.

First, we have demonstrated the generation of a single photon in a driven op-

tomechanical cavity. This is based on a two-level model involving the ground

state and a single-photon state with a specific laser frequency establishing an

optomechanical resonance. Such a two-level model relies on a photon blockade

effect that originates from the nonlinear energy spectra of optomechanical sys-

tems. Consequently, we obtain Rabi oscillations between the ground state and

a single-photon state such that the system evolves into a single-photon state at

certain time, i.e., a single cavity photon is generated. In addition, such model

predictions are verified by numerical calculations based on the Schrödinger equa-

tion under the exact Hamiltonian. Specifically, the near sinusoidal probability

oscillation curves are observed for various sets of parameters. We also investi-

gate the effect of cavity field damping by solving the master equation numerically

and find that a cavity photon lifetime much larger than the oscillation period is

essential to the successful generation of a single cavity photon.

Second, we have discovered that for an optomechanical cavity driven by two

75
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lasers with frequencies satisfying certain resonance conditions, there exists a class

of dark states that are eigenvectors of the system Hamiltonian. The dark states

are superpositions of mirror number states with vacuum cavity field. When the

system is in such dark states, there is no absorptions of both driving lasers, i.e.,

the cavity field is decoupled from the external driving. Note that such optome-

chanical dark states are analogous to coherent population trapping (CPT) in

atomic physics with the same principle of quantum destructive interference. We

provide an analytical expression of the dark states and show with numerical exam-

ples that phonon number distributions of the dark states exhibit sub-Poissonian

statistics. In addition, the dark states can be prepared with high fidelities by

optical pumping, which is demonstrated with numerical calculations based on

the master equation.

Third, for a driven optomechancial cavity with a two-level atom inside we

have achieved an effective coupling between the atom and the mesoscopic mirror.

Under certain conditions, the dynamics of the whole system is captured by a Λ-

type three-level Hamiltonian. Moreover, the intermediate state in such a three-

level Hamiltonian can be eliminated in the large detuning limit, such that the

system is described by a two-level resonant Hamiltonian involving the ground

state and an atom-mirror excited state with the cavity field kept in vacuum. Such

a two-level Hamiltonian leads to a Rabi oscillation in which the excitation of the

atom is accompanied by the phonon excitation of the mirror, i.e., an effective

coupling between the atom and the mirror is achieved. Since the atom and the

mirror do not couple with each other directly in the original Hamiltonian, such

an effective coupling is actually mediated by the cavity field. Notably, such Rabi

oscillations are observed for various cases in numerical simulations based on the

Schrödinger equation under the exact Hamiltonian. Besides, the influences of the

dissipations of the atom, mirror and cavity field are quantified by numerically

solving the full master equation.
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Moreover, we remark that the parameters required for realizing the models

in this thesis are still challenging in experiments. Specifically, we require the

combined regime of single-photon strong coupling and resolved sidebands. Cur-

rently, the resolved sidebands regime has already been achieved in a number of

experiments with different configurations [40, 46, 64]. However, the single-photon

strong coupling regime is not reached in most experimental setups. Exceptionally,

for the configuration of an optomechanical system with a cloud of ultracold atoms

serving as the mechanical oscillator, the single-photon strong coupling regime has

already been reached [47]. But the resolved sideband condition is not satisfied in

this experiment. In order to achieve a single-photon strong coupling, the size of

the optical cavity and the mass of the mechanical oscillator should be sufficiently

small. At last, we believe that with the advances of techniques, our models can

be experimentally verified in the future.
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