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ABSTRACT

To retain geometric features in the deformation of a parametric and feature-based

model is a new challenge for CAD modeling. This thesis presents a constraints based

deformation  framework.  This  framework  combines  the  advantage  of  free-form

modeling  with  feature  based  modeling,  and  allows  engineering  design  to  be

performed in a free-form manner.

The  proposed  method  can  be  divided  into  three  major  steps.  An  object  is

deformed by common deformation techniques such as FFD and axial  deformation.

Parametric features are divided into systems of primitive constraints based on user

specification.  The  targeting  features  are  reconstructed  by  the  use  of  incremental

optimization technique. 

An incremental constrained deformation is introduced. It is used to provide hints

for the optimization. The optimization is to minimize the changes in the deformed

model subjected to all the provided constraints. For a structural constraint specified

with a group of constraints, it  would be better to use a reference datum for all its

component  constraints.  We show numerous  results  of  constraints  retained  models

using our framework. 
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摘要

於參數化和特徵模型的變形中保持幾何特徵是 CAD 建模中一項新的挑戰。

這篇論文提出了一個以限制為基礎去進行變形的系統。此系統結合了自由曲面

和特徵模型建模的好處，而且容許更自由的工程設計。

本方法可分為三個主要步驟。以常用的變形技術去改變一個模型的形狀，

包括自由變形及軸向變形，然後參數特徵會根據用戶的要求去分拆為一系列基

本的限制，最後目標特徵將會以逐步增量的優化技術去重建。

這篇論文提出了一個逐步增量的方法為優化中提供導引。這個優化是於維

持所有提供的限制下盡量減少變形後模型的改變。另外，於一組的限制中以一

個基准為參考，能使本系統更有效的運行。最後，我們也會展示一些使用本系

統以限制為基礎去進行變形的結果。
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1. INTRODUCTION

3D object are normally defined using a discrete set of parameters such as the

vertices of a mesh, control points of parametric curves and surfaces. These parameters

can also be used as handles for the interactive manipulation of the underlying shape.

In computer-aided design (CAD), a feature usually refers to a region of a part with

some geometric or topological properties. Feature based modeling systems describe

object  models  with  a  number  of  parameters.  Feature  models  are  based  on a  dual

representation  scheme which includes  a parametric  representation  and a geometric

representation.  The  parametric  representation  describes  the  relation  between  the

parameters and the geometry of the features. It is usually a CSG representation with

geometric constraints. The geometric representation is a boundary representation (B-

rep) which is generated by solving constraints in the parametric model.

On the other hand, free form deformation has various applications in modeling,

animation, rendering or simulation. Current deformation techniques usually perform

deformation on vertices, curves or surfaces of the object. These deformations will not

maintain constraints specified in the modeling process. This may result in undesirable

shapes  when  the  deformation  is  to  be  applied  to  some  parts  of  the  object  only.

Previous research mainly focused on how to preserve some simple geometric feature

(e.g. circular edge) of the object after deformation. The problem of maintaining the

relation between geometric constraints and deformations is not well addressed.
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1.1 Aims and Objectives

The  objective  of  this  research  is  to  develop  a  system that  allows  geometric

features to be retained after a deformation. In the proposed system, constraints can be

maintained in a model deformed by different kinds of deformation techniques. It can

be used to retain some functional features after deformations have been applied. For

example,  features  of  a  component  that  have  to  match  corresponding  features  of

another component in an assembly may have chances to loss their functionalities in a

deformation. The proposed system can be used to retain matching of the features in

the assembly when the shapes of the components are adjusted in the design process.

The  topology  of  the  model  will  not  be  changed  in  the  constraint  based

deformation. This means the number of vertices will not be changed in a deformation.

In the proposed approach, all provided constraints are assumed to be valid, and there

is  no  conflict  between  constraints.  Since  constraints  that  specified  by  users  may

consist  of  non-linear  constraints,  nonlinear  optimization  is  used  in  the  proposed

system. 

Moreover, in order to maintain angle constraints that exist in geometric feature

of  the  model,  dot  product  of  two normalized  vectors  are  always  included  in  our

constraint system. However, this kind of constraint is non-convex in nature. If there

are non-convex constraints  existed in a nonlinear optimization,  the whole problem

will  become non-convex,  and a  non-convex optimization  technique  is  required  to

solve it. 

There are three steps in the proposed constraint based deformation technique.

Firstly, an object is deformed by using some common deformation techniques such as

FFD and axial deformation. This deformed model is called the transitional model and

is  used  as  the target  shape  in  our  optimization.  Secondly,  parametric  features  are

grouped into systems of primitive constraints  based on user specification.  Finally,

parametric features are reconstructed by the use of optimization technique.

Nonlinear  and  non-convex  optimization  may  not  always  provide  an  optimal

solution due to the algorithm is stuck at a locally infeasible point. The optimization

4



process and the formulation of the problem may have to be adjusted to assist  the

optimization system to find a solution and to reduce unpredictable errors. 

1.2 Report Organization

The  aim  of  this  research  is  to  establish  a  system  that  can  preserve  certain

engineering feature constraints in a free-form deformation. The work reported in this

thesis  focuses on the development  of the method concerned.  There are two major

issues addressed in this  thesis.  One issue is  the formulation of the constraints  for

engineering  features.  The  other  one  is  the  incremental  optimization  method.  The

content of the thesis are organized as follow:

Chapter 2 gives related background information on mesh editing techniques and

the  mathematical  optimization  method.  A  review  on  existing  detail  preserving

techniques is presented. A review on linear and nonlinear optimization method is also

included.

Chapter  3  describes  the  formulation  of  constraints.  For  every  feature  in

parametric  modeling,  a  set  of  constraints  is  required  to  maintain  their  feature

characteristics.  Most  of these feature requirements  can be classified into primitive

constraints of points, lines or triangles. And constraints with references can be used to

improve the performance of the system.

Chapter 4 describes the overall  optimization process that implemented in this

system.  First  it  provides  the objective function and the overall  formulation  of  the

optimization problem. And then it introduces an incremental optimization method to

solve the problem when the optimization failed to find an optimal solution. When the

optimization fails, the system will perform interpolation between the initial guess and

a  transitional  model,  and  then  generates  an  interpolated  model  for  the  next

optimization.

Chapter  5  provides  the  results  of  the  system  with  different  applications.  It

provided  some  examples  that  maintain  individual  feature,  pattern  of  features  and

relationship between features. Some implementation issues are also discussed in this

chapter.
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Chapter 6 discusses the effect of constraints with a common reference, different

level of model detail and incremental method with different experiments. And some

comparisons between our method and other deformation methods are also included. 

Chapter 7 concludes the content of this thesis and discusses potential areas for

further work and development.
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2. BACKGROUND AND LITERATURE REVIEW

When applying deformation on the model, the mesh deformation techniques are

required. Therefore in this chapter, the background information on mesh deformation

techniques will be presented. Besides, mathematical optimization is required to retain

the  constraints  on  model  after  deformation,  so  a  review  on the  mathematical

optimization  methods  will  also  be  presented.  Linear  and  nonlinear  optimization

techniques  are  also  included.  Moreover,  a  review  on  existing  detail  preserving

techniques is presented in order to find out the effectiveness of these algorithms and

to see if there are rooms of improvement. 

2.1 Mesh Editing Techniques

2.1.1 Mesh Deformation Techniques

Most existing CAD/CAM packages provide functions for constructing objects

with feature based modeling technique  [1].  For instance,  different  features require

different  techniques  for  their  machining  process  [2][3].  Surface  based  mesh

deformation methods have been widely used in mesh editing and animation. Space

deformations  (also  called  free-form  deformations)  are  very  popular  in  computer

graphics. A space is defined with a lattice of control points. Deformation of the lattice

points induces deformation to the mesh vertices of an object embedded in the space

defined with the lattice [4][5][6]. Space deformation is easy to be implemented, and is

highly efficient. In general, the computation cost of a deformation depends mainly on

the complexity of the control lattice, but not the mesh vertices. However, FFD may

deform object shapes in an unintended way, e.g. circular holes may be deformed into

elliptical holes.

A recent related work used cages to control shape deformation [7]. Cage is an

offset  of  the  input  mesh.  Different  coordinate  functions  are  used  to  provide

deformation  on  the  entire  space,  including  radial-basis  function  [8],  mean-value

coordinates [9], volume-preserving warps [10][11], locally rigid transformations [12]

[13][14], harmonic coordinates [15] and Green coordinates [16]. However, they tend

to treat the editing mesh as a homogenous surface such that high-level structure and

features of the editing mesh cannot be retained.
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There  are  also  researches  focusing  on  direct  surface  manipulation  while

preserving their  geometric  surface details.  Several  surface based approaches  allow

manual specification of varying surface stiffness [17][18], which allow some parts of

a surface to behave more rigidly than others. However, no high level relationships can

be specified, which makes these techniques difficult to use in engineering.

A  more  restricted  space  deformation  was  described  for  axis-aligned  non-

homogeneous scaling of structured man-made models [19]. By the measure of surface

vulnerability  to  non-uniform  scaling  of  the  model,  it  classifies  sensitive  object

features  into  two  components,  slippage  and  normal  curvature.  Slippage  measures

whether a local region on a surface remains on the surface after the transformation is

applied.  Normal  curvature  is  used  to  distinguish  between  different  degrees  of

vulnerability. The space deformation protects certain parts of the space that undergo

similar  transformation.  Wang  developed  another  content-aware  mesh  scaling

technique [20]. It does not require an auxiliary regular grid, and directly deforms the

mesh model according to its local sensitivity to geometric scaling. However, these

content-aware mesh resizing techniques can only be applied to scaling, and cannot

retain system of relationship specified on the model. For models composed of various

types of joints, joint aware deformation, limb rigidity, local volume preservation and

other physical constraints have been proposed [21-27].

2.1.2 Detail Preserving Techniques

Welch and Witkin introduced constraints  in  variational  surface modeling  and

solved  the  constraint  problem  using  Lagrange  multipliers  [28].  It  presented  the

method to use B-spline control-points to modify surface shape and satisfying the user

supplied geometric constraints. The constraints are grouped in two classes. The first

class is called the finite-dimensional constraints that control surface shape at discrete

points. Another class is called the transfinite constraints that control the surface shape

along embedded curves or sub-regions of the surface. The research focused on linear

constraint that can be applied on the surface. 

Masuda  et  al.  extended  this  method  for  form feature  modeling  [29].  It  is  a

discrete framework for preserving the shapes of form-features using hard constraints

in  interactive  shape  deformation.  Hard  constraints  mean  constraints  are  precisely
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satisfied.  It  constrains  motion  of  form-features  using  linear  constraint.  It  includes

constraints on positions and rotations. Their framework was then further extended for

handling  non-manifold  meshes  and  disconnected  meshes  [30].  It  allows  users  to

smoothly deformed disconnected meshes by propagating the rotations and translations

through disconnected vertices.  However, the relationships between features are not

considered in these approaches.

Cabral  et  al.  [31]  propose  an  approach  for  modeling  architectural  scenes  by

reshaping and combining existing textured modals. For geometry, preserving angles

such as floor orientation or vertical walls is important. It proposes a more lenient way

to handle features by constraining the angles, but it also allow the user to changing the

length of individual segment.

Gal introduced an approach called iWIRES [32] based on the argument that man-

made models can be distilled using a few special 1D wires and their mutual relations.

A small number of wires are used to preserve the defining characteristics of the entire

object. By the use of analyze-and-edit approach, it performs a lightweight analysis of

the  input  shape  to  extract  a  descriptive  set  of  wires,  and  constructs  a  system  of

relationship based on a set of properties common to typical engineering models, such

as linearity, planarity, parallelism and symmetry. By the editing of wires, it allows a

wires-driven deformation on the model while maintaining the system of relationship

of  the  wires.  It  helps  the  users  to  retain  the  original  design  intent  and  object

characteristics of the model after deformation. 

However, this wires-driven deformation only allows deformation to be applied

through wires. It does not allow direct deformation on the object surface. Moreover, it

only retains some primitive shape relationships between wires, and does not allow

users to specify sets of complex constraints commonly found in engineering models.

Recently, direct modeling is adopted in some CAD/CAM software, such as Creo

and Solid Edge. It allows users to design or modify engineering models without using

history  tree  in  transitional  history-based  modeling.  It  allows  users  to  create  and

modify  features  by dragging geometries  and dimension  manipulators.  However,  it
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cannot  regenerate  the features or the relationships between features if  a free form

deformation is applied to the model.
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2.2 Optimization Techniques

2.2.1 Optimization Techniques

Optimization  is  a  subject  in  applied  mathematics  with  wide  applications  in

engineering,  science,  finance,  military  and  space  technology.  It  is  used  for

determining  an  optimal  solution  of  a  given  problem.  Although  optimization  is  a

classical problem, it did not become an independent subject until late 1940s, when

G.B.  Dantzig  presented  the  simplex  algorithm  for  linear  programming  [33].  The

conjugate methods and quasi-Newton methods [34] were introduced in the 1950s.

Nowadays, there are many optimization methods that can be used to solve complex

and large scale optimization problems

The general form of an optimization problem:

min f ( x) (1)

subject to x∈ X

where x∈ Rn  is a decision variable, f ( x) is an objective function,  X ⊂ Rn

is  a  constraint  set  or feasible  region.  If X=Rn ,  the optimization  problem (1)  is

called an unconstrained optimization problem.

The constrained optimization problem can be written as follows:

min f ( x) (2)

subject to bi (x )=0, i∈ E

c i ( x )≥0,i∈ I

where  E  is  the  index  set  of  equality  constraints  and  I  is  the  index set  of

inequality  constraints,  bi (x ) and  c i ( x ) ,(i=0….,m∈ E∪ I )  are  constraint

functions. When both objective function and constraint functions are linear functions,

the problem is called linear programming. Otherwise, the problem is called nonlinear

programming. 
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2.2.2 Linear Programming

2.2.2.1 Simplex Method

The simplex method is an algorithm for solving problems in linear programming.

It operates on linear problems in standard form. 

min cT x (3)

subject to A x=b , xi ≥0

where  c , x ∈ Rn , b∈ Rm  with  x=(x1 ,…,xn)  are the variables of the problem,

cT
=(c1 ,…,cn)  are  the  coefficients  of  the  objective  function  A  which  is  a

p× n  matrix,  and  b=(b1 ,…,bp)  are  constants  where  bi ≥0 .  The  feasible

region of x is a convex polytope. If and only if the column vectors A i  are linearly

independent for x i≠0 , x=(x1 ,…,xn)  is an extreme point, and is referred to as a

basic feasible solution.

It  tests  adjacent  vertices  of  feasible  set  continuously,  so  at  each  vertex  the

objective function improves or remains unchanged. It takes around 2m to 3m number

(where m is the number of equality constraints) of iterations to converge in expected

polynomial  time  for  some  distributions  of  random inputs  [35][36].  Moreover,  its

worst-case complexity is exponential [37].

2.2.2.2 Interior Point Method

A more efficient polynomial time algorithm was proposed by Karmarkar [38].

This algorithm achieves optimization by going through the interior of the inequality

constraints in contrast to the simplex method that move along the boundary of the

feasible region, and is called the interior point method. This approach is similar to the

barrier function methods developed in 1960s which solve the problem by minimizing

a  set  of  unconstrained  barrier  functions.  Interior  point  method  received  more

attentions,  because Karmarkar  shown that  it  is  much  more  effective  than  simplex

method. Its complexity is polynomial for both average and worst case.

2.2.2.2.1 Primal-Dual Interior Point Method

Equation  (3)  can  be called  the  primal  problem.  On the  other  hand,  the  dual

problem can be formulated as 
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max bT y (4)

subject to AT y+s=c , s≥0  

where y∈ Rn , s∈ Rm . Let x¿  be a feasible solution to the primal problem and

( y¿ , s¿
)  be a feasible solution to dual problem. These solutions will be optimal to

both  problems if  and only if  they satisfy the  complementary slackness  conditions

x i si=0  for  i=1,... , n .  The method try to move through the primal and dual

solutions  that  improve  the  solutions,  so  that  it  satisfies  the  complementary  slack

conditions.  In  each  iteration,  the  algorithm  tries  to  find  x ( λ) , y ( λ )∧s ( λ )  that

satisfy the following condition:

Ax=b (5)

AT y+s=c (6)

x i si=λ ,i=1,. . , n  (7)

x , s≥0 (8)

In the optimization, the  primal and dual equality constraints are both satisfied, and

x , s≥0 .  Convergence  can  be  found when  the  duality  gap  reaches  zero  or  lies

within the specified tolerances. 

2.2.3 Nonlinear Programming

2.2.3.1 Sequential Quadratic Programming

Sequential  Quadratic  Programming  (SQP) was first  proposed by Wilson [39]

which can be used for solving nonlinear optimization problem. The basic idea of SQP

is to model a nonlinear program at a given approximate solutions, say  xk , by a

quadratic  programming subproblem,  and to  use the solutions  to  construct  a  better

approximation  xk+1 .  This  process  is  iterated  to  generate  a  list  of  approximate

solutions. Finally the algorithm tries to converge to an optimal solution. Consider the

problem in (2), it can be derived by applying Newton’s method to the corresponding

optimality conditions. The Lagrangian for this problem is:

L ( x , λ , μ)=f ( x )− λT b ( x)−μT c (x ) (9)

where  λ and  μ  are  the  Lagrange  multipliers,  b (x )  are  the  inequality

constraints functions and c ( x )  are the equality constraints functions. By defining a
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new search direction pk  for the solution to a quadratic programming subproblem at

iteration xk :

min L(xk , λk , μk)+∇ L (xk , λk , μk )
T

p+
1
2

pT
∇ xx

2 L(xk , λk , μk ) p (10)

subject to b (xk)+∇ b(xk )
T

p≥0  

      c (xk )+∇ c ( xk)
T

p=0  

2.2.3.2 Reduced Gradient Methods

Reduced Gradient method was proposed by Marguerite Frank and Phil Wolfe as

an  algorithm  for  quadratic  programming  [40].  It  maintains  the  feasibility  of  the

solution  at  every  iteration.  This  approach  has  a  number  of  advantages.  If  the

approximation at an iteration is feasible, and the method may be stopped before the

process converges, the current approximated solutions may still be useful. Besides,

with the current value of the objective function, the identification of convergence can

be  simpler  without  making  use  of  an  auxiliary  merit  function.  But  the  main

disadvantage  of this  method is  the computation cost for ensuring every constraint

remains satisfied in each iteration. Since the constraints are nonlinear, this means a

system of nonlinear equations needs to be solved at  each trial  point to satisfy the

constraint requirement. For a system with a large number of nonlinear constraints, a

huge computational cost will be needed to solve the nonlinear system, and the system

may fail to find a solution. Moreover, variants of the reduced gradient methods have

been developed to provide flexibility in allowing for some violations in the constraints

during the optimization. These methods can be considered as a compromise between

the  reduced  gradient  method  and  sequential  quadratic  programming  method.  An

example of this algorithm is described in the paper by Drud [41].

2.2.3.3 Interior Point Methods

Since Karmarkar developed interior point method in 1943 [38], it has become a

major focus of theoretical research and practical experiments. It is efficient for linear,

convex quadratic and general nonlinear problems. The method solves a sequence of

subproblems with a  barrier  parameter  that  converges to  zero.  The solution  to  this

system is used to update the primal and dual iterates simultaneously. Under certain

conditions, and if the initial guess is sufficiently close to the solution, the algorithm
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can achieve  a  quadratic  rate  of convergence.  These methods provide an attractive

alternative to the active set strategies for nonlinear optimization with a large number

of nonlinear inequality constraints. 

2.2.4 Optimization Solver

In the last 15 years, the quality of nonlinear optimization software has improved

a lot. FILTERSQP [42] and SNOPT [43] both use the active-set sequential quadratic

programming (SQP) methods. FILTERSQP use a trust region approach, together with

filter globalization. SNOPT follow a line search approach and provided quasi-Newton

approximation for the Hessian matrix.  CONOPT [44] utilizes reduced Hessian and

SQP  methods.  The  MINOs  [45]  and  LANCELOT  [46]  packages  are  capable  of

solving problems with large-scale optimization, and they implement the augmented

Lagrangian  methods.  Moreover,  most  of  the  newly  developed  packages  provide

optimization based on the interior point methods. LOQO [47] adopts a line search

primal-dual  algorithm which  can  be  considered  as  a  modified  version  of  interior

methods for linear and quadratic programming. MOSEK [48] implements a primal-

dual interior point method for convex optimization.  BARNLP [49] adopts the line

search interior point approaches, while IPOPT [50] implements a filer globalization

and provides a feasibility restoration phase.

2.2.4.1 KNITRO

KNITRO [51] integrates the active set approach and the interior point approach

for  continuous,  nonlinear  optimization  problem.  The  active  set  method  uses  a

Sequential  Linear-Quadratic  Programming  (SLQP)  algorithm  that  uses  linear

programming  subproblems  to  estimate  the  active  set.  The  interior  point  method

provides two different ways to solve the primal-dual Karush–Kuhn–Tucker (KKT)

system  which  can  be  solved  by  using  the  direct  linear  algebra  (Interior/Direct

algorithm) or the projected conjugate gradient iteration (Interior/CG algorithm). The

interior point methods can be combined with the active set methods to provide highly

accurate active set and sensitivity information. 

In order to maintain certain geometric feature, we need to constrain the point to

point distance. However, these distance constraints are nonlinear. Moreover, we need

dot product to constrain some angle features in model, and dot product between two
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normalized vectors is non-convex. So because of the large number of convex and non-

convex  nonlinear  constraints,  this  means  that  it  is  a  large-scale  continuous  and

nonlinear non-convex optimization problem. And interior point method is proved to

be  efficiency when solving this  kind of  optimization  problem,  so this  system has

implemented KNITRO as the solver.

KNITRO  provides the Interior/Direct approach and Interior/CG approach. The

Interior/Direct method computes new iterates by solving the primal-dual KKT matrix

using direct linear algebra. The Interior/CG approach computes new iterates using a

projected conjugate gradient iteration. This method differs from most interior point

methods proposed in the literature. It computes steps by using a quadratic model and

trust regions. This formulation allows great freedom in the choice of the Hessian and

provides a mechanism for coping with Jacobian and Hessian singularities. And this

method use requires much less memory during the process than the Interior/Direct

approach. For the size of our problem, the Hessian matrix is large and dense and using

most of the memory, so we choose the Interior/CG method that offer big saving in

memory.
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3. SPECIFICATION OF CONSTRAINTS

In this chapter, we will describe the formulation of constraints. For every feature

in  parametric  modeling,  a  set  of  constraints  is  required  to  maintain  their  feature

characteristics.  Most  of these feature requirements  can be classified into primitive

constraints of points, lines or triangles. Besides, the use of references in a structural

constraint that is constructed from a group of constraints will be presented.

3.1 Constraints

In  order  to  preserve  engineering  features  in  a  given  model,  features  to  be

preserved are identified by selecting some key feature vertices of the mesh. These

selected features will then be grouped into systems of primitive constraints to be used

in  the  subsequent  optimization  process.  This  optimization  process  minimizes  the

difference between the user-deformed model and the target model with the presence

of  constraints.  Because  of  the  nonlinear  properties  of  the  specified  constraint,  a

nonlinear optimization technique has to be adopted. 

For  every  feature  in  a  parametric  model,  a  set  of  constraints  is  required  to

maintain their feature characteristics. For example, an extrusion feature needs to have

a cross-section profile as a base for the feature body, and the side faces of the feature

have  to  be  perpendicular  to  the  plane  of  the  cross-section  profile.  Most  of  these

feature  constraints  can  be  classified  into  primitive  constraints  of  point,  line  or

triangles.  The  primitive  constraints  can  be  specified  with  point–point,  point–line,

line–line,  line–triangle,  triangle–triangle,  and triangle–point  relations.  They can be

angle or distance constraint. Different numbers of configurations may be specified

between different primitives as shown in Figure 1. Different configurations mean that

they are connected  with different  number of vertices.  Besides,  different  constraint

functions are obtained with different configuration. 

Figure 1. Three configurations between two triangles. (a) No vertex is connected 
between two triangles. (b) One vertex is connected. (c) Two vertices are connected.
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Table 1. Types of constraint and numbers of geometry configuration between 
different primitives

Constraint type Distance constraint Angle constraint No. of 
configuration

point – point
 

Eq. 12 1
point – line Eq. 14 1
point – triangle Eq. 17 1
line – line Eq. 14 & Eq. 20 Eq. 19 2
line – triangle Eq. 17 & Eq. 26 Eq. 25 2
triangle – triangle Eq. 17 & Eq. 29 Eq. 27 3

Figure 2. Distance and angle constraints between point, line or triangle. (a) point - 
point distance (b) line - point distance (c) triangle - point distance (d) line - line angle 
(e) triangle - line angle (f) triangle - triangle angle
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Given the distance 
β

 from point 
),,( aaa zyxa

  to point 
),,( bbb zyxb

 :

222 )()()( bababa zzyyxxβ 
(11)

Equation (11) can be simplified as:

0βzzyyxx bababa  2222 )()()(
(12)

Given the distance 
β  from a point 

c
  to a line

),( ba
 :

   
ab

bcac







β

(13)

or

    0 β  abbcac


(14)

Given  the distance  
β  from  a  point  

d
  to  a  triangle  

),,( cba
 which lies on  the

plane with unit normal 
n̂

:

   
   cbca

cbca
n 






ˆ

(15)

β )(ˆ cdn
 (16)

or

0β  )(ˆ cdn
 (17)

Given the angle 
θ  between line 

),( ba
 and line 

),( dc
 :

   
)(θ cos



dcba

dcba



(18)

or

    0θ cos  )(dcbadcba


(19)

From (21), the parallel property between two lines can be constrained by:

    0  dcbadcba


 (20)

From (21), the prependicaulr property between two lines can be constrained by:
19



    0  dcba
  (21)

For  the  case  that  two  lines  share  one  point  
b
  (i.e.  

db



),  equation  (19)

becomes: 

    0θ cos  )(bcbabcba


(22)

From (22), collinearity of three points can be constrained by: 

   
1


















2

bcba

bcba



(23)

or

       0
22

bcbabcba


(24)

Given  two  parallel  disconnected  lines,  if  we  need  to  constrain  the  distance

between them, first we need to use equation (20) to constrain the parallel property.

And then, the distance between them can be constrained by the distance from one of

the lines to a point on the other line by the use of equation (14).

Given the angle 
θ  between triangle 

),,( cba
  

and a line 
),( ed
  

which lies on the

plane with unit normal 
n̂

:

    0θ cos  )(ˆ ededn
 (25)

In order to constrain the distance between a triangle (with unit normal 
n̂

 ) and a

line 
),( ed

, the line is assumed to be parallel to the plane of the triangle, it means the

angle  between  the  line  and the  normal  to  the  plane  of  the  triangle  is  90  degree.

Equation (25) becomes:

  0 edn


ˆ
(26)

And the distance between them can be constrained by the distance from one

point of the lines to the plane of the triangle by the use of equation (17).
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Given the angle 
θ  between a triangle (with face normal 

1f
 ) and another triangle

(with face normal 
2f
 ):

)(θ cos
21

21 

ff

ff


 (27)

This gives

0θ cos 2121  )(ffff
 (28)

In order to constrain the distance between a triangle (with face normal 
1f
 ) and

another  triangle (with face normal  
2f
 ), these triangles are assumed to be parallel to

each other, it means the angle between the face normal of the triangles is 0 or 180

degree. Equation (27) becomes:

1

2













 

21

21

ff

ff



(29)

And then the distance between them can be constrained by the distance from the

plane of the triangle to a point on the other triangle by the use of equation (17).

3.1.1 Constraints with Reference Points

Reference points are required to be added in to the constraint system in order to

provide  constraint  on  some  geometric  features  that  cannot  represent  with  mesh

vertices only. For example, if we want to maintain a circular shape that existed on a

surface of a mesh, but the mesh do not contain a vertex that can be specified as the

centre of this circular feature, a reference point at the centre of this circular shape will

be required for setting up the necessary constraints. An example is shown in Figure 3. 

For  some structural  constraints,  reference  points  are  also  required.  Structural

constraints  refer to constraints  that  maintain the relationships  between feature and

feature, rather that the position of vertices on one single feature. For example, using a

reference point to represent the contact point of two gear models will provide more

freedom of movement for the gear model. This is because if we use mesh vertex as

the contact point, the contact vertex may also associated with other constraint, such as
21



planar and circular constraints such that its movement may be limited. But if we use a

reference  point  as  the  contact  point,  fewer  constraints  are  associated  with  this

reference  point,  freedom of  movement  for  the  gear  model  will  be  increased.  An

example is shown in Figure 4. 

Figure 3. Use of reference point on a circular face (a) Circular face (green in color) 
that do not contain a vertex at the centre (b) A reference point (blue in color) is added 
at the centre of the surface for the use of constraint establishment.
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Figure 4. Use of a reference point for gears model (a) A gears model that the teeth of 
gears have not been included for simplicity (b) Constrain without a reference point (c)
Constrain with a reference point (d) The gear can be rotated with the existence of the 
reference point.

3.1.2 Constraints with Reference Variables

Constraint can be constructed with a reference variable. A reference variable is an

additional  variable  included  in  the  constraint  system  in  order  to  provide  shared

references between constraints. For example,  a reference variable is added when a

user wants to constrain the circular  shape of a feature,  but he/she do not want to

constraint its radius to an exact value, so all the distances in the distance constraints

that are used in this constraint group will be set to be the same as a shared reference

variable. An example is shown in Figure 5. 
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Figure 5. An example demonstrating the use of the reference variable (a) the original 
undeformed model (b) The result of stretching the model (c) The exact dimensions of 
the cylinder has been retained, which mean the size of the cylinder is the same as that 
in Figure 5(a). (d) Using a reference variable for the distance constraints for the radius
of the cylinder, the circularity of the shape is retained, but the size of the cylinder is 
scaled up as a result of the stretching operation.

This  kind  of  reference  variable  can  be  used  in  all  the  angle  and  distance

constraints. This means that it can be used to constrain the shape of a feature without

providing the exact numerical dimensions. Using a reference variable in a distance

constraint specified with equation (12), a reference variable 
R

 will replaced 
β

 which

gives:

0Rzzyyxx bababa  2222 )()()(
(30)
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3.1.3 Reference Vector Constraints

A reference vector can be created form two vertices or cross product between

two vectors which can be face normals or other reference vectors. 

Given a vector 
v̂  

formed from point 
a
  to point 

b
 :

ab

ab
v 






ˆ

(31)

In order to prevent zero vector , the length of the vector should not become zero.

Tab     (32)

where 
T

 is the threshold.

Given a vector 
av
  

which is the cross product of the vectors 
bv
  and 

cv
 :

cba vvv



  (33)

Vector dot product is used to constrain the angle between two vectors. Given the

angle 
θ  between unit vector 

av̂
 and unit vector 

bv̂
:

)(ˆˆ θ cos ba vv
(34)
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Figure 6. Use of reference vector constraints (a) By using dot product constraints on 
the axes of two bars (

1ˆˆ 21 aa
), their axes will remain parallel in a deformation, and 

the result is shown in Figure 6(b).

Reference vector constraints are used for setting up constrains on the reference

vector rather than mesh vertices. They are higher level constraints and are usually

required  when  users  want  to  provide  constraints  across  features  that  cannot  be

specified with mesh vertices directly. An example is given in Figure 6. 

3.1.4 Constraints with Reference Datum

For a group of constraints, it would be better to use a reference datum for all its

component  constraints. The  use  of  reference  datum speeds  up  and  stabilized  the

optimization process. In the process, when constraints between adjacent primitives are

being retained, the optimization process may terminate if one of the constraints is not

satisfied. By using a common datum for a group of primitives, the chance of having

one constraints being not satisfied is reduced. There are several types of constraints

that  can  be  implemented  with  this  method  such  as  planar,  collinear  and  circular

constraints.

3.1.4.1 Planer Constraint with References

For planer constraints on a set of triangles,  by using a common reference for

each of the triangle, the numerical error accumulated in the optimization process can

be reduced.

For example, a planar surface can be constructed with a set of triangles sharing a

common face normal n̂ . Given a plane with unit normal n̂(n̂x ,n̂ y , n̂z) , this can

be constrained as:
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n̂x
2
+n̂ y

2
+n̂z

2
−1=0 (35)

Given a planar surface with a unit normal  n̂ , all points lying on the same

plane can be constrained as following:

n̂ ∙(v́ i− v́c)=0 (36)

where v́ i  is the i-th vertex lying on the plane and v́c  is the common vertex

lying on the same plane.

By using  equation  (36),  the  constrained  points  are  to  lie  on the same plane.

However, it does not prevent the triangle faces from overlapping. In order to eliminate

overlapping triangles, the angle between the plane unit normal n̂  and each triangle

face normal f́ i  has to be less than 90 degrees.

f́ i ∙ n̂≥0 (37)

In order to apply appropriate constraints to all coplanar faces, all constraints are

analyzed first,  and then all  coplanar  triangles  are  grouped together.  Similarly,  the

points on the same planes are grouped too. For a plane with M triangle faces and N

vertices, to constraint its planarity, equation (35) specifies the normal at the reference

vertex,  N−1  equation (36) is used to specify the locations of the other vertices,

and M  equation (37) are required to prevent the overlapping of triangles.

By using the plane unit normals n̂ , the perpendicular property between the i-

th and the j-th plane can be specified as following:

n̂i ∙n̂ j=0
(38)
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3.1.4.2 Collinear Constraint with References

A collinear constraint is used to maintain the angle between two consecutive line

segments at 180 degrees.

Instead of applying the collinear constraints on adjacent segments of a straight

edge,  constraints  can be applied  to  each line  segment  relative  to  the  line  defined

between the start point and the end point of the edge. It will improve the performance

of the optimization.

The collinearity of three points can be constrained as follow (Figure 7):

(á−b́) ∙( ć−b́)
|á− b́||ć−b́|

=−1 , 
(b́−ć )∙ (d́− ć)
|b́− ć||d́−ć|

=−1  , ....... (39)

In  this  representation,  the  angle  constraints  are  applied  on  adjacent  line

segments. Numerical error will accumulated while the optimization propagates along

the straight edge. 

A common reference can be used to reduce the amount of accumulated errors. In

accordance, the straight line in Figure 7 can be constrained with the following:

( á−é )∙(b́−á)
|á−é||b́−á|

=−1 , 
( á−é ) ∙(ć−b́)
|á−é||ć−b́|

=−1  , ....... (40)

In  this  representation,  the  angle  constraints  applied  to  each line  segment  are

specified relative to the line defined between the start point and the end point.

3.1.4.3 Circular Constraint with References
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In order to confine a set of points to lie on a circle, circular constraints are to be

adopted.  A  circular  constraint  is  specified  with  distance  constraints  and  angle

constraints. If we want to maintain the circular property of the point á , b́ , ć ,

d́ ,  é , f́ ,  ǵ , h́  in  Figures  8,  we  will  need  to  apply  the  circular

constraint  on  these  points.  Distance  constraints  are  used  to  maintain  the  distance

between the origin ó  to all the points in the group. Angle constraints are applied to

adjacent radial  line segments (e.g.  óa  and  ób ,  ób  and  óc ,  etc).  The

constraints will be specified as following:

(á−ó) ∙(b́−ó)
|á−ó||b́−ó|

=cos (angle between óa∧ób)  (41)

(b́−ó) ∙( ć− ó)

|b́−ó||ć−ó|
=cos(anglebetween ób∧óc )

( ć− ó) ∙( d́−ó)
|ć−ó||d́−ó|

=cos (angle between óc∧ ód)

……

Instead of applying angle constraints on adjacent line segments, angle constraints

would better be specified relative to a reference line. In Figure 8, we use line óa  as

the reference line, and the angle constraints can be formulated as following:

( á−ó) ∙(b́−ó)
|á−ó||b́−ó|

=cos (angle betweenóa∧ób)    (42)

( á−ó) ∙( ć−ó )
|á−ó||ć−ó|

=cos (angle between óa∧óc)   

( á−ó) ∙(d́− ó)
|á−ó||d́−ó|

=cos(anglebetween óa∧ód )

……
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3.2 Redundant Constraints

The  constraint  system  should  not  contain  any  redundant  constraints.  This  is

because redundant  constraints  will  lead to degeneracy such that  extra  iterations  is

required in the optimization process, or in some cases, the optimization process may

fail to locate a solution. In general, users should plan the specification of constraints

carefully,  and  clearly  identify  that  there  will  not  be  geometrical  or  numerical

redundancies.  For example,  if we are specifying the circular shape of the mesh in

Figure 8, only 7 angle constraints, 8 radius distance constraints and planar constraints

are needed to constrain this circular face. If one more angle constraint is added to the

system,  it  will  become  a  redundant  constraint  and  cause  degeneracy  in  the

optimization process.

4. CONSTRAINED OPTIMZATION

In this chapter, the overall optimization process implemented in the experimental

system will  be  presented.  First  it  provides  the  objective  function  and  the  overall

formulation  of  the  optimization  problem.  And  then  it  introduces  an  incremental

optimization  method  to  solve  the  problem when  the  optimization  fails  to  find  an

optimal solution. When the optimization fails, the system will perform interpolation

between the initial guess and a transitional model, and then generates an interpolated

model for the next optimization. 

4.1 Objective Function

With  the  above primitive  constraints,  geometric  features  commonly  found in

engineering components can be specified. In order to retain the specified constraints

after a deformation, an optimization process is performed. This optimization provides

a better reconstruction result than reconstructing the constraints one by one, because

the optimization tries to preserve the deformed shape rather than only considering

individual  constraint.  It  also  allows  the  deformation  to  have  more  effect  on  the

constrained model.

By minimizing the least squared distance between the deformed coordinates and

the coordinates generated in the optimization process, the deformation can be retained

as much as possible in the existence of constraints. The function can be written as:
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n

i
f

1

222 ))()()(()( iiiiii z'zy'yx'xz',y',x'
(43)

where 
)( iii z,y,xiv

  is the i-th vertex of the transitional model and  
)( iii z',y',x'i'v

  is

the i-th vertex of the optimized constrained deformed model. Reference points are not

included in the objective function, because they are used in the constraints only. Since

the objective function is nonlinear,  a nonlinear solver is required to minimize this

objective  function.  For  a  general  optimization  problem,  we  need  to  provide  an

objective function, constraints and initial guess. The initial guess is used as the input

for the optimization. Therefore, the optimization problem can be written as: 

      

a

1i

b

1j ji, zy,x,A to  subjectedzy,x,f min
(44)

where 
 zy,x,A ji,

 are the constraint functions, 
a

 is the number of constraint type

and 
b

 is the number of constraints of the same type. 
 zy,x,A ji,

 can be a combination

of equation (12), (14), (17), (19-22), (24-26) and (28- 42).

The overall procedure is listed as follow: First, the user specifies the constraints

in the undeformed model (Figure 9), and then the users perform deformation on the

model to produce a transitional model. Finally, the system performs an optimization

that minimizes the displacement on the vertices of the transitional model using the

original undeformed model as the initial guess.
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Figure 9. Preserving constraints on a Lego model. By applying constraints on the four 
cylinders and the plane (highlighted), the shape of the cylinder can be retained
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Figure 10. A plane model example

Here we will give an example on the formulation of the optimization problem. In

Figure  10(a),  there  is  a  plane  with  4  vertices.  We want  to  maintain  the  distance

between vertex v́1(x1 , y1 , z1) and vertex v́ 4(x4 , y 4 , z4)  and the distance between

vertex v́3(x3 , y3 , z3)  and v́ 4  with distance β  (which is a constant). We also

want to maintain the right angle at vertex v́1  with line ´v1 v2  and line ´v1 v4 .

And  then  we  deformed  the  model  as  shown  in  Figure  10(b),  and  use  it  as  the

transitional model. After that, we perform the constrained optimization with it. 
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By equation (43), the objective function for this problem will become:

 


4

1

222 ))()()(()(
i

f iiiiii z'zy'yx'xz',y',x'
(45)

where 
)( iii z,y,xiv

  is the i-th vertex of the transitional model (which are all constants)

and  
)( iii z',y',x'i'v

  is the i-th vertex of the optimized constrained deformed model

and they are the variables in the optimzaimation problem. 

By equation (14), the distance constraint of line ´v1 v4  will become:

0βz'z'y'y'x'x' 414141  2222 )()()(
(46)

And the distance constraint of line ´v3 v4 will become:

0βz'z'y'y'x'x' 434343  2222 )()()(
(47)

By equation (22), the perpendicular  property of line  ´v1 v2  and  ´v1 v4 will

become:

    01412  vvvv
 (48)

And then:

0))(())(())((  141214121412 z'z'z'z'y'y'y'y'x'x'x'x'
(49)

Rewriting  the  constraints  as  constraint  functions  c1 , c2 , c3  ,  the  system

becomes:

c1=¿ 2222 )()()( βz'z'y'y'x'x' 414141 
(50)

c2=¿ 2222 )()()( βz'z'y'y'x'x' 434343 
(51)

c3=¿ ))(())(())(( 141214121412 z'z'z'z'y'y'y'y'x'x'x'x' 
(52)

Besides  the  objective  function  and the  constraint  functions,  we  also  need  to

provide the Jacobian matrix and Hessians of the objective and constraint functions for

the solver during the optimization.
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The  gradients  (first  derivatives)  of  the  objective  and constraint  functions  are

given by:

∇ f =[
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]
The constraint Jacobian matrix J  is the matrix whose rows store the transpose

of the constraint gradients:

J=[
∇ c1

T

∇ c2
T

∇ c3
T]=¿

[
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The Hessian of the Lagrangian matrix is defined as:

H=∇ 2 f +∑
i=0

m−1

λi ∇
2 c i (53)

where λ  is the vector of Lagrange multipliers (dual variables) which is associated

with  the  second  derivatives  of  the  constraint  functions.  The  Hessians  (second

derivatives) of the objective and constraint functions are given by:

∇
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Scaling the constraint matrices by their corresponding Lagrange multipliers and

summing, we get:
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After the optimization, the result model is shown in Figure 10(c).
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4.2 Incremental Constrained Deformation

Figure 11. The system workflow

Because  of  the  nonlinear  properties  of  the  specified  constraint,  a  nonlinear

optimization technique has to be adopted. In general, a local optimum point can be

obtained while a global optimum point may not be achieved. Local optimum point

means the specified constraints are satisfied, but the archived optimum point is only a

local minimum or maximum point. In other words, even the constraints are satisfied,

the user provided deformation may not be fully retained after the optimization. An

example is shown in Figure 12 in which some faces collapse although their planarities

are maintained. In Figure 12,  the straight bar on the left is the original model. The

face at the two ends of the bar  a and  b are constrained as square with fixed edge

length. The side c is constrained as planar surface. Then, the model obtained with an

unconstrained deformation is shown in the middle of the figure. The bar model on the

right  is  the result  of  the optimization.  As shown in the figure,  some faces  of  the

deformed model are collapsed although they lie on the same plane. This is a result of

the local solution obtained from the nonlinear optimization.
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Figure 12. Optimization result without incremental constrained deformation.

In addition, incremental constrained deformation is implemented to provide hints

for the optimization. First, the system tries to minimize the displacement between the

vertices  of  the  transitional  model  and  the  original  model  using  the  original

undeformed model as the initial guess. If the optimization fails or the collapsing faces

are found, then the system will perform interpolation between the initial guess and

transitional model, and then generate an interpolated model. Hence, the optimization

problem becomes the minimization of the displacement from the interpolated model

using  the  original  undeformed  model  as  the  initial  guess.  The  interpolation  is

described as following: 

v́ i=α ( v́t−v́o)+ v́o (54)

where  v́o  is  the  vertex  on  the  original  model, v́ t  is  the  vertex  on  the

transitional model, v́ i  is the vertex on the interpolated model and α  is the factor

for the interpolation.

The  factor  for  the  first  interpolation  is  set  to  be  0.5.  If  the  optimization  is

completed with this factor, then the next interpolation will use 1 as the factor. In this

way, the optimization problem becomes the minimization of the displacement in the

newly  interpolated  model  using  the  previous  optimal  result  as  the  initial  guess.

However, if the optimization fails or collapsing faces are found, the factor will be set

to  0.25,  and  the  system  will  repeat  the  optimization  with  the  newly  interpolated

model. Based on this algorithm, the optimization is performed incrementally to give a

constraints retained model. For the case that the interpolation factor is decreased to a

user  specified  level  while  no  optimal  result  is  obtained,  the  system  will  use  the
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optimization result obtained in a previous succeeded incremental optimization.  The

pseudocode for this incremental method is shown in Table 2.
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Table 2. The Pseudocode for the incremental method

Define variable OS for the optimization status 
Define variable TS for the temination status
Define variable SV for the starting value
Define variable CV for the current interpolated value
Define variable CS for the current step size
Define variable US for the user-defined termination step size 
Define variable UIM for the user input model 
Define variable TDM for the transitional model 
Define variable IM for the interpolated model
Define variable COM for the current optimized model 
Define variable POM for the previous optimized model

Initialize TS to false
Initialize SV to 0.0
Initialize CS to 1.0
Initialize CV to 0.0
Initialize US to 0.03125
Copy UIM to POM
While TS is Equal to false
{

Set CV to the Sum of SV and CS
Intepolate from UIM to TDM with CV 
Copy the result of Intepolation to IM
Pass UIM, IM and constraints to the optimizer
COM and OS is Returned from the optimizer
If OS is true And CV is 1.0
{

Set TS to true
}
Else If OS is true And CV is Not Equal to 1.0
{

Set SV to CV
Copy COM to POM

}
Else If OS is false 
{

Set TS to false
Divide CS by 2.0
If CS is Smaller than or Equal to US 
{

Copy POM to COM
Set TS to true

}
}

}
Return COM
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4.3 The Scaling Problem

Moreover,  optimization  may  fail  when  the  constraints  are  badly  scaled.  The

differences in magnitudes of the first derivatives of the constraint equations may be

very large such that errors in the calculation accumulate. This may finally causes the

solver to fail in obtaining a solution. When the optimization process starts, scaling of

constraints  are  performed  by  the  nonlinear  optimization  solver.  The  scales  are

determined base on the provided initial  guess for the optimization.  The scaling is

performed by multiplying different constraint functions with a scale factor such that

the order of magnitude of the first derivatives of the functions lies within a range

determined  by  the  solver.  This  makes  sure  that  each  constraint  functions  are

comparable in the optimization process. The initial guess of the optimization problem

is hence very important to the scaling of the problem. Besides, a well scaled problem

requires less computation time and can give more accurate result. Since the scaling of

all  variables  in  the  optimization  may  also  affect  the  convergence  rate  of  the

constraints  problem,  normalization  is  performed  on  the  coordinates  of  the  given

vertices. 
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5. CASE STUDIES

The proposed techniques are implemented on Win7 system using C++ language.

We performed all the experiments on a  Quad-core  3.00GHz PC with 8G.  Tests are

performed to study its capability in retaining geometric constraints on models. Test

cases  are  selected  to  evaluate  the  ability  of  the  system in  maintaining  individual

feature, pattern of features and relationship between features. Constraints, reference

points,  reference  variables  and  reference  vectors  in  some  example  are  provided.

Beside, the original model, transitional model and the final deformed model for every

example will be presented. Deformation techniques used in following examples are

free-form deformation. Some implementation issues are also discussed in this chapter.

5.1 Maintain Individual Engineering Features

In  the  following  section,  several  constraints  retained  deformation  results  are

illustrated. The results show that the system retains individual features. 

By providing the dimensions of the cylindrical features on the model in Figure

13(a),  the  dimension  of  the  cylindrical  features  can  be  retained  after  various

deformations and the cylinders remain perpendicular to the top plane,  the result is

shown in  Figure  14.  First,  the  triangles  on  the  upper  plane  are  constrained  with

coplanar  constraints  as  shown  in  Figure  13(b).  In  order  to  illustrate  the  use  of

reference  point  on  the  model,  the  top  face  of  each  cylinder  is  modelled  with  an

irregular mesh such that no mesh vertex can be used as the centre point. A reference

point is inserted at  the centre  as shown in Figure 13(c).  Third,  16 radius distance

constraints and 15 angle constraints (Figure 13(d)) are applied on each cylinder. Then,

all triangles on the top face of each cylinder are constrained with coplanar constraints

as shown Figure 13(e). In Figure 13(f), each pair of perpendicular faces is constrained

with a perpendicular constraint. Notice that only one pair of perpendicular faces is

highlighted in the figure, there are 16 pairs of perpendicular faces on each cylinder. In

Figure 13(g), the triangles of each vertical stripe of the cylinder are constrained with

coplanar constraint. Hence, there are 16 groups of coplanar constraints on the vertical

side  of  each  cylinder.  In  Figure  13(h),  one  triangle  on  the  vertical  side  of  each

cylinder is constrained to be perpendicular to one triangle of the top plane. Finally,

one more perpendicular constraint is added between the vertical side of each cylinder

and the top plane as shown Figure 13(i).  With these perpendicular  constraints  (in
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Figure 13(h) and Figure 13(i)) on each cylinder, they are already enough to keep each

cylinder perpendicular to the top plane, so no more perpendicular constraint is needed.

There will be redundant constraints if more than one perpendicular constraint (with

the same property) is specified on each cylinder.

The techniques used in the specification of constraints on the Lego model are

applied  to  a  gamepad  model.  In  Figure  15,  constraints  are  applied  to  the  target

features of the original gamepad model, and by providing the transitional model, the

target features can be retained on the final model.
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Figure 13. Constraints on a Lego Model
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Figure 14. Different deformation results on an object with different transitional 
models and the same set of constraints
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Figure 15. A gamepad model deformed with the incremental constraints retained 
method. Cylindrical features and structures (highlighted in blue) inside the gamepad 
model are retained after the deformation.

5.2 Maintain Pattern between Engineering Features

Our method can retain the pattern of engineering features in a deformation. By

using  a  combination  of  parallel,  perpendicular,  planar,  collinear  and  circular

constraints, pattern between engineering features can be retained. 

In Figure 16, constraints are applied to the structures of the socket’s cover on the

original model,  and by providing the transitional model, the target features can be

retained on the final model shown in Figure 17. The original model of the socket’s

cover is shown in Figure 16(a). In Figure 16(b), all the triangles on the top face are

constrained with coplanar constraints. In Figure 16(c), all the triangles on the inner

vertical wall of the hole are constrained with coplanar constraints too. In Figure 16(d),

the angles and lengths of the rectangles for each socket are constrained with distance

and angle constraints. In Figure 16(e), a reference point is added at the mid-point on

the side of the socket’s hole as indicated in the figure. Distance and angle constraints

are  also  required  to  maintain  the  reference  points  to  lie  at  the  mid-point  of  the
49
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corresponding edge. For each socket, another reference point is added at the mid-point

between  two  edge  reference  points.  The  angles  between  the  edges  and  the  lines

connecting the reference points are constrained as shown in Figure 16(f). Distance

constraints are applied as shown in Figure 16(g). Finally, each pair of perpendicular

triangles is constrained with perpendicular constraints as shown in Figure 16(h). For

each hole,  4 pairs  of these constraints  are  required to constrain the shape of hole

without resulting in redundant constraints.
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Figure 16. Constraints on a socket’s cover model

Figure 17. Constrained Optimization for a socket’s cover model

5.3 Maintain Relationship between Engineering Features

Our  method  can  be  used  to  maintain  the  relationships  between  engineering

features, e.g. the relationship between components in a mechanism is constrained such

that the functions of the mechanism is retained after being deformed. The method is

tested  on  two gear  train  examples.  Our target  is  to  maintain  the  gear  train  to  be

functional after the deformation and optimization. The original undeformed model of

a simple gear train is shown in Figure 18. The gear train is constructed with 3 gears of

different  diameters.  Figure  19  illustrates  how to  constrain  the  shape  of  one  gear
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model, and how to make these gears connecting together. First, 3 reference points (

v́1 , v́2  and  v́3 )  are  inserted  at  the  centre  of  the  three  circular  planes.  These

reference points are used to construct radius distance constraint and angle constraints

for the circular shape of the gear planes (Figure 19(b)). Second, 3 reference vectors (

´fn1 , ´fn2  and  ´fn3 )  are  inserted to  represent  the normal  to  these three circular

planes (Figure 19(c)). Third, v́1 , v́2  and v́3  are constrained to be collinear. The

angle between ´fn1  and ´fn2  is zero, and the angle between ´fn1  and ´fn3  is

180 degrees. The constrained angle between ´fn3  and ´bv1  is zero degrees (Figure

19(d)). This constraint is applied for the whole lower cylindrical features. Then, 2

reference points ( v́7  and v́8 ) are added at the contact point of the two gears for

upper  and low plane (Figure 19(e)).  Reference  vector  are  created  from the  centre

reference points ( v́1 , v́3 , v́4  and  v́6 ) to the reference gear connecting points (

v́7  and v́8 ) (Figure 19(f)). After that,  ´cv1  is the reference vector that is the

cross  product  of  ´fn1  and  ´rv1  (Figure  19(g)).  By constraining  angle  between

´cv1  and ´cv2  to be zero, the axes of two gears are confined to lie on the same

plane.  Finally,  in  order  to  maintain  the  gear  ratio  between  each  pair  of  gears,  a

constraint is constructed between the radiuses of each pair of gears such that the ratio

of the gears’ radiuses is determined by their gear ratio.

Figures  20-22  illustrates  the  transitional  model  and  final  model.  It  can  be

observed that when the base plane of the model is deformed, the angle of the tooth-

bearing faces is changed to maintain the contact relation between the gears. The gear

teeth are not included in the examples. This simplified model reduces the computation

requirement because of the smaller number of faces and hence smaller  number of

constraints. In the final gear models, the diameters and angle of bearing-faces of each

gear can be obtained. And the user can use these data to design the gear teeth for

manufacturing. An example is shown in Figure 23 that the gear teeth are regenerated

on the gear train based on the requirement.

A more complex gear train model example is given in Figure 24. The original

model is bended downward and used as transitional model in Figure 25. The final

model is shown in Figure 26 after the constrained optimization is finished. 
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Figure 18.The original model for this gear train model.
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Figure 19. Constraints on the gears and gear train
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Figure 20. (a) The transitional model that bended downward (b) The final model of 
our method that the angles of bearing-faces have been changed to follow the trend of 
deformation.

55

Transitional Model                    Final Model

Transitional Model                    Final Model

(b)(a)



Figure 21. (a) The transitional model that bended sideway (b) The final model of our 
method
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Figure 22. (a) The transitional model that bended downward and sideway (b) The 
final model of our method that the angles of bearing-faces have been changed to 
follow the trend of deformation.
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Figure 23. The gear train model with gear teeth

Figure 24. The original model of a gear train model

Figure 25. The transitional model for the gear train model

    

Figure 26. The final model for the gear train model
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Figure 27. The reference vector network in the constraint system. Reference vector 
constructed cross product are green in color (describe in Figure 18(g)), while the 
others are blue in color.
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The method is also tested on a phone casing assembly. Our target is to ensure

that the two components of the phone casing can be assembled when the shape of the

phone is adjusted. The original undeformed model of the phone casing is shown in

Figure 28(a). This phone casing assembly contains two parts. They are the upper-half

casing and lower-half  casing.  Different  views of  the original  model  are  shown in

Figure 29. After a deformation, the transitional model of the phone casing is shown in

Figure 28(b). Different views of this transitional model are shown in Figure 31. The

final model is shown in Figure 28(c) and Figure 32.

In  this  example,  the  eight  supporting  cylinders  on  the  lower-half  casing  are

constrained to maintain their radiuses and heights. The top faces of each of the four

cylinders on both sides are coplanar. This is required for housing other components of

the  phone  properly.  The  eight  circular  holes  on  the  upper-half  casing  are  also

constrained with the same radius. 

Figure  33  shows  the  matching  features  of  the  original  model  in  the  cross

sectional  views  of  the  assembly.  After  the  deformations,  the  two parts  cannot  be

assembled as shown in Figure 34. In order to ensure that the two components can be

assembled, Two reference vectors (
i
 ,  

j
 ) are provided in the coordinate space and

they are perpendicular to each other as shown in Figure 30. These two vectors are

constant vectors with fixed directions. All the face normals of the triangles on plane C

are constrained to be parallel to 
i
 . And all the face normals of the triangles on plane

A are constrained to be parallel  to  
i



.  This is because these triangle normals are

pointing in the opposite direction of 
i
 . And perpendicular constraints are applied to

the triangles on plane A and plane B. Also, plane A and plane C are constrained to be

coplanar. Same forms of constraints are applied to the other faces on the matching

features,  but  with  different  reference  vectors  for  constraining  the  plane  normal

directions  in  the original  model.  In Figure 35,  these two constrained parts  can be

assembled successfully. 
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Moreover, Figure 36 shows the  cross sectional views of the  screw holes in the

original model. After the deformations, these two parts cannot be assembled as shown

in Figure 37. Therefore, these screw holes are constrained with the same radiuses and

the upper and lower cylinders are constrained to be concentric. In the final model,

these components can be assembled properly.

Figure 28. An example of the phone casing model 

Figure 29. Different views of the original phone casing model 
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Figure 30. Constraints on the matching features of lower and upper half
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Figure 31. Different views of the transitional models for the phone casing 
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Figure 32. Different views of the final models for the phone casing 
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Figure 33. Matching features (highlighted in blue) in the undeformed phone casing 
model 

Figure 34. Matching features in the transitional models of the phone casing
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Figure 35. Matching features in the final phone casing model 

Figure 36. Matching features in the original phone casing model 
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Figure 37. A matching feature in the transitional model of the phone casing 

5.4 Implementation Issue

The experimental system for incremental constraint optimization is implemented

on Win7 system using C++ language. KNITRO is used for the optimization process.

The KNITRO system has an application programming interface (API) to handle the

objective function, constraint functions and all the related variables. It requires the

user  to  provide  the  type  of  optimization,  formulation  of  objective  function,

formulation of constraints functions, bounds of constraints, bound of variables and the

initial guess to define the optimization problem.

Moreover, it also requires the Jacobian matrix of the constraints and the Hessian

Matrix  of  the  Lagrangian  function  in  sparse  form to  reduce  memory usage.  The

KNITO system provides some build-in functions to approximate these two matrixes.

However,  in  order  to  obtain more accurate  Jacobian  and Hessian  matrixes  that  is

required for speeding up the optimization; the current experimental system provides

exact  Jacobian  and  Hessian  matrixes  for  each  optimization  problem.  In  the

optimization  process,  the  system  will  automatically  compute  the  position  of  the

nonzero elements in the Jacobian Matrix and Hessian Matrix, so that a sparse matrix

is  obtained for  the computation.  During the optimization,  we need to  provide the

value of the nonzero elements in these matrixes that are constructed with the current

value of the variables in each iteration.

In order to further improve the speed of process, the vertices that do not relate to

any applied constraint are not included in the optimization. That is, the locations of

the  unconstrained  vertices  are  directly  obtained  from  the  coordinates  of  the
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corresponding  vertices  on  the  transitional  model  and  are  not  determined  in  the

optimization process.
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6. TESTS AND RESULTS 

In  this  chapter,  experiments  on  the  effects  of  constraints  with  a  common

reference, different level of model detail and incremental method are discussed. And

some  comparisons  between  our  method  and  other  deformation  methods  are  also

included. 

6.1 Constraints with References

In this section we will discuss the effect of using referenced constraint rather

than local constraints. We performed an experiment with the original model shown in

Figure 38(a), and we want it to be deformed into the target model shown in Figure

38(b). And we also want to retain the cubical feature shown in Figure 38(c).

By applying coplanar constraints on faces of a plane, perpendicular constraints

between  planes  and  collinear  constraint  along  the  edges  of  a  plane,  we  perform

optimization at different resolutions. They are 10x10x10, 20x20x20 and 50x50x50 for

the cubical  feature shown in Figure 38(d-f). For the 10x10x10 case, it  took 152.4

seconds to complete the process. And for the 20x20x20 case, it took 645.7 seconds to

complete. For the 50x50x50 case, the solver failed to locate an optimal solution, and

terminated at a point that the collinear constraints were still not satisfied. Hence, by

increasing the number  of constraints  of the same type,  the optimization will  have

higher chance to fail. Details of the test are given in Table 3.

Model Num. of vertices Num. of faces Total Num. of constraints Time (s)
Cube in Fig 38d 770 1536 1546 152.4
Cube in Fig 38e 3018 6032 5991 645
Cube in Fig 38f 17979 35952 31963 Failed

Table 3. Time required for constrained optimization without the use of reference
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Figure 38. Constrained Optimization for a cube model

It is expected that the numerical errors arising from a pair of local constraint may

accumulate  during  the  optimization.  When  these  numerical  errors  accumulated  to

certain level, the solver may iterate into an infeasible region, and the iteration does not

converge. 

Based on this  observation,  we  performed tests that use a global reference for

setting up constraints on the triangles. Instead of confining adjacent triangle normal to

be the same, all the triangle normals in same plane are confined to be the same as one

reference normal vector. The models and the deformations in Figure 38 are performed
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with these new set of constraints. The statistics of the experiment results are shown in

Table 4. 

By replacing the old collinear constraints with these new collinear constraints,

and performing the experiment again, the optimization can be completed successfully,

and the optimal  solution is  located.  This  shows that  the new collinear  constraints

provide a significant effect on the optimization process.

Model Num. of vertices Num. of faces Total Num. of constraints Time (s)
Cube in Fig. 38d 770 1536 1495 101.2
Cube in Fig. 38e 3018 6032 5743 354.6
Cube in Fig. 38f 17979 35952 31457 946.2

Table 4. Time required for constrained optimization with the use of reference
Hence, the use of reference is preferred in setting up structural constraint that is

built from a group of basic constraints. Structural constraints that can be implemented

with this method include planar, collinear and circular constraints.
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6.2 Level Of Detail 

An experiment  is performed on a simple gear train model  (Figure 38) to the

model is to be deformed into the shape of transitional model shown in Figure 20.

Tests are conducted with different resolutions of the gear bodies and the statistics of

the experiment results are shown in Table 5.

Figure 39. Different resolutions for a gear train model
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Table 5. Time required for constrained optimization with different level of resolutions
on the gear train model

Model Num. of vertices Num. of faces Total Num. of constraints Time (s)
Gear train in Fig. 39a 550 925 524 61.5
Gear train in Fig. 39b 678 1378 1029 132.6
Gear train in Fig. 39c 964 1911 1924 321.4
Gear train in Fig. 39d 1203 2710 2142 523.6
Gear train in Fig. 39e 1978 3421 2810 921.6

Graph 1. Number of Vertices and Computational Time 
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From Table 4, Table 5 and Graph 1, it can be observed that a higher resolution

model will require more computation time for the optimization. This is because more
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constraints  and  more  variables  are  included  in  the  problem setting  of  the  higher

resolution case. For some engineering feature with standard set of constraints pattern

such as gear model, we can just simplify the model to one with a lower resolution, and

which is then used in the deformation. After the optimization, we can extract useful

information from this simplified optimization. In the gear train model, the angle of

tooth-bearing and radius of the gears can still be extracted from the lower resolution

model  which  is  sufficient  for  defining  the  shape  of  the  gear.  This  operation  will

improve the optimization speed of the system and lower the chance of optimization

failure.

6.3 Incremental Method

Incremental  method  has  a  major  role  in  our  method.  It  helps  the  system by

providing guidance for the optimization. When the optimization failed at some point,

the system will automatically generate a new interpolated model between the original

model  and target  model.  When the system uses this  interpolated model  as current

target model, the provided initial guess is closer to the current target model; hence, the

possible  solution  will  become  closer  to  the  initial  guess.  In  this  situation,  the

optimization will has higher chance to get to the optimal solution. Several tests are

performed to demonstrate the effect of incremental deformation. Figure 40 shows an

unsuccessful  optimization  result  without  using  the  incremental  method.  The

experiment is performed again with the incremental method, and the successful results

are shown in Figures 41-42.

Table 6 summarizes the statistics for the demonstrated models. The result shows

that  the  computational  times  increase  with  the  number  of  vertices,  faces  and

constraints.  Besides,  the  more  the  difference  between  the  original  model  and

transitional model, the more the computation time it takes.
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Table 6. Number of incremental iteration and the time required for the constrained 
optimization of different models

Model

Num.
of

vertice
s

Num.
of

faces

Num. of
distance

constraint
s

Num. of
angle

constraint
s

Num. of
planar

constraint
s

Total
Num. of

constraints

Num. of
incrementa
l iteration

Time
(s)

Lego in Fig. 9 712 1420 80 160 882 1122 1 25.2
Lego in Fig. 14a 353 702 64 132 406 602 1 20.1
Lego in Fig. 14b 353 702 64 132 406 602 1 22.4
Lego in Fig. 14c 353 702 64 132 406 602 1 24.9
Gamepad in Fig. 15 7922 15891 322 1030 5546 6898 3 526.2

Socket in Fig. 17 866 1776 40 259 1428 1727 1 63.2
Gear train in Fig. 20 964 1911 112 216 1598 1926 3 546.1

Gear train in Fig. 21 964 1911 112 216 1598 1926 3 677.0
Gear train in Fig. 22 964 1911 112 216 1598 1926 3 691.3
Gear train in Fig. 24 1613 3222 902 1007 1645 3554 3 1134.1

Phone  case  in  Fig.
28

4772 9576 928 1671 2852 5451 3 925.6

Figure 40. Constrained Optimization without Incremental method for a gear model is 
unsuccessful. The deformed gears are not symmetric and the gear train will not work 
properly.
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Figure 41. Incremental Constrained Optimization that use an interpolated model as 
new target model

Figure 42. Incremental Constrained Optimization that use final model from the 
incremental previous optimization as initial guess for the optimization.
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Figure 43. Comparison of deformation with and without incremental constraints 
retained deformation of the gamepad model in Figure 15. No collapsed face is 
obtained using the incremental method.

6.4 Comparison

In  this  section,  we  give  some  comparisons  between  our  method  and  other

deformation methods. In Figure 44, we give a comparison on the stretching effect of a

model.  The  original  model  is  shown  in  Figure 44(a).  By  applying  simple  space

deformation  (2x2x2  FFD),  the  result  in  Figure  44(b)  showed  that  the  shape  and

dimensions of the cylinder cannot be retained. In Figure 44(c), by applying the linear

rotation-invariant  coordinates  on mesh representation presented in [12] which is  a

detail  preserving  technique,  the  result  showed  that  the  shape  and  dimensions  of

cylinder cannot be preserved too. In  Figure 44(d), the result of our method showed

that it preserves the exact shape and dimensions of the cylinder while the block is

stretched.
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Figure 44. Comparison between our method and other deformation methods. (a) The 
original model and the stretching direction (b) The result of 2x2x2 FFD (c) The result 
of applying the linear rotation-invariant coordinates on mesh representation (d) The 
result of our method

In Figure 45, a comparison on the bending effect on a cylinder of a model is

presented. The original model is shown in Figure 45(a). By applying simple space

deformation  (2x2x2  FFD),  the  result  in  Figure  45(b)  shows  that  the  shape  and

dimensions of the cylinder cannot be retained. In Figure 45(c), by applying linear

rotation-invariant coordinates on mesh representation, fixing the surrounding faces of

the block, and using the top circular face of the cylinder  as the handle, the result

showed that the dimensions of the cylinder cannot be preserved. In Figure 45(d), by

applying the same detail preserving technique and fixing all faces of the block, and

using the top circular face of the cylinder as the handle, the result showed that the

shape and dimensions of cylinder cannot be preserved too. In Figure 45(e), the result

of our method showed that it generates the elliptic intersection between the cylinder

and the base, and maintains the dimensions of the cylinder. Moreover, the iWIRES

method does not allow bending on the constrained features. 
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.

Figure 45. Comparison between our method and other deformation methods. (a) The 
original model (b) The result of simple space deformation (2x2x2 FFD) (c) The result 
of including linear rotation-invariant coordinates in the mesh representation (d) 
Another result of using linear rotation-invariant coordinates in the mesh 
representation (e) The result of our method
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Figure 46. Comparison between our method and iWIRES. (a) The original model (b) 
The result of iWIRES (e) The result of our method

In Figure 46, a comparison on the ability to retain the angle constraint between

the top faces of two cylinders is presented. The original model is shown in Figure

46(a). By bending the object downward, the result  of iWIRES is shown in Figure

46(b). It shows that the angle between the top face of the two cylinders cannot be

retained, because iWIRES cannot provide angle constraints between faces and all its

constraints are constructed through the model edges. In Figure 46(c), the result of our

method shows that it retains the shape of the cylinders and it c preserves the angle

between the top faces of the two cylinders.
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Figure 47. Comparison between our method and other deformation methods. (a) The 
original model (b) The result of simple space deformation (20x20x20 FFD) (c) The 
result of applying the linear rotation-invariant coordinates on mesh representation (d) 
The result of our method

In  Figure 47, a comparison with the free form deformed model is shown. The

original  model  is  shown  in  Figure 47(a).  By  applying  simple  space  deformation

(20x20x20 FFD), the result in Figure 47(b) shows that the shape and dimensions of

the cylinder cannot be retained. In Figure 47(c), by fixing the vertices of the waving

lower block, preserving the surface detail of those three blocks, and applying linear

rotation-invariant coordinates on mesh representation, the result shows that the shape

and dimensions of those three blocks cannot be preserved. In Figure 47(d), the result

of our method shows that it preserves the exact dimensions of the rectangular blocks

and retains the waving effect of the base block. Besides, the iWIRES method does not

allow free form deformation on the constrained features.

7. FURTHER WORK AND CONCLUSIONS 

7.1 Recommendation for Further Work

Laplacian  operator  is  a  different  surface  representation  that  can  be  used  to

preserve surface details in a deformation process. In contrast to the traditional global

Cartesian coordinates which only provides the spatial locations of points, Laplacian

operator carries information about the local shape of surface, the size and orientation

of  local  details.  Defining  operations  on  mesh  surfaces  try  to  preserve  such  a
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differential  representation  results  in  detail  preserving  operations.  If  the  Laplacian

operator  is  adopted  in  the  proposed  system,  the  shape  or  surface  detail  after  a

deformation can be retained. This may also be used to obtain a smoother transitional

surface between the constrained part and unconstrained part of a model, and which is

useful for free-form mesh editing.

In the current system, incremental deformation method has been adopted in the

optimization. In each iteration, if the optimization fails, the system will try to generate

a  new  interpolated  model  which  will  be  used  as  the  target  model  for  the  next

optimization. However, a failed optimization usually takes longer computation time

than a successful optimization. So it would be better if we can find a predefined step

size for the optimization that can make sure the optimization will not fail. It means the

system will not need to spend times on some optimizations that will fail. This will

improve the computational speed of the method, and the qualities of the final models.

The predefined step size may be related to the amount of constraints violations on the

given target model.  By generating an interpolated model with increasing step size,

while checking if constraint violations exist on this interpolated model based on the

provide  constraints,  the  process  can  be  repeated  until  the  amount  of  constraint

violation  reach  a  pre-defined level.  This  interpolated  model  can then  be used  to

perform constraint optimization.  The result can be used as the initial  guess for the

next  optimization.  In  each iteration,  the allowed number  of constraint  violation  is

increased  to  allow  the  system  to  generate  models  that  are  closer  to  the  original

transitional model. The optimization process is repeated with increasing number of

allowed  constraint  violation  until  the  interpolated  model  is  to  the  same  as  the

transitional model.  The last incremental optimization result will then give a model

closest to the original transitional model and with all constraints satisfied.

Because of the nonlinear property of the constraints adopted in the system, the

speed  of  the  current  method  is  relatively  slower  than  common  shape  preserving

deformation techniques that usually assume linear constraints in their problems. In

order  to  improve  the  computation  speed  of  the  system,  parallel  processing  for

nonlinear optimization may be useful in this case. This will require breaking down the

problem into different parts, and then solving each part  with its own optimization

process. It will improve the computational speed of the method.
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Although this system provides constraints  on planes to prevent triangles from

overlapping  on  the  same  plane,  self-intersections  of  the  mesh  have  not  been

considered.  More  constraints  are  required  to  avoid  self-intersection  in  the

deformation. It is expected that by extending the existing method to 3D, a general

approach for preventing self-intersections in a deformation may be obtained.

7.2 Conclusions

In  this  thesis,  we  have  proposed a  framework  for  retaining  feature  in  a

deformation.  Firstly,  a  deformed  object  is  obtained  with  common  deformation

techniques  such  as  FFD  and  axial  deformation.  Secondly,  features  defined  with

parametric  expressions are  grouped into systems of primitive constraints  based on

user  specification.  Finally,  features  are  reconstructed  by  the  use  of  optimization

technique. 

Primitive constraints can be distance and angle constraints between points, lines

and faces.  Besides,  a structural  constraint  constructed from a group of constraints

would  be  better  specified  relative  to  a  reference  datum  for  all  its  component

constraints. Reference vectors and reference points are used as tools to specific more

complex constraints.

Incremental deformation is adopted to eliminate possible  collapsing  faces  and

optimization failures. Features are reconstructed by the use of non-linear optimization

technique.  Besides, this work can be implemented  along  with common deformation

techniques.  Examples  have  been  given  on  maintaining  individual  engineering

features, pattern between engineering features and relationship between engineering

features.  Finally,  analyses  have  been  performed  on  the  factors  affecting  the

performances of our constrained deformation approach.
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