
Deformations with Non-Linear Constraints

TANG, Wing Shing

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Master of Philosophy
in

Mechanical and Automation Engineering

The Chinese University of Hong Kong
June 2013

DECLARATION

I hereby declare that the Master of Philosophy thesis titled “Deformations with

Non-Linear Constraints” represents my own work. I also declare that the work

reported in this thesis has not been previously included in a thesis, dissertation or

report submitted to this University or to any other institutions for a degree, diploma,

or other qualification.

Tang Wing Shing

2013

1

ACKNOWLEDGMENTS

My sincere appreciation goes to Dr. Hui Kin-Chuen, my project supervisor, who

guided my research towards the right direction and provided full academic and

spiritual supports. He also gives me valuable suggestions and improvements on my

work.

I would like to say thank you to my parents, who have been supporting me since

I was born. Without their consideration and support, it would be impossible for me to

take up the research work. Also, I would like to thank Miss Chan Hau Yan, who

always cheers me up every time I am depressed.

This work is partially supported by a grant from the University Grant Council of

the Hong Kong Special Administrative Region (No. 412508) and a Direct Grant (No.

2050492) from the Chinese University of Hong Kong.

2

ABSTRACT

To retain geometric features in the deformation of a parametric and feature-based

model is a new challenge for CAD modeling. This thesis presents a constraints based

deformation framework. This framework combines the advantage of free-form

modeling with feature based modeling, and allows engineering design to be

performed in a free-form manner.

The proposed method can be divided into three major steps. An object is

deformed by common deformation techniques such as FFD and axial deformation.

Parametric features are divided into systems of primitive constraints based on user

specification. The targeting features are reconstructed by the use of incremental

optimization technique.

An incremental constrained deformation is introduced. It is used to provide hints

for the optimization. The optimization is to minimize the changes in the deformed

model subjected to all the provided constraints. For a structural constraint specified

with a group of constraints, it would be better to use a reference datum for all its

component constraints. We show numerous results of constraints retained models

using our framework.

3

摘要

於參數化和特徵模型的變形中保持幾何特徵是 CAD 建模中一項新的挑戰。

這篇論文提出了一個以限制為基礎去進行變形的系統。此系統結合了自由曲面

和特徵模型建模的好處，而且容許更自由的工程設計。

本方法可分為三個主要步驟。以常用的變形技術去改變一個模型的形狀，

包括自由變形及軸向變形，然後參數特徵會根據用戶的要求去分拆為一系列基

本的限制，最後目標特徵將會以逐步增量的優化技術去重建。

這篇論文提出了一個逐步增量的方法為優化中提供導引。這個優化是於維

持所有提供的限制下盡量減少變形後模型的改變。另外，於一組的限制中以一

個基准為參考，能使本系統更有效的運行。最後，我們也會展示一些使用本系

統以限制為基礎去進行變形的結果。

4

Thesis/Assessment Committee

Professor Wang, Changling Charlie (Chair)

Professor Hui, Kin-chuen (Thesis Supervisor)

Professor Du, Ruxu (Committee Member)

Professor Yu, Kai-ming (External Examiner)

5

CONTENTS

1. INTRODUCTION..3
1.1 Aims and Objectives..4
1.2 Report Organization...5
2. BACKGROUND AND LITERATURE REVIEW..7
2.1 Mesh Editing Techniques...7
2.1.1 Mesh Deformation Techniques..7
2.1.2 Detail Preserving Techniques..9
2.2 Optimization Techniques...11
2.2.1 Optimization Techniques...11
2.2.2 Linear Programming..12
2.2.2.1 Simplex Method...12
2.2.2.2 Interior Point Method...12
2.2.2.2.1 Primal-Dual Interior Point Method..13
2.2.3 Nonlinear Programming...14
2.2.3.1 Sequential Quadratic Programming...14
2.2.3.2 Reduced Gradient Methods..14
2.2.3.3 Interior Point Methods...15
2.2.4 Optimization Solver...15
2.2.4.1 KNITRO...16
3. SPECIFICATION OF CONSTRAINTS..18
3.1 Constraints..18
3.1.1 Constraints with Reference Points...22
3.1.2 Constraints with Reference Variables..24
3.1.3 Reference Vector Constraints..26
3.1.4 Constraints with Reference Datum..27
3.1.4.1 Planer Constraint with References...28
3.1.4.2 Collinear Constraint with References..29
3.1.4.3 Circular Constraint with References..30
3.2 Redundant Constraints...31
4. CONSTRAINED OPTIMZATION...32
4.1 Objective Function...32
4.2 Incremental Constrained Deformation...39
4.3 The Scaling Problem..43
5. CASE STUDIES..44
5.1 Maintain Individual Engineering Features...44
5.2 Maintain Pattern between Engineering Features..49
5.3 Maintain Relationship between Engineering Features.....................................51
5.4 Implementation Issue...66
6. TESTS AND RESULTS..68
6.1 Constraints with References...68
6.2 Level Of Detail...71
6.3 Incremental Method...73
6.4 Comparison..76
7. FURTHER WORK AND CONCLUSIONS..81

1

7.1 Recommendation for Further Work...81
7.2 Conclusions..82
REFERENCES...84

2

1. INTRODUCTION

3D object are normally defined using a discrete set of parameters such as the

vertices of a mesh, control points of parametric curves and surfaces. These parameters

can also be used as handles for the interactive manipulation of the underlying shape.

In computer-aided design (CAD), a feature usually refers to a region of a part with

some geometric or topological properties. Feature based modeling systems describe

object models with a number of parameters. Feature models are based on a dual

representation scheme which includes a parametric representation and a geometric

representation. The parametric representation describes the relation between the

parameters and the geometry of the features. It is usually a CSG representation with

geometric constraints. The geometric representation is a boundary representation (B-

rep) which is generated by solving constraints in the parametric model.

On the other hand, free form deformation has various applications in modeling,

animation, rendering or simulation. Current deformation techniques usually perform

deformation on vertices, curves or surfaces of the object. These deformations will not

maintain constraints specified in the modeling process. This may result in undesirable

shapes when the deformation is to be applied to some parts of the object only.

Previous research mainly focused on how to preserve some simple geometric feature

(e.g. circular edge) of the object after deformation. The problem of maintaining the

relation between geometric constraints and deformations is not well addressed.

3

1.1 Aims and Objectives

The objective of this research is to develop a system that allows geometric

features to be retained after a deformation. In the proposed system, constraints can be

maintained in a model deformed by different kinds of deformation techniques. It can

be used to retain some functional features after deformations have been applied. For

example, features of a component that have to match corresponding features of

another component in an assembly may have chances to loss their functionalities in a

deformation. The proposed system can be used to retain matching of the features in

the assembly when the shapes of the components are adjusted in the design process.

The topology of the model will not be changed in the constraint based

deformation. This means the number of vertices will not be changed in a deformation.

In the proposed approach, all provided constraints are assumed to be valid, and there

is no conflict between constraints. Since constraints that specified by users may

consist of non-linear constraints, nonlinear optimization is used in the proposed

system.

Moreover, in order to maintain angle constraints that exist in geometric feature

of the model, dot product of two normalized vectors are always included in our

constraint system. However, this kind of constraint is non-convex in nature. If there

are non-convex constraints existed in a nonlinear optimization, the whole problem

will become non-convex, and a non-convex optimization technique is required to

solve it.

There are three steps in the proposed constraint based deformation technique.

Firstly, an object is deformed by using some common deformation techniques such as

FFD and axial deformation. This deformed model is called the transitional model and

is used as the target shape in our optimization. Secondly, parametric features are

grouped into systems of primitive constraints based on user specification. Finally,

parametric features are reconstructed by the use of optimization technique.

Nonlinear and non-convex optimization may not always provide an optimal

solution due to the algorithm is stuck at a locally infeasible point. The optimization

4

process and the formulation of the problem may have to be adjusted to assist the

optimization system to find a solution and to reduce unpredictable errors.

1.2 Report Organization

The aim of this research is to establish a system that can preserve certain

engineering feature constraints in a free-form deformation. The work reported in this

thesis focuses on the development of the method concerned. There are two major

issues addressed in this thesis. One issue is the formulation of the constraints for

engineering features. The other one is the incremental optimization method. The

content of the thesis are organized as follow:

Chapter 2 gives related background information on mesh editing techniques and

the mathematical optimization method. A review on existing detail preserving

techniques is presented. A review on linear and nonlinear optimization method is also

included.

Chapter 3 describes the formulation of constraints. For every feature in

parametric modeling, a set of constraints is required to maintain their feature

characteristics. Most of these feature requirements can be classified into primitive

constraints of points, lines or triangles. And constraints with references can be used to

improve the performance of the system.

Chapter 4 describes the overall optimization process that implemented in this

system. First it provides the objective function and the overall formulation of the

optimization problem. And then it introduces an incremental optimization method to

solve the problem when the optimization failed to find an optimal solution. When the

optimization fails, the system will perform interpolation between the initial guess and

a transitional model, and then generates an interpolated model for the next

optimization.

Chapter 5 provides the results of the system with different applications. It

provided some examples that maintain individual feature, pattern of features and

relationship between features. Some implementation issues are also discussed in this

chapter.

5

Chapter 6 discusses the effect of constraints with a common reference, different

level of model detail and incremental method with different experiments. And some

comparisons between our method and other deformation methods are also included.

Chapter 7 concludes the content of this thesis and discusses potential areas for

further work and development.

6

2. BACKGROUND AND LITERATURE REVIEW

When applying deformation on the model, the mesh deformation techniques are

required. Therefore in this chapter, the background information on mesh deformation

techniques will be presented. Besides, mathematical optimization is required to retain

the constraints on model after deformation, so a review on the mathematical

optimization methods will also be presented. Linear and nonlinear optimization

techniques are also included. Moreover, a review on existing detail preserving

techniques is presented in order to find out the effectiveness of these algorithms and

to see if there are rooms of improvement.

2.1 Mesh Editing Techniques

2.1.1 Mesh Deformation Techniques

Most existing CAD/CAM packages provide functions for constructing objects

with feature based modeling technique [1]. For instance, different features require

different techniques for their machining process [2][3]. Surface based mesh

deformation methods have been widely used in mesh editing and animation. Space

deformations (also called free-form deformations) are very popular in computer

graphics. A space is defined with a lattice of control points. Deformation of the lattice

points induces deformation to the mesh vertices of an object embedded in the space

defined with the lattice [4][5][6]. Space deformation is easy to be implemented, and is

highly efficient. In general, the computation cost of a deformation depends mainly on

the complexity of the control lattice, but not the mesh vertices. However, FFD may

deform object shapes in an unintended way, e.g. circular holes may be deformed into

elliptical holes.

A recent related work used cages to control shape deformation [7]. Cage is an

offset of the input mesh. Different coordinate functions are used to provide

deformation on the entire space, including radial-basis function [8], mean-value

coordinates [9], volume-preserving warps [10][11], locally rigid transformations [12]

[13][14], harmonic coordinates [15] and Green coordinates [16]. However, they tend

to treat the editing mesh as a homogenous surface such that high-level structure and

features of the editing mesh cannot be retained.

7

There are also researches focusing on direct surface manipulation while

preserving their geometric surface details. Several surface based approaches allow

manual specification of varying surface stiffness [17][18], which allow some parts of

a surface to behave more rigidly than others. However, no high level relationships can

be specified, which makes these techniques difficult to use in engineering.

A more restricted space deformation was described for axis-aligned non-

homogeneous scaling of structured man-made models [19]. By the measure of surface

vulnerability to non-uniform scaling of the model, it classifies sensitive object

features into two components, slippage and normal curvature. Slippage measures

whether a local region on a surface remains on the surface after the transformation is

applied. Normal curvature is used to distinguish between different degrees of

vulnerability. The space deformation protects certain parts of the space that undergo

similar transformation. Wang developed another content-aware mesh scaling

technique [20]. It does not require an auxiliary regular grid, and directly deforms the

mesh model according to its local sensitivity to geometric scaling. However, these

content-aware mesh resizing techniques can only be applied to scaling, and cannot

retain system of relationship specified on the model. For models composed of various

types of joints, joint aware deformation, limb rigidity, local volume preservation and

other physical constraints have been proposed [21-27].

2.1.2 Detail Preserving Techniques

Welch and Witkin introduced constraints in variational surface modeling and

solved the constraint problem using Lagrange multipliers [28]. It presented the

method to use B-spline control-points to modify surface shape and satisfying the user

supplied geometric constraints. The constraints are grouped in two classes. The first

class is called the finite-dimensional constraints that control surface shape at discrete

points. Another class is called the transfinite constraints that control the surface shape

along embedded curves or sub-regions of the surface. The research focused on linear

constraint that can be applied on the surface.

Masuda et al. extended this method for form feature modeling [29]. It is a

discrete framework for preserving the shapes of form-features using hard constraints

in interactive shape deformation. Hard constraints mean constraints are precisely

8

satisfied. It constrains motion of form-features using linear constraint. It includes

constraints on positions and rotations. Their framework was then further extended for

handling non-manifold meshes and disconnected meshes [30]. It allows users to

smoothly deformed disconnected meshes by propagating the rotations and translations

through disconnected vertices. However, the relationships between features are not

considered in these approaches.

Cabral et al. [31] propose an approach for modeling architectural scenes by

reshaping and combining existing textured modals. For geometry, preserving angles

such as floor orientation or vertical walls is important. It proposes a more lenient way

to handle features by constraining the angles, but it also allow the user to changing the

length of individual segment.

Gal introduced an approach called iWIRES [32] based on the argument that man-

made models can be distilled using a few special 1D wires and their mutual relations.

A small number of wires are used to preserve the defining characteristics of the entire

object. By the use of analyze-and-edit approach, it performs a lightweight analysis of

the input shape to extract a descriptive set of wires, and constructs a system of

relationship based on a set of properties common to typical engineering models, such

as linearity, planarity, parallelism and symmetry. By the editing of wires, it allows a

wires-driven deformation on the model while maintaining the system of relationship

of the wires. It helps the users to retain the original design intent and object

characteristics of the model after deformation.

However, this wires-driven deformation only allows deformation to be applied

through wires. It does not allow direct deformation on the object surface. Moreover, it

only retains some primitive shape relationships between wires, and does not allow

users to specify sets of complex constraints commonly found in engineering models.

Recently, direct modeling is adopted in some CAD/CAM software, such as Creo

and Solid Edge. It allows users to design or modify engineering models without using

history tree in transitional history-based modeling. It allows users to create and

modify features by dragging geometries and dimension manipulators. However, it

9

cannot regenerate the features or the relationships between features if a free form

deformation is applied to the model.

10

2.2 Optimization Techniques

2.2.1 Optimization Techniques

Optimization is a subject in applied mathematics with wide applications in

engineering, science, finance, military and space technology. It is used for

determining an optimal solution of a given problem. Although optimization is a

classical problem, it did not become an independent subject until late 1940s, when

G.B. Dantzig presented the simplex algorithm for linear programming [33]. The

conjugate methods and quasi-Newton methods [34] were introduced in the 1950s.

Nowadays, there are many optimization methods that can be used to solve complex

and large scale optimization problems

The general form of an optimization problem:

min f (x) (1)

subject to x∈ X

where x∈ Rn is a decision variable, f (x) is an objective function, X ⊂ Rn

is a constraint set or feasible region. If X=Rn , the optimization problem (1) is

called an unconstrained optimization problem.

The constrained optimization problem can be written as follows:

min f (x) (2)

subject to bi (x)=0, i∈ E

c i (x)≥0,i∈ I

where E is the index set of equality constraints and I is the index set of

inequality constraints, bi (x) and c i (x) ,(i=0….,m∈ E∪ I) are constraint

functions. When both objective function and constraint functions are linear functions,

the problem is called linear programming. Otherwise, the problem is called nonlinear

programming.

11

2.2.2 Linear Programming

2.2.2.1 Simplex Method

The simplex method is an algorithm for solving problems in linear programming.

It operates on linear problems in standard form.

min cT x (3)

subject to A x=b , xi ≥0

where c , x ∈ Rn , b∈ Rm with x=(x1 ,…,xn) are the variables of the problem,

cT
=(c1 ,…,cn) are the coefficients of the objective function A which is a

p× n matrix, and b=(b1 ,…,bp) are constants where bi ≥0 . The feasible

region of x is a convex polytope. If and only if the column vectors A i are linearly

independent for x i≠0 , x=(x1 ,…,xn) is an extreme point, and is referred to as a

basic feasible solution.

It tests adjacent vertices of feasible set continuously, so at each vertex the

objective function improves or remains unchanged. It takes around 2m to 3m number

(where m is the number of equality constraints) of iterations to converge in expected

polynomial time for some distributions of random inputs [35][36]. Moreover, its

worst-case complexity is exponential [37].

2.2.2.2 Interior Point Method

A more efficient polynomial time algorithm was proposed by Karmarkar [38].

This algorithm achieves optimization by going through the interior of the inequality

constraints in contrast to the simplex method that move along the boundary of the

feasible region, and is called the interior point method. This approach is similar to the

barrier function methods developed in 1960s which solve the problem by minimizing

a set of unconstrained barrier functions. Interior point method received more

attentions, because Karmarkar shown that it is much more effective than simplex

method. Its complexity is polynomial for both average and worst case.

2.2.2.2.1 Primal-Dual Interior Point Method

Equation (3) can be called the primal problem. On the other hand, the dual

problem can be formulated as

12

max bT y (4)

subject to AT y+s=c , s≥0

where y∈ Rn , s∈ Rm . Let x¿ be a feasible solution to the primal problem and

(y¿ , s¿
) be a feasible solution to dual problem. These solutions will be optimal to

both problems if and only if they satisfy the complementary slackness conditions

x i si=0 for i=1,... , n . The method try to move through the primal and dual

solutions that improve the solutions, so that it satisfies the complementary slack

conditions. In each iteration, the algorithm tries to find x (λ) , y (λ)∧s (λ) that

satisfy the following condition:

Ax=b (5)

AT y+s=c (6)

x i si=λ ,i=1,. . , n (7)

x , s≥0 (8)

In the optimization, the primal and dual equality constraints are both satisfied, and

x , s≥0 . Convergence can be found when the duality gap reaches zero or lies

within the specified tolerances.

2.2.3 Nonlinear Programming

2.2.3.1 Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) was first proposed by Wilson [39]

which can be used for solving nonlinear optimization problem. The basic idea of SQP

is to model a nonlinear program at a given approximate solutions, say xk , by a

quadratic programming subproblem, and to use the solutions to construct a better

approximation xk+1 . This process is iterated to generate a list of approximate

solutions. Finally the algorithm tries to converge to an optimal solution. Consider the

problem in (2), it can be derived by applying Newton’s method to the corresponding

optimality conditions. The Lagrangian for this problem is:

L (x , λ , μ)=f (x)− λT b (x)−μT c (x) (9)

where λ and μ are the Lagrange multipliers, b (x) are the inequality

constraints functions and c (x) are the equality constraints functions. By defining a

13

new search direction pk for the solution to a quadratic programming subproblem at

iteration xk :

min L(xk , λk , μk)+∇ L (xk , λk , μk)
T

p+
1
2

pT
∇ xx

2 L(xk , λk , μk) p (10)

subject to b (xk)+∇ b(xk)
T

p≥0

 c (xk)+∇ c (xk)
T

p=0

2.2.3.2 Reduced Gradient Methods

Reduced Gradient method was proposed by Marguerite Frank and Phil Wolfe as

an algorithm for quadratic programming [40]. It maintains the feasibility of the

solution at every iteration. This approach has a number of advantages. If the

approximation at an iteration is feasible, and the method may be stopped before the

process converges, the current approximated solutions may still be useful. Besides,

with the current value of the objective function, the identification of convergence can

be simpler without making use of an auxiliary merit function. But the main

disadvantage of this method is the computation cost for ensuring every constraint

remains satisfied in each iteration. Since the constraints are nonlinear, this means a

system of nonlinear equations needs to be solved at each trial point to satisfy the

constraint requirement. For a system with a large number of nonlinear constraints, a

huge computational cost will be needed to solve the nonlinear system, and the system

may fail to find a solution. Moreover, variants of the reduced gradient methods have

been developed to provide flexibility in allowing for some violations in the constraints

during the optimization. These methods can be considered as a compromise between

the reduced gradient method and sequential quadratic programming method. An

example of this algorithm is described in the paper by Drud [41].

2.2.3.3 Interior Point Methods

Since Karmarkar developed interior point method in 1943 [38], it has become a

major focus of theoretical research and practical experiments. It is efficient for linear,

convex quadratic and general nonlinear problems. The method solves a sequence of

subproblems with a barrier parameter that converges to zero. The solution to this

system is used to update the primal and dual iterates simultaneously. Under certain

conditions, and if the initial guess is sufficiently close to the solution, the algorithm

14

can achieve a quadratic rate of convergence. These methods provide an attractive

alternative to the active set strategies for nonlinear optimization with a large number

of nonlinear inequality constraints.

2.2.4 Optimization Solver

In the last 15 years, the quality of nonlinear optimization software has improved

a lot. FILTERSQP [42] and SNOPT [43] both use the active-set sequential quadratic

programming (SQP) methods. FILTERSQP use a trust region approach, together with

filter globalization. SNOPT follow a line search approach and provided quasi-Newton

approximation for the Hessian matrix. CONOPT [44] utilizes reduced Hessian and

SQP methods. The MINOs [45] and LANCELOT [46] packages are capable of

solving problems with large-scale optimization, and they implement the augmented

Lagrangian methods. Moreover, most of the newly developed packages provide

optimization based on the interior point methods. LOQO [47] adopts a line search

primal-dual algorithm which can be considered as a modified version of interior

methods for linear and quadratic programming. MOSEK [48] implements a primal-

dual interior point method for convex optimization. BARNLP [49] adopts the line

search interior point approaches, while IPOPT [50] implements a filer globalization

and provides a feasibility restoration phase.

2.2.4.1 KNITRO

KNITRO [51] integrates the active set approach and the interior point approach

for continuous, nonlinear optimization problem. The active set method uses a

Sequential Linear-Quadratic Programming (SLQP) algorithm that uses linear

programming subproblems to estimate the active set. The interior point method

provides two different ways to solve the primal-dual Karush–Kuhn–Tucker (KKT)

system which can be solved by using the direct linear algebra (Interior/Direct

algorithm) or the projected conjugate gradient iteration (Interior/CG algorithm). The

interior point methods can be combined with the active set methods to provide highly

accurate active set and sensitivity information.

In order to maintain certain geometric feature, we need to constrain the point to

point distance. However, these distance constraints are nonlinear. Moreover, we need

dot product to constrain some angle features in model, and dot product between two

15

normalized vectors is non-convex. So because of the large number of convex and non-

convex nonlinear constraints, this means that it is a large-scale continuous and

nonlinear non-convex optimization problem. And interior point method is proved to

be efficiency when solving this kind of optimization problem, so this system has

implemented KNITRO as the solver.

KNITRO provides the Interior/Direct approach and Interior/CG approach. The

Interior/Direct method computes new iterates by solving the primal-dual KKT matrix

using direct linear algebra. The Interior/CG approach computes new iterates using a

projected conjugate gradient iteration. This method differs from most interior point

methods proposed in the literature. It computes steps by using a quadratic model and

trust regions. This formulation allows great freedom in the choice of the Hessian and

provides a mechanism for coping with Jacobian and Hessian singularities. And this

method use requires much less memory during the process than the Interior/Direct

approach. For the size of our problem, the Hessian matrix is large and dense and using

most of the memory, so we choose the Interior/CG method that offer big saving in

memory.

16

3. SPECIFICATION OF CONSTRAINTS

In this chapter, we will describe the formulation of constraints. For every feature

in parametric modeling, a set of constraints is required to maintain their feature

characteristics. Most of these feature requirements can be classified into primitive

constraints of points, lines or triangles. Besides, the use of references in a structural

constraint that is constructed from a group of constraints will be presented.

3.1 Constraints

In order to preserve engineering features in a given model, features to be

preserved are identified by selecting some key feature vertices of the mesh. These

selected features will then be grouped into systems of primitive constraints to be used

in the subsequent optimization process. This optimization process minimizes the

difference between the user-deformed model and the target model with the presence

of constraints. Because of the nonlinear properties of the specified constraint, a

nonlinear optimization technique has to be adopted.

For every feature in a parametric model, a set of constraints is required to

maintain their feature characteristics. For example, an extrusion feature needs to have

a cross-section profile as a base for the feature body, and the side faces of the feature

have to be perpendicular to the plane of the cross-section profile. Most of these

feature constraints can be classified into primitive constraints of point, line or

triangles. The primitive constraints can be specified with point–point, point–line,

line–line, line–triangle, triangle–triangle, and triangle–point relations. They can be

angle or distance constraint. Different numbers of configurations may be specified

between different primitives as shown in Figure 1. Different configurations mean that

they are connected with different number of vertices. Besides, different constraint

functions are obtained with different configuration.

Figure 1. Three configurations between two triangles. (a) No vertex is connected
between two triangles. (b) One vertex is connected. (c) Two vertices are connected.

17

(a) (b) (c)

Table 1. Types of constraint and numbers of geometry configuration between
different primitives

Constraint type Distance constraint Angle constraint No. of
configuration

point – point

Eq. 12 1
point – line Eq. 14 1
point – triangle Eq. 17 1
line – line Eq. 14 & Eq. 20 Eq. 19 2
line – triangle Eq. 17 & Eq. 26 Eq. 25 2
triangle – triangle Eq. 17 & Eq. 29 Eq. 27 3

Figure 2. Distance and angle constraints between point, line or triangle. (a) point -
point distance (b) line - point distance (c) triangle - point distance (d) line - line angle
(e) triangle - line angle (f) triangle - triangle angle

18

(a) (b) (c)

(d) (e) (f)

Given the distance
β

 from point
),,(aaa zyxa

 to point
),,(bbb zyxb

 :

222)()()(bababa zzyyxxβ 
(11)

Equation (11) can be simplified as:

0βzzyyxx bababa  2222)()()(
(12)

Given the distance
β from a point

c
 to a line

),(ba
 :

   
ab

bcac







β

(13)

or

    0 β  abbcac


(14)

Given the distance
β from a point

d
 to a triangle

),,(cba
 which lies on the

plane with unit normal
n̂

:

   
   cbca

cbca
n 






ˆ

(15)

β)(ˆ cdn
 (16)

or

0β )(ˆ cdn
 (17)

Given the angle
θ between line

),(ba
 and line

),(dc
 :

   
)(θ cos



dcba

dcba



(18)

or

    0θ cos )(dcbadcba


(19)

From (21), the parallel property between two lines can be constrained by:

    0  dcbadcba


 (20)

From (21), the prependicaulr property between two lines can be constrained by:
19

    0  dcba
 (21)

For the case that two lines share one point
b
 (i.e.

db



), equation (19)

becomes:

    0θ cos )(bcbabcba


(22)

From (22), collinearity of three points can be constrained by:

   
1


















2

bcba

bcba



(23)

or

       0
22

bcbabcba


(24)

Given two parallel disconnected lines, if we need to constrain the distance

between them, first we need to use equation (20) to constrain the parallel property.

And then, the distance between them can be constrained by the distance from one of

the lines to a point on the other line by the use of equation (14).

Given the angle
θ between triangle

),,(cba


and a line
),(ed


which lies on the

plane with unit normal
n̂

:

    0θ cos )(ˆ ededn
 (25)

In order to constrain the distance between a triangle (with unit normal
n̂

) and a

line
),(ed

, the line is assumed to be parallel to the plane of the triangle, it means the

angle between the line and the normal to the plane of the triangle is 90 degree.

Equation (25) becomes:

  0 edn


ˆ
(26)

And the distance between them can be constrained by the distance from one

point of the lines to the plane of the triangle by the use of equation (17).

20

Given the angle
θ between a triangle (with face normal

1f
) and another triangle

(with face normal
2f
):

)(θ cos
21

21 

ff

ff


 (27)

This gives

0θ cos 2121 )(ffff
 (28)

In order to constrain the distance between a triangle (with face normal
1f
) and

another triangle (with face normal
2f
), these triangles are assumed to be parallel to

each other, it means the angle between the face normal of the triangles is 0 or 180

degree. Equation (27) becomes:

1

2













 

21

21

ff

ff



(29)

And then the distance between them can be constrained by the distance from the

plane of the triangle to a point on the other triangle by the use of equation (17).

3.1.1 Constraints with Reference Points

Reference points are required to be added in to the constraint system in order to

provide constraint on some geometric features that cannot represent with mesh

vertices only. For example, if we want to maintain a circular shape that existed on a

surface of a mesh, but the mesh do not contain a vertex that can be specified as the

centre of this circular feature, a reference point at the centre of this circular shape will

be required for setting up the necessary constraints. An example is shown in Figure 3.

For some structural constraints, reference points are also required. Structural

constraints refer to constraints that maintain the relationships between feature and

feature, rather that the position of vertices on one single feature. For example, using a

reference point to represent the contact point of two gear models will provide more

freedom of movement for the gear model. This is because if we use mesh vertex as

the contact point, the contact vertex may also associated with other constraint, such as
21

planar and circular constraints such that its movement may be limited. But if we use a

reference point as the contact point, fewer constraints are associated with this

reference point, freedom of movement for the gear model will be increased. An

example is shown in Figure 4.

Figure 3. Use of reference point on a circular face (a) Circular face (green in color)
that do not contain a vertex at the centre (b) A reference point (blue in color) is added
at the centre of the surface for the use of constraint establishment.

22

reference point

(a) (b)

Figure 4. Use of a reference point for gears model (a) A gears model that the teeth of
gears have not been included for simplicity (b) Constrain without a reference point (c)
Constrain with a reference point (d) The gear can be rotated with the existence of the
reference point.

3.1.2 Constraints with Reference Variables

Constraint can be constructed with a reference variable. A reference variable is an

additional variable included in the constraint system in order to provide shared

references between constraints. For example, a reference variable is added when a

user wants to constrain the circular shape of a feature, but he/she do not want to

constraint its radius to an exact value, so all the distances in the distance constraints

that are used in this constraint group will be set to be the same as a shared reference

variable. An example is shown in Figure 5.

23

(b) (c) (d)

(a)

reference
point

Figure 5. An example demonstrating the use of the reference variable (a) the original
undeformed model (b) The result of stretching the model (c) The exact dimensions of
the cylinder has been retained, which mean the size of the cylinder is the same as that
in Figure 5(a). (d) Using a reference variable for the distance constraints for the radius
of the cylinder, the circularity of the shape is retained, but the size of the cylinder is
scaled up as a result of the stretching operation.

This kind of reference variable can be used in all the angle and distance

constraints. This means that it can be used to constrain the shape of a feature without

providing the exact numerical dimensions. Using a reference variable in a distance

constraint specified with equation (12), a reference variable
R

 will replaced
β

 which

gives:

0Rzzyyxx bababa  2222)()()(
(30)

24

(a) (b)

(c) (d)

3.1.3 Reference Vector Constraints

A reference vector can be created form two vertices or cross product between

two vectors which can be face normals or other reference vectors.

Given a vector
v̂

formed from point
a
 to point

b
 :

ab

ab
v 






ˆ

(31)

In order to prevent zero vector , the length of the vector should not become zero.

Tab   (32)

where
T

 is the threshold.

Given a vector
av


which is the cross product of the vectors
bv
 and

cv
 :

cba vvv



 (33)

Vector dot product is used to constrain the angle between two vectors. Given the

angle
θ between unit vector

av̂
 and unit vector

bv̂
:

)(ˆˆ θ cos ba vv
(34)

25

Figure 6. Use of reference vector constraints (a) By using dot product constraints on
the axes of two bars (

1ˆˆ 21 aa
), their axes will remain parallel in a deformation, and

the result is shown in Figure 6(b).

Reference vector constraints are used for setting up constrains on the reference

vector rather than mesh vertices. They are higher level constraints and are usually

required when users want to provide constraints across features that cannot be

specified with mesh vertices directly. An example is given in Figure 6.

3.1.4 Constraints with Reference Datum

For a group of constraints, it would be better to use a reference datum for all its

component constraints. The use of reference datum speeds up and stabilized the

optimization process. In the process, when constraints between adjacent primitives are

being retained, the optimization process may terminate if one of the constraints is not

satisfied. By using a common datum for a group of primitives, the chance of having

one constraints being not satisfied is reduced. There are several types of constraints

that can be implemented with this method such as planar, collinear and circular

constraints.

3.1.4.1 Planer Constraint with References

For planer constraints on a set of triangles, by using a common reference for

each of the triangle, the numerical error accumulated in the optimization process can

be reduced.

For example, a planar surface can be constructed with a set of triangles sharing a

common face normal n̂ . Given a plane with unit normal n̂(n̂x ,n̂ y , n̂z) , this can

be constrained as:

26

(a) (b)

n̂x
2
+n̂ y

2
+n̂z

2
−1=0 (35)

Given a planar surface with a unit normal n̂ , all points lying on the same

plane can be constrained as following:

n̂ ∙(v́ i− v́c)=0 (36)

where v́ i is the i-th vertex lying on the plane and v́c is the common vertex

lying on the same plane.

By using equation (36), the constrained points are to lie on the same plane.

However, it does not prevent the triangle faces from overlapping. In order to eliminate

overlapping triangles, the angle between the plane unit normal n̂ and each triangle

face normal f́ i has to be less than 90 degrees.

f́ i ∙ n̂≥0 (37)

In order to apply appropriate constraints to all coplanar faces, all constraints are

analyzed first, and then all coplanar triangles are grouped together. Similarly, the

points on the same planes are grouped too. For a plane with M triangle faces and N

vertices, to constraint its planarity, equation (35) specifies the normal at the reference

vertex, N−1 equation (36) is used to specify the locations of the other vertices,

and M equation (37) are required to prevent the overlapping of triangles.

By using the plane unit normals n̂ , the perpendicular property between the i-

th and the j-th plane can be specified as following:

n̂i ∙n̂ j=0
(38)

27

3.1.4.2 Collinear Constraint with References

A collinear constraint is used to maintain the angle between two consecutive line

segments at 180 degrees.

Instead of applying the collinear constraints on adjacent segments of a straight

edge, constraints can be applied to each line segment relative to the line defined

between the start point and the end point of the edge. It will improve the performance

of the optimization.

The collinearity of three points can be constrained as follow (Figure 7):

(á−b́) ∙(ć−b́)
|á− b́||ć−b́|

=−1 ,
(b́−ć)∙ (d́− ć)
|b́− ć||d́−ć|

=−1 , (39)

In this representation, the angle constraints are applied on adjacent line

segments. Numerical error will accumulated while the optimization propagates along

the straight edge.

A common reference can be used to reduce the amount of accumulated errors. In

accordance, the straight line in Figure 7 can be constrained with the following:

(á−é)∙(b́−á)
|á−é||b́−á|

=−1 ,
(á−é) ∙(ć−b́)
|á−é||ć−b́|

=−1 , (40)

In this representation, the angle constraints applied to each line segment are

specified relative to the line defined between the start point and the end point.

3.1.4.3 Circular Constraint with References

28

Figure 7. A straight line with 5 points

mesh

In order to confine a set of points to lie on a circle, circular constraints are to be

adopted. A circular constraint is specified with distance constraints and angle

constraints. If we want to maintain the circular property of the point á , b́ , ć ,

d́ , é , f́ , ǵ , h́ in Figures 8, we will need to apply the circular

constraint on these points. Distance constraints are used to maintain the distance

between the origin ó to all the points in the group. Angle constraints are applied to

adjacent radial line segments (e.g. óa and ób , ób and óc , etc). The

constraints will be specified as following:

(á−ó) ∙(b́−ó)
|á−ó||b́−ó|

=cos (angle between óa∧ób) (41)

(b́−ó) ∙(ć− ó)

|b́−ó||ć−ó|
=cos(anglebetween ób∧óc)

(ć− ó) ∙(d́−ó)
|ć−ó||d́−ó|

=cos (angle between óc∧ ód)

……

Instead of applying angle constraints on adjacent line segments, angle constraints

would better be specified relative to a reference line. In Figure 8, we use line óa as

the reference line, and the angle constraints can be formulated as following:

(á−ó) ∙(b́−ó)
|á−ó||b́−ó|

=cos (angle betweenóa∧ób) (42)

(á−ó) ∙(ć−ó)
|á−ó||ć−ó|

=cos (angle between óa∧óc)

(á−ó) ∙(d́− ó)
|á−ó||d́−ó|

=cos(anglebetween óa∧ód)

……

29

Figure 8. A circular mesh

3.2 Redundant Constraints

The constraint system should not contain any redundant constraints. This is

because redundant constraints will lead to degeneracy such that extra iterations is

required in the optimization process, or in some cases, the optimization process may

fail to locate a solution. In general, users should plan the specification of constraints

carefully, and clearly identify that there will not be geometrical or numerical

redundancies. For example, if we are specifying the circular shape of the mesh in

Figure 8, only 7 angle constraints, 8 radius distance constraints and planar constraints

are needed to constrain this circular face. If one more angle constraint is added to the

system, it will become a redundant constraint and cause degeneracy in the

optimization process.

4. CONSTRAINED OPTIMZATION

In this chapter, the overall optimization process implemented in the experimental

system will be presented. First it provides the objective function and the overall

formulation of the optimization problem. And then it introduces an incremental

optimization method to solve the problem when the optimization fails to find an

optimal solution. When the optimization fails, the system will perform interpolation

between the initial guess and a transitional model, and then generates an interpolated

model for the next optimization.

4.1 Objective Function

With the above primitive constraints, geometric features commonly found in

engineering components can be specified. In order to retain the specified constraints

after a deformation, an optimization process is performed. This optimization provides

a better reconstruction result than reconstructing the constraints one by one, because

the optimization tries to preserve the deformed shape rather than only considering

individual constraint. It also allows the deformation to have more effect on the

constrained model.

By minimizing the least squared distance between the deformed coordinates and

the coordinates generated in the optimization process, the deformation can be retained

as much as possible in the existence of constraints. The function can be written as:

30

 


n

i
f

1

222))()()(()(iiiiii z'zy'yx'xz',y',x'
(43)

where
)(iii z,y,xiv

 is the i-th vertex of the transitional model and
)(iii z',y',x'i'v

 is

the i-th vertex of the optimized constrained deformed model. Reference points are not

included in the objective function, because they are used in the constraints only. Since

the objective function is nonlinear, a nonlinear solver is required to minimize this

objective function. For a general optimization problem, we need to provide an

objective function, constraints and initial guess. The initial guess is used as the input

for the optimization. Therefore, the optimization problem can be written as:

      

a

1i

b

1j ji, zy,x,A to subjectedzy,x,f min
(44)

where
 zy,x,A ji,

 are the constraint functions,
a

 is the number of constraint type

and
b

 is the number of constraints of the same type.
 zy,x,A ji,

 can be a combination

of equation (12), (14), (17), (19-22), (24-26) and (28- 42).

The overall procedure is listed as follow: First, the user specifies the constraints

in the undeformed model (Figure 9), and then the users perform deformation on the

model to produce a transitional model. Finally, the system performs an optimization

that minimizes the displacement on the vertices of the transitional model using the

original undeformed model as the initial guess.

31

Figure 9. Preserving constraints on a Lego model. By applying constraints on the four
cylinders and the plane (highlighted), the shape of the cylinder can be retained

32

Figure 10. A plane model example

Here we will give an example on the formulation of the optimization problem. In

Figure 10(a), there is a plane with 4 vertices. We want to maintain the distance

between vertex v́1(x1 , y1 , z1) and vertex v́ 4(x4 , y 4 , z4) and the distance between

vertex v́3(x3 , y3 , z3) and v́ 4 with distance β (which is a constant). We also

want to maintain the right angle at vertex v́1 with line ´v1 v2 and line ´v1 v4 .

And then we deformed the model as shown in Figure 10(b), and use it as the

transitional model. After that, we perform the constrained optimization with it.

33

v1

(a) (b)

v2 v3

v 4

v1

v2 v3

v 4

v1

v2
v3

v 4

(c)

By equation (43), the objective function for this problem will become:

 


4

1

222))()()(()(
i

f iiiiii z'zy'yx'xz',y',x'
(45)

where
)(iii z,y,xiv

 is the i-th vertex of the transitional model (which are all constants)

and
)(iii z',y',x'i'v

 is the i-th vertex of the optimized constrained deformed model

and they are the variables in the optimzaimation problem.

By equation (14), the distance constraint of line ´v1 v4 will become:

0βz'z'y'y'x'x' 414141  2222)()()(
(46)

And the distance constraint of line ´v3 v4 will become:

0βz'z'y'y'x'x' 434343  2222)()()(
(47)

By equation (22), the perpendicular property of line ´v1 v2 and ´v1 v4 will

become:

    01412  vvvv
 (48)

And then:

0))(())(())(( 141214121412 z'z'z'z'y'y'y'y'x'x'x'x'
(49)

Rewriting the constraints as constraint functions c1 , c2 , c3 , the system

becomes:

c1=¿ 2222)()()(βz'z'y'y'x'x' 414141 
(50)

c2=¿ 2222)()()(βz'z'y'y'x'x' 434343 
(51)

c3=¿))(())(())((141214121412 z'z'z'z'y'y'y'y'x'x'x'x' 
(52)

Besides the objective function and the constraint functions, we also need to

provide the Jacobian matrix and Hessians of the objective and constraint functions for

the solver during the optimization.

34

The gradients (first derivatives) of the objective and constraint functions are

given by:

∇ f =[
−2(x1−x'

1)

−2(y1− y '
1)

−2(z1−z'
1)

−2(x2−x'
2)

−2(y2− y '
2)

−2(z2−z'
2)

−2(x3−x'
3)

−2(y3− y '
3)

−2(z3−z'
3)

−2(x4−x'
4)

−2(y4− y '
4)

−2(z4−z'
4)

] , ∇ c1=[
2(x'

1−x '
4)

2(y '
1− y '

4)

2(z'
1−z '

4)

0
0
0
0
0
0

−2(x '
1−x '

4)

−2(y '
1− y '

4)

−2(z '
1−z '

4)

] , ∇ c2=[
0
0
0
0
0
0

2(x'
3−x '

4)

2(y'
3− y '

4)

2(z'
3−z '

4)

−2(x '
3−x '

4)

−2(y '
3− y '

4)

−2(z '
3−z '

4)

]
, ∇ c3=[

2 x '
1−x '

2−x '
4

2 y '
1− y '

2− y '
4

2 z '
1−z '

2−z '
4

x '
4−x '

1

y '
4− y '

1

z '
4−z '

1

0
0
0

x '
2−x'

1

y '
2− y '

1

z '
2−z'

1

]
The constraint Jacobian matrix J is the matrix whose rows store the transpose

of the constraint gradients:

J=[
∇ c1

T

∇ c2
T

∇ c3
T]=¿

[
2(x '

1−x '
4) 2(y '

1− y '
4) 2(z '

1−z '
4)

0 0 0
2 x'

1−x '
2−x'

4 2 y '
1− y '

2− y '
4 2 z '

1−z '
2−z '

4

0 0 0
0 0 0

x '
4−x '

1 y '
4− y '

1 z '
4−z '

1

35

0 0 0
2(x '

3−x '
4) 2(y '

3− y '
4) 2(z '

3−z'
4)

0 0 0

−2(x '
1−x '

4) −2(y '
1− y '

4) −2(z '
1−z '

4)

−2(x '
3−x '

4) −2(y '
3− y '

4) −2(z '
3−z '

4)

x '
2−x'

1 y '
2− y '

1 z '
2−z '

1
]

36

The Hessian of the Lagrangian matrix is defined as:

H=∇ 2 f +∑
i=0

m−1

λi ∇
2 c i (53)

where λ is the vector of Lagrange multipliers (dual variables) which is associated

with the second derivatives of the constraint functions. The Hessians (second

derivatives) of the objective and constraint functions are given by:

∇
2 f =[

2
0
0
0
0
0
0
0
0
0
0
0

0
2
0
0
0
0
0
0
0
0
0
0

0
0
2
0
0
0
0
0
0
0
0
0

0
0
0
2
0
0
0
0
0
0
0
0

0
0
0
0
2
0
0
0
0
0
0
0

0
0
0
0
0
2
0
0
0
0
0
0

0
0
0
0
0
0
2
0
0
0
0
0

0
0
0
0
0
0
0
2
0
0
0
0

0
0
0
0
0
0
0
0
2
0
0
0

0
0
0
0
0
0
0
0
0
2
0
0

0
0
0
0
0
0
0
0
0
0
2
0

0
0
0
0
0
0
0
0
0
0
0
2

] ,

∇
2 c1=[

2
0
0
0
0
0
0
0
0

−2
0
0

0
2
0
0
0
0
0
0
0
0

−2
0

0
0
2
0
0
0
0
0
0
0
0

−2

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

−2
0
0
0
0
0
0
0
0
2
0
0

0
−2
0
0
0
0
0
0
0
0
2
0

0
0

−2
0
0
0
0
0
0
0
0
2

] ,

37

∇
2 c2=[

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
2
0
0

−2
0
0

0
0
0
0
0
0
0
2
0
0

−2
0

0
0
0
0
0
0
0
0
2
0
0

−2

0
0
0
0
0
0

−2
0
0
2
0
0

0
0
0
0
0
0
0

−2
0
0
2
0

0
0
0
0
0
0
0
0

−2
0
0
2

] ,

∇
2 c3=[

2
0
0

−1
0
0
0
0
0

−1
0
0

0
2
0
0

−1
0
0
0
0
0

−1
0

0
0
2
0
0

−1
0
0
0
0
0

−1

−1
0
0
0
0
0
0
0
0
1
0
0

0
−1
0
0
0
0
0
0
0
0
1
0

0
0

−1
0
0
0
0
0
0
0
0
1

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

−1
0
0
1
0
0
0
0
0
0
0
0

0
−1
0
0
1
0
0
0
0
0
0
0

0
0

−1
0
0
1
0
0
0
0
0
0

]
Scaling the constraint matrices by their corresponding Lagrange multipliers and

summing, we get:

H=¿

[
2+2λ1+2λ3

0
0

−λ3
0
0
0
0
0

−2λ1−λ3
0
0

0
2+2 λ1+2 λ3

0
0

−λ3
0
0
0
0
0

−2 λ1−λ3
0

0
0

2+2λ1+2 λ3
0
0

−λ3
0
0
0
0
0

−2λ1−λ3

−λ3
0
0
2
0
0
0
0
0
λ3
0
0

0
−λ3
0
0
2
0
0
0
0
0
λ3
0

0
0

−λ3
0
0
2
0
0
0
0
0
λ3

0
0
0
0
0
0

2+2 λ2
0
0

−2 λ2
0
0

0
0
0
0
0
0
0

2+2 λ2
0
0

−2 λ2
0

0
0
0
0
0
0
0
0

2+2 λ2
0
0

−2 λ2

−2 λ1−λ3
0
0
λ3
0
0

−2 λ2
0
0

2+2λ1+2 λ2
0
0

0
−2 λ1−λ3

0
0
λ3
0
0

−2 λ2
0
0

2+2 λ1+2 λ2
0

0
0

−2 λ1−λ3
0
0
λ3
0
0

−2λ2
0
0

2+2 λ1+2 λ2

]
38

After the optimization, the result model is shown in Figure 10(c).

39

4.2 Incremental Constrained Deformation

Figure 11. The system workflow

Because of the nonlinear properties of the specified constraint, a nonlinear

optimization technique has to be adopted. In general, a local optimum point can be

obtained while a global optimum point may not be achieved. Local optimum point

means the specified constraints are satisfied, but the archived optimum point is only a

local minimum or maximum point. In other words, even the constraints are satisfied,

the user provided deformation may not be fully retained after the optimization. An

example is shown in Figure 12 in which some faces collapse although their planarities

are maintained. In Figure 12, the straight bar on the left is the original model. The

face at the two ends of the bar a and b are constrained as square with fixed edge

length. The side c is constrained as planar surface. Then, the model obtained with an

unconstrained deformation is shown in the middle of the figure. The bar model on the

right is the result of the optimization. As shown in the figure, some faces of the

deformed model are collapsed although they lie on the same plane. This is a result of

the local solution obtained from the nonlinear optimization.

40

Figure 12. Optimization result without incremental constrained deformation.

In addition, incremental constrained deformation is implemented to provide hints

for the optimization. First, the system tries to minimize the displacement between the

vertices of the transitional model and the original model using the original

undeformed model as the initial guess. If the optimization fails or the collapsing faces

are found, then the system will perform interpolation between the initial guess and

transitional model, and then generate an interpolated model. Hence, the optimization

problem becomes the minimization of the displacement from the interpolated model

using the original undeformed model as the initial guess. The interpolation is

described as following:

v́ i=α (v́t−v́o)+ v́o (54)

where v́o is the vertex on the original model, v́ t is the vertex on the

transitional model, v́ i is the vertex on the interpolated model and α is the factor

for the interpolation.

The factor for the first interpolation is set to be 0.5. If the optimization is

completed with this factor, then the next interpolation will use 1 as the factor. In this

way, the optimization problem becomes the minimization of the displacement in the

newly interpolated model using the previous optimal result as the initial guess.

However, if the optimization fails or collapsing faces are found, the factor will be set

to 0.25, and the system will repeat the optimization with the newly interpolated

model. Based on this algorithm, the optimization is performed incrementally to give a

constraints retained model. For the case that the interpolation factor is decreased to a

user specified level while no optimal result is obtained, the system will use the

41

optimization result obtained in a previous succeeded incremental optimization. The

pseudocode for this incremental method is shown in Table 2.

42

Table 2. The Pseudocode for the incremental method

Define variable OS for the optimization status
Define variable TS for the temination status
Define variable SV for the starting value
Define variable CV for the current interpolated value
Define variable CS for the current step size
Define variable US for the user-defined termination step size
Define variable UIM for the user input model
Define variable TDM for the transitional model
Define variable IM for the interpolated model
Define variable COM for the current optimized model
Define variable POM for the previous optimized model

Initialize TS to false
Initialize SV to 0.0
Initialize CS to 1.0
Initialize CV to 0.0
Initialize US to 0.03125
Copy UIM to POM
While TS is Equal to false
{

Set CV to the Sum of SV and CS
Intepolate from UIM to TDM with CV
Copy the result of Intepolation to IM
Pass UIM, IM and constraints to the optimizer
COM and OS is Returned from the optimizer
If OS is true And CV is 1.0
{

Set TS to true
}
Else If OS is true And CV is Not Equal to 1.0
{

Set SV to CV
Copy COM to POM

}
Else If OS is false
{

Set TS to false
Divide CS by 2.0
If CS is Smaller than or Equal to US
{

Copy POM to COM
Set TS to true

}
}

}
Return COM

43

4.3 The Scaling Problem

Moreover, optimization may fail when the constraints are badly scaled. The

differences in magnitudes of the first derivatives of the constraint equations may be

very large such that errors in the calculation accumulate. This may finally causes the

solver to fail in obtaining a solution. When the optimization process starts, scaling of

constraints are performed by the nonlinear optimization solver. The scales are

determined base on the provided initial guess for the optimization. The scaling is

performed by multiplying different constraint functions with a scale factor such that

the order of magnitude of the first derivatives of the functions lies within a range

determined by the solver. This makes sure that each constraint functions are

comparable in the optimization process. The initial guess of the optimization problem

is hence very important to the scaling of the problem. Besides, a well scaled problem

requires less computation time and can give more accurate result. Since the scaling of

all variables in the optimization may also affect the convergence rate of the

constraints problem, normalization is performed on the coordinates of the given

vertices.

44

5. CASE STUDIES

The proposed techniques are implemented on Win7 system using C++ language.

We performed all the experiments on a Quad-core 3.00GHz PC with 8G. Tests are

performed to study its capability in retaining geometric constraints on models. Test

cases are selected to evaluate the ability of the system in maintaining individual

feature, pattern of features and relationship between features. Constraints, reference

points, reference variables and reference vectors in some example are provided.

Beside, the original model, transitional model and the final deformed model for every

example will be presented. Deformation techniques used in following examples are

free-form deformation. Some implementation issues are also discussed in this chapter.

5.1 Maintain Individual Engineering Features

In the following section, several constraints retained deformation results are

illustrated. The results show that the system retains individual features.

By providing the dimensions of the cylindrical features on the model in Figure

13(a), the dimension of the cylindrical features can be retained after various

deformations and the cylinders remain perpendicular to the top plane, the result is

shown in Figure 14. First, the triangles on the upper plane are constrained with

coplanar constraints as shown in Figure 13(b). In order to illustrate the use of

reference point on the model, the top face of each cylinder is modelled with an

irregular mesh such that no mesh vertex can be used as the centre point. A reference

point is inserted at the centre as shown in Figure 13(c). Third, 16 radius distance

constraints and 15 angle constraints (Figure 13(d)) are applied on each cylinder. Then,

all triangles on the top face of each cylinder are constrained with coplanar constraints

as shown Figure 13(e). In Figure 13(f), each pair of perpendicular faces is constrained

with a perpendicular constraint. Notice that only one pair of perpendicular faces is

highlighted in the figure, there are 16 pairs of perpendicular faces on each cylinder. In

Figure 13(g), the triangles of each vertical stripe of the cylinder are constrained with

coplanar constraint. Hence, there are 16 groups of coplanar constraints on the vertical

side of each cylinder. In Figure 13(h), one triangle on the vertical side of each

cylinder is constrained to be perpendicular to one triangle of the top plane. Finally,

one more perpendicular constraint is added between the vertical side of each cylinder

and the top plane as shown Figure 13(i). With these perpendicular constraints (in
45

Figure 13(h) and Figure 13(i)) on each cylinder, they are already enough to keep each

cylinder perpendicular to the top plane, so no more perpendicular constraint is needed.

There will be redundant constraints if more than one perpendicular constraint (with

the same property) is specified on each cylinder.

The techniques used in the specification of constraints on the Lego model are

applied to a gamepad model. In Figure 15, constraints are applied to the target

features of the original gamepad model, and by providing the transitional model, the

target features can be retained on the final model.

46

Figure 13. Constraints on a Lego Model

47

(c) (d) (e)

(f) (g)

(a) (b)

(h) (i)

Figure 14. Different deformation results on an object with different transitional
models and the same set of constraints

48

Original Model

Transitional Model Final Model

Transitional Model Final Model

Transitional Model Final Model

(a)

(b)

(c)

Figure 15. A gamepad model deformed with the incremental constraints retained
method. Cylindrical features and structures (highlighted in blue) inside the gamepad
model are retained after the deformation.

5.2 Maintain Pattern between Engineering Features

Our method can retain the pattern of engineering features in a deformation. By

using a combination of parallel, perpendicular, planar, collinear and circular

constraints, pattern between engineering features can be retained.

In Figure 16, constraints are applied to the structures of the socket’s cover on the

original model, and by providing the transitional model, the target features can be

retained on the final model shown in Figure 17. The original model of the socket’s

cover is shown in Figure 16(a). In Figure 16(b), all the triangles on the top face are

constrained with coplanar constraints. In Figure 16(c), all the triangles on the inner

vertical wall of the hole are constrained with coplanar constraints too. In Figure 16(d),

the angles and lengths of the rectangles for each socket are constrained with distance

and angle constraints. In Figure 16(e), a reference point is added at the mid-point on

the side of the socket’s hole as indicated in the figure. Distance and angle constraints

are also required to maintain the reference points to lie at the mid-point of the
49

Transitional Final Transitional Final

Original Model Transitional Model

Final Model

corresponding edge. For each socket, another reference point is added at the mid-point

between two edge reference points. The angles between the edges and the lines

connecting the reference points are constrained as shown in Figure 16(f). Distance

constraints are applied as shown in Figure 16(g). Finally, each pair of perpendicular

triangles is constrained with perpendicular constraints as shown in Figure 16(h). For

each hole, 4 pairs of these constraints are required to constrain the shape of hole

without resulting in redundant constraints.

50

Figure 16. Constraints on a socket’s cover model

Figure 17. Constrained Optimization for a socket’s cover model

5.3 Maintain Relationship between Engineering Features

Our method can be used to maintain the relationships between engineering

features, e.g. the relationship between components in a mechanism is constrained such

that the functions of the mechanism is retained after being deformed. The method is

tested on two gear train examples. Our target is to maintain the gear train to be

functional after the deformation and optimization. The original undeformed model of

a simple gear train is shown in Figure 18. The gear train is constructed with 3 gears of

different diameters. Figure 19 illustrates how to constrain the shape of one gear

51

(a)(b)

(c)

Original Model

Transitional Model

Final Model

(f) (g) (h)

(c) (d) (e)

(a) (b)

model, and how to make these gears connecting together. First, 3 reference points (

v́1 , v́2 and v́3) are inserted at the centre of the three circular planes. These

reference points are used to construct radius distance constraint and angle constraints

for the circular shape of the gear planes (Figure 19(b)). Second, 3 reference vectors (

´fn1 , ´fn2 and ´fn3) are inserted to represent the normal to these three circular

planes (Figure 19(c)). Third, v́1 , v́2 and v́3 are constrained to be collinear. The

angle between ´fn1 and ´fn2 is zero, and the angle between ´fn1 and ´fn3 is

180 degrees. The constrained angle between ´fn3 and ´bv1 is zero degrees (Figure

19(d)). This constraint is applied for the whole lower cylindrical features. Then, 2

reference points (v́7 and v́8) are added at the contact point of the two gears for

upper and low plane (Figure 19(e)). Reference vector are created from the centre

reference points (v́1 , v́3 , v́4 and v́6) to the reference gear connecting points (

v́7 and v́8) (Figure 19(f)). After that, ´cv1 is the reference vector that is the

cross product of ´fn1 and ´rv1 (Figure 19(g)). By constraining angle between

´cv1 and ´cv2 to be zero, the axes of two gears are confined to lie on the same

plane. Finally, in order to maintain the gear ratio between each pair of gears, a

constraint is constructed between the radiuses of each pair of gears such that the ratio

of the gears’ radiuses is determined by their gear ratio.

Figures 20-22 illustrates the transitional model and final model. It can be

observed that when the base plane of the model is deformed, the angle of the tooth-

bearing faces is changed to maintain the contact relation between the gears. The gear

teeth are not included in the examples. This simplified model reduces the computation

requirement because of the smaller number of faces and hence smaller number of

constraints. In the final gear models, the diameters and angle of bearing-faces of each

gear can be obtained. And the user can use these data to design the gear teeth for

manufacturing. An example is shown in Figure 23 that the gear teeth are regenerated

on the gear train based on the requirement.

A more complex gear train model example is given in Figure 24. The original

model is bended downward and used as transitional model in Figure 25. The final

model is shown in Figure 26 after the constrained optimization is finished.

52

Figure 18.The original model for this gear train model.

53

Figure 19. Constraints on the gears and gear train

54

(a) (b)

(c) (d)

(e)

(f)

(g)

Figure 20. (a) The transitional model that bended downward (b) The final model of
our method that the angles of bearing-faces have been changed to follow the trend of
deformation.

55

Transitional Model Final Model

Transitional Model Final Model

(b)(a)

Figure 21. (a) The transitional model that bended sideway (b) The final model of our
method

56

(a) (b)

Figure 22. (a) The transitional model that bended downward and sideway (b) The
final model of our method that the angles of bearing-faces have been changed to
follow the trend of deformation.

57

Transitional Model Final Model

Final Model
Original Model

Figure 23. The gear train model with gear teeth

Figure 24. The original model of a gear train model

Figure 25. The transitional model for the gear train model

Figure 26. The final model for the gear train model

58

Figure 27. The reference vector network in the constraint system. Reference vector
constructed cross product are green in color (describe in Figure 18(g)), while the
others are blue in color.

59

The method is also tested on a phone casing assembly. Our target is to ensure

that the two components of the phone casing can be assembled when the shape of the

phone is adjusted. The original undeformed model of the phone casing is shown in

Figure 28(a). This phone casing assembly contains two parts. They are the upper-half

casing and lower-half casing. Different views of the original model are shown in

Figure 29. After a deformation, the transitional model of the phone casing is shown in

Figure 28(b). Different views of this transitional model are shown in Figure 31. The

final model is shown in Figure 28(c) and Figure 32.

In this example, the eight supporting cylinders on the lower-half casing are

constrained to maintain their radiuses and heights. The top faces of each of the four

cylinders on both sides are coplanar. This is required for housing other components of

the phone properly. The eight circular holes on the upper-half casing are also

constrained with the same radius.

Figure 33 shows the matching features of the original model in the cross

sectional views of the assembly. After the deformations, the two parts cannot be

assembled as shown in Figure 34. In order to ensure that the two components can be

assembled, Two reference vectors (
i
 ,

j
) are provided in the coordinate space and

they are perpendicular to each other as shown in Figure 30. These two vectors are

constant vectors with fixed directions. All the face normals of the triangles on plane C

are constrained to be parallel to
i
 . And all the face normals of the triangles on plane

A are constrained to be parallel to
i



. This is because these triangle normals are

pointing in the opposite direction of
i
 . And perpendicular constraints are applied to

the triangles on plane A and plane B. Also, plane A and plane C are constrained to be

coplanar. Same forms of constraints are applied to the other faces on the matching

features, but with different reference vectors for constraining the plane normal

directions in the original model. In Figure 35, these two constrained parts can be

assembled successfully.

60

Moreover, Figure 36 shows the cross sectional views of the screw holes in the

original model. After the deformations, these two parts cannot be assembled as shown

in Figure 37. Therefore, these screw holes are constrained with the same radiuses and

the upper and lower cylinders are constrained to be concentric. In the final model,

these components can be assembled properly.

Figure 28. An example of the phone casing model

Figure 29. Different views of the original phone casing model

61

Original Model Transitional Model Final Model

(a) (b) (c)

A
B

Figure 30. Constraints on the matching features of lower and upper half

62

C
D

i
j

Figure 31. Different views of the transitional models for the phone casing

63

Figure 32. Different views of the final models for the phone casing

64

Direction of
 Assemble

Matching
Edges

Figure 33. Matching features (highlighted in blue) in the undeformed phone casing
model

Figure 34. Matching features in the transitional models of the phone casing

65

Failed to be Assembled

Figure 35. Matching features in the final phone casing model

Figure 36. Matching features in the original phone casing model

66

Direction of Assemble

Direction of Assemble

Figure 37. A matching feature in the transitional model of the phone casing

5.4 Implementation Issue

The experimental system for incremental constraint optimization is implemented

on Win7 system using C++ language. KNITRO is used for the optimization process.

The KNITRO system has an application programming interface (API) to handle the

objective function, constraint functions and all the related variables. It requires the

user to provide the type of optimization, formulation of objective function,

formulation of constraints functions, bounds of constraints, bound of variables and the

initial guess to define the optimization problem.

Moreover, it also requires the Jacobian matrix of the constraints and the Hessian

Matrix of the Lagrangian function in sparse form to reduce memory usage. The

KNITO system provides some build-in functions to approximate these two matrixes.

However, in order to obtain more accurate Jacobian and Hessian matrixes that is

required for speeding up the optimization; the current experimental system provides

exact Jacobian and Hessian matrixes for each optimization problem. In the

optimization process, the system will automatically compute the position of the

nonzero elements in the Jacobian Matrix and Hessian Matrix, so that a sparse matrix

is obtained for the computation. During the optimization, we need to provide the

value of the nonzero elements in these matrixes that are constructed with the current

value of the variables in each iteration.

In order to further improve the speed of process, the vertices that do not relate to

any applied constraint are not included in the optimization. That is, the locations of

the unconstrained vertices are directly obtained from the coordinates of the

67

Failed to be
Assembled

corresponding vertices on the transitional model and are not determined in the

optimization process.

68

6. TESTS AND RESULTS

In this chapter, experiments on the effects of constraints with a common

reference, different level of model detail and incremental method are discussed. And

some comparisons between our method and other deformation methods are also

included.

6.1 Constraints with References

In this section we will discuss the effect of using referenced constraint rather

than local constraints. We performed an experiment with the original model shown in

Figure 38(a), and we want it to be deformed into the target model shown in Figure

38(b). And we also want to retain the cubical feature shown in Figure 38(c).

By applying coplanar constraints on faces of a plane, perpendicular constraints

between planes and collinear constraint along the edges of a plane, we perform

optimization at different resolutions. They are 10x10x10, 20x20x20 and 50x50x50 for

the cubical feature shown in Figure 38(d-f). For the 10x10x10 case, it took 152.4

seconds to complete the process. And for the 20x20x20 case, it took 645.7 seconds to

complete. For the 50x50x50 case, the solver failed to locate an optimal solution, and

terminated at a point that the collinear constraints were still not satisfied. Hence, by

increasing the number of constraints of the same type, the optimization will have

higher chance to fail. Details of the test are given in Table 3.

Model Num. of vertices Num. of faces Total Num. of constraints Time (s)
Cube in Fig 38d 770 1536 1546 152.4
Cube in Fig 38e 3018 6032 5991 645
Cube in Fig 38f 17979 35952 31963 Failed

Table 3. Time required for constrained optimization without the use of reference

69

Figure 38. Constrained Optimization for a cube model

It is expected that the numerical errors arising from a pair of local constraint may

accumulate during the optimization. When these numerical errors accumulated to

certain level, the solver may iterate into an infeasible region, and the iteration does not

converge.

Based on this observation, we performed tests that use a global reference for

setting up constraints on the triangles. Instead of confining adjacent triangle normal to

be the same, all the triangle normals in same plane are confined to be the same as one

reference normal vector. The models and the deformations in Figure 38 are performed

70

(a) Original Model (b) Transitional Model

(c) Constrained Part

(d) 10x10x10 for the cubic (e) 20x20x20 for the cubic (f) 50x50x50 for the cubic

with these new set of constraints. The statistics of the experiment results are shown in

Table 4.

By replacing the old collinear constraints with these new collinear constraints,

and performing the experiment again, the optimization can be completed successfully,

and the optimal solution is located. This shows that the new collinear constraints

provide a significant effect on the optimization process.

Model Num. of vertices Num. of faces Total Num. of constraints Time (s)
Cube in Fig. 38d 770 1536 1495 101.2
Cube in Fig. 38e 3018 6032 5743 354.6
Cube in Fig. 38f 17979 35952 31457 946.2

Table 4. Time required for constrained optimization with the use of reference
Hence, the use of reference is preferred in setting up structural constraint that is

built from a group of basic constraints. Structural constraints that can be implemented

with this method include planar, collinear and circular constraints.

71

6.2 Level Of Detail

An experiment is performed on a simple gear train model (Figure 38) to the

model is to be deformed into the shape of transitional model shown in Figure 20.

Tests are conducted with different resolutions of the gear bodies and the statistics of

the experiment results are shown in Table 5.

Figure 39. Different resolutions for a gear train model

72

(a)

(b)

(c)

(d)

(e)

Table 5. Time required for constrained optimization with different level of resolutions
on the gear train model

Model Num. of vertices Num. of faces Total Num. of constraints Time (s)
Gear train in Fig. 39a 550 925 524 61.5
Gear train in Fig. 39b 678 1378 1029 132.6
Gear train in Fig. 39c 964 1911 1924 321.4
Gear train in Fig. 39d 1203 2710 2142 523.6
Gear train in Fig. 39e 1978 3421 2810 921.6

Graph 1. Number of Vertices and Computational Time

550 678 964 1203 1978
0

100

200

300

400

500

600

700

800

900

1000

Number of Vertices

Time (s)

From Table 4, Table 5 and Graph 1, it can be observed that a higher resolution

model will require more computation time for the optimization. This is because more

73

constraints and more variables are included in the problem setting of the higher

resolution case. For some engineering feature with standard set of constraints pattern

such as gear model, we can just simplify the model to one with a lower resolution, and

which is then used in the deformation. After the optimization, we can extract useful

information from this simplified optimization. In the gear train model, the angle of

tooth-bearing and radius of the gears can still be extracted from the lower resolution

model which is sufficient for defining the shape of the gear. This operation will

improve the optimization speed of the system and lower the chance of optimization

failure.

6.3 Incremental Method

Incremental method has a major role in our method. It helps the system by

providing guidance for the optimization. When the optimization failed at some point,

the system will automatically generate a new interpolated model between the original

model and target model. When the system uses this interpolated model as current

target model, the provided initial guess is closer to the current target model; hence, the

possible solution will become closer to the initial guess. In this situation, the

optimization will has higher chance to get to the optimal solution. Several tests are

performed to demonstrate the effect of incremental deformation. Figure 40 shows an

unsuccessful optimization result without using the incremental method. The

experiment is performed again with the incremental method, and the successful results

are shown in Figures 41-42.

Table 6 summarizes the statistics for the demonstrated models. The result shows

that the computational times increase with the number of vertices, faces and

constraints. Besides, the more the difference between the original model and

transitional model, the more the computation time it takes.

74

Table 6. Number of incremental iteration and the time required for the constrained
optimization of different models

Model

Num.
of

vertice
s

Num.
of

faces

Num. of
distance

constraint
s

Num. of
angle

constraint
s

Num. of
planar

constraint
s

Total
Num. of

constraints

Num. of
incrementa
l iteration

Time
(s)

Lego in Fig. 9 712 1420 80 160 882 1122 1 25.2
Lego in Fig. 14a 353 702 64 132 406 602 1 20.1
Lego in Fig. 14b 353 702 64 132 406 602 1 22.4
Lego in Fig. 14c 353 702 64 132 406 602 1 24.9
Gamepad in Fig. 15 7922 15891 322 1030 5546 6898 3 526.2

Socket in Fig. 17 866 1776 40 259 1428 1727 1 63.2
Gear train in Fig. 20 964 1911 112 216 1598 1926 3 546.1

Gear train in Fig. 21 964 1911 112 216 1598 1926 3 677.0
Gear train in Fig. 22 964 1911 112 216 1598 1926 3 691.3
Gear train in Fig. 24 1613 3222 902 1007 1645 3554 3 1134.1

Phone case in Fig.
28

4772 9576 928 1671 2852 5451 3 925.6

Figure 40. Constrained Optimization without Incremental method for a gear model is
unsuccessful. The deformed gears are not symmetric and the gear train will not work
properly.

75

Transitional Model

 Final Model

Original Model

Figure 41. Incremental Constrained Optimization that use an interpolated model as
new target model

Figure 42. Incremental Constrained Optimization that use final model from the
incremental previous optimization as initial guess for the optimization.

76

 Final Model

 Final Model

Transitional Model

Transitional Model

Original Model

Original Model

Figure 43. Comparison of deformation with and without incremental constraints
retained deformation of the gamepad model in Figure 15. No collapsed face is
obtained using the incremental method.

6.4 Comparison

In this section, we give some comparisons between our method and other

deformation methods. In Figure 44, we give a comparison on the stretching effect of a

model. The original model is shown in Figure 44(a). By applying simple space

deformation (2x2x2 FFD), the result in Figure 44(b) showed that the shape and

dimensions of the cylinder cannot be retained. In Figure 44(c), by applying the linear

rotation-invariant coordinates on mesh representation presented in [12] which is a

detail preserving technique, the result showed that the shape and dimensions of

cylinder cannot be preserved too. In Figure 44(d), the result of our method showed

that it preserves the exact shape and dimensions of the cylinder while the block is

stretched.

77

without incremental with incremental

Figure 44. Comparison between our method and other deformation methods. (a) The
original model and the stretching direction (b) The result of 2x2x2 FFD (c) The result
of applying the linear rotation-invariant coordinates on mesh representation (d) The
result of our method

In Figure 45, a comparison on the bending effect on a cylinder of a model is

presented. The original model is shown in Figure 45(a). By applying simple space

deformation (2x2x2 FFD), the result in Figure 45(b) shows that the shape and

dimensions of the cylinder cannot be retained. In Figure 45(c), by applying linear

rotation-invariant coordinates on mesh representation, fixing the surrounding faces of

the block, and using the top circular face of the cylinder as the handle, the result

showed that the dimensions of the cylinder cannot be preserved. In Figure 45(d), by

applying the same detail preserving technique and fixing all faces of the block, and

using the top circular face of the cylinder as the handle, the result showed that the

shape and dimensions of cylinder cannot be preserved too. In Figure 45(e), the result

of our method showed that it generates the elliptic intersection between the cylinder

and the base, and maintains the dimensions of the cylinder. Moreover, the iWIRES

method does not allow bending on the constrained features.

78

(a) (b) (c)

 (d) (e)

Fixed Region Handle Region

(a) (b)

(c) (d)

(c) (d)

.

Figure 45. Comparison between our method and other deformation methods. (a) The
original model (b) The result of simple space deformation (2x2x2 FFD) (c) The result
of including linear rotation-invariant coordinates in the mesh representation (d)
Another result of using linear rotation-invariant coordinates in the mesh
representation (e) The result of our method

79

 (c) (d)

(a) (b)

 (e)

Fixed Region

Handle Region

Fixed Region

Handle Region

Elliptic Intersection

(a) (b)

(c) (d)

(e)

Figure 46. Comparison between our method and iWIRES. (a) The original model (b)
The result of iWIRES (e) The result of our method

In Figure 46, a comparison on the ability to retain the angle constraint between

the top faces of two cylinders is presented. The original model is shown in Figure

46(a). By bending the object downward, the result of iWIRES is shown in Figure

46(b). It shows that the angle between the top face of the two cylinders cannot be

retained, because iWIRES cannot provide angle constraints between faces and all its

constraints are constructed through the model edges. In Figure 46(c), the result of our

method shows that it retains the shape of the cylinders and it c preserves the angle

between the top faces of the two cylinders.

80

(a) (b) (c)

Figure 47. Comparison between our method and other deformation methods. (a) The
original model (b) The result of simple space deformation (20x20x20 FFD) (c) The
result of applying the linear rotation-invariant coordinates on mesh representation (d)
The result of our method

In Figure 47, a comparison with the free form deformed model is shown. The

original model is shown in Figure 47(a). By applying simple space deformation

(20x20x20 FFD), the result in Figure 47(b) shows that the shape and dimensions of

the cylinder cannot be retained. In Figure 47(c), by fixing the vertices of the waving

lower block, preserving the surface detail of those three blocks, and applying linear

rotation-invariant coordinates on mesh representation, the result shows that the shape

and dimensions of those three blocks cannot be preserved. In Figure 47(d), the result

of our method shows that it preserves the exact dimensions of the rectangular blocks

and retains the waving effect of the base block. Besides, the iWIRES method does not

allow free form deformation on the constrained features.

7. FURTHER WORK AND CONCLUSIONS

7.1 Recommendation for Further Work

Laplacian operator is a different surface representation that can be used to

preserve surface details in a deformation process. In contrast to the traditional global

Cartesian coordinates which only provides the spatial locations of points, Laplacian

operator carries information about the local shape of surface, the size and orientation

of local details. Defining operations on mesh surfaces try to preserve such a
81

(a) (b)

(c) (d)

(a) (b)

(c) (d)

differential representation results in detail preserving operations. If the Laplacian

operator is adopted in the proposed system, the shape or surface detail after a

deformation can be retained. This may also be used to obtain a smoother transitional

surface between the constrained part and unconstrained part of a model, and which is

useful for free-form mesh editing.

In the current system, incremental deformation method has been adopted in the

optimization. In each iteration, if the optimization fails, the system will try to generate

a new interpolated model which will be used as the target model for the next

optimization. However, a failed optimization usually takes longer computation time

than a successful optimization. So it would be better if we can find a predefined step

size for the optimization that can make sure the optimization will not fail. It means the

system will not need to spend times on some optimizations that will fail. This will

improve the computational speed of the method, and the qualities of the final models.

The predefined step size may be related to the amount of constraints violations on the

given target model. By generating an interpolated model with increasing step size,

while checking if constraint violations exist on this interpolated model based on the

provide constraints, the process can be repeated until the amount of constraint

violation reach a pre-defined level. This interpolated model can then be used to

perform constraint optimization. The result can be used as the initial guess for the

next optimization. In each iteration, the allowed number of constraint violation is

increased to allow the system to generate models that are closer to the original

transitional model. The optimization process is repeated with increasing number of

allowed constraint violation until the interpolated model is to the same as the

transitional model. The last incremental optimization result will then give a model

closest to the original transitional model and with all constraints satisfied.

Because of the nonlinear property of the constraints adopted in the system, the

speed of the current method is relatively slower than common shape preserving

deformation techniques that usually assume linear constraints in their problems. In

order to improve the computation speed of the system, parallel processing for

nonlinear optimization may be useful in this case. This will require breaking down the

problem into different parts, and then solving each part with its own optimization

process. It will improve the computational speed of the method.

82

Although this system provides constraints on planes to prevent triangles from

overlapping on the same plane, self-intersections of the mesh have not been

considered. More constraints are required to avoid self-intersection in the

deformation. It is expected that by extending the existing method to 3D, a general

approach for preventing self-intersections in a deformation may be obtained.

7.2 Conclusions

In this thesis, we have proposed a framework for retaining feature in a

deformation. Firstly, a deformed object is obtained with common deformation

techniques such as FFD and axial deformation. Secondly, features defined with

parametric expressions are grouped into systems of primitive constraints based on

user specification. Finally, features are reconstructed by the use of optimization

technique.

Primitive constraints can be distance and angle constraints between points, lines

and faces. Besides, a structural constraint constructed from a group of constraints

would be better specified relative to a reference datum for all its component

constraints. Reference vectors and reference points are used as tools to specific more

complex constraints.

Incremental deformation is adopted to eliminate possible collapsing faces and

optimization failures. Features are reconstructed by the use of non-linear optimization

technique. Besides, this work can be implemented along with common deformation

techniques. Examples have been given on maintaining individual engineering

features, pattern between engineering features and relationship between engineering

features. Finally, analyses have been performed on the factors affecting the

performances of our constrained deformation approach.

83

REFERENCES

[1] Venkat, A. and Sam, A.: Feature-based modeling approaches for integrated
manufacturing: state-of-the art survey and future research directions.
International Journal of Computer Integrated Manufacturing, 8 (6), 411–440,
1995.

[2] Huikang K. Miao, Nandakumar Sridharan and Jami J. Shah: CAD-CAM
integration using machining features. International Journal of Computer
Integrated Manufacturing, 15 (4), 296–318, 2002.

[3] Houa, M. and Faddis, T. N.: Automatic tool path generation of a feature-based
CAD/CAPP/CAM integrated system. International Journal of Computer
Integrated Manufacturing, 19 (4), 350–358, 2006.

[4] Sederberg, T. W., and Parry, S. R.: Free-form deformation of solid geometric
models. In Proc. of ACM SIGGRAPH, 151–160, 1986.

[5] Coquillart, S.: Extended free-form deformation: A sculpturing tool for 3D
geometric modeling. In Proc. of ACM SIGGRAPH, 187–196, 1990.

[6] Milliron, T., Jensen, R. J., Barzel, R., and Finkelstein, A.: A framework for
geometric warps and deformations. ACM Trans. Graph, 21 (1), 20–51, 2002.

[7] Floater, M. S.: Mean value coordinates. Computer Aided Geometric Design,
20, 1, 19–27, 2003.

[8] Botsch, M., and Kobbelt, L.: Real-Time Shape Editing using Radial Basis
Functions. In Proc. of Eurographics, 483–491, 2005.

[9] Ju, T., Schaefer, S., and Warren, J.: Mean value coordinates for closed
triangular meshes. ACM Trans. Graph, 24 (3), 561–566, 2005.

[10] Angelidis, A., Cani, M.-P., Wyvill, G., and King, S.: Swirling-sweepers:
Constant-volume modeling. In Proc. of Pacific Graphics, 10–15, 2004.

[11] Von Funck, W., Theisel, H., and Seidel, H.-P.: Vector field based shape
deformations. ACM Trans. Graph, 25, 3, 2006.

[12] Lipman, Y., Sorkine, O., Levin, D., and Cohen-Or, D.: Linear rotation-
invariant coordinates for meshes. ACM Trans. Graph. 24 (3), 479–487, 2005.

[13] Sumner, R. W., Schmid, J., and Pauly, M.: Embedded deformation for
shape manipulation. ACM Trans. Graph, 26, 3, 2007.

[14] Botsch, M., Pauly, M., Wicke, M., and Gross, M.: Adaptive space
deformations based on rigid cells. In Proc. Of Eurographics, 339–347, 2007.

[15] Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T.: Harmonic
coordinates for character articulation. ACM Trans. Graph, 26 (3), 71, 2007.

[16] Lipman, Y., Levin, D., and Cohen-Or, D.: Green coordinates. ACM Trans.
Graph, 27, 3, 2008.

[17] Botsch, M., Pauly, M., Gross, M., and Kobbelt, L.: PriMo: Coupled prisms
for intuitive surface modeling. In Proc. of Sym. on Geometry Processing, 11–
20, 2006.

[18] Popa, T., Julius, D., and Sheffer, A.: Interactive and linear material aware
deformations. In Proc. of Shape Modeling International, 13 (1), 73–100, 2007.

[19] Kraevoy, V., Sheffer, A., Cohen-Or, D., and Shamir, A.: Non-homogeneous
resizing of complex models. ACM Trans. Graph, 27 (5), #111, 2008.

[20] Wang, K. P., and Zhang, C. M.: Content-aware model resizing based on
surface deformation. Computers & Graphics, 33, 433–438, 2009.

[21] Botsch, M., and Kobbelt, L.: Multiresolution surface representation based
on displacement volumes. In Proc. of Eurographics, 483–491, 2003.

84

[22] Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., and Shum, H.-Y.:
Large mesh deformation using the volumetric graph Laplacian. ACM Trans.
Graph, 24 (3), 496–503, 2005.

[23] Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S., Bao, H., Guo,
B., and Shum, H.-Y.: Subspace gradient domain mesh deformation. ACM
Trans. Graph, 25 (3), 1126–1134, 2006.

[24] Shi, X., Zhou, K., Tong, Y., Desbrun, M., Bao, H., and Guo, B.: Mesh
puppetry: cascading optimization of mesh deformation with inverse
kinematics. ACM Trans. Graph, 26, 3, 2007.

[25] Au, O. K.-C., Fu, H., Tai, C.-L., and Cohen-Or, D.: Handle-aware isolines
for scalable shape editing. ACM Trans. Graph, 26, 3, 83, 2007.

[26] Lipman, Y., Cohen-Or, D., Gal, R., and Levin, D.: Volume and shape
preservation via moving frame manipulation. ACM Trans. Graph, 26, 1, 2007.

[27] Xu, W., Wang, J., Yin, K., Zhou, K., Van De Panne, M., Chen, F., Guo, B.:
Joint-aware manipulation of deformable models. In Proc. of ACM
SIGGRAPH, 1–9, 2009.

[28] Welch, W., and Witkin, A.: Variational surface modeling. In Proc. of
SIGGRAPH, 26, 157–166, 1992.

[29] Masuda, H., Yoshioka, Y., and Furukawa, Y.: Preserving form features in
interactive mesh deformation. Computer Aided Design, 39 (5), 361–368, 2007.

[30] Masuda, H., and Ogawa, K.: Application of interactive deformation to
assembled mesh models for CAE analysis. In ASME Int. Design Engineering
Technical Conferences, 2007.

[31] Cabral, M., Lefebvre, S., Dachsbacher, C., and Drettakis, G. Structure
preserving reshape for textured architectural scenes. In Proc. of Eurographics,
469–480, 2009.

[32] Gal, R., Sorkine, O., Mitra, N. J., and Cohen-Or, D.: iWIRES: An analyze-
and-edit approach to shape manipulation. ACM SIGGRAPH Trans. Graph, 28,
3, #33, 1–10, 2009.

[33] Dantzig, G. B.: Linear Programming and Extensions. Princeton, NJ:
Princeton University Press, 1949.

[34] Davidon, W. C.: Variable metric method for minimization, Technical
Report ANL–5990 (Revised). Argonne National Laboratory, Argonne, IL,
1959.

[35] Nocedal, J. and Wright, S. J.: Numerical Optimization1999. New York:
Springer-Verlag, 1999.

[36] Forsgren, A., Gill, P. E., Wright, M. H.: Interior methods for nonlinear
optimization. SIAM Review, 44(4), 525–597, 2002.

[37] Klee, V., Minty, G. J., and Shisha, O.: How Good is the Simplex
Algorithm? In Inequalities 3. New York: Academic Press, 159-175, 1972.

[38] Karmarkar, N.: A New Polynomial-time Algorithm for Linear
Programming. Combinatorica 4, 373 P. E. 395, 1984.

[39] Wilson, R: A Simplicial Method for Convex Programming. PhD thesis,
Harvard University, 1963.

[40] Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Res.
Logist. Quar., vol. 3, 95–110, 1956.

[41] Drud, A.: CONOPT – A Large-Scale GRG Code. ORSA Journal on
Computing 6, 207–216, 1992.

[42] Fletcher, R., Leyffer, S.: User manual for filtersqp. Technical Report
NA/181,Dundee, Scotland, 1998.

85

[43] Gill, P. E., Murray, W.: SNOPT: An SQP algorithm for large-scale
constrained optimization. SIAM Journal on Optimization, 12:979–006, 2002.

[44] Drud, A.: CONOPT: A GRG code for large sparse dynamic nonlinear
optimization. Mathematical Programming 31,153–191, 1985.

[45] B. A. Murtagh and M. A. Saunders. MINOS 5.4 user's guide. Technical
report, SOL, 83-20R, Systems Optimization Laboratory, Stanford University,
1983. Revised, 1995.

[46] Conn, A. R., Gould, G. I. M., and Toint, P. L. : LANCELOT: a Fortran
package for Large-scale Nonlinear Optimization (Release A). Springer Series
in Computational Mathematics. Springer Verlag, Heidelberg, Berlin, New
York, 1992.

[47] Vanderbei, R.J., Shanno, D. F.: An interior point algorithm for nonconvex
nonlinear programming. Computational Optimization and Applications,
13:231–252, 1999.

[48] Andersen, E.D., Andersen, K.D.: The MOSEK interior point optimizer for
linear programming: an implementation of the homogeneous algorithm. In H.
Frenk, K. Roos, T. Terlaky, and S. Zhang, editors, High Performance
Optimization, pages 197-232, Dordrecht, The Netherlands, Kluwer Academic
Publishers, 2000.

[49] Betts, J., Eldersveld, S. K., Frank, P. D., Lewis, J. G.: An interior-point
nonlinear programming algorithm for large scale optimization. Technical
report MCT TECH-003, Mathematics and Computing Technology, The
Boeing Company, P.O. Box 3707, Seattle WA 98124-2207, 2000.

[50] Wächter, A., Biegler, L. T.: On the implementation of a primal-dual interior
point filter line search algorithm for large-scale nonlinear programming.
Technical Report RC 23149, IBM T. J. Watson Research Center, Yorktown
Heights, NY, USA, March, 2004.

[51] Byrd, R., Nocedal, J., Waltz, R.: Knitro: An integrated package for
nonlinear optimization, Technical Report 18, Optimization Technology
Center, Evanston, IL, 2005.

86

	REFERENCES

