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ABSTRACT

We provide an exposition of J. Milnor’s proof of the h-Cobordism Theorem. This theorem

states that a smooth, compact, simply connected n-dimensional manifold W with n ≥ 6,

whose boundary ∂W consists of a pair of closed simply connected (n− 1)-dimensional man-

ifolds M0 and M1 and whose relative integral homology groups H∗(W,M0) are all trivial, is

diffeomorphic to the cylinder M0 × [0, 1]. The proof makes heavy use of Morse Theory and

in particular the cancellation of certain pairs of Morse critical points of a smooth function.

We pay special attention to this cancellation and provide some explicit examples. An impor-

tant application of this theorem concerns the generalized Poincaré conjecture, which states

that a closed simply connected n-dimensional manifold with the integral homology of the

n-dimensional sphere is homeomorphic to the sphere. We discuss the proof of this conjecture

in dimension n ≥ 6, which is a consequence of the h-Cobordism Theorem.
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Chapter 1

1 Introduction

One fundamental problem in mathematics is the problem of classification. In order to under-

stand the structures that we study, it helps to have theorems which give us a way to contruct

examples or to find obstructions preventing two objects from being the same. Examples ap-

pear in many areas of mathematics. For instance, in Algebra an important problem that

was solved recently was to classify all finite simple groups up to isomorphism. For topology

in particular, classification plays a central role. Given two topological spaces, we want an

easy way to tell if they are homeomorphic. If the spaces are smooth manifolds and there-

fore have a differental structure, then we might also ask if they are diffeomorphic. Both of

these are quite difficult questions. We could instead loosen our criteria and ask if the spaces

are merely homotopy equivalent. However even this presents a problem. Spaces that are

homotopy equivalent have isomorphic fundamental groups π1, so we must first be able to

classify these groups. However, every finitely presented group G is the fundamental group

for some manifold and it is known that classifying finitely presented groups is an unsolvable

problem [1]. It may seem that there’s no hope for a solution to the classification problem,

but we can still obtain partial results.

In dimensions 1 and 2, classifying manifolds is not difficult. For dimension 1, the only

closed connected manifold is the circle S1. Dimension 2 is more interesting: we have the

sphere S2, the torus T 2, the projective plane RP2 and others, yet a complete classification

is known [2]. In fact every closed connected 2-manifold is the connected sum of a collection

of copies of T 2 and RP2, and the only one that is simply connected is the sphere S2. Un-

fortunately for higher dimensions the problem is much more difficult. In 1904, in his paper

“Cinquième complément à l’analysis situs” [3], Henri Poincaré put forward the question: is

the only simply connected closed 3-manifold is the 3-sphere S3? This remained an open

question for about one hundred years and the assumption that the answer is ‘yes’ became
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known as the Poincaré Conjecture. Poincaré himself showed that the assumption of simple

connectivity is necessary by constructing the manifold known as the Poincaré dodecahedral

sphere [3]. This manifold is a closed 3-manifold with the same homology as S3, yet has

fundamental group π1 of order 120. Hence this space is not even homotopy equivalent to S3.

Reaching further into higher dimensions, the Generalized Poincaré Conjecture (GPC) was

formulated as follows:

Generalized Poincaré Conjecture: If a simply connected, closed n-manifold has the

same homology groups as the n-sphere Sn, then it is homeomorphic to Sn.

Almost parodoxically, it turns out that working in higher dimensions made the problem

easier, and in 1962, Stephen Smale [4] proved the GPC for smooth manifolds for dimensions

n ≥ 5, though this result was quickly improved to topological manifolds through the work of

John Stallings [5] and Christopher Zeeman [6]. Smale’s original proof involved expressing a

manifold as a collection of handles, making what is called a handlebody. He proceeded to show

that under certain conditions some of the handles could cancel each other out, eventually

proving what is known as the h-Cobordism Theorem. In 1965, John Milnor translated his

proof into the language of Morse functions and critical points [7]. This paper follows Milnor’s

ideas.

Other results have been discovered since Smale’s work. In 1982, Michael Freedman [8]

proved the GPC for manifolds of dimension 4, though he had to use very different methods

since a 4-dimensional version of the h-Cobordism Theorem turns out to be false. Even more

recently in 2002 and 2003, Grigori Perelman posted three papers on the arXiv [9] [10] [11],

giving the final pieces of the proof of Poincaré’s original conjecture. His proof used the

Ricci flow developed by Richard Hamilton [12] and was general enough to prove the stronger

Geometrization Conjecture of William Thurston [13], giving a geometric characterization of

closed 3-manifolds.

In the early years of topology, it was generally assumed that homeomorphic smooth

manifolds are in fact diffeomorphic since continuous maps can be approximated by smooth
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ones. For dimensions lower than 3 it is true [14] [15], however in dimensions 4 and above

there are counterexamples. In fact in 1987 Clifford Taubes [16] showed that even R
4 itself has

uncountably many distinct smooth structures, though this is the only dimension in which

this occurs. Therefore we can consider the stronger question of whether the GPC holds

with homeomorphic replaced by diffeomorphic. Smale’s work does in fact prove that for

dimensions 5 and 6 the smooth GPC is true. However, even before the GPC was proven, in

1956 Milnor [17] discovered a 7-manifold Σ7 that is homeomorphic to the 7-sphere S7, but

not diffeomorphic to S7. Such a manifold is known as an exotic sphere, and they exist in

most dimensions higher than 7. It is still an open question whether or not the smooth GPC

holds in dimension 4.
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Chapter 2

2 Background Material

Our primary objects of study are smooth manifolds. Topology allows us to generalize

the concept of continuity. In order to generalize differentiation we consider spaces that

locally look like Euclidean space in such a way that local neighborhoods match smoothly on

overlaps.

Definition 2.1. An n-dimensional manifold (or simply a n-manifold) is a topological space

M with a collection S of pairs (U, φ) of open sets U ⊆ V and maps φ : U → R
n
+ where

R
n
+ = {(x1, . . . , xn) ∈ R

n : xn ≥ 0} such that

(1) for (U, φ) ∈ S, φ maps U homeomorphically onto an open subset of Rn
+,

(2) the sets U such that (U, φ) ∈ S form a cover of M ,

(3) If (U, φ), (V, ψ) ∈ S then the map φψ−1 : ψ(U ∩ V ) → R
n
+ is smooth,

(4) The collection S is maximal under inclusion among collections satisfying the other

conditions.

Each set U is called a coordinate neighborhood and φ is a coordinate map or coordinate

chart. The collection S is called a smooth structure on M . As in the case of topological

spaces where we rarely name the topology, the smooth structure is usually left unnamed.

For the most part, we can also ignore condition (4) as a cover of coordinate neighborhoods

will uniquely determine the whole smooth structure [18].

We frequently abbreviate the phrase “M is an n-manifold” by “Mn is a manifold”. The

set of points of Mn that do not have neighborhoods homeomorphic to R
n is called the

boundary of M . The boundary is denoted ∂M and turns out to be an (n− 1)-manifold.

Given two manifolds Mm and Nn and a map f :M → N we will discuss what it means

for f to be differentiable. At a point p ∈ M , consider a coordinate neighborhood (U, φ) of

p and a coordinate neighborhood (V, ψ) of f(p). If the map ψfφ−1 : Rm → R
n is smooth

at φ−1(p) then f is differentiable at p. If f is differentiable at each p ∈ M , then f is simply
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called differentiable or smooth. A bijective smooth map f :M → N with a smooth inverse is

a diffeomorphism and the manifoldsM,N are said to be diffeomorphic. Two diffeomorphisms

f0, f1 :M → N are isotopic if there is a smooth map f :M×I → N such that f0(p) = f(p, 0)

and f1(p) = f(p, 1) and for each t ∈ I the map ft(p) = f(p, t) is a diffeomorphism.

Although many of the definitions and results hold in general, we will restrict our at-

tention to compact manifolds. A compact manifold with empty boundary is called a closed

manifold. Given two closed n-manifoldsM0 andM1, a cobordism between them is an (n+1)-

manifold W such that the boundary ∂W is the disjoint union M0 ⊔M1. Figure 2.1 shows

an example of a cobordism between two 2-manifolds. If such a cobordism exists we say that

M0 and M1 are cobordant. As we will be using cobordisms frequently, we will call the triple

(W,M0,M1) a triad. Two triads (W,M0,M1) and (W ′,M0,M1) are equivalent if there exists

a diffeomorphism from W to W ′ that is the identity on M0 and M1.

W

M1

M0

Figure 2.1: The “pair of pants” cobordism between two circles and one circle.

We mainly wish to study critical points of smooth real valued function on these triads.

A point p ∈ W is a critical point of a smooth function f : W n → R if there is a coordinate

neighborhood (U, φ) of p where ∂fφ−1

∂xi
(p) = 0 for i = 1, . . . , n. As a result of the chain rule, this
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condition is independent of coordinate chart and we usually write ∂f

∂xi
(p) for ∂fφ−1

∂xi
(p). Such

a critical point is degenerate if det
(

∂2f

∂xi∂j
(p)

)

n×n
= 0. Again this condition is independent

of coordinate chart. Near non-degenerate critical points, a smooth function is well behaved.

In fact, Marston Morse [19] discovered in 1934 that near a non-degenerate critical point, a

smooth function can take the form of a quadratic polynomial.

Theorem 2.1 (Morse Lemma). If f :M → R is a smooth function and p a non-degenerate

critical point of f , then there is a coordinate neighborhood U of p and a nonnegative integer

λ such that for points with coordinates (x1, . . . , xn) in U , the function f is given by

f(x1, . . . , xn) = f(p)− x21 − · · · − x2λ + x2λ+1 + · · ·+ x2n

The λ given in the lemma is independent of the choice of coordinate neighborhood of p

for which f has a quadratic form. We call λ the Morse index of p and denote it index(p). If

all critical points of a smooth function f are non-degenerate, f is called a Morse function.

For a triad (W,V0, V1), we restrict our attention to Morse functions f : W → [0, 1] such

that f−1(0) = V0, f
−1(1) = V1 and no critical point of f lies on either M0 or M1. The

form of f in a quadratic chart of p prevents any other point in the neighborhood from being

a critical point, and so a non-degenerate critical point is isolated. This also means that a

Morse function on a compact manifold can only have finitely many critical points.

Given a closed manifold M , we denote by C∞(M) the set of all smooth real valued

functions onM . We can define a topology on C∞(M) by considering a finite cover {(Uα, φα)}

of coordinate charts on M with a closed cover {Cα} where Cα ⊆ Uα for each α. For brevity,

if f ∈ C∞(M) we denote fα = fh−1
α . For a neighborhood base of f , we take the sets

N(f, δ) =
{

g ∈ C∞(M) :∀α, 1 ≤ i, j ≤ n, |fα − gα| < δ,
∣

∣

∣

∣

∂fα
∂xi

−
∂gα
∂xi

∣

∣

∣

∣

< δ,

∣

∣

∣

∣

∂2fα
∂xi∂xj

−
∂2gα
∂xi∂xj

∣

∣

∣

∣

< δ
}
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This will form a topology on C∞(M) called the C2 topology. Its importance here is that

the subset Morse(M) of all Morse functions M is open and dense in C∞(M) under the C2

topology [7]. Using this fact, we can show that every triad (W,M0,M1) has a Morse function.

We define the Morse number of a triad to be the minimum number of critical points over all

Morse functions on the triad, denoted µ(W,M0,M1).

The smooth structure on a manifolds allows us to define tangent vectors at a point,

and therefore a vector field which associates each point in the manifold with a vector based

at that point. A gradient-like vector field for a Morse function f on a triad (W,M0,M1)

is a vector field ξ on W such that the directional derivative at any non-critical point is

ξ(f) > 0, and at any critical point p of f , there is a coordinate chart about p such that f

has the form f(x1, . . . , xn) = f(p) − x21 − · · · − x2λ + x2λ+1 + · · ·+ x2n and ξ has coordinates

(−x1, . . . ,−xλ, xλ+1, . . . , xn). Once we have a gradient-like vector field, we can use techniques

from differential equations to get curves φ : [a, b] → W such that d
dt
(f ◦ φ) = ξ(f) which we

call integral curves. If the Morse number of a triad (W,M0,M1) is zero, then every point of

W lies on a unique integral curve starting in M0. Hence we can construct a diffeomorphism

W ∼= M0 × I so that the triad is equivalent to the product (M0 × I,M0 × {1},M0 × {0}).

We call such a triad a product cobordism. From this result, we get a couple of useful tools in

the following two lemmas.

Lemma 2.2 (Collar Neighborhood). Let W be a compact manifold with boundary. There

is a “collar” neighborhood of ∂W diffeomorphic to ∂W × [0, 1).

Lemma 2.3 (Bicollar Neighborhood). Let W be a compact manifold and M ⊆ W \ ∂W

a closed submanifold such that every component of M separates W (if C is a component

of M then W \ C is disconnected). Then there is a “bicollar” neighborhood of M in W

diffeomorphic to M × (−1, 1) such that M corresponds to M × 0.

Using these lemmas, if we have two triads (W,M0,M1) and (W ′,M ′

1,M
′

2) with a diffeo-

morphism h :M1 → M ′

1, we can glue them together to get a triad (W ∪h W
′,M0,M

′

2) as in

Figure 2.2. This also implies that cobordism is an equivalence relation on closed manifolds.
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W

W ′

M0

M1

M ′

1

M ′

2

↑ h

Figure 2.2: Gluing cobordisms W and W ′ with collar neighborhoods.

With some more work with integral curves, we can also strengthen this result so that if we

have Morse functions f and f ′ on W and W ′ respectively and gradient-like vector fields

ξ and ξ′ associated with them, we can piece f and f ′ together into a Morse function g on

W ∪hW
′ and similarly piece together ξ and ξ′ to get a gradient-like vector field for g. A triad

that has a Morse function with only one critical point is called an elementary cobordism, and

by the previous statement, any triad can be decomposed into elementary cobordisms that

glue back together into the original triad. The index of the critical point in an elementary

cobordism is in fact independent of the Morse function, and so we can define the index of

the elementary cobordism to be the index of the critical point.

Now consider an elementary cobordism (W n,M0,M1), a Morse function f : W → [0, 1]

with one critical point p with index λ, and ξ a gradient-like vector field for f . Suppose

f(p) = c. For small ǫ we set Vǫ = f−1(c+ǫ). There is an ǫ > 0 and a coordinate neighborhood

(U, g) such that g : Dn
2ǫ → U and (f ◦g)(x,y) = c−|x|2+|y|2. Setting φ : Sλ−1×Dn−λ → V−ǫ

as φ(u, θv) = g(ǫu cosh θ, ǫv sinh θ) for u ∈ Sλ−1, v ∈ Sn−λ−1, and 0 ≤ θ ≤ 1, we define the

characteristic embedding φL : Sλ−1×Dn−λ → V0 by following integral curves of ξ back to V0.

The lower sphere SL(p) is the image φL(S
λ−1 × 0) and the lower disk DL(p) is the union of
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the integral curves from SL(p) to p. The characteristic embedding φU : Dλ × Sn−λ−1 → V1,

upper sphere SU(p), and upper disk DU(p) are defined similarly. The embedding φ also

p
DU

DL

SU

SL

V0

V1

Figure 2.3: A critical point p with upper and lower spheres.

allows us to prove the following lemma which will help us make the connection between the

critical points of a Morse function and the homology of W

Lemma 2.4. Let (W,V0, V1) be a triad and f a Morse function on W with one critical

point p of index λ. If DL is the lower disk of p then V ∪ DL is a deformation retract of

W . Consequently the homology Hk(W,V0) is only nonzero for k = λ where it is Z with a

generator represented by DL.

V0 V0

V1

V1

DL

Figure 2.4: Retraction from W to V0 ∪DL

This lemma is easily seen by considering the embedding φ shown in Figure 2.4 and
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defining the retraction by following the integral curves backward until either we reach V0 or

a small neighborhood of DL after which we move to DL.

Elementary cobordisms also have a strong connection to surgery. Given a manifoldMn−1

and an embedding φ : Sλ−1×Dn−λ →M we denote by χ(M,φ) the manifold obtained from

the disjoint union (M − φ(Sλ−1 × 0)) ∪ (Dλ × Sn−λ−1) by identifying φ(u, θv) with (θu, v)

for u ∈ Sλ−1, v ∈ Sn−λ+1, and θ ∈ (0, 1). Any manifold diffeomorphic to χ(M,φ) is said to

be obtained from M by a surgery of type (λ, n− λ). In essence, we removed an embedded

sphere of dimension λ−1 and replaced it with an embedded sphere of dimension n−λ−1. If

M ′ is obtained from M by surgery of type (λ, n−λ), then there is an elementary cobordism

(W,M,M ′) with index λ.

Dλ × Sn−λ−1

Sλ−1 ×Dn−λ

M ′

M

Figure 2.5: Surgery on M using cobordism.

We will also need to make use of transversality in later sections. Two submanifolds M,N

of a manifold V intersect transversely if at every point p ∈M ∩N the tangent space TpV is

spanned by the tangent spaces TpM and TpN . Note that if the sum of the dimensions of M

and N is less than the dimension of V , this condition is impossible, so in this case M and

N intersect transversely if and only if they are disjoint.
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Chapter 3

3 Rearranging Critical Points

In order to simplify things, it would be helpful to be able to reorder the critical points of a

Morse function. In other words, if we have a Morse function f on a cobordism (W,V0, V1)

with critical points p, q and f(p) < f(q), is it possible to deform f into a new Morse function

f ′ for which f ′(q) > f ′(p)? It turns out that it depends on the relative indices of the critical

points. Given a gradient-like vector field, Kp denotes the set of all points on integral curves

leading to or from p, and Kq is the corresponding set for q.

Theorem 3.1. Let (W,V0, V1) be a triad with a Morse function f : W → [0, 1]. Suppose

that f has exactly two critical points p, q and Kp ∩ Kq = Ø for some gradient-like vector

field ξ. Then for any choice of a, b ∈ (0, 1) there exists a Morse function g such that

a) the vector field ξ is a gradient-like vector field for g,

b) the critical points of g are also p, q, yet g(p) = a and g(q) = b, and

c) near V0 ∪ V1 the functions g and f agree, yet g = f + cp near p and g = f + cq near q

for constants cp, cq.

V1

V0

p

q

Figure 3.6: The sets Kp and Kq.

Proof Set K = Kp ∪Kq. Any integral curve through points not in K cannot pass through

p or q. Since there are no other critical points, such an integral curve must go from V0 to V1.

We can define a function π : W \K → V0 by assigning to each point in W \K the unique
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point of V0 we get by traveling back along integral curves. This function π will be smooth

and π(w) will be near K whenever w is near K. If µ : V0 → [0, 1] is any smooth function

that is zero in a neighborhood of Kp ∩ V0 and one in a neighborhood of Kq ∩ V0, then we

can extend to a smooth function µ̄ : W → [0, 1] by assigning µ̄(w) = µ(π(w)) for w 6∈ K,

µ̄(w) = 0 for w ∈ Kp, and µ̄(w) = 1 for w ∈ Kq. From real analysis there exists a smooth

function G : [0, 1]2 → [0, 1] with the properties:

(1) ∂G
∂x
(x, y) > 0 for all x, y,

(2) G(x, y) increases from 0 to 1 as x increases,

(3) G(f(p), 0) = a and G(f(q), 1) = b,

(4) G(x, y) = x for x near 0 and 1, and

(5) ∂G
∂x
(x, 0) = 1 for x near f(p) and ∂G

∂x
(x, 1) = 1 for x near f(q)

Defining g : W → [0, 1] by g(w) = G(f(w), µ̄(w)) will give us the desired Morse function.

Q.E.D.

This result shifts the question to what conditions guarantee that Kp and Kq are disjoint.

The following lemma gives us the tool we need to make this happen.

Lemma 3.2. LetM , N be submanifolds of a manifold V . IfM has a product neighborhood

in V , then there is a diffeomorphism h : V → V isotopic to the identity such that h(M) has

transverse intersection with N . Specifically, if dim(M) + dim(N) < dim(V ), then h(M) and

N are disjoint.

Proof Set m = dim(M), n = dim(N), and v = dim(V ). Let U be a product neighborhood

of M as in figure 3.7 and k : M × R
v−m → U be a diffeomorphism with k(M × {0}) = M .

Set N0 = U ∩ N and consider the map g = π ◦ k−1|N0
where π : M × R

v−m → R
v−m is the

projection. A manifold k(M × {x}) for any x ∈ R
v−m will not have transverse intersection

with N if and only if x = g(q) for a critcal point q ∈ N0 at which g does not have maximal

rank. By Sard’s Theorem [20], the image g(C) of the set C of critical points of g in N0

has measure zero in R
v−m. In particular there exists a point u ∈ R

v−m \ g(C). Hence the

submanifold k(M × {u}) has transverse intersection with N .

12



U

N

M

Figure 3.7: 1-dimensional submanifolds M and N in 3-dimensional V .

We have a smooth vector field ξ on R
v−m such that ξ(x) = u for |x| ≤ |u| and 0 for

|x| ≥ 2|u|. Since ξ has compact support and R
v−m has no boundary, the integral curves

ψ(t, x) are defined for all real t. Then ψ(0, x) is the identity on R
v−m, ψ(1, x) is a diffeo-

morphism mapping 0 to u, and ψ(t, x) is a smooth isotopy from ψ(0, x) to ψ(1, x). Setting

ht(w) = k(q, ψ(t, x)) for w = k(q, x) ∈ U and ht(w) = w otherwise, h = h1 is a diffeomor-

phism V → V with h(M) = k(M ×u) having transverse intersection with N and isotopic to

h0 = 1V as was desired.

Q.E.D.

Lemma 3.3. Let (W,V0, V1) be a triad with a Morse function f , gradient-like vector field

ξ, a non-critical level V = f−1(b), and a diffeomorphism h : V → V isotopic to the identity.

If f−1[a, b] contains no critical points, then there is a new gradient-like vector field ξ̄ for f

such that ξ̄ = ξ outside f−1(a, b) and φ̄ = h ◦ φ where φ and φ̄ are the diffeomorphisms

f−1(a) → V determined by following the trajectories of ξ and ξ̄.

Proof Normalize ξ by setting ξ̂ = ξ/ξ(f). By assumption, h is isotopic to the identity, so let

ht : V → V , t ∈ [a, b], be a smooth isotopy such that ht is the identity for t near a and ht = h

for t near b. Define the diffeomorphism H from [a, b] × V to itself by H(t, q) = (t, ht(q)).

Then ξ′ = (φ ◦ H ◦ φ−1)∗ξ̂ is a smooth vector field on f−1[a, b] that coincides with ξ̂ near
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f−1(a) and f−1(b) = V , yet ξ′(f) ≡ 1. Then the vector field ξ̄ equal to ξ(f)ξ′ on f−1[a, b]

and equal to ξ elsewhere is a smooth gradient-like vector field for f that satisfies the required

conditions.

Q.E.D.

Theorem 3.4. If p, q are critical points of f with f(p) < f(q), then on a given neighborhood

N of V = f−1(c) with f(p) < c < f(q), containing no critical points, we can alter the

gradient-like vector field so that the upper sphere of p and the lower sphere of q have

transverse intersection.

Proof Let SU be the upper sphere of p and SL the lower sphere of q in V . Since SU has

a product neighborhood in V , then by Lemma 3.2, there is a diffeomorphism h : V → V

isotopic to the identity such that h(SU) and SL have transverse intersection. Choose a

number a such that f−1[a, c] lies in the neighborhood N . Then as f−1[a, c] contains no

critical points, by Lemma 3.3, we can deform ξ into a new vector field ξ̄. Outside f−1(a, c),

the fields ξ̄ and ξ agree and if φ and φ̄ are the diffeomorphisms f−1(a) → V determined

by the integral curves of ξ and ξ̄ respectively, then φ̄ = h ◦ φ. Hence the upper sphere

SU of p under ξ is carried into h(SU) while the lower sphere SL of q is unaffected. Since

h(SU) ∩ SL = Ø, then ξ̄ is the required new gradient-like vector field.

Q.E.D.

Putting the previous theorem together with Theorem 3.1, we immediately get the follow-

ing.

Corollary 3.5. Let (W,V0, V1) be a triad with a Morse function f : W → [0, 1] and gradient-

like vector field ξ. If f has two critical points p, q with f(p) < f(q) and index(p) ≥ index(q),

then there is a new Morse function g on W with the same critical points as f still having ξ

as a gradient-like vector field but with g(q) < g(p).

In fact, since Theorem 3.1 allows us to choose the critical values, then if our Morse

function f has critical points p1, . . . , pn, we can alter f to a new Morse function g without
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changing the gradient-like vector field so that g(V0) = −1
2
, g(V1) = n + 1

2
, and g(pi) =

index(pi). Since having the critical points ordered in this way is very convenient, we will

frequently assume that this alteration has already been done and will call such a Morse

function self-indexing or nice. Figure 3.8 shows an example of a self-indexing Morse function

f with critical points p1 and p2 such that index(p1) = 0 and index(p2) = 1.

−1
2

0

1

n+ 1
2

...

W

V0

V1

−→
f

p1

p2

Figure 3.8: A self-indexing Morse function f .
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Chapter 4

4 Cancelling Critical Points

We now know that we can reorder the critical points of a Morse function in order of their

index. However, is it possible to alter a Morse function to eliminate a critical point alto-

gether? In figure 4.9 we see an example of a cobordism W where a Morse function given

by height would have two critical points, p with index 0 and q with index 1. However, W

is equivalent to the product cobordism V0 × [0, 1] which eliminates both critical points. We

want to find conditions for which this happens.

W

V0 × [0, 1]∼=

p

q

Figure 4.9: Equivalent cobordisms.

Let (W,V0, V1) be a triad and f a Morse function on W that has two critical points p

and q with consecutive indices λ and λ + 1. At a non-critical level V between p and q, we

know that the lower sphere SL(q) of q has dimension λ and the upper sphere SU(p) of p

has dimension n − λ − 1. Assuming the two spheres have transverse intersection, then the

intersection of them, if nonempty, must have dimension

dimSL(q) + dimSU(p)− dimV = λ+ (n− λ− 1)− (n− 1) = 0.
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Hence the spheres intersect in a number of isolated points. The simplest case is when there

is only one point of intersection.

Theorem 4.1. Let (W,V0, V1) be a triad, f a self-indexed Morse function on W and ξ a

gradient-like vector field for f . Assume f has only the critical points p, q with indices λ

and λ + 1 and such that the intersection of the right hand sphere SU(p) of p intersects the

left hand sphere SL(q) of q transversely at a single point. Then it is possible to alter ξ on

an arbitrarily small neighborhood of the single trajectory T from p to q to get a nowhere

zero vector field ξ′ that is a gradient-like vector field for a Morse function f ′ with no critical

points and agreeing with f near V0 ∪ V1.

Proof We know by the definition of the gradient-like vector field ξ there are charts

g1 : U1 → R
n and g2 : U2 → R

n about p and q with

(f ◦ g1)(x) = x21 − x22 − · · · − x2λ+1 + x2λ+2 + · · ·+ x2n

(f ◦ g2)(x) = −x21 − x22 − · · · − x2λ+1 + x2λ+2 + · · ·+ x2n

and on which ξ has coordinates (±x1,−x2, . . . ,−xλ+1, xλ+2, . . . , xn). We would like to have

a chart g : UT → Rn around the trajectory T that essentially extends g1 and g2 so that

p and q correspond to (0, . . . , 0) and (1, 0, . . . , 0). Under this chart ξ will have coordinates

(ν(x1),−x2, . . . ,−xλ,−xλ+1, xλ+2, . . . , xn) where ν is a smooth function as in Figure 4.10

that is positive on (0, 1), ν(0) = ν(1) = 0, negative elsewhere, and
∣

∣

∣

∂ν
∂x1

(x1)
∣

∣

∣
= 1 near

0 and 1. Doing this requires careful patching together of coordinate charts along T and

some analysis to make sure the charts match up smoothly near p and q. Full details are in

Milnor [7].

Let U be a neighborhood of T whose closure lies in UT . We want to show that there

is a smaller neighborhood U ′ of T contained in U such that no trajectory leads from U ′ to

outside U and back into U ′. Assume this is not true. Then there is a sequence of trajectories

T1, . . . , Tk, . . . where Tk goes from rk ∈ U ′ through sk ∈ W \ U and back to tk ∈ U ′ where
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{rk} and {tk} approach T . By compactness ofW \U , we may assume that {sk} is convergent

to a point s ∈ W \ U . Since s is not on T , the integral curve through s must meet either

V0 or V1 and without loss of generality, we’ll assume it meets V0. By continuity of integral

curves in their starting points, there is a neighborhood N of s such that there are trajectories

Tx through points x ∈ N from V0. Since T and all Tx are compact, under some metric on

W , we have that the least distance d(x) from Tx to T exists and depends continuously on

x. Since d(s) > 0, for some ǫ > 0 there is a neighborhood N ′ ⊆ N of s such that d(x) ≤ ǫ

for x ∈ N ′. By construction, rk ∈ Tsk for each k and rk approaches T as k → ∞. Therefore

d(sk) → 0. However, by continuity, sk → s implies d(sk) → d(s), contradicting d(s) 6= 0.

Therefore such a neighborhood U ′ must exist.

Figure 4.10: The functions ν and ν ′.

Let ν ′ : R2 → R be a smooth function like in Figure 4.10 such that ν ′(x1, 0) is negative

and ν ′(x1, ρ) = ν(x1) where ρ =
√

x22 + · · ·+ x2n outside a compact neighborhood of g(T )

contained in g(U ′). Consider the smooth vector field

η′(x) = (ν ′(x1, ρ),−x2, . . . ,−xλ,−xλ+1, xλ+2, . . . , xn)

on U . Then η′(x) extends to a nowhere zero vector field ξ′ on W . Integral curves of ξ′

satisfy dx1

dt
= ν ′(x1, 0),

dxi

dt
= −xi for 2 ≤ i ≤ λ + 1, and dxi

dt
= xi for λ + 2 ≤ i ≤ n
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on UT . Consider an integral curve x(t) = (x1(t), . . . , xn(t)) with intial value (x01, . . . , x
0
n).

Assume that one of the numbers x0i is nonzero for i ≥ λ + 2. Then we can solve the

differential equation dxi

dt
= xi to get xi(t) = x0i e

t. Since this grows exponentially, x(t) must

eventually leave the bounded set g(U). Otherwise, we have xλ+2 = · · · = xn = 0. The

solutions to the differential equations dxi

dt
= −xi give us that xi(t) = xie

−t for 2 ≤ i ≤ λ+1.

Therefore ρ(x(t)) = e−t
√

(x02)
2 + · · ·+ (x0λ+1)

2. If x(t) stays in g(U), then as ν ′(x1, ρ(x)) is

negative on the x1 axis, there is a δ > 0 such that ν ′(x1, ρ(x)) is negative on the compact

set Kδ = {x ∈ g(U) : ρ(x) ≤ δ}. There is an α > 0 such that −α bounds ν ′(x1, ρ(x)) above

on Kδ. As ρ is decreasing exponentially with t, eventually ρ ≤ δ and hence dx1

dt
≤ −α. Thus

x(t) eventually leaves g(U) after all. Similarly, x(t) will leave g(U) as t decreases as well.

If an integral curve of ξ′ is never in U ′ then it has to go from V0 to V1. If it is every in

U ′, then by the previous paragraph it will eventually leave U and never reenter U ′ so that it

will hit V1. Simiarly, it also must have come from V0. Therefore every trajectory of ξ′ goes

from V0 to V1.

Let ψ(t, x) be the integral curve of ξ′ through the point x ∈ W . Since ξ′ is never tangent

to ∂W , then by the Implicit Function Theorem, the function τ1(x) that assigns to x the t at

which ψ(t, x) reaches V1 is smooth. Similarly, the function τ0(x) that assigns to x the number

−t at which ψ(t, x) reaches V0 is also smooth. The smooth vector field τ1(ψ(−τ0(x), x))ξ
′(x)

has integral curves that go from V0 to V1 as t goes from 0 to 1. We can assume that ξ′ had

this initially. Defining φ : V0 × [0, 1] → W by (x, t) 7→ ψ(t, x) we see that φ has inverse

x 7→ (ψ(−τ0(x), x), τ0(x)) so that φ is a diffeomorphism between V0 × [0, 1] and W with

V0 × 0 and V0 × 1 corresponding to V0 and V1.

Set f ′ = f ◦φ. There exists a δ such that for either t < δ or t > 1−δ we have ∂f ′

∂t
(x, t) > 0

for all x ∈ V0. Let λ : [0, 1] → [0, 1] be a smooth function that is zero on [δ, 1 − δ] and one
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near 0 and 1. Choosing δ sufficiently small so that

k(x) =

1−

∫ 1

0

λ(τ)
∂f ′

∂t
(τ, x) dτ

∫ 1

0

(1− λ(τ)) dτ

> 0

for all x ∈ V0, then the function

g(x, t) =

∫ t

0

[

λ(τ)
∂f ′

dt
(τ, x) + (1− λ(τ))k(x)

]

dτ

is a Morse function on V0 × [0, 1] that agrees with f ′ near (V0 ∪ V1) × [0, 1] and ∂g

∂t
> 0

everywhere. Hence g ◦ φ−1 is the required Morse function on W .

Q.E.D.

p

f−1({1
8
})

SU(p)

SL(q)

f−1({1
2
})

q

f−1({3
4
}) f−1({7

8
})

Figure 4.11: Level sets of the cobordism W .
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To demonstrate the importance of the transverse intersection, let’s look at an example

of a 3-dimensional cobordism W between the sphere S2 and itself. Our Morse function

f : W → [0, 1] will have critical points p and q with f(p) = 1
4
and f(q) = 3

4
. For clarity,

we will focus on the level sets and describe how they change as we pass through the critical

values. Some of these level sets are shown in Figure 4.11. We start with the sphere S2

which then grows horns which come to meet at a critical point p of index 1 when we get to

t = 1
4
. The level set for 1

4
< t < 3

4
is a torus. As t → 3

4
, the hole of the torus collapses to a

critical point q with index 2. After this the space bulges out in the middle and eventually

smooths back out into a sphere. Overall the cobordism W is diffeomorphic to S2 × [0, 1].

Examining the noncritical level V = f−1({1
2
}) we can clearly see the spheres SU(p) and SL(q)

as two circles in three dimensional space transversely intersecting in one point allowing the

cancellation to occur.

More generally, the left and right-spheres will intersect in multiple points. Assume we

have two oriented submanifolds Mm and Nn of an oriented manifold Wm+n, that intersect

transversely in distinct points p1, . . . , pk. At each point pi we can assign the number +1

if positively oriented frames in M and N combine to make a positively oriented frame in

W . Otherwise we will assign the number −1 to pi. The intersection number I(M,N) is

the sum of these numbers. Note that if M and N only have one intersection point, then

I(M,N) = ±1. As the intersection number of two submanifolds does not change when they

are smoothly deformed, then it is natural to ask if the condition I(M,N) = ±1 implies

that M and N can be untangled until they have exactly one intersection. With a few more

conditions, this turns out to be the case.

Theorem 4.2. Using the notation from the previous theorem, suppose W , V0, and V1 are

simply connected and 3 ≤ λ ≤ n − 3. If on a noncritical level V between p and q we have

I(SU(p), SL(q)) = ±1, then ξ can be altered near V so that the right and lower spheres

intersect instead in a single point. The result of Theorem 4.1 will then apply.

Proof Note first that the condition on λ implies that the spheres SU(p) and SL(q) must be
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simply connected. Simple connectivity of these spheres, W , V0, and V1 imply that the mani-

folds are orientable and hence it is possible to define the intersection number I(SU(p), SL(q)).

Also, using the fact that λ ≥ 2 and n− λ ≥ 3 we have that π1(V ) ∼= π1(DU(p)∪ V ∪DL(q))

from Van Kampen’s Theorem and by Lemma 2.4, the space DU(p) ∪ V ∪DL(q) is a defor-

mation retract of the simply connected W . Hence π1(V ) = 1 so that V is simply connected.

We will assume that we have already made sure that SU(p) and SL(q) intersect trans-

versely. If SU(p)∩SL(q) is a single point, there is nothing to do, so assume there are multiple

points of intersection. Since I(SU(p), SL(q)) = ±1 there must be a pair x, y of intersection

points that have opposite intersection numbers. Let CU be a smooth path in SU(p) from

x to y that does not pass through any other intersection points and similarly for a smooth

path CL in SL(q) from y to x. Then CU and CL form a loop L in V . Note that as V is

simply connected, this loop is contractible to a point and this will allow us to alter one of

the spheres in such a way to remove the intersections at x and y.

We construct a model in R
2 as in Figure 4.12. Take two open arcs C0 and C1 in R

2

intersecting transversely at a and b and enclosing a disk D with corners. Let U be an

open neighborhood of D. There is a smooth embedding φ : U × R
n−3 → V such that

φ−1(SU(p)) = (U ∩C0)×R
λ−1 × 0 and φ−1(SL(q)) = (U ∩C1)× 0×R

n−λ−1. We can choose

a bD

C0

C1

U

Figure 4.12: The standard model.

an isotopy Gt : U → U such that G0 is the identity, Gt is the identity in a neighborhood of

∂U for each t, and G1(C0) does not intersect C1. Such an isotopy is shown in Figure 4.13.

Next, let ρ : Rn−2 → [0, 1] be a smooth function such that ρ(r) = 1 for |r| ≤ 1 and 0 for
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C1

U

C0

G1(C0)

Figure 4.13: The isotopy Gt in U

|r| ≥ 2. Define Ht(u, r) = (Gtρ(r)(u), r) for r ∈ R
n−3 and u ∈ U and define Ft : V → V by

Ft(v) = (φ ◦Ht ◦ φ
−1)(v) for v ∈ imφ and Ft(v) = v otherwise. Then Ft is an isotopy on V

such that F1(CU) is disjoint from CL. Hence the isotopy removes the intersection points x

and y while not affecting the other intersections of SU(p) and SL(q). Continuing to cancel

pairs of intersection points, we eventually get to the point where there is exactly one point

of intersection.

Q.E.D.

Note that the conditions of the theorem imply that n ≥ 6. Also, replacing the Morse

function f with its negative −f and similarly with the gradient-like vector field, shows that

the theorem is also valid for λ = 2 so that it holds for 2 ≤ λ ≤ n− 3.
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Chapter 5

5 The Main Result

Consider the oriented triads (W,V0, V ) and (W ′, V, V1) and a Morse function f on W ∪W ′

with critical points p1, p2, . . . , pℓ all of index λ on one level and critical points q1, . . . , qm of

index λ+1 on another with V a noncritical level between them. Choose orientations for the

left and righ-hand disks so that I(DL(pi), DU(pi)) = +1 and I(DL(qj), DU(qj)) = +1 for all i

and j. By Lemma 2.4, the homology groupsHλ(W,V0) andHλ+1(W∪W ′,W ) ∼= Hλ+1(W
′, V )

are free abelian on generators [DL(pi)] and [DL(qj)] respectively. With respect to these bases,

the boundary map ∂ : Hλ+1(W∪W ′,W ) → Hλ(W,V0) in the long exact sequence of the triple

(W∪W ′,W, V0) can be represented by the matrix of intersection numbers
[

I(SU(pi), SL(qj))
]

.

Now given a triad (W,V0, V1) with a self-indexing Morse function f , we can decompose

W into a sequence of cobordisms Wλ such that V = W−1 ⊆ W0 ⊆ W1 ⊆ · · · ⊆ Wn = W

and Wλ contains only the critical points up to index λ (see Figure 5.14). For each λ, define

Cλ = Hλ(Wλ,Wλ+1). If the map ∂λ : Cλ → Cλ+1 is the boundary morphism from the exact

critical points of index 1

...

critical points of index 0 W0

W1

· · ·

Wn = W

W−1 = V0

Figure 5.14: Cobordism W decomposed.
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sequence of the triple (Wλ,Wλ−1,Wλ−2), then {Cλ, ∂λ} becomes a chain complex C∗. Taking

homology, we can show that Hλ(C∗) ∼= Hλ(W,V0) for all λ.

Theorem 5.1 (Basis Theorem). Suppose (W n, V0, V1) is a connected triad, f a Morse func-

tion on W having all critical points of index λ all on the same level where n ≥ 6 and

2 ≤ λ ≤ n− 2, and ξ a gradient-like vector field for f . Given any basis for Hλ(W,V0), there

exist a Morse function f ′ and a gradient-like vector field ξ′ for f ′ agreeing wih f and ξ is a

neighborhood of ∂W such that f ′ has the same critical points of f and the lower disks of

those critical points under ξ′ determine the given basis.

Proof Let p1, . . . , pk be the critical points of f and denote bi = [DL(pi)] so that b1, . . . , bk is

a basis of Hλ(W,V0). By our convention on orientations, the matrix of intersection numbers

I(DU(pi), DL(pj)) is the identity k × k matrix. Consider an oriented λ-disk D embedded

in W with ∂D ⊆ V0. Then [D] ∈ Hλ(W,V0) and therefore there are integers αi such that

[D] = α1b1 + · · ·+ αkbk. Taking intersection numbers,

I(DU , D) = I
(

DU(pj), α1DL(p1) + · · ·+ αkDL(pk)
)

= α1I(DU(pj), DL(p1)) + · · ·+ αkI(DU(pj), DL(pk)) = αj.

Thus [D] = I(DU(p1), D)b1 + · · ·+ I(DU(pk), D)bk.

Using rearrangement we can alter f only on a neighborhood of p1 to a Morse function g

such that g(p1) > f(p) and the critical points of g are the same as f . Choose a noncritical

level V under g between p1 and the rest of the critical points. Consider the lower sphere

SL of p1 in V and the upper spheres SU(pi) of pi in V . These spheres are pairwise disjoint.

Choose points a ∈ SL and b ∈ SU(p2) and let φ0 : (0, 3) → V0 be a path in V that intersects

SL transversely at φ0(1) = a, intersects SU(p2) transversely at φ0(2) = b, and does not

intersect any other SU(pi). We can extend this to an embedding φ : (0, 3)×R
n−2 → V where

φ(s, 0) = φ0(s), φ
−1(SL) = {1}×R

λ−1 ×{0}, φ−1(SU(p2)) = {2}× {0}×R
n−λ−1, and φ still

misses the other SU(pi). In addition, we can choose φ such that it maps {1} × R
λ−1 × {0}
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into SL with positive orientation and φ((0, 3) × R
λ−1 × {0}) intersects SU(p2) at b with

intersection number +1. Fix δ > 0 and let α : R → [1, 5
2
] be a smooth function such that

α(x) = 1 for x ≥ 2δ and α(x) > 2 for u ≤ δ. There is an isotopy Ht of (0, 3)×R
n−2 such that

Ht(1, x, 0) = (tα|x|2+1−t, x, 0) for x ∈ R
λ−1 and Ht is the identity outside a compact subset

of (0, 3)×R
n−2. The functions Ft : V → V defined by Ft(v) = (φ ◦Ht ◦ φ

−1)(v) for v ∈ imφ

and Ft(v) = v otherwise forms an isotopy on V . Using Ft, alter ξ to ξ′ in a neighborhood

of V containing no critical points. Under ξ′ the upper spheres SU(p2), . . . , SU(pk) are the

same while the lower sphere of p1 is now S ′

L = F0(SL). Again using rearrangment, let f ′ be

a Morse function putting the critical points back on the same level.

Under ξ′ the only lower disk that has changed is D′

L(p1) which now intersects DU(p2) at a

single point with intersection number +1 and does not intersect any of DU(p3), . . . , DU(pk).

Hence the basis for Hλ(W,V0) represented by these lower disks is b1 + b2, b2, . . . , bk. Any

changes of basis in the free abelian Hλ(W,V0) can be made up of a combination of such sums

or negations of basis elements. Since negations can be obtained by just changing orientation

on the corresponding disk, we can obtain any desired basis.

Q.E.D.

Putting together the Basis Theorem and the comments preceding it, we can prove the

h-Cobordism Theorem. The proof will precede by first eliminating critical points of indices

0 and 1 and the dual critical points of indices n− 1 and n. After that, we will use the Basis

Theorem to show that the rest cancel as well.

Theorem 5.2 (h-Cobordism Theorem). Let (W n, V, V ′) be a triad such that W,V, V ′ are

simply connected, n ≥ 6, and H∗(W,V ) = 0. Then W is diffeomorphic to V × [0, 1].

Proof Take a self-indexing Morse function f on W . Using the notation for the chain com-

plex in the comments before the Basis Theorem and working in Z2 coefficients, H0(W,V ) = 0

implies that the map ∂ : H1(W1,W0) → H0(W0, V ) is surjective. However, ∂ is given by the

matrix of intersection numbers modulo 2 of the upper spheres and lower spheres for the index

0 and 1 critical points. Hence for each upper sphere SU there is at least one lower sphere
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SL such that I(SU , SL) 6= 0 (mod 2). Hence SL ∩ SU contains an odd number of points, and

since SL
∼= S0 consists of only two points to begin with, then SL intersects SU in exactly

one point. Hence the corresponding critical points will cancel, and continuing this way all

critical points of index 0 cancel.

Now for each critical point p of index 1 we want to contruct new critical points of indices

2 and 3 so that the index 2 point will cancel with p so that in essence we promote p to index

3. Since f is self-indexing, let V1 be a noncritical level between the index 1 and index 2

critical points and V2 a noncritical level between the index 2 and index 3 critical points. Fix

a critical point of index 1 and let SU be the upper sphere of p in V1. Take a small embedded

1-disk D in V1 that intersects SU transversely at a point and not hitting any other upper

sphere. We can move the endpoints back along integral curves to V , and since V is simply

connected with dimension more than 2, there is a smooth path between them in V that

avoids the lower spheres of the index 1 critical points. Lift this path to V1 so that we have

a smooth path between the endpoints of D that avoids all upper spheres. We can smooth

these out to get an embedding of S1 into S ⊆ V1 that intersects SU transversely in a single

point and does not intersect any other upper spheres. In addition, by Lemma 3.2 we can

assume that S does not intersect any of the lower spheres of the index 2 critical points. In

a small collar neighborhood of V2 we can take coordinate functions x1, . . . , xn so that f acts

as xn, and by contructing a smooth function R
n → R with nondegenerate critical points of

index 2 and 3 we can add critical points q, r to f with f(q) < f(r) such that q has index 2

and r has index 3. Since V2 is simply connected, we can adjust ξ so that the lower sphere

of q coincides with S. Hence p and q can cancel leaving r, the critical point of index 3. We

continue to do this until f no longer has any critial points of index 0 or 1.

Replacing f and ξ with −f and −ξ we exchange critical points of index λ with those of

index n− λ. Since H∗(W,V ) = 0 will also imply that H∗(W,V
′) = 0, then the previous two

paragraphs allow us to remove the index 0 and 1 critical points from −f . In other words,

we can eliminate the critial points of index n and n − 1 from f . At this point f only has
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critical points of index λ with 2 ≤ λ ≤ n− 2.

Recall the chain complex

Cn−2
∂n−2

−−−→ Cn−3 → · · · → C3
∂3−→ C2

Since H∗(W,V ) = 0 and we’ve shown that Hλ(C∗) ∼= Hλ(W,V ) = 0, then the sequence is

exact. Now for each λ, choose a basis {zλ+1
1 , · · · , zλ+1

k(λ+1)} for the kernel of the morphism

∂λ+1 : Cλ+1 → Cλ. By exactness, there are bi ∈ Cλ+1 such that ∂λ+1(b
λ+1
i ) = zλi for i from 1

to k(λ). Hence {zλ+1
1 , · · · , zλ+1

k(λ+1), b
λ+1
1 , · · · , bλ+1

k(λ)} is a basis for Cλ+1. By the Basis Theorem,

since 2 ≤ λ ≤ λ+1 ≤ n− 2, we can alter the Morse function f and gradient-like vector field

ξ so that for each λ the lower disks of the critical points of index λ represent the above basis

for Cλ. However, the fact that ∂λ+1(b
λ+1
i ) = zλi implies that the right and lower spheres of

the corresponding critical points of index λ and λ+1 have intersection number ±1 and hence

we can cancel them. As each critical points of f is in one of these pairs, then by repeating

the process we can eliminate all the critical points of f . Therefore we get a Morse function

on W with no critical points, so that W ∼= V × [0, 1].

Q.E.D.

The h-Cobordism Theorem immediately has important consequences for the classification

problem. Almost immediately we can characterize the disk Dn up to diffeomorphism in

dimensions at least 6.

Corollary 5.3. Suppose W n is a compact simply connected manifold with n ≥ 6. If ∂W is

simply connected and W has the homology of a point, then W is diffeomorphic to the n-disk

Dn.

Proof Let D0 be an n-disk in Int(W ). By excision, H∗(W \Int(D0), ∂D0) ∼= H∗(W,D0) = 0

and so the pair (W \ Int(D0), ∂D0) satisfies the conditions of the h-Cobordism Theorem.

HenceW \Int(D0) ∼= ∂D0×[0, 1] ∼= Sn−1×[0, 1] and thereforeW = (W \Int(D0))∪D0
∼= Dn.

Q.E.D.
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With a similar technique as Corollary 5.3 and a little more work, we can finally prove the

Generalized Poincaré Conjecture in dimensions 6 and above, characterizing the sphere Sn.

Corollary 5.4 (Generalized Poincaré Conjecture). Let Mn be a closed simply connected

smooth manifold with dimension n ≥ 6 and having the homology of the n-sphere Sn. Then

M is homeomorphic to Sn.

Proof Let D0 be an n-disk embedded in M . By Poincaré duality, excision, and the exact

sequence of the pair (M,D0), for each i we have that

Hi(M \ Int(D0)) ∼= Hn−i(M \ Int(D0), ∂D0) ∼= Hn−i(M,D0) ∼=

{

Z i = 0

0 i 6= 0

Hence by the previous theorem, M \ Int(D0) is diffeomorphic to Dn and hence M is the

union of two n-disks D1 and D2 with boundaries identified through some diffeomorphism

h : ∂D1 → ∂D2. Let g0 : D1 → Sn be an embedding into the southern hemisphere. Each

point of D2 can be written as tv for v ∈ ∂D2 and 0 ≤ t ≤ 1. Define g : M → Sn by

g(u) = g0(u) for u ∈ D1 and g(tv) = sin πt
2
g0(h

−1(v)) + cos πt
2
(0, . . . , 0, 1) for tv ∈ D2. Then

g is a homeomorphism between M and Sn.

Q.E.D.

Unlike Corollary 5.3, the Generalized Poincaré Conjecture only guarantees a homeomor-

phism. In dimension 7, Milnor [17] constructed an example of a manifold Σ7 that satisfies

the conditions of the GPC, yet is not diffeomorphic to S7. Such manifolds are called exotic

spheres and there are exotic spheres in most dimensions 7 and above. Examining the proof

of the GPC above, we can see that an exotic sphere in dimension n is at least diffeomorphic

to two copies of the n-disk Dn attached along their boundaries by a diffeomorphism. In

dimensions 5 and 6, a theorem by Kervaire and Milnor [21] [22] states that that a manifold

Mn satisfying the conditions of GPC for n = 5 or 6 must be the boundary of a compact,

contractible smooth manifold. Hence by Corollary 5.3, M is in fact the boundary of the disk

Dn+1 and therefore diffeomorphic to Sn.
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