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ABSTRACT 
 
 

 Most promising implementations in quantum computing are based on Linear Nearest 

Neighbor (LNN) architectures, where qubits only interact with neighbors. Multi-control Toffoli 

gates are used in many quantum applications such as error correction and algorithms like Shor’s 

factorization. Typically, to implement a multi-control Toffoli gate in an LNN architecture, 

additional operations called swap gates are required to bring the qubits adjacent to each other. 

This may increase the total number of quantum gates and computational overhead of the circuit. 

Here, we propose a new method to implement multi-control Toffoli gates in LNN arrays without 

using swap gates. The circuit reduction techniques discussed here are based on   lemmas. Using 

the lemmas, we show how to implement multi-control Toffoli gates in LNN arrays with different 

separations between the control and target qubits. The key feature of our scheme is to involve 

qubits other than control and target qubits to take part in gate operations. We call these qubits 

“auxiliary” qubits, and they are used in our gate decomposition protocols. Auxiliary qubits can 

be in any arbitrary states,          , and are always restored back to their original states. Since 

we do not use swap gates to bring qubits adjacent to each other, compared to circuits using swap 

gates, the total number of gate operations used in our method is decreased, and the quantum cost 

is lowered. 

In addition, for implementing multi-control Toffoli gate operations efficiently in LNN 

arrays, we also show how to extend our protocols to  D arrays. Here, in addition to translating 

our gate reduction techniques directly from  D to  D, we use further simplification techniques 

for particular arrangements of qubits. 
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CHAPTER   

 

INTRODUCTION 

 
 
    Background 

In     , David Deutsch at the University of Oxford described the first universal quantum 

computer. A quantum computer is a device that makes use of quantum-mechanical phenomena 

like superposition and entanglement to perform operations on data [1]. Unlike digital computers, 

where data is encoded into binary bits (digits), a quantum computer uses qubits. The difference 

between bits and qubits is that whereas a bit must be either   or  , a qubit can be  ,  , or 

a superposition of both. That is, a qubit can be in one of the two basis states,     or    , or a 

linear superposition of the two states, where     and     are: 

     (
 
 
)       (

 
 
) (   ) 

The two basis states,     and    , are orthonormal vectors. The general state of a qubit can be 

defined as: 

               (   ) 

where, 

 √            (   ) 

Accordingly, a qubit is a unit vector in a two-dimensional complex vector space known as the 

Hilbert space. A system with   qubits is described by a    dimensional vector space. The 

simplest example of a two-state physical system is the spin state of an electron, where it can be 

found in state-up    ,  state-down     or in the superposition of these two states. Other 

examples of qubits are the polarizations of a single photon, superconducting qubits, ion-trap 

qubits, nuclear magnetic resonance qubits and quantum dots [ - ]. 

http://en.wikipedia.org/wiki/David_Deutsch
http://en.wikipedia.org/wiki/Universal_quantum_computer
http://en.wikipedia.org/wiki/Universal_quantum_computer
http://en.wikipedia.org/wiki/Quantum_superposition
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A number of quantum computing models have been proposed, of which four are the most 

popular in terms of practical importance. They are: 

I. Quantum Gate Array: in this model, a quantum computation is decomposed into a 

sequence of unitary operations realized on one/more qubits called quantum gates [43]. 

II. One-Way Quantum Computer: in this model, a quantum computation is decomposed 

into a sequence of one-qubit measurements applied to a highly entangled initial state 

or cluster state [  ]. 

III. Adiabatic Quantum Computer: in this model, a quantum computation is broken down 

into a slow continuous transformation of an initial Hamiltonian into a final 

Hamiltonian, whose ground states contain the solution [  ]. This model is also called 

“Quantum Annealing”. 

IV. Topological Quantum Computer: in this model, computation is decomposed into the 

braiding of anyons (particles which can have some quantum numbers of fractional 

values with respect to other elementary particles. For example, an anyon can be 

charged and the charge can be a fraction of     (electron charge)) in a  D lattice [  ]. 

Even though each of the   models have been shown to be equivalent to each other, the 

Quantum Gate Array (or Quantum Circuit Model) is the most popular. This model directly 

adapts from the classical computational model for classical computers where a discrete set of 

universal gates are used to implement all computations within the computer. Each logic gate 

transforms its input bits into one or more output bits in some deterministic fashion according to 

the definition of the gate. All computations within the computer are performed by arranging the 

gates in a sequence such that the outputs from earlier gates feed into the inputs of later gates. In 

classical computing, the NAND and NOR gates form single-gate universal sets, and all 
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computations can be decomposed into a sequence of these gates. The Quantum Circuit Model for 

quantum computing is analogous to the classical approach of computing. Here, again, all 

computations within the quantum computer are broken down into a series of gate operations 

taken from a universal gate set. However, contrary, to gates used in classical computing, each 

quantum gate has to be reversible (since quantum gates are mathematically represented by 

“unitary matrices” which operate on qubits which are mathematically represented as “unit 

vectors”, whose lengths have to be preserved). We will now look at different quantum logic 

gates used to perform quantum operations under the Quantum Circuit Model, some of which are 

used for forming universal gate sets.  

    Quantum Gates 

In quantum computing, the Hamiltonian is the operator corresponding to the total energy 

of the system. Every quantum system has its own Hamiltonian. Quantum gates are unitary 

operations generated by tuning the appropriate parameters of the system Hamiltonian [ - ]. 

Quantum gates are either single-qubit or multi-qubit gate operations. A single-qubit quantum 

gate is implemented on one qubit, and has a two-dimensional vector space. A multi-qubit 

quantum gate is realized on more than one qubit, and has a       dimensional vector space, 

where “ ” is the number of qubits involved. In the following, some of the common quantum 

gates are introduced briefly. 

      Hadamard Gate 

The Hadamard gate acts on a single qubit, and it maps the basis state     to        

√ 
 and     

to         

√ 
. It is presented by the Hadamard matrix: 

   
 

√ 
(
  
   

) (   ) 
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Figure     shows the circuit diagram of the Hadamard gate. Here and throughout this thesis, the 

time evolution is from left to right. Suppose that the qubit is initially in the arbitrary state of 

         . After the implementation of the Hadamard gate, the final state of the qubit will be 

  √ ⁄            √           ⁄ . 

 
Figure     The circuit diagram of the Hadamard gate applied on an 

arbitrary qubit,           
 
      Pauli-  (or NOT) Gate 

The Pauli-  gate acts on a single qubit, and it maps the basis state     to    , and vice 

versa. It is presented by the Pauli-  matrix: 

   (
  
  

) (   ) 

Figure     shows the circuit diagram of the NOT gate. Here, the initial state of the qubit is 

          and the final state will be          . 

 
 

Figure     The circuit diagram of the NOT gate applied on an 
arbitrary qubit,           

 
      Pauli-  (or  ) Gate 

The Pauli-  gate acts on a single qubit, and it maps     to     , and     to      . It is 

presented by the Pauli-  matrix: 

   (
   
  

) (   ) 

Figure     shows the circuit diagram for the   gate. If the initial state is          , the final 

state will be            . 
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Figure     The circuit diagram of the   gate applied on an arbitrary 
qubit,           

 
      Pauli-  (or  ) Gate 

The Pauli-  gate acts on a single qubit, and it leaves the basis state     unchanged and 

maps     to     . It is presented by the Pauli-  matrix: 

   (
  
   

) (   ) 

The circuit diagram of the   gate is shown in the Figure    . If the initial state of the qubit is 

         , the final state will be          . 

 
 

Figure     The circuit diagram of the   gate applied on an arbitrary 
qubit           

 
      Phase Shift Gates 

This is a family of single-qubit gates that leave the basis state     unchanged and map     

to       . They are represented by rotation matrices: 

    (
  
    ) (   ) 

where   is the phase shift. Some common examples are   gate where   
 

 
 ,   gate where   

 

 
 

and   gate (Pauli-  gate) where   
 

 
. Figure     shows the circuit diagram of the phase shift 

gate. If the initial state of the qubit is          , the final state will be             . 

 
 

Figure     The circuit diagram of the phase shift gate applied on an 
arbitrary qubit,           
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      Controlled-Unitary Gate 

 A controlled-unitary gate is a multi-qubit gate, where one or more qubits act as controls 

for a unitary gate operation. It operates a unitary gate on the target qubit only when all the 

control qubits are in the     state (a control in the     state is shown with a filled circle). Note 

that, in a controlled-unitary quantum gate the state of the control qubit that determines whether 

or not a special action is performed on the target qubit does not have to be    ; it can be     (or 

any other state) too. If it is    , then the control qubit is represented as an “empty” circle (see 

Figure      to be discussed later) 

 An example of a controlled-unitary gate is the CNOT (controlled-NOT) gate, which is a 

two-qubit gate defined by the matrix: 

      (

  
  

  
  

  
  

  
  

) (   ) 

Here, a NOT gate is applied on the target qubit only when the control is in the     state. The 

circuit diagram and the state table of the CNOT gate, where qubit   is the control and qubit   is 

the target, are shown in the Figure     and the Table    , respectively.  

 
 

Figure     The circuit diagram of the CNOT gate where qubit   is 
the control and qubit   is the target 
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TABLE     
 

STATE TABLE OF THE CNOT GATE 
 

Initial state Final state 

          

          

          

          

 
Another example of a controlled-unitary gate is the controlled-  gate, which is a two-qubit gate 

operation defined by the matrix: 

       (

  
  

  
  

  
  

  
   

) (    ) 

Under a controlled-  gate, a phase of   is picked up by the target qubit only when both qubits 

are in the     state. The circuit diagram and the state table of the       gate, where qubit   is the 

control and qubit   is the target, are shown in the Figure     and the Table    , respectively. 

 
 

Figure     The circuit diagram of the       gate where qubit   is 
the control and qubit   is the target  
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TABLE     
 

STATE TABLE OF THE       GATE 
 

Initial state Final state 

          

          

          

           

 
Another example is a       gate where an   gate is implemented on the target qubit when the 

control qubit is in the     state.  

      Toffoli Gate 

The Toffoli gate acts on multiple qubits. It leaves the state of the target qubit unchanged 

if all the controls are not in the     state, and applies a NOT gate on the target when all the 

controls are in the     state. The Toffoli gate in a three qubit system, with qubits   and   as the 

controls and qubit   as the target, is defined by: 

         

(

 
 
 
 
 
 

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

 

)

 
 
 
 
 
 

 (    ) 

Figure     shows the circuit diagram for the Toffoli gate where qubits   and   are the controls 

and qubit   is the target qubit. The state table of the Toffoli gate is shown in Table    . 
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Figure     The circuit diagram of the Toffoli gate where qubit   
and   are the controls and qubit   is the target 

 
TABLE     

 
STATE TABLE OF THE TOFFOLI GATE 

 

Initial state Final state 

            

            

            

            

            

            

            

            

 
A Toffoli gate with more than   controls is called a multi-control Toffoli gate. Here, a NOT gate 

is performed on the target qubit only when all the controls are in the     state. 
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      Swap Gate 

The swap gate is a two-qubit gate operation, and it interchanges the states of two qubits. 

A swap gate for two qubits is defined by: 

      (

  
  

  
  

  
  

  
  

) (    ) 

The circuit diagram and state table of the swap gate is shown in Figure     and Table    , 

respectively. 

 
 

Figure     The circuit diagram of the swap gate 
 

TABLE     
 

STATE TABLE OF THE SWAP GATE 
 

Initial state Final state 

          

          

          

          

 
    Universal Gate Sets 

Like classical computing, in quantum computing every multi-qubit gate operation can be 

decomposed into a sequence of gate operations belonging to a universal set. For example, one 
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such gate set comprises the Hadamard,   and CNOT gates [ ]. Another gate set consists of 

Hadamard,   and Toffoli gates [ ]. In any gate set, the accuracy and efficiency with which we 

are able to perform multi-qubit operations depends on the accuracy and ease with which these 

gates can be implemented [  ]. At the device level, it depends on the system Hamiltonian and 

the flexibility allowed in controlling the parameters of the system. At the circuit level, it depends 

on the physical layout of qubits, and the complexity of the control circuitry [  ]. As such, 

techniques for efficiently decomposing multi-qubit operations into universal gates is an active 

research area [  -  ]. 

    LNN Architectures 

In a quantum computer, there are different arrangements of qubits, and the most common 

one is the Linear Nearest Neighbor (LNN) architecture. An LNN is a one dimensional array 

where a qubit is coupled only to its two nearest neighbors, on either side of it. As such, only 

nearest neighbor qubits can interact with each other during gate operations. It has been shown 

that if a quantum algorithm can be implemented efficiently on an LNN array, it can be realized in 

many other quantum architectures as well [ ]. To perform gate operations in LNN arrays, qubits 

involved in a gate operation are required to be brought adjacent to each other. This is typically 

accomplished by implementing swap gates to interchange the position of qubits along the array. 

In most quantum systems, each swap gate equates to three CNOT gates. As the number of swap 

gates increases, the total number of gate operations can increase. This can increase the quantum 

cost and computational overhead of the circuit. As such, many techniques for implementing gate 

operations efficiently in LNN arrays have been proposed. Template-matching techniques are 

proposed for multi-qubit gate combinations in LNN architectures [  ]. Here, a cascade of 

reversible gates is replaced by a different cascade with the same functionality, and minimization 
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rules are applied which reduce the number of gates. Exact synthesis methods have been proposed 

that construct quantum circuits with minimal quantum cost where the circuit synthesis problem is 

expressed as a sequence of Boolean satisfiability instances [  ]. Reordering techniques have 

been constructed where by modifying the ordering of qubits, additional cost can be saved [  ].  

    Quantum Error Correction 

Irrespective of the layout of qubits, implementing any sophisticated quantum algorithm, 

like Shor’s algorithm, involves several gate operations, which requires manipulating qubits 

through an external control circuitry. This makes the quantum system susceptible to noise and 

decoherence [  -  ]. Therefore, large scale quantum computation is so difficult as to be 

practically impossible unless error correction methods are used [  -  ]. The first quantum error 

correcting codes were discovered independently by Shor [  ] and Steane [  ]. Shor proved that 

  qubits could be used to protect a single qubit against general errors, while Steane described a 

general code construction using   qubits [  ]. Later, a  -qubit quantum error correction was 

introduced, which demonstrated successful gate implementation and error correction [  ,  ]. 

Figure      shows the encoding circuit for the  -qubit code [  ] which uses Hadamard, CNOT 

and multi-control   gates. Note that multi-control   gates shown in Figure      are 

interchangeable with multi-control Toffoli gates (we will prove this interchangeability by 

lemma  ). Also, as previously mentioned, note that a control qubit can be in the     state and is 

represented by an “empty” circle in the circuit. As such, since multi-control Toffoli gates are 

widely used in quantum error correction, efficient methods for implementing them in LNN 

arrays, on which most physical proposals of a quantum computer are built, need to be 

investigated. 
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Figure     . The encoding circuit for the  -qubit code [  ] which 
uses Hadamard, CNOT and multi-control   gates 

 
    Our Research 

Here, we propose a new method to implement multi-control Toffoli gates in LNN arrays 

without using swap gates. The circuit reduction techniques discussed here are based on   

lemmas. The first lemma is based on a new gate, introducing in [  ], called the        gate. 

This gate allows us to perform a controlled-  gate between two uncoupled next-to-NN qubits 

without having to bring them adjacent to each other. The second and third lemmas are derived 

from prior work in [  ]. Using the lemmas, we first show how to implement Toffoli gates in 

LNN arrays with different separations between the two control qubits and the target qubit. We 

then extend our scheme to show how to implement multi-control Toffoli gates in LNN arrays 

with arbitrary separation between the controls and target. For each case, the final circuit only 

comprises of the least number of       ,   and CNOT gates (all between NN qubits). The key 

feature of our scheme is to involve qubits other than control and target qubits to take part in gate 

operations. We call these qubits “auxiliary” qubits, which are simply qubits in arbitrary states, 

         , in the LNN array. They do not have to be prepared in any special states, for 

instance, they are not ancillas, which are qubits in the     state. We simply use auxiliary qubits in 
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our gate decomposition protocols, at the end of which, they are always restored back to their 

original states. Compared to circuits using swap gates, the total number of gate operations used 

in our method is decreased. As such, the quantum cost of the circuit is lowered. 

In addition to implementing multi-control Toffoli gate operations efficiently in LNN 

arrays, we also show how to extend our protocols to  D arrays. Here, in addition to translating 

our gate reduction techniques directly from  D to  D, additional simplification is possible for 

particular arrangements of qubits. To this end, we introduce a new gate,        gate, analogous 

to the        gate in  D LNN arrays, using which we are able to implement a  -control- -target 

Toffoli gate directly, without any interactions between the four qubits involved. Thus, additional 

lowering of computational cost might be possible using our scheme in  D and  D arrays. This, 

however, is out of scope of this thesis, and can be pursued as a future work.  
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CHAPTER   

 

EFFICIENT IMPLEMENTATION OF MULTI-CONTROL TOFFOLI GATES IN 

LINEAR NEAREST NEIGHBOR ARRAYS 

 

S. Daraeizadeh and P. Kumar 

 
 

    Abstract 
 
 Most proposals for quantum computers are based on linear nearest neighbor (LNN) 

arrangements where qubits only interact with neighbors. Multi-control Toffoli gates are used in 

many quantum applications such as error correction, and algorithms like Shor’s factorization. 

Typically, to implement a multi-control Toffoli gate in an LNN architecture, additional 

operations called swap gates are required to bring the qubits adjacent to each other. We propose 

a new method to implement multi-control Toffoli gates in LNN arrays without using swap gates. 

As such, compared to circuits using swap gates, the quantum cost of our circuit is much lower. 

    Keywords 

 Quantum, Qubit, Linear Nearest Neighbor Architecture, CNOT gate, Toffoli gate, multi-

control, multi-target 

    Introduction 

 Quantum computing comprises a series of gate operations on qubits (quantum bits) [ ]. A 

qubit is a unit of information, and a two-state quantum-mechanical system. Unlike a classical bit, 

a qubit can be in one of the two basis states,     or    , or a linear superposition of the two states. 

Examples of qubits are the polarizations of a single photon, superconducting qubits, ion-trap 

qubits, nuclear magnetic resonance qubits, and quantum dots [ - ]. The special characteristic of 

the ability to exist in superposition states of qubits allows quantum computers to provide 

exponentially faster results than traditional computers for solving some problems like factoring 
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numbers. In a quantum computer, there are different arrangements of qubits, and the most 

common one is the Linear Nearest Neighbor (LNN) architecture. An LNN is a one dimensional 

array where every qubit is coupled only to its two neighbors. The authors in [ ] showed that if a 

quantum algorithm can be realized efficiently on an LNN architecture, it can be realized in many 

other architectures as well, making LNN architectures an active research area [ -  ].  

In every closed quantum system, the Hamiltonian is the operator corresponding to the 

total energy of the system. Quantum gates are unitary operations generated from the 

Hamiltonian. A quantum gate is implemented by tuning one or more appropriate controllable 

parameters of the system [ - ]. Like classical gates, quantum gates can be single-qubit or multi-

qubit gate operations. For example, NOT gate, Hadamard gate and phase (   ,    , etc.) gate 

are examples of single-qubit quantum gates. Swap gate, CNOT gate and Toffoli gate are 

examples of multi-qubit quantum gates, where two or more qubits take part in the gate 

operations.  

Like classical computing, in quantum computing every multi-qubit gate operation can be 

decomposed into a sequence of gate operations belonging to a universal set. For example, one 

such gate set comprises the Hadamard,   (phase shift gate where   
 

 
),   (phase shift gate  

where   
 

 
) and CNOT gates [ ]. Another gate set consists of Hadamard,  , and Toffoli gates 

[ ]. In any gate set, the accuracy and efficiency with which we are able to perform multi-qubit 

operations depends on the accuracy and ease with which these gates can be implemented [  ]. 

At the device level, it depends on the system Hamiltonian and the flexibility allowed in 

controlling the parameters of the system. At the circuit level, it depends on the physical layout of 

qubits and the complexity of the control circuitry [  ]. As such, techniques for efficiently 

decomposing multi-qubit operations into universal gates is an active research area [  -  ]. 
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In a quantum computer, there are different arrangements of qubits, and the most common 

one is the Linear Nearest Neighbor (LNN) architecture. An LNN is a one dimensional array 

where a qubit is coupled only to its two nearest neighbors, on either side of it. As such, only 

nearest neighbor qubits can interact with each other during gate operations. It has been shown 

that if a quantum algorithm can be implemented efficiently on an LNN array, it can be realized in 

many other quantum architectures as well [ ]. To perform gate operations in LNN arrays, qubits 

involved in a gate operation are required to be brought adjacent to each other. This is typically 

accomplished by implementing swap gates to interchange the position of qubits along the array. 

In most quantum systems, each swap gate equates of three CNOT gates. As the number of swap 

gates increases, the total number of gate operations can increase. This can increase the quantum 

cost and computational overhead of the circuit. As such, many techniques for implementing gate 

operations efficiently in LNN arrays have been proposed. Template-matching techniques are 

proposed for multi-qubit gate combinations in LNN architectures [  ]. Here, a cascade of 

reversible gates is replaced by a different cascade with the same functionality, and minimization 

rules are applied which reduce the number of gates. Exact synthesis methods have been proposed 

that construct quantum circuits with minimal quantum cost where the circuit synthesis problem is 

expressed as a sequence of Boolean satisfiability instances [  ]. Reordering techniques have 

been constructed where by modifying the ordering of qubits, additional cost can be saved [  ]. 

Irrespective of the layout of qubits, implementing any sophisticated quantum algorithm, 

like Shor’s algorithm, involves several gate operations, which requires manipulating qubits 

through an external control circuitry. This makes the quantum system susceptible to noise and 

decoherence [  -  ]. Therefore, large scale quantum computation is so difficult as to be 

practically impossible unless error correction methods are used [  -  ]. The first quantum error 
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correcting codes were discovered independently by Shor [  ] and Steane [  ], which they used   

nine-qubit and seven-qubit error correcting codes respectively. Later, a five-qubit quantum error 

correction was introduced, which demonstrated successful gate implementation and error 

correction [  ,  ]. Since multi-control Toffoli gates (with more than two controls) are widely 

used in quantum error correction, efficient methods for implementing them in LNN arrays, on 

which most physical proposals of a quantum computer are built, need to be investigated. 

Here, we propose a new method to implement multi-control Toffoli gates in LNN arrays 

without using swap gates. The circuit reduction techniques discussed here are based on   

lemmas. The first lemma is based on a new gate, introducing in [  ], called the        gate. 

This gate allows us to perform a controlled-  gate between two uncoupled next-to-NN qubits 

without having to bring them adjacent to each other. The second and third lemmas are derived 

from prior work in [  ]. Using the lemmas, we first show how to implement Toffoli gates in 

LNN arrays with different separations between the two control qubits and the target qubit. We 

then extend our scheme to show how to implement multi-control Toffoli gates in LNN arrays 

with arbitrary separation between the controls and target. For each case, the final circuit only 

comprises of the least number of       ,  , and CNOT gates (all between NN qubits).  The key 

feature of our scheme is to involve qubits other than control and target qubits to take part in gate 

operations. We call these qubits “auxiliary” qubits, which are simply qubits in arbitrary states, 

         , in the LNN array. They do not have to be prepared in any special states, for 

instance, they are not ancillas, which are qubits in the     state. We simply use auxiliary qubits in 

our gate decomposition protocols, at the end of which, they are always restored back to their 

original states. Compared to circuits using swap gates, the total number of gate operations used 

in our method is decreased. As such, the quantum cost of the circuit is lowered. 
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In addition to implementing multi-control Toffoli gate operations efficiently in LNN 

arrays, we also show how to extend our protocols to  D arrays. Here, in addition to translating 

our gate reduction techniques directly from  D to  D, additional simplification is possible for 

particular arrangements of qubits. To this end, we introduce a new gate,        gate, analogous 

to the        gate in  D LNN arrays, using which we are able to implement a  -control- -target 

Toffoli gate directly, without any interactions between the four qubits involved. Thus, additional 

lowering of computational cost might be possible using our scheme in  D and  D arrays. This, 

however, is out of scope of this research, and can be pursued as a future work.  

The remainder of this paper is organized as follows. In section    , definitions and 

lemmas are introduced. In section    , implementation of a Toffoli gate in an   qubit system is 

explained. In sections     and    , methods for implementing a multi-control Toffoli gate and a 

multi-control-multi-target Toffoli gate are described. In section    , simulations are shown to 

validate our gate operations. In section    , a technique for efficiently implementing a multi-

control Toffoli gate in a  -dimensional quantum system is shown. The conclusions are presented 

in section     . 

    Definitions and Lemmas 

Throughout the paper, the following definitions will be used: 

      Definitions 

Nearest Neighbor Cost (NNC): The NNC of a two-qubit controlled-unitary gate with 

control placed at the cth line and target at the tth line is defined as the distance between the control 

and target, i.e.,        . The NNC of a circuit is the sum of the NNCs of its gates. Optimal 

NNC is zero, where all quantum gates are either  - or  -qubit gates performed on adjacent 
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qubits. The NCC of a multi-qubit controlled-unitary gate is the maximum distance between any 

two qubits (controls or targets) involved in the gate operation. 

Gate Count: The gate count of a circuit is the total number of gates used to implement 

the circuit. 

Depth: The Depth is number of layers of gates. All gates in a layer are realized 

simultaneously. 

Participant Qubit: A qubit which is involved in a gate operation either as a control or a 

target qubit. 

Auxiliary Qubit: A qubit that is not a participant in a gate operation. An auxiliary qubit 

is a data qubit in any arbitrary quantum state,          . If used in a gate operation, auxiliary 

qubits are always restored to their original state. 

Definition  : A    –     is a controlled-unitary matrix which implements the –      gate 

on the target qubit when the two controls are in the      state. Here, the gate operation can be 

defined by the following linear transformation: 

              {
                     

                    (   ) 

where     and     are the states of the control qubits,     is the target qubit and      is the 

complement state of qubit    , for instance, if        , then         , and vice versa. An   (or 

NOT) gate is defined by the following matrix: 

   (
  
  

) (   ) 

 Definition  : A        gate is defined by the following linear transformation: 

             {
                   

                   (   ) 
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where     and     are the states of controls and     is the target qubit. From equation (   ), we 

can see that two successive applications of a    –     gate equate to a        gate. 

 Note that the        gate in a  -qubit system is equivalent to a       gate between 

qubits   and   [  ]. 

      Lemmas 

We will now introduce   lemmas that will form the basis for all our circuit reduction 

techniques. Lemma   is new, lemmas   and   are derived from the results in [  ].  

Lemma  : A       or Toffoli gate between three qubits in an LNN array, where the 

target qubit is not in the middle position (Figure    ), can be replaced by a        gate 

sandwiched between two controlled-Hadamard gates applied between the second and third 

qubits. A        gate has two controls and one target [  ]. A   phase is picked up by the target 

only when the two controls are in the      state. A controlled-Hadamard gate implements a 

Hadamard gate on the target qubit when the control qubit is in the     state. The gate operation is 

defined as: 

       

[
 
 
 
 
 
 
 
 

2
1

2
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2
1

2
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0010
0001


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 (   ) 
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Figure    . Implementation of a       or Toffoli gate in a  -qubit 
LNN array between qubits  ,   and   with qubit   as the target 

Proof: We will use a state table to show the proof (Table  ).  

TABLE     
 

STATE TABLE OF FIGURE     
 

Initial state First       gate        gate Second       gate 

                        

                        

      
 

√ 
                

 

√ 
                      

      
 

√ 
                

 

√ 
                      

                        

                        

      
 

√ 
                

 

√ 
                      

      
 

√ 
                

 

√ 
                      

 
By this method, the gate count and the depth of the circuit are  . In [ ], the authors show that a 

controlled-unitary gate operation, a       gate, with two NN controls and one target in a three 

qubit system, can be decomposed into five gate operations comprising CNOT and controlled-  
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gates. Note that here, the controlled-  gate is the square root of the gate operation  . For 

realizing the same Toffoli gate in Figure     by using the method in [ ], the gate count is   . 

Therefore by using our method, the quantum cost has been improved by    . 

Lemma  : A       gate in an LNN array comprising   qubits, where   is the number 

of controls and    , can be replaced by a       gate sandwiched between two Hadamard 

gates applied on the target qubit: 

           
        (   ) 

where    is a     matrix defined by: 

         (

 

√ 

 

√ 
 

√ 
 

 

√ 

)       (   ) 

where “ ” is the position of the target qubit, and      . 

Proof: Assume that the target is in the           state and all the controls are in the     

state. By applying the first Hadamard gate, the state of the target becomes   

√ 
             

            . Next, the       gate is implemented on the target and the state of the target is 

altered to  
 

√ 
                         . Finally, after applying the last Hadamard gate, the 

state of the target becomes          . Therefore, an   (or NOT) gate is applied on the target 

qubit when all the controls are in the     state. If some or all of the control qubits are not in the 

    state, two successive    gates are applied on the target qubit, wherein the state of the qubit 

remains unchanged (since    is self-inverse). 

 Corollary  : A       gate in an LNN array comprising   qubits can be replaced by a 

      gate sandwiched between two Hadamard gates applied on the target qubit: 
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        (   ) 

Proof: Equation (   ) can be derived by applying two Hadamard gates on either side of 

equation (   ): 

     
               

           (   ) 

Since, the Hadamard gate is a self-inverse unitary matrix, we have     
   . 

 Lemma  : A       gate in an   qubit system, where      , can be decomposed 

into two         gates and two          gates, where       and all four controlled-

unitary operations use the same auxiliary as the target qubit. The advantage of using this lemma 

repeatedly is that non-NN controlled-unitary gates can be broken down into NN controlled 

unitary gates by using auxiliary qubits. 

 Proof: Figure     shows a       gate in an   qubit system, where qubits   and   are the 

controls and qubit   is target, and    . For simplicity, qubits   and   are chosen to be 

adjacent to each other. The       gate is decomposed into two       (or Toffoli) gates and two 

      gates, where all operations use qubit   as the auxiliary qubit. Here,     and    . 

 
 

Figure    . Decomposition of a       gate in an  -qubit LNN 
array into two       (or Toffoli) gates and two      gates 

 
We assume    ,     and     are all in the     state. For the first Toffoli gate we have: 
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where      is the complement state of qubit    . For the second gate we have: 

                                 

where          is the       gate between      and    . For the third gate we have: 

                                         

where     is the complement state of qubit     . Finally, for the last gate we have: 

                                                  

where                  yields     , since either        or      . Therefore, the final state 

becomes           . If    ,     or     are not all in the     state, the output remains unchanged.  

    Implementing Toffoli Gates between Non-Adjacent Qubits in Multi-Qubit Systems 

 We will now show how to use the results of section     to implement Toffoli gates in 

multi-qubit systems.  In this section, we are only concerned with the  -qubit Toffoli gate which 

has   controls and   target. We show how to implement this gate in an  -qubit system (   ) 

when the control and target qubits are not adjacent to each other (NCC  ) without having to 

use swap gates. In subsequent sections, we will deal with Toffoli gates with more than   controls 

(multi-control Toffoli gates) and more than   target (multi-control-multi-target Toffoli gates). 

      Toffoli Gate in a   Qubit System 

 Figure     shows our method for implementing a Toffoli gate in a four qubit system, 

where two of the participants are not adjacent. By lemma  , the Toffoli gate is realized by 

sandwiching a       gate between two   gates applied on the target qubit. By lemma  , the 

       gate is replaced by two Toffoli gates between qubits  ,   and   with qubit   as the target 

and two        gates between qubits   and  . Note that qubit   is the auxiliary qubit. If the 

Toffoli gate is between qubits  ,   and  , where qubits   and   are controls and qubit   is the 

target, we use qubit   as the auxiliary qubit for the decomposition of the Toffoli gate. Since the 
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      gate is applied only when all the participants are in the     state, it does not matter what 

qubit is chosen as the control or the target qubit. Each of the two       gates between qubits   

and   will be replaced by two        gates. 

 
 

Figure    . Implementation of a Toffoli gate in a   qubit system 
using qubit   as the auxiliary qubit. If the Toffoli gate is between 
qubits  ,   and  , where qubits   and   are controls and qubit   is 

the target, we use qubit   as the auxiliary qubit for the 
decomposition of the Toffoli gate 

 
Note that if the method in [ ] is used to realize the Toffoli gate in a four qubit system, wherein 

swap gates are applied to bring qubits adjacent to each other, the gate count is   . Using our 

method, the same Toffoli gate can be implemented by   elementary gates. The quantum cost is 

improved by    . 

      Toffoli Gate in an   Qubit System 

Figure     shows a Toffoli gate with three participants in an   qubit system, where 

qubits  ,   and   are the participants. Here and throughout,   is the  st qubit,   is the  th qubit 

and   is a qubit between them. As before, to perform a Toffoli gate, a       gate is realized on 

these three participants which is sandwiched between two   gates applied on the target qubit. 

Qubit   shows the position of the auxiliary qubit. In our method, we divide qubits into two 

major groups, “I” and “II”; where each group comprises “ ” and “       ” qubits, 

respectively. If   is odd, we choose “         ”, and if   is even, we choose “     



27 

    ”. In either case, if    , we change      . Depending on whether participant   is in 

group “I” (case  ) or in group “II” (case  ), each       gate is decomposed into four gates. In 

case  , the       gate is replaced by two Toffoli gates between  ,   and  , with   as the target, 

and two       gates between   and  . In case  , the       gate is substituted by two Toffoli 

gates between  ,   and   (  as the target), and two       gates between   and  . In Figure 

   , the two Toffoli gates implemented between qubits  ,   and   (group “I”) need not be 

between nearest neighbor qubits (NNC  ). If the Toffoli gates are not of the form of Figure 

   , further decomposition into sub-groups are needed. 

 
 

Figure    . Implementation of a Toffoli gate in an   qubit system 
(case  ) where participant   is in group “I” 

 
This process of decomposition is carried out until all Toffoli gate operations are of the form of 

Figure    . Likewise, in each group/subgroup, if the       gates are such that the separation 

between the control and target qubits is greater than one (NNC > 1), each gate will have to be 

broken down into subgroups (if NNC   , a       gate is replaced by a        gate). In [  ], 

the author shows how to implement a       gate between non-NN qubits. For      , where   is 

the number of qubits, the total gate count for the       gate is shown to be [  ]: 

                     (   ) 

Note that, here          . 
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    Multi-Control Toffoli Gates 

 In this section, we introduce a new method of realizing multi-control Toffoli gates, the 

      gate, where     in   qubit LNN architectures. We then show an example of 

implementing a       in a five-qubit system. 

      Multi-Control Toffoli Gates in   Qubit Systems  

Figure    (a) (the first plot) shows a       gate in an   qubit system, where     

qubits are the participants and        . For realizing multi-control Toffoli gates, at least 

one additional qubit, other than the participants in the circuit, is required. As shown in Figure 

   (a) (the second plot) and based on lemma  , any       gate can be replaced by a       gate 

sandwiched between two Hadamard gates applied on the target qubit. Based on lemma  , the 

      gate is decomposed into two         gates and two          gates, where all four gate 

operations use qubit   as the target qubit. For the         and         gates, if       or 

     , further decompositions based on lemma   and   are needed. These decompositions 

go on until       and       gates are extracted. Then, the method explained in section     can 

be used. Figure    (b) shows the steps of decomposition. 

The worst case is when there is not any auxiliary qubit among participants to implement 

further multi-control gates in the circuit. For example, in Figure    (b), no auxiliary qubit is left 

to implement         gate between qubits   and   with qubit   as the target. In this case, the 

first available qubit next to the target, qubit  , which is not a participant for the desired gate, is 

used as an auxiliary qubit for the decomposition. Figure    (c) shows how the auxiliary qubit is 

used and brought back to its initial state. 
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Figure    (a) 
 

 

 

Figure    (b) 
 

 
 

Figure    (c) 
 

Figure    . Implementation of a multi-control Toffoli gate in an   
qubit system. (a) Using lemma   to decompose the multi-control 

Toffoli gate into multi-control   gate sandwiched between 
Hadamard gates on the target. (b) Using lemma   to break down 

the multi-control   gate into two         gates and two         
applied on the auxiliary qubit, “ ”. (c) Implementation of a multi-
control Toffoli gate without any auxiliary qubit among participants 

(the worst case), where qubit   is used as an auxiliary qubit 
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      A       Gate in a   Qubit System 

Figure     shows an example of multi-control Toffoli gate in a   qubit system, where 

qubits  ,   and   are the controls and qubit   is the target qubit. Here, qubit   is the auxiliary 

qubit and participates in gate operations. 

 
 

Figure    . Implementation of a multi-control Toffoli gate in a   
qubit system where qubits  ,   and   are the controls and qubit   is 

the target 
 

Further simplification is possible if corollary   is used. Each of the two       gates can be 

replaced by a       (or Toffoli) gate and two Hadamard gates. Finally, the two successive   

gates are cancelled out (shown by dotted boxes), and the gate count is   . 

    Multi-Control-Multi-Target Toffoli Gates 

 In this section, we propose a new circuit reduction technique for implementing a multi-

control-multi-target Toffoli gate in   qubit LNN arrays. We then show an example of realizing a 

two-control-two-target Toffoli gate in a five qubit system. 

      Multi-Control-Multi-Target Toffoli Gates in   Qubit Systems 

 In Figure     (the first plot), a multi-control-multi-target Toffoli gate in an   qubit 

system is shown. Here,   and   are the numbers of controls and targets respectively, and     

 . The key point is to decompose the desired gate into   different multi-control Toffoli gates and 

simplify the circuit. 
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Figure    . Decomposition of a multi-control-multi-target Toffoli 
gate into a sequence of multi-control Toffoli gates, and simplifying 

the circuit 
 
The first step is to decompose the multi-control-multi-target gate into a sequence of multi-control 

Toffoli gates by taking out the target qubits (the second figure in Figure    ). By using the 

concepts of implementing multi-control Toffoli gates discussed in section    , further 

simplifications are possible. As shown in the third plot of Figure    , the second multi-control 

Toffoli gate (the dotted box) is decomposed into two multi-control Toffoli gates and two CNOT 

gates, using qubit   as the auxiliary qubit. Note that the first two gates are identical and can be 

cancelled out. The main advantage of this method is that no auxiliary qubit is required. 

      Multi-Control-Multi-Target Toffoli Gate in a   Qubit System 

 As an example of a multi-control-multi-target Toffoli gate, Figure    (a) shows a two- 

control-two-target Toffoli gate, where qubits   and   are the controls and qubits   and   are the 

targets. The desired gate is decomposed into two Toffoli gates. The first Toffoli gate is between 

qubits  ,   and  , where qubits   and   are the controls and qubit   is the target. The second 

Toffoli gate is between qubits  ,   and  , where qubits   and   are the controls and qubit   is the 

target. (The second Toffoli gate is replaced by: a Hadamard gate on qubit  , a Toffoli gate 

between qubits  ,   and  , where qubits   and   are the controls and qubit   is the target, a 

controlled-  gate between qubit   and  , a Toffoli gate between qubits  ,   and  , where qubits 
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  and   are the controls and qubit   is the target, a controlled-  gate between qubits   and   and 

a Hadamard gate on qubit  ). As it is shown in the Figure    (a), two successive identical Toffoli 

gates are eliminated (the gate is self-inverse). Figure    (b) shows the final circuit where the gate 

count is   .  

 
 

Figure    (a) 
 

 
 

Figure    (b) 
 

Figure    . Implementation of a multi-control-multi-target Toffoli 
gate in a   qubit system. (a) Decomposition of the desired gate into 
two Toffoli gates, where the second gate is broken down by using 
the concepts of realizing multi-control Toffoli gates discussed in 

section    . (b) The final circuit comprising NN gates 
 

    Simulations 

 

 As an example, for our simulations, we consider an Ising-coupled LNN system of   

qubits. The Hamiltonian,   , where “ ” represents the number of qubits in the system, is: 
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    ∑               ∑   
     

         
   
   

 
    (    ) 

Here, the terms    and    for         , are the tunneling and bias parameters of the  th qubit 

  , respectively, and  
     

 is the coupling parameter between qubits    and     . Also,     and 

    for           , are the Pauli matrices corresponding to qubit   : 

          (
  
  

)      (    ) 

          (
  
   

)      (    ) 

Ising type interactions are diagonal interactions in the computational basis, which are typical of 

Josephson-junction qubits [ ,  ]. Our simulation results were run in MATLAB where we 

examined the evolution of the system described by the Hamiltonian,   , by integrating the 

Schrödinger equation with respect to time. The Schrödinger equation is defined as: 

   

  

 

  
          (2.13) 

where     is the state of the system and “ ” is the Planck’s constant. In our simulations, we 

normalized the Plank’s constant to  . The parameters for the Hamiltonian depends upon the gate 

operation being realized and were based on results presented in [ ], using a pulsed-bias 

technique in superconducting qubits. 

Suppose we want to simulate a Toffoli gate in a four qubit system (Figure    ), where 

qubit   and   are the controls and qubit   is the target. To implement gate operations, we use the 

analytical solutions presented in [ ,  ] to tune the parameter values (pulsed-bias scheme). We 

assumed all the qubits to be identical in design, and fixed the tunneling parameter         

         MHz. For the first gate, Hadamard gate on qubit  , we fix the couplings  
   

 

 
   

  
   

   Hz,            GHz, and         MHz for      nanoseconds. For 
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the second gate, a Toffoli gate between qubits  ,   and   where qubit   is the target, we 

tune  
   

  
   

   GHz,  
   

   Hz,            GHz, and      
   

  
   

   GHz 

for     
 

  
    nanoseconds. For the third gate,        gate between qubits  ,   and   where 

qubit   is the target, we fix  
   

   Hz,   
   

  
   

   GHz,            GHz, and 

     
   

  
   

   GHz for    
 

  
    nanoseconds. For the fourth, fifth and sixth gates, 

we use the same parameters obtained for the first, second and third gates, respectively. Note that 

the time period for the last Hadamard gate is            nanosecond, in order to cancel 

out the global phase of “ 

 
” resulting from the first Hadamard gate [  ]. Figure     shows the 

simulation results when the initial state is       . The figure shows the probabilities of each 

qubit. The final state is       . As another example, Figure    shows the simulation results for a 

multi-control-multi-target gate in a five qubit system (Figure  (b)), with qubits   and   as the 

controls and qubits   and   as the targets. The initial state of the system is        , and the final 

state is        , where the states of the targets are inverted from     to     and vice versa since 

the control qubits are in the     state.  
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Figure    .  Simulation results for the Toffoli gate discussed in 
section     with qubits   and   as the controls and qubit   as the 

target 
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Figure     . Simulation results for the multi-control-multi-target 
Toffoli gate discussed in section     with qubits   and   as the 

controls and qubits   and   as the targets 
 
    Multi-Control Toffoli Gates in  D Architectures 

 

 All the reduction techniques discussed for  D LNN arrays can be extended to  D and  D 

arrays. However, further simplification can be achieved in  D and  D arrays for specific 

arrangements of qubits. This can be done by implementing a        gate, analogous to the 

       gate, where   is the number of qubits coupled to an auxiliary qubit. As an example, 

consider Figure     , which shows a  D NN arrangement of qubits. Here, consider qubit  , 

which is directly coupled to its   neighbors. Suppose we want to implement a multi-control 

Toffoli gate (      gate) with qubits  ,   and   as the controls and qubit   as the target. Since 

qubit   is coupled to all   participants ( ,  ,   and  ), we can implement a        gate 
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between qubits   through   with qubits  ,  ,  ,   as the controls, and qubit   as the target. 

Analogous to the        gate, the        gate is defined as: 

               {
                         

                         (    ) 

where    ,    ,    ,     and     are the states of qubits. When all qubits are in the     state, a   

phase is applied on the target qubit. 

 
 

Figure     . A  D nearest neighbor arrangement of qubits. Each 
qubit only interacts with its adjacent neighbors 

 
Now, if the        gate is sandwiched between two Hadamard gates applied on qubit  , the 

desired       gate is realized. Using schemes like the pulsed-bias scheme [ ], the        gate 

can be implemented in a single step by making the bias on qubit   equal to the sum of all the   

coupling terms for a time interval      ⁄ . Thus, in addition to extending the results of  D 

LNN arrays to  D arrays, further gate simplifications can be realized in  D architectures for 

certain specific arrangements of qubits. 

     Conclusions 

 Quantum computing is not feasible without quantum error correction. Multi-control 

Toffoli gates are widely used in quantum error correcting codes, and efficient methods for 

implementing them in LNN arrays, on which most physical proposals of a quantum computer are 
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built, need to be investigated. In this research, a new method to implement multi-control Toffoli 

gates in LNN arrays was presented. To this end, we introduced   lemmas that formed the basis 

for all our circuit reduction techniques. Using the lemmas, we first showed how to implement 

Toffoli gates in LNN arrays with different separations between the two control qubits and the 

target qubit. We extended our scheme to show how to implement multi-control Toffoli gates 

(with more than   controls) in LNN arrays with arbitrary separation between the controls and 

target. We used auxiliary qubits in our gate decomposition protocols, at the end of which, they 

were always restored back to their original states. In addition, for implementing multi-control 

Toffoli gate operations efficiently in LNN arrays, we showed how to extend our protocols to  D 

arrays. We introduced a new gate,        gate, analogous to the        gate in  D LNN 

arrays, using which we were able to implement a three-control-one-target Toffoli gate directly, 

without any interactions between the four qubits involved. The advantage of our work was that 

swap gates were not used to bring the qubits adjacent to each other. Instead, qubits other than 

control and target qubits were used to participate in gate operations. This decreased the gate 

count and overall computational overhead of our circuit. 
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CHAPTER   

 

SINGLE-CONTROL-MULTI-TARGET TOFFOLI GATES IN LNN ARRAYS 

 

 

 Our method can be used for implementing single-control-multi-target Toffoli gates in an 

  qubit system. Here, if the total number of target qubits is  , then there are     participants in 

the circuit. The limit for this method is the availability of at least one auxiliary qubit in the 

circuit, which requires        . Figure     shows a single-control-multi-target Toffoli 

gate where qubit   is the control. If we use swap gates to apply this gate operation,         

swap gates and   CNOT gates are needed, and the quantum cost is           CNOT gates 

(  swap gate equals   CNOT gates). 

 To apply a single-control-multi-target Toffoli gate, the following are the procedures: 

Step  : a CNOT gate is applied on the auxiliary qubit,  , with qubit   as the control 

qubit. 

Step  :  Implement CNOT gates on all the target qubits with qubit   as the control qubit. 

To decrease the depth, two CNOT gates can be realized in parallel. 

Step  : Repeat step  . 

Step  : Repeat step  . 

For applying any remote CNOT gate with one control and one target qubit in the circuit, 

we use circuit reduction techniques discussed in [  ]. The advantage of our method is that a pair 

of CNOT gates can be implemented in parallel. This can reduce the gate count of the system. 

The disadvantage of this method is when the NCC of qubits   and   is less than   ⁄  (qubit   is 

not in the middle of the circuit), the gate count increases, and compared to circuits with swap 

gates, this method may no longer be efficient, and new techniques need to be investigated (which 
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is beyond the scope of this thesis). In the following, a circuit to implement a single-control-

multi-target Toffoli gate in a   qubit system is shown. 

 
 

Figure    . Implementation of a single-control-multi-target Toffoli 
gate in an   qubit system 

 
Note that in the circuit reduction technique shown in Figure    , the auxiliary qubit is located in 

the middle of the LNN array. The gate count may vary depending upon the location of the 

auxiliary qubit. Finding the most efficient circuit as a function of the position of the auxiliary 

qubit has been left as a future work. 

 As an example, Figure    (a) shows a one-control-three-target Toffoli gate with four 

participants where qubit   is the control and qubits  ,   and   are the targets in the circuit. Qubit 

  is in the middle and can be used as the auxiliary qubit. To apply the desired gate, first a CNOT 

gate is implemented between qubits   and  , where qubit   is the target. Then, two CNOT gates 

are applied on qubits   and  , where qubit   is the control. Another CNOT gate is implemented 

between qubits   and  , where qubit   is the target. Finally, we repeat all the steps as follows: 

one CNOT gate implemented between qubits   and  , where qubit   is the target; two CNOT 

gates applied on qubits   and  , where qubit   is the control, and one CNOT gate between qubits 

  and  , where qubit   is the target. 
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Figure    (a) 
 

 
 

Figure    (b)  
 

Figure    . Implementation of a one-control-three-target Toffoli 
gate in a   qubit system. (a) Using steps  ,  ,   and   to 

decompose the desired gate into a sequence of CNOT gates. (b) 
The final circuit comprising universal gates 

 
Figure    (b) shows the final circuit with the elementary gate operations. In [  ], the author 

showed how to implement a CNOT gate between two next-to-near qubits using three elementary 

gates. Note that two successive Hadamard gates applied on qubit   cancel out each other. The 

gate count for this single-control-multi-target Toffoli gate is   , and the depth is   . Using swap 

gates will increase the gate count to             . In this example, if the auxiliary qubit 

is not in the middle of the circuit (was either qubit   or qubit  ), by using our method, the gate 

count and depth increase to    and   , respectively.  
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CHAPTER 4 

 

CONCLUSIONS 

 

 

 Efficient quantum algorithms rely on large scale quantum interference, which is sensitive 

to imprecision in the computer and to unwanted coupling between the computer and the rest of 

the world (noise and decoherence). Therefore, large scale quantum computation is practically 

impossible unless error correction methods are used. Multi-control Toffoli gates are widely used 

in quantum error correcting codes, and efficient methods for implementing them in LNN arrays, 

on which most physical proposals of a quantum computer are built, need to be investigated. In 

this thesis, a new method to implement multi-control Toffoli gates in LNN arrays was presented. 

To this end, we introduced   lemmas that formed the basis for all our circuit reduction 

techniques. Using the lemmas, we first showed how to implement Toffoli gates in LNN arrays 

with different separations between the two control qubits and the target qubit. We extended our 

scheme to show how to implement multi-control Toffoli gates (with more than   controls) in 

LNN arrays with arbitrary separation between the controls and target. We also proposed a new 

technique to realize a single-control-multi-target Toffoli gate in   qubit LNN arrays. Throughout 

this research, we used auxiliary qubits in our gate decomposition protocols, at the end of which, 

they were always restored back to their original states. In addition, for implementing multi-

control Toffoli gate operations efficiently in LNN arrays, we showed how to extend our 

protocols to  D arrays. We introduced a new gate,        gate, analogous to the        gate in 

 D LNN arrays, using which we were able to implement a three-control-one-target Toffoli gate 

directly, without any interactions between the four qubits involved. The advantage of our work 

was that swap gates were not used to bring the qubits adjacent to each other. Instead, qubits other 
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than control and target qubits were used to participate in gate operations. This decreased the gate 

count and overall computational overhead of our circuit. 

 One of the future works is to extend our method to implement multi-control Toffoli gates 

efficiently in  D LNN architectures. Another area of research is finding the most efficient circuit 

in realizing single-control-multi-target Toffoli gates as a function of the position of the auxiliary 

qubit. In addition, implementation of two different controlled-unitary gate operations applied on 

two targets with the same control qubit can be investigated. For instance, in [  ], the authors 

showed a method of generalization of Kitaev's phase estimation algorithm, where a controlled-  

and a controlled-  gate operations are applied on two targets with a shared control qubit. Figure 

    shows an example of the gate operation in [  ]. A future work would be to investigate how 

to realize such gate operations efficiently in the minimal number of steps. 

 
 

Figure    . A controlled-  gate and a controlled-  gate with a 
shared control qubit 
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