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ABSTRACT 
 

 
 The purpose of this thesis was to extend the quasi-steady-state approximation 

and matrix block diagonalization methods utilized in the work of Shim and Sawan [1]. 

These authors showed that an approximate controller solution could be developed by 

relocating only the slow poles for two-time-scale aircraft dynamics. In addition, they 

showed that the difference between approximate solutions and exact solutions was 

bounded within limits as O(ε) and O(ε2). This technique was successfully applied to the 

lateral dynamics of the de Haviland Canada DHC-2 Beaver aircraft.  

In this thesis, the same technique was applied to the NASA F-8 aircraft dynamics 

in order to show that the method is not unique to the Beaver and can be applied to other 

aircraft models. It also extended the method to consider the singularly perturbed 

stochastic system and showed that a finite solution to the Lyapunov equation existed as 

a result of the stability. 
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CHAPTER 1 
 

INTRODUCTION 
 
 

A myriad of methods, tools and techniques are available to controls engineers to 

assist them in modeling, analyzing, and designing systems. Yet, as with most goals in 

both academia and industry, the ability to find solutions in a minimal amount of time is 

desired. Often times in industry, practical problems arise and need to be answered in a 

minimal amount of time. A problem may require only a simple approximate answer or 

“back of the envelope” calculation instead of a complex analysis, in order to allow other 

work to proceed or to determine if a particular design path is acceptable. In these cases, 

an approximation or verification may be all that is required. These types of 

circumstances where only a validation is required allow minimal impact on project 

schedules and program costs. 

  In controls engineering applications, to achieve these “quick-look” solutions, 

reducing system sizes and orders can be beneficial. However, this can also run the risk 

of reducing accuracy. Having techniques that can do both is clearly advantageous. 

By taking a dynamic system and separating its eigenvalues into two distinct 

groups of fast and slow variables means to convert it to a two-time-scale system [1]. But 

even at this stage, it is still challenging to compute a solution. In order to further simplify 

the process, two techniques that reduce system sizes and orders are utilized: matrix 

block diagonalization and quasi-steady-state approximation [2].  When both processes 

are used together, this is called the singular perturbation method.  

In conjunction with the above techniques, at times it is prudent and necessary to 

consider the effects of external forces. Even though these forces are unpredictable, it is 
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still important to understand their impact. Methods used for solving stochastic systems 

are employed to show stability that is still preserved.  

As shown in this thesis, utilizing the methods of slow pole relocation along with 

considering stochastic behavior provides a useful and reliable methodology. This will 

allow expedient insight into the effects of design changes without a lengthy and complex 

analysis.  
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CHAPTER 2 
 

METHODOLOGY 
 
 

2.1 Singular Perturbation Method 
 

The singular perturbation technique provides a way to simplify a system model 

through order reduction and size [3], while at the same time retaining accuracy. This is 

accomplished through the consideration of parameters that are normally neglected in 

simplified models. These typically neglected parameters are accounted for as a scalar, 

represented by the variable ε. In the context of a state-space model, this can be 

represented as 

ሶݔ  ൌ ݂ሺݔ, ,ݖ ,ߝ ,ሻݐ ଴ሻݐሺݔ ൌ ,଴ݔ ݔ ∊ ܴ௡ (2.1) 

ሶݖߝ  ൌ ݃ሺݔ, ,ݖ ,ߝ ,ሻݐ ଴ሻݐሺݖ ൌ ,଴ݖ ݖ ∊ ܴ௠	 (2.2) 

where the derivatives are with respect to time, and ݂ and ݃ are continuously 

differentiable functions of ݔ, ,ݖ ,ߝ  As stated above, order reduction is desired and is .ݐ	݀݊ܽ

achieved by conversion to a parameter perturbation known as “singular.” If ε = 0, then 

the state space dimension of equations (2.1) and (2.2) will be reduced to n instead of  n 

+ m, from which proceeds the following the algebraic equation: 

 0 ൌ ݃ሺ̅ݔ, ,̅ݖ 0,  ሻ (2.3a)ݐ

where the bar above the functions indicates the variables of a system where ε = 0. It 

can be stated that if equation (2.3a) has distinct real roots such that 

̅ݖ  ൌ Φపതതതሺ̅ݔ, ,ሻݐ ݅	ݎ݋݂ ൌ 1, 2, … , ݇, (2.3b) 

then equations (2.1) and (2.2) are considered to be in standard form. 

A two-time-scale system occurs when a system’s eigenvalues are separated into 

slow and fast groups. The two-time-scale model for a time-invariant system is given as 
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ሶݔ  ൌ ݔଵଵܣ ൅ ݖଵଶܣ ൅ ,ݑଵܤ ଴ሻݐሺݔ ൌ  ଴ (2.4)ݔ

ሶݖߝ  ൌ ݔଶଵܣ ൅ ݖଶଶܣ ൅ ,ݑଶܤ ଴ሻݐሺݖ ൌ  ଴ (2.5)ݖ

where x and z are n- and m-dimensional state vectors, respectively, and the A matrices 

are of appropriate dimensionality. In addition, ܣଶଶ must be non-singular. In order for 

equations (2.4) and (2.5) to have a two-time-scale property, the following must be true: 

 0 ൏ |௦ଵߣ| ൏ …|௦ଶߣ| |௦௡ߣ| ൏ หߣ௙ଵห ൏ หߣ௙ଶห… หߣ௙௠ห ൏ ቚଶ
୼
ቚ (2.6) 

where λ represents the eigenvalues of the system and 

ߝ  ൌ ௙ଵหߣ௦௡|/หߣ| ≪ 1 (2.7) 

From this, it follows that the following inequality holds: 

୫ୟ୶ߣ|  ሺܣ௦ሻ| ≪ หߣ௠௜௡ሺܣ௙ሻห (2.8) 

Consequently, if the norm of the invertible matrices are used, then the following is true 

[1]:  

 หܣ௙ห
ିଵ
≪   ௦|ିଵ (2.9a)ܣ|

With equations (2.4) to (2.9a) providing the basis for the two-time-scale system, the 

model can be written as 

 ൤
ሶݔ ሺݐሻ
ሻ൨ݐሶሺݖߝ ൌ ൤

ଵଵܣ ଵଶܣ
ଶଵܣ ଶଶܣ

൨ ൤
ሻݐሺݔ
ሻ൨ݐሺݖ ൅ ൤

ଵܤ
ଶܤ
൨  ሻ (2.9b)ݐሺݑ

The process of decoupling the system into its fast and slow constituents will be 

discussed in the next section. 

2.2 Block Diagonalization 

Block diagonalization is a transformation method by which two-time-scale 

systems are separated into fast and slow subsystems. Decoupling allows them to be 

addressed separately. First, the system can be rewritten as [4] 
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௦ሺ߬ሻݔ  ൌ ሺܫ௦ െ ሺ߬ሻݔሻܮܯ െ  ሺ߬ሻ (2.10)ݖܯ

௙ሺ߬ሻݖ	  ൌ ሺ߬ሻݔܮ ൅  ሺ߬ሻ (2.11)ݖ௙ܫ

From here, equations (2.1) and (2.2) can be expressed as slow and fast subsystems [5], 

respectively: 

 ൤
௦ሶݔ ሺݐሻ
௙ሶݖ ሺݐሻ

൨ ൌ ൤
௦ܣ 0
0 ௙ܣ

൨ ൤
ሻݐ௦ሺݔ
ሻݐ௙ሺݖ

൨ ൅ ൤
௦ܤ
௙ܤ
൨  ሻ (2.12)ݐሺݑ

where 

௦ܣ  ൌ ଵଵܣ െ ௙ܣ   ,ܮଵଶܣ ൌ ଶଶܣ ൅  ଶଶ (2.13)ܣܮ

௦ܤ  ൌ ଵܤ െܤܯଶ െܤܮܯଵ,   ܤ௙ ൌ ଶܤ ൅  ଵ (2.14)ܤܮ

L and M as solutions to the algebraic Riccatti equation (ARE) are as follows: 

ଵଵܣܮ  ൅ ଶଵܣ െ ܮଵଶܣܮ െ ܮଶଶܣ ൌ 0 (2.15) 

ܯଵଵܣ  െ ܯܮଵଶܣ െܣܯଶଶ െ ଵଶܣܮܯ ൅ ଵଶܣ ൌ 0 (2.16) 

The initial conditions for L and M are as follows: 

଴ܮ  ൌ ଶଶܣ
ିଵܣଶଵ,     ܯ଴ ൌ ଶଶܣଵଶܣ

ିଵ (2.17) 

଴ܣ  ൌ ଵଵܣ െ ଴ܤ    ,଴ܮଵଶܣ ൌ ଵܤ െܯ଴ܤଶ (2.18) 

When 

 ฮܣଶଶ
ିଵฮ ≪ ሼ3ሺ‖ܣ଴‖ ൅ ‖ଵଶܣ‖ ⋅  ଴‖ሻሽିଵ (2.19)ܮ‖

then Lk and Mk sequences are: 

௞ାଵܮ  ൌ ଶଶܣ
ିଵሺܣଶଵ ൅ ଵଵܣ௞ܮ െ  ௞ሻ  (2.20)ܮଵଶܣ௞ܮ

 

௞ାଵܯ  ൌ ሺܣଵଵ ൅ ଵଶܣ െ ௞ܯ௞ܮଵଶܣ െܯ௞ܮ௞ܣଵଶሻܣଶଶ
ିଵ (2.21) 
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From the work of Kokotovic [4], it can be shown that a system exhibits the two-time-

scale property, if the following holds: 

ଶଶܣ‖ 
ିଵ‖ ≪ ሼ‖ܣ଴‖ ൅ ‖ଵଶܣ‖ ⋅  ଴‖ሽିଵ (2.22)ܮ‖

From here, the approximate expressions for x and z can be obtained, respectively, as 

ሻݐሺݔ  ൌ ሻݐ଴ሺݔ ൅ ଶଶܣଵଶܣ
ିଵݖ଴ሺݐሻ ൅ ܱሺݑሻ (2.23) 

ሻݐሺݖ  ൌ ଶଶܣ
ିଵܣଶଵݔ଴ሺݐሻ ൅ ሻݐ଴ሺݖ ൅ ܱሺݑሻ (2.24) 

where xs0 and xf0 are obtained from simplified subsystems [1] as 

 ቈ
ሻሶݐሺݔ

ሻሶݐሺݖ
቉ ൌ ൤

଴ܣ 0
0 ଶଶܣ

൨ ൤
ሻݐ଴ሺݔ
ሻݐ଴ሺݖ

൨ ൅ ൤
଴ܤ
ଶܤ
൨  ሻ (2.25)ݐ଴ሺݑ

2.3 Quasi-Steady State 

The quasi-steady-state approach is a method by which fast subsystems are 

assumed to have reached a steady state. Beginning with the standard form, the system 

becomes 

 ൤ݔ
ሶ ሺݐሻ
0
൨ ൌ ൤

ଵଵܣ ଵଶܣ
ଶଵܣ ଶଶܣ

൨ ൤
ሻݐሺݔ
ሻݐሺݖ

൨ ൅ ൤
ଵܤ
ଶܤ
൨  ሻ (2.26)ݐ଴ሺݑ

where the system reduces to 

ሶݔ  ሺݐሻ ൌ  ሻ,   (2.27a)ݐሺݔ଴ܣ

ሻݐሺݖ   ൌ ଶଶܣ
ିଵሺܣଶଵݔሺݐሻ ൅   ሻሻ (2.27b)ݐሺݑଶܤ

where the bar above the functions indicates the quasi-steady state. To visualize this, 

since the x term (slow subsystem) is varying slowly in comparison to the fast 

subsystem, the z term has decayed to the point where its derivative with respect to time 

is zero. Therefore, ݔ଴, ଶଶܣ
ିଵܣଶଵݔ଴ is a quasi-steady state of x. For the slow portions of x(t) 

and z(t), approximations to achieve O(ε) by letting ε = 0 will set the ݖሶ term of (1.10) to 

zero. Then, substituting equation (2.28) into equation (2.27) results in 
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௦ሶݔ  ሺݐሻ ൌ ሻݐ௦ሺݔ଴ܣ ൅ ,ሻݐ௦ሺݑ଴ܤ ௦ሺ0ሻݔ		ݎ݋݂ ൌ  ௦଴ (2.28)ݔ

where ܣ଴and ܤ଴	are the same as in the initial condition of equation (2.18), and ݔ ൌ ,௦ݔ

ݑ ൌ ,௦ݑ  are the slow portions of equations (2.14) and (2.15). Additionally, for the fast  ݕ

modes, the slow variables are assumed to be constant. The fast subsystem of equation 

(2.9b) then can be defined as 

௙ሺ߬ሻݖ  ൌ ௙ሺ߬ሻݖଶଶܣ ൅ ௙ሺ0ሻݖ   ,௙ሺ߬ሻݑଶܤ ൌ ଴ݖ െ  ଴̅ሺ0ሻ (2.29)ݖ

where 

௙ݖ  ൌ ݖ െ  (2.30a)   ,ݖ

௙ݑ   ൌ ݑ െ   ௦ (2.30b)ݑ

The term O(ε) is an order of magnitude approximation for ε corresponding to a 

very small value established by determining the ratio of the smallest eigenvalue of the 

fast subsystem to the largest eigenvalue of the slow subsystem. 

Separately designed feedback controls for the slow and fast subsystems are, 

respectively, 

 uୱ ൌ G଴xୱ (2.31) 

 u୤ ൌ Gଶz୤ (2.32) 

where Go and G2 are the feedbacks from pole placement for the slow and fast systems, 

respectively.  For the uncorrected solution, the O(ε) term is a first-order magnitude of 

error value that the solution will satisfy the following: 

 λୢୣୱ୧୰ୣୢ ൌ 	λሺA଴ ൅ B଴G଴ሻ ൅ Oሺɛሻ (2.33) 

where λ is the eigenvalue of the closed loop plant [6]. 

For the corrected solution, the O(ε2) term is a second-order magnitude of error 

value that the solution will satisfy the following: 
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 λୢୣୱ୧୰ୣୢ ൌ 	λሺAୱୡ ൅ BୱୡGୱୡሻ ൅ Oሺɛଶሻ (2.34) 

where λ is the eigenvalue of the closed-loop plant [3].  

2.4 Stochastic Condition 

External influences must be considered to ensure that the modeled results reflect 

the practical real-world environments. For aircraft, these influences are typically 

characterized as forces or disturbances during flight, i.e., wind, gusts, turbulence, etc. 

Due to the unpredictable nature of these influences, they must be treated as random 

variables. Therefore, the stochastic process is utilized to account for these influences 

and determine their impact to the model. 

The method used to solve for these stochastic conditions considers the 

disturbances as a white Gaussian noise with zero mean. A typical stochastic system 

block diagram is shown in Figure 2-1. 

 

 

 

 

 

Figure 2-1. Typical Stochastic System Block Diagram. 

Here, ݔ଴ is the random variable, u is the input, w is the process noise, and v is the 

measurement noise. Since the noise is treated as Gaussian, the process noise w and 

measurement noise v are uncorrelated and therefore independent. 

For the continuous time system, the model for Figure 2-1 can be represented as  

ሶݔ  ൌ ݔܣ ൅ 	ݑܤ ൅  (2.35) 	ݓܩ

 
u

w v

yݔ଴ 
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ݕ  ൌ ݔܥ ൅  (2.36) ݒܪ

To address the non-deterministic property of the system, the mean of the response of 

the stochastic system is computed from the following: 

 ሶ݉ ௫ ൌ  ௫ (2.37)݉ܣ

 ݉௫ ൌ  ሻ݉௫ሺ0ሻ (2.38)ݐሺߔ	

where the characteristic equation is 

ሻݐሺߔ  ൌ 	 ݁஺௧ ൌ 	ࣦିଵሼሺܵܫ െ  ሻିଵ (2.39)ܣ

Finally, the steady-state covariance matrix is computed using the algebraic Lyapunov 

equation [7]: 

்ܣܲ  ൅ ܲܣ ൅ ܳ ൌ 0 (2.40) 

where 

 ܳ ൌ  (2.41) ்ܨܳܨ

ܨ  ൌ ଵܨ െ ଶଶܣଵଶܣ
ିଵܨଶ (2.42) 

A positive definite matrix of the solution will be achieved as a result of the system 

stability. 
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CHAPTER 3 
 

AIRCRAFT APPLICATIONS 
 
 

Shim and Sawan [1] utilized the aforementioned techniques and applied them to 

the de Haviland Canada DHC-2 Beaver aircraft. This single-engine, high–wing, all-metal 

aircraft is manufactured by de Havilland Aircraft of Canada (now under Bombardier 

Aerospace). Some basic specifications of the Beaver are as follows [8]: 

Fuselage length: 9.22 m 

Wing span: 14.63 m 

Wing area:  23.23 m2 

Mean aerodynamic chord:  1.5875 m 

Wing sweep: 0 deg 

Wing dihedral: 1 deg 

Maximum take-off weight: 22,800 N 

Empty weight: 14,970 N 

Engine: Pratt and Whitney Wasp Jr. R-985 

Maximum power: 450 Hp at n = 2300 RPM, pressure altitude = 26 in. Hg 

Propeller: Hamilton Standard, two-bladed metal regulator propeller 

Diameter of propeller: 2.59 m 

Lateral dynamics were utilized in this study, the. Using an epsilon value of 0.0424, the 

open-loop poles—two slow and two fast poles—were calculated. Only the slow poles 

were relocated to an arbitrary value (but still on the left-half plane). 

The simulation showed that the uncorrected and corrected solutions closely 

followed the exact solutions, thereby indicating that not only robustness is maintained 
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but this method proves that it can reduce computational complexity and still be viable 

enough for implementation in practical applications. 

To verify that the above computational techniques are not unique to a particular 

set of values or that they produce solutions only for the numerical quantities associated 

with the physical characteristics of the de Havilland Beaver, these same computational 

methods were applied to the NASA F-8 digital fly-by-wire (DFBW) aircraft. 

 The F-8 aircraft experiment was conducted jointly by the Dryden Flight Research 

Center and the Langley Research Center. The goal of the program was to investigate 

and advance the technology for DFBW systems in aircraft [7]. During this effort, much 

information concerning control systems and control laws was published. With this vast 

amount of accessible information pertaining to a particular control system, the 

application of techniques to the F-8 aircraft that were used in this thesis makes it 

advantageous, since it allows the results to be readily understood and verifiable against 

available data. Some basic specifications of the F-8 Aircraft are as follows:  

Manufacturer: LTV Aerospace, Dallas, Texas 

Powerplant: Pratt and Whitney J57 turbojet 

Wingspan: 35 feet 2 inches (350 square feet) 

Overall length: 54 feet 6 inches 

Overall height: 15 feet 9 inches 

Maximum speed: > 1,000 mph 

The longitudinal dynamics utilized for this exercise were based on the following flight 

conditions [7]:  
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Altitude: 20,000 ft 

Speed: Mach 0.6 (620 ft/sec) 

Angle of attack (AOA): 0.078 rad. 

The longitudinal dynamics of the F8 aircraft utilized for this exercise are as follows [9]: 

 A ൌ ൦

െ0.0150 െ0.0519 െ0.0226 0
0 0 0 1.0000

െ0.1178 0 െ0.8400 1.0000
0.0310 0 െ4.8000 െ0.4900

൪ (3.1) 

 B ൌ ൦

െ0.0018
0

െ0.1100
െ8.7000

൪ (3.2) 

 C ൌ ൦

1 0	 0 0
0 1 0 0
0 0 1 0
0 0 0 1

൪ (3.3) 

where the state variables are as follows: 

v = velocity 

α = angle of attack (rad) 

q = pitch rate (rad/sec) 

θ = pitch angle (rad) 

The input variable is as follows: 

Δ = stabilator deflection (rad) 

When the above system is converted to the two-time-scale singularly perturbed 

form, the following results: 

 Aଵଵ ൌ ቂെ0.195378 െ0.676469
1.478265 0

ቃ (3.4) 

 Aଵଶ ൌ ቂെ0.917160 0.109033
0 0

ቃ (3.5) 
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 Aଶଵ ൌ ቂെ0.051601 0
0.013579 0

ቃ (3.6) 

 Aଶଶ ൌ ቂെ0.367954 0.43804
െ2.102596 െ0.21464

ቃ (3.7) 

ଵܤ  ൌ ቂ െ0.023109
െ16.945030

ቃ (3.8) 

ଶܤ  ൌ ቂെ0.048184
െ3.810954

ቃ (3.9) 

ଵܥ  ൌ ቂ0 1
0 0

ቃ (3.10) 

ଶܥ  ൌ ቂ0.921022 െ0.161179
0 1

ቃ (3.11) 

 
The open-loop poles of the original system are 

 -0.6656±2.1821i (3.12) 

 -0.0069±0.0765i (3.13) 

Applying the techniques of Shim and Sawan [1], only the slow poles were 

relocated here to arbitrary values of  –0.0050 ± 0.0765i and –0.0100 ± 0.0765i  . It 

should be noted that these arbitrary values are only theoretical values to demonstrate 

the effect of moving the slow poles in this thesis. These values chosen do not 

necessarily represent a practical solution for optimal performance of this system. Using 

this new pole location, a feedback gain was generated for both the uncorrected and 

corrected solutions. Both of these gains were then individually fed back into the original 

system. 

For the uncorrected solution, 

ሶݔ  ൌ ሺܣ െ  (3.14) ݔ௨ሻܩܤ

where Gu is the gain calculated from pole placement of the uncorrected slow 

subsystem. 
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For the corrected solution, 

ሶݔ  ൌ ሺܣ െ  (3.15) ݔ௖ሻܩܤ

where Gc is the gain calculated from pole placement of the corrected slow subsystem.
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CHAPTER 4 
 

SIMULATION 
 
 

Figures 4-1 to 4-6 show plots of the pitch angle vs. time that stability is 

maintained with an initial value of 1 rad applied. Figures 4-1 and 4-2 show the exact 

solution of pole placement. As expected, dampening takes place within a shorter 

interval for the exact solution compared to the uncorrected and corrected ones. 

 
 

Figure 4-1. Exact Solution at -0.0050. 

 
Figure 4-2. Exact Solution at -0.0100. 
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Figures 4-3 through 4-6 show the uncorrected and corrected solutions, 

respectively. Even though the plots show dampening taking approximately 10,000 

seconds, the purpose of using this method is fulfilled because it provides a reduced-

effort calculation on a system to ensure that stability still holds. 

 

 

Figure 4-3. Uncorrected Solution at -0.0050. 
 

 
Figure 4-4. Uncorrected Solution at -0.0100. 
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Figure 4-5. Corrected Solution at -0.0050. 
 

 

Figure 4-6. Corrected Solution at -0.0100. 
 

The eigenvalues of the closed loop system for the pole placement at -0.0050 were as 
follows: 

Exact Solution: 

-0.665600000000000 ± 2.182100000000002i 

-0.005000000000000 ± 0.076500000000000i 
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Uncorrected Solution: 

-0.672222100746381 ± 2.179609446694929i 

-0.000355726898124 ± 0.002648928211817i 

Corrected Solution: 

-0.672231293434171 ± 2.179584385361726i 

-0.000346533107418 ± 0.002625341704260i 

 
The deltas between the Exact system and Uncorrected system are as follows: 

Fast Pole = 0.007086 

Slow Pole = 0.073996 

The deltas between the Exact system and Corrected system are as follows: 

Fast Pole = 0.007083 

Slow Pole = 0.074021 

 

For the pole placement at -0.0100: 

Exact Solution: 

-0.665600000000000 ± 2.182100000000000i 

-0.010000000000000 ± 0.076500000000000i 

Uncorrected Solution: 

-0.671831907570681 ± 2.180672686691589i 

-0.000745960237997 ± 0.003554477175555i 

Corrected Solution: 

-0.671841085832996 ± 2.180647654348610i 

-0.000736781007068 ± 0.003536576702767i 
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The deltas between the Exact system and Uncorrected system are as follows: 

Fast Pole = 0.006557 

Slow Pole = 0.073531 

The deltas between the Exact system and Corrected system are as follows: 

Fast Pole = 0.006408 

Slow Pole = 0.073549 

With an ε value of 0.0336, it can be seen from these results that the fast pole positions 

remain within O(ε) of the exact system, but the slow pole positions do not. In addition, no 

corrected solutions are within O(ε2). To account for this compared to the results of the 

Shim and Sawan paper, further analysis of the Simulink modeling used in that study 

compared to the MATLAB calculations used in this thesis need to be explored. In 

addition, more realistic pole relocation choices may be beneficial, but are outside the 

scope of this study. 

 

4. SIMULATION 

4.1 Stochastic Condition 

As demonstrated in the previous section, the system maintains stability at the 

arbitrary selected slow pole values. Therefore, regarding stochastic conditions, it follows 

from this stability that a finite solution exists for the Lyapunov equation and the resulting 

covariance matrix is a positive definite one. As a data point exercise to confirm this, the 

solution to the Lyapunov equation was calculated for the -0.0050 pole location to obtain 

the covariance matrix as follows. [10]:  

்ܣܲ  ൅ ܲܣ ൅ ܳ ൌ 0 (4.1) 

where 



 

20 

 ܳ ൌ  (4.2) ்ܨܳܨ
 
ܨ  ൌ ଵܨ െ ଶଶܣଵଶܣ

ିଵܨଶ (4.3) 
 

ଵܨ  ൌ ቂെ0.223371 ∗ 10
ିଶ

0
ቃ (4.4) 

 

ଶܨ  ൌ ቂെ0.279448 ∗ 10
ିଶ

െ1.596845 ∗ 10ିଶ
ቃ (4.5) 

 

For this exercise, a wind disturbance was applied to the nose angle of 

attack and modeled as a Gaussian white noise with intensity Q [3]: 

 ܳ ൌ ఙమூ

గ௏బ
య ൌ 7.51273 ∗	10ିସ (4.6) 

This yielded the positive definite covariance matrix 

 ቂ 4.5646 ∗ 10
ିଵ଴ െ1.9387 ∗ 10ିଶ଺

െ1.9387 ∗ 10ିଶ଺ 9.9750 ∗ 10ିଵ଴
ቃ (4.7) 
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CHAPTER 5 
 

CONCLUSION AND FUTURE WORK 
 
 

This thesis focused on the application of the quasi-steady-state approximation 

and matrix block diagonalization method utilized in the work of Shim and Sawan [1]. The 

technique was applied to the NASA F-8 digital fly-by-wire aircraft longitudinal dynamics. 

This particular aircraft model was chosen due to its well-documented characteristics and 

availability of data, which allowed validation of the stability results and stochastic data. It 

was demonstrated that once a system is transformed using the singular perturbation 

method into a two-time-scale form, an approximate solution can be obtained by only 

relocating the slow poles. This can be seen in the results of the corrected and 

uncorrected solutions. Although the dampening time is considerably longer than the 

original system and bounding within O(ε) was not entirely achieved, this method still 

shows that stability characteristics can still be determined.  By successfully applying this 

technique to the NASA F-8 aircraft, it has been shown that this technique is not unique 

to the de Haviland Canada DHC-2 Beaver aircraft. Approximate solutions can be 

determined for other models along with the validation of maintaining stability and 

robustness during stochastic disturbances.  

 Future work in this area could be the continued validation of these techniques as 

they apply to other aircraft models. The author’s intent is to further verify this technique 

at his place of employment, where he is involved in the flight test program of a new 

business jet. Here, models and data from various flight test phases and environmental 

conditions could be used to confirm if the system behavior of previous design changes 
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are predictable with acceptable accuracy using the approximation techniques in this 

thesis. 

 Although this paper focused on aircraft systems to employ these techniques, they 

would be applicable to any modeled dynamic system. This option for future work would 

demonstrate the universal application of these processes and further prove their 

versatility and usefulness. 
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