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ABSTRACT 
 
 

In order to fast effective analysis of large complex systems, high-performance computing 

is essential. NVIDIA Compute Unified Device Architecture (CUDA)-assisted central processing 

unit (CPU) / graphics processing unit (GPU) computing platform has proven its potential to be 

used in high-performance computing. In CPU/GPU computing, original data and instructions are 

copied from CPU main memory to GPU global memory. Inside GPU, it would be beneficial to 

keep the data into shared memory (shared only by the threads of that block) than in the global 

memory (shared by all threads). However, shared memory is much smaller than global memory 

(for Fermi Tesla C2075, total shared memory per block is 48 KB and total global memory is 6 

GB). In this paper, we introduce a CPU-memory to GPU-global-memory mapping technique to 

improve GPU and overall system performance by increasing the effectiveness of GPU-shared 

memory. We use NVIDIA 448-core Fermi and 2496-core Kepler GPU cards in this study. 

Experimental results, from solving Laplace’s equation for 512x512 matrixes using a Fermi GPU 

card, show that proposed CPU-to-GPU memory mapping technique help decrease the overall 

execution time by more than 75%. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 Architecturally, a modern Central Processing Unit (CPU) is composed of only few cores 

with cache memories which can handle a few threads at a time; whereas a Graphic Processing Unit 

(GPU) is composed of hundreds of cores which can handle thousands of threads simultaneously 

[1, 2, 3, 4]. The ability of a GPU with more than hundred cores to process thousands of threads 

can be accelerated by hundred times over a CPU alone. The combination of a CPU with a GPU 

can deliver the best value of system performance, price, and power. In this chapter, we will be 

discussing some of the basic components and mechanisms of CPU and GPU, and we will also 

discuss how a cache memory is organized in a CPU and how the operations are performed between 

CPU and GPU.  

 

1.1 CPU Computing 

 CPU is an integrated circuit, which is housed on a single chip called a microprocessor. 

CPU converts input data into an information output. The modern usage of computer applications 

gives many challenges for design engineers; to avoid that challenges, design engineers had to 

change the design of a chip from single large complex core to many simple small cores on the 

computer chip, to provide the better performance,. This multiple CPU cores on a single chip are 

known as multi-core processors [5, 6].  

 
CPU has an extensive set of electronic circuitry that is responsible for interprets and 

executes program instructions, which are fetched from memory storage or taking the instructions 

from the input.  
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As shown in Figure 1, the single-core CPU has mainly consists of two parts:  

 Control unit 

 Arithmetic/logic unit  
 

Before discussing the each functionality in detail, we need to see the relationship between 

the CPU and its data storage. Each and every computer has two types of storages – one is primary 

storage and the second one is secondary storage. Primary storage, which is also called as main 

memory or RAM, locates within the CPU, technically, it is not within the CPU. Main memory 

refers to both data and instructions. At the time of executing the instructions main memory holds 

the data temporarily, whereas the secondary storage holds data permanently or semi permanently. 

Examples of secondary storage media are flash drives, CD-ROM disks, and etc. in desktop 

computers and hard disks in personal computers.   

 
Figure 1. A Sample Architecture of a CPU. 
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1.1.1 CPU Components  

 In this section, we will see how the components of CPU behave. 

Control Unit:  

 The Control Unit does not execute any program instructions, it just makes decisions and 

sends the appropriate signals to direct the computer system with the instructions to execute, carry 

out, or to store program or data. These signals are electrical signals which are used by the control 

unit circuitry to direct the instructions from memory to arithmetic/logic unit. It controls the timing 

of operations and controls the instruction set to the processor and peripheral devices.  

Arithmetic/Logic Unit:   

 All the logical and arithmetic operations are performed in arithmetic/logic unit (ALU). As 

the name implies, ALU can perform arithmetic operations like addition, subtraction, 

multiplication, and division. And, Logical operation only performs comparisons based on the given 

instructions (like greater than, less than, greater than or equal to, etc.).  

Registers:  

 The name itself indicates, registers stores instructions/data. It is a temporary storage area. 

Registers are the additional storage locations to speed up the processing. Registers are operated 

under the direction of the control unit to give the high performance to single core CPU. The control 

unit gives instructions to registers regarding the instructions/data to accept, hold, and transfer to 

arithmetic or logical operations.  

  
There are some special registers for better performance. Those are: 

An accumulator: This gathers the result of different computations. 

An address register: In the memory, each and every storage location is assigned by an address. By 
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using that address computer can identify the location easily. This address register keeps track of 

all the information about where to store the data/instruction or where to fetch the data/instruction 

in memory.  

Storage register: These types of registers are used for temporary hold of data, which is retrieved 

from or about to be sent to main memory. 

A general purpose register:  It is used for several special functions. 

 
1.1.2 Working Procedure in CPU 

 Let’s see how the control unit, ALU, registers, secondary memory, primary memory all 

works together and how the CPU executes the single instruction in Figure 2. Initially, the control 

unit takes the input data from input device or from secondary memory and stores the input data 

and instructions in primary memory (The primary memory stores the data temporarily at registers 

and the primary memory is faster to access than the secondary memory. But, the primary memory 

cannot hold the data for a long time whereas the secondary memory stores the data for long periods 

of time). Whenever the primary memory receives the instructions, the control unit retrieves the 

data and instruction from the memory and then based on the input commands or instructions the 

control unit decodes the data and then it transferred it to the ALU, where an arithmetic operation 

or logical operation is performed. After the instructions being processed, the output information is 

given to the memory to store, where it is hold until it is ready to be released as an output on the 

screen [7].  

 
A single instruction may have much number of sub-instructions, for processing each and 

every sub-instruction it must take at least one clock cycle. For synchronizing all operations at a 

fixed rate there is an internal clock cycle in each CPU, which produces pulses at a fixed rate. A 
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particular type of CPU is designed to understand a particular set of instructions called the 

instruction set. Therefore, one type of CPU instruction set is different from another type of 

instruction set. For example, Compaq instruction set is different from Macintosh instruction set. 

 

Figure 2. Working Procedure in a Typical CPU [7]. 

 
Every instruction or a data is stored in a memory location, which are identified by an 

address. The size of address block is fixed and is constant for all the locations within the memory 

locations. It can hold only fixed amount of bytes - often two bytes in a modern computer. Now-a-

days computers are designed based on these storage hierarchies. Due to slow performance, floppy 

discs disappeared these days.  

 
Initially, in the 1980’s the processor and memory speeds are evolved with the speed range 

of approximately 1 MHz to 16 MHz  Later in millennium, the processors increased the speed to 

1000 MHz (1GHz) and were reached unparalleled. Now, most contemporary CPUs have multicore 

architecture, which means multiple cores on a single chip, with total speed of nearly 4000 MHz. 
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1.1.3 Cache Memory Organization 

 Now a day's memory requirements for embedded applications grow, especially in 

multimedia devices, multi core processors become crucial for providing high performance and 

reducing power consumption [8, 9, 10]. Multi core processor in a single package becomes most 

popular within personal computer market, primarily from Intel, AMD and IBM.  As the name itself 

indicate that multi core processor is the processor having two or more independent cores in a single 

package. Cache may be on-chip or off-CPU chip. 

 
Cache memory organization of Intel like 4 core processor is shown in Figure 3. This 

memory organization includes private level - 1 cache (CL1), private or shared level - 2 caches 

(CL2) and the main memory [11]. The lower level caches (CL1) are faster, smaller capacity and 

mainly used for performing computations. Whereas, higher level caches (CL2) are slower, higher 

capacity and mainly used for storage purposes. 

 

 

Figure 3. Cache Memory Organization of a Shared CL2 System. 
 

The level 1 cache split into two types of caches, one is instruction cache and the other one 

is data cache. The instruction cache in the CL1 is fully pipelined and a pre-fetcher is employed in 

it by using branch prediction to avoid cache misses. This pipeline is dual ported, one port is used 
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for fetching the instructions and the other port is used for sharing the pre-fetches, and column 

invalidates. The data cache in CL1 is quad ported; it supports two concurrent loads and two 

concurrent stores. Each way set is associated with a size of 16KB and a total of line size 64KB. 

This cache memory process all Integer loads, Integer stores, Floating point loads and floating point 

stores.  

 
In some multi core processors level 2 caches will be a private or shared cache. If the level-

2 cache is unified shared cache then it will single ported and fully pipelined from level 1 cache to 

level 2 shared caches. It is accessed at full clock speed. All floating point accesses and all 

semaphore instructions are handled by the level 2 cache memory. The main advantage of unified 

level cache is that it can avoid cache missing and the data transferring between the cores does not 

replicate at this level [11]. 

Main memory sends a wider range of data to the cache than the CPU requires, this is 

because to fulfill the cache more rapidly. The amount of information required by the cache to load 

at one time is called the line size for the cache. The line size data is the width of the data bus 

between the main memory and the cache memory and this line size for the cache is used for pre-

fetching the instructions or data.  

In the cache memory organization, the memory controller determines whether the value is 

currently being addressed in cache memory or not. The memory controller can be accomplished 

in many ways. One possibility is to store both the address and the value from main memory into 

the cache; this type of memory is called associative memory or content addressable memory.  
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An associative memory returns the address of the value if it is already stored in the memory; 

otherwise it indicates the value is not associated in the memory. The comparisons are done 

simultaneously, so the results are quick and prompt. This type of memory requires a comparator 

and a storage element individually for value and address which leads the type of memory as 

expensive. There is a method to implement the cache memory by using "direct mapping", which 

is cheaper than associative memory. Here, part of the memory address is divided into index and 

tag. Usually, for addressing the data in cache, index is used for lower order bits of address and the 

tag is used for remaining higher-order bits, which are stored in the memory along with the data.  

In the cache memory organization, whenever the instruction needs to be executed initially 

it checks at CL1, if the CL1 doesn’t contain the required data, then it request for CL2, the data is 

transferred from CL2 if it contains, otherwise it checks at main memory. Once it identifies the 

required information for executing the instructions the data is copied in all levels and as well as 

main memory. Multi core processor increases performance and execution time as less activity over 

an external bus is needed. The amount of performance that is gained by the use of multi-core 

processors is highly dependent not only on the adopted parallel structures, but also on several 

restrictions imposed by the actual hardware architecture (e.g.: cache coherency, system 

interconnect, etc.)  

Even though an on-chip cache exists, it is typically desirable to have an off-chip cache as 

well. This means that if a miss occurs on the level 1 cache (on-chip), instead of retrieving the data 

from the slower main memory, information may be retrieved from the level 2 caches, which, 

although slower than level 1 cache, is still appreciably faster than main memory. Some level 2 
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caches are stored on-chip and a level 3 cache has been implemented off-chip. Multiple cache levels 

are implemented to reconcile between the size and latency goals;  

 
1.2 GPU Computing 

 Now-a-days, GPU gains popularity in supercomputing areas. GPU is primarily used for 

graphic applications or rendering 3-D images. Modern GPU’s are very fast and efficient for 

manipulating the graphics than the general purpose CPU; this is because of GPU’s parallel 

processing architecture [12, 13, 14]. Parallel processing means processing the blocks of data at the 

same time. Because, of its high performance GPU’s are very popular. Mostly, the GPU’s are used 

in workstations, game engines, embedded systems, play stations, etc. Some of the GPU features 

are: 2-D or 3-D graphics, Texture mapping, and Application support for high-intensity graphics 

software such as AutoCAD, etc. 

 
Figure 4, explains the GPU computation with multicore CPU. In a multi core CPU and 

many core GPU platforms that support CUDA/C applications, the user starts the application on 

the multicore CPU. The initialization and serial parts are executed in the CPU. The data and code 

for the parallel parts are sent to the GPU card. For each parallel part, multiple threads are generated. 

Threads are executed in the GPU cores/execution pipelines concurrently in parallel. 

 

1.2.1 GPU Components  

 GPU consist of two main components:  

 Streaming Multiprocessors (SM) 

 Memory Organization 
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Streaming Multiprocessors (SM):  

 The streaming multiprocessors are the part of the GPU that runs on kernels, which performs 

the actual computations. Each SM has a control units, thousands of registers, execution cores(or 

pipelines) and several caches [12].  

Warp schedulers:  Warp Schedulers is used for switching the contexts among the threads and the 

scheduler gives the instructions to warps that are ready to execute. 

Execution pipeline: Execution pipeline or execution cores are the multiple pipelines in each SM, 

used for executing the integer and floating point operations or instructions at the same time. A 

single execution pipeline can run faster, whereas in each SM there are many execution pipelines 

and a GPU has many SM’s, so the performance of GPU is much faster. 

 

Figure 4. GPU Memory Organization [15]. 
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Registers: Each SM contains thousands of 32-bit registers. Registers are allocated to the threads 

as specified when the kernel is launched. The obtained data can be partitioned among the threads 

for process. Registers having a plenty of memory to use and it is very fast in processing. 

 

1.2.2 Working Procedure of GPU 

 GPU processes the data/instructions in a step by step process for a 3D application. Figure 

5 illustrates the procedure [16, 17].  

 

Figure 5. Working Procedure in GPU. 

 
 Initially, GPU receives the input geometric information from the CPU by using the 

host interface. The host interface is working as a communication channel between the CPU and 

GPU. Once, host interface receives the instructions from the CPU then it gathers the geometric 

information from the system memory and sends the data to vertex processing unit as a stream of 

vertices with all the associated information.  
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 The vertex processing unit receives the set of vertices attributes (coordinates, 

texture, etc.) in object space and sends the output information or attributes (texture coordinates, 

clip space position, etc.) in screen space. No new vertices are created/discarded in this unit. The 

operation procedure within the vertex processing unit may be a simple linear transformation or 

complex transformations involving morphing effects. The performance in this stage will be based 

on the function of work done per vertex, along with the number of vertices being processed. The 

output from this unit is suitable for rasterization and clipping is transferred to triangle setup. 

 Clipping and Rasterization is the stage where screen space geometric information 

is taken as input and it is transformed to raster information (pixels) as output. Clipping is the 

procedure that identifies the portion of the picture which is either inside or outside a region. It turns 

the set of vertices into primitives and fills them. If the center is inside the viewing frustum then 

fragmentation will be done. In this stage some hidden surface removal can be done when the 

geometric primitives are completely outside the viewing frustum. The generated fragments with 

interpolated data are sent to fragment shadier stage. 

 In this stage, each fragment is fed into fragment processing as set of attributes 

(position, tex coordinates, etc.), and generates the output as final fragment associated with color 

and depth values. These colors are assigned based on the values interpolated from the vertices 

during rasterization and if the output doesn’t need any special effects then depth values are 

untouched. The computation includes texture mapping and some math operations. Modern 

fragment processing stages are bottlenecked. 

 The obtained fragment colors are stored in this memory interface (or frame buffer). 

Before final write occurs some of the tests will be performed on this fragment colors and then it  
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decides which surface is to be visible and which is not, in the elimination process it eliminates 

some of the hidden surfaces. The tests used in this process will be z-buffer, alpha and stencil. 

Modern GPUs, Z and color are compressed to reduce the frame buffer bandwidth. 

 
The synchronization between the threads is done by using barrier synchronization. A 

barrier forces the threads to wait at synchronization point until all the threads reaches that point. 

Once all the threads reach at synchronization point, the barriers synchronize and release all the 

threads at a time to proceed. Another popular type of synchronization at operating system is the 

atomic transaction model. This model is mainly based on mutual exclusion; processes may request 

an access to shared resources simultaneously.   

1.2.2 Memory Organization in GPU 

 GPU is organized with various memories [18, 19], which are as follows: 

  Shared memory – Shared memory is restricted to a block. Each SM has a shared memory 

and it is used for interchanging the data between the threads within the block. Among all the on-

chip memories shared memory is the fastest one in the SM. GPU shared memory helps improve 

performance mainly because it is dedicated to a GPU-block and it is closer to the processing cores. 

 Global memory - It is an off-chip device memory, which will be the slowest GPU memory 

but the largest storage memory of all the memories in GPU. The contents of global memory are 

visible to all the threads of grid. Any thread can read and write to any location of the global 

memory. The instructions used for reading and writing to global memory are GLD/GST 

instructions. The total memory of GPU is the usage of total amount of DRAM. Compared to off –

chip memory, on-chip memories are hundred times faster but with limited storage capacity. This 

is also known as L2 cache. L1 cache is the mediator between L2 global memory and local memory.     
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  Texture memory – Texture memory is cached on a chip and it is mainly optimized for 

exhibiting a great deal of spatial locality. Global memory is different from texture memory; this is 

because of its bi-directional data from global memory to threads whereas texture memory data 

flow is unidirectional.  Threads of same wrap that reads the texture addresses that are close together 

will achieve the best performance and higher effective bandwidth by reducing memory request to 

off-chip DRAM.  Texture memory is also designed for reducing the DRAM bandwidth demand 

with a constant latency. 

All types of memory in GPU and its properties are tabulated in Table 1. 

                            
TABLE 1 

GPU Memory General Properties. 

Memory Location Cache Access Memory Utilization 

Local Off-chip No Read/Write One Thread 

Shared On-chip N/A Read/Write All Threads in a block 

Global Off-chip No Read/Write All Threads + CPU 

Constant Off-chip Yes Read All Threads + CPU 

Texture Off-chip Yes Read All Threads + CPU 

  
 

There are two levels of hardware-managed caches to improve the large difference in access 

times of on-chip and off-chip memories. These two levels are L1 and L2 caches in GPU. L1-cache 

is located within each SM at the speed of the shared memory and L2-cache is at the bottom of all 

SM’s, which is for global memory. L2 cache has roughly half the access time because of its off-

chip nature. On-chip memory access is very fast compared to off-chip. L1-cache main feature is 
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to reduce the latency between the local and global memory. Local memory is used for storing large 

data structures, such as arrays, which cannot be mapped into registers by the compiler. We can 

discuss the global memory in coming part.           

 
1.3  CPU-GPU Computing Workflow 

 Figure 6-9 explains the four main steps that refer to data transfer and process between CPU 

and GPU [20]. 

 Step 1:   Initially, the CPU allocates the memory and copies the data from CPU memory to 

the DRAM of the GPU.  

  

Figure 6. CPU Memory Allocation in DRAM. 

By default, these operations are synchronous but an asynchronous mode is also possible. If the 

data copy process is synchronous then the CPU does not receive any call from GPU until the data 

has been fully copied. On CUDA API: cudaMalloc() and cudaMemcpy() are the commands used 

for memory allocation and memory copy. 
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Step 2:   After copying the data, CPU sends the function parameters and instructions to the 

GPU, then GPU will execute. This is an asynchronous operation, means control returns as soon as 

the commands are delivered to the GPU.  

CUDA API:   myFunc<<<Blocks, Threads>>>(parameters) 

 

Figure 7. Instructions Received by GPU from CPU. 

 Step 3:   GPU executes instruction based on the commands it received; it schedules the 

execution in warps.  

 

Figure 8. Instructions Execute at GPU. 
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 Step 4:   Once the data is computed by GPU, the results will be retrieved from GPU DRAM 

memory to CPU memory. Before getting the results from GPU, CPU needs to check the commands 

have been completed. This results transfer from GPU to CPU is synchronous by default.  CUDA 

API: CPU use cudaMemCpy() command to retrieve the results from GPU. 

 

 

Figure 9. Retriving the Executed Data from GPU to CPU. 

 
Let us see the difference between CPU and GPU – Modern CPU consists of a few cores 

optimized for sequential serial processing while a GPU consists of hundreds of “smaller”, more 

“efficient” cores designed for handling multiple tasks simultaneously. CPU has low latency, and 

GPU has high throughput and moderate latency, cache memory improves CPU performance 

whereas shared memory improves GPU performance, CPU computing technique has optimized 

MIMD (multiple instruction, multiple data) to achieve parallelism whereas GPU has optimized 

SIMD (single instruction, multiple data).  
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1.4  Problem Statement 

In CUDA-assisted multithreaded programming, a thread usually processes data that are not 

in consecutive CPU memory locations but our traditional memory mapping is in the form of 

copying the data from consecutive memory locations of CPU, this CPU data normally does not 

qualify to fit in GPU shared memory. As the shared memory plays an important role in the GPU 

computing, the overall GPU performance decreases as the threads need to access the data every 

time from GPU global memory. Currently, there is no effective technique to copy the data from 

CPU to GPU memory.  

 
1.5  Contributions 

 In this work, we propose a new memory mapping technique between CPU to GPU global 

memory. The major contributions are: 

 A novel CPU- to- GPU memory mapping technique. 

 A study on GPU performance with and without changing the size of the shared memory. 

 A study on high electric charge distribution by using three different implementations. 

Those are CPU only, GPU without shared memory and GPU with shared memory. 

 
1.6  Thesis Organization 

 In chapter 2, we are going to discuss some of the related architectures and protocols that 

are already exist and study of some well approved related concepts from different conference and 

journal papers. 

 In chapter 3, we are going to present the clear idea about the proposed mapping technique 

and the methodologies for better understanding. 



19 

 

 In chapter4, we discussed some of the system parameters, experimental setup and input 

parameters that we used for this experiment. 

 In chapter 5, we will discuss the experimental results from the proposed technique by using 

2D charge distribution. 

 In chapter 6, we concluded with an improvement in GPU performance and the future scope 

for this new mapping technique is discussed.  
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CHAPTER 2 

LITERATURE SURVEY  

 

 

As the multicore processors in all computing systems are becoming popular, the relevance 

of parallel programming for these systems is enormous. As a result there are large efforts to 

improve the productivity in the development of parallel codes as well as the resulting performance. 

In this chapter, I would like to discuss data parallelism and task parallelism from Massachusetts 

Institute of Technology (MIT). 

 
Since the introduction of dual-core netbook machines to 16-core workstation computers, 

parallel processing is a reality. To take advantage of the multicore systems, software engineers are 

developing parallel applications that will also meet the requirements of the growing high 

performance computation. These parallelized applications are based on data parallelism, which is 

an important parallel processing technique as it can take advantage of the locality principle.  

 
The data parallelism and task parallelism are the most commonly used design patterns for 

parallel computing. Usage of task parallelism includes decomposing a program into concurrent 

tasks which are simultaneously executed as separate instructions. Task parallelism can be 

implemented using libraries such as POSIX threads, Intel Thread Building Blocks, and OpenMP. 

Some consider POSIX thread usage as an assembly language of parallelism because it provides 

minimal functionality. Thread Building Blocks libraries are introduced recently by Intel, by using 

higher level of abstraction this allows express parallelism. OpenMP [21] is mainly based on simple 

compiler directives used to guide mostly the parallelization of regular loops.  



21 

 

Let us see what the benefits are provided by task parallelism - Each task represents an 

asynchronous operation. Tasks are queued to thread pool. And, each thread pool consists of set 

algorithms which determine and adjust the number of threads that maximizes the throughput, and 

load balancing. This makes threads as relatively lightweight. Task parallelism is more scalable and 

efficient in use of system resources. Tasks built around the thread will provide a rich set of APIs 

that support waiting, cancellation, continuations, robust exception handling, detailed status, 

custom scheduling, etc. Improved version of task parallelism is out-of-order execution, which 

allows the instructions for high performance microprocessors to begin execution as soon as the 

operands are ready. 

Data parallelism is used for decomposing a program into the concurrent units which 

execute the same instructions on distinct data. Among the parallel processing techniques, data 

parallelism is the important technique as it can take an advantage of locality principle [22, 23]. 

Where locality principle is the computational processes that pass through the sequence of 

instructions (or locality set); means next instruction comes from the immediate memory location.  

Data parallelism extends both the task and data patterns by noting that applications execute 

in space and time. Researchers of MIT introduced four partitioning strategies for concurrent 

execution [24].  

 Spatial Data Partitioning (SDP) 

 Temporal Data Partitioning (TDP) 

 Spatial Instruction Partitioning (SIP) 

 Temporal Instruction Partitioning (TIP) 
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According to our thesis work, only SDP and TDP were considered. Figure 10, represents 

the two parallelization strategies. In SDP, based on the spatial indexes the data is divided among 

the processes. Computations are performed on the spatial data by keeping the temporal index as 

constant. Data/instruction with nearby addresses tends to be referenced close together in time. 

Each process performs all the instructions assigned to them. Additional instructions are required 

by SDP for communication and synchronization purpose.  

When compared the serial implementation with the applications that are parallelized with SDP 

pattern we can observe some effects. Those are:  

 Throughput of an application will be improved. 

 It decreases the latency of a parallelized application. 

 As the same instructions are often executed in each process, the load balancing of the 

parallelized application tends to be easy.  

 Communication between the parallel processing is always application dependent.  

 

 

Figure 10. Two Parallelization Strategies [19]. 
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The temporal index data is divided amongst the process (in TDP strategy) and the 

computations can be performed by them on all spatial indices associated with its assigned temporal 

index. Recently referenced data/instruction is likely to be referenced in the near future. Figure 3(b) 

illustrates the TDP. Typical TDP implements each process executions of all the instructions on the 

data from its assigned temporal index. The communication and synchronization instructions are to 

be added to the processes to handle the temporal dependencies. When the applications are 

parallelized with TDP pattern, there have been some effects to observe. Those are: 

 
 This increases the throughput of application. 

 Latency remains constant. 

 Even the computation between the inputs vary tremendously, the load balance of the 

applications tends to be easy. 

 Same as with SDP, communication between the parallel processing is always application 

dependent. 

 
Let us see the applicability of both data partitioning. The SDP strategy is used to parallelize the 

application whenever a single processor does not meet the demands of application's latency. If the 

processor meets the demands of application’s latency, but not the requirements of the throughput 

then use the TDP strategy to parallelize. If the dimensions of spatial data and temporal data are 

large with few dependencies use the SDP and TDP strategies respectively [25]. When the 

application performs same amount of work on each of the spatial indices, it uses the SDP strategy. 

If the application performs different computations on inputs it may benefit from load balancing 

patterns that synergize with TDP. 
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CUDA:   

 CUDA is a parallel computing platform and programming model, which increases 

computing performance dramatically by harnessing the GPU power. Following are the recent 

CUDA versions. 

 
CUDA Version 5.5: Among the CUDA versions CUDA 5.5 is the first that supports ARM. There 

are two main reasons for NVIDIA to implement CUDA on ARM – NVIDIA is hoping to ultimate 

leverage CUDA on consumer side to compute on SoC based devices. The second reason is mainly 

based on NVIDIA’s HPC ambition which is opposed by today’s common scenario of pairing Tesla 

cards with x86 AMD and Intel processors, for this ARM based HPC environment is implemented 

that can powered exclusively by NVIDIA processors Figure 11.  

 

 

Figure 11. CUDA 5.5 version on ARM. 

 
Along with supporting ARM, CUDA 5.5 introduces cross compilation support between ARM or 

x86, it allows the ARM binaries to be built natively on ARM platform or much more quickly on 
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faster x86 system. CUDA 5.5 improves MPI workload prioritization and HyperQ gaining the 

ability to receive jobs from multiple MPI processes on Linux system. 

 
CUDA Version 6: Intel, AMD and ARM vendors are trying to unify the CPU and GPU memories 

without deadlocking [26]. But, it is very difficult to design a model, where two processors have to 

access the same memory without deadlock. It took many years to design that type of model. While 

all the other are busy in trying a new memory model between CPU and GPU, NVIDIA announced 

CUDA 6 as the latest version in parallel computing platform and programming model, it has 

unified memory as a key feature, shown in Figure 12.  It cuts the development time by up to 50 

percent. 

 

 

Figure 12. CUDA Memory Model (a) Unified (b) Actual. 

 
 In figure 8(b) the CPU and GPU memory connections are represented. The memories of CPU and 

GPU are distinct and separate physically by using PCI-Express bus. In the case of data sharing 

between the CPU and GPU, they must allocate the memories, and then it explicitly copied by the 

program (between them). This makes CUDA program complex. Where, CUDA 6 has unified 
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memory access from developers point of view (figure 8(a)), which is the shared memory 

architecture used in parallel computers. Unified memory creates a pool of “managed memory” and 

is shared among the CPU and GPU, and by using a ‘single pointer’ this managed memory is 

accessible to both CPU and GPU. The key thing here is the system automatically “migrates” data 

allocated in unified memory between the host and device. In CUDA 6, We do not need 

cudaMemcpy() as a requirement but we are still free to use cudaMemcpy() and 

cudaMemcpyAsync() for performance, all we need is cudaMallocManaged() which is worked as 

a single pointer to data.  This makes much easier to write CUDA programs in CUDA 6 because 

we can go straight to directly writing kernels, rather than writing a lot of data management code 

and maintaining duplicate copies of all data in host and device. 

 
 CUDA 6 has different key features when compared to CUDA 5.5. By replacing existing 

CPU based libraries, CUDA 6 offers new performance enhancement which enables the developers 

to accelerate applications instantly by up to 8 times faster. The key features included in CUDA 6 

are as follows: 

 
 Unified Memory – Unified memory makes the programs simpler because as the name 

indicates, the applications access memory in a unified way. Applications need not to wait until the 

data is transferred manually from CPU to GPU and vice versa. It enables us to quickly prototype 

the kernels running on the GPU because of its automatically handling data management. It makes 

easier to add support for GPU acceleration in a wide range of programming languages.  

 Drop-in libraries – Drop-in Libraries make applications more accelerate. A calculation of 

Basic Linear Algebra Subprograms (BLAS) and Fast Fourier Transformations (FFT) takes very 
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less time. The time required to execute an instruction is 8 times faster than the time required for 

other libraries. 

 Multi-GPU scaling – BLAS and FFT GPU libraries are re-designed. By delivering over 

nine teraflops of double precision performance per node, the scale performance can increases up 

to 8 GPUs automatically in a single node. And, compared to the previous workloads, it supports 

more workloads which are up to 512 GB. Multi-GPU scaling can also be used with the new BLAS 

drop-in library. 
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CHAPTER 3 

PROPOSED TECHNIQUE 

 

 
In the proposed technique, we change the way of memory mapping between CPU and GPU 

memories. The main goal is to increase the overall performance of the GPU shared memory. In 

the traditional memory mapping technique every single thread from CPU memory is directly 

copies to global memory in GPU. As we know in multithreaded programming, threads are usually 

processes data that are not in the consecutive memory locations, so the data from CPU does not fit 

in the GPU shared memory. Whenever the threads need to execute, the data from the global 

memory is to access. As the shared memory is an on-chip, and global is off-chip, it is difficult to 

access the off-chip every time. Considering the performance of GPU, the proposed memory 

mapping technique is introduced by regrouping the CPU data such a way that the data associated 

to a same thread can store in a consecutive memory location of GPUs global memory. If the data 

stored from CPU is not in a consecutive way, then the threads can process the data by taking the 

memory from shared memory. In proposed mapping, threads use shared memory rather than global 

memory, the GPU performance will definitely improve the performance compared to traditional 

memory mapping because of shared memory on-chip nature. Before discussing proposed memory 

mapping let us see in detailed about traditional memory mapping. 

 
3.1 Traditional CPU-to-GPU Memory Mapping 

 In traditional, the memory mapping between CPU memory and GPU global memory is  the 

single thread/block data is directly copied from CPU memory to GPU global memory in GPU. We 

all know that the cache size of a directly mapping technique is of 32 byte block with 128 set of 

caches. As shown in Figure 13.  X1, X2 … are the data in CPU, and t0, t1 … are the single thread 
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processing in CPU. Whereas, if a block need to copy from CPU to GPU global memory, CPU 

copies 32 bytes of data (i.e. from 0 to 31). After copying the data from CPU to GPU global memory 

in a consecutive manner, the data/threads from GPU global memory to GPU shared memory are 

not copied in a consecutive way, which leads the threads to not fit in the shared memory.  

  

 

Figure 13. Traditional CPU to GPU Global Memory Mapping. 

 
Let us see the bit of notation regarding matrices. An, ‘n x m’ matrix has ‘n’ rows and ‘m’ columns 

and (i,j) entry is the entry in the i th row, j th column. Whereas, ‘n x n’ matrix having same number 

of rows and same number of columns i.e. ‘n’. For computing the product of two n x n matrices, 

we multiply the i th row of matrix A by the j th column of matrix B for n products and summing 

them. Let us see how the data is copied from CPU to GPU with an example of multiplication of 
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two 4 x 4 matrices. Let, M1 and M2 are the names of the two matrices having the data from input 

devices and M3 be the resultant matrix, which stores the output of the multiplication of M1 and 

M2. M1(1,1) represents the position of the matrix/data element i.e. it is in first row and first column 

of matrix M1.  

             n 

 

   M1 Matrix =       n 

  

 

 

   M2 Matrix =          

 

  

  M3 = M1 * M2 

         = 

 

              . 
 
 
 
 
 
 

M1(1,1)  M1(1,2)  M1(1,3) … 

M1(2,1)  M1(2,2)  M1(2,3) … 

M1(3,1)  M1(3,2)  M1(3,3) … 
    .                 .         .   
    .                 .         .   
 
     

M2(1,1)    M2(1,2)  M2(1,3) … 

M2(2,1)    M2(2,2)  M2(2,3) … 

M2(3,1)    M2(3,2)  M2(3,3) …    
      .           .               . 
      .                 .             .   
 

 

M1(1,1)  M1(1,2)  M1(1,3) … 

M1(2,1)  M1(2,2)  M1(2,3) … 

M1(3,1)  M1(3,2)  M1(3,3) … 
    .                 .           .         
    .                 .          .   
                           
     

M2(1,1)    M2(1,2)  M2(1,3) … 

M2(2,1)    M2(2,2)  M2(2,3) … 

M2(3,1)    M2(3,2)  M2(3,3) …    
    .           .              . 
    .                   .              .   
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Figure 14. Traditional Memory Mapping for our example. 
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After assigning the input values to matrices M1 and M2. The data/input values are stored in the 

memory of CPU in the form of array. From our example, each row of the matrix is stored in a 

sequential order in the CPU memory. From Figure 14, as the traditional mapping is the copy of 

single thread or block directly to GPU global memory. From GPU global memory to GPU shared 

memory, the copying of data from threads are not in the consecutive way. Because, we all know 

that in a multiplication of two matrices, the top row of the first matrix is multiplied and then added 

the terms with left most column of the second matrix. That means, in shared memory the data at 

M1(1,1), M1(2,1), M1(3,1) and M1(4,1), M2(1,1), M2(2,1), M2(3,1) and M2(4,1) to be stored in 

sequence for computing the first row, first column element of resultant matrix. This calculation is 

stored in the M3 matrix as an output.  

 M3(1,1) = [M1(1,1) * M2(1,1)] + [M1(1,2) * M2(2,1)] + 

  [M1(1,3) * M2(3,1)] + [M1(1,4) * M2(4,1)]     ………………..…………(1) 
 

 M3(1,2) = [M1(1,1) * M2(1,2)] + [M1(1,2) * M2(2,2)] + 

[M1(1,3) * M2(3,2)] + [M1(1,4) * M2(4,2)]     ……………………...…...(2) 
 

Similarly, for all M3 (i, j) values. For getting clear idea, we choose a small matrix multiplication. 

In real time scenario, we have to compute big matrices like 500 x 500, etc. This bigger computation 

performs quickly in GPU because in GPU we have multiple streaming multiprocessor(SM)/grids; 

each grid has several threads to execute at a time. If the GPU performance is more compared to 

traditional technique, we can get the results for high computations very quickly. For improving the 

GPU performance, we came up with a novel proposed technique. We can see the proposed 

technique in detail in the following section.    
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3.2  Proposed CPU to GPU Memory Mapping: 

 We proposed a novel CPU to GPU-memory mapping technique to increase the overall 

performance. As shown in Figure 15, we already know that X1, X2 … are the data in CPU, and 

t0, t1 … are the single thread processing in CPU. In the proposed mapping, CPU regroups the data 

such a way that all the data associated to the same thread can be grouped and stored in the 

consecutive memory locations in GPU global memory.   

 

Figure 15. Proposed CPU to GPU Memory Mapping. 

 
Whereas, from GPU global memory to GPU shared memory the threads are directly copied from 

GPU global memory to GPU shared memory without any regrouping or reordering. The 

regrouping technique can be applied at copying of data from CPU to GPU global memory only, 

this is because there is no internal program or technique that regroups the data between GPU global 

and shared memory.  
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            Figure 16. Memory Mapping in the Proposed Technique based on the example. 
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Figure 16, is the proposed memory mapping for our matrix multiplication. Unlike, the traditional 

method, this regrouping mapping technique allows the data to fit in the shared memory. As the 

shared memory is an on-chip memory, all the threads processing within the same grid can access 

these data very efficiently without any time delay; by this we are expecting the overall processor 

performance will increase.  

The major steps on how a CPU computing transfer’s data to GPU computing based on our matrix 

example. 

Start 

Step 1: CPU analyzes the input/problem parameters. 

Step 2: After analyzing the input parameters, CPU analyzes the GPU card. 

Step 3: Then it determines the number of computations and determines the number of threads. 

Step 4: Based on the computations and threads CPU identifies/partition the data-blocks for each  

            thread. 

Step 5: CPU copies/regroups the data-blocks to GPU Global memory. 

Stop    
 

All the above process will be done on CPU side. Let's see step by step briefly with our matrix 

multiplication example, When the programs need to execute, initially it analyzes the rows and 

columns of the matrix. Based on the analyzed rows and columns, the CPU needs to analyze the 

GPU card and then it has to determine the number of threads and number of computations it is 

required to process; because some blocks of the threads may be one-dimensional, two-dimensional 

or three-dimensional as the programmer prefers. Since our matrices are two dimensional, we will 

use two-dimensional blocks. And since we want our code to run on devices of all compute 
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capabilities, we will use block size of 16 X 32 so that they contain 512 threads or else in case of 

bigger matrices we can use higher block size. All the blocks must have the same dimensions as all 

other blocks, and we must launch enough blocks to cover all entries of the product matrix. 

Therefore if our matrix’s dimensions are not both multiples of 16, then some threads will not be 

computing elements of the product matrix. Once the block size is decided, the CPU identifies and 

partition the data blocks for each thread. Finally, it copies the data blocks to the GPU global 

memory.   

 
Once the data blocks are transferred to GPU, a kernel that works the main program running 

on the host computer offloads to the GPU for computation on that device. In CUDA, launching a 

kernel requires three specific things: Dimensions of the Grid, Dimensions of the blocks, and the 

kernel functions to run on the device. When a kernel is launched on the GPU a grid of thread blocks 

is created and the blocks are queued to be run on the GPU's multiprocessors.  These blocks are 

given to multiprocessors as they become available, and once started on a multiprocessor, the 

threads of that block will run to completion on that multiprocessor. The CUDA programming 

model requires that these blocks be able to compute in any order, that is, the programmer may 

make no assumptions about the order in which the GPU schedules and runs the blocks of threads. 

The program must run correctly regardless of the order in which the blocks are scheduled. This 

restriction may make programming the kernel a bit more difficult, but the benefit is that more 

parallelism is achieved, and the program will run without modification on cards with more 

multiprocessors, scaling optimally. From our example, the blocks themselves form a two-

dimensional grid of blocks. We are having a grid of 5 X 7 thread blocks.  A 5 X 7 grid of 16 X 32 

blocks covers 70 X 200 product matrixes. 5 X 7 grids of threads create 35 blocks. Although, all 
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512 threads in every block will run, the first thing our threads will do is to locate themselves to the 

relative matrix, and the threads that lie outside the matrix will immediately terminate. If a laptop's 

video card has seven multiprocessors. The 35 blocks of the previous example were to be scheduled 

on laptop's card; a block would be placed on each multiprocessor, and as the threads of each block 

terminated, a new block would be placed on that multiprocessor for computation, and so on, until 

all 35 blocks had been processed. The host code could then be informed that the GPU computation 

is done, and the host can read the product off of the card. 
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CHAPTER 4 

EXPERIMENTAL DETAILS  

 

 

 In this chapter we are going to discuss some of the assumptions that we made in order to 

evaluate the results for performance improvement. We considered some of the parameters for 

conducting the experiment by using proposed technique; CPU/GPU system parameters and 2D 

electrical charge distribution for experimental setup and reconstructing a smooth surface for large 

number of threads. We developed CUDA/C code for GPU shared memory. All these are discussed 

in the following subsections. 

 
4.1  Assumptions 

 The following assumptions were made in this work:  

 In all the techniques considered in this thesis, traditional memory mapping from CPU to 

GPU and proposed memory mapping between CPU to GPU, we assumed that all blocks 

go to different SMs. 

 We assumed that CPU has 8 cores and each core is of 4MB size. 

 On GPU side, we used only Fermi and Kepler cards. We assumed, Fermi card has global 

memory of size 5.6 GB and shared memory of size 48 KB/Block, and Kepler card has 5.0 

GB global memory and 48 KB/Block shared memory. 

 
4.2 System Parameters 

 In this section, the CPU/GPU system parameters for the workstations are tabulated. For 

observing the performance of the proposed techniques we mainly used two popular GPU cards 

with a multicore CPU: Fermi card and Kepler card. On the CPU side we use Intel Xeon processor 
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and on the GPU side we used two different GPU cards for evaluating the time required for GPU 

to compute. We mainly conducted this experiment on three different versions for two different 

GPU cards. Those versions are on CPU only (by using CPU/C Program- sequential processing), 

GPU without shared memory and GPU with shared memory (by using CUDA/C Program - parallel 

processing). 

The key features are tabulated below in Table-2 and Table-3 [27, 28]. Table-2 indicates the 

type of processor that we used for this experiment and their speeds. Number of cores and the 

memory sizes of CPU, GPU global and shared memories are tabulated in Table-3. 

                                                        TABLE 2 

                              Specifications of CPU and GPU processors. 

Parameter Description 

CPU Intel Xeon 

Fermi GPU Card NVIDIA Tesla C2075 

Fermi Clock Speed 1.15 GHz 

Kepler GPU Card NVIDIA Tesla K20m 

Kepler Clock Speed 0.71 GHz 

Operating System Linux Debian 

 

Let us see some details about CPU Intel Xeon dual processor workstation, GPU Fermi card and 

GPU Kepler card specifications. The operating systems used here is Linux Debian 6.0. There are 

many types of Intel Xeon dual core processors available at different clock speeds, but we 

considered the workstation runs at 2.13 GHz and it supports 2MB advanced smart cache for L2.  
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The first ‘complete’ architecture for GPU computing is "Fermi" as it delivers any kind of 

features required for the most high performance computing applications [27]. It brings 

supercomputer performance to more users than ever before. A Fermi card has 14 SMs and each 

SM has 32 CUDA cores, each of which can perform floating-point and integer operations. There 

are many warps in each blocks/grids, and there are many blocks in a GPU.  In the Fermi GPU card, 

threads executes the different warps from different threads simultaneously to increase the hardware 

utilization and energy efficiency. These group of thread blocks executes when a unique kernel is 

launched. The kernel relationship is specified by threads and thread blocks. Each data (input and 

output) in the GPU memory has corresponding memory IDs which are worked as indexes. 

Compared to the previous generation GPUs in switching applications, Fermi GPU card is 20 times 

faster. Fermi GPU card is introduced to maintain high utilization on multiple applications, the logic 

behind this vendors use both the combination of graphics code and computer code. GPU 

architecture has GigaThread, which manages hardware scheduler to switch the context among the 

threads, each GigaThreads can handle thousands of active threads at the same time across 16 

kernels on each streaming multiprocessor. The data is transferred twice between system memory 

and GPU memory, initially at setting up a GPU computation and secondly after executing the 

results move back from GPU memory to system memory.  

 
Fermi has 16 load per store unit and is used to handle all the memory operations in each 

SM. We all know that memory location with address are referred to as indexes. Each streaming 

multiprocessor has some load/store instructions, in which the memories of these instructions are 

stored in terms of two-dimensional arrays. For this experiment, we considered NVIDIA Tesla 

C2075 GPU card this can be configured by the end user to enable or disable Error Correcting 
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Codes (ECC) that can fix single-bit errors and report double-bit errors. Enabling ECC will cause 

some of the memory to be used for the ECC bits so the user available memory will decrease to 

5.25 GB. The key features of Fermi GPU Tesla are tabulated blow in Table -2.  

 
NVIDIA Kepler GPU architecture and is the world’s most pervasive parallel computing 

model [28]. SM, Dynamic Parallelism, and Hyper-Q are included in the Kepler compute 

architecture design. When compared to the SM in Fermi, the SM delivers 3x more performance 

per watt and also delivers one petaflop of computing within ten server racks. There is property in 

GPU threads called Dynamic Parallelism, which enables the GPU threads to automatically spawn 

for new threads. Along with dynamic parallelism, Kepler architecture enables GPU acceleration 

of popular algorithms, like Adaptive Mesh Refinement (AMR), fast multipole method (FMM), 

and multi-grid methods. On a single Kepler GPU card, multiple CPU cores are enabled by Hyper-

Q to simultaneously utilize the CUDA cores. Hyper-Q dramatically increases the GPU utilization, 

and it cuts the CPU idle times, and advances programmability— Kepler card is ideal for cluster 

applications that use MPI.  Tesla GPU computing is supported by both Linux and Windows 

platform. 64-bit operating system supports the server modules whereas 32-bits support workstation 

and desktop modules. 

 
NVIDIA Tesla K20m Kepler GPU card is used for this experiment. Tesla K20m 

accelerators mainly designed to be the performance leader on applications like in double precision 

and the broader supercomputing market; it delivers 10 times faster the performance of a single 

CPU. Tesla K20 features includes the Dynamic Parallelism and Hyper-Q features. GPU 

accelerators are mainly ideal for the high-performance computations, some of the applications like 



42 

 

climate and weather modeling, biomedical computations, computational physics, biochemistry 

simulations, and computational finance.  

 
TABLE 3 

 Core and Memory specifications of CPU and GPU cards. 

Parameter Description 

CPU Cores 8 

CPU RAM 6 GB 

Fermi GPU Cores 448 

Fermi Global Memory 5.6 GB 

Fermi Shared Memory 48 KB/Block 

Kepler GPU Cores 2496 

Kepler Global Memory 5.0 GB 

Kepler Shared Memory 48 KB/Block 

 

4.3  Experimental Setup 

 Let us see experimental setup for Fermi based architecture. Similar to other GPU cards, 

Fermi architecture has local memory in each block. The advantage about Fermi card is the ability 

to use some part of local memory as a level-1 cache (CL1). Local memory is of size 64K in Fermi 

card, and this memory can be split into 16K/48K or 48K/16K among L1 cache and shared memory. 

Shared memory being the traditional memory, in addition that the use of local memory provides 

low-latency access to moderate amounts of data. The access latency to the local memory is 

completely predictable and so the algorithms can be written to interleave load calculations, and 
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stores with maximum efficiency. Allocation of some of the local memory (i.e. 16K or 48K) as 

cache is usually depends on two factors - one of the factor is to check how much shared memory 

is needed, and the second factor is to check, how predictable the kernel’s accesses to the global 

memory (usually the off-chip DRAM). Very less cache memory capacity is needed for a larger 

shared-memory; but larger regions of DRAM argue for more cache because of its more frequent 

utilization or unpredictable accesses. Each Fermi GPU is equipped with level-2 (L2) cache, and 

for 512-core chip processors L2 cache is of size 768KB. Another feature implemented by L2 cache 

subsystem is read-modify-write operations are atomic and uninterruptible, which is not found on 

CPUs. And L2 cache covers GPU local DRAM, and thus it is ideal for managing the data which 

is shared across thread blocks or even kernels.  

 
Compared to the previous generation GPUs, Fermi based atomic operations are 5 to 20 

times faster, this is because of inbuilt conventional synchronization method. And, the final 

processing stage of the local memory hierarchy is DRAM, which is directly connected to GPU and 

works like a global memory in the GPU. Among the other GPU processing cards, Fermi card is 

the first processing card to have Error Correcting Coding (ECC) protection. ECC protection is 

provided to the GPU parts like - DRAM, register files in the chip, shared memories, L1 and L2 

caches. Among all the parts ECC protection for DRAM is unique; so is its implementation. Each 

memory channel in the GPU carries 64-bit location and for ECC protection it need extra 8 bits to 

store the ECC information. To avoid this extra memory utilization, NVIDIA introduced a 

proprietary solution. The solution is packing the ECC bits into reserved lines of memory.  

 
Figure 17, illustrates the experimental setup on CPU-GPU computation. Processor and memory 

specifications are diagrammatically represented in this figure. 
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Figure 17. Experimental Setup on CPU-GPU Cards. 

 



45 

 

4.4 Applications 

 High performance computations are required in many of the applications like 

Nanotechnology, Bioinformatics, Data center, etc. Laplace’s equation takes advantage on high 

charge distribution if we use that in high performance computing applications it will give better 

performance. For example, many composite formations/mixtures, especially those encountered in 

electromagnetic meta-material applications, often consist of periodic arrangement of unit elements 

[29]. Let us consider a two dimensional aluminum alloy sheet, internally it has many atoms. 

Aluminum alloy is mostly used in aircraft applications because they are good conductors for 

electricity. If the lightning strikes the metal surface, the electric charge is distributed evenly 

throughout the surface. To avoid this, aluminum alloy needs the protection from lightning strike, 

so someone has to understand the behavior of heterogeneous components. There are many cells in 

each component; CPU/C program alone can take lot of time to process this many number of 

computations. To take advantage of parallel programming, this high performance computation can 

be executed in fraction of seconds with the help of multithreaded multicore/many core CPUs and 

General Purpose Graphics Processing Unit (GPGPUs).  

 
Here we considered the Laplace’s equation for two dimensional electric charge 

distributions as the problem. Why this Laplace’s equation is because Laplace equation is widely 

used in Finite Element Analysis, such as lightning strike analysis. Each cell represents electric 

charge, and this equation simulates the behavior of charge distribution. If there are many cells in 

a surface, it requires more number of iterations. Each iteration in laplace equation is independent, 

and spatial locality holds. The non-homogeneous version of Laplace's equation is called Poisson’s 

equation [30]. In many cases, when the charge distribution is not known, the Poisson’s equation 
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can be used to solve electrostatic problems. In our work, we will use electric charge distribution 

with Laplace’s equation. 

 
The Laplace’s operator on the 2D electric potential function over a region of the space where the 

charge density is not zero, the Poisson’s equation is follows in Equation 3. 

 
∇2 φ = ∂2 φ / ∂x2  +  ∂2 φ / ∂y2 = -ρ / ε ………………… (3) 

 
If the charge density is zero all over the region, the Poisson’s equation becomes Laplace’s 

equation. 

∇2 φ = ∂2 φ / ∂x2  +  ∂2 φ / ∂y2 = 0 …………………….. (4) 

 
A composite mixture used in electromagnetic meta-material applications often consists of periodic 

arrangement of unit elements whose sizes are much smaller than the operating wavelength. 

Therefore, Laplace’s equation can be simplified applying the quasi-static assumptions as shown in 

Equation 5, where ε is the medium permittivity and φ represents the electric potential. 

∇ . (ε ∇ φ ) = 0 …………………………… (5) 

 
Now based on the finite-difference approximations, Equation 5 can be rewritten as Equation 6. 

                                  εx(i,j) (φ i+1,j - φ i,j)/dx + εy(i,j) (φ i,j+1 - φ i,j)/dy +            

εx(i-1,j) (φ i,j – φ i-1,j)/dx + εx(i,j-1) (φ i,j - φ i,j-1)/dy =0 ……….(6) 

Where, 

dx and dy are the spatial grid size,  

φ i;j is the electric potential defined at lattice point (i, j), and  
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εx(i:j) and εy(i:j) are the effective x- and y-direction permittivity defined at edges of the element cell 

(i, j).  

 
For very uniform material, electric potential can be considered the same in all directions. 

Therefore, Equation 6 becomes a 2D problem as shown in Equation 7 and can be solved using 

the discrete approach. 

 
(φ i+1,j - φ i,j)/dx + (φ i,j+1 - φ i,j)/dy + (φ i,j – φ i-1,j)/dx + (φ i,j - φ i,j-1)/dy =0 …..(7) 

 
The multithreaded CUDA/C shared memory implementation of the 2D Poisson’s equation for 

charge distribution is shown in Figure 19. Here, the right values of i (i.e., current threadIdx.x) and 

j (i.e., threadIdx.y) for each thread, and the shared variables As[i][j] are used for memory latency 

hiding optimization. Thread executions are synchronized to ensure correctness. 

 

4.5 CUDA/C Implementation 

 

Figure 18. Sample CUDA/C Implmentation Code. 
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CUDA/C shared memory implementation of the Laplace’s equations for charge distribution of 

NXN 2D space is shown above. 

 
4.6 Input/Output Variables 

 Input variables are the input/computation parameters (for a matrix input parameters are 

size of rows and size of columns (say n,m))  and output parameter is time. The time required to 

execute the applications with the proposed technique is considered to be less when compared to 

the time required by the traditional technique.  The logical reason for this kind of assumption is 

the basic behaviour of a computing components. When the data is copied from the CPU memory 

to GPU, the threads checks for the data in the shared memory. If the data is in shared memory the 

threads working in that grid/block will access that data at a full speed. If the data is not in the 

shared memory, our traditional memory mapping, threads need to access the GPU global memory 

for the required data. Traditional memory mapping certainly consumes more energy and time until 

the particular data to be executed.  

 
For example, to check the volume of all the atoms in Aluminium sheet, we need to check 

the size of the atom/element and the radius of the single atom. Based on the size of the metal, the 

atoms are arranged with the matrix format. Similarly, in the case of electric charge distribution. 

But, once the charge distributions starts it distributes the computed values to the neighboring 

elements. We can see in detailed in the validation of CUDA/C implementation code. 

 

 

 

 



49 

 

CHAPTER 5 

EXPERIMENTAL RESULTS 

 

In this chapter, we conduct a study on Laplace equation for high electric charge distribution 

on 2D thin surface with three different versions to observe the experimental results. The three 

different versions are (i) CPU only, (ii) GPU with shared memory and (iii) GPU without shared 

memory. We conducted this experiment based on the proposed memory mapping and we used two 

different GPU cards (Fermi and Kepler). The results obtained are accounted and analyzed. 

Accordingly, graphs are plotted to show the measure of  time required to execute. 

 
5.1 Validation of CUDA/C Implementation 

 The developed CUDA/C program is to solve the application using proposed technique. We 

first validate only CUDA/C program for that we consider an 8x8 matrix. After copying the data 

from CPU to GPU, Node (4,4), Node(4,5), Node(5,4), and Node(5,5) are initially set with a high 

value of 10000 and all other nodes are set to a low value 0 (zero). As shown in Figure 19, nodes 

right outside of the 8x8 matrix are also set to a low value 0 (as a boundary condition). 

 

Figure 19. An 8X8 Matrix with Boundary Condition at Iteration 0.  
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When the GPU starts executing the instructions for an 8X8 matrix, the loops within the program 

runs repeatedly till all the threads for 8X8 matrix needs to execute. After the initial stage (i.e. 

Iteration 0), the GPU divides the data among grids and then divided data in each grid is divided 

among threads. For the next iteration or loop the values are spread to the neighboring positions. 

Following is the Figure 20 at Iteration 1. 

 

Figure 20. An 8X8 Matrix with Boundary Conditions at Iteration 1. 

 
Similarly, for each iteration the threads share the data and execute the instructions. Following 

Figures 21-23, indicates the matrix values at Iteration-10, 50 and at 100.  

 

Figure 21. An 8X8 Matrix with Boundary Conditions at Iteration 10. 
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Figure 22. An 8X8 Matrix with Boundary Conditions at Iteration 50. 

 

 

Figure 23. An 8X8 Matrix with Boundary Conditions at Iteration 100. 

 
Using the CPU/C and CUDA/C codes we calculate the new value of the matrix as stated in 

Equation 5. Where, 1 <= n <= 8 and 1 <= m <= 8. 

 
Nn,m = 1/5 (Nn,m-1 + Nn,m+1 + Nn,m + Nn-1,m + Nn+1,m)…….. (5) 

 
The program stops when each and every node has a value less than 1. Figure 24, shows values for 

Node (1,1), Node(3,4), Node(5,5) and Node(8,8) after iterations 0, 1, 10, 50 and 100. As expected, 

it is observed that both CPU/C and CUDA/C versions produce exactly the same value for each 
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node after any number of iteration. Following graph represents the validation of CPU and GPU 

computing. 

 

 
 

Figure 24. Validation of the Developed CUDA/C Implementation. 

 

5.2 Impact of having GPU Shared Memory 

 In this section, we will discuss the impact of having GPU with shared memory and without 

shared memory. The GPU card we used here is Fermi. The graph plotting the filled rhombus (i.e. 

blue line) represents the GPU card with shared memory usage of size 32 KB. Whereas, the graph 

plotting the rhombus shapes with a hallow inside (i.e. black line) represents the GPU card without 

shared memory. Figure 25 illustrates that the execution time decreases as the number of threads 

increases. Results show that for small number of threads (less than 8), GPU card without shared 

memory takes less time compared to with-shared memory; but for large number of threads (greater 

than 8), GPU card with shared memory takes less time comapred to without shared memory. The 

reason for no shared memory takes less time for less number of threads is data can be accesssed 

easily from any where from global memory; but for more number of threads access GPU global 

memory is time taking, whereas with the shared memory, the more number of threads can access 
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the data easily from the shared memory compared to less number of threads. The time is efficient 

for higher number of threads with shared memory. For this reason, the proposal technique takes 

advantage in higher computations. 

 

 

Figure 25. Impact of GPU Performance on with and without Shared Memory. 

 

5.3 Impact of the Number of Threads 

In this section of results, by using proposed memory mapping technique we are observing 

the amount of time required to process a particular number of threads. The shared memory size for 

a single SM is 32KB, which is kept to be constant. Figure 26, shows the graph with plotted line of 

rhombus and triangles. The line joining rhombus shapes indicates the Kepler card (i.e. Orange 

colored line) and line joining triangle shapes indicates the Fermi card graph (i.e. Blue colored line). 

The impact of number of threads and it is the combination of both GPU cards that is Fermi and 

Kepler. By observing the Figure, it clearly indicates that as the number of threads increases the 

amount of time required to process the threads is decreased. Among the Fermi and Kepler cards, 

for small number of threads (less than 8) Kepler is taking more time compared to Fermi this is 
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because Fermi’s clock speed(1.15Hz) is high compared to Kepler(0.71Hz). And for large number 

of threads(greater than 16), Fermi is taking more time compared to Kepler because of Fermi’s 

load/store unit(Fermi having 16 units in each SM whereas Kepler has 32 units).  

 

 

Figure 26. GPU Time Vs Number of Threads. 

 
5.4 Impact of the amount of shared memory 

In this section, we want to compare the performance of both Fermi and Kepler cards. For 

observing the performance time for both the cards, we run our program by keeping the number of 

threads as constant (i.e. for 16 threads) and the used GPU shared memory of sizes 4, 8, 16 and 32. 

As shown in Figure 27, the graph representation is same with the section 5.3 that is impact of the 

number of threads, rhombus plotted graph represents Kepler card and triangle plotted graph 

represents the Fermi card. Both times decreases as the GPU shared memory size increases. It is 

noted that the decreases in execution time for Fermi is much faster than Kepler; this is probably 

because Fermi runs faster than Kepler. 
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Figure 27. GPU Time Vs Used Shared Memory. 

 

5.5 Impact of Proposed CPU-Memory Data Regrouping Technique 

 Finally, we evaluate the impact of the proposed CPU-to-GPU memory mapping technique 

with data regrouping. From the Figure 28, the line joining the square plots represents the global 

memory without shared memory (i.e. Orange colored line), the line joining the rhombus plots 

represents the global memory with shared memory (i.e. Blue colored line) and the line joining the 

plots of all triangles represents the global memory with shared memory and data regrouping (i.e. 

Green colored line). Graph shows the execution times due to solving the Laplace’s equation for 

electric charge distribution on a 512x512 thin surface. For the number of threads less than 9x9, 

GPU global memory without shard memory takes less time compared to GPU global memory with 

shared memory, this we already observed in section 5.2, whereas GPU with shared memory shows 

improvement for the number of threads between 9X9 and 16X16. For more than 16x16 threads 

execution time increases, this probably due to the limitation of 16 load/store units. Experimental 
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results direct that the proposed CPU-to-GPU memory mapping with GPU shared memory and data 

regrouping provides the best performance compared to with and without shared memory. 

 

 

Figure 28. Impact of Data Regrouping. 
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CHAPTER 6 

CONCLUSION AND FUTURE SCOPES 

 

 We hope the discussion presented in the thesis motivates the interested scholars into 

considering research in the challenging but prosperous area of GPU computing. Manycore 

architecture is the future of all modern computing areas from server to desktop to possible 

embedded environment. With the appropriate usuage, the potential of manycore systems can be 

enormous. In this work, our contributions lead to improve the performance of manycore NVIDIA 

GPU by reducing the communication. This chapter concludes our work and we offer some possible 

future extension of this work.    

 
6.1  Conclusion 

 It is proven that proposed memory mapping from CPU to NVIDIA CUDA-accelerated 

GPU provides better performance for big data applications. GPU computing has potential to 

provide faster and cheaper solutions to address massively large/complex problems. However, in 

current CPU/GPU computing, CPU-data is first copied into GPU global memory but it is not 

suitable to improve the GPU performance. As GPU global memory is larger than the GPU shared 

memory, it would be beneficial to keep the data in the GPU shared memory. In this paper, we 

proposed a new memory mapping between CPU memory and GPU global memory (to GPU shared 

memory) to enhance GPU and overall system performance. By using new memory mapping, we 

solve the Laplace’s equation for electric charge distribution on a 2D thin surface by using three 

different versions; that is by using only CPU, CPU/GPU computing without shared memory, and 

CPU/GPU computing with shared memory. For this experiment we use NVIDIA Fermi GPU card 
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with 448 cores and Kepler GPU card with 2496 cores. According to the experimental results, it 

clearly directs the usefulness of GPU shared memory for both the Fermi and Kepler GPU cards. 

Using a Fermi GOU card for a 512x512 2D problem space, the proposed CPU-to-GPU memory 

mapping technique improves the system performance by cutting down the execution time by more 

than 75%.  

 
6.2  Future Extensions 

 

 This work, especially the new CPU memory regrouping technique can be extended to scope 

many important research areas including: 

 Improved CPU-to-GPU memory mapping: In this regrouped memory mapping, we 

might have the duplicate data. Avoiding the duplicate data in transferring the data from 

CPU to GPU will lead a better GPU performance. 

 Modeling and simulation of Nanocomposites: Nanocomposites is the primary 

challenge because it requires large number of computations at high speed. Proposed 

technique can be extended to assist in nanocompositions will significantly reduce the 

processing time. 

 Aircraft applications: To study the composite materials for aircraft applications 

will need the better CPU/GPU computing for faster computation, if that better computing 

has this proposed memory mapping will improve give faster computational analysis. 
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