
AUTOMATED DEVELOPER RECOMMENDATIONS FOR INCOMING
SOFTWARE CHANGE REQUESTS

A Thesis by

Md Kamal Hossen

Bachelor of Science, Bangladesh University of Engineering and Technology, 2009

Submitted to the Department of Electrical Engineering and Computer Science
and the faculty of the Graduate School of

Wichita State University
in partial fulfillment of

the requirements for the degree of
Master of Science

May 2014

© Copyright 2014 by Md Kamal Hossen

All Rights Reserved

iii

AUTOMATED DEVELOPER RECOMMENDATIONS FOR INCOMING
SOFTWARE CHANGE REUESTS

The following faculty members have examined the final copy of this thesis for form and content,
and recommend that it be accepted in partial fulfillment of the requirement for the degree of
Master of Science, with a major in Computer Science.

Huzefa Kagdi, Committee Chair

Yi Song, Committee Member

Jibo He, Committee Member

iv

ACKNOWLEDGMENTS

First of all I would like to express my gratitude to my supervisor and thesis committee

chair, Dr. Huzefa Kagdi, whose expertise, understanding, and patience, added considerably to

my graduate experience. His vast knowledge and research skill in the area of software

maintenance and evolution, and his expertise in research publications are really admirable. His

motivational sentences like “Can you finish it by yesterday” or “Why not try this” reminded me

that there is always room to improve and helped me to reach the optimal position. Without his

supervision and constant help this thesis would not be possible. I really feel lucky to get a

friendly adviser like him.

 I would also like to thank other thesis committee members who put their valuable time to

review my thesis and make it a successful one. My sincere gratitude goes to the faculty members

that I came across during my entire graduate program at Wichita State University.

Last but not least, the extraordinary support and prayers I received from my parents,

family, and friends have been the most important part of my journey throughout my graduate

studies. I would like to extend my special gratitude to them for supporting me in every step of

the way.

v

ABSTRACT

Software change requests, such as bug fixes and new features, are an integral part of

software evolution and maintenance. It is not uncommon in open source projects to receive

numerous change requests daily, which need to be triaged. Therein, automatically assigning the

most appropriate developer(s) to resolve an incoming change request is an important task. The

thesis proposes two approaches to address this task. The first approach, namely iA, employs a

combination of an information retrieval technique and processing of the source code authorship

information. The relevant source code files to the textual description of a change request are first

located. The authors listed in the header comments in these files are then analyzed to arrive at a

ranked list of the most suitable developers. The approach fundamentally differs from its

previously reported counterparts, as it does not require software repository mining.

The second approach, namely, iMacPro, amalgamates the textual similarity between the

given change request and source code, change proneness information, authors, and maintainers

of a software system. Latent Semantic Indexing (LSI) and a lightweight analysis of source code,

and its commits from the software repository, are used. The basic premise of iMacPro is that the

authors and maintainers of the relevant source code, which is change prone, to a given change

request are most likely to best assist with its resolution. iMacPro unifies these sources in a

unique way to perform its task, which was not investigated in the literature previously.

An empirical study to evaluate the effectiveness of the approaches on open source

systems, ArgoUML, JabRef, jEdit, and MuCommander, is reported. The iA approach is found to

provide recommendation accuracies that are equivalent or better than the two compared

approaches. Results also show that iMacPro could provide recall gains from 30% to 180% over

its subjected competitor with statistical significance.

vi

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION .. 1

2. BACKGROUND & RELATED WORK .. 5

2.1 Background .. 5
2.1 Related Work ... 6

3. PROPOSED APPROACHES TOWARD DEVELOPER RECOMMENDATION: iA and
iMacPro .. 10

3.1 Key Terms and Definitions .. 10
3.2 Overview of Developer Recommendation approaches ... 13

 3.2.1 The iA approach ... 13
 3.2.2 The iMacPro Approach ... 14

3.3 Locating Relevant Files with Information Retrieval ... 14
3.4 Ranking Source Files with Issue Change Proneness ... 16
3.5 Extracting Authors from Source Code .. 18
3.6 Extracting Maintainers from Change History .. 19
3.7 iA Recommendation ... 20
3.8 iMacPro Recommendation .. 22

4. EVALUATION AND RESULTS ... 27

4.1 iA Approach Evaluation and Results ... 27
4.1.1 Subject Software Systems ... 30
4.1.2 Building The Benchmark .. 31
4.1.3 Collecting and Using Execution Information ... 32
4.1.4 Metrics and Statistical Analyses ... 33
4.1.5 iA Approach Results ... 35

 4.2 iMacPro Evaluation and Results ... 39
4.2.1 iAcPro Approach ... 40
4.2.2 Subjected Software Systems .. 41
4.2.3 Building Benchmark ... 41
4.2.4 Metric and Statistical Analysis ... 42
4.2.5 iMacPro Approach Results ... 44

5. THREATS TO VALIDITY .. 50

vii

TABLE OF CONTENTS (continued)

Chapter Page

5.1 Construct Validity .. 50
5.2 Internal Validity ... 51
5.3 External Validity .. 52
5.4 Reliability ... 53

6. CONCLUSION AND FUTURE WORK ... 54

7. REFERENCES ... 55

viii

LIST OF TABLES

Table Page

1. TOP FIVE FILES RELEVANT TO BUG#4563 IN ARGOUML .. 16

2. THE AUTHORS AND MAINTAINERS EXTRACTED FROM EACH OF THE TOP

FIVEFILES RELEVANT TO ISSUE# 4563. .. 17

3. DEVELOPER FREQUENCY COUNT ... 22

4. DEVELOPERS TAKEN FROM INDIVIDUAL FILES IN POSITIONS 1 TO 5 FROM

TABLE 2. THE STRIKEOUT DEVEL OPERS ARE DISCARDED AND OTHERS ARE
RETAINED. .. 22

5. SUBJECT SOFTWARE SYSTEMS USED IN THE IA APPROACH CASE STUDY 31

6. SUMMARY OF THE BENCHMARKS FOR IA APPROACH .. 32

7. SUBJECT SOFTWARE SYSTEM USED IN IMACPRO CASE STUDY. 41

8. RECALL@1, 5, AND 10 OF THE APPROACHES IA, IACPRO, AND IMACPRO

MEASURED ON THE ARGOUML, JEDIT AND JABREF BENCHMARKS. 45

9. P-VALUES FROM APPLYING ONE-WAY ANOVA ON RECALL@K VALUES FOR

EACH SUBJECT SYSTEM ... 48

ix

LIST OF FIGURES

Figure Page

1. ISSUE REPORT FROM ARGOUML SYSTEM. ... 5

2. AN EXAMPLE FILE MODE.JAVA FROM THE OPEN SOURCE SYSTEM JEDIT. THE AUTHOR SLAVA

PESTOV (SPESTOV), MIKE DILLON (MDILLON) AND (DALE ANSON) DALEANSON ARE FOUND IN
THE HEADER COMMENT OF THE FILE, WHICH ARE ALL UNDERLINED IN RED. 11

3. AN EXAMPLE OF ISSUE #3530786 FROM THE OPEN SOURCE SYSTEM JEDIT. JAREKCZEK HAD

SUBMITTED (COMMITTED) THE CHANGES BUT TOM POWER IS THE ACTUAL DEVELOPER WHO
FIXED THE ISSUE. .. 12

4. PRECISION VS. RECALL CHARTS FOR ARGOUML, JEDIT, MUCOMMANDER. THESE RESULTS ARE

FOR FOUR APPROACHES (ML – SMO, XFINDER, XFINDERF, IA, AND IAF). EACH CURVE HAS A
POINT FOR EACH RECOMMENDATION FROM TOP-1 TO10. .. 36

5. HEAT-MAP SUMMARIZING RESULTS FOR TESTING HYPOTHESIS ACROSS ALL THE SYSTEM. THE

COLOR IN EACH CELL REPRESENTS THE NUMBER OF TIMES THE MAN-WHITNEY TEST SUGGESTED
STATISTICALLY SIGNIFICANT DIFFERENCE: BLACK CELLS MEAN THAT THE TEST FOUND
SIGNIFICANT DIFFERENCE ACROSS ALL THE THREE DATASETS; DARK-GRAY – TWO OUT OF THREE
SYSTEMS; LIGHT-GRAY – ONE SYSTEM; WHITE – NO SIGNIFICANT DIFFERENCE IN ALL THE THREE
SYSTEMS. ... 38

x

LIST OF ACRONYMS

ANOVA Analysis of Variance

SVN Subversion (Version Control System)

xi

LIST OF SYMBOLS

⨄ Multiset sum

∪ Union

∈ Element of

∅ Empty set

⇒ Implication

𝒮 Minimum support

1

CHAPTER 1

INTRODUCTION

Software change requests and their resolution are an integral part of software

maintenance and evolution. It is not uncommon in open source projects to receive tens of change

daily [1] and effective supporting of those changes is essential to provide a sustainable high

quality evolution of large-scale software systems.

The task of automatically assigning issue or change requests to the developer(s)

who are most likely to resolve them has been studied under the umbrella of bug or

issue triaging. A number of approaches to address this task have been presented in the

literature [1-5]. They typically operate on the information available from software

repositories, e.g., models trained from bug or issue repositories and/or source code

change repositories.

We propose two approaches for assigning incoming change requests to

appropriate developers. The first approach, namely iA, is a novel approach to assign

incoming change requests to developer that does not require mining of either a bug or a

commit repository. Central to the iA approach is the use of the author information

present in the source code files. Authors are typically found in the header comments of

the source code entities (e.g., file, class, or method).

 Figure 1 shows that the author Slava Pestov is found in the second line of the

header comment of the file Mode.java. Authors mike dillon and dalenson are also found

in the header comments (they are underlined in red). The premise of our iA approach is

that the authors of source code entities are best equipped to tackle any changes needed

2

in them. This authorship information can be leveraged once relevant source code, to a

change request, is located. Therefore, we first employ an Information Retrieval (IR)

based concept location technique [6] to find relevant code entities to a given change

request. The authorship information in these source code entities is then used to

recommend a ranked list of developers.

Our second approach, namely iMacPro, uses the same IR based concept location

technique as the iA approach to find the relevant source code units to a given change request. The

relevant source code units are the ranked based on their change proneness, which is derived from

their involvement in previous maintenance activities. Finally, the authors, extracted from a

source code snapshot of these units, and the maintainers of these units, derived from past change

activities, are forged together to arrive at the final list of developers. The developers in this list

are ranked and are presumed to be best-fit candidates for resolving the change request in the

order of their rank. The basic premise of iMacPro approach is that the developers who are

authors and/or maintainers of relevant source code, which is change prone, to a change request

are most likely to best assist with its resolution. In summary, the iMacPro approach favors

maintainers of the change prone source code. It uses LSI, Maintainers, authors, and

change Proneness of source code; hence, the name iMacPro. It needs access to the

source code and their change history (i.e., commits); however, it does not require any

training from the previously resolved bug reports.

To evaluate the accuracy of our two proposed techniques, we conducted an empirical

study on open source systems/repositories: ArgoUML, JabRef, MuCommander and jEdit. Recall

values for iMacPro, and precision and recall values for iA, of the developer recommendations on

a number of bug reports sampled from these systems are presented. That is, how effective our

3

two approaches are at recommending the actual developers who ended up fixing these bugs. We

compared iA approach with two other approaches that require mining of software repositories.

The results show that the iA approach performs as well as, or better than, the two other

competitive approaches in terms of the recommendation accuracies.

Also, our iMacPro approach is empirically compared with iA approach. Results show

that iMacPro outperformed iA. Lowest recall gains of 28%, 56%, and 33% were recorded for

ArgoUML, JabRef, and jEdit respectively. Highest recall gains of 31%, 57%, and 75% were

recorded for ArgoUML, JabRef, and jEdit respectively.

 The thesis makes the following noteworthy contributions in the context of recommending

relevant developers to resolve incoming change requests:

1. A novel developer recommendation approach iA for incoming change request that is

centered on the code authorship information. Our approach is lightweight, as it does not

require software repository mining. To the best of our knowledge, there is no other such

approach in the literature.

2. A comparative study of iA approach with two other approaches that are based on mining

of software repositories. The results show that our lightweight approach can perform

equally well, or better than, the heavyweight mining approaches.

3. To the best of our knowledge, our iMacPro approach is the first to integrate the change

proneness, authors, and maintainers of the relevant source code.

4. We performed a comparative study of iMacPro approach with our iA approach.

5. An empirical assessment of the contributions of the maintainer information toward the

overall accuracy of iMacPro.

The rest of the thesis is organized as follows: Background and related work is discussed

in CHAPTER 2. Our iA and iMacPro approaches are discussed in CHAPTER 3. The empirical

4

study on open source projects and the results are presented in CHAPTER 4. Threats to validity

are discussed in CHAPTER 5. Finally, our conclusions and future work are stated in

CHAPTER 6.

5

CHAPTER 2

BACKGROUND & RELATED WORK

2.1 Background

Large-scale software systems are not stagnant. They are always evolving. Nowadays,

every software system has some kind of an issue or bug tracking system where software users

can report problems with the software or new features they wish to be included in the software.

These reports from issue tracking system are generally called change requests in the software

maintenance and evolution terminology. They form a starting point of the software evolution

process. Figure 1 shows a typical change request that was reported in the open source system

ArgoUML with a summary of the issue highlighted in the read rectangle.

Figure 1 Issue Report from ArgoUML system.

After receiving and validating a change request, software developers modify the software

system to address it. A new release of the software system is formed after a set of these change

requests is resolved with software changes. An important task in this issue triaging process is

assigning the developer(s) with the right expertise to resolve the incoming change request. This

task is often referred to as Developer Recommendation [1, 3].

6

Assigning change requests to the developers with the right implementation expertise

typically requires project or even organization wide knowledge and the balancing of many

factors. Software systems have grown in size and complexity over the years. It is not

uncommon for a large-scale open source software system developed collaboratively with

hundreds of contributors (often geographically distributed) and years of development history to

receive hundreds of change request everyday [1]. One straightforward approach is to email the

project team/developers or to use any common communication media to discuss and rely on

them for suggestions or advice on who has helpful knowledge about a certain part of source

code, a bug, or a feature. But this tedious manual approach is reactive, slow, and may not

necessarily yield an effective or efficient answer. Clearly, an automatic approach of developer

recommendation is desirable in the issue triaging process. Automated developer recommendation

is a very well researched problem in the software maintenance and evolution research

community. In section 2.1, we present related work associated with the topic of developer

recommendation.

2.1 Related Work

 In McDonald and Ackerman [7] designed a tool coined as Expertise Recommender (ER)

to locate developers with the desired expertise. The tool uses a heuristic that considers the most

recent modification date when developers modified a specific module. ER uses vector-based

similarity to identify technical support. Three query vectors (symptoms, customers, and modules)

are constructed for each request. Subsequently, the vectors are compared to developer profiles.

This approach has been designed for specific organizations and not tested on open source

projects.

7

Minto and Murphy [8] developed a tool called Emergent Expertise Locator (EEL), which

is based on the framework of Cataldo et al. [9] to compute coordination requirements between

documents. EEL mines the history to determine how files were changed together and who

committed those changes. Using this data, EEL suggests developers who can assist with a given

problem. Another tool to identify developers with the desired expertise is Expertise Browser

(ExB) [10]. The fundamental unit of experience is the Experience Atom (EA). The number of

these EAs in a specific domain measures the developer experience. A code change that has been

made on a specific file is the smallest EA.

Anvik and Murphy [11] conducted an empirical evaluation of two techniques for

identifying expert developers. Developers acquire expertise as they work on specific parts of a

system. They term this expertise as implementation expertise. Both techniques considered in the

empirical evaluation are based on mining code and bug repositories. The first technique analyzes

the check-in logs for modules that contain fixed source files. Developers who recently performed

a change are selected and filtered. In the second technique, the bug reports from bug repositories

are analyzed. The developers are identified from the CC lists, comments, and bug fixes. Their

study concludes that both techniques have relative strengths in different ways. In the first

technique, the most recent activity date is used to select developers. Tamrawi et al. [4] used

fuzzy-sets to the model bug fixing expertise of developers based on the hypothesis that

developers who recently fixed bugs are likely to fix them in the near future. Hence, only recent

reports were considered to build the fuzzy-sets representing the membership of developers to

technical terms in the reports. For incoming reports, developers are recommended by comparing

their membership to the terms included in the new report.

8

An approach uses a machine learning technique to automatically assign a bug report to a

developer [1]. The resulting classifier analyzes the textual contents of a given report and

recommends a list of developers with relevant expertise. ExpertiseNet also uses a text-based

approach to build a graph model for expertise modeling [12]. Another approach to facilitate bug

triaging uses a graph model based on Markov chains, which captures the bug reassignment his-

tory [13]. Matter et al. [14] used the similarity of textual terms between a given bug report of

interest and source code changes (i.e., word frequencies of the diff given changes from source

code repositories).

There are a number of works on using MSR techniques to study and analyze developer

contributions. Rahman and Devanbu [15]study the impact of authorship on code quality. They

conclude that authors with specialized experience for a file is more important than general

expertise. Bird et al. [16] perform a study on large commercial software systems to examine the

relationship between code ownership and software quality. Their findings indicate that high

levels of ownership are associated with fewer defects. A description of characteristics of the

development team of PostgreSQL appears in a report by German [17]. His findings indicated that

in the last years of PostgreSQL only two persons were responsible for most of the source code.

Bird et al. [18] analyzed the communication and co-ordination activities of the participants by

mining email archives. Del Rosso [19] built a social network of knowledge-intensive software

developers based on collaborations and interaction. Ma et al. [20] proposed a technique that uses

implementation expertise (i.e., developers usage of API methods) to identify developers.

Weissgerber et al. [21] depicts the relationship between the lifetime of the project and the

number of files and the number of files each author updates by analyzing and visualizing the

check-in information for open source projects. German [22] provided a visualization to show

9

which developers tend to modify certain files by studying the modification records (MRs) of

CVS logs. Fischer et al. [23] analyzed and related bug report data for tracking features in

software. Bortis et al. [24] introduced PorchLight a tag-based interface and customized query

expression to offer triagers the ability to explore, work with, and assign bugs in groups.

Shokripour et al. [25] proposed an approach for bug report assignment based on predicted

location (source code) of the bug and showed advantages of this approach over activity based ap-

proach. Corley et al. [26] built ohm tool that used a combination of software repository mining

and topic modeling for measuring the ownership of linguistic topics in source code. Begel et al.

[27]conducted a survey of inter-team coordination needs and presented a flexible Codebook

framework that can address most of those needs.

10

CHAPTER 3

PROPOSED APPROACHES TOWARD DEVELOPER RECOMMENDATION: iA AND

iMacPro

Before we proceed with the finer details of our approach, key terms are defined

and discussed next.

3.1 Key Terms and Definitions

Author: Authors of source code entity (e.g., file) are the developers’ identities found

within it. Authors are typically found in the header comments of the source code entities (e.g.,

file, class, and method). The header comments typically contain the copyright, licensing, and

authorship information. Additionally, it may also contain information about the (last version)

change, automatically inserted with a keyword expansion mechanism from version-control

systems. Tags such as @author and @contributor are commonly found in the header comments

to denote the authorship information. Oftentimes, source control systems automatically insert the

tag $Id to signify an additional piece of developer information. Figure 2 shows that the authors

Slava Pestov, Mike Dillon, and daleanson are found in the header comment of the file mode.java,

see the underlined text in red in Figure 2. The extraction of authors from source code is discussed

in Section 3.5.

Maintainer: Maintainers of a source entity (e.g., file) are the developers who performed

changes on it (e.g., due to a bug fix or a feature implementation).

Maintainers are typically found in the commit information stored in a source code

repository of a software system. Note that we differentiate between committers (developers who

submitted the commits) and maintainers (developers who actually contributed the changes)

11

whenever it is possible to do so. In situations when a developer identity is mentioned in the

textual commit message, we consider them to be a maintainer and not the committer. Such

scenarios do arise when someone else, other than the original developer who performed the

actual change, is acting as a gatekeeper or facilitator. If no explicit developer is mentioned in the

commit message, the committer is considered to be the maintainer.

Figure 2. An example file Mode.java from the open source system jEdit. The author Slava

Pestov (spestov), Mike Dillon (mdillon) and (Dale Anson) daleanson are found in the header

comment of the file, which are all underlined in red.

Figure 3 shows a commit log from the open source system jEdit. This commit was performed by

the developer jarekczek. The textual message in this log clearly states that the developer Tom

Power fixed this issue by submitting a patch. Therefore, Tom Power and not jarekczek is the

maintainer in this case. The extraction of maintainers from the source code commits is discussed

in Section 3.6.

12

Figure 3. An example of issue #3530786 from the open source system jEdit. jarekczek had

submitted (committed) the changes but Tom Power is the actual developer who fixed the issue.

Issue Fixing Commit (IFC): Issue Fixing Commits are the commits in a source code

repository that have explicit documentation of maintenance activities (e.g., corrective or

adaptive). IFCs can be determined from the textual processing of the commit messages. A

common practice in the open source software development is for developers to include an

explicit bug or issue id in the commit message. The presence of this information establishes the

traceability between an issue or bug reported in the bug tracking system and the specific

commit(s) performed to address it. Additionally, developers provide keywords such as fix, gui,

feature, and patch in the commit messages to indicate a maintenance or evolutionary activity. A

regular expression based method can be employed to process commits and extract IFCs. The

commit log shown in Figure 3 is an example of an IFC.

13

Issue Change Proneness (ICP): Issue Change Proneness of a source code entity is a

measure of its change affinity as determined from Issue Fixing Commits (IFCs). A

straightforward (yet as would be shown an effective) measure of the ICP of a source code entity

is given by the number of IFCs in the commit history that contains it.

𝐼𝐶𝑃 𝑒 = ∀!∈ 𝐼𝐹𝐶! 𝑒 ∈ 𝑐 (1)

For example, the file AbstractInputHandler.java in jEdit was involved in a total of 11 commits

from 2009-12-25 to 2006-10-02. Only two of these commits are IFC s. Therefore, the ICP of this

source code file is 2.

3.2 Overview of Developer Recommendation approaches

Here we briefly described our two developer recommendation approaches before going

details of them.

3.2.1 The iA approach

 The iA approach of triaging incoming change requests consists of the following two

steps:

1. We use Latent Semantic Indexing (LSI) [28] to locate relevant units of source

code (e.g., files, classes, and methods) in a release of the software system that

match the given textual description of a change request or reported issue. The

indexed source code release/snapshot is typically between the one in which an

issue is reported and before the change request is implemented (e.g., a reported

bug is fixed).

14

2. The authors of the units of source code from the above step are then analyzed to

recommend a ranked list of developers to deal with those units (e.g., classes).

Here, authors are the developers listed in the source code files, typically in the

header comments of entities (files, classes, and/or methods).

3.2.2 The iMacPro Approach

The iMacPro approach to assign incoming change requests to appropriate

developers consists of the following steps:

1. First approach of locating relevant source code file is same as the first step of iA

approach described in chapter 3.2.1

2. Source code units found from the above step are then ranked based on their

change proneness. Change proneness of each source code entity is derived from

its change history (elaborated in Sections 3.4 and 3.6).

3. The developers who authored and maintained these source code files are

discovered and combined. Finally, a final ranked list of developers who are likely

to best assist with the given change request is recommended.

3.3 Locating Relevant Files with Information Retrieval

In our approaches, in order to locate textually relevant files, we rely on an IR-

based concept location techniques [29]. This technique can be summarized in the

following steps:

Creating a corpus from software: The source code is parsed using a developer defined

granularity level (i.e., files) and documents, i.e., in IR vocabulary, are extracted. A corpus is

created, so that each file will have a corresponding document therein. Only identifiers and

comments are extracted from the source code.

15

Indexing a corpus: The corpus is indexed using LSI and its real valued vector subspace

representation is created. Dimensionality reduction is performed in this step, capturing the

important semantic information about identifiers and comments and their latent relationships. In

the resulting subspace, each document has a corresponding vector. The above steps are

performed offline once, while the following two steps are repeated for a number of open change

requests.

Using change requests: A set of words that describes the concept of interest constitutes

the initial query, e.g., the short description of a bug or a feature described by the developer or

reporter. This query is used as an input to rank the documents in the following step.

Relevant documents: Similarities between the user query (i.e., change request) and

documents in the corpus are computed. The similarity between a query reflecting a concept and a

set of data about the source code indexed via LSI allows for the generation of a ranked list of

documents relevant to that concept. All the documents are ranked by the similarity measure in

descending order (i.e., the most relevant at the top and the least relevant at the bottom). We

obtain user specified top n relevant documents. After these relevant documents are obtained, we

treat them as a set of n documents and not a ranked list. The textual similarity ranking of files is

used for breaking ties in a later step.

For example change request of interest here is the bug# 4563 of ArogUML system, which

the reporter described as follows:

“Realization stereotype shows twice on abstraction”

We consider the above textual description to be a concept of interest. We collected the

source code of ArgoUML 0.22 (the bug was not fixed as of this date). We parsed the source code

16

of ArgoUML using the class-level granularity (i.e., each document is a class). After indexing

with LSI, we obtained a corpus consisting of 1,439 documents and 5,488 unique words. We

formulated a search query using the bug’s textual description. Table 1 shows the results of the

search, i.e., files ranked in the order of their textual similarity scores.

TABLE 1. TOP FIVE FILES RELEVANT TO BUG#4563 IN ARGOUML

3.4 Ranking Source Files with Issue Change Proneness

As discussed before, there is a one-to-many relationship between an IR query, i.e.,

description of a bug bi, and source code files. Given a user provided cutoff point of n, we get the

n top ranked source code files f1, f2, . . . fn for the bug bi. Given a user provided cutoff point of n,

we get the n top ranked source code files f1, f2, . . . fn for the bug bi. We use the change proneness

measure to rank these top n files. The rationale behind this choice is based on the premise that

the larger the number of changes related to past requests (e.g., bug fixes) in which an LSI

relevant source code file is involved, the higher the likelihood of the same file requiring changes

due to a given (new) change request. For each relevant file, its ICP 3.1 is calculated. We

consider the most recent m IFCs for each file in the computation of ICP. The parameter m is

configurable. The n files are ranked based on their ICPs. The file with the highest ICP is ranked

Rank Files

1 diagram/ui/FigRealization.java

2 java/cognitive/critics/CrMultipleRealization.java

3 cognitive/critics/CrAlreadyRealizes.java

4 ui/foundation/core/PropPanelAbstraction.java

5 diagram/ui/FigAbstraction.java

17

first; the one with the lowest ICP is ranked last, and so on. If multiple files have the same ICP

value, their textual similarity values determine the ranks. At the conclusion of this step, the n

relevant files are sorted.

The ICP values for each of the five files in Table 1 was computed for the purposes of

ranking them based on their change proneness. We limited the computation to the most recent 20

ICFs for each file in this case. The column entitled ICP in Table 2 show the corresponding value

of each file. These files are presented in the rank of their ICP. Clearly, this ranking differs from

the LSI ranking in Table 1. The files FigRealization.java and CrMultipleRealization.java have

the same ICP value of 4. The file FigRealization.java is ranked higher than the file

CrMultipleRealization.java based on the LSI similarity (rank) in Table 1. Top five files relevant

to Bug#4563 in ArgoUML, i.e., it is ranked ahead.

TABLE 2. THE AUTHORS AND MAINTAINERS EXTRACTED FROM EACH OF THE

TOP FIVE FILES RELEVANT TO ISSUE# 4563.

Rank Files ICP Ranked
Maintainers(Dm)

Ranked
Authors(Da)

Combined
Developers(Dma)

1 . ./PropPanelAbstraction.java 7 mvw, linus, mkl,
kataka, 1sturm

bobtarling mvw,bobtarling,
linus,mkl,kataka, 1sturm

2 . . /CrAlreadyRealizes.java 6 mkl,mvw,linus,
kataka

linus, jrobbins mkl, linus, mvw, jrob-
bins, kataka

3 . . /FigRealization.java 4 mkl, linus, kataka tfmorris mkl, tfmorris, linus,
kataka

4 . . /CrMultipleRealization.java 4 mkl, linus mvw, jrobbins mkl, mvw, linus, jrob-
bins

5 . . /FigAbstraction.java 1 mvw tfmorris, agauthie mvw, tfmorris, agau-
thie

18

3.5 Extracting Authors from Source Code

Obtaining source code files: The source code of each of the top relevant files that are

retrieved by the concept location component of our technique is first obtained. These source code

files are derived from a system snapshot between when the change request is reported and before

it is resolved.

Converting files to srcML representation: The source code files in the above step

are converted to the srcML-based representation. srcML is a lightweight XML representation for

C/C++/Java source code with selective Abstract Syntax Tree information embedded [9]. This

conversion is done for the ease of extraction of comments from the source code. We use srcML

in our approach; however, this element can be easily replaced by any lightweight source code

analysis methods, including regular expressions or island grammar [30].

Extracting header comments: All the header comments are extracted from

each srcML file. The header comments are generally the first comments in source code

files, source code classes, and/or methods.

Extracting authors from comments: The content and format of the author listing in the

header comments may vary across systems. From a thorough manual examination of a number of

open source projects, we devised regular expressions to extract the authors from the header

comments. Authors are extracted from each of the relevant files. Note that the same developer

could have multiple identities. We extracted all the entities of each developer from the project

resources, and mapped them to a unique identifier. For example, the identities Michiel Vander

Wulp (full name), mvw@tigris.org (email address) and mvw (user name) represent the same

developer, which is mapped to the identity mvw. Similarly, the identities

19

jaap.branderhorst@xs4all.nl and jaap represent the same developer, which is mapped to the

identity jaap.

Ranking Authors: For each file, the authors are ranked according to the lexical positions

of the constructs in which they are found. That is, a top-down, left-right order is followed. For

example, the authors appearing in the header comment of the file are ranked higher than those

appearing in the header comment of the (main) class. If multiple authors appear in the same

comment, the one that is encountered first lexically is ranked first, and so forth. It is possible that

the same author is discovered from multiple places in the same file. We assign the rank of the

earliest lexical position to such an author.

Figure 2 shows that the author Slava Pestov is found in the first line of the header

comment of the file Mode.java. Thus, the author Slava Pestov is ranked first. The same author is

discovered again in the header comments of the class Mode, which is ignored. Next the author

Mike Dillon is found in the copyright header in the lexical order. Finally, the author Dale Anson

is found. The final ranked list of authors for the file mode.java is [spestov, mdillon, daleanson].

After this step, a ranked author list for each of the top n relevant files is established.

In our running example, the source code of each of the five files in Table 1 was then

processed to find a ranked list of authors. Table 2 shows this list for each file in the column

entitled Authors. The file FigRealization.java has only the author tfmorris. The file

CrAlreadyRealizes.java has the ranked list of authors [linus, jrobbins].

3.6 Extracting Maintainers from Change History

For each relevant file, its most recent IFCs are sorted with the most recent commit

appearing first and the least recent commit appearing last. Maintainers from these IFCs are

20

extracted (see Section 3.1). We compiled a list of developer IDs from the software repositories

and project documentation, similar to extracting authors. The maintainer of the most recent

commit is ranked first and that of the least recent commit is ranked last. The rationale for this

choice is based on the premise that developers who made the most recent changes are likely to

be most familiar with the current state of source code. Therefore, they would be better able to

assist with a given change request than others. In cases where the same maintainer was

responsible for multiple commits in IFCs, the highest ranked position is retained and others are

discarded. After this step, a ranked maintainer list for each of the top n relevant files is

established.

The column entitled Maintainers in Table 2 shows the ranked list of maintainers for each

of the files. The file PropPanelAbstraction.java has the ranked list of maintainers [mvw, linus,

mkl, kataka, 1sturm]. The developer mvw was the maintainer of the most recent IFC, whereas,

the maintainer 1strum was the maintainer of the least recent, i.e., oldest, one. Although file

PropPanelAbstraction.java has the ICP value of 7, it has only 5 maintainers. Each commit

typically has a single maintainer (one committer, for sure, unless an anonymous commit was a

result of a migration process from an automatic tool). Therefore, in this case, there was at least

one maintainer who performed multiple IFC s on this file. Only the highest ranked position, i.e.,

the most recent IFC, of such as a maintainer is preserved.

3.7 iA Recommendation

We now describe how source files author information are used to recommend a ranked

list of developers for incoming change request. Given a user provided cutoff point of m, we need

to get the top m ranked authors (developers). We use a frequency based approach to rank authors.

21

The hypothesis is that the higher the occurrence of an author in the relevant files to a change

request, the more knowledgeable that author is in handling that particular request. We take a

union of all the authors appearing in all the n relevant files given by LSI step. This union gives

us a set of cardinality d unique authors. For each author di, we count the number of files in which

he/she appears. Once a frequency count of each author is obtained, all the authors are sorted in

descending order of their file frequency counts. From this sorted list of authors, we recommend

the top m ranked authors that are the most likely developers to assist with fixing the bug/change

request in question. We break ties using the information of their file ranks and lexical positions

in the source code file. If we cannot break the ties with file ranks, we use the developers’ first

lexical positions in the source code file. That is, the developer d1 will be ranked ahead of the

developer d2, if both appear in the same file; however, d1 first appears ahead of d2 in the source

code text. The lexical positions in a way correspond to the file >> class >> method hierarchy.

Table 3 shows the ranked list of developers produced after the application of the

frequency based ranking mechanism of iA approach on Top 5 relevant files of Bug#4563 in

Table 1. The developer tfmorris and jrobbins appear in two files (see Table 2 for the specific

files). But tfmorris end up at number one positon because tfmorris found in the file, which has

ranked higher in Table 1 than the file in which jrobbins found. The developers

mvw,linus,bobtarling and agauthie are tied because they all appear in one file. These developers

are sorted based on the file rank in which they first occur. So, the final list of recommended

developers for Bug#4563 given by iA approach is [tfmorris, jrobbins, mvw, linus, bobtarling,

agauthie].

22

TABLE 3. DEVELOPER FREQUENCY COUNT

3.8 iMacPro Recommendation

We now describe the details of iMacPro - combining the change proneness, authors, and

maintainers of source code, relevant to a given bug, to recommend the final ranked list of

developers. From Section 3.5, there is a one-to-many relationship between the source code file

and authors. That is, each file fi may have multiple authors; however, it is not necessary for all

the files to have the same number of authors. For example, the file f1 could have two authors and

the file f2 could have three authors. Although, the ranked list of authors of a single file does not

TABLE 4. DEVELOPERS TAKEN FROM INDIVIDUAL FILES IN POSITIONS 1 TO 5

FROM TABLE 2. THE STRIKEOUT DEVEL OPERS ARE DISCARDED AND OTHERS

ARE RETAINED.

Position Combined Developers (Df)
1 mvw, mkl, mkl, mkl, mvw
2 bobtarling, linus, tfmorris, mvw, tfmorris
3 linus, mvw, sout linus, linus,agauthie
4 mkl, jrobbins, kataka ,jrobbins
5 kataka, kataka

Df mvw, mkl, bobtarling, linus, tfmorris, agauthie, jrobbins, kataka
Df @k=5 mvw, mkl, bobtarling, linus, tfmorris

Developer ID File Frequency
tfmorris 2
jrobins 2
mvw 1
linus 1

bobtarling 1
agauthie 1

23

have any duplication, two files may have common authors. The final ranked lists of authors for

the top n relevant files ranked based on their ICP values are given by the matrix Da below:

𝐷! =
𝑓! 𝐷!!!
𝑓! .. 𝐷!!!..
𝑓! 𝐷!!!

𝐷!!! = 𝑎! 𝑎!…𝑎! (2)

 In Equation (2), Dafi represents the ranked list of authors, with no duplication, for the file

fi. aj is the jth ranked author in the file fi, which contains l unique authors. The ranks for the

authors are in the range [1, l]. From Section 2.5, there is a one-to-many relationship between the

source code file and maintainers. Each file fi may have multiple maintainers; however, it is not

necessary for all the files to have the same number of maintainers. Although, the ranked list of

maintainers of a single file does not have any duplication, two files may have common

maintainers. The final ranked lists of maintainers for the top n relevant files ranked based on

their ICP values are given by the matrix Dm below:

𝐷! =
𝑓! 𝐷!!!
𝑓! .. 𝐷!!!..
𝑓! 𝐷!!!

𝐷!!! = 𝑚! 𝑚!…𝑚! (3)

 In Equation (3), Dmfi represents the ranked list of maintainers, with no duplication, for the

file fi. mj is the jih ranked maintainer in the file fi, which contains o unique maintainers. The ranks

for the maintainers are in the range [1, o]. To obtain a combined ranked list of developers for

each file fi, i.e., Dma, ranked lists of maintainers (Dm) and authors (Da) are assembled.

24

𝐷!" = 𝐷!⨄𝐷!

(4)

 =

𝑓! 𝑑! 𝑑!… 𝑑!"# !,!
𝑓!....

𝑑! 𝑑!… 𝑑!"# !,!

𝑓! 𝑑! 𝑑!… 𝑑!"# (!,!)

 (5)

We employ a round-robin merging algorithm. For each file fi, the first position d1 on the

list is occupied by the highest ranked m1 maintainer, i.e., the maintainer appearing first in the

maintainer list. For the second position d2 on this combined list, the highest ranked author a1, i.e.,

the author appearing first in the author list is considered. The rationale behind picking first from

the maintainer list and then from the author list is based on the premise that the maintainer who

contributed recent changes to a file is more likely to have relevant knowledge than its authors.

For each file fi, we eliminated redundancies within the individual author and maintainer

lists (Dmfi) and (Dafi); however, these two lists may have developers in common, i.e., the

maintainer and author are the same developer. Therefore, if a developer is already in the

combined list of developers Dmafi , it is discarded and the next one is picked from the author or

maintainer list depending on where the redundancy was found. For example, if it was the author

list’s turn to pick a developer for the jth position and that developer is already in the combined

list, the next one on the maintainer list is considered for this position. If either of the author or

maintainer list is exhausted, the remaining balance is fulfilled by the other list, barring no further

redundancy nor is this list also exhausted. At the conclusion of this step, we have a ranked-list of

developers for each file.

25

In Table 2, the ranked list of combined developers, i.e., Dma, for each file is shown in the

last column (Combined Developers (Dma)). For example, the ranked lists of maintainers (Dm) and

authors (Da) for the file CrAlreadyRealizes.java are [mkl, mvw, linus, kataka] and

[linus,jrobbins]. According to our round-robin method of combining, we pick mkl from the

maintainer list first, linux from the author list second, mvw from the maintainer list third, and

jrobbins from the author list fourth. linus from the maintainer list is discarded, as it already

appears in the combined list. Because the author list is exhausted, we simply append kataka to

the combined list. Therefore, the combined list Dma for the file CrAlreadyRealizes.java is [mkl,

linus, mvw, jrobbins, kataka].

The combined lists of developers in contain ranked developers for each file; however, we

need to recommend a user specified k developers. Therefore, we need to obtain the absolute

ranking of developers from Dma. To do so, we coalesce developers from Dma into a single ranked

list of candidate developers. We start with the highest-ranked developer for the highest-ranked

file in Dma, move on to the highest ranked developer for the second highest ranked file, and so

on. That is, the highest-ranked developers of all the files are first added. Once they are added, the

second-highest ranked developers of the files (traversed by their rank order) are added. This

process continues, until the lowest ranked developers from all the lowest ranked files are merged

into the final ranked list of developers. Once again, the elimination of developer redundancy

occurring in multiple files is handled in the same way used for generating Dma. That is, we have

an order preserving union of developers from the traversal of ranked files and their developers in

Dma. At the conclusion of this step, we have a ranked list of developers for the given change

request, i.e., Df in Equation 5. The top k developers recommended to address the given change

request are the top k developers in Df. This step concludes our iMacPro approach.

26

𝐷!!𝑑|⨄!!!! ∀!∈ 𝐷!"#$ ∈ 𝐷!" (6)

In our running example, the formation of the combined developer list, i.e., Df starts by

taking the first developer from the Dma of the highest ranked file. That is, mvw from the file

PropPanelAbstraction.java. Next, the first developer from the Dma of the second highest ranked

file is considered and retained. That is, mkl from the file CrAlreadyRealizes.java. Continuing in

this fashion, mkl from the file FigRealization.java is considered; however, it is already in the list

of final developers. Therefore, it is discarded. Similarly, mkl and mvw from the files

CrMultipleRealization.java and FigAbstraction.java are eliminated, as they were already picked

before. At this point, all the first position developers of all the files are exhausted and we have

developers mvw and mkl on the combined list of developers, Df. Table 4 details the formation of

the final list of combined developers. The column Position shows the workings of the ith position

developer in the Dma of each file. The row with the position value 2 shows the second highest

developers considered from each file in their ranked order. After all the positions are considered,

the final list of combined developers, Df, for bug#4563 is [mvw,mkl, bobtarling, linus, tfmorris,

agauthie, jrobbins, kataka] (see the row labeled Df . Finally, for a user specified cutoff of k = 5,

the recommended ranked list of developers would be [mvw, mkl, bobtarling, linus, tfmorris] (see

the row labeled Df @k=5).

On examining the source code repository of ArgoUML, we found that mvw was the

developer who resolved the bug#4563 in commit#11821. As can be seen in the final

recommendation list Df @k=5, mvw is the first ranked developer. Therefore, our iMacPro

approach would have recommended the correct developer who resolved this bug with only one

recommendation compare to iA approach three recommendation.

27

CHAPTER 4

EVALUATION AND RESULTS

Now we describe case studies two evaluate our two proposed developer recommendation

approach.

4.1 iA Approach Evaluation and Results

The purpose of this empirical study was to investigate how well our iA approach

recommends expert developers to assist with incoming change requests. We also compared

our iA approach with two previously published approaches. The first approach is based on

the mining of a bug report history by Anvik et al. [1]), denoted here as machine learning -

ML. The second is based on mining of source control repositories, i.e., commit logs, by

Kagdi et al.[3] denoted here as xFinder. Therefore, we addressed the following research

questions (RQ) in our case study:

• RQ1: How does the accuracy of the iA approach compare to its two competitors

that are based on software repository mining, namely ML and xFinder?

• RQ2: Is there any impact on the results of iA when filtering of IR-based

results with dynamic-analysis information is included, i.e., an additional

analysis cost is incurred?

The rationale behind RQ is two-fold: 1) To assess whether our iA can identify

correct developers to handle change requests in open source systems, and 2) how well the

accuracy of the iA approach compares to the ML and xFinder approaches. The purpose of

RQ2 is to assess if incorporating an additional software analysis technique to the first step

of the iA approach improves its accuracy results.

28

We used a dynamic analysis technique because it was found to improve the accuracy of

IR-based feature location and impact analysis approaches [31, 32]. That is, we want to study if

using the dynamic filtering of IR results within our approach outperforms the accuracy of the

ML, xFinder, and iA without the dynamic filtering.

Next, we provide background information on the two competitive approaches ML and

xFinder used in our evaluation.

A. ML on Past Bug Reports for Assigning Developers

To recommend developers, Anvik et al. [1] used a history of previous bug reports

from Eclipse, Firefox, and gcc that had been resolved or assigned between September 1,

2004 and May 31, 2005 – training instances. The list of developers assigned to, or

resolved, each report was considered the label (output field) for the textual documents

(input fields). The one-line summary and the full text description of each bug report were

considered a document, and their words were considered the attributes that represent the

documents. Stops-words and non-alphabetic tokens were removed and the vector

representation was built computing the tfidf measure on the remaining words. Neither

stemming nor attributes selection methods were applied [1].

In order to compare our iA approach to this previously published technique, we

reproduced the ML-based approach of Anvik et al. [1] . We used the same

preprocessing steps (stops-words removal, no stemming, tfidf as a term weighting method,

and no attribute selection method). We did not find precise details on the parameters and

settings of the algorithms in [1], therefore, we only ran experiments with two

implementations of SVM provided by Weka (SMO and LibSVM) using a linear kernel. We

decided to use SVM because it was found to be a superior classifier in several domains,

29

such as text categorization [33], software categorization [34], and developers

recommendation [1, 35].

Recommending more than one developer requires ML classifiers that provide more than

one label for a testing instance. It means that they should be able to deal with multi-label

classification problems. Anvik et al. [1] provide results from recommendations with one, two,

and three developers. We used the ranking of the SVM classifiers on the labels to build the

developer recommendations from top one to ten developers. Therefore, we ran the SVM

implementations using a one-against-all strategy to deal with multiple developer

recommendations. In this strategy, a classifier is built for each of the developers in the dataset.

For example, for a dataset with ten developers, there should be ten SVMs, each SVM is trained

to recommend only one developer, and the overall recommendation is built using the

recommendations of the ten classifiers. Overall, the ranking of developers is based on the

ranking provided by each SVM. Thus, for a top-k recommendation we made the list with the k

developers with the top-k rankings.

B. xFinder Approach for Recommending Developers

xFinder approach to recommending experts to assist with a given change request

consists of the following two steps:

1. The first step is identical to the first step of the presented iA approach (see Section 3.2.1).

2. The version histories of units of source code from the above step are then analyzed to

recommend a ranked list of developers that are the most experienced and/or have

substantial contributions in dealing with those units (e.g., classes/files).

We used the xFinder approach to recommend expert developers by mining

version archives of a software system [3 6] . The basic premise of this approach is that

30

the developers who contributed substantial changes to a specific part of source code in the

past are likely to best assist in its current or future changes. This approach uses the

commits in repositories that record source code changes submitted by developers to the

version-control systems (e.g., Subversion and CVS). xFinder considers the following factors

in deciding the expertise of the developer d for the file f:

• The number of commits, i.e., commit contributions that include the file f and

are committed by the developer d.

• The number of workdays, i.e., calendar days, of the developer d with

commits that include the file f.

• Most recent workday in the activity of the developer d with a commit that

includes the file f.

We used the source code commits of the three systems from the history period

before the releases that were chosen for the LSI indexing to train xFinder.

4.1.1 Subject Software Systems

The context of our study is characterized by three open source Java systems,

namely jEdit v4.3, a popular text editor, ArgoUML v0.22, a well-known UML editor,

and muCommander v0.8.5, a cross-platform file manager. The sizes of these considered

systems range from 75K to 150K LOC and contain between 4K and 11K methods. The

stats of these systems are detailed in Table 5.

31

Table 5. SUBJECT SOFTWARE SYSTEMS USED IN THE iA Approach CASE STUDY

System Ver. LOC Files Methods Terms
jEdit 4.3 103,896 503 6,413 4,372

ArgoUML 0.22 148,892 1,439 11,000 5,488

muComma

nder

0.8.5 76,649 1,069 8,187 4,262

4.1.2 Building The Benchmark

The benchmark consists of a set of change requests that has the following

information for each request: a natural language query (request summary) and a gold set

of developers that addressed each change request.

The benchmark was established by a manual inspection of the change requests

(done by one of the authors), source code, and their historical changes recorded in

version- control repositories. Subversion (SVN) repository commit logs were used to aid

this process. For example, keywords such as Bug Id in the commit messages/logs were

used as starting points to examine if the commits were in fact associated with the change

request in the issue tracking system that was indicated with these keywords. The author

and commit messages in those commits, which can be readily obtained from SVN, were

processed to identify the developers that contributed changes to the change requests, i.e.,

goldset, which forms our actual developer set for evaluation.

The details on the change requests are summarized in Table 6. Also, the

minimum, mean, maximum number of developers for the considered change requests is

presented. As it can be seen, a vast majority of change requests are handled by a single

32

developer (i.e., commit contributors). In some cases, we found the committer was

different from the actual developer who contributed changes. The actual developer was

mentioned in the commit comments, included in our gold set.

Our technique operates at the change request level, so we also need input queries

to test. These queries were constructed by concatenating the title and the description of

the change requests referenced from the SVN logs.

TABLE 6. SUMMARY OF THE BENCHMARKS FOR IA APPROACH

System # Change
requests

Developers in gold set: descriptive stats

Min Mean Max

jEdit 143 1 1.06 2

ArgoUML 91 1 1.05 2
muCommander 92 1 1.01 2

4.1.3 Collecting and Using Execution Information

The idea of integrating IR with dynamic analysis was previously defined in the context of

feature location [37]; however, it was not used to improve the bug triaging before. A single

feature or bug-specific execution trace is first collected. IR then ranks all the methods in the trace

instead of all the methods in a software release. Therefore, the runtime information is a filter that

eliminates files based on methods that were not executed and are less likely to be relevant to the

change request. The dynamic information, if and when available, can be used to eliminate some

of the false positives produced by IR [31, 32]. We denote a version of our approach that uses

execution information as iAF. Similarly, the version of xFinder that uses execution information is

denoted as xFinderF. We also included the dynamic filtering in xFinder to enable a fair

33

comparison. Further details on how we collected execution information can be found elsewhere

[16].

4.1.4 Metrics and Statistical Analyses

We evaluated the accuracy of each one of the approaches, for all the reports in our

testing set, using the same precision and recall metrics of Anvik et al. [1]. The formulae

for these metrics are listed below:

Precision = |Rec_devs ∩ Actual_devs| / |Rec_devs|

Recall = |Rec_devs ∩ Actual_devs| / |Actual_devs|
These metrics were computed for recommendation lists of developers with different

sizes (ranging from the top one developer to ten developers). To analyze the differences

between the values reported by each approach, we computed the average values on each

dataset and compared them using a precision-recall chart. Moreover, we applied the

Mann-Whitney test to validate whether there was a statistically significant difference

with 𝛼=0.05 between the results. We used this non-parametric test because we did not

assume normality in the distributions of precision and recall results. This test assesses

whether all the observations in two samples are independent of each other [38]. The other

purpose of the test is to assess whether the distribution of one of the two samples is

stochastically greater than the other. Therefore, we defined the following null hypotheses for

our study (we do not list alternative hypotheses, but they should be easy to derive from these

null hypotheses respectively):

• H0-1: There is no statistically significant difference between the precision/recall

of ML and iA.

34

• H0-2: There is no statistically significant difference between the precision/recall

of xFinder and iA.

• H0-3: There is no statistically significant difference between the precision/recall

of xFinderF and iA.

• H0-4: There is no statistically significant difference between the precision/recall

of ML and iAF.

• H0-1: There is no statistically significant difference between the precision/recall

of ML and iA.

• H0-2: There is no statistically significant difference between the precision/recall

of xFinder and iA.

• H0-3: There is no statistically significant difference between the precision/recall

of xFinderF and iA.

• H0-4: There is no statistically significant difference between the precision/recall

of ML and iAF.

• H0-5: There is no statistically significant difference between the

precision/recall of xFinder and iAF.

• H0-6: There is no statistically significant difference between the

precision/recall of xFinderF and iAF.

• H0-7: There is no statistically significant difference between the

precision/recall of iAF and iA.

35

The hypotheses from H0-1 up to H0-6 were used to answer RQ1, and H0-7 was used to

answer RQ2.

4.1.5 iA Approach Results

Figure 4 depicts the average precision and recalls for the three systems3. For top-1

recommendations, we found that iA provided the highest values of precision and recall for

ArgoUML, and xFinderF provided the highest values of precision and recall for JEdit and

MuCommander. However, the behavior for recommendations with more developers is different.

For example, ML had the best accuracy from top-2 to top-10 in the ArgoUML dataset; xFinder

and xFinderF had the best accuracy from top-1 to top-10 developers in JEdit; iA had the best

accuracy for MuCommander from top-2 to top-10.

For top-1 recommendations in ArgoUML (Figure 4.a), the iA provided the highest

accuracy. However, we did not found statistical significant difference between the accuracies of

the iA and the other techniques. One possible explanation is that the acceptable precision values

for top-1 recommendations are either zero or one, and the iA had a precision of one in 46 times,

while ML had a precision of one in 29 cases. Although the difference between the precision of

the iA and ML is 19%, the distribution of zeros and ones in both approaches is very similar.

For top-1 recommendations in ArgoUML (Figure 2.a), the iA provided the highest

accuracy. However, we did not found statistical significant difference between the accuracies of

the iA and the other techniques. One possible explanation is that the acceptable precision values

for top-1 recommendations are either zero or one, and the iA had a precision of one in 46 times,

while ML had a precision of one in 29 cases.

36

Figure 4. Precision vs. recall charts for ArgoUML, JEdit, MuCommander. These results

are for four approaches (ML – SMO, xFinder, xFinderF, iA, and iAF). Each curve has a

point for each recommendation from top-1 to10.

37

Although the difference between the precision of the iA and ML is 19%, the distribution

of zeros and ones in both approaches is very similar.

For ArgoUML, from top-2 to top-10, the other approaches outperformed the precision and

recall reported by the iA technique with a significant difference from top-3 to top-10 (except for

top-3 recall, top-8 recall, and top-10 precision). The difference in precision from top- 2 to top-10

for xFinder vs. iA ranged from 0.8% to 4% with mean 2.5%, and for ML vs. iA ranged from

0.3% to 6% with mean 3.4%; the difference in recall from top-2 to top-10 for xFinder vs. iA

ranged from 4.9% to 21.4% with mean 15.8%, and for ML vs. iA ranged from 4.4% to 24.7%

with mean 19.1%. The reason behind this sharp decline in the iA performance is due to the fact

that the top-1 precision is almost twice compared to the other techniques. Also, only a single

developer handles each of the change requests in the benchmark. Increasing the

recommendations from top-1 to top-2 added the second recommendation as a false positive.

Therefore, adding an extra recommendation did not help improve the precision.

For JEdit (Figure 4.b), xFinder had a higher accuracy than ML and iA from top-1 to top-

10 recommendations with a significant difference (except for top-5 and top-6 precision). iA

exhibited higher accuracy than ML from top-2 to top-10 recommendations with a difference from

top-3 to top-10; the difference in precision from top-2 to top-10 for iA vs. ML ranged from 5.9%

to 7.5% with mean 6.8%, and the difference in recall ranged from 11.9% to 30.8% with mean

23.5%.

For MuCommander (Figure 4.c), the iA showed higher precision values than ML and

xFinder from top-2 up to top-10 recommendations with a statistical significant difference (except

for top-2). We found that the difference in precision from top-2 to top-10 for iA vs. ML ranged

from 3.8% to 23.8% with mean 15.8%.

38

The iA outperformed precision and recall of ML in JEdit and MuCommander. We

found significant differences between the precisions of the two approaches in recommendations

from the top-3 to top-10 developers, on JEdit and MuCommander (Figure 5).

Therefore, for RQ1 we concluded that the precision of the iA outperformed ML on

JEdit and MuCommander datasets.

iA also outperformed precision of xFinder in MuCommander. We found significant

differences between the precisions of the two approaches in recommendations from the top-3 to

top-10 developers. Therefore, for RQ1, we concluded that the precision of the iA

outperformed xFinder on MuCommander.

Figure 5. HEAT-MAP summarizing results for testing hypothesis across all the system. The

color in each cell represents the number of times the man-whitney test suggested statistically

significant difference: black cells mean that the test found significant difference across all the

three datasets; dark-gray – two out of three systems; light-gray – one system; white – no

significant difference in all the three systems.

39

For RQ2, we did not find a conclusive support for a significant difference in the

accuracies of iA and iAF. We could not reject H0-7 in any of the systems. Therefore, we

concluded that iA performs as well as iAF in terms of accuracy. These results suggest that the

additional overhead of dynamic analysis in the iA and xFinder was not justified, as there was no

statistically significant accuracy gain.

Now, we provide representative bugs from the three systems detailing where iA

outperformed the other approaches. For example, iA achieved a precision of 100% for the

bug report# 2129419 in JEdit using the first recommendation (top-1), while the highest

precision for xFinder (50%) was achieved with top-7, and the ML could not predict the

correct developer (kpuer) with any of the recommendations. Other example where iA

provided a better accuracy without recommending a large number of developers,

compared to the other approaches, is the bug report# 4031 in ArgoUML fixed by the

developer “mvw” (Michiel van der Wulp). For that report, iA achieved a 100% precision in

the very first recommendation (top-1), while xFinder got a precision of 50% with five

recommendations, and ML was able to achieve only 33% precision within top-3. iA and

ML obtained 100% precision with top-1 recommendation for the bug report# 277 in

MuCommander, however, the xFinderF achieved its highest value of precision of 50%

using a recommendation with five developers.

4.2 iMacPro Evaluation and Results

The main purpose of this case study was to investigate how well our iMacPro

approach recommends expert developers to assist with incoming change requests.

Moreover, we compare iMacPro with iA approach. Similar to iA, iMacPro uses LSI to

40

identify relevant source files and then uses the author information in those files for

recommending developers. However, it uses the maintainer information from the source

code commit history. Another way iMacPro differs from iA is in the use of the change

proneness, i.e., ICP in ranking the relevant files. Therefore, we provide another

comparison between iMacPro and an approach that is identical to iMacPro but does not

use the maintainer information (denoted here as iAcPro). This comparison would permit

the assessment of the impact of including maintainers in iMacPro. We investigate the

following research questions (RQs) in our case study:

• RQ1: What is the accuracy of iMacPro when assessed on open-source systems?

• RQ2: How does the accuracy of iMacPro compare to iA.

• RQ3: How does the accuracy of iMacPro compare to iAcPro, i.e., when the maintainer

information is not utilized in iMacPro, giving us iAcPro?

The rationale behind RQs is two-fold: 1) To assess whether our iMacPro

approach can identify correct developers to handle change requests in open source

systems. 2) To discover how well the accuracy of the iMacPro approach compares to

those of iA and iAcPro approaches?

4.2.1 iAcPro Approach

The iAcPro approach is identical to iMacPro; however, maintainers are not

included in the list of recommended developers. After getting the list of n relevant files

from IR, a list of top k developer is created using the same ranking mechanism of

iMacPro. In iAcPro, source files are sorted based on their ICP values, similar to

iMacPro; however, only the authors of the files are considered.

41

The accuracy comparison between the approaches iMacPro and iAcPro would help us

assess the level of the maintainer contribution to the accuracy of iMacPro. That is, is it really

worthwhile to put in the additional work of extracting maintainers to recommend developers, or

would the author and change proneness information would suffice?

4.2.2 Subjected Software Systems

The context of our study is characterized by three open source Java systems:

jEdit v4.3, a popular text editor, ArgoUML v0.22, a well-known UML modeling tool,

and JabRef v1.8, an open source bibliography reference manager. ArgoUML and jEdit

were used in a previous study [5]. The sizes of these considered systems range from

75K to 150K LOC and contain between 4K and 11K methods. The descriptive

statistics of these systems are given in TABLE 7.

TABLE 7. SUBJECT SOFTWARE SYSTEM USED IN iMacPro CASE STUDY.

System Ver LOC Files Methods Terms

jEdit 4.3 103,896 503 6,413 4,372

ArgoUML 0.22 148,892 1,439 11,000 5,488

JabRef 1.8 38,680 311 2,465 2,464

4.2.3 Building Benchmark

For each of the subjected systems, we created a benchmark of bugs and the

actual developers who fixed them to conduct our case study. The benchmark consists of

a set of change requests that has the following information for each request: a natural

42

language query (request summary) and a gold set of developers that addressed each

change request.

The benchmark was established by a manual inspection of the change requests,

source code, and their historical changes recorded in version-control repositories.

Subversion (SVN) repository commit logs were used to aid this process. For example,

keywords such as Bug Id in the commit messages/logs were used as starting points to

examine if the commits were in fact associated with the change request in the issue

tracking system that was indicated with these key words. The author and commit

messages in those commits, which can be readily obtained from SVN, were processed to

identify the developers that contributed changes to the change requests, i.e., gold set,

which forms our actual developer set for evaluation. A vast majority of change requests

are handled by a single developer (i.e., commit contributors). In cases where we found

the committer to be different from the maintainer who contributed the change, the

maintainer was considered to be the one who resolved the bug. The change requests in

the benchmark include bug fixes, feature requests, and feature enhancements.

Our technique operates at the change request level, so we also need input queries

to test. These queries were constructed by concatenating the titles and the (short)

descriptions of the change requests referenced from the SVN logs.

4.2.4 Metric and Statistical Analysis

We evaluated the accuracy of each one of the approaches, for all the reports in

our testing set, using the recall metrics used in previous work [2, 5, 11]. For a b number

43

of bugs in the benchmark of a system and a k number of recommended developers, the

formula for the recall@k is given below:

𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 = !
!

∑!!! !" !! ∩ !" !!
!

!" !!
 (7)

where RD(bi) and AD(bi) are the recommended developer by the approach and the actual

developer who resolved the issue for the bug bi. These metrics were computed for

recommendation lists of developers with different sizes, i.e., k = 1, k = 5, and k = 10 developers.

The reason for not using another popular metric precision is that a change request (or bug fix)

typically has one developer implementing it, i.e., |AD(bi)| = 1. Therefore, for k = 1 to 10, there is

typically only one correct answer and others are incorrect. Therefore, the best precision values

would range from 1.0 to 0.1.

We applied the One Way ANOVA test to validate whether there was a statistically

significant difference with α = 0.05 between the results. We used this non-parametric test be-

cause we did not assume normality in the distributions of recall results. This test assesses

whether all the observations in two samples are independent of each other [5]. The other

purpose of the test is to assess whether the distribution of one of the two samples is

stochastically greater than the other. Therefore, we defined the following null

hypotheses for our study (the alternative hypotheses could be easily derived from the

respective null hypotheses):

• H-1: There is no statistically significant difference be- tween the recall@k values of

iMacPro and iA.

44

• H-2: There is no statistically significant difference between the recall@k values of

iMacPro and iAcPro.

4.2.5 iMacPro Approach Results

For each change request of each subject system in the benchmark, we parameterized our

iMacPro approach to recommend top one, top five, and top ten developers. We considered top

five relevant files from the LSI-based approach. The source code snapshots used for extracting

authors were taken from when or before the bugs were reported. The source code commits used

for the change proneness measurement and extracting maintainers were from the instances before

the issues were resolved. That is, there was no instance where authors and maintainers were

extracted after the given issue was already resolved (which would have been a fault in the

experiment design). These recommendations were compared with the actual developer who

resolved the considered change request to compute the recall value. The recall@1, recall@5, and

recall@10 values for each system were calculated (see Equation (6)). Similarly, the recall@1,

recall@5, and recall@10 values for each system were calculated for the two competing

approaches iA and iAcPro.

TABLE 8shows the recall@k values for all the three approaches. As expected, the recall

value generally increases with the increase in the k value for each approach. For example, the

recall@1, recall@5, and recall@10 values of iMacPro on ArgoUML are 0.15, 0.54, and 0.58

respectively. That is, iMacPro was able to recommend the correct developer for 15%, 54%, and

58% of change requests in the ArgoUML benchmark by recommending one, five, and ten

developers. Table 5 suggests that the recall values were about to plateau at k = 10 for all three

45

approaches. Therefore, it was not necessary to go beyond k = 10. The Recall@k column in Table

5 shows recall values of the three approaches.

TABLE 8. RECALL@1, 5, AND 10 OF THE APPROACHES iA, iAcPro, AND iMacPro

MEASURED ON THE ArgoUML, jEdit and JabRef BENCHMARKS.

System/Benchmark Top k Recall@k iMacPro gain over iA % iMacPro gain over iAcPro

%
 iA iAcPro iMacPro

ArgoUML 1 0.19 0.18 0.15 -23.09 -13.37

82 5 0.39 0.39 0.54 28.27 39.41

Change Requests 10 0.40 0.40 0.58 30.62 44.13

jEdit 1 0.04 0.08 0.15 74.90 99.48

52 5 0.31 0.35 0.46 33.33 33.30

Change Requests 10 0.35 0.35 0.54 35.71 55.55

JabRef 1 0.17 0.14 0.39 57.14 179.99

36 5 0.31 0.31 0.69 55.99 127.23

Change Requests 10 0.31 0.31 0.69 55.99 127.23

To answer the research question RQ1, our approach iMacPro reported recall values

ranging from 0.15 to 0.69 on three open source projects. Therefore, we posit that it can perform

well when subjected to real world open source systems. To answer the research question RQ2,

we compared the recall values of iMacPro and iA for k = 1, k = 5, and k = 10. That is, we

computed the recall gain of iMacPro over iA, which is computed using the formula:

𝑔𝑎𝑖𝑛@𝑘!"#$%&'!!" =
!"#$%%@!!"#$%&'!!"#$%%@!!"

!"#$%%@!!"
×100 (8)

46

The iMacPro gain over iA % column in TABLE 8 shows the recall gains of iMacPro over

iA for the different k values. As can be seen, iMacPro clearly outperforms iA in the cases of

jEdit and JabRef for all the k values. The gains in these two systems range from 33% to 75%.

There was a mixed report from ArgoUML: iA performed better than iMacPro for k = 1 (a

negative gain of 23%), whereas, iMacPro performed better than iA for k = 5 and k = 10 (positive

gains of 27% and 30%). In summary, the overall results suggest that iMacPro would

generally perform better than iA in terms of recall. Augmenting the authorship-based

approach with the change-proneness and maintainer information typically leads to

improvements in accuracy.

To answer the research question RQ3, we compared the recall values of iMacPro and

iAcPro for k = 1, k = 5, and k = 10. That is, we computed the recall gain of iMacPro over

iAcPro, which is computed using the formula:

𝑔𝑎𝑖𝑛@𝑘!"#$%&'!!"#$%& =
!"#$%%@!!"#$%&'!!"#$%%@!!"#$%&

!"#$%%@!!"#$%&
×100 (9)

The iMacPro gain over iAcPro % column in TABLE 8 shows the recall gains of iMacPro

over iAcPro for the different k values. As can be seen, iMacPro clearly outperforms iAcPro in

the cases of jEdit and JabRef for all the k values. The gains in these two systems range from 33%

to 180%. There was a mixed report from ArgoUML: iAcPro performed better than iMacPro for k

= 1 (a negative gain of 13%), whereas, iMacPro performed better than iAcPro for k = 5 and k =

10 (positive gains of 39% and 44%). In summary, the overall results suggest that iMacPro

would generally perform better than iAcPro in terms of recall. The maintainer component

47

is a substantial contributor to the effectiveness (accuracy) of iMacPro. To test the hypothesis

H1, we applied the One Way ANOVA test on the recall values of iMacPro and iA for each of the

change request in the benchmark of each subject system. The iMacPro-iA column in Table 9

shows the p-values for k = 1, k = 5, and k = 10 for each subject system. In the cases of jEdit and

JabRef, the p-values are ≤0.05, so we can reject the null hypothesis H1.

In the case of ArgoUML, the p-values are ≤0.05 for k = 5 and k = 10, so we can

reject the null hypothesis H1. Note that in these case, the reported gains were positive

in TABLE 8. In case of ArgoUML, the p-value is >0.05 for k = 1, so we cannot reject

the null hypothesis H1. Revisiting the corresponding recall@1 for this case in Table 5,

iA performed better than iMacPro; however, this observation is not statistically

significant. The only case in which iMacPro seemed to have a disadvantage over iA is

not statistically valid. One of the reasons that could be attributed for k = 1 is that iA

was able to recommend only the resolutions performed by one developer correctly,

whereas, iMacPro was able to do so for multiple developers. That is, iA performed

much better for the issues in the benchmark for this one specific developer than

iMacPro; however iMacPro had an advantage for is sues resolved by other developers.

Therefore, there is no clear winner for k = 1 statistically in ArgoUML. Eventually, the diversity

of recommended developers by iMacPro was advantages over iA, which can also be seen in the

results for k = 5, and k = 10. In summary, we reject the null hypothesis H1 in favor of iMacPro

over iA.

48

TABLE 9. P-VALUES FROM APPLYING ONE-WAY ANOVA ON RECALL@K VALUES

FOR EACH SUBJECT SYSTEM

System Top k p-value
 iMacPro-iA iMacPro- iAcPro

ArgoUML 1 ≤0.54 ≤0.68
 5 ≤0.05 ≤0.05
 10 ≤0.03 ≤0.03

jEdit 1 ≤0.05 ≤0.11
 5 ≤0.03 ≤0.04
 10 ≤0.01 ≤0.01

JabRef 1 ≤0.04 ≤0.02
 5 ≡0.00 ≡0.00
 10 ≡0.00 ≡0.00

To test the hypothesis H2, we applied the One Way ANOVA test on the recall values of

iMacPro and iAcPro for each of the change request in the benchmark of each subject system.

The iMacPro-iAcPro column in Table 9 shows the p-values for k=1,k=5,andk=10 for each

subject system. Similar to the iMacPro-iA comparison, the p-values support rejection of the null

hypothesis H2 in all but two cases. These two cases are for k = 1 for ArgoUML and jEdit. In these

two cases, neither iMacPro nor iAcPro has an advantage over the other. One of the reasons that

could be attributed for this observation is that both authors and maintainers were the same

developers. Therefore, neither of these approaches offered a specific competitive edge. In

summary, we reject the null hypothesis H2 in favor of iMacPro over iAcPro.

Now, we provide representative bugs from the subject systems detailing iMacPro’s

performance compared to the two other approaches. For example, iMacPro recommends the

correct developer (coezbek) in the 1st position for bug#1548875 in jEdit, whereas, iA and iAcPro

failed to recommend the correct developer at all. In jEdit system for bug#2946041 iMacPro was

49

able to find the correct developer (kpouer) in the 1st position, whereas, iA and iAcPro found him

in the the 2nd position. In ArgoUML, iA and iAcPro recommended the correct developer

(tfmorris) for bug#4720 in the 5ith and 3rd positions respectively, whereas, iMacPro found it in

the 1st position.

50

CHAPTER 5

THREATS TO VALIDITY

We identified threats to validity that could influence the results of our study and limit

their generalization.

5.1 Construct Validity

We discuss threats to construct validity that concern the means that are used in

our method and its accuracy assessment as a depiction of reality. In other words, do

the accuracy measures and their operational computation represent correctness of

developer recommendations?

Accuracy measures and correctness of developer recommendations: We used two widely

used metrics recall and recall gain in our study. We considered a gold-set to be developers who

contributed source code changes to address change requests. Of course, it is possible that other

team members are also equally qualified to handle these change requests; however, such a gold-

set would be very difficult to ascertain in practice without involving the project stake- holders,

for example. Moreover, these project stakeholders would need to remember exactly who were

good alternative developers at that time. Thus, we hypothesize that building such datasets by

interviewing project managers could be an error-prone activity with substantial bias.

Nonetheless, our undertaken benchmark provides careful accuracy values yet perhaps

conservative bounds.

LSI-based matching of change requests to relevant files: The IR-based concept

location tool based on LSI does not always return the classes (files) that are found in

the commits related to the bug fixes or change request implementations in all the

51

cases. However, based on our prior work we observed that the files that were

recommended as textually similar were either relevant (but not involved in the change that

resolved the issue) or conceptually related (i.e., developers were also knowledgeable in

these parts).

Measuring change-proneness of source code files: Although we understand that it is

possible to use other metrics for measuring change proneness, we decided to use issue fixing

commits as a measure of the source code file change affinity. Our rationale is based on the fact

that it is a common practice in the open source development to include explicit issues IDs in the

commit messages, which can be captured and counted effectively using a very lightweight

approach.

5.2 Internal Validity

We discuss threats to internal validity that concern factors that could have

influenced our results.

Missing Traceability: We only considered commits with the explicit documentation of

maintenance activities, which were determined from keyword matching. It should be noted that it

is a common approach used in a number of previous approaches and studies. Nonetheless, we do

not claim that our approach is exhaustive in extracting all the issue-fixing commits for all the

change requests. Bachmann et al. [39] identified the missing traceability between bug reports and

commits in Apache. Wu et al. [40] proposed a machine learning approach to identify such

missing links. In the future, we plan to incorporate this element in iMacPro.

Merging of developers from authors and maintainer: When authors and maintainers are

combined in iMacPro to obtain the final list of combined developers, maintainers are picked

first. Although our empirical study shows that this choice worked very well, it is possible that a

52

different selection scheme (e.g., authors first) could produce a different (perhaps better)

performance. We plan to investigate this topic in future studies.

Ranking of source code files based on change-proneness alone: We ranked the relevant

source code units to the given change request based on their change proneness alone; however, it

is possible that another ranking mechanism could have impact on the performance. We plan to

examine the impact of a ranking mechanism based on a combination of the textual similarity and

change-proneness measures.

Developer identity mismatch: Although we carefully examined all the available sources

of information to match different identities of the same developer, it is possible that we missed or

mismatched a few cases.

Impact of other factors: We demonstrated a positive relationship between the developers

recommended with iMacPro and the developers who fixed them (i.e., our constructed

benchmark). It is possible that other factors, such as schedule, work habits, technology fade or

expertise, and project policy/roles may also influence the triaging results. A definitive answer to

this question would require another set of studies, which we believe is beyond the scope of this

work.

5.3 External Validity

We discuss threats to external validity that concern factors that are associated

with generalizing the validity of our results to datasets other than considered in our

study.

Assessed systems are not representative: We evaluated three open source systems, which

we believe are good representatives of large-scale, collaboratively developed software systems.

53

However, we cannot claim that these results would equally hold on other systems (e.g., closed

source).

Sampled sets of change requests are not sufficient: The size of the evaluation sample and

the number of systems remains a difficult issue, as there is no accepted “gold standard” for the

developer recommendation problem. The approach of “the more, the better” may not necessarily

yield a rigorous evaluation, as there are known issues of bug duplication and other noisy

information in bug/issue databases [18, 27]. Not accounting for such issues may lead to biased

results positively or negatively or both. The considered sample sizes in our evaluation, however,

is not uncommon, for example, Anvik et al. [1] also considered 22 bug reports from Firefox in

their evaluation. Nonetheless, this topic remains an important part of our future work.

5.4 Reliability

Dataset not available: One of the main difficulties in conducting empirical studies is the

access (or lack of it) to the dataset of interest. We used open source datasets that are publicly

available. The details of the bug and accuracy data for ArgoUML, JabRef, and jEdit are available

at our online appendix.

Evaluation protocol not available: A concern could be that the lack of sufficient

information on the evaluation procedure and protocol may limit the reproducibility of the study.

We believe that our accuracy measures along with the evaluation procedure are sufficiently

documented to enable replication on the same or even on different datasets.

54

CHAPTER 6

CONCLUSION AND FUTURE WORK

We presented the iA and iMacPro approach to recommend developers who are most

likely to implement incoming change requests. To the best of our knowledge, iA approach is the

only one to use a combination of a concept location technique and the source code authorship for

assigning expert developers to change requests. It does not need to mine past change requests

(e.g., history of similar bug reports to resolve the bug request in question) or source code change

repositories (e.g., commits to relevant source code to a change request). A single version source

code analysis of a system is only required. It expands the realm of available techniques to

developer recommendation to include non mining domains. iA approach is perhaps simple and

lightweight. Nonetheless, our empirical evaluation shows that it can be quite effective and

competitive with the other history-based approaches.

iMacPro determines and integrates, authors and maintainers of relevant source code files,

which are change prone, to a given change request. Such a combined approach to recommend

developers was not investigated and reported in the literature previously. Moreover, an empirical

study on three open source systems showed that iMacPro can outperform a previous approach

with statistically significant recall gains. The results also justify the accuracy benefit of

including source code maintainers in the functioning of iMacPro.

In the future, we plan to conduct additional empirical studies to further validate iMacPro.

Furthermore, we will investigate other sources of information that could further improve its

effectiveness. These sources include different measures for change proneness, ranking of

relevant source code, and merging schemes for authors and developers.

55

REFERENCES

56

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy, "Who Should Fix This Bug?," in proceedings of

28th ACM International Conference on Software Engineering, 2006, pp. 361-370.

[2] X. Xia, D. Lo, X. Wang, and B. Zhou, "Accurate developer recommendation for bug
resolution," in Proceedings of 20th Working Conference on Reverse Engineering
(WCRE), 2013, pp. 72-81.

[3] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Hammad, "Assigning change requests to
software developers," Journal of Software: Evolution and Process, vol. 24, pp. 3-33,
2012.

[4] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen, "Fuzzy Set and Cache-
based Approach for Bug Triaging," in proceedings of 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering,2011, pp.
365-375.

[5] M. Linares-Vasquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers, and D. Poshyvanyk,
"Triaging incoming change requests: Bug or commit history, or code authorship?," in
proceedings of 28th IEEE International Conference on Software Maintenance (ICSM),
2012, pp. 451-460.

[6] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, "Feature location in source code: a
taxonomy and survey," Journal of Software: Evolution and Process, vol. 25, pp. 53-95,
2013.

[7] D. W. McDonald and M. S. Ackerman, "Expertise Recommender: A Flexible
Recommendation System and Architecture," in proceedings of 2000 ACM Conference on
Computer Supported Cooperative Work, pp. 231-240.

[8] S. Minto and G. C. Murphy, "Recommending Emergent Teams," in proceedings of fourth
International Workshop on Mining Software Repositories, 2007. ICSE Workshops MSR
'07., pp. 5-5.

[9] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M. Carley, "Identification of
Coordination Requirements: Implications for the Design of Collaboration and Awareness
Tools," in proceedings of 2006 20th Anniversary Conference on Computer Supported
Cooperative Work, pp. 353-362.

[10] A. Mockus and J. D. Herbsleb, "Expertise Browser: A Quantitative Approach to
Identifying Expertise," in proceedings of 24th International Conference on Software
Engineering, 2002, pp. 503-512.

57

[11] J. Anvik and G. C. Murphy, "Determining Implementation Expertise from Bug Reports,"
in proceedings of fourth International Workshop on Mining Software Repositories
(MSR), 2007 ICSE Workshops MSR '07, pp. 2-2.

[12] X. Song, B. L. Tseng, C. yung Lin, and M. ting Sun, "Expertisenet: Relational and
evolutionary expert modeling," in proceedings of User Modeling, 2005, pp. 99-108.

[13] G. Jeong, S. Kim, and T. Zimmermann, "Improving Bug Triage with Bug Tossing
Graphs," in proceedings of the the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering,2009, pp. 111-120.

[14] D. Matter, A. Kuhn, and O. Nierstrasz, "Assigning bug reports using a vocabulary-based
expertise model of developers," in proceedings of 6th IEEE International Working
Conference on Mining Software Repositories, 2009. MSR '09., pp. 131-140.

[15] F. Rahman and P. Devanbu, "Ownership, Experience and Defects: A Fine-grained Study
of Authorship," in proceedings of 33rd International Conference on Software
Engineering,2011, pp. 491-500.

[16] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, "Don'T Touch My Code!:
Examining the Effects of Ownership on Software Quality," in proceedings of 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations of Software
Engineering,2011, pp. 4-14.

[17] D. M. German, "A Study of the Contributors of PostgreSQL," in proceedings of 2006
ACM International Workshop on Mining Software Repositories, pp. 163-164.

[18] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, "Mining Email Social
Networks," in proceedings of 2006 International Workshop on Mining Software
Repositories, pp. 137-143.

[19] C. Del Rosso, "Comprehend and Analyze Knowledge Networks to Improve Software
Evolution," J. Softw. Maint. Evol., vol. 21, pp. 189-215, 2009.

[20] D. Ma, D. Schuler, T. Zimmermann, and J. Sillito, "Expert recommendation with usage
expertise," in proceedings of IEEE International Conference on Software
Maintenance,ICSM 2009., pp. 535-538.

[21] P. Weissgerber, M. Pohl, and M. Burch, "Visual Data Mining in Software Archives to
Detect How Developers Work Together," in proceedings of fourth International
Workshop on Mining Software Repositories, 2007. ICSE Workshops MSR '07., pp. 9-9.

[22] D. M. German, "An empirical study of fine-grained software modifications," in
proceedings of 20th IEEE International Conference on Software Maintenance, 2004., pp.
316-325.

58

[23] M. Fischer, M. Pinzger, and H. Gall, "Populating a Release History Database from
version control and bug tracking systems," in proceedings of International Conference on
Software Maintenance, 2003. ICSM 2003., pp. 23-32.

[24] G. Bortis and A. v. d. Hoek, "PorchLight: A Tag-based Approach to Bug Triaging," in
proceedings of 2013 International Conference on Software Engineering, pp. 342-351.

[25] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, "Why so complicated? simple
term filtering and weighting for location-based bug report assignment recommendation,"
in proceedings of 10th IEEE Working Conference on Mining Software Repositories
(MSR), 2013, pp. 2-11.

[26] C. S. Corley, E. A. Kammer, and N. A. Kraft, "Modeling the ownership of source code
topics," in proceedings of IEEE 20th International Conference on Program
Comprehension (ICPC), 2012, pp. 173-182.

[27] A. Begel, Y. P. Khoo, and T. Zimmermann, "Codebook: Discovering and Exploiting
Relationships in Software Repositories," in proceedings of 32Nd ACM/IEEE
International Conference on Software Engineering, 2010 - Volume 1, pp. 125-134.

[28] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, "Indexing
by latent semantic analysis," JOURNAL OF THE AMERICAN SOCIETY FOR
INFORMATION SCIENCE, vol. 41, pp. 391-407, 1990.

[29] D. Poshyvanyk and A. Marcus, "Combining Formal Concept Analysis with Information
Retrieval for Concept Location in Source Code," in proceedings of 15th IEEE
International Conference on Program Comprehension, 2007. ICPC '07., pp. 37-48.

[30] L. Moonen, "Lightweight Impact Analysis using Island Grammars," in proceedings of
10th International Workshop on Program Comprehension (IWPC 2002). IEEE
Computer, pp. 219-228.

[31] D. Poshyvanyk, Y. gaël Guéhéneuc, and A. Marcus, "Feature location using probabilistic
ranking of methods based on execution scenarios and information retrieval," IEEE Trans.
Software Eng, pp. 432-432, 2007.

[32] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, "Integrated Impact Analysis for
Managing Software Changes," in proceedings of 2012 International Conference on
Software Engineering, pp. 430-440.

[33] E. Leopold and J. Kindermann, "Text Categorization with Support Vector Machines.
How to Represent Texts in Input Space?," Mach. Learn., vol. 46, pp. 423-444, 2002.

[34] C. McMillan, M. Linares-Vasquez, D. Poshyvanyk, and M. Grechanik, "Categorizing
software applications for maintenance," in Software Maintenance (ICSM), 2011 27th
IEEE International Conference on, pp. 343-352.

59

[35] J. Anvik and G. C. Murphy, "Reducing the Effort of Bug Report Triage: Recommenders
for Development-oriented Decisions," ACM Trans. Softw. Eng. Methodol., vol. 20, pp.
10:1-10:35, 2011.

[36] H. Kagdi, M. Hammad, and J. I. Maletic, "Who can help me with this source code
change?," in proceedings of IEEE International Conference on Software Maintenance
(ICSM 2008), pp. 157-166.

[37] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, "Feature Location via Information
Retrieval based Filtering of a Single Scenario Execution Trace," in proceedings of
Automated Software Engineering (ASE 2007), pp. 234243-234243.

[38] T. Hettmansperger and J. McKean, "Statistical inference based on ranks," Psychometrika,
vol. 43, pp. 69-79, 1978.

[39] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein, "The Missing Links:
Bugs and Bug-fix Commits," in proceedings of Eighteenth ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2010, pp. 97-106.

[40] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, "ReLink: Recovering Links Between Bugs
and Changes," in Proceedings of 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, 2011, pp. 15-25.

60

	Table of Contents

	Chapter 1

	Chapter 2

	Chapter 3

	Chapter 4

	Chapter 5

	Chapter 6

	References

