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TIIVISTELMÄ 

Virtuaalimaailmat voivat käsitteenä vaihdella tähtitieteellisistä simulaatiosta 

massiiviiin monen pelajaan verkottuneisiin roolipeleihen. Jälkimmäisissä 

tarvitaan geneerinen ja laajennettava alustaratkaisu, jonka  tieto- ja 

kommunikaatiomallit riittävät mielivaltaisille virtuaalimaailmoille, joilla on 

jopa tuhansia yhtäaikaisia käyttäjiä. 

Laskennalliset skaalautuvuusongelmat, kuten grafiikan luominen ja fysiikan 

simulointi kolmiulotteisessa ympäristöissä ovat ovat hyvin tunnettuja. Niistä 

poiketen tämä diplomityö pohtii suorituskykyongelmia monen käyttäjän 

virtuaalimaailman asiakas-palvelin-mallin kommunikaatiossa, kun sisältö ja 

toiminnallisuus voivat olla mielivaltaisia. 

Olemassa olevien sovellusten ja alustojen eroista huolimatta nillä on yhteisiä 

tarpeita. Visuaalisia kolmiulotteisia objekteja on esitettävä, niitä on liikutettava 

ja ja elävöitettävä, sekä jaettava tieto osallistujien kesken synkronoiden.  

Tämän kaiken on tapahduttava tehokkaasti. 

Jotta näissä tehtävissä onnistuttaisiin, on kiinnitettävä huomiota 

maailmamalliin ja protokollaan, jolla välitetään tieto sisällön muutoksista. 

Hyödyntämällä käytettävissä olevaa geometrista informaatiota asiakas-palvelin-

kommunikaatiossa ja tiedon replikoinnissa, tieto synkronoidaan osallistujien 

kesken vain kun se on oleellista yksittäisen osallistujan kannalta. 

Tuloksena esitetään toimiva ja käytäntöön soveltuva synkronointialueiden 

hallintatekniikka. Sen avulla vähennetään palvelimen kaistavaatimuksia 

merkittävästi, kun maailma sisältää paljon liikkuvia ja muuttuvia kohteita.  

  

Avainsanat: entiteetti-komponentti-malli, pelimoottori, asiakas-palvelin-malli, 

synkronointialueiden hallintatekniikka  
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ABSTRACT 

Virtual worlds can be potentially anything, ranging from an astronomical 

simulation to a massively multiplayer online role-playing game. Such a wide 

variety of potential use cases require a generic and extensible solution when 

considering the data and communication models for a general-purpose platform 

for arbitrary virtual worlds with potentially thousands of concurrent users. 

As computational scalability issues, such as graphics rendering and physics 

simulation in 3-D environments are already well addressed with existing 

solutions, this thesis considers the performance problems of multi-user virtual 

world client-server communication when working on large virtual worlds 

containing arbitrary data and functionality. 

Despite the differences in the existing virtual world applications and 

platforms, all of them share common needs: representing visual 3-D objects, 

moving and animating them, synchronizing all the necessary data among the 

participants, and storing it for continuing use and all of this in an efficient 

manner. 

In order to succeed in this task, attention must be paid to the scene model 

that represents the contents of the world, and the protocol that is used to 

disseminate the changes in the content. Also, by utilizing the available geometric 

information in the client- server communication and data replication, the data is 

synchronized between the participants on a need-to-know basis. 

As a result, this thesis presents a working and production-ready interest 

manager technique that helps to reduce the server's bandwidth usage 

considerably when a world contains lots of moving objects. 

  

Key words: entity-component model, game engine, client-server model, interest 

management 
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1. INTRODUCTION 
 

When dissecting the term “virtual world” (VW), the word “world” implies that there 

exists some kind of space in which one can exist and interact. The world can be 

realistic, something more abstract, or something in-between, depending each time on 

the purpose and use cases of the world. The word “virtual” describes that the world is 

artificial, not real. In this case it refers to the fact that the world is implemented by a 

computer. 

Many other terms for virtual world are constantly present in the academic research 

world, such as virtual environment (VE), networked virtual environment (net-VE), 

distributed virtual environment (DVE), distributed interactive application (DIA), and 

metaverse. However, all of these definitions and acronyms refer more or less to the 

same concept, only emphasizing some functional aspect of the virtual world, for 

example collaboration, or some design or software architectural aspect, for example 

distributed. Also, it seems the term “virtual world” is avoided to some extent in the 

scientific research world in order to emphasize the more serious nature of the work – 

virtual world is a term often associated with commercial and especially entertainment 

products. 

The key aspect of a virtual world is immersion, a sensation of truly being part of 

and roaming in a different world. Murray defines immersion as follows: "the 

sensation of being surrounded by a completely other reality ... that takes over all of 

our attention, our whole perceptual apparatus … in a participatory medium" [1].  

Immersion is a concept not only limited to virtual worlds, virtual reality or computer 

games in general, but can be found equally in literature, movies and other art forms, 

especially in the narrative mediums. 

Immersion can be divided into physical (perceptual) and psychological immersion 

[2]. Perceptual immersion means "the degree to which a virtual environment 

submerges the perceptual system of the user" [2]. Psychological immersion means 

the depth of users’ involvement and engagement with the virtual medium. 

Complete photo- and audio-realism is not necessarily required for achieving a 

sense of immersion [3]. Realism can be divided into social realism and perceptual 

realism, which is commonly referred to also as photo-realism, or just simply as 

realism [3]. Social realism means the accuracy of users’ social interaction in the 

virtual world compared to the social interactions in the real life [4]. 

Whereas in the real world human beings’ properties and capabilities are strongly 

restricted by things such as the laws of physics, in virtual worlds such restrictions do 

not exist: species and gender is no longer decided by the DNA, and for example 

flying is possible. Imagination, and to some extend technology, is the only limitation. 

1.1. Virtual Worlds and Virtual Reality 

Virtual worlds can be potentially anything, ranging from an astronomical simulation 

with complex scientific models to a massively multiplayer online role-playing game 

(MMORPG) in a fantasy setting with thousands of other users. Bartle describes the 

distinguishing features of virtual worlds compared to other related non-real spaces as 

follows [5]: 

 the world has a set of rules, 

 interaction takes place in real time, 



 

 

 

 the world is shared, 

 the world is persistent, at least to some degree, and 

 the user is represented and strongly identified in the world by an individual 

character. 

 

Singhal and Zyda use very similar characteristics when identifying the distinguishing 

features of net-VEs [6]: 

 a shared sense of space, 

 a shared sense of presence, 

 a shared sense of time, 

 a way to communicate, and 

 a way to share. 

 

The graphical presentation of a user’s virtual persona in a virtual world is often 

referred to as an avatar. An avatar is commonly a humanlike entity, but it can take 

any size and shape: an animal, an imaginary monster, or something more abstract [6]. 

Even though most commercial virtual worlds are avatar-centric, the requirement for 

existence of a single, or even multiple for that matter, avatar can be seen unnecessary 

for various virtual world applications. 

Today’s virtual worlds can be divided into two broad categories: MMORPGs and 

general purpose virtual worlds, commonly also referred as metaverses [7]. A 

MMORPG is a role playing game played by multiple players in a perpetual world: 

users can log in and out at any given time and the world continues to exist and evolve 

regardless of the user's presence. Usually players roam in the world performing 

quests, fighting battles, and collecting different kinds of items which help their cause. 

Usually the worlds are inhabited by different races, such as humans and orcs. The 

worlds of MMORPGs, such as World of Warcraft [8] and EVE Online [9], are 

usually static, meaning that the users cannot create content and interact freely. In 

general purpose virtual worlds such as Second Life [10], the users can socialize, 

interact and build quite freely with other users. 

The term “virtual world” should not be confused with virtual reality (VR) which 

primarily concerns mechanisms by which human beings interact with computer 

simulation [5]. However, the terms can be seen to somewhat overlapping, especially 

in a modern context, as the development of consumer electronics has made many 

virtual-reality-like controlling devices, such as cameras utilizing computer vision and 

motions sensors also available for home users at affordable prices. 

1.2. Applications of Virtual Worlds 

Modern virtual world engines are essentially networked 3-D game engines so it’s no 

wonder that games, massively multiplayer online games (MMOs) and MMORPGs in 

particular, dominate today’s virtual world market share. The market is led by 

commercial MMORPGs with titles such as World of Warcraft, Aion, and EVE 

Online, but also free MMORPG titles have gained large popularity with titles such as 

Lord of the Rings Online, RuneScape and Dungeons & Dragons Online, for which 

commercial version existed many years before the free version [11, 12, 13, 14]. 

During the last decade virtual worlds focusing on social networking have also gained 

great popularity. The most successful social virtual worlds include titles such as 



 

 

 

Habbo Hotel, a cartoonish graphical chat room aimed for teenagers and like-minded, 

and Second Life, a 3-D virtual world for a bit more mature audience with vast world 

and socially realistic interactions [15]. 

Virtual worlds can be used to train people for expensive and dangerous real life 

situations in advance in a virtual environment, for example military combat and 

aviation training. Distributed military virtual environments such as SIMNET 

developed by The United States Department of Defense during 1983-1990 and its 

indirect successor NPSNET developed by The NPSNET Research Group developed 

during the late 1980s and throughout 1990s are two of the best known such 

applications [6]. Also educational virtual world environments and collaborative 

workspaces are gaining increasing interest. Virtual world environments are 

applicable also for modeling, building, and structural design for designers, artists, 

architects, engineers, and healthcare professionals [16, 17]. 

Virtual world - real life interaction and other augmented reality applications are 

becoming more popular. For example, integration of the X10 technology and sensor 

networks has been implemented [18]. Virtual worlds can be also used for 

visualization of data [19]. Also, existing online virtual worlds where users interact in 

somewhat realistic manner provide an intriguing platform for research in the areas of 

social, behavioral, economic, and human-centered computer sciences [20]. 

Real life meetings gathering people from all around the world are expensive and 

cumbersome to arrange. Also, high quality real-time multi-user video conferences set 

high demand for the network bandwidth and requires very small communication 

latency. More importantly, simply displaying faces of many people on the screen 

makes the meeting hard to follow, instead of having clear user presences (avatars) 

and interacting in more human-like ways (moving around, gathering people around 

different areas, and so on). Using virtual worlds as the meeting area, it's possible for 

the participants from all around the world to interact efficiently utilizing instant 

messaging, VoIP conversation, and sharing and editing documents concurrently [21]. 

1.3. Structure of the Thesis 

A brief history and evolution of virtual worlds and their recent trends and possible 

future directions is presented in Chapter 2. Chapter 3 introduces the key principles of 

networked 3-D multi-user virtual world systems. The design choices made in these 

key areas lay the foundation for opportunities and challenges regarding the 

scalability of a virtual platform. In Chapter 4, virtual world systems’ scalability 

challenges are presented alongside the commonly used solutions for these problems. 

An existing virtual world platform is inspected and used as a testbed for 

scalability improvements in Chapter 5. The aim of the thesis is to demonstrate that 

taking a practical approach and optimizing parts of a system locally instead of 

jumping right into building complex platform is rewarding. Taking into consideration 

the current state of the inspected platform, it can be seen that when considering 

hundreds or thousands of concurrent users the potential server-side communication 

hotspot can be alleviated using an interest management technique. 

The experiments and their results are presented in Chapter 6. Possible future 

work regarding the interest management implementation and experienced problems 

in the test system are discussed in Chapter 7. Chapter 8 contains a brief summary of 

this thesis. 



 

 

 

2. A BRIEF HISTORY OF VIRTUAL WORLDS 
 

The origins of virtual worlds can be tracked down to the early 1970s fantasy role-

playing board games, most notably Dungeons & Dragons (Figure 1), of which the 

original installment was published in January 1974, by Tactical Studies Rules, Inc. In 

Dungeons & Dragons, one player acts as a referee, a Dungeon Master (also known as 

Game Master), who designs the world and the overall storyline, and describes the 

occurring events. [22] 

 

 
Figure 1. Dungeons & Dragons board game. 

 

Dungeons & Dragons established many of the essential aspects of virtual worlds to 

emerge: the player controlled a single character, a representative of the player in the 

world, which was chosen from the range of available character classes and races, 

whose properties developed throughout the game in the shape of experience points 

and other metrics. The board represented the world which consisted of a grid of 

square blocks – a feature that would be the standard for virtual worlds for many years 

to come. 

The virtual worlds as we know them today are originated from multi-user 

dungeons (MUDs), multiplayer real-time virtual worlds described originally entirely 

in text. MUDs were heavily influenced by text adventure computer games, a very 

important genre of computer games at the time, and role-playing board games. 

MUDs and virtual worlds are close to tabletop role-playing games, but in their case 

the referee is the computer and creator and developer of the MUD. 

2.1.  Early Alphanumeric Multi-User Dungeons 

The first MUD (named simply as “MUD”) was developed by Roy Trubshaw on a 

DecSystem-10 mainframe at the Essex University, England, in 1978 [5]. The early 

MUDs were text-based, meaning that the environment and events occurring were 

described using text instead of images. Later on, along with the introduction of 

computer graphics, the MUDs were categorized as text MUDs and graphical MUDs. 

The first MUD engine could have a maximum of 36 players at once, as the 



 

 

 

DecSystem-10 mainframe used a 36-bit word and Trubshaw used one bit per player 

for internal reference. [5] 

In a text MUD (Figure 2) the user interface is implemented using solely 

alphanumeric characters. The players explore and interact in the world by using 

simple text commands, or by choosing from a predefined action set. Even with a very 

rudimentary interface, a sense of immersion can be achieved by compelling 

storytelling and the help of the player’s vivid imagination. The worlds of MUDs 

were, and still are, strongly inspired by the fantasy literature, most notably Lord of 

the Rings by J.R.R. Tolkien, and fantasy role-playing game Dungeons & Dragons 

[5]. 

 

 
Figure 2. A Text MUD (screenshot of Adventures Unlimited). 

 

In 1981, a MUD titled Island of Kesmai introduced a graphical aspect – but not 

computer graphics per se - to the MUD genre: Island of Kesmai used different ASCII 

characters to symbolize the user’s character, monsters, walls and other entities on the 

screen from a bird's-eye-view. This technique was used for the first time in computer 

game Rogue (Figure 3) in 1980. In this kind of MUD, the level of interaction wasn't 

typically as high as in the purely text-oriented MUDs, as the graphical presentation 

took the majority of the screen space, and hence limited the user interface. The 

worlds of MUDs consisted of square-shaped rooms. Users and objects in one room, 

or another logically partitioned space, could not interact directly with users in other 

rooms – a characteristic that would prevail for a surprisingly long time. [5] 



 

 

 

Figure 3. Rogue on a color PC. 

2.2. Graphical 2-D Multi-User Dungeons 

The first graphical MUD and virtual world by definition (persistent and shared 

world), Avatar, was released in late 1979. Avatar employed a first-person point of 

view and it was developed on the Programmed Logic for Automatic Teaching 

Operations (PLATO) system. Despite the advanced networking and graphic 

capabilities provided by the PLATO system, the virtual worlds developed on it had 

very little effect on virtual worlds in general, as the strengths of the system didn’t 

become available for home users until 15 years later. [5] 

Lucasfilm's (LucasArts since 1990) Habitat (Figure 4) for the Commodore 64 

released in 1986 is considered to be an influential virtual world of the early days. 

Habitat used a side-view, a style that LucasArts utilized in the future for many of its 

puzzle point-and-click games that are regarded nowadays as classics. Habitat on-line 

services were provided by Quantum Link, which later on became America Online 

(known as AOL Inc. today). In Habitat users could move around, interact with 

objects, gesture and chat. [5] 

 

Figure 4. Lucasfilm's Habitat. 

  

The early two-dimensional (2-D) virtual worlds represented the world, built from 

blocks, players and other entities as flat sprites (two-dimensional images) rendered 



 

 

 

using a bird’s eye view. Separate areas in the screen were used for showing other 

information, such as chat and inventory (Figure 5). The block structure is an 

efficient, but not that flexible, way to implement a virtual world: world creation is 

simple and its server bandwidth requirement is somewhat light with a satisfactory 

level of interaction between players. [5] 

 

 
Figure 5. A typical graphic MUD (screenshot of Wyvern). 

 

TinyMUD released in 1989 was one of the first primarily social virtual worlds 

allowing user-created content - locations and objects - but contained very little game-

like functionality. LPMUD, developed by Lars Pensjö of the University of 

Gothenburg, Sweden in 1989, introduced an in-game programming language LPC, 

which made it possible for users to add objects and functionality to the game at run-

time. At around the same time, DikuMUD, which was released in 1990, took the 

completely different route, and instead hard-coded as much functionality as possible. 

However, the DikuMUD internals were designed well and a reasonable programmer 

could use its source code to create one’s own world. The DikuMUD codebase was 

used as a basis for creating many other MUDs. [5] 

The transformation from alphanumeric representation to more graphically 

appealing form did not change the fundamentals of the MUDs: they continued to be 

faithful adaptations of the early board game principles with the square-shaped rooms.  

2.3. 2.5-D Virtual Worlds 

By utilizing an isometric view, fixing a camera at an angle other than directly 

overhead, a sense of a 3-D world can be achieve despite the world and objects being 

in fact mere 2-D sprites. This technique is commonly referred as two-and-a-half-

dimensional (2.5-D). [5] 

Ultima Online, developed by Origin Systems, Inc. and launched in 1997, is widely 

regarded as one of the most important milestones in the history of virtual worlds. It is 

said that Ultima Online was the first virtual world to actually realize the potential of 

virtual worlds. Ultima Online gained huge popularity fast, over 100 000 subscribers 

within one year. Ultima Online still continues to exist, and it has a faithful fan base. 

[5] 



 

 

 

One of the first large scale virtual worlds was The Kingdom of the Winds, a 2.5-D 

MMORPG developed by Nexon Co. Ltd., which managed to have an impressive 

number of 12 263 concurrent users in 1999 using distributed server technology [5]. 

Another notable 2.5-D virtual world is Habbo Hotel (Figure 6), founded in 2000, 

that is a web browser based virtual world implemented by using Adobe Flash 

(formerly called Macromedia Flash), a rich Internet application (RIA) technique. 

Habbo Hotel has over 200 million registered users in 32 countries and 8 million 

active users a day. The revenue is gathered by trading real money for Habbo Credits, 

which can be used to buy virtual furniture and other content [23]. 

 

 
Figure 6. Habblo Hotel (screenshot). 

2.4. Introduction of 3-D Virtual Worlds 

Meridian 59, released 1996, can be considered as the pioneer of 3-D virtual worlds, 

and it had a great impact on MMORPGs to come. It utilized the first-person view and 

it can be considered being the first real 3-D MUD. However, Meridian 59 was 

brought down by its soon-to-follow competitors Ultima Online and EverQuest and 

ended up being a commercial failure. [5] 

EverQuest (Figure 7), released in early 1999, was essentially a DikuMUD with a 

3-D graphical client. It used similar a first-person 3-D view as Meridian 59, but 

allowed a freely movable camera. EverQuest’s world was divided into multiple 

zones each running on its own server. Notable delay when moving from one zone to 

another was noticed. [5] 

In the vein of EverQuest a virtual world boom was seen. Amongst most notable 

followers was Asheron’s Call, launched in late 1999, which introduced both 

inventive ideas earlier seen only in text-based MUDs and technical innovations: a 

single seamless world running on multiple servers but using dynamic load balancing. 

The first virtual world seen on console platforms was Phantasy Star Online in 2000 

on the Sega Dreamcast. [5] 

 



 

 

 

 
Figure 7. EverQuest. 

 

Second Life (Figure 8) was launched in the summer of 2003 and it is one of the 

most widely known 3-D virtual world phenomenon of the past decade. Second Life 

provides realistic social interaction with other users – even virtual weddings of the 

users are no rarity. The users can trade real money for Linden Dollars which can be 

used for uploading content (textures, sounds and animations allowed), purchasing 

land, and buying and trading content with other users. In-world content can be 

created freely and without charge only in dedicated sandbox areas. Users can 

program in-world functionality using the Linden Scripting Language (LSL) in a 

sandboxed (secure and controlled) environment. 

 

 
Figure 8. An ongoing meeting at Second Life. 

 

World of Warcraft (Figure 9) is the world’s most-subscribed MMORPG with over 

12 million active subscribers in October 2010 [24]. The fantasy world setting of 

World of Warcraft consists of two sides, Alliance and Horde, battling against each 



 

 

 

other. Both sides have their own races. Players gain experience points and levels by 

collecting items, performing quests and battling with their opponents. 

 

 
Figure 9. World of Warcraft. 

2.5. Immersive Virtual Environments 

In 1956 Morton Heilig developed a simulator called Sensorama which presented 

passive simulation of an imaginary motorcycle ride at Manhattan. A sense of 

immersion was achieved by using smells of exhaust gas and the city, wind in the 

hair, stereo sound and vibrations of the seat. [25] 

The first Cave Automatic Virtual Environment (CAVE) was introduced in 1992 

[26]. In Figure 10, a user is experiencing a virtual world using CAVE room and 

stereoscopic rendering. Whereas in the early days of virtual reality head-mounted 

displays were used to close out the surrounding environment, with CAVE technology 

the whole room functions as an immersive virtual environment where the user can 

literally stand inside. As traditional input devices, such as keyboard and mouse, 

aren’t really sufficient for an immersive controlling experience in CAVE 

environments other devices have been researched for the use. 

 



 

 

 

 
Figure 10. A CAVE room with stereoscopic rendering. 

 

During the last couple of years all of the major console companies have each 

introduced their own peripheral devices to achieve a more engaging, involving and 

immersive gaming experience, for example PlayStation Move and Kinect for Xbox 

360 [27, 28]. Microsoft released a non-commercial Kinect for Windows software 

development kit (SDK) for researchers and enthusiasts to use in the spring of 2011 

[29]. The Kinect device has already been used for many experiments by both 

researchers and hobbyists. Also new companies focusing on virtual reality are 

surfacing, for example Oculus VR, which develops the Oculus Rift virtual reality 

headset [30]. 

2.6. Standardization 

The most notable standard made within the virtual world domain is the Virtual 

Reality Modeling Language (VRML) (ISO/IEC 14772-1:1997) standardized in 1995 

and readjusted in 1997 in the form of VRML97. VRML is a file format for 

representing interactive 3-D vector graphics.  

By now VRML is already superseded by its successor Extensible 3D Graphics 

(X3D) (ISO/IEC 19775/19776/19777), standardized in 2004. X3D adds extensions to 

VRML and makes it possible to encode the data using various syntaxes, such as 

Extensible Markup Language (XML). 

X3D seems, however, not to be that commonly used compared to for example the 

similar and more widely adopted Collaborative Design Activity (COLLADA), 

managed by the Khronos Group. Many common web standards and protocols, such 

as HTTP, XML, HTML, CSS, and ECMAScript (JavaScript) are used as is in many 

different virtual worlds.  

2.7. Current State and Future Directions 

The fundamental features of modern virtual worlds are still greatly the same as in the 

early days: the focus is on a vivid and immersive world with rich content and multi-



 

 

 

user experience with social interaction between the users. The scope of modern-day 

virtual worlds can vary greatly in both implementation technology and complexity of 

the content from simple 2-D or 2.5-D chat rooms running within a web browser to 

full-blown standalone applications utilizing the most cutting edge 3-D rendering 

techniques. 

The constantly increasing amount of computing resources helps to develop larger, 

richer and more impressive 3-D virtual worlds with an increasing amount of 

concurrent users. However, the underlying resources themselves don’t automatically 

guarantee a smooth and seamless virtual world experience and effective usage of the 

resources. Thus scalable networking and software architecture design are more 

essential than ever, especially when considering a large scale and general use 3-D 

multi-user virtual world system. 

Immersive environments, virtual reality, and augmented reality applications are 

gaining more popularity. Home users are able to avail themselves of immersive 

virtual reality enabling technologies, such as machine vision, gyroscopes and inertial 

sensors, at affordable prices. Also the recent renaissance of stereoscopic and 3-D 

display techniques has for its own part increased the general interest in virtual worlds 

and virtual reality. 

With ubiquitous and increasing variety of client hardware and software, different 

users are able to access the same virtual worlds using different client platforms. 

These include the popular desktop operating systems Windows, OS X, and Linux, 

and also mobile systems, such as Android and iOS. Even pure web browser based 

clients have been emerging, for example the Meshmoon WebRocket, aided by the 

latest web technology standards such as HTML5, WebGL, and WebSocket [31]. 

The increasing amount of popular operating systems has steered the virtual world 

client software architecture development towards cross-platform solutions. Also, in 

addition to the traditional closed and commercial solutions, open source virtual world 

platforms are gaining more momentum and interest. 

Another notable trend is the convergence of traditional 2-D document-centric web 

technologies and real-time 3-D content. Integration of virtual worlds and social 

media and other web services is relatively simple via the services’ application 

programming interfaces (APIs). Also the term 3-D internet has been used to describe 

this convergence [32].  

However, interoperability between different virtual world platforms in general is 

currently largely lacking, and the interoperability consists mostly of asset conversion 

tools and other utilities. Typically each virtual world platform implements its own 

content formats and wire-protocol, and uses some traditional web technologies on 

top of that. Some new attempts at standardization have been happening, for example 

the FI-WARE platform started by the European Commission [33]. 



 

 

 

3. 3-D MULTI-USER VIRTUAL WORLD SYSTEM PRINCIPLES 

 

A typical 3-D multi-user virtual world system consists of at least a seemingly unified 

environment, to which the users have views, and in which the users can control their 

presences and have opportunities to interact with the environment and other users, 

and manipulate the shared data within the rules of the virtual world system (Figure 

11). The rules consist of application logic, physics simulation, user rights, and so on. 

Usually a single avatar, or other controllable entity, is assigned for the user in order 

to provide a means of presence in the world. The degree and nature of manipulation 

and interaction possibilities are dependent on the type and purpose of the world. 

 
Figure 11. Conceptual virtual world. 

3.1. Virtual World System Architecture 

Virtual worlds and networked virtual environments in general can be seen as 

multiple traditional software types combined into one: virtual worlds contain 

elements from distributed systems, graphical applications, and interactive 

applications [6]. The design is often complicated by the fact that the system has to 

usually work and interact with existing application services, such as database 

systems, user authentication and other transactions systems, and storage systems [6]. 

Of course the virtual world system can be designed as a single application, but a 

system consisting of several interchangeable subsystems can be seen as more 

extensible and less vulnerable. A general overview of the virtual world system 

architecture is presented in Figure 12. 

 



 

 

 

 
Figure 12. Overall architecture of a virtual world system. 

 

Virtual worlds are networked applications. Usually the environment is hosted on 

one or more server instances, depending on the chosen network and communication 

architecture. The users connect to the virtual world server via the underlying 

communication path and network protocols by using their client software.  

The events and states of the world are replicated, i.e. communicated, between the 

participants. The server might have different front ends for different types of client 

software: one for native PC clients, one for lighter mobile devices and one for web 

browsers and so on. The purpose of the front end is to provide access to the same 

shared data regardless of the client’s operating system and hardware capabilities. 

Virtual world’s content and object information are stored often, but not always, on 

separate database servers. Different database servers can be used for different types 

of data. For example, separate avatar and inventory databases can be used in order to 

make the transition between servers fluent while maintaining the virtual identity and 

its belongings. 

Essentially, most of the modern virtual world engines are networked 3-D game 

engines, but on the other hand, especially general purpose virtual worlds can be seen 

similar to content management systems (CMS). When designing a pure game, or any 

large piece of software, the developers usually have a known specification of the 

required functionality. However, reimplementing a game engine or any other 

substantial large scale software over and over again from scratch is an expensive 

task. Hence, having a modular, dynamic, and extensible system provides a 

foundation for building long-living solutions for various applications and uses. This 

modularity and dynamic extensibility of the software platform adds its own 

challenges to virtual world engine design and implementation.  

3.1.1. Implementation Issues 

The functionality, computational tasks, data storage, and so on of virtual worlds’ can 

be implemented in multiple machines and in multiple different configurations. Fully 

distributed and fully centralized systems can be seen as the two extreme approaches 

to the virtual world system implementation, but most commonly the solution is 

something in-between.  

The responsibilities and tasks between the client and the server applications can be 

broken down into a set of high-level components. The division of components varies 

between different network architectures. The typical high-level components and their 

division in traditional client-server architecture are presented in Figure 13. In the 

peer-to-peer architecture, every participant is responsible more or less for all of the 

components  



 

 

 

 

 
Figure 13. Typical high-level components of a virtual world system. 

 

The server is authoritative for the scene model, and the client stores a full or a 

partial copy of it in order to be able to represent the world. Data in the figure refers to 

the source of the data that is needed for the virtual world, including types such as 3-D 

meshes, audio, scripts, and so on.  

Naturally the client needs a copy of most of the data in order to present the scene 

for the user. The data can be retrieved from different local or networked sources. The 

persistency of the scene is handled by the server, meaning the world state is typically 

stored in a database. User account management and authentication are also typical 

server-only tasks. 

Traditionally the input refers to the actions that a user enters via some kind of user 

interface: the interface can be an alphanumeric command line interface or a graphical 

user interface using the typical input devices, mouse and keyboard. Input can also be 

from a wider range of devices including touch-sensitive devices, audio through the 

microphone, video feed from web camera, and so on. Typically the retrieved input is 

translated into events (“W key pressed”) or actions (“move forward”) for the use of 

the application logic locally, remotely, or both. 

Application-specific logic and behavior is typically achieved by using some kind 

of dynamic scripting language. The execution is typically both a client and server-

side task. The graphics and audio rendering tasks are virtually always performed at 

the client, whereas the server usually takes care of most of the physics rendering 

(simulation). The graphics rendering is a substantial workload so there's no point in 

performing it at the server as it has very little use for the information. Audio 

rendering means real time mixing of both non-spatial and spatial audio sources 

according to the listener's (typically avatar or camera) position. 

Interest management is an optimization mechanism for the bandwidth usage 

(server-side) and graphics rendering (client-side). Interest management is optional, 

but a necessity in worlds of many thousands of objects, if desiring adequate 

performance and real-time experience. 



 

 

 

3.2. Scene Model 

The virtual world environment typically needs to persist. Typically this is achieved 

by using a database which holds a copy of the current state of the world.  This world 

state is described using a scene model, a high-level description of the contents of the 

virtual world environment, which is usually held in is some kind of tree structure. 

The details of different scene model implementations can vary greatly, but two 

commonly used architectures for describing the world object structure can be 

identified: object inheritance and component aggregation. 

3.2.1. Object Inheritance 

The traditional design of a world object structure is the object-oriented architecture 

in which new object types, Camera, Avatar or Terrain for example, are created by 

inheriting from appropriate parent object types, for example Renderable and 

Controllable. This creates a deep hierarchy where specializations of generic 

objects reside deeper in the hierarchy (Figure 14). 

 

 
Figure 14. An example of deep object hierarchy.  

 

The world object model based on object inheritance is something that is nowadays 

considered somewhat old-fashioned. The complexity of the system grows as the 

dependencies between different levels of the hierarchy become heavier. Without 

careful design of object interfaces, the specialized objects’ interfaces can be bloated 

with unwanted functionality leaking from the base objects. As deeper and more 

complex hierarchies and dependencies are formed, the model becomes heavy and 

difficult to both maintain and handle. 

The aforementioned matters can also make modifying existing behavior rather 

difficult which makes extensibility, especially at run-time, difficult and problematic. 

As the functionality and properties of an object are usually fixed and specialized, it 

makes designing the set of network protocol messages straightforward. However, 

changes to the object model usually cause protocol and binary incompatibilities 

between different host versions and break the interoperability. 



 

 

 

3.2.2. Component Aggregation 

The other common scene model architecture chooses aggregation instead of 

inheritance. This method is considered more modern, generic, and extensible. This 

model is used in many MMOs based on the observations of the author. In a 

component-based scene model, an object, often referred to as an entity, may be a 

collection of components. This model is usually called an entity-component model or 

system (Figure 15). The model can also be implemented as pure aggregation where 

the concrete concept of an object does not necessarily even exist. 

 

 
Figure 15. Component aggregation example. 

 

In component-based systems, the components can contain data, or both data and 

behavior. For example, a Position component can simply have position, orientation 

and scale attributes and nothing else, or the component can contain also behavior: the 

component itself reacts to the updates of the aforementioned attributes and updates 

them accordingly to the scene graph. If the component is pure data, some subsystem 

of the application implements the behavior related to the specific component. 

Individual components can be examined separately and desired object behavior 

can be achieved by combining the needed components and nothing else. Similar 

behavior can easily be added to markedly different kinds of objects and different 

types of behaviors are clearly decoupled from each other. This decoupling leads to 

reduced complexity and to a more easily comprehensible overall system. 

Component-based systems are also easily expandable and adding a new component 

type usually requires no changes at all to other components. 

On the other hand, a component-based system may introduce some undesired 

overhead due to possible inter-component dependencies as a specific component type 

might need to check for the presence of other component types. For example for a 

Render component, what to render, is usually tightly tied to the Position 

component, where to render. On the plus side, typically in an entity-component 

model the data updates are done per component, not per entity, which generally leads 

to a simpler network message set and lighter object state update packets meaning 

better scalability. 



 

 

 

3.2.3. Scene Graph 

The scene model is typically accompanied by a scene graph which is a representation 

of the spatial 3-D information for the use of the graphics renderer. A scene graph 

consists of a node hierarchy forming parent-child relationships between the nodes. 

Typically a node contains the necessary spatial information – position, orientation 

and scale – and a reference to the actual visible, renderable, data. The node's 

properties relative to the parent node are referred to as the local information, whereas 

the absolute values measured from the origin of the world, i.e. the root node, are 

referred to as the world information. 

Alternatively the scene graph can be integrated into the scene model. Other 

important application subsystems, such as physics and audio rendering, have their 

own internal data structures. Visible, physical and audible content and behavior are 

rendered accordingly to the information provided by the scene model, scene graph 

and the actual data. 

3.2.4. Data distribution 

Choosing the location of the data is a critical decision as it affects the scale, 

communication requirements and reliability of the virtual environment data. 

Macedonia et al. have identified three data distribution models: the shared 

centralized world, the homogeneous replicated world and the partially replicated (or 

distributed) world. [34] 

In a shared centralized world one database is shared by all users and all of the 

data resides on a central server. When the user wants to modify an object state, the 

client sends a modification request to the server. The server processes the request and 

depending on the credentials of the user, or some other criteria, the server either 

accepts or denies the request. After this, the server performs the necessary processing 

and sends the new object state to all users. 

This model ensures consistency and thus avoids data replication, communicating 

state changes or events between peers or hosts. Consistency might come with the 

price of possible interaction latency: with a high number of users the server might 

become bottlenecked. [35] 

In a homogeneous replicated world, the world state of all users is initialized with 

a common database that contains all the necessary information for the virtual 

environment. The data may be present already on the user, as is done in many games, 

or if not, it is replicated from the server or from another location to the new users. 

Data modifications are executed locally, but additional synchronization mechanism 

can be used. [35] 

The advantage of the model is that the number and size of sent messages in the 

network is small as only update messages and some special events, such as physics 

collisions, are sent. Also the model has low interaction latency as modifications are 

performed locally before being sent to other participants. [35] 

On the negative side, state inconsistencies are possible as a result of packet delay 

or loss. As modifications are performed first locally, a concurrency management 

mechanism is needed for checking conflicts. With large amounts of data the database 

on each node is also large. Furthermore, this model is not flexible if users want to 

add new objects outside of the initial database and hence nor really suitable for 

general use virtual worlds. [35] 



 

 

 

In order to overcome the drawbacks of the previous two data distribution modes, 

several hybrid solutions have been used. These solutions, referred to as partially 

replicated world, or distributed world, contain characteristics from both of the 

aforementioned modes and both data and its updates are distributed to various extent. 

[35] 

3.3. Communication and Network Architecture 

The communication and network architecture is one of the most crucial design issues 

when designing a new virtual world system as both offer opportunities and 

challenges to be faced with vary with each option. The chosen architecture affects 

the scalability, extensibility, and security of the overall virtual world system. 

The two dominant and most commonly used network architectures in virtual 

worlds and suchlike environments are the client-server (or client-multiple server) 

and client-multiple coordinated servers architecture. The peer-to-peer (P2P) 

architecture has been researched a lot, but lacks commercial and successful 

implementations. Regardless of the chosen network architecture, the communication 

protocol must be chosen and implemented wisely as a naive and unoptimized 

communication protocol can hinder both performance and scalability of the system. 

The client-server model and its variations are the most common techniques used in 

commercial products, whereas the P2P model has mostly been a research subject and 

only used by academic researchers. This makes the case for the reason that integrity 

and authorship of the world state and data required by commercial products is much 

easier to achieve in a scenario where only single point of authorship (server) exists, 

whereas in P2P architecture each host is authoritative for the state changes. Also, 

hybrid architectures that combine elements from both of these architectures exist, for 

example the peer-server model [36]. 

3.3.1. Client-Server Model 

In the classic client-server model, represented in Figure 16, each client 

communicates with a single server instance which handles all of the network traffic. 

This model is especially common in popular multiplayer computer games as the 

server has total control and is authoritative for all simulation which prevents cheating 

and other malicious usage. 

 
Figure 16. The client-server architecture. 

 



 

 

 

Time synchronization, world state consistency and concurrency control are 

relatively easy to implement in a client-server system. Usually this architecture is not 

considered very scalable as the server's bandwidth or computational resources easily 

become the bottlenecks of the system with high numbers of concurrent users leading 

to interaction latency and jitter. [37] 

The multiple server architecture (Figure 17) is very similar to the regular client-

server architecture with the exception that several independent servers exist with no 

or very little interaction between each other. 

 
Figure 17. The multiple server architecture. 

 

Multiple server architecture can be utilized in different ways. The most common 

case is to use the other servers as backups. Another way to utilize multiple servers is 

to divide the responsibilities: one acts as the world server, one as the login and user 

database server, and so forth. This architecture provides more scalability and 

reliability than the client-server model, but only in a way that does not allow the 

users on different servers interacting with each other. [37] 

3.3.2. Coordinated Multiple Servers Model 

The coordinated multiple servers architecture (Figure 18) is the dominant 

architecture amongst modern commercial virtual worlds, such as Second Life and 

World of Warcraft. Coordinated multiple servers architecture adds server-server  

communication to the client-server model. Usually one server instance represents a 

single geographical area or region where the user can interact. Users can move 

between regions as server-server communication takes care of the handshake 

procedures. 



 

 

 

 
Figure 18. The multiple coordinated servers architecture. 

 

This architecture increases scalability and reliability. More users can exist 

simultaneously in the virtual environment even though they cannot see or interact 

with each other in most cases. This architecture provides reliability in a sense that if 

the server is down users can always exists on other regions. 

The interactibility level stays pretty much the same compared to the traditional 

client-server model, as usually the maximum number of concurrent users per server 

is restricted and if not, the performance of the server will become very poor after a 

threshold point. This diminishes the overall user experience and sense of large and 

continuous environment. Also the view from the current region to the neighboring 

regions is usually limited or nonexistent. 

3.3.3. Peer-to-Peer Model 

In the P2P model, represented in Figure 19, a server instance per se doesn’t exist at 

all, and all hosts communicate directly with each other. Usually each host holds a full 

or partial copy of the current state and is authoritative for state changes. It’s also 

possible to use a server instance as the source for the initial state when there are no 

hosts and the world must be set up. [37] 

 

 



 

 

 

 
Figure 19. The peer-to-peer architecture. 

 

The biggest drawback of the P2P model is that the hosts’ bandwidth usage is 

heavy. Also, time synchronization and consistency is harder to achieve and maintain, 

as it's difficult to contact all users at the same time. For this reason, a global time 

keeping mechanism, f. ex. Network Time Protocol (NTP) or reliable time-stamp 

update messages at minimum, is required. P2P model could be more efficient when 

implemented using multicasting, but available support for multicast is poor, as 

covered later on. [37] 

3.3.4. Comparison of Communication Architectures 

Comparison of commonly used network architectures in terms of scalability, 

reliability, interactibility, costs (software, hardware, maintenance), and security, is 

presented in Table 1. 

 

Table 1. Comparison of commonly used network architectures. 
 Client-server Peer-to-peer Client-multiple 

servers 

Client-coordinated 

multiple servers 

Scalability - -- - ++ 

Reliability -- ++ + ++ 

Interactibility + ++ ++ ++ 

Costs ++ ++ - -- 

Security ++ -- ++ ++ 

 

The client-server and client-coordinated multiple servers are currently the most 

popular architectures in virtual world systems. These architectures provide 

satisfactory interactibility – consistency and concurrency of interaction with multiple 

users within the same world. In both architectures the servers are fully authoritative 

for the world’s state which prevents cheating and makes malicious usage more 

difficult. 

While the client-server architecture is relatively straightforward to implement, 

optimizing it for hundreds or thousands of concurrent users is a major obstacle. With 

the client-multiple coordinated servers architecture, the world is partitioned into 

smaller regions which keeps the computational burden of a single server instance 

lower. However, this approach often reduces the immersion and sensation of a 

continuous world as inter-region communication is very limited or not possible at all 

in most cases. 



 

 

 

In both architectures, the server quickly becomes the bottleneck, as computational 

complexity and bandwidth usage grow leading to greater interaction latency and 

restricted amount of concurrent users. Regardless of the architecture, the protocol 

must be efficient on both application and transportation level. Efficient and 

intelligent interest management and other optimizations are needed for increasing the 

user and content count while retaining sufficient interactibility level. 

Reliability is an issue with the client-server architecture as only one server exists. 

Client-multiple servers and client-coordinated multiple servers provide the solution 

for this problem. In the P2P architecture security and consistency are significant 

challenges and a reliable time synchronization mechanism is needed. P2P is 

problematic as a virtual world communication model as the virtual world host 

typically wants to be in control and authoritative for the content and its changes. 

3.4. Communication Protocols 

Choosing and implementing a virtual world communication protocol is about finding 

a balance between the need for efficiency and good transmission semantics. A 

network protocol describes the set of rules that applications use to communicate with 

each other.  

A protocol can be broken into three components: packet format, packet semantics, 

and error behavior. Packet format defines what information and data a packet 

contains and packet semantics describes the meaning of each packet. Error behavior 

defines rules that must be applied when an improperly formatted packet is received 

or no packet is received at all. [6] 

Each of these components can be implemented very differently between different 

virtual world systems, but naturally common traits can be identified. In addition to 

the communication protocol, the actual data transfer protocol must be chosen.  

Virtual world systems define their communication protocol at the transport and 

application layer. The Internet Protocol (IP) is used virtually always as the 

underlying Internet layer protocol for providing the end-to-end connectivity between 

hosts. The message routing schemes typically used in virtual worlds are unicast (one-

to-one), broadcast, (one-to-many), and multicast (one-to-unique). Comparison of 

common protocols used in virtual worlds is represented in Table 2 in terms of 

scalability, interactibility, header size (the size of inevitable payload when using the 

particular protocol) and interoperability. 

 

Table 2. Comparison of network protocols. 
 TCP/WebScoket UDP Reliable UDP(*) IP Multicast IP Broadcast 

Scalability -- ++ ++ ++ ++ 

Interactibility ++ -- ++ -- -- 

Header size -- +++ ++ +++ +++ 

Interoperability +++ ++ ++ --- --- 

*application-specific, details vary 

 

The most commonly used transmission protocols are Transmission Control 

Protocol (TCP), User Datagram Protocol (UDP) and reliable UDP. Platforms aiming 

for web browser usage also utilize the WebSocket protocol, which is essentially just 

a layer on top of TCP sharing the same fundamental characteristics [38].



 

 

1 
Not be confused with the informal standard transport layer protocol of the same name. 

 

 

TCP provides reliable and in-order point-to-point connection using 

acknowledgment and retransmission and stream-based semantics [6]. TCP supports 

only unicast. TCP is transmission and connection-oriented protocol and has 

congestion and flow controls. Because of the added functionality TCP must transmit 

more information in its header and it has a higher bandwidth overhead. If operating 

on a bad or slow network connection causing lots of packet loss, the fact that 

everything is reliable means that packet drops can cause heavy congestion which 

makes TCP less than optimal for real-time streaming – there's no point to resend data 

that is already outdated. The networking hardware is usually optimized for TCP. 

UDP provides unreliable lightweight data transmission and packet-based data 

semantics. UDP supports IP broadcast, multicast and unicast. UDP is a 

connectionless protocol at its core. Because of missing features compared to TCP, 

UDP has a very light header. UDP is almost ubiquitous but handled as a "second 

class citizen" by firewalls, routers, and other networking hardware. UDP has 

immediate delivery but no delivery order guarantee, and corruption of data is 

possible as no checksum is used. [6] 

Due to the shortcomings of the default UDP, most virtual world systems 

implement their own reliability and ordering mechanisms on top of UDP on the 

application
 
layer. This extended protocol is typically called reliable UDP

1. 
In 

reliable UDP the plain connectionless UDP is extended to be connection-oriented: an 

end-to-end connection is established before any data is sent. Also, reliable UDP 

typically provides optional reliability and order guarantees for the packet delivery. 

Reliable UDP introduces some overhead to the packet size due to the increased 

information carried in the packets. 

Also IP multicast and IP broadcast, that allow single transmission to be 

delivered to all (broadcast) or multiple (multicast) hosts using UDP, are quite often 

mentioned in the virtual world research, but they are problematic and even unusable 

for commercial purposes: IP broadcast cannot be used outside of LAN and IP 

multicast requires an arcane multicast backbone (MBone) for wide area network 

(WAN) or Internet usage [6]. 

Also, in the past a few virtual reality dedicated protocols, such as Virtual Reality 

Transfer Protocol (VRTP) and Distributed Worlds Transfer Protocol (DWTP), have 

been proposed [39, 40]. However both of these protocols seem to be missing from 

any recent implementations or utilizing applications. The Stream Control 

Transmission Protocol (SCTP) is a relatively new protocol defined in 2000. SCTP 

combines features from TCP and UDP and sounds promising for virtual world usage, 

but so far its support by networking hardware has been poor. 

The choice of network architecture affects the network protocol choice. In the 

client-server architecture and its variations, the protocol can be chosen freely. 

However, in the P2P architectures TCP is not really usable as there’s no point in 

resending potentially already old and obsolete data for which constant resending can 

congest the bandwidth. UDP and reliable UDP are suitable for all communication 

architectures.  

Also, the nature of the network traffic affects the choice of the network protocol. 

After the initial scene model and asset replication, the majority of virtual world 

communication traffic consists of real-time streaming of state updates, movement for 

example, and TCP is not generally considered suitable for streaming purposes; 

however, World of Warcraft for example is known to utilize TCP with good results. 



 

 

 

4. IMPLEMENTATION TECHNIQUES FOR SCALABILITY 
 

When the first MUDs were designed, no-one could anticipate the future scale of their 

successors. In the early days, the computational resources were very limited, not to 

mention the available network resources. As the early MUDs had very low-end 

graphics, the client-side performance was hardly an issue at the time. The emergence 

of 3-D virtual worlds brought its own challenges both in the areas of the client-side 

performance and networking. The modern games set the bar high for visual quality 

continuously and virtual worlds must be able to meet the requirements of the 

evermore demanding users, while battling with the issues of already high 

computational complexity. 

The creators of MUDs and other early virtual worlds built the systems for one 

specific use in mind, the game. The current virtual world system architectures are 

designed to be more generic and extensible for more long-lived and general-purpose 

application development. When building software architecture for a certain type of 

application, certain assumptions regarding the software design can be made in order 

to optimize the system’s performance but building a generic system requires making 

compromises between efficiency and generality. 

The design of a modern virtual world system reflects strongly on the scalability 

and overall performance of the system. Lee et al. have identified five key design 

issues related to scalable DVEs: 

 communication architecture 

 interest management, 

 concurrency control, 

 data replication, and 

 load distribution. [36] 

 

Communication architecture, data replication and their general high-level 

implementations have been discussed earlier. These two are fundamental features of 

DVE architecture, and cannot be omitted, whereas interest management, concurrency 

control and load distribution can be seen as optional, but necessary at certain points 

of development as building blocks when building large-scale virtual worlds.  

Many existing systems have proposed solutions to the scalability issues of large 

DVEs [36]. However, the approaches taken are commonly too application-specific 

and do not address all of the five key issues. Of the five key design issues, 

communication architecture, interest management, data replication and 

synchronization can be seen as important always, whereas concurrency and 

consistency control is very important in collaborative virtual environments (CVE). 

Concurrency and consistency control is out of the scope of this thesis. 

Scalability problems are not tied only to the number of concurrent users, but also 

to the computational complexity of the virtual world. At the extreme we have general 

purpose virtual worlds and collaborative software applications. In general purpose 

virtual worlds (e.g. Second Life) the world content can be created, edited, and 

removed somewhat freely. Additionally in such worlds, the amount of user 

interaction, for example user communication and trading, is typically high. These 

result in high computational complexity, and hence lower scalability. Typically 

collaborative software applications, for example videoconferencing, have low 

computational complexity (no complex world content and user presence) and hence 

high scalability. Games (e.g. World of Warcraft) can be seen as the middle-ground 



 

 

 

with many concurrent players, but within a somewhat static and immutable 

environment. [41] 

Interestingly, the amount of concurrent users that can interact with each other has 

not been drastically increased during the last couple of decades, with a couple 

exceptions to the rule. It would appear that the ever-growing complexity of graphical 

3-D content, physics simulation, and the amount of data transferred over the wire has 

grown significantly over the years, all of which take their toll. Whereas 36 

concurrent users occupied a single server in the first MUD ever, currently on average 

less than one hundred users interact with each other in the current popular 3-D virtual 

worlds or MMORPGs. [5, 42] 

4.1. Scalability Challenges 

Liu et al. categorize scalability of virtual worlds into three different dimensions: 

1. scaling the number of concurrent users interacting with each other, 

2. scaling the scene complexity, and 

3. the fidelity of user interaction. [7] 

 

In order to resolve growing numbers of concurrent users, many virtual worlds restrict 

the amount of concurrent users interacting with each other using different techniques. 

Scaling the scene complexity is especially important in general purpose virtual 

worlds. Keeping the fidelity of user interaction sustainable requires the system to 

have sustainable responsiveness, which is achieved using concurrency control 

mechanisms. 

In addition to the aforementioned dimensions, two additional dimensions can be 

identified: 

4. scaling augmented functionality, such as integrated VoIP and web camera 

feed , and 

5. scaling increasing detail (more complex meshes, more and larger textures, 

etc.) 

 

In this thesis we're interested in (1) and (2). In (4), the issues usually are heavily 

dependent on the implementations of the third-party libraries that are integrated into 

the system. Ideally, the streaming of the additional data can be joined to the same 

data stream that is used for the data replication if wanted. This allows finer control 

over the overall bandwidth usage per client. Problem (5) is an interesting issue, but 

out of the scope of this thesis. Efficient handling of (1) is largely dependent on the 

network protocol efficiency and the server’s capabilities. 

Although network bandwidth is becoming less of an issue, the server’s bandwidth 

is still somewhat scarce.  When considering traffic of hundreds or thousands of client 

connections the physical limitations of the network hardware layer still yields a 

notable part of the scalability issues. Server-side computational footprint per user is 

another important optimization area. 

The majority of the virtual world network traffic consists of movement updates: 

already over 50 % for MUD2, 90 % or more for graphical virtual worlds [5]. In this 

light, it seems obvious that at the very minimum, the format of the movement 

packets must be carefully designed. Moving objects can be divided into two 

categories: non-physical and physical objects. Physical objects in virtual worlds are 

typically so-called rigid body objects. Soft body objects are another type of physical 



 

 

 

object, but due to the complex nature they are not typically replicated. Dead 

reckoning and client-side extrapolation are used for optimizing the bandwidth usage 

of physical objects at the cost of accuracy [6]. 

When maintaining the distinguishing features of virtual worlds mentioned before 

Liu et al. have identified three unique simulation requirements specific for scaling 

virtual worlds [7]:  

 large-scale, real time and perpetual simulations with distributed interaction, 

 simultaneous visualization for many endpoints with unique perspectives, and 

 multiple simulation engines with different operation characteristics. 

4.2. Scalability Constraints 

As the virtual worlds grow in size and in amount of content and concurrent users, 

problems arise most notably in the areas of the communication channel’s bandwidth 

usage, script execution performance, and physics simulation. These problems can be 

present at either the client’s or server’s end, or at both ends. On the hardware level, 

the problem areas are typically bound to the central processing unit (CPU), graphical 

processing unit (GPU), amount of memory, i.e. random access memory (RAM), of 

both the aforementioned computational units, and to the latency and bandwidth of the 

network connection. 

4.2.1. The Infinite World Assumption 

When considering a theoretical situation of running an infinite virtual world with 

client and server with infinite resources, the scalability problem areas of a typical 

virtual world platform can be reasoned and identified. By beginning from the client’s 

end, and solving each problem one at a time by assuming infinite resources as the 

solution, the problem areas in typical client-server architecture can be identified as 

follows: 

 client's 3-D rendering performance (CPU and GPU), 

 client's memory usage (assets, CPU and GPU RAM) , 

 server's application simulation (CPU usage), 

 server's memory usage (scripts, assets), 

 server's bandwidth usage, 

 computing precision (both), and 

 power consumption (both). 

 

When rendering an infinite 3-D world with no view of distance limitations, the 

client’s rendering performance will die out eventually. Even if the client could have 

an infinite 3-D rendering performance, the memory limitations of both the GPU and 

the CPU will become problems, as all of the renderable data will not fit into the 

memory at once. 

If assuming infinite memory resources, and thus overall client-side performance, 

the server CPU performance required by the application simulation (scripts and 

physics) will become a problem. By assuming infinite server CPU performance, the 

server memory resources will become a problem, which, when solved, will lead to 

problems in the server-client bandwidth usage when transferring the infinite content. 



 

 

 

Going even further and assuming an infinite, or even simply a very large, world 

where the values of the world coordinates get larger than (or around) 16 777 216 

(2
24

) units using single precision floating-point numbers, or 9 007 199 254 740 992 

(2
53

) when using double precision floating-point numbers, the computing precision 

will be a problem due to the IEEE 754 floating-point presentation that is typically 

used, as there are no more bits left to present any more precision. Finally, theoretical 

infinite computing and memory resources would of course require an infinite power 

supply, but that subject will be ignored in this context. 

4.2.2. Data Flow 

When the server has loaded and initialized the parts required by the server e.g. 

meshes for rigid bodies for authoritative physics simulation, the world content from 

the data storage is loaded into its memory. The server is then ready for accepting 

client connections. In this case we assume that a hard disk drive (HDD) located 

physically in the same computer is used for the data storage for simplicity. 

When a client joins the server, the data from the server's HDD is transferred to the 

client via the network. When the client receives the data, it stores the data typically to 

its HDD in an asset cache, so that duplicate asset transfers are not needed upon 

possible reconnection, and loads the content to its memory. If the loaded data is 

GPU-related (mesh, texture, etc.), the data will be loaded to the GPU RAM. 

Commonly a copy of the data is also preserved in the CPU RAM for various 

purposes. This typical data flow of a networked 3-D application is presented in 

Figure 20. 

 

 
Figure 20. A typical data flow of a networked 3-D application. 

 

Assuming that all of the contents of an infinite or just a relatively large world is 

transferred to the client always, the amount of data transferred during the initial 

connection is huge. This will mostly likely result in poor user experience due to the 

fact that there are no guarantees at which point the relevant assets from the user’s 

point of view - the user’s initial camera position in the world - arrive for the client.     

Also, the client can't have all of the renderable data in its memory (CPU or GPU 

RAM) at once, so the data must be stored in the computer’s mass storage device, and 

loaded into GPU and CPU RAM on an on-demand basis. This causes a data flow 

hotspot between CPU and GPU RAM. Relentless GPU data loading and unloading 

will result in poor performance for the end user. By utilizing an interest management 

mechanism the hotspot of data flow is moved to between the server’s HDD and the 

network. 



 

 

 

4.3. Scalability Solutions 

Current virtual world architectures can be divided into two broad main categories: 

centralized and distributed. In this context, however, centralized doesn’t necessarily 

mean a single centralized server, but typically a multi-server architecture. Distributed 

architectures typically refer to some kind of P2P architectures. The scalability 

solutions can be divided roughly into three categories. From a client’s perspective, 

typical solutions include client-side optimizations such as enforced limitations, run-

time level of detail (LOD) techniques, and asset load-on-demand techniques. From a 

single server’s perspective, interest management is the most important technique. 

In the multi-server architectures it’s possible to utilize partitioning and 

distribution. 

4.3.1. Client-Side Optimizations 

By using a limited draw distance, reducing the detail of the content (geometry, 

textures, etc.) using LOD techniques, and by performing other simplifications, it’s 

possible to help the client to cope with rendering a large 3-D world. However, it’s of 

course possible for a small set of very large and complex 3-D data to consume all of 

the CPU and GPU resources, even if only visible content is shown, so the content 

must be optimized regardless. In games and virtual worlds where the scene is mostly 

static, predefined and pre-calculated optimizations can be used to optimize rendering 

[42]. 

Loading assets on-demand means that assets are loaded and unloaded to CPU and 

GPU memories based on similar criteria as utilized by the interest management 

techniques: assets used by the visible (or audible, or otherwise relevant) objects for 

the user. Asset load-on-demand techniques focus more on solving the client-side 

rendering performance issues than the server's bandwidth usage, but naturally can 

also be combined with interest management techniques. 

4.3.2. Interest Management 

Interest management means utilizing the available geometric information, or other 

type of suitable attribute, in the client-server communication and data replication, to 

synchronize data between the participants on a need-to-know basis. This allows the 

server to handle more concurrent users as less bandwidth is used per client. For the 

client, using interest management means the ability to observe larger worlds in a 

slightly restricted fashion while maintaining a satisfactory performance. When 

interest management is used, all of the world’s state and data is not typically 

replicated to clients at all times, meaning that the system uses a partially replicated 

world data distribution model. 

Typical interest management approaches in game engines include priority- and 

budget-based approaches. In a priority-based approach some kind of formula is used 

to determine priorities for the objects in the world. A simple example of a priority 

formula could be: 

 

priority = object’s size / object’s distance from the camera.  (1) 

  



 

 

 

This priority is used for filtering network traffic and the amount of objects whose 

state is replicated to the client. In the budget-based approach, for example, a client-

side polygon budget determines the size of the interest set (“don’t send me more data 

that I can handle”). 

Various approaches exist for defining the client’s area of interest (AoI). 

Traditionally interest management techniques are divided into two categories: 

region-based and aura-based. In addition to these, Lee et al. have identified three 

additional techniques: class-based filtering, hybrid approaches, and aggregation 

mechanisms [36]. 

In region-based filtering (Figure 21) the virtual world is divided into static 

regions or zones, either regular shapes, such as hexagonal, square, and triangle, or 

into locales, arbitrary sizes and shapes. [36] 

 

 
Figure 21. The basic principle of region-based filtering. 

 

The messages are sent to all users within the region, and additionally also to adjacent 

and neighboring regions. Region-based filtering is simple, providing coarse-grained 

message filtering, which does not take users' actions into consideration (view, 

visibility, direction, etc.). Handovers between regions add some complexity to the 

system, so a key issue in region-based filtering is finding a balance between region 

size and computational overhead from management of different numbers of regions. 

Example systems using region-based filtering include SPLINE (locales) and 

NPSNET [43, 44]. [36] 

In aura-based filtering (Figure 22), distance, visibility, audibility, or similar aura 

of interest defines the user’s interest set. This type of filtering is based on the aura-

nimbus model [45]. 

 



 

 

 

 
Figure 22. The basic principle of aura-based filtering. 

 

In an aura-based approach the filtering is done on a per user basis, which makes it 

more dynamic than the region-based alternative. In this approach, the computational 

overhead is larger due to the need for distance calculation, raycasts, view frustum 

culling, or similar queries and computations. In some systems when users' auras 

overlap, a connection is established between the users and messages are exchanged 

through that connection. Example systems include DIVE, MASSIVE-3, and Sirikata 

[46, 47, 42]. [36] 

In class-based filtering, the delivered messages are filtered based on the object 

types. For example in a military simulation, a soldier, a general, and a fighter plane, 

are interested in different things. Class-based filtering allows more fine-grained 

filtering compared to the proximity-based techniques. The scene model affects the 

possibilities and granularity of the filtering. Example systems using class-based 

filtering include HLA and Ding’s scheme [48, 49]. [36] 

Also hybrid filtering techniques exist combining elements from the 

aforementioned filtering techniques. Hybrid techniques try to find a balance between 

computational overheads and fine-grained data partitioning. Hybrid implementations 

have been developed at least for three-tiered architecture and VELVET [50, 51]. [36] 

Aggregation filtering means merging update messages on aggregation hosts 

(server or local) from multiple clients and forwarding this aggregated update to the 

other clients. By using this technique only an abstracted (partial) view of target 

information is provided. However, many implementations of this type of filtering 

seem to use IP multicasting which makes it uninteresting. Example systems include 

Paradise and MASSIVE-2 [52, 53]. [36] 

4.3.3. Partitioning and Distribution 

Gupta et al. categorize the most common techniques of centralized architectures as 

follows: zoning, sharding, and instancing. In zoning, the virtual environment is 

geographically partitioned into areas of size that a single server machine is capable of 

handling. The zoning technique is also known as static (or fixed) load balancing. In 



 

 

 

dynamic load balancing, the responsibility for parts of the world is moved between 

servers [5, 41] 

In sharding, multiple, completely separate instances of the same environment, 

shards, are instantiated, each serving a different set of users. Instancing is a technique 

where a group of users are put into private zones, which are separate from the rest of 

the world. Instancing is mostly employed for game design reasons, not to resolve 

scalability issues. [41] 

In order to keep the responsiveness somewhat sensible, many virtual worlds, 

Second Life and World of Warcraft for instance, enforce limitations on the amount 

of concurrent users and interactions within a single area. In World of Warcraft, a 

combination of instancing and sharding is used to separate millions of users into 

smaller private groups. Second Life has an enforced visibility and interaction 

distance of around 100 meters, and typically a Second Life region (256 m x 256 m) 

scales up to around 40 concurrent users. [42]. 

However, these limitations typically degrade the multi-user experience. In an ideal 

situation these kind of restrictions would not exist and the scalability problems for a 

large number of concurrent users would be handled with interest management and 

distribution techniques. However, for example in EVE Online the simulation is 

slowed down when the object density gets very high and this doesn’t bother the 

players because it leaves them more time to contemplate their next move [54]. 

Distributing different types of computational tasks between multiple hosts is 

problematic, as the nature of computation typically is not task-based, but real-time 

streaming. In distributed systems, consistency and concurrency control is a very 

critical issue, which requires additional mechanisms. Distributed architecture 

typically means utilizing some kind of P2P or hybrid network architectures. Most of 

the techniques used in centralized architectures apply also for distributed 

architectures. 

4.4. Discussion 

Software architecture, scene model, data replication model, network architecture and 

communication protocol lay the foundations for opportunities and challenges 

regarding communication and computational scalability. Enforced limitations can be 

considered only as a temporary or additional solution, and not as permanent solutions 

for scalability problems. 

The level of required message rate can vary between different worlds and 

applications - consider for example a high paced first-person shooter type of game 

versus an intergalactic starship war game - so, ideally the virtual worlds system 

supports various levels and techniques. The key to interest management is finding a 

balance between bandwidth usage and server CPU load. As the majority of the traffic 

is produced by objects’ movement, an efficient movement packet format and client-

side prediction is essential before considering further communication scalability 

optimizations. 

It seems obvious that a hybrid filtering mechanism which combines features of 

region-, aura-, and class-based filtering would be the most optimal one. The 

mechanism needs to be highly configurable and have run-time adaptivity when the 

number of users and object density grows, meaning a somewhat high (but ideally 

configurable) server-side computational footprint per user. Hence optimized data 

structures, threading, and other software design aspects must be carefully applied. 



 

 

 

When considering a theoretical scenario with one user but infinite world, 

compared to the typical approach of immediately partitioning the world into a server 

grid, where each server runs part of the world, the world could be divided into logical 

partitions within one server instance. Running a single server and taking into 

consideration that the server has limited and realistic amount of resources, the 

aforementioned client-side optimizations and interest management will help, but 

some kind of multi-server architecture will become inevitable at some point. This 

adds some complexity to the overall system. 

When considering one user, an infinite world, and unlimited resources on the 

server, it doesn’t make sense to keep the whole scene in memory. Instead, scene 

server offload could be used: the non-pertinent part (non-visible or otherwise non-

relevant for the users) of the scene is kept in suspended mode and only the pertinent 

part of the scene is kept in memory. When a user moves to new part of the world, a 

snapshot of previous part is saved to storage and unloaded from the memory and a 

new part of the scene is loaded from the storage. This would be possible of course 

assuming that the non-pertinent parts of the scene do not require constant real-time 

simulation, for example pertinent artificial intelligence simulation. 

 



 

 

 

5. A 3-D VIRTUAL WORLD IMPLEMENTATION 
 

The realXtend Tundra (simply referred as Tundra from now on) was chosen for the 

interest management implementation testbed due to its open source nature [55]. Also, 

the author is very familiar with the platform and its codebase, being worked on it 

both professionally and on free time for several years. Also, the fact that Tundra 

currently has no established interest management technique in place makes it ideal to 

see what kind of improvements incorporating an interest management technique – 

even a simple one - into its scene synchronization mechanism produces. 

5.1. realXtend Tundra 

Tundra is an open source and a cross-platform virtual world and 3-D internet SDK, 

and it currently runs on common desktop operating systems Windows, OS X, and 

Linux. Tundra supports targeting Android, but currently in a limited fashion. Tundra 

doesn’t provide a full virtual world ecosystem out of the box, but is aimed primarily 

at application developers as a platform for creating networked 3-D worlds with 

customized content.  

Tundra uses the typical client-server networking architecture with reliable UDP, 

TCP or WebSocket for the basic communication and world state synchronization. 

Also experiments have been done to support SCTP, but this is not officially available 

in Tundra [56]. The actual asset data can be transferred via multiple routes, but 

usually with HTTP, which although is somewhat suboptimal it is convenient, and 

often used for public networked worlds. A somewhat unique approach in Tundra 

compared to many other virtual world platforms is the fact that exactly the same 

codebase implements both the client- and server-side functionality. 

The heart of Tundra design is the generic and extensible scene-entity-component-

attribute scene model. Each scene consists of entities. An entity is an actor in the 

scene with a unique identifier number (within the parent scene). Each entity contains 

a set of components that define the data – a set of attributes – and usually possibly 

add new behavior to the parent entity. Components are identified by unique type 

name (and unique type identifier number) and an optional arbitrary identifier name. 

A mechanism called entity actions is provided for object communication and 

remote procedure calls (RPCs) in a data-driven way, but other mechanisms, such as 

HTTP, can also be used. An overview of the Tundra platform’s architecture is 

presented in Table 4. 

 

Table 4. Tundra architecture overview. 
Network architecture Client-server 

Networking protocol Reliable UDP, TCP and WebSocket 

Application Modular and extensible plug-in architecture 

Data distribution model Hybrid 

Interest management None 

Scene model Generic and extensible entity-component model 

Object communication Entity actions + other (HTTP et al.) 

 

Tundra is based on the Qt application framework and OGRE 3-D rendering engine 

[57, 58]. Other notable third-party libraries used for the core functionalities include 

MathGeoLib (math and geometry), kNet (reliable UDP and TCP networking), and 



 

 

 

Bullet Physics Library (physics simulation) [59, 60, 61]. The Tundra application 

consists of a fixed set core of components and plug-ins, accompanied by a user-

defined set of additional plug-ins. The application logic typically is implemented by 

scripts written in dynamic scripting language QtScript (JavaScript) provided by the 

Qt framework. 

5.2. Current State 

Tundra’s main development goals have been simplicity, modularity, and easy 

usability for the application developers. Tundra is essentially a single-threaded 

application, meaning that the core functionalities, i.e. graphics, physics, audio, and 

scripts, are run in a single thread. This is very typical for game engines.  

The development has been driven by the requirements of the prevailing 

applications built on top of Tundra and not scalability per se. So far there has been no 

such application that would have required enhancing the support for very large 

worlds. However, special attention has been paid to the wire protocol efficiency and 

optimization early on during the development. 

For now, most of the public Tundra scenes online have been relatively small [62]. 

With the current Tundra network protocol, and most notably the rigid body 

replication optimizations, a single moving object averages at about 11 bytes an 

update, whereas the old rigid body streaming code was about 70 bytes per update 

[63]. With Tundra, an adequate performance with up to 64 concurrent users with an 

avatar can be achieved [63]. This is in line with the maximum number of concurrent 

users of other popular 3-D virtual worlds such as Second Life and World of 

Warcraft. The number per se doesn’t mean much though as in practice the maximum 

number of concurrent users while maintaining an adequate performance is largely 

dependent on the other content of the world, which will become the bottleneck in 

Tundra as the amount of content in the world grows. 

Currently Tundra has no established interest management technique in use, 

however the scene synchronization protocol of Tundra is greatly optimized already 

[64].  It should be noted that some common protocol features in many virtual world 

platforms, for example user permissions and time synchronization, are not part of 

Tundra’s core protocol. 

5.2.1. Performance Issues 

The most notable known server-side performance issues in Tundra are related to 

inefficiencies in the scripting engine (QtScript) and its interoperability with the 

native code. The most notable server-side single issue is the physics scripting when 

the amount of moving rigid body entities in the scene grows. However, it’s possible 

to work around this problem by using an existing PhysicsMotor component that 

drives a RigidBody component of the same entity by impulses on each physics 

update from the native code so there is no need to jump between script and native 

code for driving the physics. [64] 

The biggest client-side issue is the graphics rendering and script performance. As 

the graphics rendering and script performance bottlenecks are significant and not 

simple to resolve, this thesis keeps the focus on optimizing the network traffic due to 

its general value for scalability. [64] 



 

 

 

5.2.2. World State Replication 

Tundra uses a hybrid data distribution model. Entities and components in the scene 

can be either replicated or local-only (exist only at the specific host). By default, an 

entity’s state, i.e. the set of components and their attributes, is altered in a replicated 

fashion. Tundra also supports local-only (only the host performing the action is 

notified) and disconnected (no notifications whatsoever are done) changes can also 

be performed. 

Due to the generic nature of the Tundra platform, the platform itself doesn't really 

enforce the data distribution model: without specific application scripts, any 

modification to the world state is done by the copy residing at the particular host, 

which is then replicated to other hosts. If a host decides to reject a change, it will not 

signal the other hosts of this by default and thus leaves the states of different hosts in 

an inconsistent state. In other words, it’s simply up to the application developer to 

guarantee the state consistency. 

Tundra’s network protocol is relatively simple due to the generic scene model. The 

Tundra scene synchronization protocol consists of the following network messages: 

 CreateEntity, 

 CreateEntityReply (server-client only), 

 RemoveEntity, 

 CreateComponents, 

 CreateComponentsReply (server-client only), 

 RemoveComponents, 

 CreateAttributes, 

 EditAttributes, 

 RemoveAttributes, and 

 RigidBodyUpdate (server-client only). 

 

The purposes of the different messages should be pretty self-explanatory: each of the 

messages alters the state of the scene-entity-component-attribute scene model in a 

generic fashion, with the exception of RigidBodyUpdate which is a custom message 

for streaming movement of a spatial entity. Despite its name, the RigidBodyUpdate 

message is also used for updating the position information of non-physical objects. 

The EditAttributes message is also used to update an object’s position when 

doing a full transform (position, orientation, and scale) update, with no client-side 

extrapolation. 

A Tundra application’s TundraLogicModule has a SyncManager class instance 

which takes care of synchronizing the world (Scene) state changes. On the server, a 

SceneSyncState is created for each UserConnection, a class representing a client-

server connection. Changes to the server’s SceneSyncState are replicated to all 

connected clients. The client has a virtual UserConnection instance for replicating 

the client’s SceneSyncState changes to the server and to the other clients. 

A SceneSyncState consists of EntitySyncStates which consist of 

ComponentSyncStates which hold a list of possible dirty (value has been changed, 

but not yet replicated to other participants) attributes. When the value of an attribute 

changes in a Scene, signals (events), to which the SyncManager is connected 

(subscribed) to, are emitted (published). SyncManager keeps track of these changes 

and marks the appropriate sync states dirty to SceneSyncState’s dirty queue. 



 

 

 

During each network update tick (configurable, 20 Hz by default), the dirty queue 

is processed fully and state change network messages are sent accordingly. 

Replication of moving entities, with or without the RigidBody component, is 

optimized and handled as a special case (RigidBodyUpdate). When new entity, 

component, or attribute is created or removed, the corresponding message is sent. 

5.3. Improved Scalability Using Priority-Based Filtering 

The work was based on the Tundra 2.4 codebase [65]. The interest management code 

and the Infinite World test scene presented in this thesis, along with a complete 

commit history, is available at GitHub [66]. The implementation was inspired by the 

general idea of interest management used in “Halo: Reach” [67]. The implemented 

interest management technique can be considered an aura-based filtering mechanism 

which contains some elements of class-based filtering techniques. Contrary to the 

typical aura-based interested management filtering techniques, a priority cut-off 

radius was not implemented meaning that the set of replicated entities was constant 

on the server and the client. 

5.3.1. Implementation Rationale 

As the 3-D rendering performance itself, even with a somewhat modestly complex 

content, will become a bottleneck in Tundra as the 3-D content in the world grows, a 

server-side approach is chosen: the goal of the interest management implementation 

is to lessen server's bandwidth usage when the amount of moving (physical) objects 

and concurrent users in the world is high. As interest management is mostly for 

optimizing an invisible aspect for the end-user (content far away), the perceptual 

performance must be retained, i.e. the end-user experience must not have any 

significantly notable difference in the objects’ movement whether the interest 

management is enabled or not in a scenario where the server is not overburdened. 

The following additional goals are set for the implementation: 

 simple and efficient (modest CPU overhead), 

 must work in “headless” mode (i.e. when rendering disabled), and 

 easy to enable and disable, and (due to simplicity) easy to modify or enhance. 

 

Making the interest management work in headless mode is crucial as it makes no 

sense to run the server with rendering enabled (“headful”) in production usage: this 

would take a considerable amount of both CPU and GPU resources for no reason. 

These additional goals make the interest management technique usable in real life 

productions. 

Also, when taking the current scalability bottlenecks into consideration, the 

following non-goals are set for the implementation: 

 client rendering performance can be considered non-pertinent as focus will be 

on the server’s bandwidth usage, 

 due to the physics and script performance issues mentioned in Chapter 5.2.1., 

maintaining an optimal, i.e. 60 FPS, frame rate during the tests is not 

important, and 

 runtime and/or script access to the actual interest management algorithm 

details not important. 



 

 

 

5.3.2. Performance Evaluation Environment 

For profiling and measuring the interest management algorithm and functionality, a 

test world and application named “Infinite World” was created. In Infinite World, the 

virtual world consists of symmetrical NxN grid of symmetrical WxW (where W is the 

width of a side in world units) cells, scene blocks. Each scene block has B physical 

non-player characters (NPCs), also known as bots, walking in circles via 

configurable waypoints. Each scene block can also contain C non-physical objects, 

simple boxes that move up and down constantly. All of the attributes are 

configurable during startup (N ≥ 3, odd numbers allowed; W > 0; B ≥ 0; C ≥ 0). This 

Infinite World functionality is presented in Figure 23. 

 

 
Figure 23. The configurable Infinite World scene block grid. 

 

The server handles all of the Infinite World application logic, while the client is 

simply a dummy observer.  An existing avatar application script was used to create 

an avatar for each client joining the server. When the user joins the world, and his 

avatar is created, the avatar is positioned to the middle of the grid. When a user 

enters a new scene block, a new row or column of scene blocks is created to the 

direction the user is travelling, and the most distant row or column of scene blocks is 

removed. A screenshot of the test application is presented in Figure 24. 

 



 

 

 

 

Figure 24. Screenshot of the Infinite World. 

5.3.3. Observer, Priority, and Relevancy 

In the implementation, a concept of an observer was added to the SyncManager. Any 

entity with a Placeable component can act as the observer. When the observer is set 

(not done automatically for now), the position and orientation of the observer entity 

is sent to the server. Not forcing the observer to the active camera adds flexibility 

and debugging capabilities: it’s possible to keep the actual observer camera entity 

constant while switching to another camera for observing the effect of the interest 

management technique. 

Two variables were added to EntitySyncState: priority and relevancy. These 

two factors together are used to compute a prioritized synchronization frequency of 

an object. Priority of an entity is: 

 

priority = size / distance,     (2) 

 

where size is size of the object’s bounding volume’s surface area, and distance is the 

distance between the object and the observer. Relevancy is an arbitrary factor to 

which existence and attributes of different components can be made to affect, for 

example an object’s velocity, if the RigidBody component exists. Larger numbers 

for both priority and relevancy means larger importance. 

5.3.4. Implementation Details 

Distance is applicable only for spatial entities, entities containing the Placeable 

component. For non-spatial entities, the highest possible priority (positive infinity) 

was used as non-spatial entities are typically some kind of application logic (script) 

or data entities, whose immediate replication is typically important. Size is only 

applicable for entities containing the Mesh component, 3-D geometry, but it could 

also easily be expanded to cover spatial audio sources, volume triggers, and other 

types of invisible but spatial objects. For spatial entities without the Mesh component, 

the default synchronization rate was used. 



 

 

 

Currently only the existence of Placeable, Mesh, and RigidBody components 

affect priority and relevancy. A prioritized synchronization interval (in seconds), 

fsync, for a single entity is 

 

fsync = log2((100 * fmax) / (priority * relevancy)), fsync ∈ [fmax, fmin], (3) 

 

where fmax is the maximum allowed synchronization interval, i.e. the smallest 

allowed value, and fmin is the minimum allowed synchronization interval, i.e. the 

largest allowed value. The equation was created by trying to achieve a formula that 

gives values close to fmax on objects that have high to medium priority, and then 

significantly steers towards fmin when the priority gets low. For the tests, fmax was 0.05 

and fmin was 5. 

First, the dirty entities are sorted before sending sync messages according to their 

priority in descending order (most important first). In SyncManager’s 

ProcessSyncState and ReplicateRigidBodyChanges, the time since the object’s 

last update is checked and compared to a varying state update frequency for the 

object that is calculated as described in Equation 3. If enough time has not passed, 

the update is not issued. 

A new ObserverPosition message was added to the protocol, telling the 

position and orientation of the observer entity. The message (client-server) consists 

of the following information: 

1. scene ID, 

2. position of the observer, and 

3. orientation of the observer. 

 

For now, the scene ID is just a placeholder, which has no use until Tundra has a 

proper multi-scene support. The scene ID was added for consistency, as the 

placeholder scene ID is present in all of the current protocol messages. The ID is a 

variable-length encoded (VLE) unsigned integer, 4 bytes at maximum, but typically 

(and during the tests) 1 byte. Both position and orientation (in Euler angles) consist 

of three 4-byte floating-point numbers each, yielding total of 24 bytes. The total 

content length of the message was 25 bytes for the tests. 

The application script sets the observer entity to SyncManager on the client. As 

long as the observer entity exists and has a Placeable component, the observer’s 

position information is sent to the server using the ObserverPosition message at 

the default scene synchronization rate (20 Hz). 

When the server receives the ObserverPosition message, it saves the 

information for use. Priorities for all entities are recomputed at one second interval 

(configurable). The priority of a single entity is also computed upon its creation and 

upon addition or removal of a component. These priorities are used immediately 

during the next update tick. The interest management technique could be enabled and 

disabled at run-time by setting the interestManagementEnabled property of 

SyncManager in order to observe the effect of the technique easily. 



 

 

 

6. EXPERIMENTS 
 

For the final tests, N was 9, W was 128, B was 1-11, and C was 0, meaning a world 

with 1152 x 1152 dimensions with 81-891 bots running. During the development, 

constantly moving non-physical objects were added to the scene (i.e. C > 0) in order 

to see that the priority computation formula was applicable also for non-physical 

objects. For the final tests and measurements, however, the non-physical objects 

were omitted as it was observed that they hindered the performance significantly (the 

aforementioned scripting performance inefficiency). 

For the tests, the client’s AvatarCamera entity, a camera following the avatar, was 

used as the observer. The client was able to change to the FreeLookCamera entity, a 

camera that can move around freely, to observe more closely how the priority-based 

filtering logic affects the movement of the distant entities. For the final tests, the 

avatar did not move between blocks in order not to cause any unnecessary server 

overhead spikes which would occur when moving between scene blocks. 

The Tundra client and server were run on a single same computer using the 

localhost network. It was observed that it was possible to run a single server and 

maximum of 30 clients at once without performance and reliability problems at the 

available computer. Due to this limitation, the moving objects in the world were 

chosen to be solely bots instead of real user connections in order to be able to have 

hundreds of simultaneously moving objects in the world. 

6.1. Experimentation System 

The tests were run on a computer consisting of Intel Core i7-3770K 3.5 GHz CPU, 8 

GB RAM, NVIDIA GeForce GTX 660 GPU, and a 1 GB hybrid HDD running 64-

bit Windows 8.1 Update 1. The Tundra application was built as a 32-bit Windows 

application using Microsoft Visual Studio 2008 Service Pack 1. For the code 

execution time measurement, the built-in Tundra profiling functionality and the 

Profiler window (Figure 25) were used. 

 

 
Figure 25. The code execution profiler window. 

 

Bandwidth usage measurements were done by using the built-in functionality and 

statistics window (Figure 26) of the kNet networking library. It should be noted that 



 

 

 

enabling and running the code execution and network profiling functionality causes 

some computational overhead in the application itself.  

 

 
Figure 26. The network statistics window. 

6.2. Measurements and Results 

The measurements were done by configuring the desired number of bots to the scene, 

starting the server, joining the server with the client, and then observing the traffic 

from the server’s network statistics dialog. The amount of network traffic fluctuated 

to some degree due to the constantly changing priorities of the bots, so the traffic was 

observed for couple tens of seconds in order to figure out some kind of approximate 

mean value. 

The measurements are presented in Figure 27. The server had filtering enabled by 

default so the “IM enabled” figure with certain amount of bots was measured first. 

After that, the filtering was disabled at run-time and the “IM disabled” figure was 

measured. These steps were repeated eleven times. 972 (9 * 9 * 12) bots caused the 

server to run at 10 FPS which was too slow and caused clearly unresponsive user 

experience on the client. Thus 891 (9 * 9 * 11) bots was chosen as the upper limit for 

the tests. The server was able to perform over 20 FPS while running 891 bots, so, 

while not having an optimal performance, it provided somewhat responsive 

experience for the client. 

 



 

 

 

 
Figure 27. Server’s bandwidth usage with and without interest management. 

 

From the measurements it can be seen that the impact of the filtering was 

significant: the bandwidth usage is cut down roughly tenfold. It was quickly tested 

that when connecting to the server with multiple clients, the impact of interest 

management filtering continued to be significant: the server’s bandwidth usage was 

cut down to roughly 15 % of the original (without interest management). With 

interest management filtering it was possible to run 891 bots in the scene with the 

same bandwidth usage that was used while running 81 bots without the filtering. 

As a conclusion it can be seen that even though the scene state synchronization 

protocol was highly optimized already, a simple priority-based filtering gives nice 

results and allows increasing the number of moving physical objects in the scene 

significantly. The server-side computational footprint per user was observed to be 

somewhat high, so optimizations regarding this area are required. The possible 

improvements are discussed further in the next chapter. 



 

 

 

7. DISCUSSION 
 

In general, there’s no point in focusing on the online scalability of a virtual world 

scene, if the scene doesn't even scale offline due to its complex nature. In practice 

this means the existence of excessive amounts of unnecessarily complex meshes, 

large and uncompressed textures, and other data. A good guideline is to design the 

world content around technical limitations of a wide range of client hardware 

capabilities. Additionally and preferably LOD techniques must be applied. The 

OGRE rendering engine supports LOD for meshes, but currently this is not utilized 

by Tundra. 

In game development these matters are typically heavily optimized early on due to 

the static nature of the 3-D scenes, but in general use virtual worlds’ content is often 

created naively on an ad hoc basis. Run-time compression techniques of 3-D models 

and textures can help, but this naturally causes computational overheads. 

Instead of optimizing the current and usually obvious bottlenecks, partitioning and 

distributed computing are seen as a solution that automatically resolves all of the 

problems. Instead these techniques should be seen as an optimization strategy only 

after the performance hotspots and bottlenecks are optimized in the local domain. 

7.1. Observed Problems 

The focus of the test was to optimize a server’s bandwidth usage, so, in order to 

overcome some notable performance issues of Tundra, certain simplifications were 

applied to the test case. The disabled features in the test preferably should be enabled 

in the future in order to get a more realistic picture of the client’s capabilities. 

The playback of the skeletal animations of the NPCs was disabled in order to 

increase the client-side rendering performance. Furthermore, in order to lessen the 

client-side rendering performance, flat terrain geometry was used using a simple box 

mesh that was flattened and stretched to cover a single scene block. The simpler 

terrain was chosen due to terrain’s irrelevancy in the bandwidth usage context, but 

also due to the current Terrain component’s inefficient LOD technique, which 

caused generally poor 3-D rendering performance. As a side note, the terrain 

rendering performance could be improved for example by using a geometrical 

mipmapping technique [68]. 

During the testing, discrepancies for some objects’ bounding volume information 

were noticed when comparing the values between headful and headless modes. This 

issue needs to be researched and fixed. In general, support for bounding volume 

retrieval for billboards (3-D sprites that face the camera at all times), particle effects, 

sound sources, and other types of objects that can be considered to have a sense of 

proximity to the user, should be taken into account when calculating the priorities. 

Due to the limitations of the underlying rendering engine, retrieval of bounding 

volume information in headless mode was difficult, and in some cases even 

impossible. In order to fully prioritize all types of visual objects, accurate bounding 

volume information would be needed also in the headless mode. In the current state, 

it could be possible to utilize the physical bounding volume information instead of 

graphical information for the server-side computations. 



 

 

 

7.2. Future Work 

Due to the goals and non-goals of the implementation, various possibilities for 

improving the interest management implementation exist. From more of a high-level 

perspective, a dynamic interest management registration mechanism could be useful: 

Tundra plug-ins could register different interest managers to the system without need 

to alter the core Tundra codebase. More importantly, a plug-in mechanism would 

allow the use of different types of interest management implementations depending 

on the requirements and needs of different types of scenes and applications. It also 

might be convenient to switch between different implementations at runtime. 

7.2.1. Implementation 

Ideally, the server should be able to define an output per user threshold, which the 

server could automatically adjust accordingly to the number of concurrent users. 

Some other data structure could be used for the dirty object list instead of the current 

doubly-linked list, for example a min-max heap or other type of priority queue. The 

min-max heap, for example, would remove the need to sort the list manually, but 

would make insertions and removals slower, so, profiling advantages and 

disadvantages of different data structures would be required when seeking the most 

suitable data structure for the task. Also, maintaining some kind of priority groups or 

ranges for objects, instead of every object having its own priority, could make sense 

as the priorities can be virtually the same for objects within the same area and small 

changes in the priority don’t have significant effects on the synchronization rate. 

Also, factoring in an object’s velocity vector (direction and speed) for the relevancy 

computation would help refine the priority calculation. 

Currently the object priorities are calculated at fixed interval. Server CPU 

overhead could be observed when the server was computing priorities for many 

hundreds of objects, especially when number of concurrent users in the world started 

to grow. Threading the priority computation task could be used as a solution. An 

alternative approach would be not computing all priorities in a one go, but instead in 

batches, of say, 100 entities per frame. 

A new SetObserver message, containing a scene ID and an entity reference (ID 

or name) of the desired observer entity could be added to the protocol. This message 

would allow the server to tell what entity the client must use as the observer when 

the client joins the server. The size of the ObserverPosition message could be 

reduced by optimizing the position and orientation in similar fashion as is done in the 

RigidBodyUpdate message. The ObserverPosition message could also be made 

server-client to tell the initial position, or to force the position, of the observer. 

7.2.2. Filtering Technique 

The next step for the filtering technique would be to define a cut off priority which 

would be used to remove the most distant objects from the client’s view in order to 

ease the client's rendering workload on large scenes. Additionally, a view frustum 

query –based, or similar, technique for defining client’s interest would be needed for 

more refined prioritization, meaning incorporating elements of aura-based filtering to 

the solution. For example, the solid angle query technique sounds promising [42]. 



 

 

 

However, this would increase the client’s CPU overhead, so efficient implementation 

is required. The client could send the interest set to the server, or alternatively the 

server could construct the client’s view frustum from the ObserverPosition 

information and use frustum-volume or ray-volume intersection tests. 

7.2.3. Infinite World 

For the Infinite World application, particle and sound effects, and other enrichments 

could be added in order to cover wider range of typical object types. Also the 

features that were disabled to overcome the performance bottlenecks should be 

enabled in order to get more realistic picture of the client’s capabilities. The scene 

server offload functionality mentioned in Chapter 4.4 would be interesting to 

prototype using Infinite World. Due to time constraints, the Infinite World does not 

fully support multiple users moving into different scene blocks (multiple users within 

the same scene block work OK), so a proper multi-user support should be 

implemented for the application. 

 



 

 

 

8. SUMMARY 

 

In this thesis a working and production-ready interest manager technique was 

presented to lessen the server's bandwidth usage considerably when running a scene 

containing lots moving of objects. The implementation provides a clean and simple 

base for future development and improvements. 

As computational scalability issues, such as graphics rendering and physics 

simulation, in 3-D environments are already well addressed with existing solutions, 

this thesis considered the performance problems of multi-user virtual world client-

server communication when working on large virtual worlds containing arbitrary 

data and functionality. 

 Despite the differences in the existing virtual world applications and platforms, all 

of them share common needs: representing visual 3-D objects, moving and animating 

them, synchronizing all the necessary data among the participants, and storing it for 

continuing use and all of this in an efficient manner. 

In order to succeed in this task, attention must be paid to the scene model that 

represents contents of the world, and the protocol that is used to disseminate the 

changes in the content. Also, by utilizing the available geometric information in the 

client- server communication and data replication, the data is synchronized between 

the participants on a need-to-know basis. 

For Tundra, physics simulation and especially script performance must be 

optimized at some point in order to achieve good performance with larger and richer 

scenes. Some sort of multi-threading or multi-process optimization can be seen to be 

inevitable at some point. Also, having dedicated servers for different tasks (scripts, 

physics) by distributed computing could be interesting. 
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