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Abstract
This project was performed as part of a masters exam in
computer Science and Engineering at the Royal institute of
technology in Stockholm. Scania AB acted as an employer
and has provided both guidance and mentors. This thesis
explores the concept of performing computations on XML-
data and how multi-threaded programing could improve
the performance of such calculations. The thesis begins by
discussing the basics of the XML-language and continues
with basic concepts for multi-threaded programming. Dur-
ing the project two simulations were developed and bench-
marked, one generic simulation to prove the validity of the
method and a more realistic simulation that is supposed
to indicate if the techniques scale in more real environ-
ments. The benchmark result shows good potential and
acts as a base for further discussion on the limitations of
the system at hand. The results show good potential and
multi-threaded solutions could provide big improvements
regarding efficiency.



Referat
Hantering av XML-data med hjälp av

multitrådade lösningar

Detta projekt utfördes som en del av masterexamen i Da-
talogi vid Kungliga tekniska högskolan i Stockholm. Scania
AB har varit arbetsgivare och har bidragit med såväl väg-
ledning som handledare. I denna uppsats utforskas koncept
kring beräkning rörande XML-data och hur multitrådspro-
grammering kan hjälpa till att sänka exekveringstider. Rap-
porten börjar med att förklara grunderna i XML-språket
och fortsätter med att presentera grundläggande koncept
inom multitrådsprogrammering. Under projektet har två
simuleringar utvecklats och prestandatestats, en generell si-
mulering som ämnar att visa att de föreslagna metoderna
fungerar och en mer realistisk simulering som ska indikera
ifall metoderna även fungerar under mer verklighetstrogna
förhållanden. Dessa prestandatester visar på en god poten-
tial och ligger till grund för vidare diskussion kring begräns-
ningarna som finns i systemet.
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Chapter 1

Introduction

Scania is a Swedish truck and bus manufacture company started in 1891[1]. In the
beginning the company designed and manufactured railway carriages but with the
new technology of petrol engines the company changed its course [2]. Since then
Scania has become one of the world leading manufacturers of trucks and busses
and had eleven factories in five different countries in 2010 [1]. The technology
used in these vehicles has gone through tremendous change and today the vehicles
are no longer just physical machines, they also consists of a complex network of
computers, sensors, actuators and so on. A typical truck can contain a large amount
of interconnected embedded computers. Each embedded computer has its own
responsibilities and communicates with the rest of the systems in the truck.

As a result of these technological advances in the vehicles there is a need for
advanced technological aids that help mechanics to diagnose, interact with and
repair these complex systems. Scania Diagnos & Programmer 3 (SDP3) is a software
developed and maintained by Scania to give the mechanic a tool for maintaining and
updating the computer based system inside these modern trucks. In order to deliver
precise and up to date information to the mechanics, Scania has developed and is
maintaining a database of guides, maintenance methods and general information. In
order to further expand and update this database an internal development platform
named SDP3 Production Tool (generally known as PT) has been developed.

1.1 Problem description
In PT there is a process commonly referred to as the build process. This process
loads a collection of XML documents and performs certain tasks with the data. The
tasks can be divided into three parts: structure verification, consistency checks and
transformation. In the end a new library of XML files is generated through the
transformation and this library is used as input to SDP3.

Description of the steps:

• Structure verification: The structure of each XML document is guided
by a schema document that defines rules for what nodes are allowed in the
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CHAPTER 1. INTRODUCTION

particular XML document and how the structure is supposed to be. In the
verification step, the XML documents are verified in regards to the schema to
make sure that all documents have the correct structure.

• Consistency checks: Data may refer to other data in the input XML docu-
ments. In the consistency check these references are verified so that referenced
data actually exists.

• Transformation: The input XML documents are transformed into other
XML output documents. The output documents are a collection of informa-
tion coming from multiple sources, thus the transformation process can be seen
as an information aggregation where information regarding different parts of
the truck and its system is aggregated into a more complete representation of
the knowledge base.

This process is slow and can take more than five minutes to run on a PC with
an Intel Core I5, 8 GB of RAM and an SSD disk. For some users this is a procedure
that has to be repeated several times a day. If the process of building in PT could be
made to run faster it would decrease the time that the users are unable to perform
work and improve the experience of using the software as a whole.

1.2 Aims & scope
In this thesis I have simulated the build process in PT in order to determine if the
execution time could be lowered through the use of multi-threading. I will develop
two simulations, one generic simulation to test if the method yields good results
and one simulation that is more closely modeled upon the build process in PT. The
goal for these simulations is to show what performance gain, in terms of lowered
execution time, could be achieved by using multi-threading techniques. This thesis
will act as motivation and a base for discussing how PT could be further developed
in the future. However no development of PT will be performed during this theses
work. This is due to the excessive amount of time it would take to obtain a good
enough understanding of the PT source code and how the system as a whole is
interconnected. All code will be developed in Java due to the fact that PT is
developed in Java and thus the simulations will provide more realistic results than
if a more optimized language, such as C, was used.

More specific goals:

• Develop a simulation based on a generic XML format without domain specific
elements such as references and in order to evaluate the performance difference
between single-threaded and multi-threaded execution in terms of execution
time .

• Utilize the generic simulation in order to establish how simple optimization
techniques, such as hashmaps, affect execution time.
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1.2. AIMS & SCOPE

• Develop a simulation modeled on PTs build process to evaluate the perfor-
mance difference between single-threaded and multi-threaded execution in a
more realistic setting then the generic simulation.

• Determine how the the number of threads used in multi-thread executions
affects the execution time.
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Chapter 2

Background

2.1 Fundamentals of XML

2.1.1 Extensible Markup Language

Extensible Markup Language (XML) is a general way of representing structured tex-
tual information. It consists of rules about how information should be represented
so that information can be easily shared between different systems and platforms.
XML was formally accepted as a World Wide Web Consortium (W3C) recommenda-
tion in the year 1998[3][4]. Since then XML has became a widely accepted standard
for representing data especially on the Internet. The XML language does not limit
the data by the use of certain keywords. XML only consists of rules about how the
markup of the data should be structured so that the data is universally readable
[3].

Listing 2.1. A simple XML document. The Countries node encloses two country
sub-nodes. In this way data is represented as a hierarchical grouping.

1 <Countries>
2 <Country Name="Sweden">
3 <Population>9.5 million</Population>
4 <Capital>Stockholm</Capital>
5 <Country/>
6 <Country Name="Germany">
7 <Population>81.8 million</Population>
8 <Capital>Berlin</Capital>
9 <Country/>

10 </Countries>

In listing 2.1 you can see a simple XML document. Each tag is surrounded by
<> and consists of a start tag and an end tag which is denoted by </>. W3C
defines (a simplified version) XML documents in extended Backus-Naur form as
(for a full definition see [5])
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CHAPTER 2. BACKGROUND

document ::= element
element ::= EmptyElemTag | Stag content Etag
EmptyElemTag ::= ’<’ Name (Attribute)* ’/>’
content ::= CharData? (element CharData?)*
STag ::= ’<’ Name Attribute* ’>’
Attribute ::= Name Eq AttValue
ETag ::= ’</’ Name’>’

2.1.2 Document Object Model

XML documents are many times stored as Document Object Model (DOM) when
they are handled inside software. The Document Object Model, a W3C recommen-
dation, is a programming API for XML documents that defines a set of interfaces
for viewing and updating XML documents represented as tree structures [6]. A
DOM-tree is a representation of an XML document that stores the tags in the doc-
ument as nodes and builds the relationships between the nodes as references. The
exact structures for building DOM-trees differs between implementations, but in
general the nodes form a tree that can be followed from root to leaves. In figure 2.1
we can see representation of the tree build from the XML in listing 2.1. Note that
the attribute Name in the country tag is not shown in the tree but is represented as
a variable inside each country tag. Further it should be noted that the text leaves
are represented as nodes with the actual content stored within.

Figure 2.1. One way to represent a simplified view of the internal structure of a
DOM tree
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2.1.3 XPath and how to search in XML

XML Path language (XPath) is a query language for selecting nodes in XML docu-
ments. XPath is not restricted to searching in DOM-trees but as with DOM, Xpath
represents the XML document as a tree structure [3]. The structure of XPath looks
similar to file locations in Linux. To refer to the whole document or root node ’/’
is used. To find all subnodes of the root the path ’/./’ can be used (the dot symbol
is used as a wild-card in XPath). Some examples of how to locate different kinds of
nodes from the XML document in listing 2.1

XPath: /Country

Yields a list with the two country nodes and their children:

Listing 2.2. The result will be the subset of Countries, in this case two Country
nodes.

1 <Country Name="Sweden">
2 <Population>9.5 million</Population>
3 <Capital>Stockholm</Capital>
4 <Country/>
5 <Country Name="Germany">
6 <Population>81.8 million</Population>
7 <Capital>Berlin</Capital>
8 <Country/>

XPath: /Country/Capital

Yields a list with the two Capital nodes and their children:

Listing 2.3. The result will be the capital node for each country node.

1 <Capital>Stockholm</Capital>
2 <Capital>Berlin</Capital>

XPath: /Country[@Name=’Sweden’]/Capital

The syntax [@tag=value] is used to locate a tag with a certain attribute that has a
certain value. So the above expression yields only the Capital node of the Country
with the tag Name that has the value Sweden:

Listing 2.4. The result will be the Capital node of the node where the attribute
Name is Sweden.

1 <Capital>Stockholm</Capital>
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CHAPTER 2. BACKGROUND

2.2 Multi-threading

2.2.1 What is multi-threading

In order to explain multi-threading we must first define some essential terms.

• Thread: Sequential instructions that are executed in the context of a process.

• Single-threaded: A process that only executes using one thread of control.

• Multi-threaded: A process that executes using two or more threads of con-
trol.

• Parallel execution: Two or more threads are executed at the same time
using different CPUs or CPU cores.

• Concurrent execution: Two or more threads are able to execute at the
same time but might take turns to execute. The order of execution is in
general looked upon as indeterministic.

The alternative to multi-threaded programs are sequential programs. A sequential
program consists of a process and a single-thread of control. In a sequential program
each instruction is executed one after another in a deterministic way. This means
that each time the program is executed, the instructions will be executed in the
exact same order[7]. In multi-threaded programs, however, this is not generally the
case. A multi-threaded program consists of two or more threads of control. All the
threads in the process collaborate and are able to execute in a concurrent or parallel
way. A thread and a process have several things in common. It could be said that
a thread is a scaled down process that is able to run inside another process [7].
The ability to have more than one thread in one process helps solve the problem of
performing calculations while still having a responsive interface. The reason for this
is that when a process with only one thread starts a calculation it will be unable to
receive input or perform any other tasks until the calculations are complete.

Multiprogramming allows several processes to execute concurrently by allowing
access to the CPU and suspending processes, and thus alternating between what
process are allowed to execute. In more resent years even consumer computers have
multiple CPU cores. This allows threads and processes to execute in parallel and
make more use of the CPU time.

All processes have their own address space, global variables, open files etc. and
these are all shared between all threads within the process. Each thread however
has its own program counter, registers, stack and state. This is why the threads are
able to execute in a concurrent fashion. As long as each thread only manipulates
its own registers and stack data the treads execute completely independent of each
other [7]. But since the address space, and in particular the heap, is shared between
threads there is a need to limit the threads from altering shared data from more
than one thread at a time.
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2.2.2 Why use multi-threading

In the last ten years it has become more and more frequent that normal consumer
computers have the capabilities of multicore CPUs. Today almost all new computers
have these capabilities. This means that it has become more important to be able
to harness these new capabilities and develop programs that are able to perform
heavy calculation in parallel using threads.

Even before multi-core CPUs became available threads and multi-thread pro-
gramming were important concepts, because of context switching (see figure 2.2).
In general a program is not able to make full use of the CPU during all of its exe-
cution because of the frequent need to wait for other hardware. The most frequent
reason for this is that a thread is waiting for some IO response. A thread could
be waiting to read data from the hard drive or be in a state where it needs user
input in order to progress. A multi-threaded solution can in this case help to make
sure as much as possible of the CPUs resources are utilized by letting the program
perform calculations in separate threads and the threads that are in a waiting state
can yield the CPU time to another thread that might make better use of it. A
typical example is software with a graphical interface. The interface is handled by
its own thread and thus even if some user input triggers some calculation phase the
interface still remains responsive for further user instructions.

2.2.3 Multi-threading in general

Concurrency

The term concurrent execution describes the 0ability to have more than one thread
able to execute at one time. Although this does not mean that these threads
necessarily execute in parallel. In fig 2.2 we can see an example of how two threads
execute concurrently, the execution of the threads are interleaving, they take turns
to use the CPU. This is typical behavior of older CPU architectures where the
CPU only has one core and thus only one thread can execute at a time. Modern
computers often have multiple cores, this allows for true parallel execution as in fig
2.3.

Figure 2.2. Two threads executing concurrently. The threads take turns executing
until one of the threads end its execution.
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Figure 2.3. Two threads executing parallel. Both treads are able to execute at the
same time due to multiple CPUs or multiple cores in a CPU.

Locks

One problem that arises when working with concurrency is race conditions. A race
condition is when two or more threads compete over a single resource. The most
typical example where this is a problem is when multiple threads try to read and
update a shared variable. This could lead to situations where the thread that reads
the variable acquires an old value or even a corrupt value. There are also situations
where the result of an execution becomes indeterministic because there is no way of
knowing in what order the treads execute. In listing 2.5 it could be assumed that
the desired behavior is that the variable ’y’ is supposed to be either 5 or 8 when
the program terminates. However since thread B is allowed to alter the variable
’a’ there is a possibility that ’y’ might end up having the value 9 at the end of
execution.

Listing 2.5. Example of a race condition

class W{
int a = 3;
class A implements Runnable{

int y;
public void run(){

if(a == 3){
//Thread B might change ’a’ here
y = a + 5;

}
else{

y = 5;
}

}
}
class B implements Runnable{

public void run(){
a++;

}
}

}

Locks are used to prevent race conditions by limiting the access of certain vari-
ables to one thread at a time. There are several different kinds of lock but the two
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most common is mutual exclusive locks (mutex locks) and condition synchroniza-
tion.

• Mutex locks are used to ensure that a section of code is not executed by
more than one thread at a time. Such a section is called a critical section
[8]. The mutex lock could be visualized as a locked room with only one key.
When one thread wants access through the door it has to ask for the key. If
no one else is inside the room the thread receives the key and can access the
room. But if another thread is currently in the room the key is not available
and thus the thread has to wait until the current holder of the key exits the
room and returns the key.

• Conditional Synchronization is used to delay a thread until some boolean
condition becomes true. The state of the boolean condition is updated by
another thread. With the same kind of analogy as for mutex locks this could
also be described as a locked room but in this case the door opens with a
remote switch. When a thread wants to access the room it checks if the door
is unlocked and in other case it waits until another thread opens the door with
the switch.

Design patterns

A common design pattern when working with multiple threads is called Producer/-
Consumer. The Producer/Consumer pattern is based on separating the responsi-
bilities into tasks of generating subproblems (producers) and solving subproblems
(consumers). Depending on the nature of the problem there might be one or more
producers and one or more consumers. There are some variations to how the pro-
ducers and consumers communicate with each other. One solution is to let each
producer send data to a certain consumer through a pipe. This one to one rela-
tionship between producers and consumers is easy to implement since it is easy to
synchronize the data flow. As long as a consumer does not read data from the pipe
at the same time as the producer is writing data to the pipe there are no problems
with race conditions. But since this ties a certain producer to a certain consumer
it may be hard to balance the workload in cases where there are more than one
producer/consumer pair and the tasks vary in difficulty. Another approach is to
have a common queue that is shared between all producers and all consumers. This
balances the workload better, since every consumer can perform a task that is gen-
erated from any producer. So even if a certain producer generates tasks that take
particularly long time to solve, all consumers will help divide the work of solving
these tasks. Although a queue helps distribute the workload it also requires a more
sophisticated synchronization policy since there is now several producers that should
only be able to write into the queue at once and several consumers who may only
take a task from the queue at once.
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2.2.4 Multi-threading in Java

Java threads

In Java, any class can be executed as a thread as long as it implements the interface
Runnable 1. A thread may be declared like this:

Listing 2.6. Simple thread that only prints a message and then terminates

class Thread_Example implements Runnable{
@Override
public void run(){

System.out.println("Hello World!");
}

}

When starting a thread, the execution always begins at the method run(). As
can be seen from the example the return value of run in void. Void is in fact the only
possible return value, since all threads execute asynchronously the code that started
the thread will not be able obtain the return value since it will have continued with
its own execution. All that is needed to start a thread is a Thread object with the
Runnable object that should be executed as constructor parameter and a call to the
method start().

Listing 2.7. Create and start a thread

Thread_Example runnable = new Thread_Example();
Thread thread = new Thread(runnable);
thread.start();

Executorservice

Executorservice is a framework that was introduced in Java version 1.5. This frame-
work makes it easier to create work queues that handle multiple threads and control
their execution. When creating an Executorservice you are able to define several
parameters regarding how the threads should execute and how many are allowed to
execute concurrently.

Listing 2.8. Create an ExecutorService and start three threads

ExecutorService executor = Executors.newFixedThreadPool(2);
executor.execute(new Thread_Example());
executor.execute(new Thread_Example());
executor.execute(new Thread_Example());
executor.shutdown();

1The interface Callable can also be used to create a thread that may return data. Further
information about Callable is omitted.
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In listing 2.8 we create an ExecutorService with a fixed thread pool of size two.
This means that the thread pool will allow two threads to execute concurrently. We
then add three tasks to the thread pool, these threads will begin to execute as soon
as they are added to the pool. Since only two threads may execute concurrently
one of the threads will have to wait until one of the threads have finished their
execution. The last step, executor.shutdown(), indicates that no new threads are
allowed to enter the thread pool and that the executor should terminate once all
the threads in the pool have terminated.

Synchronization

Java offers several solutions to control synchronization. The most common method
is Java’s intrinsic lock, defined by the keyword synchronized. This lock uses the
philosophy that all objects may be used as a lock. One way of using this is to make
a method synchronized:

Listing 2.9. A synchronized method

public synchronized void metod(){
//method content

}

This will make sure that all calls to this method in an object is made in a
serial fashion. This is a very simple construction for controlling synchronization
but it also introduces some complexity. Since the synchronized method uses the
intrinsic lock on the called object and thus locks he whole object and not just the
method, problems with deadlocks might occur if more than one method is declared
synchronized.

Listing 2.10. A deadlock example

class deadlock{
boolean isReady = false;
public synchronized void setReady(){

this.isReady = true;
}

public synchronized void doWork(){
while(!this.isReady){

//wait until ready
}
//do work

}

The example in listing 2.11 is a simple error to make. If one thread calls
doWork() before setReady() is called a deadlock will occur. This is a simple example
but in more complex code this might become a hard to find bug.
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Another lock Java provides is the CountDown-latch. This construction makes
is easy so set up rendezvous points or synchronization points in the code. This
is often needed where several threads perform a similar task and at some point it
is important that all threads have reached some point in the code before further
execution is allowed. A typical example may be a multi-threaded animation. Each
thread calculates part of each frame. Before a frame can be painted on screen
every thread needs to be done with the calculation for the frame. In this case a
CountDown-latch is useful for signaling when all threads are done with the frame,
when this happens, the frame can be printed and the threads may start work on
the next frame.

Listing 2.11. An example of the use if the Countdown-latch

public void animate(CountDownLatch latch){
while(continueAnimate){

//calculate frame
latch.countDown(); //count down to signal task completion
latch.await(); //wait until all threads reach this point

}
}
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Queues

Queues are useful for communicating tasks between producers and consumers.
Queues in computers work the same way as real life queues in the grocery store.
An object can be placed last in the queue and the object first in the queue will be
the first to exit the queue. A double-ended queue also offers the possibility to place
object first in the queue and retrieve the object last in the queue.

Java offers concurrent versions of queues called ConcurrentQueue and Concur-
rentDeque. These data structures are internally synchronized, this means that mul-
tiple threads can operate towards them concurrently without any need for manual
synchronization. While using these structures as pipelines between producers and
consumers there is a need to be able to signal when no more data will be added to
the pipe. One common way of doing this is to use something called a poison object.
A poison object looks similar to other objects that are added to the pipe but instead
of containing real data it contains some special data that tells the consumers that
all producers are done and that no more tasks will be added to the queue. The
reason that this is important is to allow the consumers to complete their execution
and terminate when no more jobs are available.

Figure 2.4. A queue and a double-ended queue

2.3 SDP3 and PT

2.3.1 Scania Diagnose & Programmer 3
Modern trucks contain advanced electrical systems and a network of electronic con-
trol units (ECU). There are several different ECUs in a truck, each has a different
function. There are for example ECUs for controlling brakes, the motor, the climate
control and the gearbox. The ECUs are also able to detect when some functions in
the truck are compromised in some way, and to keep track of general statistics about
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the vehicles usage and performance. Scania Diagnose & Programmer 3 (SDP3) is
a tool, developed by Scania, for programming the ECUs and communicating with
the ECUs in order to diagnose and maintain the trucks. SDP3 is used by mechanics
in several countries all over the world. Each time a truck from Scania arrives in
a repair shop, the mechanic connects a computer with SDP3 to the truck and can
through SDP3 recieve information about how the specific truck is configured, if the
ECUs are reporting any fault in the system that need to be repaired or maintained,
or if there are new software updated available for the ECUs.

If SDP3 reports that some function in the truck is not working properly, the
mechanic can access a troubleshooting guide that helps him/her test the system in
order to diagnose where the problem lies and how to repair or replace the faulty
hardware.

SDP3

Mechanic

Troubleshoot

Calibrate

Update ECU

Remodel truck

Figure 2.5. SDP3 is a program that serves as an interface to the trucks internal
network.

2.3.2 Scania Diagnose & Programmer 3 Production Tool
In order to provide SDP3 with data a tool called Scania Diagnose & Programmer
3 Production Tool (SDP3 PT or PT) is developed. PT has two major functions:

1. Provide method engineers2 and technical writers a development platform for
producing textual information and scripted guide declarations that are to be
used in SDP3.

2. Serve as an integration platform for data originating from PT internally and
from other fractions of Scania to produce a complete database that serves as
input to SDP3.

PT is built in Java as an Eclipse Rich Client Platform (RCP). This means that
PT is built using the Eclipse Framework and standard components [9].

2Engineers who are responsible for developing and defining methods on how to repair and
maintain Scania vehicles
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PT as a development platform

PT is a tool that is only used internally at Scania and has two types of users,
method engineers and technical writers. Both of these user groups depend on PT
in order to produce information that is to be used in SDP3. They rely on PT in
their everyday work to continuously integrate their work product into SDP3 and to
verify that the new material is correct. In order to perform this integration they
are reliant on what is called the PT-build-process.

PT as an integration platform

PT serves as an integration platform in order to compile different kinds of data
coming from several different systems and departments inside Scania. This data
contains different information about the trucks and how to maintain them. The
PT-build-process is used in order to verify that all the data is correct in terms of
structure and in terms of reference validity and also to transform the data into a
database that is used to present the data to the end user in SDP3.
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Methods

3.1 Proposed approach

3.1.1 Preconditions
In PT there are some preconditions that I have used in order to design a solution
that is effective for the specific domain. These preconditions are

1. All input data is known at the beginning of execution.

2. The transformation scheme is know at the beginning of execution.

3. Input data is never modified during execution.

4. Output data is never modified after creation.

3.1.2 Module design
My design is separated into five modules with different responsibilities. Each module
is able to run in both sequential and multi-threaded versions. The five modules are

1. Collection This module is responsible for providing access to the loaded
input data. This module is also responsible for initiating the other modules
and serves as the interface for the whole process.

2. Loader This module is responsible for loading and parsing the input data
and storing it in the collection. The loader threads parse the input XML data
and store it as DOM-trees.

3. Consistency checker This module is responsible for finding and verifying
references in the input data.

4. Transformer This module is responsible for transforming input data and
producing output data by following the transformation scheme and reading
appropriate data from the collection.
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5. Result writer This module is responsible for writing the output data pro-
duced by the transformer to disk.

3.1.3 Communication between the modules

Preliminary approach

The communication or task transfer between modules was initially designed with a
one thread per task approach. Each module had a thread-pool and for each task
that should be transfered from one thread to another module, the calling thread
would create a thread for the specific task and place it in the other modules thread-
pool. This approach is easy to implement but it gives rise to a couple of problems.
One problem is that it is hard to separate the modules in a clean way, they become
more entangled and increasingly hard to develop. The other problem is that there
is some performance loss when creating a big quantity of threads.

Final approach

The final approach uses a more strict Producer-Consumer pattern. Each module
still has a thread-pool but only a fixed number of threads are created. The actual
tasks are created as a data structure and passed to the consumer threads through a
synchronized queue. This approach provides a cleaner interface between the mod-
ules and the amount of created threads are kept to minimum. This new approach
however gave rise to two new challenges

1. How to signal that the producers have finished their execution and that no
more tasks will be created.

2. How to determine when all producers have finished their execution.

Problem one was solved by introducing a "poison object" into the queue. When
a consumer comes across this object it escapes the consumer loop, however before it
terminates the poison object is reinserted into the queue. This method of reinserting
the object means that all consumers will be able to terminate regardless of how many
producers or consumers were in use.

The second problem is of concern when there are multiple producers. The
individual producers have no knowledge of the other producers and thus even if one
producer terminates it does not know if the other producers are still executing. This
raises the question of who should be inserting the "poison object" into the queue.
To solve this I created a small semaphore- like class. When a producer starts it
increments the semaphore and before it terminates it decrements the semaphore.
If the semaphore is zero after the decrementation has been performed the specific
producer is the last one to terminate and thus it takes the responsibility of adding
the "poison object".
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3.2 Proposed benchmarks
The benchmark is separated into three phases:

1. A profiling tool will be used to identify what components take the most time.

2. Generic format for input data to show what kind of performance gain can be
achieved.

3. If the generic version shows good results more realistic data will be tested.

The Netbeans[10] built in profiling tool will be used to evaluate the suggested
solution and based on the results some optimizations will be implemented.

To test the difference between multi-threaded and single-threaded implemen-
tation a generic format for the input data will be used. The reason for this is
that it is hard to write code for a more realistic data format that supports both
multi-threaded and single-threaded execution with minimal code difference. This
approach provides more accurate for the difference between multi-threaded and
single-threaded evaluation. A more realistic format will be evaluated in multi-
threading only to show that the method scales for the more realistic data as well.

3.3 Implementation details

3.3.1 Collection
The collection stores all loaded data in a hashmap. The data is represented as a data
structure called CollectionData. CollectionData is a class that is designed to store
data and give access to the data in a thread safe manner. One reason for providing
the CollectionData instead of storing the actual DOM-trees in the collection is to be
able to account for the fact that the different modules operate asynchronously. The
implication of this asynchronous behavior is that if some module asked for some
data from the collection and the data is unavailable the module would be unable
to determine if the data is non existent or just not yet loaded. To solve this the
collection makes use of the precondition "All input data is known at the beginning
of execution". Every file that will be loaded is created as a CollectionData object
that holds nothing but the path to the file that represents the specific data object
and stores these objects in the collection hashmap. This means that if a module
tries to access certain data and the data will be loaded at some point there will exist
a CollectionData object. If the actual data is not yet loaded into the CollectionData
object the thread asking to access the data will be put into a blocking-wait mode
until the data is loaded.

3.3.2 Loader
There are multiple loader threads that receive tasks from a concurrent linkedlist in
the form of CollectionData obejct via the collection. A loader picks a task from

21



CHAPTER 3. METHODS

Figure 3.1. Behavior of the collection

the queue and loads the file, specified by the CollectionData object, into a DOM-
tree. The resulting DOM-tree is stored in the task object and access to the data is
activated. Each time a DOM-tree has been loaded, the loader creates a Concisten-
cyTask that holds the CollectionData object. The purpose of the ConcistencyTask
is to be able to signal that the loaders are done and that no more tasks will be added
to the queue. This is done by creating a ConcistencyTask and setting a EndOfJob
variable to true.

Figure 3.2. Behavior of the loaders
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3.3.3 Consistency checker

There are multiple ConcistencyChecker threads that receive tasks from a concurrent
linkedlist in the form of ConcistencyTask-objects via the loaders. The concistency-
Checker searches the current DOM-tree in search of tags that have the ref-attribute.
Each tag that has a ref-attribute is referring to some data. Each such reference is
evaluated and verified so that the referenced data actually exists. If the referenced
data is not yet loaded, the thread will perform a blocking wait until the needed data
has been loaded into the collection.

Figure 3.3. Behavior of the concistency checkers

3.3.4 Transformer

There are multiple transformer threads that receive tasks from a concurrent linkedlist
in the form of TransformRule-objects via the Collection (the rules are passed to the
Collection at the beginning of execution). Each transformer picks a rule from the
queue and applies it into a output file. Each rule defines how one output file should
be constructed. Each rule refers to data from multiple input files. This means that
an output file consists of data from several input files. The data needed to construct
the output files are loaded from the collection via the CollectionData objects. If a
transformer tries to access data that is not yet loaded into the CollectionData ob-
ject it performs a blocking wait until the data is available. The transformer builds
a DOM-tree according to the specified rule and when the DOM-tree is complete it
passes a ResultData object to the result writers through a concurrent linkedlist.
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Figure 3.4. Behavior of the concistency checkers

3.3.5 Result writer
There are multiple result writer threads that receive tasks from a concurrent linkedlist
in the form of ResultData-objects via the transformers. The result writer retrieves
the DOM-tree from the ResultData-object, transforms it into an XML document
and writes it to hard drive.

Figure 3.5. Behavior of the result writer

3.3.6 Realistic simulation
There is only one major difference between the generic simulation and the more real-
istic simulation except from the format of the input data (described in section 3.4).
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This difference is due to the fact that the realistic simulation lacks the information
of data location. This means that data is only referred to based on identification
and there is no information about in what file this data is located. Further this
implies that the consistency checker need to be able to evaluate the existence of
some data even if it has no information about where this data might be located. To
solve this there are two major difference in implementation :

1. The collection holds a hashset that stores what data exists. This hashset only
contains the identification of data and not the data in itself. This is possible
since the consistency checker only verifies that the data exists, and does not
perform any additional operation on the data. The hashset is populated by
the loaders as part of the loading process.

2. The consistency checkers have to be aware of the state of the loaders. If a
consistency checker fails to find some data in the hashset it will check if the
loaders have finished. If the loaders are not yet finished, the reference will
have to be verified again after the loaders are done. No data can be declared
as unavailable until all input files have been loaded into the collection.

3.4 Benchmark suite

3.4.1 Generic simulation
Input data format

The XML format for the generic simulation is designed with the purpose of being
easy to parse and perform operations on. The format can informally be defined as:

Listing 3.1. Example of a simple XML document

1 <root>
2 <name-1 id="1" ref="file-id id">data-1</name-1>
3 <name-2>data-2</name-2>
4 <name-3 id="3" ref="file-id id">data-3</name-3>
5 . . .
6 <name-n id="n" ref="file-id id">data-n</name-n>
7 </root>

Description of the XML format details:

• The name and the random-data have the exact same format. They always
start with the letter x followed by 32 random numbers or lowercase letters.

• The id attribute is specific for each file and starts at 1 and count up to n.

• The ref attributes are semi-random references to other XML-tags in the same
or other documents.
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• Half of the data tags contain an id-attribute and a ref-attribute. The rest of
the tags are only data tags (see listing 3.1 line 1 and 2).

Methodology

Three benchmark tests where performed. The first one was a benchmark on the
generic simulation with comparisons between single- and multi-threaded execution.
The test where also designed to show if hashing part of the input while loaded the
data can improve the performance of the consistency checker. This means that
there will be four test configurations to be considered. Each test will be evaluated
20 times and the result will be evaluated with Anova (see 3.4.1).

ANOVA - Analysis of variance

Anova is used in order to perform a statistical test comparing multiple factors. In
this case there are two factors, the effects of optimization and of multi-threading
[11]. The result of the Anova test will provide information about the statistical
probability that one or both factors are significant. To perform the Anova test a
software called ezAnova is used for this project[12].

3.4.2 Realistic simulation

Input data format

The XML-format for the more realistic simulation is more complex, below is an
example of how the format is structured.

Listing 3.2. Example of a simple XML document

1 <SimulatedGuide>
2 <Step>
3 <Name>x8f887f50709d49c6a521b617aabab6eb</Name>
4 <NextStep>
5 <Step ref="Step">x1a38f9aeeb0a4386b6248a5489a3b674</Step>
6 <Condition>
7 <eq>
8 <variable>
9 <name>Some Stored Variable</name>

10 <storetype>StoredVariable</storetype>
11 <datatype>string</datatype>
12 </variable>
13 <constant>
14 <value>Some variable value</value>
15 <datatype>string</datatype>
16 </constant>
17 </eq>
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18 </Condition>
19 </NextStep>
20 </Step>
21 . . .
22 <\SimulatedGuide>

The main difference between the generic format and this more realistic format
in terms of complexity is that the realistic format has more depth in the XML-tree.
There is also a significant difference in the distribution between information-data
and meta-data. This means that the realistic format will yield a lower computation
complexity in relation to file size.

Methodology

The realistic simulation will be developed both as a multi-threaded version and as a
single-threaded version and these two version will be benchmarked using the same
data input.

3.4.3 Profiling
Software profiling is useful for finding the bottlenecks of an application. A common
opinion about execution time distribution is that 90% of the time spent executing
is spent on executing 10% of the code [13]. I will use the Netbeans built in profiling
tool to evaluate what parts of the code that seem to take significantly longer to
execute than other parts and discuss if this is reasonable or if the proposed solution
could be improved upon.
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Results and Discussion

4.1 Benchmark tests

4.1.1 Generic simulation benchmark
In order to verify how multi-threading and optimizations affect the execution time
I evaluated the generic simulation through a benchmark task. The input consisted
of 10000 files. Each had 100 XML-nodes and 50 references. Each input file had an
approximate size of 11 kilobytes. The benchmark results for the generic simulation
show a significant improvement both in regard to optimizations and multi-threading.
In figure 4.11 we can clearly see how the execution time improves with the help of
multi-threading and optimization. Both multi-threading and optimization offer a
significant improvement individually and the best performance is achieved when the
two are combined.

A statistical test with Anova shows that the results are statistically significant

1Data table can be found in appendix A table A.1
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Figure 4.1. Result from benchmark on generic simulation. No error bars are shown
since standard deviation is small (lower than 2).
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Table 4.1. Anova result for generic simulation shows that each factor is statistically
significant both individually and when combined

ANOVA: Design 2 Between Subject Factors
A F(1,76) = 3671196 p<0,000001 SS=3257263,51 MSe=0,89
B F(1,76) = 934216 p<0,000001 SS=828882,08 MSe=0,89
A*B F(1,76) = 497765 p<0,000001 SS=441640,98 MSe=0,89

PAIRWISE COMPARISONS [Q=TukeyHSD: *=p<0.05 **=p<0.01]
-[Multi_Opti]vs[Multi_Naive] t(38)=173,37 p< 0,0001 Q=261**
-[Multi_Opti]vs[Single_Opti] t(38)=819,00 p< 0,0001 Q=1210**
-[Multi_Opti]vs[Single_Naive] t(38)=1843,22 p< 0,0001 Q=2882**
-[Multi_Naive]vs[Single_Opti] t(38)=761,60 p< 0,0001 Q=949**
-[Multi_Naive]vs[Single_Naive] t(38)=1945,70 p< 0,0001 Q=2621**
-[Single_Opti]vs[Single_Naive] t(38)=1270,07 p< 0,0001 Q=1672**

DESCRIPTIVE DETAILS
A Multi Multi Single Single
B Opti Naive Opti Naive

A B C D
Mean 57,75 112,73 312,71 664,89
StDev 1,13 0,85 0,81 0,94
SE 0,25 0,19 0,18 0,21
Var 1,29 0,73 0,65 0,88
CI95% 0,42 0,42 0,42 0,42
N 20 20 20 20
Skew -1,18 0,49 -0,072 0,61
zSkew -2,16 0,89 -0,132 1,11
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4.1.2 Realistic simulation benchmark
To be able to show that the methods proposed in the generic simulation scaled
when implemented in a more domain-realistic setting I benchmarked the realistic
simulation with a similar amount of data input. The input consisted of 10000 files
each with a size of approximately 11 kilobytes. But the difference in XML format
meant that there where fewer top-level nodes and fewer references. To compare
the results from the generic simulation and the realistic simulation (figure 4.22) it
is interesting to compare the "Single-Opti" bar in figure 4.1 to the "Single" bar in
figure 4.2 and corresponding for "Multi-Opti and "Multi".
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Figure 4.2. Result from benchmark on realistic simulation shows that the execution
time for multi-threaded execution is almost a third of the time of that of the single-
threaded execution. No error bars are shown since standard deviation is small (lower
than 2).

We can see that:

1. "Single" in the realistic simulation is about half the size of "Single-Opti" in the
generic simulation.

2. "Multi" in the realistic simulation is about the same as "Multi-Opti" in the
generic simulation.

I will discuss more in depth why this is the case in section 4.3

2Data table can be found in appendix A table A.2
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4.1.3 Amount of threads per thread-pool

In order to find out how many threads were optimal to use for the thread-pools, I
performed benchmark tests using different amount of threads. The input data was
similar to the one used in the previous benchmarks.

Generic simulation without optimizations

In figure 4.33 we can see that the time improves from one down to three threads,
but for three up to six threads the difference in performance is negligible.
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Figure 4.3. Different sizes of thread-pools for the generic simulation without opti-
mizations. No error bars are shown since standard deviation is small (lower than 6).
The data shows that execution time is lowest when 4 threads per pool is used.

Generic simulation with optimizations

The results for the generic optimized simulation (in figure 4.44) shows very similar
results compared to the naive simulation.

3Data table can be found in appendix A table A.3
4Data table can be found in appendix A table A.4

33



CHAPTER 4. RESULTS AND DISCUSSION

0

50

100

150

200

250

300

1 2 3 4 5 6

S
e
c
o
n
d
s

Figure 4.4. Different sizes of thread-pools for the generic optimized simulation. No
error bars are shown since standard deviation is small (lower than 4). The data shows
that execution time is lowest when 4 threads per pool is used.

Realistic simulation

The realistic simulation (in figure 4.55) shows the same characteristics as the generic
simulations when the amount of threads per thread-pool is scaled up.

4.2 Profiler Results

While comparing the results from execution using different amount of threads with
a profiling tool the thread-execution-visualization indicates that the amount of time
spent on certain task seems to follow a specific pattern. When comparing the time
spent in the loader thread while executing with different amount of threads the
time spent in each of these loader-threads seemed to be the same when the amount
of threads per thread-pool reached four or more. This means that although more
threads where performing the same task, there was none or little improvement in
time in solving the specific task.

5Data table can be found in appendix A table A.5
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Figure 4.5. Execution time depending on the size of the thread-pools in realistic
simulation.

4.3 Discussion

Comparison between Generic and realistic simulation results

When comparing the results from the generic simulation (figure 4.1) and the results
from the realistic simulation (figure 4.2) it is interesting to observe that the corre-
sponding execution time for single-threaded execution is about half in the realistic
results. This is probably due to the fact that the nature of the realistic XML-format
is such that it yields a lower computational complexity than the XML-format in the
generic simulation. On the other hand the results for the multi-threaded tests are
comparable. My hypothesis of why this happens is that the computational com-
plexity in the simulations becomes negligible in relation to how much time it takes
for input and output for the given amount of data. To clarify: it might be the case
that all the operations that are dependent on the CPU are able to execute without
being restricted by the CPU performance, what is actually limiting the execution
is the fact that data needs to be loaded from, and written to, the hard-drive. If
this was true it would mean that these results would be close to a lower limit of the
execution speed (at least in term of processing speed). To achieve an overall lower
processing time the input and output operations would have to be improved.
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Amount of threads per thread-pool
The benchmarks for how many threads that should be used (section 4.1.3) show
that it does not seem to matter how many are used, as long as there are not too
few. The fact that all of the charts show about the same execution time for all
simulations with three or more threads per thread-pool could further point towards
my theory presented in the previous section. The theory that the execution time is
limited by the input and output operations could explain why the execution time
does not improve as more threads are added. The speed at which the program is
able to read and write to the hard-drive does not increase as more threads are used.
If the theory that all CPU dependent computations get free access to the CPU since
the processing is dependent on waiting for I/O it would explain why the time does
not improve with more threads.
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Conclusion

5.1 Summary
The generic simulation showed that both multi-threading and optimization tech-
niques have a great impact on the performance of the type of XML-processing
presented in this thesis. The results from the more realistic simulation shows that
the performance gains scale well in a more realistic setting. In the benchmarks
performed in order to show how the amount of threads affected the performance,
the results points towards a thread count close to the amount of cores in the CPU.
The benchmarks performed in this thesis is however not sufficient to indicate if the
amount of CPU cores is the main deciding factor when choosing how many threads
should be used, there could be other factors such as I/O speed. In order to an-
swer this question more benchmarks on other computer hardware would have to be
performed.

5.2 Implications
My work on this matter has given Scania and the team working with PT a good
indication that the effort to further develop the buildprocess in PT and implement
some of the key ideas I have presented would yield a good result. They have made
plans to actually use my ideas as a base for further discussions regarding future
development.

5.3 Future work
In the future it would be interesting to look more deeply into how the input and
output operations affect the execution time. To do this it would be essential to find
an alternative to the DOM-structure when storing the XML documents in memory.
The reason for this is that DOM is using the DeferredDocument interface and thus
it is impossible to completely isolate the input and output operations from the
actual data processing. I have not been able to find a good alternative to DOM
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but it might be possible to develop a domain specific data structure that serves the
purpose better. Although this would be an interesting path to pursue I have no
data to support whether or not this would yield a better result.
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Single-Naive Single-Opti Multi-Naive Multi-Opti
664,643 313,927 111,594 54,734
664,383 311,721 112,568 55,782
663,464 313,157 113,255 58,224
664,497 313,516 111,39 58,379
665,196 312,823 113,125 58,596
663,962 313,747 114,627 56,182
663,654 312,129 113,526 58,301
665,428 313,69 112,737 58,419
664,74 313,114 112,252 59,144
665,208 311,539 112,833 59,503
664,795 313,69 112,164 57,805
665,864 311,822 112,199 57,211
663,966 312,954 112,466 57,112
666,08 312,379 112,376 58,033
666,173 311,37 114,239 57,722
664,57 312,479 113,206 58,102
665,141 311,949 113,388 58,467
665,117 312,512 111,857 58,158
663,819 312,283 113,125 57,231
667,164 313,492 111,669 57,932

Table A.1. Simulation results from generic simulation benchmark test. Values are
in seconds.
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multi single
56,206 146,975
58,342 146,03
55,079 146,861
55,683 150,869
55,517 149,473
55,174 148,502
55,336 148,342
55,648 147,981
55,304 148,161
58,312 146,937
56,84 146,641
54,463 147,808
54,114 146,271
54,698 146,413
55,454 146,875
52,907 146,163
54,56 147,374
55,639 146,718
53,551 146,346
55,433 146,725

Table A.2. Benchmark results for realistic simulation. Values are in seconds.

40



Threads 1 2 3 4 5 6
545,408 211,975 141,012 110,009 112,524 123,439
543,495 208,876 139,777 112,79 111,419 120,269
557,147 208,409 143,599 111,396 112,938 116,792
541,428 210,979 143,055 111,321 112,543 120,039
543,916 211,364 142,298 113,604 113,114 120,302
544,348 208,204 141,157 112,711 113,664 119,259
542,428 209,699 142,703 111,324 111,049 120,913
543,684 211,612 140,795 113,046 114,019 122,334
557,249 207,692 140,79 113,343 112,796 123,766
562,025 210,259 142,948 110,802 112,146 125,426
546,626 209,596 140,908 113,78 112,849 124,943
543,47 208,653 137,557 110,588 112,232 124,492

544,765 211,811 142,984 111,821 113,699 122,862
545,26 209,993 139,728 111,144 112,83 121,759

546,164 209,473 143,926 110,938 112,114 118,587
542,891 210,282 141,045 116,034 113,271 117,941
544,206 208,934 139,857 111,309 111,942 119,87
545,923 207,965 142,603 110,784 113,618 118,35
556,036 209,398 138,582 111,993 112,639 119,866
542,853 210,019 143,085 110,419 112,919 117,801

Table A.3. Different sizes of threads-pools in generic simulation without optimiza-
tions
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Threads 1 2 3 4 5 6
288,568 114,478 72,144 58,623 57,333 57,279
286,698 114,932 74,478 56,409 59,295 58,163
279,669 116,105 73,289 56,552 56,997 57,391
286,244 114,763 73,975 56,942 57,75 57,679
275,769 114,563 74,254 57,273 58,729 58,59

285 116,061 74,154 57,111 58,856 57,475
278,746 114,368 73,62 57,143 58,56 58,597
278,876 114,698 73,512 55,726 58,63 58,813
281,569 116,481 74,063 57,118 58,375 57,245
279,124 115,804 72,859 56,414 56,956 58,537
284,447 114,652 72,461 57,109 57,501 58,426
282,603 111,927 74,317 57,671 58,127 59,068
286,201 116,082 73,303 56,772 59,427 58,389
275,069 115,194 73,607 57,01 59,642 58,196
280,686 114,676 72,89 56,133 56,322 58,172
281,155 114,512 73,346 56,708 58,087 64,302
279,755 112,965 73,432 57,221 57,728 66,718
284,317 115,871 73,454 57,202 57,403 62,91
284,15 112,393 72,421 57,248 57,655 63,436

283,842 113,466 72,851 58,573 57,237 62,154

Table A.4. Different sizes of threads-pools in generic simulation with optimizations
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Threads 1 2 3 4 5 6
107,877 62,616 59,454 54,614 46,063 47,393
104,31 69,145 59,28 55,899 47,319 53,125
108,39 65,305 60,007 55,668 45,328 51,897

108,596 67,425 55,995 49,632 51,294 47,793
109,234 68,777 58,094 50,531 46,475 52,894
107,382 69,883 59,551 60,246 47,081 48,179
101,537 70,414 59,245 53,806 46,065 47,471
102,273 68,121 57,456 53,493 45,868 53,697
101,032 69,32 58,784 55,282 52,8 53,496
105,598 69,369 59,415 55,037 50,218 47,01
100,83 71,166 59,652 55,461 48,456 57,979

104,671 71,914 58,853 57,503 52,186 48,081
99,706 65,683 59,735 54,67 52,03 47,397

100,822 71,188 61,103 54,061 52,578 52,261
100,625 72,525 61,112 54,703 52,617 47,743
103,971 71,028 60,836 56,238 58,539 47,336
100,541 70,301 59,398 49,723 48,195 52,438
100,155 71,121 54,927 54,837 54,161 52,944
97,739 67,826 58,481 53,4 52,196 52,85

103,577 72,202 57,475 52,039 53,151 45,878

Table A.5. Different sizes of threads-pools in realistic simulation
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