
Institutionen för systemteknik
Department of Electrical Engineering

Examensarbete

Indoor 3DMapping using Kinect

Examensarbete utfört i Datorseende
vid Tekniska högskolan vid Linköpings universitet

av

Morgan Bengtsson

LiTH-ISY-EX--14/4753--SE

Linköping 2014

Department of Electrical Engineering Linköpings tekniska högskola
Linköpings universitet Linköpings universitet
SE-581 83 Linköping, Sweden 581 83 Linköping

Indoor 3DMapping using Kinect

Examensarbete utfört i Datorseende
vid Tekniska högskolan vid Linköpings universitet

av

Morgan Bengtsson

LiTH-ISY-EX--14/4753--SE

Handledare: Hannes Ovrén
isy, Linköpings universitet

Folke Isaksson
SAAB, Vricon Systems

Examinator: Per-Erik Forssén
isy, Linköpings universitet

Linköping, 7 april 2014

Avdelning, Institution
Division, Department

Datorseende
Department of Electrical Engineering
SE-581 83 Linköping

Datum
Date

2014-04-07

Språk
Language

� Svenska/Swedish

� Engelska/English

�

⊠

Rapporttyp
Report category

� Licentiatavhandling

� Examensarbete

� C-uppsats

� D-uppsats

� Övrig rapport

�

⊠

URL för elektronisk version

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-106145

ISBN

—

ISRN

LiTH-ISY-EX--14/4753--SE

Serietitel och serienummer
Title of series, numbering

ISSN

—

Titel
Title

Kartering av inomhusmiljöer med Kinect

Indoor 3D Mapping using Kinect

Författare
Author

Morgan Bengtsson

Sammanfattning
Abstract

In recent years several depth cameras have emerged on the consumer market, creating many
interesting possibilities for both professional and recreational usage. One example of such
a camera is the Microsoft Kinect sensor originally used with the Microsoft Xbox 360 game
console. In this master thesis a system is presented that utilizes this device in order to create
an as accurate as possible 3D reconstruction of an indoor environment. The major novelty of
the presented system is the data structure based on signed distance fields and voxel octrees
used to represent the observed environment.

Nyckelord
Keywords Kinect, mapping, sparse voxel octree, signed distance function, pose estimation

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-106145

Sammanfattning

Under de senaste åren har flera olika avståndskameror lanserats på konsument-
markanden. Detta har skapat många intressanta applikationer både i professio-
nella system samt för underhållningssyfte. Ett exempel på en sådan kamera är
Microsoft Kinect som utvecklades för Microsofts spelkonsol Xbox 360. I detta ex-
amensarbete presenteras ett system som använder Kinect för att skapa en så exakt
rekonstruktion i 3D av en innomhusmiljö sommöjligt. Den främsta innovationen
i systemet är en datastruktur baserad på signed distance fields (SDF) och octrees,
vilket används för att representera den rekonstruerade miljön.

iii

Abstract

In recent years several depth cameras have emerged on the consumer market, cre-
ating many interesting possibilities for both professional and recreational usage.
One example of such a camera is the Microsoft Kinect sensor originally used with
the Microsoft Xbox 360 game console. In this master thesis a system is presented
that utilizes this device in order to create an as accurate as possible 3D reconstruc-
tion of an indoor environment. The major novelty of the presented system is the
data structure based on signed distance fields and voxel octrees used to represent
the observed environment.

v

Contents

Notation ix

1 Introduction 1
1.1 Goal . 1
1.2 Limitations . 1
1.3 System Overview . 2

2 Background 3
2.1 The Kinect Sensor . 3

2.1.1 Hardware . 3
2.1.2 Calibration . 4

2.2 Homogeneous Coordinates . 5
2.3 Camera Model . 5

2.3.1 Extrinsic Camera Model . 5
2.3.2 Intrinsic Camera Model . 6

2.4 Representation of Orientation . 7
2.4.1 Euler Angles . 7
2.4.2 Rotation Matrix . 8
2.4.3 Unit Quaternions . 8

2.5 3D Model Representation . 9
2.5.1 Point Cloud . 9
2.5.2 Polygon Mesh . 9
2.5.3 Voxel Volume . 10
2.5.4 Sparse Voxel Octree (SVO) 10
2.5.5 Signed Distance Field (SDF) 12

2.6 Pose Estimation . 12
2.6.1 Dense Image Alignment . 14
2.6.2 Sparse Image Alignment . 14
2.6.3 Iterative Closest Point . 16

3 Theory 19
3.1 Overview . 19
3.2 Image Collection . 20

vii

viii CONTENTS

3.3 Pre-processing . 20
3.3.1 RGB . 20
3.3.2 Depth . 21

3.4 Panorama Construction . 21
3.4.1 Feature Descriptors . 21
3.4.2 Feature Matching . 21
3.4.3 Rotation Estimation . 22
3.4.4 Loop Closing . 24

3.5 Model Generation . 25
3.5.1 Sparse SDF Octree (SSDO) 25

3.6 Panorama-Model alignment . 29
3.6.1 Pose Estimation through Feature Matching 30
3.6.2 Mapping between depth and color images 30
3.6.3 Pose Refinement through the Iterative Closest Point algo-

rithm . 31
3.7 Visualization . 34

3.7.1 Ray-casting . 34
3.7.2 Mesh Generation . 38

4 Result 39
4.1 Model Accuracy . 39
4.2 Memory Usage . 42
4.3 Performance . 43
4.4 Visual Result . 43

5 Analysis and Conclusions 45
5.1 Model Quality . 45
5.2 Panorama construction . 45
5.3 Panorama Alignment . 46
5.4 Sparse SDF Octrees . 46
5.5 Future Work . 47

5.5.1 Allow translation within a panorama 47
5.5.2 Combine RGB and depth data for pose estimation 47
5.5.3 Improvement of depth data using disparity maps of RGB

images . 47
5.5.4 GPU implementation of a sparse SDF octree 47

A Screenshots 51

Bibliography 57

Notation

Notations

Notation Meaning

ẋ Homogenous representation of the vector x.
R

n The n-dimensional space.
fov Horizontal and vertical field-of-view in radians.
ld Lens offset.
cd Sensor displacement.
K Intrinsic camera matrix.
R Rotation matrix.
T Extrinsic camera matrix.

SDF(x) Signed distance function.
fk,A Feature point in frame A.
dk,A FREAK descriptor of fk,A.

mA,B(k) Feature match between frames A and B.
H(d1,d2) Bitwise Manhattan (Hamming) distance.

CA,B Inlier set of point correspondences.
pi,A Vertex observed by frame A.

n(pi,A) Normal approximation at pi,A.
dA(x) Depth in mm at image coordinate x in frame A.
WA(v) Sparse SDF octree sample weight.

ix

x Notation

Abbreviations

Abbreviation Meaning

CPU Central Processing Unit
FOV Field Of View
GPU Graphics Processing Unit
ICP Iterative Closest Point
NIR Near Infra-Red
OPP Orthogonal Procrustes Problem

RANSAC Random Sample Consensus
RGB Red-green-blue
SDF Signed Distance Function
SIMD Single Instruction, Multiple Data
SSDO Sparse Signed Distance Octree
SVD Singular Value Decomposition
SVO Sparse Voxel Octree

1
Introduction

The ability to acquire accurate representations of real world environments from
camera images is and has for some time been highly desired for multiple reasons.
It makes it possible to effectively map areas in three dimensions from aerial im-
agery, to analyze the structure of objects, or to create realistic virtual worlds from
real world data. As the quality of the available methods constantly are improving,
new applications are frequently discovered.

1.1 Goal

In this thesis a method is presented that aims to create an as accurate as possible
3D reconstruction of an indoor environment using the Microsoft Kinect sensor.
The reconstruction consist of a Signed Distance Function that is sampled at dis-
crete positions by an octree structure henceforth referred to as a Sparse SDF Oc-
tree. The system is created with three major goals in mind. The first is to create
models of as high accuracy as possible, where measured distances in the models
are as close as possible to corresponding measurements in the real world. The sec-
ond goal is to create a model that closely resembles the real world environment
visually. The third goal is to create a system with good performance both related
to execution time and memory consumption.

1.2 Limitations

In order to avoid problems introduced by rolling shutter or motion blur, the
Kinect sensor is mounted on a tripod in a stable way. Each image is taken while
the camera is stationary. In order to simplify the pose estimation problem, over-

1

2 1 Introduction

lapping images are captured from each position of the tripod in 360 ◦ panoramas
where the first and the last images overlap. The mapped environment is assumed
to be static. The reconstruction is performed offline on a standard PC.

1.3 System Overview

The presented system is built with the task in mind of constructing models of
indoor environments using a Kinect sensor which have as high quality as possible.
Except from the image capture stage, the process is automatic. Figure 1.1 outlines
the process of the system from image capture to the finished model.

Collect Images
Collect Images

Pre-process
Pre-process Construct

Panorama

Construct
Panorama

Align Panorama
to Model

Align Panorama
to Model

First?
First?

Generate Model
Generate Model

Add Panorama
to Model

Add Panorama
to Model Generate Mesh

Generate Mesh

Done?
Done?

No

No

Yes

Yes

Figure 1.1: Overall flowchart of the system.

Initially the user manually collects pairs of RGB and raw depth data images from
a few locations. These images are preprocessed to reduce noise and distortion.
The resulting images are then aligned in 360 degree panoramas. This is done
by extracting image features using the FAST corner detector ([Rosten and Drum-
mond, 2005] and [Rosten and Drummond, 2006]), which are matched using the
FREAK feature descriptor extractor [Alahi et al., 2012] and the RANSAC algo-
rithm [Fischler and Bolles, 1981].

The first panorama is used to create a model representing the surrounding en-
vironment. The model consists of a voxel octree where samples of the signed
distance field are stored. The other panoramas are then aligned one by one and
added to this model using feature descriptor matching together with the ICP al-
gorithm. The complete model is visualized in two ways, trough ray-casting of the
model and through rasterization of a polygon mesh generated from the model.

2
Background

2.1 The Kinect Sensor

The Kinect sensor was released by Microsoft in 2010 for the Xbox 360 gaming
console. The idea was that the user should be able to interact in a more natural
way using gestures or voice commands instead of handling a physical controller.

2.1.1 Hardware

The Kinect Sensor is a device with several built-in components. The most impor-
tant is the depth camera which consists of a near-infrared (NIR) projector and
a near-infrared camera. The depth is estimated by projecting a dotted NIR pat-
tern, which is viewed by the NIR camera. By comparing the known projected
pattern to the pattern seen by the NIR camera, the depth can be estimated from
the displacement of the dots. Due to occlusions of the NIR projector and the NIR
camera and surfaces with bad reflectivity, parts of the image lack a valid depth
value. The NIR camera has a resolution of 1280 x 1024 pixels and outputs a re-
sulting 11 bit depth image of 640 x 480 pixels. There is also a medium quality
RGB camera with a resolution of 1280 x 1024 pixels. Both NIR, color and depth
images can be collected from the Kinect. However, due to limitations of the USB
bandwidth, NIR images and RGB images can not be collected at the same time.
The NIR and RGB images can be collected in either their full resolution or down-
sampled to 640 x 480 pixels. If the highest resolution of the NIR or RGB cameras
are used the maximum frame rate is about 10 Hz instead of 30 Hz. The RGB
and IR cameras can be modeled using standard pinhole camera models. The NIR
pattern projector is using an Orthographic fisheye projection [Nordmark, 2012].
The depth image that is received from the Kinect device is constructed using the
image from the NIR camera and can therefore be thought of as a standard pin-

3

4 2 Background

(a) (b)

Figure 2.1: A set of depth and RGB images from the Kinect sensor. No depth
information is available in the black areas of the depth image.

hole camera projection as well. The Kinect sensor also has four microphones, a
LED and a tilt motor. These can be accessed but will not be used in this thesis.
Examples of RGB and depth images are shown in figure 2.1. The black areas in
the depth image are areas where no depth could be estimated.

2.1.2 Calibration

To convert the NIR pattern displacement map received from the Kinect into real
world depth measurements, the mapping (2.1) presented in [Magnenat, 2010] is
used, resulting in a distance measure in millimeters parallel to the optical axis of
the NIR camera.

d(x) = k1 ∗ tan(
x

k2
+ k3) (2.1)

k1 = 123.6, k2 = 2842.5, k3 = 1.1863

Using the constants k1, k2 and k3, a depth value d in millimeter is given by the
NIR pattern displacement x. The displacement x is a positive integer with eleven

2.2 Homogeneous Coordinates 5

bit precision returned from the Kinect device.

2.2 Homogeneous Coordinates

In order to represent an arbitrary point in a three-dimensional Euclidean space
three components are required. However, in computer graphics and similar ap-
plications a homogeneous representation of four components is often more con-
venient. This makes it possible to represent any affine transformation or perspec-
tive projection using matrices. A homogeneous vector ẋ ∈ R

4 represents the co-
ordinates in three-dimensional Euclidean space given by dividing the first three
components with the fourth component;

ẋ =

x
y
z
w

→ x =

x/w
y/w
z/w

(2.2)

Throughout this report homogeneous vectors will be denoted with a dot. From
(2.2) follows that all scalings of a homogeneous vector represents the same point
in Euclidean space.

αẋ→ x, α , 0. (2.3)

The point at infinity can be represented by a homogeneous vector where w = 0.

2.3 Camera Model

To be able to convert the data collected from a camera into real world measure-
ments, we need a correct model of how the world is mapped onto this camera.
We split this model into two parts; the extrinsic part that describes the position
and orientation of the camera, and the intrinsic, which describes how the scene
is projected into the camera. The camera models used in this thesis are based on
the thesis by [Nordmark, 2012].

2.3.1 Extrinsic Camera Model

The extrinsic parameters, or the pose, of a camera are defined by its position and
rotation. In a three dimensional world this gives a total of six degrees of freedom
with three degrees each for rotation and position.

A point p defined in the world coordinate system is converted into the coordinate
system of a camera by multiplying the homogeneous representation of the point
with the extrinsic camera matrix T which can be decomposed into an orientation
and a position.

6 2 Background

p′ = T ∗ p, T =

[

R −RT t
0 1

]

(2.4)

In (2.4) the matrix R defines the direction of the camera. t defines its position in
world coordinates.

2.3.2 Intrinsic Camera Model

The intrinsic camera parameters define how a scene is projected onto the image
sensor of the camera. The variables to take into account here are the horizontal
and vertical fields of view fovxy, image resolution (w, h), lens offset ld and sensor
displacement cd.

For a camera that can be described using the pinhole camera model, a three di-
mensional point pc = (xc, yc, zc)

T located in the local coordinate system of the
camera is projected onto a point pi = (xi , yi)

T on the image sensor of the camera
as in (2.5).

pi = p0 ∗ (sx, sy) + (w,h)T

2 , p0 = (xc ,yc)
T

zc

sx = w

2∗tan(f ovx2)
, sy = h

2∗tan(f ovy2)

(2.5)

Here p0 describes the projection of the point into the normalized image plane.
s = (sx, sy) describes the scaling from the normalized image plane to the image
sensor of the camera. However, real non-ideal pinhole cameras suffer from lens
distortion. In this thesis, radial distortion, lens offset and sensor displacement
are compensated for using (2.6)

p1 = (
(xc, yc)

T

zc
+ ld) ∗ (1 + k2 ∗ r2 + k3 ∗ r3 + k4 ∗ r4) + cd (2.6)

In (2.6) r =
√
x2c+y

2
c

zc
is the distance from the image center. Combining (2.5) and

(2.6) where p0 is replaced with p1 the mapping from pc onto its corresponding
pixel pi results in:

pi = p1 ∗ (sx, sy)T +
(w, h)T

2
(2.7)

By forming the intrinsic camera matrix

K =

sx 0 w
2

0 sy
h
2

0 0 1

2.4 Representation of Orientation 7

Figure 2.2: A set of three gimbals that can rotate around one axis each, illus-
trating the idea of Euler angles.

equation (2.7) can be expressed as

ṗi = K ∗ ṗ1 (2.8)

2.4 Representation of Orientation

Orientation in three dimensions are in comparison to the two dimensional case
non-trivial to represent in a both concise and unique way. However, based on
a theorem by Leonard Euler from 1775 [Euler, 1775], we can deduce that any
orientation can be achieved through a single rotation around one axis.

2.1 Theorem (Euler’s Rotation Theorem). In whatever way a sphere is turned
about its centre, it is always possible to assign a diameter, whose direction in the
translated state agrees with that of the initial state.

2.4.1 Euler Angles

One of the more straightforward representations of arbitrary rotations in three di-
mensions is called Euler Angles. It consists of a set of three angles around three
axes by which rotations are performed consecutively. This can be accieved using
three gimbals as illustrated in figure 2.2. This construction is rather intuitive and
also gives a concise representation of any arbitrary rotation. The resulting orien-
tation is however dependent on the choice of axes and in what order the rotations
are applied. In total there are twelve possible combinations. One common con-
vention is to express the rotations in order of yaw, pitch and roll, or rotations
around the z, x and y axises consecutively.

Another issue with Euler Angles is that in some configurations, the rotation axes
align in the same direction and causes the loss of one degree of freedom as shown
in figure 2.3. A way to observe this in the z-x-y case is to view each rotation in

8 2 Background

Figure 2.3: When the two outer gimbals align, two of the rotation axes also
align and one degree of freedom is lost.

a local coordinate system where the y- rotation is performed first, proceeded by
a rotation around x that in effect changes the global orientation of the previous
y-axis. If this change in orientation of the y-axis aligns it in the same plane as the
z-axis, one degree of freedom is lost. This is called a Gimbal Lock.

2.4.2 Rotation Matrix

When dealing with transformations of three dimensional vectors, rotation matri-
ces is a very convenient tool to use. If expanded to homogeneous point coordi-
nates, any rigid transform can be represented and easily applied using matrix-
vector multiplication. Several transformations can also be combined using the
matrix product. This is however a very redundant form of representation, and
in order for a matrix to represent a proper rotation, further constraints must be
met.

2.2 Definition (Rotation Matrix). A matrix R represents a rotation if and only
if R is an orthogonal matrix with a determinant equal to one.

2.4.3 Unit Quaternions

Quaternions were first described by the Irish mathematician William Rowan
Hamilton in 1843 as an extension of complex numbers into a four dimensional
space.

2.3 Definition (Quaternion). A quaternion q = w+ xi+ yj+ zk is a four dimen-
sional vector consisting of one real scalar w and the complex components x, y
and z. It is spanned by the basis elements 1, i, j and k such that:

i2 = j2 = k2 = ijk = −1

In quaternion algebra the three operations addition, scalar multiplication and
quaternion multiplication are defined. Quaternions are often written in the con-

2.5 3D Model Representation 9

densed notation

q = (w, v), v = xi + yj + zk

2.4 Definition (Quaternion Conjugate). The conjugate of a quaternion q =
(w, v) is defined as q̄ = (w,−v)

2.5 Definition (Unit Quaternion). The Unit Quaternion of q is defined as

Uq =
q

||q||

Any rotation in three dimensions can be represented using a unit quaternion q =
(w, v) where the vector v is parallel to the rotation axis and w = cos(θ2) where θ is
the magnitude of rotation. The vector u ∈ R3 can be rotated by a unit quaternion
q as p′ = qpq̄ where p = (0,u).

2.5 3D Model Representation

Today, the undoubtedly most common method to represent three dimensional
structures is polygon meshes. They have been used for a long period of time
in computer graphics and games for which they are well suited. The construc-
tion of a model of an environment from a set of depth maps does however pose
some challenges. For example, the ability to easily merge new data into a preex-
isting model is needed. Uncertainties and noise in the data and areas where no
data exists at all also needs to be considered. Many of the techniques used for
improvement of low resolution meshes by texture manipulation methods would
also be cumbersome, as a highly detailed geometry is needed.

2.5.1 Point Cloud

As the output of the depth camera is a depth image, we can, using a camera
model, translate these depth measurements into a discrete set of points in three
dimensional space. As we have no way of knowing the volumetric size of these
discrete samples, this method is not well suited for visualization. There are how-
ever methods to create other types of representations based on assumptions on
how these samples are combined into surfaces.

2.5.2 Polygon Mesh

Meshes built from polygons (most commonly triangles) are the most commonly
used representation of three dimensional models. They are very efficient for rep-
resenting large flat areas, both in a memory consumption and in a performance
point of view. Partly due to this fact, they have been and are used for a wide
range of computer graphic applications. They also allow some degree of free-
dom in term of deformation and modification of models. They are however quite
memory and performance inefficient in the case of finer geometric detail or even

10 2 Background

simple curvatures. Because of this textures are often used to manipulate the prop-
erties of the flat polygons when applying light and calculating the color of each
surface fragment in order to fool the eye.

2.5.3 Voxel Volume

Representing a volume and the structures therein using voxel volumes are ar-
guably the most generic method possible. A voxel volume divides a volume into a
dense grid of volume elements called voxels. Each voxel can have different states
based on if it contains an object or not and possibly other attributes, for example
information about the material of the object it contains. Such a structure could
in theory represent any possible environment within that volume with no other
limitation than the resolution of the voxel grid. This is however what makes it
impractical as it requires immense amounts of data unless voxels of a very large
size are used, creating results of unacceptably low levels of detail.

2.5.4 Sparse Voxel Octree (SVO)

A Sparse Voxel Octree (SVO) [Laine and Karras, 2010] utilizes the fact that we
only need to represent information about volumes that contain surfaces. There is
no need to split empty regions or the inside of objects into a fine grained grid as
they do not contain any information of value when rendering. Considering the
fact that basically every conceivable scene are dominated by either open space
or the interior of objects, this allows huge memory savings. A straightforward
method of utilizing this sparsity is to create a voxel octree, where voxels that
contains surfaces are split into eight child voxels in a recursive manner until a
desired smallest voxel size is reached.

In the extreme example of an empty cube with sides of one meter and a smallest
voxel size of one millimeter where a single point sample is added, the sparse
voxel octree requires 1 + 8⌈log2 1000⌉ = 81 voxels compared to the dense voxel
volume where 10003 = 109 voxels are needed.

A sparse voxel octree does however pose some challenges when constructing one
from a point cloud. If the distances between neighboring points that are sampled
from the same surface are bigger than the smallest voxel volume we get holes
in the surface. This can to some extent be addressed if normal approximations
are available for the points in the point cloud. It is however not enough to sim-
ply increase the voxel size as this on one hand will decrease the detail level on
close ranges and on the other hand not address the issue at large distances or at
surfaces with a steep angle towards the direction from where the point samples
were captured. A SVO is however easily constructed from a polygon mesh as
these represents dense surfaces.

Sparse voxel octrees have attracted some attention from the computer graphics
area. One example of this is [Laine and Karras, 2010]. This is due to a combina-
tion of their memory efficiency, the possibility to convert to and frommeshes, and
the ability to perform ray casting efficiently, much faster than when dealing with

2.5 3D Model Representation 11

Figure 2.4: A quadtree of area elements representing a one-dimensional line.
In the same way an octree of volume elements can be used to represent a
two-dimensional plane.

12 2 Background

meshes, which makes it possible to use advanced realistic methods of lighting
during real-time rendering.

2.5.5 Signed Distance Field (SDF)

The Signed Distance Field or Signed Distance Function is a mathematical con-
struction describing the signed distance in every point x to the boundary of a set
S . [Dapogny and Frey, 2012]

2.6 Definition (Signed Distance Function). Let S ⊂ R
n be a bounded set. The

signed distance function SDFS (x) to S in x ∈ Rn is defined as

SDFS (x) =

−d(x, δS) if x ∈ S
0 if x ∈ δS

d(x, δS) otherwise
where d is the Euclidean distance measure.

If the boundary δS of the set S is defined as the surface of a three dimensional
structure, the signed distance function SDFS (x) can be used to represent this
structure.

In figure 2.5 a grid of samples of the signed distance function is illustrated, where
red samples represent negative values while the green represent positive values.
The represented surface structure can be recreated from these samples by inter-
polation between neighboring samples with opposite signs.

In the samemanner as for the voxel volume, the simplest implementation of a dis-
crete sampling of a Signed Distance Function, utilizes a dense grid. Thus, mem-
ory consumption is a problem. However, as the Signed Distance function con-
tains more information for every voxel, it does not need to be sampled as densely
as the voxel volume to achieve the same level of detail. The surfaces in the struc-
ture are located at the zero level of the signed distance function. Even though it is
very unlikely to find any sample with a signed distance value of exactly zero, an
approximation of the location of the sampled surfaces can be found by locating
opposite signs between neighboring samples and interpolating linearly between
them based upon their absolute distance value. Thus sub-sample precision can
be achieved.

The SDF is often used with some modifications by systems that utilizes depth
maps to construct representations of a three dimensional scene. This is partly
due to the elegance when constructing and updating a SDF directly from a set of
point samples by approximating the surface distance as the distance to the closest
point sample. On example is [Izadi et al., 2011] where a truncated version of the
SDF, in short TSDF, is used.

2.6 Pose Estimation

In many computer vision applications, one of the major challenges is the estima-
tion of the relative pose of the observer. This problem is commonly solved using
either dense image alignment or sparse feature matching [Szeliski, 2006]. In this

2.6 Pose Estimation 13

+ -

Figure 2.5: A grid of samples of the signed distance function in an area that
contains a surface.

14 2 Background

thesis, both the RGB and the depth camera of the Kinect device are used to match
a limited set of image features. Several methods based on alignment of depth im-
ages have been presented, for instance by [Izadi et al., 2011] and [Erik Bylow and
Cremers, 2013].

2.6.1 Dense Image Alignment

One way to align to similar images is to utilize the entire images with all their
pixels to get a good correlation between them. This is usually done through min-
imization of a chosen cost measure that locally decreases towards an optimal
relative pose where the images match best. If an appropriate cost function is
given together with a good enough initial solution, sub pixel precision can be ob-
tained. Due to the fact that any cost function will contain a multitude of local
minima, a good initial solution is needed in order to find the global minimum us-
ing numerical methods. In order to achieve invariance to changes in illumination,
maximization of the normalized cross-correlation is often used.

2.6.2 Sparse Image Alignment

Amajor advantage of alignment through matching of sparse image features is the
ability to find a solution without the need for an initial estimate. Sets of feature
points can be extracted from pairs of images and matched across images solely
based on image content and not on the spatial locations of the images. These
matches can be used to calculate relative poses between the images. Solutions
based on variants of this group of methods have been presented in several well
known publications, for example [Klein and Murray, 2007] and [Williams et al.,
2007]. A wide range of algorithms for extracting robust sets of features and meth-
ods for matching these exists. An extensive comparison of the robustness and
performance of different methods to detect image features is made in [Tuytelaars
and Mikolajczyk, 2008]. In this thesis, the FAST corner detector presented in
[Rosten and Drummond, 2005] and [Rosten and Drummond, 2006] is used. For
feature matching, the Fast Retina Keypoint descriptor (FREAK) is used [Alahi
et al., 2012]. The process of finding a good rigid transform between two images
starts with finding robust image features in both images. A descriptor is then
calculated for each of these features. These are then used to find good matches
between features in the image pair which in turn makes it possible to estimate a
relative pose.

Feature Detection

To get a good estimate of a rigid transform between two images a set of point
pairs that correspond to the same three dimensional points is needed. It is not
necessary to find more than a few correspondences in order to estimate this trans-
formation. A feature detection algorithm is used in order to select a set of good
image features that easily are traced between different images. There are several
different methods to do this. In this thesis the FAST feature detector has been
chosen.

2.6 Pose Estimation 15

Feature Descriptors

In order to be able to match points in two images that correspond to the same pro-
jected three dimensional object, descriptors of these image points are compared.
In order to match points from images that are rotated or translated compared to
each other, or where the lighting conditions are different, a descriptor that is in-
variant to rotation, scaling and overall illumination is needed. In this thesis the
Fast Retina Keypoint (FREAK) [Alahi et al., 2012] is used. The resulting descrip-
tors are 64- dimensional bit-vectors. Pairs of feature points are matched to each
other using the Hamming distance between their descriptors.

Orthogonal Procrustes Problem

The problem of finding the best orthogonal mapping R of a set of points A to
the set B is called the Orthogonal Procrustes Problem. A generalized solution
to this problem was presented in 1966 by Peter Schönemann in [Schönemann,
1966]. This can be used in the case when the three-dimensional positions of a set
of corresponding observations are known for an image pair. In the minimal case
only three point correspondences are needed to solve this problem, which gives
an exact solution. If more points are used, the transform that minimizes the cost
function (2.9) is sought.

ǫ(R) =
n

∑

i=1

||rB,i − RrA,i||2, n >= 3 (2.9)

In (2.9) {rA,i, rB,i} are the coordinates of a set of point correspondences {xA,i, xB,i}
relative to the centers {cA, cB} of the point sets A and B.

cA = 1
n

∑n
i=1 xA,i , cB = 1

n

∑n
i=1 xB,i

rA,i = xA,i − cA, rB,i = xB,i − cB
(2.10)

The cost function (2.9) is minimized by performing a singular value decomposi-
tion of the product A ∗ BT , where A and B are 3 x n matrices with the points rA,i
and rB,i in their columns. The R that minimizes ǫ(R) is then given by enforcing
orthonormality:

R = V ∗ UT , U ∗ S ∗ V T = A ∗ BT

This does however only enforce that R is an orthogonal transformation where
detR = ±1. A negative determinant results in a reflection and thus not a proper
rigid transform. In that case there is no proper rotation that fits the given set
of corresponding points. A rigid transform that produces the smallest distance
between corresponding points can however be found by changing the sign of
the column of U that corresponds to the smallest singular value of A ∗ BT , thus

16 2 Background

enforcing detR = +1. After a rotation R have been determined the translation
vector between the point clouds is given by

t = cB − R ∗ cA (2.11)

RANSAC

Using feature descriptors is a good way of finding corresponding points between
two images. It is however hard to attain a set of corresponding points without
incorrect matches purely based on local image feature descriptors. This is mainly
due to the fact that most images contain repeating structures andmultiple similar
objects. To select a good subset of correct correspondences from a set of matches
the Random Sample Consensus (RANSAC) algorithm first presented in [Fischler
and Bolles, 1981] is often used. The basic idea of the algorithm is to from a data
set randomly select the minimal number of samples required to uniquely create
a model, and then compare all other samples to this model.

Data: data_set, iterations, threshold
Result: best_model
i = 0;
best_score = 0;
best_model = 0;
while i < iterations do

subset = select_random_subset(data_set);
model = create_model(subset);
number_inliers = count_inliers(model, data_set, threshold);
if number_inliers > best_score then

best_score = number_inliers;
best_model = model;

end
end
inlier_subset = select_inlier_subset(best_model, data_set, threshold);
best_model = create_model(inlier_subset);

Algorithm 1: The Random Sample Consensus Algorithm (RANSAC)

2.6.3 Iterative Closest Point

The Iterative Closest Point algorithm is widely used for motion estimation in situ-
ations when initial estimates of the relative poses between consecutive frames are
available, for example in robotics. The main idea is to repeatedly find matches
between points in two models based on distance and finding a relative trans-
formation that minimizes an error metric for the distance between these points,
and then find new matches after applying the found transformation. There are
several variants of the ICP algorithm which uses different methods of selecting
subsets of point pairs to be used or different ways to define the error metric be-

2.6 Pose Estimation 17

2. Point Matching

5. Repeat

3. Calculate the error metrics

7

4
6

1. Point Selection

4. Minimize the total error metric

Figure 2.6: An ICP algorithm applied to two sets of points.

tween pairs of points. In figure 2.6 one variant of the ICP algorithm is applied to
two sets of points in order to align them to each other. In this implementation,
three random points are first selected from one of the point sets. These are then
matched to the points in the second set located at the closest Euclidean distances.
An error metric is then calculated as the sum of the Euclidean distances between
the points of each pair. A rigid transform that minimizes the calculated error met-
ric is then found and applied to the entire second point set. To further improve
the result this process is repeated until a sufficiently small error is reached or a
maximum number of iterations have been performed.

In [Rusinkiewicz and Levoy, 2001] a number of variants of the ICP algorithm are
evaluated and compared to each other. It is possible to choose different methods
of selecting the points that are used. All available points can be used, or a ran-
domly or uniformly selected subset. Matching is often done by measuring the
Euclidean distance between a point in the first model to the points in the second
and pairing it to the closest one in the second model. Other methods of point
matching include finding the closest point measured in an image plane or along

18 2 Background

while i < iterations do
1. Select a set of points in both models;
2. Match the points in the two models;
3. Calculate a chosen error metric between each point pair;
4. Minimize the total error metric using a rigid transform T ;

end
Algorithm 2: The Iterative Closest Point Algorithm (ICP)

a surface normal. The error metric is often defined as a point-to-point distance
or a point-to-plane distance, that is; the point-to-point distance along a surface
normal. In [Henry et al., 2010] a combination of sparse image feature matching
and ICP depth alignment is presented.

3
Theory

The system presented here is built with the task in mind of constructing an as
high quality model as possible of an indoor environment using a Kinect sensor.
Except from the image capture stage, the process is automatic.

3.1 Overview

In the following section an overview of the system is given. To start with, the user
manually collects pairs of RGB and raw depth images from a few locations. These
images are preprocessed to reduce noise and distortion. The resulting images are
then aligned in 360 degree panoramas using feature matching. The first of the
panoramas is used to create a model representing the surrounding environment.
The other panoramas are then one by one aligned to this model and added to it.

Collect Images
Collect Images

Pre-process
Pre-process Construct

Panorama

Construct
Panorama

Align Panorama
to Model

Align Panorama
to Model

First?
First?

Generate Model
Generate Model

Add Panorama
to Model

Add Panorama
to Model Generate Mesh

Generate Mesh

Done?
Done?

No

No

Yes

Yes

Figure 3.1: Overall flowchart of the system.

19

20 3 Theory

3.2 Image Collection

The Kinect sensor is mounted vertically on a camera tripod so that both the RGB
and the depth camera have their centers as close as possible to the axis of rotation
of the tripod. The tripod is then positioned at a location from where a series of
images are collected at different orientations. The Kinect sensor is only rotated
around the vertical axis of the tripod. For each orientation of the Kinect sensor a
series of raw RGB and depth images are collected. These are used to reduce noise
through multi-sampling. Images are taken with an offset of a few degrees so that
there is some overlap between each two consecutive images. The field of view
of the camera must be considered when choosing the angle offset to get enough
overlap. During the evaluation of the system an offset of ten degrees has been
used, even though it has shown to be able to handle offsets up to twenty degrees.
An illustration of the image collection process is shown in figure 3.2.

Panoramas

Indoor Environment

Kinect mounted

on tripod

Frames

Figure 3.2: Overview of the setup of the system when collecting images.

3.3 Pre-processing

The raw images must be pre-processed in order to reduce camera distortion, re-
duce noise and translate raw depth values into real-world measures.

3.3.1 RGB

An easy method to reduce the amount of noise in the RGB images is to take multi-
ple images for each orientation and average them into one image. The distortion
of the resulting image is then reduced using a given set of parameters defining
lens offset, chip offset and radial distortion according to (2.6).

3.4 Panorama Construction 21

3.3.2 Depth

Averaging a set of depth images does not produce desirable results as this can
create unwanted points at depths where there are no objects. Instead a median
value in each depth pixel is used. When using an even number of images the
lower value of the two center values are used instead of taking an average, in
order to avoid introducing any new depth values. As parts of the depth images do
not contain any valid depth measurements due to occlusion of the NIR projector
or the NIR camera, or to surfaces with bad NIR reflectivity, only valid depth
values are considered when calculating the median.

3.4 Panorama Construction

To simplify the process of pose estimation and to reduce the risk of errors, a
set of frames is collected from each viewpoint as earlier described and aligned
together in 360◦ panoramas. For each panorama, consecutive overlapping frames
are aligned to each other through sparse image alignment of their RGB images,
where the positions of the frames are locked at a common origin. This limits the
pose estimation problem to finding a set of rotations Ri for every frame in the
panorama.

The advantage of using RGB images here is that the RGB images have valid data
over the entire image, witch is not the case for the depth images. The color images
does however contain a substantial amount of noise. This can be reduced by
multi-sampling and averaging. This is harder to do with depth images in a good
way. Using RGB images is also better if there are large flat areas that contain
varying textures, while depth images would be better if there are large uniformly
colored areas. As the relative position between the depth and the RGB camera
is fixed and known, the camera pose of an RGB image also gives the pose of
the corresponding depth image. An example of a set of images aligned into a
panorama is shown in figure 3.3.

3.4.1 Feature Descriptors

The panorama construction is initialized by setting the orientation of the first
frame R0 = I. A FAST feature detector is then used in order to find a set of
feature points fi,k for every frame i ∈ 1..n. In order to ensure that sets of image
features are evenly distributed the images are first divided into grids of 15x15
cells where the strongest features are found in each cell. For every feature point
fi,k a descriptor vector di,k is calculated using FREAK [Alahi et al., 2012].

3.4.2 Feature Matching

When estimating the relative rotation between two overlapping frames A and B
in a panorama, at least three correct point correspondences are needed. To find a
good set of possible correspondences each descriptor dk,A in frame A is compared
to each descriptor dl,A in frame B using the Hamming distance.

22 3 Theory

(a) (b)

Figure 3.3: A set of depth and RGB images aligned in a panorama.

3.1 Definition (Feature Match). A match in the frame B to the feature point
fk,A in frame A is defined as

mA,B(k) = argmin
l

(H(dk,A,dl,B))

where H(da,db) is the Hamming distance between two descriptor vectors.

In order to screen the set of matches from possible incorrect ones, all matches
where mi,j (mj,i (l)) , l are ignored.

3.4.3 Rotation Estimation

There is no way of knowing the distance to a point that only is seen from a set
of RGB images taken from one common location. Any two points that together
aligns with the common camera center will be projected onto the same pixel in
each image. This is illustrated in figure 3.4.

Due to this fact, when estimating the rotation between two frames with a com-
mon camera center, the three dimensional points which are projected into the
images can be assumed to lie on a unit sphere centered around the camera cen-
ter. Using correspondences given from feature matching, it is thus possible to
estimate a rotation by solving the Orthogonal Procrustes Problem 2.6.2 for these
points on the unit sphere. It is however inevitable that there will be some incor-
rect correspondences from the matching of feature descriptors. These needs to be
removed before this estimation is done. By implementing the RANSAC algorithm
outlined in 2.6.2 where in each iteration a rotation R is generated for a random
set of three correspondences, an inlier set can be defined according to definition
3.2. The RANSAC algorithm then aims to find the rotation that creates the largest
inlier set.

3.4 Panorama Construction 23

Figure 3.4: Any two points that together aligns with a common camera cen-
ter will be projected onto the same pixel in each image sharing that camera
center.

24 3 Theory

3.2 Definition (Inlier set - Rotation). The inlier set of correct corresponding
points between frame A and frame B given a rotation R is defined as

CR
A,B = {{mA,B(k)}, ||Rpk,A − pmA,B(k),B||2 < λ, k = 1...n}

pk,A =
(xk,A.yk,A, 1)

T

√

x2k,A + y2k,A + 1

where (xk,A, yk,A) is the normalized camera coordinate of the feature point fk,A.
λ is a threshold that determines the largest distance between inlier correspon-
dences after applying the rotation R.

Using the largest inlier set found by RANSAC, a good estimation RA,B of the
relative rotation between the frames A and B is found by solving the Orthogonal
Procrustes Problem. A threshold of λ = 0.002 have been found suitable. The
resulting inlier set is stored for later use.

As the orientation of the first frame in a panorama is initialized to R0 = I, the
orientation of each new consecutive frame can be calculated using the orientation
of the previous frame and their relative rotation (3.1).

RB = RB,A ∗ RA (3.1)

3.4.4 Loop Closing

Even though the estimations of the poses are quite good when looking at a set of
poses nearby each other, there are still small errors present which stacks up to
a noticeable drift over a larger set of frames. In order to counter this problem
the last frame of a circular panorama are matched with the first ones where there
is an overlap large enough. The RANSAC algorithm is then performed on these
frames. This gives a relative rotation that is disregarded for now, while the result-
ing set of inliers is stored. Apart from the relative rotations between each pair
of neighboring frames in the panorama, a set of inlier point correspondences is
available for each pair of neighboring frames. By minimizing the distances be-
tween these corresponding points on the unit sphere a better set of frame orien-
tations Ri can be found, which eliminates the drift. The function that should be
minimized is thus the sum of all cost functions (3.2) for each pair of neighboring
frames.

ǫA,B =
∑n

k=1 ||RA,B ∗ pk,A − pmA,B(k),B||2, (3.2)

As the previously calculated estimations of the orientations of each frame gives
a good initial solution, a numerical method can be used to find this minimum.
The Levenberg-Marquardt optimization method gives a fast convergence and is
used here. During the optimization the orientations are represented using unit

3.5 Model Generation 25

quaternions (see 2.4.3) in order to reduce the number of parameters and more
easily enforce proper rotations.

3.5 Model Generation

In several other works with the goal of creating a model from data generated by
depth sensors such as the Kinect sensor, implementations of the Signed Distance
Field have been used. A few examples are [Izadi et al., 2011], [Erik Bylow and
Cremers, 2013] and [Ricao Canelhas, 2012]. These systems are able to produce
high quality results for small spaces. However, due to the regular grid structure
where the SDF is sampled, the required amount of memory grows rapidly with
the size of the mapped volume. To solve this problem an octree-structure of SDF
samples have been implemented in this thesis, hereon referred to as a Sparse SDF
Octree (SSDO). This section outlines how these are generated.

3.5.1 Sparse SDF Octree (SSDO)

A sparse SDF octree combines the ideas behind SVO and SDF by calculating the
signed distance value for every voxel in a SVO in all levels of the octree. This
gives the possibility to achieve both sub-sample precision at the same time as the
sparse structure of the represented volume is utilized. A SSDO is also easier to
construct from a point cloud compared to the SVO. A similar structure to the one
used here is presented in [Jamriška]. A significant difference is however that the
goal of this thesis is to construct a model representation from a sparse point cloud
and not from a mesh. This poses some significant challenges as the structure of
surfaces between samples in the modeled environment is not known beforehand,
whereas if starting from a mesh, samples can be fetched from any position along
any surface. The idea behind the SSDO is to solve this by trying to find surface
intersections inside voxels at a coarser level of the octree if no point samples from
the original point cloud are found at the finest level.

An issue with the naive implementation of an SSDO where one sample of the
signed distance function is stored for the center of each voxel is the difficulty
to find the neighbors of a given voxel, which is required in order to be able to
interpolate the signed distance function between neighboring voxels. In order to
avoid having to do this, the signed distance function is sampled in every corner
of each voxel instead of in the center, making it possible to interpolate inside
the voxel without having to access any external data. This requires eight times
as much memory per voxel but makes the rendering process much simpler. In
order to reduce memory usage, only the leaf voxels needs to store the signed
distances in their corners, as the signed distances in the corners of a parent voxel
easily can be fetched from its children. This does however not eliminate the data
redundancy between neighboring voxels. The structure of the SSDO is shown in
figure 3.5.

Apart from the signed distance, every leaf voxel also store a weight and a color
for every corner. The weight is needed when updating the signed distance and

26 3 Theory

Leaf voxels

Header

Signed Distances

Colors

Weights

Size

Pose

Figure 3.5: Structure of a sparse SDF octree.

Select the child voxel
containing the vertex

Select the child voxel
containing the vertex

Leaf?
Leaf?

Done
Done

Split the voxel
Split the voxel

Size < λ?Size < λ?Select top
level voxel

Select top
level voxel

Yes Yes

No No

Figure 3.6: Flowchart over how the tree structure is updated when a new
vertex is added.

color measures using weighted running averages. Every voxel also store a pointer
to its parent and a variable defining where in the parent voxel it is located. One
complete panorama at a time is used to create and update the global SSDO. The
resulting model is then used to align the next complete panorama, which then in
turn can be added, further refining the model.

Tree Generation

The Sparse SDF Octree is built by adding one frame at a time. To begin with the
intrinsic and extrinsic camera parameters of a frame A together with its depth
image are used to create a set of three-dimensional points pi,A. All these points
are samples of surfaces observed in the scene. For each of these points, the leaf
voxel in the octree where this point is located is found. If the size of this voxel is
larger than a lower threshold λs, the leaf is split into eight new leaf voxels. This is
repeated until the size of the leaf voxel is smaller than λs. The process is outlined
in figure 3.6.

Using a smaller threshold λs gives a better resolution in the model at the cost

3.5 Model Generation 27

of higher memory consumption. However, the precision of the position of the
vertices is dependent on the precision delivered by the Kinect sensor. There is no
point in splitting the octree into voxels that are smaller than the resolution of the
collected depth values.

Using themapping between the rawNIR-pattern offset and real-world depthmea-
sures in (2.1), the bit precision at a distance d can be defined as its derivate with
respect to the NIR-pattern offset.

3.3 Definition (Depth bit-resolution). The bit- resolution P(d) of a depth value
d(x) given a NIR-pattern offset x = 0, 1...n is defined as

P(d) =
dd(x)
dx

(x(d))

.

Using the mapping in (2.1) the depth bit-resolution at a given depth d is

P(d) =
dd(x)
dx

(x(d)) =
k3
k1

cos−2(arctan
d

k3
). (3.3)

As expected, the inaccuracy increases monotonically with increasing distance.

Update of the SDF samples

When the vertices pi,A from the frame A have been used to split the sparse SDF
octree V into smaller child voxels, the samples of the SDF in each corner of each
voxel in the octree needs to be updated. In order to do so, assumptions must be
made concerning the orientation of the surface from which the samples pi,A are
collected. This is necessary in order to distinguish between areas in front of the
observed surface to those behind, and what the distance to the surface is. This
assumption of the normal of the sampled surface could be made by calculating
tangent vectors using the position of nearby vertices, as done in [Erik Bylow and
Cremers, 2013]. This does however in turn require assumptions about which
vertices that are taken from the same locally flat surface and is sensitive to noise
in the depth images. In this thesis, a surface normal parallel and with opposite
direction to that of the optical ray is used instead.

n(pi,A) =
pA − pi,A

||pA − pi,A||2
(3.4)

In (3.4) pA is the position of the camera center of frame A.

This is a very rough estimate but gives a result that is good enough, and produces
a normal approximation where n(pi,A) ·nsurf > 0 . This is the same approach as
used in [Izadi et al., 2011].

To update the SDF in a position v inside the model using the frame A, the shortest
distance from v to the surfaces seen in A needs to be found. Instead of measuring

28 3 Theory

v

p
A pi,A

n(pi,A)

nsurf

Figure 3.7: The normal of a sampled surface is approximated as parallel to
the optical ray from the camera center of the frame from which the surface
is observed.

the euclidean distance to all vertices pi,A, the faster method of projecting v into
the depth image of A is used. This projective method does not find the closest
vertex but rather the closest vertex-projection as shown in figure 3.7. The signed
distance to the surface observed by A is then approximated as the distance along
the approximated surface normal n(pi,A).

SDFA(v) = (dA(xi) ∗ ẋ − vA) ·n(pi,A)
= dA(xi) ∗ ||ẋ||2 − ||pA − v||2

. (3.5)

v̇A = TA ∗ v̇
xi: projection of vA in frame A according to (2.7).
x: The point xi in normalized image coordinates.

When adding another frame B to the global sparse SDF octree V , a way to com-
bine the signed distances from the new frame SDFB(v) with the existing ones is
needed. The first observation made here is the fact that point samples of the SDF
with a negative value are located behind the surfaces seen from the frame. These
are in other words occluded and are therefore very uncertain. Another parameter
to take into account is the depth value by which the signed distance is calculated,
as this affects the depth precision (3.3). In order to get a resulting signed distance
for a combined global sparse signed distance octree SDFV (v) with as high accu-
racy as possible, a weight W (v) is added to each sample of the sparse SDF octree.
In this way the SDF values are updated using a weighted running average. This
is also done in [Izadi et al., 2011] and [Ricao Canelhas, 2012], which both uses a

3.6 Panorama-Model alignment 29

simpler weight WA(v) = 1 resulting in a plain averaging, and in [Erik Bylow and
Cremers, 2013] were a weight defined as a truncated negative exponential of the
surface distance is used.

In this thesis the weights are stored as eight-bit unsigned integers and are used
to update the SDF as:

SDFV ,n(v) =
SDFV ,n−1(v)Wn−1(v) + SDFA(v)WA(v)

Wn−1(v) +WA(v)
. (3.6)

Wn(v) = min(Wn−1(v) +WA(v), 255). (3.7)

WA(v) =

1, if SDFA(v) < 0

1 + 254 ∗ 2−
P(dA)
100 otherwise

(3.8)

The bit-depth precision P(dA) used in (3.8) is defined in equation (3.3). Using
the weight update method in (3.8) the weight is halved for every decimeter the
precision decreases.

The structure of the octree is refined for every new frame that is added. Thus
apart from updating all signed distances in the octree based on a new frame, all
newly added leaf voxels must also be updated using all previously added frames.

Together with each SDF sample a color is also stored. The images captured by
the RGB camera are taken with different exposure due to changing lighting con-
ditions. It is therefore important to average the color at each SDF sample from
several images in order to avoid ugly transitions between areas seen in images
with high exposure and images with low exposure. The color averaging is done
using the same weighted average as for the signed distance:

cV,n(v) =
cV,n−1(v)Wn−1(v) + cA(v)WA(v)

Wn−1(v) +WA(v)
. (3.9)

3.6 Panorama-Model alignment

When building a model of an indoor environment you want to use images taken
from different viewpoints in order to capture surfaces that otherwise would be
occluded. A method to find the relative position and rotation between images
taken from different positions is therefore needed. In systems capturing contin-
uous video with the task of motion tracking this is often solved by making the
assumption that two consecutive frames have a rather small relative shift in po-
sition and orientation. In the current setup however, no knowledge about the
relative position of the origin of two panoramas is available. However, as the rel-

30 3 Theory

ative rotations between all images within the panoramas are known, all features
in these frames can be used in order to find a good transformation that aligns a
panorama to a model generated from previous panoramas.

3.6.1 Pose Estimation through Feature Matching

To align a panorama to an existing model through feature matching as done when
aligning frames within a single panorama (3.4), all the feature descriptors of the
new panorama are matched to all those of the panoramas used to build the model.
In this case, the assumption made in 3.4.3 concerning the distances of the feature
points from the camera center can not be made, as the transformation between
frames from different panoramas also contains a translation. Therefore another
method to estimate a relative transformation must be used. One possibility is to
use the Eight-point algorithm described in [Longuet, 1981] to estimate an Essen-
tial matrix E.

Given an Essential Matrix E a relative rotation can be determined. It is however
only possible to extract the direction of the translation. To find the scaling, some
real world measurements must be matched to the features used when estimating
the Essential Matrix. Because of this, an easier solution is to map a depth value to
each image feature point using the depth image of each frame, and then calculate
the positions of the image feature points relative to the panorama. This mapping
is described in 3.6.2. Given the depth dA(fk,A) of the feature point fk,A from frame
A, its position pfk,A relative to the panorama is defined in (3.10).

ṗfk,A = TRGB ∗ v̇,

v = K−1RGB ∗ ḟk,A ∗ dA(fk,A)
. (3.10)

When this mapping is done we have two point clouds of vertices with one feature
descriptor each. Using the descriptors feature matching is done as described in
3.4.2.

The best transformation between a set of matching vertices can easily be found
by calculating the offset between the centroids of the two sets of vertices and solv-
ing the Orthogonal Procrustes Problem 2.6.2. By applying this to the RANSAC
algorithm for three point correspondences at a time, an rigid transformation

T =

[

R t
0 1

]

can be found by defining inliers as point correspondences whose rel-

ative distances when applying the transformation T are smaller than a threshold
λ.

3.6.2 Mapping between depth and color images

The Kinect RGB camera is located 24 millimeters along the positive x-axis from
the NIR-camera. As the pixels in the depth image generated from the NIR-camera
can be mapped to real world depth measurements according to (2.1), the position

3.6 Panorama-Model alignment 31

of the vertices seen in the depth image relative to the position of the RGB cam-
era is known. By projecting these vertices into the RGB camera, a color can be
mapped to the pixels in the depth image.

It is a lot harder to find a mapping in the opposite direction. In order to find the
pixel pd in a depth image that corresponds to a pixel pRGB in a RGB image, all
vertices found in the depth image are projected into the RGB image. The depth
value for a color pixel is then found by selecting the vertex from the depth image
whose projection in the RGB image is closest to it.

pd = argmin
pd

||pRGB − y||2,

ẏ ∼ KRGB ∗

1 0 0 0
0 1 0 0
0 0 1 0

∗ TRGB ∗ T −1d v̇d,

vd = K−1d ṗd ∗ d(pd)

(3.11)

In equations (3.11) vd is the position of an observed vertex at the depth pixel pd
relative to the depth camera. This vertex is projected into the RGB image pixel
y using the pose and intrinsic camera parameters TRGB and KRGB of the RGB
camera. The RGB and the NIR cameras on the Kinect sensor are mounted 24 mm
apart from each other along the x-axis. The relative pose between the RGB and
the NIR camera is thus fixed and known and can be expressed as:

TRGB ∗ T −1d =

1 0 0 24
0 1 0 0
0 0 1 0
0 0 0 1

. (3.12)

3.6.3 Pose Refinement through the Iterative Closest Point

algorithm

The method described in 3.6.1 gives a rough but good initial estimate of the pose
of a panorama. In order to get an even better position and orientation the Itera-
tive Closest Point (ICP) algorithm is used with some modifications. The generic
ICP algorithm is explained in 2.6.3. Two different variations of the ICP algorithm
have been implemented and tested.

RGBD-ICP

The idea of RGBD-ICP is to combine matching of features based upon both fea-
ture descriptors and their relative positions. This is inspired by [Henry et al.,
2010]. The set of inlier feature matches given from the RANSAC algorithm when
the initial relative pose were estimated in 3.6.1 is used in the ICP algorithm in
order to ensure that the result of the ICP algorithm does not deviate too much

32 3 Theory

from the initial solution. All other feature points in the panorama for which no
correct feature descriptor matches were found are instead matched based on the
shortest Euclidean distance to all the feature points of the panoramas used to
build the SSDO model. These two sets of point correspondences are then used
together in the ICP algorithm. The point correspondences originating from fea-
ture descriptor matching remain the same for each ICP iteration, while the set of
correspondences based on Euclidean distances is updated for every iteration. The
error metric used is a point-to-plane distance where the surface normal nV (p) at a
feature point p in the SSDO model V is calculated using a numerical differential
of the signed distance function.

ǫ = ǫRGB + ǫD ,

ǫRGB =
∑n

k=1 ṅV (pmP,V(k),V) · (TP,V ṗk,P − ṗmP,V(k),V)

ǫD =
∑m

l=1 ṅV (pmeuc
P,V(k),V

) · (TP,V ṗk,P − ṗmeuc
P,V(l),V

)

(3.13)

In (3.13) mP,V are the feature descriptor matches between a panorama P and a
SSDO model V , while meuc

P,V are matches between feature points based on the
Euclidean distance.

meuc
P,V (k) = argmin

l

||TP,V ṗk,P − ṗl,V||2 (3.14)

In order to avoid incorrect matches, only points at a distance shorter than a
threshold λICPD are used. When minimizing the error metric, the relative pose
converges towards a more accurate result when using the point-to-plane error
metric instead of a point-to-point metric. This is illustrated in figure 3.8. The
minimization is done numerically through a Levenberg-Marquardt least-square
solver.

SDF-ICP

When performing the ICP algorithm, a costly part of the algorithm is the first step
where matches between the points in the models are found. There are methods
to speed this up, for example using a kd-tree search. However, if the error metric
used is the point-to-plane distance, there is no reason to find point matches if
there is another method of finding the surface distance between the points in the
first model to the surfaces in the secondmodel. This is exactly the case when deal-
ing with the SSDOmodel, which contain samples of the signed distance function.
By interpolating the samples of the SDF at the locations of the feature points of a
panorama, an approximate value of the point-to-plane distance in each of these
points can be found. The error function (3.15) can be formed and minimized
using Levenberg-Marquardt optimization.

3.6 Panorama-Model alignment 33

Figure 3.8: When aligning two sets of measurements of the same surface
using the ICP algorithm, the result is more accurate if the point-to-plane
distance is used as error function instead of the point-to-point distance, as
the two sets of samples are located at different positions along the surface.

34 3 Theory

ǫ =
m
∑

k=1

(SDFV (TP,V ∗ ṗk,P))
2 (3.15)

This also makes it unnecessary to calculate the surface normals. This method is
much faster but requires that the SDF is sampled with a high resolution in order
to get a good result. Due to the speed of this method it is possible to use more
vertices than only the feature points.

3.7 Visualization

After a SSDO model has been created as described in 3.5 a rendering method is
needed in order to visualize the result. Two methods have been implemented in
this master thesis. The first one uses the SSDO structure directly and renders it
through ray casting. The other method converts it to a triangle mesh representa-
tion an renders it using standard mesh rasterization with OpenGL.

3.7.1 Ray-casting

The sparse SDF octree model is very well suited for performing ray-casting. Ray-
tracing is a rendering technique where beams of light are simulated by following
them from their origin until they eventually reach an observer after having been
reflected and/or transmitted on objects on the way. Ray-casting works in a similar
way but instead uses rays originating from the observer that intersects each pixel
in its image plane and extends out into the volume that is to be rendered. The
depth at each pixel is found by stepping along each ray until a first surface is en-
countered. Themethod implemented here is based on [Jamriška] where a method
to render distance fields represented in a sparse grid structure is presented.

Ray-casting is a performance demanding method but is heavily parallelizeable
and scales very well with increased level of detail when using a voxel represen-
tation. The SIMD-nature of the problem introduces the possibility of utilizing
a GPU. This does however pose challenges concerning the representation of the
structure of the octree data on device memory. It is however entirely possible to
upload models of large scenes represented using a SSDO data structure to the
GPU thanks to its memory efficiency. A ray-casting algorithm has been imple-
mented that runs in parallel on multiple threads on the CPU. A GPU implemen-
tation has not been realized.

To perform ray-casting one ray is created for each pixel in a view. Each ray is
defined with an origin in the viewpoint and a direction through the position of a
pixel in the normalized image plane of the viewer.

The direction of a ray is given as (3.16).

r(p) ∼ R−1K−1 ∗ ṗ (3.16)

3.7 Visualization 35

-+

Figure 3.9: A ray cast trough a section of a sparse SDF Octree. The step
length along the ray depends on the size of the voxels. Surface intersections
are found through interpolation of samples of the signed distance function.

where p is the image coordinate of a pixel, K is the intrinsic camera matrix, and
R is the orientation of the viewer.

In figure 3.9 a ray that is cast through a section of a sparse SDF octree is illus-
trated. The ray is traced along its direction through the voxels in the octree start-
ing at the coarsest level from where the first child-voxel that is intersected is
found. This is done through a simple comparison of the current position of the
ray and the current voxel.

If the selected voxel does not contain any surface, the ray skips to the exit point
of the voxel and restarts the process from the parent voxel starting from the new
position. If the ray does intersect a surface inside a voxel, the ray starts step-
ping through its children until a leaf voxel level is reached. When a leaf voxel
is found, the position inside it where the ray intersects a surface is found using
the SDF samples in the corners of the voxel. If no surface intersection is found
in any of the child voxels, the ray goes back to the parent voxel and tries to find
a intersection point using the SDF of that parent voxel. If a surface is found, the
depth is given as the distance traveled by the ray.

Surface intersections detected from voxels at coarser levels using their SDF is not
very exact as they only are calculated using eight samples of the SDF. This can
cause the rays to stop to early, for example close to sharp edges. In order to avoid
this the ray does not stop until it has reached a surface in a leaf voxel, or until
it exits the entire volume. If the ray does exit the entire volume but have found
surface intersections in non-leaf voxels earlier, the intersection that was found
inside the smallest voxel is selected to be the true first surface intersection for the
ray.

36 3 Theory

+ -

entry

exit

intersection

Figure 3.10: The intersection between a ray and a surface inside a voxel is
found by first finding the entry and exit point of the ray through the voxel,
and then finding the zero level of the signed distance function between these
points using the Newton-Raphson method.

SDF Interpolation

When a ray enters a voxel we must find if it intersects with any surface inside it,
and if so, locate where the intersection is. To begin with the entry and exit points
of the ray are found. The SDF are then linearly interpolated in these locations.
The ray is said to intersect the surface if the entry point has a positive signed
distance value while the exit point has a negative signed distance value. This
does not give the correct result when dealing with very curved surfaces but is a
good enough estimation, as we can assume the surface to be rather flat for small
enough voxels. If the ray is found to have a surface intersection we want to find
the zero level of the SDF along the ray between the entry and exit points. This is
done using the Newton-Raphson method over a limited set of iterations to get an
approximate value.

Finding voxel-ray intersections

When performing ray casting the steps along the rays should be as large as pos-
sible while traversing through the voxels in order to gain performance. At the
same time it is not beforehand possible to define a smallest step size to take in
order to make sure no voxels are skipped, as the rays intersect voxels at varying
angles and distances from the voxel center. So in order to take the right step
length, the entry and exit points of a voxel must be found in order to calculate
an appropriate step length. To simplify calculations, the starting position of the

3.7 Visualization 37

ray is first calculated relative to the negative corner of the voxel. The six planes
enclosing the voxel are then defined by:

x = 0, x = l
y = 0, y = l
z = 0, z = l

where l is the length of the side of the voxel. The distances to the intersections
between the ray and the enclosing planes from a starting point are given as

t0 = − px
dx
, t1 = l−px

dx

t2 = − py
dy
, t3 =

l−py
dy

t4 = − pz
dz
, t5 = l−pz

dz

(3.17)

where p is the starting point of the ray relative to the center of the voxel and d is
its normalized direction. The first intersection is the intersection at the smallest
positive distance along the direction of the ray (3.18).

tmin = min
ti>0

ti . (3.18)

The intersection point is found at

pintersect = p + d ∗ tmin (3.19)

This method does only give the first intersection between the ray and one of the
enclosing planes. If the starting point is located far outside the voxel this method
often gives a point intersecting one of the planes outside of the voxel. It is how-
ever possible to test if the given intersection is inside the voxel and if not, con-
tinue the search from this intersection point.

Voxel Cone Casting

The volume that projects into one pixel using perspective projection has the
shape of a cone witch widens with the distance from the camera. This is illus-
trated in figure 3.11. Considering this, there is no reason when casting a ray to
search for surfaces in levels in the octree with voxels of a size smaller than the
width of this cone. Each ray is therefore assigned an angle θr and a width wr that
is increased by sin(θ) millimeters for every millimeter along the ray. Voxels with
children smaller than the width of a ray is considered to be at the finest level of
the octree for this ray. This is also used in [Crassin et al., 2011] to accelerate the
rendering of sparse voxel octrees.

38 3 Theory

Figure 3.11: Due to the perspective projective property of pinhole cameras,
the volume projected into a pixel has the shape of a cone that widens with
increased distance.

3.7.2 Mesh Generation

Instead of using ray casting to render the SSDO a polygon mesh can be generated.
This is done using the Marching Cubes algorithm [Lorensen and Cline, 1987].
The Marching Cubes algorithm splits the entire volume into a regular grid where
each cell is parsed separately. In each cell triangles are created with corners at
positions along the cube boundary based upon the value of a scalar field in the
corners of the cube. The scalar field in this case is the signed distance field. As the
signed distance can be found at any location within the sparse SDF octree through
interpolation, the grid used for marching cubes does not have to be aligned to the
voxels in the sparse SDF octree. Based upon where the zero level of the signed
distance field between the corners of the cell is located, lookup tables presented
in [Lorensen and Cline, 1987] are used to generate vertices that are combined
into triangles. The speed of the marching cubes algorithm can be increased sub-
stantially if cells that are entirely encapsulated by a voxel with the same sign on
all its SDF samples, i.e. that does not contain any surface, are skipped.

4
Result

In the following chapter the presented method of indoor mapping using the
Kinect sensor is evaluated in terms of precision, performance and memory con-
sumption. In terms of the quality of the produced model, manual visual inspec-
tions have been an important tool together with more empiric measurements. For
evaluation the seminar room "Algoritmen" at the Department of Electrical Engi-
neering at Linköping University has been used.

4.1 Model Accuracy

The major goal with this thesis is to produce a model with both accuracy and
good visual appearance. One way of evaluating the model would be to measure
a set of control points and to adjust these so that they align to measurements in
the model. This could be done by solving the Orthogonal Procrustes Problem
(presented in 2.6.2). However, due to inaccuracies in the real world measure-
ments, this method would be inadvisable as measurement errors would accumu-
late when adding measurements in order to get absolute positions of the control
points. Instead, a set of easily identifiable distances were measured and com-
pared to those found in the model. Distances in the model were measured by cal-
culating the distances between pairs of points in the model. The positions of the
points in the model were measured through the ray-casting algorithm described
in 3.7.1.

The precision of the real world measurements are estimated at ten millimeters.
An error of the same magnitude can be expected for the measurements in the
model, as the end points of each measurement are visually selected and may not
match perfectly with those in the real world.

39

40 4 Result

Nr. Location Real world (mm) Model (mm) Diff (mm) %
1 Room height 2545 2525 -20 0.79
2 Room width 4640 4688 48 1.0
3 Room length 8120 8150 30 0.37
4 Wall - Whiteb. 510 519 9 1.8
5 Floor - Whiteboard 870 880 10 1.1
6 Whiteb. lamp depth 315 265 -50 16
7 Whiteb. - Proj. screen 1474 1456 -18 1.2
8 Proj. screen width 1770 1771 1 0.056
9 Roof - Door 532 538 6 1.1
10 Door width 890 884 -6 0.67
11 Door - Curtains 1615 1602 -13 0.80
12 Roof - Curtains 480 413 -67 14
13 Curtains width 2700 2693 -7 0.26
14 Coathanger height 1665 1598 -67 4.0
15 Roof - Exterior window 680 688 8 1.2
16 Window depth 330 305 -25 7.6
17 Pillar width 240 172 -68 28
18 Table width 1190 1106 -84 7.0
19 Table height 710 751 41 5.8
20 Table depth 490 410 -80 16
21 Chair width 460 415 -45 9.8

Table 4.1: Table of a set of real world and model measurements. The
model used has a minimum voxel size of 3 mm and is constructed from three
panoramas of 36 frames each.

(a) (b)

Figure 4.1: Examples of the measures presented in table 4.1, shown in two
parts of a panorama.

4.1 Model Accuracy 41

Figure 4.2: Relative model errors of the measures presented in table 4.1.

From table 4.1 the conclusion can be drawn that the global consistency of the
model is good, as the dimensions of the room in the model is close to that of the
actual room. Also longer distances along flat surfaces have small errors. This
gives an indication that the depth values from each frame have good precision
and that the estimated relative positions of the different panoramas are accurate.
Examples of where the real world measurements have been made is illustrated
in figure 4.1. The voxels in the octree are split a maximum of 13 times, giving a
minimal voxel size of 3 mm.

Smaller objects and tight corners or partly occluded areas have larger errors. This
effect can be observed clearly in figure 4.2 where the relative errors in relation to
the real world measurements are plotted. A few examples of large relative er-
rors are the width of the chairs, the height of the coat hanger and the depth of
the lamp above the whiteboard. From these the conclusion that edges tends to
be notched can be made. This causes objects to shrink in the model compared
to their real measurements and gives larger relative errors for small structures.
Longer distances, for example the room dimensions, have very small errors. An-
other indication of the edge issue is the quite small errors for short measurements
along larger surfaces where no edges are present. One example is the width of the
door. A likely cause to these inaccuracies are poorly aligned frames within the
same panorama. As the weight (3.6) used when updating SDF values are larger

42 4 Result

in front of observed surfaces than behind, surfaces further away will be favored
when new frames which contradicts the current model are added. The effect of
this is that poorly aligned images will carve away edges of surfaces seen by other
frames. Another source of errors is that most objects are not observed from all
angles as only a very limited set of viewpoints (three in this case) are used.

4.2 Memory Usage

When modeling a large room while trying to capture as much details as possible,
memory consumption quickly becomes an issue. There is a limit to the amount of
system memory available, and too much memory allocations and accesses can be
costly in terms of performance. This is in large part what the SSDO data structure
attempts to address.

The data stored for a voxel in the octree is a pointer to its parent, a pointer to a
list of its children, and a byte of flags which define where inside its parent it is
located, and if it is a leaf voxel or if it has children. A leaf voxel also store one
floating-point signed distance value, one three-component color and a weight for
each corner of the voxel. In total this makes up for 73 bytes for every voxel.
When running on a 64-bit system, 80 bytes of system memory is allocated due to
memory alignment.

In table 4.2 the number of voxels in the entire octree is shown for when new
frames are added to the model. Here 108 frames from three different panoramas
are used. The total size of the entire octree used is 24 meters, in order to ensure
that the entire room can be covered no matter how the octree is positioned or
oriented in the room. This is much larger than the actual size of the room but
does not pose any major increase in memory usage as the large empty spaces are
represented efficiently at high levels of the octree. The voxels are here split a
maximum of 11 times, giving a minimal voxel size of 12 mm.

The number of voxels increase quickly for the first few frames. Later on the
increase levels out, as most of the surfaces seen by the following frames already
have been seen. Panoramas which are perfectly aligned and sees the same surface
will detect points which forms a common surface in the model. If the alignment
is bad, their surface samples will not align. This will cause multiple voxels to be
generated for the same surface and thus greatly increase the amount of voxels in
the octree. Due to this, the speed by which the number of voxels increase can be
an indication of how good the alignment between the panoramas is. This com-
parison have been made to compare the different variants of the ICP algorithm
described in 3.6.3.

As can be seen in table 4.2, the number of voxels decrease somewhat using any of
these twomethods. Compared to each other they produce almost identical results
with regard to the amount of voxels. Due to the significantly higher performance
cost of the RGBD-ICP algorithm shown in table 4.3, the SDF-ICP variant is prefer-
able. In the table the number of voxels required to construct a dense SDF grid is

4.3 Performance 43

Sparse Dense
Frames No ICP RGBD-ICP SDF-ICP SDF

36 2,646,176 2,643,698 2,646,498 60,338,442
72 4,259,242 4,259,158 4,247,328 60,338,442
108 5,552,436 5,507,944 5,505,998 60,338,442

Table 4.2: Table showing the number of voxels in the model using three
different methods of panorama alignment. The number of voxels in a
dense SDF grid is included for comparison. The number of voxels for the
first panorama vary somewhat due to the non-deterministic nature of the
RANSAC algorithm.

Min. voxel size RGBD-ICP SDF-ICP
3 mm 870.41 s 15.64 s
12 mm 869.45 s 11.64 s

Table 4.3: Table showing the execution time of two variants of the ICP algo-
ritm.

also included for comparison. This number is calculated based on the real-world
measurements of the modeled room. It assumes that the grid is perfectly aligned
to the room and does not take possible objects outside the room seen through the
windows into account. If instead the same size as for the sparse SDF octree would
be used, the number of voxels required for the dense SDF grid would increase to
over 8 billion.

4.3 Performance

The implemented system is unable to construct a model in real-time during im-
age capture. This was not a goal, but performance is nevertheless an important
aspect. The process is entirely executed on the CPU, in contrast to some other
systems where GPU:s are used. One example is [Izadi et al., 2011]. The process
is however heavily parallelized in many parts and could be rewritten to utilize
the SIMD-structure of a GPU. Running on an eight-core AMD FX-8120 at 3.1
GHz the process of constructing a sparse SDF octree of the previously mentioned
seminar room from three panoramas using a smallest voxel size of 12 mm took
1,035 seconds. table 4.3 shows the time required to align a second panorama to a
sparse SDF octree built using a first panorama for the two ICP variants presented
in 3.6.3.

4.4 Visual Result

An important evaluation tool of the presented system is the visual appearance
and similarity of the produced model to that of the actual environment. In Ap-

44 4 Result

pendix A a few images of the model are shown alongside real photographs taken
from the same locations, as well as some images of the model from other angles.

5
Analysis and Conclusions

In the following chapter the produced results of the system are analyzed and
some areas where improvements could be made are mentioned.

5.1 Model Quality

The presented method of indoor mapping using the Kinect sensor produces re-
sulting models of the mapped environment which have good global consistency
and which are of enough visual quality to easily identify objects from themapped
environments to objects found in the models. When observing measurements of
smaller objects in the scene, room for improvement can be found. Edges are often
notched, most likely due to imperfect alignment between frames.

5.2 Panorama construction

When panoramas are constructed the assumption is made that the transforma-
tions between the individual frames are purely rotational. This requires the cam-
era center of the RGB camera to be perfectly aligned to the axis of rotation. This
was not done very carefully when capturing the images used for evaluation of
the system. This offset was sufficiently small to construct panoramas with the
assumption of pure rotation. This is however most certainly impairing the preci-
sion of the model.

The approach of capturing images in fixed positions in sets of panoramas makes
this system less flexible compared to other similar systems aimed at mapping
using Kinect, such as [Izadi et al., 2011] and [Henry et al., 2010]. The effect of
this limitation is that objects in the mapped environments only are captured from

45

46 5 Analysis and Conclusions

a very limited set of angles. This greatly limits the visual quality and detail of
the produced models.

Another issue is that the presence of large uniformly colored areas close to the
camera introduces errors or sometimes complete failures when aligning images
into panoramas using feature matching. This is due to the lack of good distinct
feature points, a problem that systems using alignment through depth data do
not suffer from.

5.3 Panorama Alignment

The approach of using feature matching makes it possible to find the relative
pose of sets of frames without any initial approximation, as is done in this sys-
tem when aligning panoramas taken from unknown positions. Other systems
often use the pose of the previous frame or a motion model as an approximation
for each new frame, and thus requires frames to be captured consecutively with
small relative movements. This limits their use to continuous video. When using
entire panoramas the problem with a lack of image features due to large uni-
formly colored areas rarely arise due to the larger image area and field of view.
This makes feature matching a very reliable method for this particular task. The
use of the ICP algorithm further improves the accuracy of the alignment. The ac-
cess to the signed surface distance through the Sparse SDF Octree model turned
out to be very beneficial for its implementation and greatly increases its speed,
which can be seen in the comparison between the two different ICP variants pre-
sented in 4.3.

5.4 Sparse SDF Octrees

The Sparse SDFOctree is an interestingmethod of representation of surface struc-
tures considering that it has the advantages of the regular dense SDF while reduc-
ing the storage requirements and thus scales better for large environments. The
drawback is however the increased computational cost to construct it. The dense
SDF is much easier to parse and update, and its complexity does not change. The
sparse SDF octree on the other hand changes as new voxels are created for every
frame that is added.

The dense grid is also very easy to store and process in parallel on a GPU. This
is harder to do with a sparse octree that changes its structure dynamically. Im-
plementations of sparse voxel octrees (SVO) have however been implemented for
GPU:s in for example [Laine and Karras, 2010]. As the tree structure of sparse
SDF octrees is exactly the same it should be possible to do this for these also. This
would open up the possibility of real-time rendering through ray-tracing and
maybe also real-time updates of the sparse SDF octree from continuous video.

5.5 Future Work 47

5.5 Future Work

In the following chapter some suggestions of future studies are listed. These are
based on ideas and experiences collected throughout the work with this thesis
which were not tested.

5.5.1 Allow translation within a panorama

As it is hard to perfectly align the camera center to a fixed rotational axis, the
alignment of frames within a panorama could be improved by allowing trans-
lations between the frames and thereby compensating for offsets between the
camera center and the rotational axis.

5.5.2 Combine RGB and depth data for pose estimation

When mapping an environment, the poses of the images used must be estimated
very accurately in order to get good accuracy in the model. Using both depth and
RGB data for pose alignment should make it possible to improve the accuracy of
the camera poses further, and above all, be able to produce a more robust system
that can handle large uniformly colored images or inaccurate depth values.

5.5.3 Improvement of depth data using disparity maps of RGB

images

The distance values from the depth sensor could be complemented with depth
data calculated using pairs of RGB images from frames taken from separate loca-
tions. If their relative poses are known, pairs of RGB images could be used either
to construct disparity maps from which depth values could be extracted, or to
triangulate individual vertices after performing feature matching.

5.5.4 GPU implementation of a sparse SDF octree

As the process of both constructing and rendering the sparse SDF octree is par-
allelizeable, it should be possible to greatly improve the system performance by
implementing parts of the algorithms on the GPU using CUDA or OpenCL.

Appendix

A
Screenshots

In the following appendix a set of rendered views of a model constructed using
the previously presented process is shown. The first three examples are shown
alongside actual photographs taken from the same locations.

51

52 A Screenshots

(a) (b)

Figure A.1

(a) (b)

Figure A.2

53

(a) (b)

Figure A.3

54 A Screenshots

Figure A.4

55

Figure A.5

56 A Screenshots

Figure A.6

Bibliography

A. Alahi, R. Ortiz, and P. Vandergheynst. Freak: Fast retina keypoint. 2012
IEEE Conference on Computer Vision and Pattern Recognition, 0:510–517,
2012. ISSN 1063-6919. doi: http://doi.ieeecomputersociety.org/10.1109/
CVPR.2012.6247715. Cited on pages 2, 14, 15, and 21.

Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and Elmar Eisemann.
Interactive indirect illumination using voxel cone tracing, sep 2011. URL
http://maverick.inria.fr/Publications/2011/CNSGE11b. Cited
on page 37.

Charles Dapogny and Pascal Frey. Computation of the signed distance function
to a discrete contour on adapted triangulation. Calcolo, 49(3):193–219, 2012.
doi: 10.1007/s10092-011-0051-z. Cited on page 12.

Christian Kerl Fredrik Kahl Erik Bylow, Jürgen Sturm andDaniel Cremers. Dense
localization and mapping from rgb-d data. 2013. Cited on pages 14, 25, 27,
and 29.

Leonhard Euler. Formvlae generales pro translatione quacunque corporum rigi-
dorum. Novi Commentarii Academiae Scientiarum Imperialis Petropolitanae,
pages 189–207, 1775. Cited on page 7.

Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated cartogra-
phy. Communications of the ACM, 24(6):381–395, 1981. Cited on pages 2
and 16.

Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren, and Dieter Fox. Rgbd
mapping: Using depth cameras for dense 3d modeling of indoor environments.
In In RGB-D: Advanced Reasoning with Depth Cameras Workshop in conjunc-
tion with RSS, 2010. Cited on pages 18, 31, and 45.

Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard New-
combe, Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, An-
drew Davison, and Andrew Fitzgibbon. Kinectfusion: real-time 3d reconstruc-
tion and interaction using a moving depth camera. In Proceedings of the

57

http://maverick.inria.fr/Publications/2011/CNSGE11b

58 Bibliography

24th annual ACM symposium on User interface software and technology, UIST
’11, pages 559–568, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0716-
1. doi: 10.1145/2047196.2047270. URL http://doi.acm.org/10.1145/

2047196.2047270. Cited on pages 12, 14, 25, 27, 28, 43, and 45.

Ondrej Jamriška. Interactive ray tracing of distance fields. Cited on pages 25
and 34.

Georg Klein and David Murray. Parallel tracking and mapping for small AR
workspaces. In Proc. Sixth IEEE and ACM International Symposium on Mixed
and Augmented Reality (ISMAR’07), Nara, Japan, November 2007. Cited on
page 14.

Samuli Laine and Tero Karras. Efficient sparse voxel octrees – analysis, ex-
tensions, and implementation. NVIDIA Technical Report NVR-2010-001,
NVIDIA Corporation, February 2010. Cited on pages 10 and 46.

Longuet. A computer algorithm for reconstructing a scene from two projections.
Nature, 293:133–135, September 1981. Cited on page 30.

William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution
3d surface construction algorithm. SIGGRAPH Comput. Graph., 21(4):163–
169, August 1987. ISSN 0097-8930. doi: 10.1145/37402.37422. URL http:

//doi.acm.org/10.1145/37402.37422. Cited on page 38.

Stephane Magnenat. Questions regarding code and algorithms. volume [Online]
OpenKinect mailing list, 2010. Cited on page 4.

Anton Nordmark. Kinect 3d mapping. (LiTH-ISY-EX–12/4636—SE), 2012. URL
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-85158.
Cited on pages 3 and 5.

Daniel Ricao Canelhas. Scene representation, registration and objectdetection
in a truncated signed distance functionrepresentation of 3d space. Master’s
thesis, Örebro University, School of Science and Technology, Örebro University,
Sweden, 2012. Cited on pages 25 and 28.

Edward Rosten and Tom Drummond. Fusing points and lines for high per-
formance tracking. In IEEE International Conference on Computer Vi-
sion, volume 2, pages 1508–1511, October 2005. doi: 10.1109/ICCV.2005.
104. URL http://edwardrosten.com/work/rosten_2005_tracking.
pdf. Cited on pages 2 and 14.

Edward Rosten and Tom Drummond. Machine learning for high-speed corner
detection. In European Conference on Computer Vision, volume 1, pages 430–
443, May 2006. doi: 10.1007/11744023_34. URL http://edwardrosten.

com/work/rosten_2006_machine.pdf. Cited on pages 2 and 14.

Szymon Rusinkiewicz andMarc Levoy. Efficient variants of the ICP algorithm. In
Third International Conference on 3D Digital Imaging and Modeling (3DIM),
June 2001. Cited on page 17.

http://doi.acm.org/10.1145/2047196.2047270
http://doi.acm.org/10.1145/2047196.2047270
http://doi.acm.org/10.1145/37402.37422
http://doi.acm.org/10.1145/37402.37422
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-85158
http://edwardrosten.com/work/rosten_2005_tracking.pdf
http://edwardrosten.com/work/rosten_2005_tracking.pdf
http://edwardrosten.com/work/rosten_2006_machine.pdf
http://edwardrosten.com/work/rosten_2006_machine.pdf

Bibliography 59

Peter H. Schönemann. A generalized solution of the orthogonal procrustes prob-
lem. Psychometrika, 31(1):1–10, 1966. ISSN 0033-3123. doi: 10.1007/
BF02289451. Cited on page 15.

Richard Szeliski. Image alignment and stitching: a tutorial. Found. Trends. Com-
put. Graph. Vis., 2(1):1–104, January 2006. ISSN 1572-2740. doi: 10.1561/
0600000009. URL http://dx.doi.org/10.1561/0600000009. Cited on
page 12.

Tinne Tuytelaars and Krystian Mikolajczyk. Local Invariant Feature Detectors:
A Survey. Now Publishers Inc., Hanover, MA, USA, 2008. ISBN 1601981384,
9781601981387. Cited on page 14.

B. Williams, G. Klein, and I. Reid. Real-time SLAM relocalisation. In Proc. Inter-
national Conference on Computer Vision, 2007. Cited on page 14.

http://dx.doi.org/10.1561/0600000009

60 Bibliography

Upphovsrätt

Detta dokument hålls tillgängligt på Internet — eller dess framtida ersättare —
under 25 år från publiceringsdatum under förutsättning att inga extraordinära
omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för icke-
kommersiell forskning och för undervisning. Överföring av upphovsrätten vid
en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ
art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman
i den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förla-
gets hemsida http://www.ep.liu.se/

Copyright

The publishers will keep this document online on the Internet — or its possi-
ble replacement — for a period of 25 years from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for his/her own use and
to use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional on the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be men-
tioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity, please
refer to its www home page: http://www.ep.liu.se/

© Morgan Bengtsson

http://www.ep.liu.se/
http://www.ep.liu.se/

	Front Page
	Title Page
	Library Page
	Sammanfattning
	Abstract
	Contents
	Notation
	1 Introduction
	1.1 Goal
	1.2 Limitations
	1.3 System Overview

	2 Background
	2.1 The Kinect Sensor
	2.1.1 Hardware
	2.1.2 Calibration

	2.2 Homogeneous Coordinates
	2.3 Camera Model
	2.3.1 Extrinsic Camera Model
	2.3.2 Intrinsic Camera Model

	2.4 Representation of Orientation
	2.4.1 Euler Angles
	2.4.2 Rotation Matrix
	2.4.3 Unit Quaternions

	2.5 3D Model Representation
	2.5.1 Point Cloud
	2.5.2 Polygon Mesh
	2.5.3 Voxel Volume
	2.5.4 Sparse Voxel Octree (SVO)
	2.5.5 Signed Distance Field (SDF)

	2.6 Pose Estimation
	2.6.1 Dense Image Alignment
	2.6.2 Sparse Image Alignment
	2.6.3 Iterative Closest Point

	3 Theory
	3.1 Overview
	3.2 Image Collection
	3.3 Pre-processing
	3.3.1 RGB
	3.3.2 Depth

	3.4 Panorama Construction
	3.4.1 Feature Descriptors
	3.4.2 Feature Matching
	3.4.3 Rotation Estimation
	3.4.4 Loop Closing

	3.5 Model Generation
	3.5.1 Sparse SDF Octree (SSDO)

	3.6 Panorama-Model alignment
	3.6.1 Pose Estimation through Feature Matching
	3.6.2 Mapping between depth and color images
	3.6.3 Pose Refinement through the Iterative Closest Point algorithm

	3.7 Visualization
	3.7.1 Ray-casting
	3.7.2 Mesh Generation

	4 Result
	4.1 Model Accuracy
	4.2 Memory Usage
	4.3 Performance
	4.4 Visual Result

	5 Analysis and Conclusions
	5.1 Model Quality
	5.2 Panorama construction
	5.3 Panorama Alignment
	5.4 Sparse SDF Octrees
	5.5 Future Work
	5.5.1 Allow translation within a panorama
	5.5.2 Combine RGB and depth data for pose estimation
	5.5.3 Improvement of depth data using disparity maps of RGB images
	5.5.4 GPU implementation of a sparse SDF octree

	A Screenshots
	Bibliography
	Copyright

