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Abstract
The focus of this thesis is to find efficient ways of solving cer-
tain types of ODEs and PDEs. We have implemented a time
upscaling method called Multiscale timestepping technique for
this problems. In this method discretization of PDEs are trans-
formed into wavelet basis, which divides the solution and the dis-
cretized differential operator into coarse scales and fine scales.
Larger time steps are then used for solving the fine scale ele-
ments. In numerical experiments we show that the accuracy of
the solution is maintained but the computational cost is signifi-
cantly reduced compared to standard methods.





Referat
Tidsstegning med flera skalor för ODE och PDE

Denna uppsats behandlar effektiva metoder för att lösa vissa
typer av ODE och PDE. Vi har implementerat en metod för
tidsuppskaling som är baserad på tidsstegning med flera skalor.
Metoden utgår från en vanlig rumsdiskretisering av en PDE. Den
transformeras till en wavelet-bas som delar upp lösningen och
den diskretiserade differentialoperatorn i grova och fina skalor.
Stora tidssteg används sedan för att approximera de element som
motsvarar fina skalor. I numeriska experiment visar vi att nog-
grannheten i lösningen bibehålls, men att berä kningskostnaden
jämfört med standardmetoder blir betydligt mindre.
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Chapter 1

Introduction

This thesis is concerned with efficient ways of solving large ordinary differential equation
(ODE) system and time dependent partial differential equations (PDE), in particular
parabolic and hyperbolic equations. Hyperbolic equations arise where advective trans-
port and wave propagation are important, for instance in areas like gas dynamics, optics,
geophysics, acoustics, elastodynamics and biomechanics. Parabolic equations appear
where heat transport or diffusion are involved. By using semi-discretization schemes,
time-dependent PDE problems are transformed into ODE systems of the form

ut = Au, (1.1)

where A is the space discretization matrix, which is sparse, and u represents the solution
vector. Time stepping methods for ODEs are then used to solve the system.

In many areas of scientific and engineering research, scientists are using matrices
with millions of unknowns. With increasing computers capability the interest is still
rising to include larger and larger problems in their considerations. For simulations
of time dependent problems with such large sizes, computational cost is one of the
most important issue. Successful execution in limited amount of time for these types of
problem is a great challenge. Definitely, decreasing the simulation times in this field will
ensure a significant achievement.

By transforming a matrix and a solution vector into wavelet bases the information is
divided into different scales [14]. For the matrices that arise from semi-discretization of
PDEs most of the information is gathered into a particular area of the matrix. Matrix
elements far away from the diagonal and the lower part of the diagonal are in general
smaller. Similarly, if the solution is smooth, elements in the solution vector that represent
fine scales, will be small. Making simulations that emphasise a particular part or scale,
can make the simulations more efficient. Obviously, in that case ensuring the accuracy
is also a difficult task. There are many papers which aim is to reduce the computational
cost for differential equations by using wavelets. Some wavelet based transformation
techniques [1, 5, 6] are applied to matrices obtained by using finite difference and finite
element methods to PDEs. Kumar & Mehra in [5] implemented Haar and Daubechies
based wavelets precondition to achieve large sparse linear system from finite difference
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CHAPTER 1. INTRODUCTION

and finite elements discretization matrix of non-linear PDEs. In [15] dense matrices
from discretization of integral equations are transformed into sparse matrices in wavelet
bases to reduce costs.

Our goal is to reduce the computational cost by using so-called time upscaling. Nor-
mally, if 4t is the time step and 4x is the step size in space, the computational cost
for solving an N -dimensional problem is O( 1

4t
1
4xN ). We want to reduce the cost to

O( |log4t|
4xN ). This is called time upscaling [8]. In recent years different techniques were

proposed to reduce the computational cost of solving linear PDEs by time upscaling.
For instance, repeated squaring of the solution operator is one technique used in [8, 13,
7].

The time upscaling technique used in this paper we call Multiscale timestepping. To
solve (1.1), first of all we transform the matrix A in (1.1) and the solution vector u into
a wavelet basis. Then we modify the wavelet based matrix (say L ∈ R(J+1)×(J+1)) to
the matrix H by multiplying the elements of L by positive integers. We also consider
different levels j = 0, 1, 2, . . . , J of these matrices Lj , Hj . The transformation from L to
H on level j is shown below.

Lj =



l0,0 l0,1 . . . l0,j . . . 0
l1,0 l1,1 . . . l1,j . . . 0
...

... . . . ...
lj ,0 lj ,1 . . . lj ,j . . . 0
...

... . . . ... . . .
0, 0 . . . 0 . . . 0


⇒ Hj =



l0,0 21l0,1 . . . 2jl0,j . . . 0
21l1,0 21l1,1 . . . 2jl1,j . . . 0

...
... . . . ...

2jlj ,0 2jlj ,1 . . . 2jlj ,j . . . 0
...

... . . . ... . . .
0, 0 . . . 0 . . . 0


;

After that we implement our Multiscale timestepping technique with some standard
ODE methods. The Multiscale timestepping technique with the Forward Euler (FE)
method for (1.1) is

vn+1 = vn +4tHj(n)v
n. (1.2)

Here v is the wavelet transform of u.
During simulations different sizes of matrices and vectors are used in different time

steps. The matrices Hj are used in the order j(n) = 0, 1, 0, 2, 0, 1, 0, 3 and so on (more
details in Section 2.2.3). Thus in every odd iteration we compute only a product of
scalars (one element from the matrix and one element from the solution vector) and in
even iterations matrices of different sizes are multiplied. In the second iteration a 2× 2
matrix and 2−vector are called. Similarly in the fourth step the simulation is executed
for a 3 × 3 matrix and a 3−vector, and so on. Finally, only in the last time step we
consider the whole matrix HJ and the whole solution v.

In Multiscale timestepping technique, different elements of the solution vector are
essentially computed with different time steps 4t = 4t(j), the size of which depend on
the element index j and time level n. More precisely, the kth element of the solution
vector in time level n is computed as follows when using Hj .

vn+1
k = vn

k +2k4t(lk,0v
n
0 +lk,1v

n
1 +.......+lk,kv

n
k )+2k+1(4t)lk,k+1v

n
k+1+.......+2j(4t)lk,jv

n
j ,
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where j = j(n) and k ≤ j. (This is row k in (1.2).) Hence in the right hand side, factors
of the form 2r 4 t appear, which can interpreted as different time step sizes.

In particular for element k = j(n) at time level n,

vn+1
j = vn

j + 2j 4 t(lj,0v
n
0 + lj,1v

n
1 + .......+ lj,jv

n
j ).

Here the time step is 2j 4 t.
Time upscaling techniques similar to our Multiscale timestepping technique were

proposed for the wave equation [9] and for the advection and parabolic equations [11,
10]. M. B. Giles [4] used a geometric sequence of timesteps and reduced computational
cost for stochastic differential equations in a similar way. Using almost similar technique
like the one in this paper, Stolk [9] reduced the computational cost. After transforming
the one-way formulation of wave equation into a wavelet based he integrates the fine
scales with longer time steps than the coarse scale. O. Runborg [3] and J. Popovic in
[12] reduced the computational cost for tracking interfaces in a time-varying velocity
field. They consider longer time steps for finer scales and also apply it to time upscaling
of Hamilton Jacobi equations.

Usually Multiscale computation is more complicated than standard computations
and for smaller problems the cost may be higher. But if the problem size is large
enough, this technique will be faster. Its computational complexity is O(N(logN)2) for
N unknowns and N time steps, instead of O(N2) for standard methods, see Section 2.4.
We show in numerical examples (see Chapter 4) that the accuracy is still maintained.

The organization of this paper is as follows. After this introduction we formulate
some structured problems in Chapter 2 that are well suited for our Multiscale timestep-
ping technique and state some standard ODE methods used in this paper. In Chapter
2 we also discuss the implementation procedures of our technique and compare the the-
oretical numerical cost with standard methods. We introduce some partial differential
equations in Chapter 3 and discuss the advantages of using wavelets with partial dif-
ferential equations in numerical analysis. After that all of the numerical experiments
and their results are presented in Chapter 4. Finally in Chapter 5 we have an overall
discussion and leave comments for future work.
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Chapter 2

Multiscale timestepping for ODEs

2.1 Problem description

Consider the ODE
zt = V z, (2.1)

where the matrix V and the solution vector z are defined as:

V =


v0,0 v0,1 . . . v0,J
v1,0 v1,1 . . . v1,J
...

... . . . ...
vJ ,0 vJ ,1 . . . vJ ,J

 ∈ R(J+1)×(J+1), z(t) =


z0(t)
z1(t)
...

zJ(t)

 ∈ R(J+1).

We want to solve (2.1) when the matrix elements and the initial vector elements
satisfy

|vj,k| ≤ C2−q|j−k|, |zj(0)| ≤ C2−jQ, (2.2)

where C is some constant and q,Q are some positive numbers used to describe the
decay rate of the elements of the matrix and the initial vector. We call them the matrix
generator number and vector generator number respectively. Larger q and Q indicate
smaller elements of the matrix and the vector and vice-versa. For this structure, the
matrix elements become smaller away from the diagonal. The initial vector decreases its
value from top to bottom. We will also discuss a blocked version of the problem (2.1)
later in Section 2.3.

The reason for beginning with this types of structured problem is the application of
wavelets in solving PDEs. Similar decay properties like our structured matrix and the
solution vector in (2.2) are observed when the discretization matrix of the PDEs and
the solution vector are transformed into a wavelet basis. Hence, (2.1) and in particular
the blocked version in Section 2.3 is considered as a model problem for such PDE
discretizations.
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CHAPTER 2. MULTISCALE TIMESTEPPING FOR ODES

2.2 Numerical method

2.2.1 Standard methods

We consider first some standard ODE methods for solving equation (2.1). Let zn be the
numerical approximation of z(n4 t) and T = 2J 4 t, where 4t is the time step and J
is used to define the problem size.

The Forward Euler method for problem (2.1) can be written as

zn+1 = zn +4tV zn.

According to the Forward Euler method in each time step it multiplies (I +4tV ) with
zn. Since V is a full matrix the cost is O(J2). So if the problem (2.1) is solved by
Forward Euler method with N time steps, the total cost is O(NJ2). This time stepping
method shows first order of accuracy in error reduction.

On the other hand the classical Runge-Kutta 4th (RK4) order method for
equation (2.1) can be written as:

zn+1 = zn + 4t6 (k1 + 2k2 + 2k3 + k4) (2.3)

where

k1 =4 tV zn

k2 =4 tV (zn + k1
2 )

k3 =4 tV (zn + k2
2 )

k4 =4 tV (zn + k3).

If we look at k1, k2, k3 and k4 above, we can see that a matrix-vector multiplication
is needed to calculate k1. Moreover for each k2, k3 and k4, a vector-vector addition and
then matrix-vector multiplication is required. So for each one of k1, k2, k3 and k4 the
cost is O(J2). Hence the total cost of this method in each time step is O(J2) and as
above the cost to do N time steps is O(NJ2).

2.2.2 Introductory Multiscale timestepping example

We know that the computational cost for a matrix-vector multiply is proportional to
the number of non-zero elements of the matrix and the vector. During the solution
procedure with standard methods, in every time step the whole matrix I + 4tV is
applied to the whole vector zn. So in each time step the cost is calculated from all of the
non-zero elements of the matrix and the vector. In Multiscale timestepping techniques,
except for the very last time step, instead of operating the whole matrix and the whole
vector, only a part of the matrix operates on a part of the vector in each time step.
The most interesting point is that in every odd iteration this technique operates only

6



2.2. NUMERICAL METHOD

a single element from the matrix and the vector. As a result the computational cost is
significantly reduced.

To get an overview of the Multiscale timestepping technique, we start by considering
a simple toy problem as an example. Suppose we want to solve

zt = V z, (2.4)

where V is a 4× 4 matrix and z is a 4−vector i.e. J = 3.

V =


v0,0 v0,1 v0,2 v0,3
v1,0 v1,1 v1,2 v1,3
v2,0 v2,1 v2,2 v2,3
v3,0 v3,1 v3,2 v3,3

 , z0 =


z0

0
z0

1
z0

2
z0

3

 .

Now step by step we solve equation (2.4) by Multiscale timestepping technique using
the Forward Euler time stepper as follows:

• Step 1

z1
0 = z0

0 +4tv0,0z
0
0

After step 1 the updated solution becomes

z1 =


z1

0
z0

1
z0

2
z0

3

 .

• Step 2

z2
0 = z1

0 +4tv0,0z
1
0 + 24 tv0,1z

0
1

z2
1 = z0

1 + 24 tv1,0z
1
0 + 24 tv1,1z

0
1

So now the updated solution is

z2 =


z2

0
z2

1
z0

2
z0

3

 .

• Step 3

z3
0 = z2

0 +4tv0,0z
2
0

Now the solution becomes

z3 =


z3

0
z2

1
z0

2
z0

3

 .
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• Step 4

z4
0 = z3

0 +4tv0,0z
3
0 + 24 tv0,1z

2
1 + 44 tv0,2z

0
2

z4
1 = z2

1 + 24 tv1,0z
3
0 + 24 tv1,1z

2
1 + 44 tv1,2z

0
2

z4
2 = z0

2 + 44 tv2,0z
3
0 + 44 tv2,1z

2
1 + 44 tv2,2z

0
2

After this step the solution vector is

z4 =


z4

0
z4

1
z4

2
z0

3

 .

• Step 5

z5
0 = z4

0 +4tv0,0z
4
0

So now the updated solution is

z5 =


z5

0
z4

1
z4

2
z0

3

 .

• Step 6

z6
0 = z5

0 +4tv0,0z
5
0 + 24 tv0,1z

4
1

z6
1 = z4

1 + 24 tv1,0z
5
0 + 24 tv1,1z

4
1

Now the updated solution becomes

z6 =


z6

0
z6

1
z4

2
z0

3

 .

• Step 7

z7
0 = z6

0 +4tv0,0z
6
0

After step 7 the solution vector becomes

z7 =


z7

0
z6

1
z4

2
z0

3

 .

• Step 8

8



2.2. NUMERICAL METHOD

z8
0 = z7

0 +4tv0,0z
7
0 + 24 tv0,1z

6
1 + 44 tv0,2z

4
2 + 84 tv0,3z

0
3

z8
1 = z6

1 + 24 tv1,0z
7
0 + 24 tv1,1z

6
1 + 44 tv1,2z

4
2 + 84 tv1,3z

0
3

z8
2 = z4

2 + 44 tv2,0z
7
0 + 44 tv2,1z

6
1 + 44 tv2,2z

4
2 + 84 tv2,3z

0
3

z8
3 = z0

3 + 84 tv3,0z
7
0 + 84 tv3,1z

6
1 + 84 tv3,2z

4
2 + 84 tv3,3z

0
3

So our solution vector is

z8 =


z8

0
z8

1
z8

2
z8

3

 .

The above example shows that in each of the odd iteration only a product of two
scalars is calculated. Moreover, just in the last time step the whole matrix and the whole
vector is used. During all other time steps smaller sub-matrices are used.

2.2.3 Method
If we look into the solution procedure of the previous example we can see that to solve
the equation (2.4) instead of using the matrix

V =


v0,0 v0,1 v0,2 v0,3
v1,0 v1,1 v1,2 v1,3
v2,0 v2,1 v2,2 v2,3
v3,0 v3,1 v3,2 v3,3

 ,

we used a modified version of V defined as:

H =


20v0,0 21v0,1 22v0,2 23v0,3
21v1,0 21v1,1 22v1,2 23v1,3
22v2,0 22v2,1 22v2,2 23v2,3
23v3,0 23v3,1 23v3,2 23v3,3

 .

The example also shows that during the time steps, instead of applying the whole matrix
H, we used smaller size sub-matrices of H and different sizes of the solution vector from
z. Only in the last time step did we use the whole matrix H and the whole vector z.
The sizes for different sub-matrices and initial vectors in different time steps change as
1, 2, 1, 3, 1, 2, 1, 4. This ensures that the jth component of the solution vector is updated
every 2j−1th step. It is thus effectively approximated using a time step of size 2j−14 t.

We will now describe the general procedure. We create new matrices Hj from the
matrix V , where

Hj =



v0,0 21v0,1 . . . 2jv0,j . . . 0
21v1,0 21v1,1 . . . 2jv1,j . . . 0

...
... . . . ...

2jvj ,0 2jvj ,1 . . . 2jvj ,j . . . 0
...

... . . . ... . . .
0, 0 . . . 0 . . . 0


; j = 0, 1, 2, ..., J. (2.5)
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CHAPTER 2. MULTISCALE TIMESTEPPING FOR ODES

We also define the ordering j(n) as

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . . J-1 J
j(n) 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 . . . 0 J

The general formula of j is

j(n) = max{k ∈ Z+ : n+ 1 is divisible by 2k}. (2.6)

In every time step we use a different size of sub-matrices as well as solution vectors
and the solution vector is updated according to that order. The size of sub-matrices
and solution vectors for different time step is determined according to the value of j(n)
(defined above). So simply we can write the Multiscale technique for equation (2.1) with
Forward Euler method as

zn+1 = zn +4tHj(n)zn (2.7)

Similarly Multiscale timestepping technique for Backward Euler method (BE), Crank-
Nicolson (CN) method, Runge-Kutta 2nd (RK2) order method and Runge-Kutta 4th
order method for equation (2.1) can be written as:

• Backward Euler method

zn+1 = zn +4tHj(n)zn+1 (2.8)

• Crank-Nicolson method

=⇒ (1−Hj(n)
4t
2 )zn+1 = (1 +Hj(n)

4t
2 )zn (2.9)

• Runge-Kutta 2nd order method

zn+1 = zn + k2, (2.10)

where

k1 =4 tHj(n)zn

k2 =4 tHj(n)(zn + k1
2 )

• Runge-Kutta 4th order method

10



2.2. NUMERICAL METHOD

zn+1 = zn + 4t6 (k1 + 2k2 + 2k3 + k4) (2.11)

where

k1 =4 tHj(n)zn

k2 =4 tHj(n)(zn + k1
2 )

k3 =4 tHj(n)(zn + k2
2 )

k4 =4 tHj(n)(zn + k3)

2.2.4 Motivation

The Multiscale timestepping essentially use a larger time step for the components in
z with larger j. We can think of it as using time step 4tj = 2j 4 t for zj(t), where
4t = 2−(J+1).

We know that if we solve an ODE with a time stepping method, the error depends on
the time step 4t and also the higher derivatives of the solution. Large derivative means
a bigger error for a fixed 4t. Therefore if higher order derivatives of the solution are
small we can solve the problem by taking larger time steps. We therefore need to study
the sizes of the derivatives of zj(t), and how they depend on j. We have already talked
about the structure of the matrix V and the initial condition z(0) of our considered
problem in Section 2.1. Now we look theoretically at the size of its derivatives at time
zero.

Lemma 2.2.1. Suppose z(t) ∈ R solves (2.1) with initial data and the matrix V satis-
fying (2.2) with min(q,Q) > 0. Then

|z′j(0)| ≤ C02−j min(q,Q)(j + 1)

and

|z′′j (0)| ≤ C12−j min(q,Q)(j + 1)2

Proof: We have

11
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|z′j(0)| =|
J∑

i=1
Vjizi(0)| ≤

J∑
i=0
|Vji||zi(0)| ≤ C

J∑
i=0
|2−|i−j|q| · |2−iQ| ≤ C

J∑
i=0

2−(|i−j|+i) min(q,Q)

=C
j∑

i=0
2−j min(q,Q) + C

J∑
i=j+1

2−(2i−j) min(q,Q) = C
j∑

i=0
2−j min(q,Q) + C

J−j−1∑
i=0

2−(2i+j+1) min(q,Q)

=C
j∑

i=0
2−j min(q,Q) + 2−j min(q,Q)C

J−j−1∑
i=0

2−(2(i+1)) min(q,Q)

≤C
j∑

i=0
2−j min(q,Q) + 2−j min(q,Q)C ≤ C2−j min(q,Q)(j + 1)

In the next to last step we used the fact that
J−j−1∑

i=0
2−2i min(q,Q) <

1
1− 2−2 min(q,Q) <

∞.
Thus we get

|z′j(0)| ≤ C02−j min(q,Q)(j + 1).

Now we will find the second derivative of the solution i.e. z′′. In this case we multiply
the matrix V by the first derivative of z.

Since z′′ = V z′, we have

|z′′j (0)| =|
J∑

i=1
Vjiz

′
i(0)| ≤

J∑
i=0
|Vji||z′i(0)| ≤ C

J∑
i=0
|2−|i−j|q| · i|2−i min(q,Q)|

≤C
J∑

i=0
i2−(|i−j|+i) min(q,Q) = C

j∑
i=0

i2−j min(q,Q) + C
J∑

i=j+1
i2−(2i−j) min(q,Q)

=C
j∑

i=0
i2−j min(q,Q) + C

J−j−1∑
i=0

i2−(2i+j+1) min(q,Q)

=C
j∑

i=0
i2−j min(q,Q) + 2−j min(q,Q)C

J−j−1∑
i=0

i2−(2(i+1)) min(q,Q)

≤C
j∑

i=0
i2−j min(q,Q) + 2−j min(q,Q)C

∞∑
i=0

i2−(2(i+1)) min(q,Q)

≤C
j∑

i=0
i2−j min(q,Q) + 2−j min(q,Q)C

∞∑
i=0

i2−(2(i+1)) min(q,Q) ≤ C

=C2−j min(q,Q)(j + 1)2

12
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Hence we get
|z′′j (0)| ≤ C12−j min(q,Q)(j + 1)2.

This proves the lemma. �
Similarly for the third derivative we will get

|z′′′j (0)| ≤ C2−j min(q,Q)(j + 1)3.

Thus we can see that with increasing of the derivative the exponential of (j + 1) is
increasing. But with increasing j the factor 2−j min(Q,q) dominates and the values decay
rapidly with j. This means that higher derivatives of the solution indeed decay with j
at least at time t = 0. It indicates that the Multiscale timestepping technique might be
applicable for this type of problems. A rigorous proof of this is still missing, however.

2.3 Block-version
In this Section we consider similar types of problem as described in the problem de-
scription part in Section 2.2 but here the elements Vi,j of V are sparse matrices and the
initial vector elements Zj of Z are also vectors. The elements in a particular matrix Vij

are all of the same size. Also inside a vector Zj the elements sizes are similar.
More precisely for the blocked-version we consider ODEs

Zt = VZ, (2.12)

where the matrix V and the initial vector Z are defined as

V =


V0,0 V0,1 . . . V0,J
V1,0 V1,1 . . . V1,J
...

... . . . ...
VJ ,0 VJ ,1 . . . VJ ,J

 ∈ R2J+1×2J+1
, Z(t) =


Z0(t)
Z1(t)
...

ZJ(t)

 ∈ R2J+1
,

where Vi,j ∈ R2i×2j
, Zj ∈ R2j

, i, j = 0, 1, 2, . . . , J . We assume that the number of
non-zero elements in Vi,j is O(max(2i, 2j)). One can then show that the cost of applying
V to a vector is O(J2J).

The structure of the blocked matrix V and the block vector Z look like the structure
given below.

Vij Zj

13
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We also assume that the matrix elements and initial vector elements satisfy

[|Vij |] ≤ C2−|i−j|q, |Zj(0)|∞ ≤ C2−jQ.

Where C is some constant and q,Q are some numbers used to describe the decay rate
of the elements of the matrix and initial vector, in the same way as in the non-blocked
case.

The matrix norm is defined as

[|A|] = max
ij
|aij |; aij are the elements of A.

We have already talked about the cost of standard time stepping methods like For-
ward Euler method for the non-blocked and dense case in Section 2.2.1. It is O(NJ2),
where N is the total number of time steps in the simulations and J is the problem
size. For the blocked problem, because of the sparsity, it reduces to O(N2J), here
2J+1 is the problem size. Hence for the non-blocked and dense problems numerical
cost ≈ “total number of timesteps × (problem size)2” whereas for the blocked
and sparse problem it reduces to “total number of timesteps ×problem size”.
This is because of the large number of non-zero elements in the system, as matrix-vector
multiplication cost is only calculated from the operations of the non-zero elements.

2.3.1 Multiscale technique
To define the Multiscale timestepping technique to this blocked-version, we use the same
technique as in Section 2.2.3 for non-blocked case, replacing vij by Vij .

The H matrix derived from V looks like

Hj =



V0,0 21V0,1 . . . 2jV0,j . . . 0
21V1,0 21V1,1 . . . 2jV1,j . . . 0

...
... . . . ...

2jVj ,0 2jVj ,1 . . . 2jVj ,j . . . 0
...

... . . . ... . . .
0, 0 . . . 0 . . . 0


; j = 0, 1, 2, ..., J. (2.13)

Then the Multiscale timestepping technique with Forward Euler method is

Zn+1 = Zn +4tHj(n)Zn,

where j(n) = 0, 1, 0, 2, .. is defined in Section 2.2.3 by the equation (2.6).

2.4 Costs
In the introductory example in Section 2.2.2 we chose the time step such that there were
2J time steps required to achieve the solution at t = 2J4 = T . In half of the total time

14
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steps, in every odd step, we use only the first top diagonal element matrix H0 and the
top vector element Z0. In every fourth iteration i.e. one-fourth of our total time steps
we are calling the H1 matrix and the first three elements of the vector and so on. Finally
we applied the whole matrix to the whole vector only in the last time step.

To compute the total cost of our Multiscale timestepping technique for a general J
in the blocked case we consider,

i) N = Number of time steps. Here N = 2J .

ii) Cj is the cost of applying (I +4tHj). Here Cj ≈ O(j2j), as the application of
(I+4tHj) is a matrix-vector multiplication with a sparse matrix of size 2j+1×2j+1.

So the total cost of our technique by using Forward Euler method looks like

Cost = C0
N

2 + C1
N

4 + C2
N

8 + C3
N

16 + · · ·+ CJ−1
N

2J−2 + CJ

= C0
N

2 · 20 + C1
N

2 · 21 + C2
N

2 · 22 + C3
N

2 · 23 + · · ·+ CJ−1
N

2 · 2J−1 + CJ

=
J−1∑
j=0

Cj
N

2 · 2j
+ CJ =

J−1∑
j=0

Cj
2J

2 · 2j
+ CJ = 2J

2

J−1∑
j=0

Cj

2j
+ CJ

= 2J

2

J∑
j=0

Cj

2j
= 2J

2

J∑
j=0

O(j2j)
2j

= 2J

2

J∑
j=0

j = O(J22J) = O(N(log2N)2).

This is much faster than the cost for standard time stepping method derived above,
namely O(N2J) = O(N2).

2.5 Non-linear structured problem
In this part we have worked with the structured blocked version problem described
in Section 2.3 and added a non-linear part. We define the time dependent non-linear
problem as:

zt = V z︸︷︷︸
linear part

+ zzT b︸ ︷︷ ︸
non-linear part

=⇒ zt = F(z). (2.14)

Where V is some structured matrix and z is the solution vector as described in the
problem description Section 2.1 and b is either a constant vector or a vector depending
on t. This represents the simplest quadratic non-linear equation.

2.5.1 Multiscale timestepping technique for non-linear structured problems
For the non-linear structured problem we used the same technique as the blocked version
problem in Section 2.3.1. The difference between this non-linear problem and the linear
problem in Section 2.3 is that for the non-linear equation (2.14) we add the non-linear
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part with the equation (2.12) in every time step. We use the same Hj matrix as in
Section 2.3 and the non-linear function H(z, j(n)) defined as follows.

Let F (z) = zz′b = (F0(z), F1(z), . . . , FJ(z))T . Then we set

H(z, 0) = F0(z0, 0, 0, . . .) = z0z0b0

H(z, 1) =
{
F0(z0, 2z1, 0, 0, . . . , 0) = z0(z0b0 + 2zT

1 b1)
2F1(z0, z1, 0, 0, . . . , 0) = 2z1(z0b0 + zT

1 b1)

H(z, 2) =


F0(z0, 2z1, 4z2, 0, . . . , 0) = z0(z0b0 + 2zT

1 b1 + 4zT
2 b2)

2F1(z0, z1, 2z2, 0, . . . , 0) = 2z1(z0b0 + zT
1 b1 + 2zT

2 b2)
4F1(z0, z1, z2, 0, . . . , 0) = 4z2(z0b0 + zT

1 b1 + zT
2 b2)

and so on.
For this non-linear structured problem the Multiscale timestepping technique with

Forward Euler method is

Zn+1 = Zn +4tHj(n)Zn +4tH(Zn, j(n)),

where j(n) = 0, 1, 0, 2, .. is defined in Section 2.2.3 by the equation (2.6).
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Chapter 3

Application to PDEs

To apply our Multiscale timestepping technique to PDEs we have worked with the linear
advection equation and advection diffusion equation. First of all we have discretized
these equations only in space by a well known semi-discretization method. After that
we have transformed the discretization matrix and the solution vector into a wavelet
basis. The structure of this wavelet basis matrix and the solution vector is similar to
the structured matrix and solution vector described in Section 2.3.

3.1 Advection equation

The one-dimensional linear advection equation is defined as

ut + aux = 0; (3.1)

with initial condition
u(x, 0) = u0(x)

and periodic boundary condition

u(0, t) = u(1, t); t > 0,

where a is the advection coefficient, u(t, x) is the solution that depends on time as well
as the space variables. According to the semi-discretization method, we discretize only
in space by using the central finite differences scheme. The semi-discrete scheme for the
advection equation (3.1) is as follows:

∂tuj = −auj+1 − uj−1
2h (3.2)

Then we have got a time dependent problem like

ut = Au, (3.3)
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where

A = a

2h


0 1 0 0 . . . 0 −1
−1 0 1 0 . . . 0 0
0 −1 0 1 . . . 0 0
...

...
...

... . . . ...
...

1 0 0 0 . . . −1 0

 , u =


u0
u1
...

uN−1

 .

A is the space discretization matrix from equation (3.2).
Note that Forward Euler cannot be used here, as Forward Euler and central dif-

ferences in space leads to unstable discretization. Moreover, it turns out that implicit
methods are needed for the MT technique. But the computational cost of an implicit
method is higher compared to an explicit method. So for our comparison we will use the
explicit Runge-Kutta 4th order method for the direct solution and the implicit Crank-
Nicolson method for both the direct and the MT method.

The Crank-Nicolson method and the Runge-Kutta 4th order method for equation
(3.3) are given below.

• Crank-Nicolson method

un+1 = un + 4t2 (Aun+1 +Aun) (3.4)

• Runge-Kutta 4th order method

un+1 = un + 4t6 (k1 + 2k2 + 2k3 + k4) (3.5)

where

k1 =4 tAun

k2 =4 tA(un + k1
2 )

k3 =4 tA(un + k2
2 )

k4 =4 tA(un + k3).

3.2 Advection diffusion equation
The linear advection diffusion equation is represented by

ut = εuxx + ux; (3.6)

with initial condition
u(x, 0) = u0(x)
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and periodic boundary condition

u(0, t) = u(1, t); t > 0,

Here ε is the diffusion coefficient and the solution u(t, x) depends on the time as well
as the space variables as for the advection equation. For this equation we have used the
same procedure as the advection equation. In the semi-discretization scheme we used
central finite differences for space discretization and then we have implemented the well
known Crank-Nicolson method for time stepping.

The semi-discrete scheme for the advection-diffusion equation (3.6) is

∂tuj = ε
uj+1 + 2uj + uj−1

h2 + uj+1 − uj−1
2h (3.7)

From equation (3.7) we can formulate a time dependent problem

ut = Au, (3.8)

where

A = 1
h2


2ε ε+ h/2 0 0 . . . 0 ε− h/2

ε− h/2 2ε ε+ h/2 0 . . . 0 0
0 ε− h/2 2ε ε+ h/2 . . . 0 0
...

...
...

... . . . ...
...

ε+ h/2 0 0 0 . . . ε− h/2 2ε

 , u =


u0
u1
...

uN−1

 .

.
The Crank-Nicolson method of equation (3.8) looks like

un+1 = un + 4t2 (Aun+1 +Aun) (3.9)

3.3 Application of wavelets to PDEs
In Section 2.1 we assumed that elements of the matrix V decay away from the diagonal.
When solving PDE problems we get a discretization matrix that is banded. Also the
diagonal elements and the initial data sizes are of roughly the same size. So to implement
our Multiscale timestepping technique, we need to transform the discretizatiion matrix
in such a way that we get a matrix that has similar decay properties as the problem in
Section 2.1. Using wavelets we can transform the discretization matrix A to a matrix
that almost follow the decay properties and the initial data follow precisely the decay
properties.

The implementation procedure is to apply the Discrete Wavelet Transform (W ) to
the semi-discrete problem

ut = Au. (3.10)
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The matrix W is orthonormal, W TW = I, so we get

ut =Au
=⇒ Wut =WAW TWu

=⇒ wt =V w; where we defined Wu = w and WAW T = V.

(See Figure 3.1 for an example of of w in the Haar wavelet case.)
Note that the eigenvalues of A = WAW T are the same as those of A which implies that
the condition number of A will not be affected by the Discrete Wavelet transform [5].

The new variable w is the wavelet transform of u, the pointwise approximation of the
continuous solution. Instead of pointwise values, w contains differences of local averages
on different levels, corresponding to the contribution to the function on different scales.
As an example we consider the Haar wavelet transform which can be roughly expressed
as:

ave(u)

...

...

u4+u3
2 − u2+1

2...

...
uN +uN−1

2 − uN−2+uN−1
2

uN − uN−1
uN−1 − uN−2

...

...

...

...

u4 − u3

u2 − u1

Wu =

CJ

CJ−1

C0

=

z0

...

...

ZJ−1

ZJ

Figure 3.1. Haar wavelet transformation of the solution vector.
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Types of wavelet q Q

Haar 0.50 1.5
Daubechies, 2 vanishing moments 1.05 2.5
Daubechies, 3 vanishing moments 1.59 3.5
Daubechies, 4 vanishing moments 2.13 4.5
Daubechies, 5 vanishing moments 2.49 5.5
Daubechies, 6 vanishing moments 2.70 6.5
Daubechies, 7 vanishing moments 2.97 7.5
Daubechies, 8 vanishing moments 3.28 8.5
Daubechies, 9 vanishing moments 3.61 9.5
Daubechies, 10 vanishing moments 3.88 10.5

Coifman, 2 vanishing moments 1.55 2.5
Coifman, 4 vanishing moments 2.27 4.5
Coifman, 6 vanishing moments 2.81 6.5

Table 3.1. Wavelets transform and its (q, Q)-values for advection equation.

By the wavelet transformation the matrix blocks of V = WAW T can be estimated
as

[|Vj,k|] ≤ C2−|j−k|q+P min(j,k), (3.11)

where P is the order of the PDE ( advection P = 1, diffusion P = 2) for wavelets which
belong to the Sobolev space Hq(R), see [2]. The initial vector elements can similarly be
estimated as

|Zj | ≤ C2−jQ,

where Q− 1
2 is the number of vanishing moments of the wavelet.

By explicit computation of some large V matrices based on the advection equation
we find experimentally the q-values listed in Table 3.1 for different wavelet types. In the
experiment, those values do not change much when changing the size of the V matrix.

As for the sparseness of V , if a banded matrix such as those used in Section 3.1, 3.2 is
transformed with wavelet basis then the number of non-zero elements of the transformed
matrix is slightly increased compared to the original matrix. The number of non-zero
elements depend on the width of the wavelet mask. A transform matrix with a larger
mask has more non-zero elements and vice-versa. Higher order wavelets with more
vanishing moments have in general a wider mask.

The ‘spy’ view of the discretization matrix A and its wavelet based transformation
matrices V are given in Figure 3.2-4. The figures show how much the number of non-zero
elements are increased when changing a diagonal sparse matrix to wavelet basis and how
much it increases with higher order wavelets.
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Figure 3.3. ‘Spy’ view of Haar wavelet based transform matrix of A..

Figure 3.2. ‘Spy’ view of the matrix A(1024× 1024) of advection equation 3.3.
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Figure 3.4. ‘Spy’ view of Daubechies 10 wavelet based transform matrix of A.
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Chapter 4

Numerical experiments

We will numerically evaluate our Multiscale timestepping technique for ODEs and
PDEs to find out the order of accuracy and the computational cost. For all experi-
ments in this paper we compare the solution obtained by a standard method such as
Forward Euler, Backward Euler, Runge-Kutta 2nd order method, Runge-Kutta 4th or-
der method, Crank-Nicolson method with the solution obtained by using the Multiscale
timestepping technique. For example the solution obtained by the FE method is com-
pared with the solution obtained by MT-FE method. We consider the max norm of the
difference as the error. In all experiments the accuracy is considered in terms of the time
step 4t.

To evaluate the cost, we have calculated the CPU time by using the “tic - toc"
Matlab commands. For the advection diffusion equation we have taken the average time
of five simulations and for all other experiments we have taken the average time of ten
simulations.

Our goal is to implement our Multiscale timestepping technique for PDEs, but we
start with the simple structured problem described in Chapter 2.

4.1 Structured problem
In this section we will make experiments with the simple structured problems (2.1) and
(2.12) described in Chapter 2 in the problem description part of Section 2.1 and in
blocked version part of Section 2.3 respectively. In the non-blocked case the matrix ele-
ments and the initial condition elements are scalars. Since the discretization matrices of
the PDEs in Chapter 3 are blocked matrices similar to those of Section 2.3 in Chapter 2,
our main focus on experiments in this section is on the blocked-version problem but at
the beginning we make some experiments with the non-blocked problem.

The matrix structure depends on the values q and Q respectively. It means that for
different sets of (q,Q) values the method shows different characteristics of the solution.
So it is important and interesting part of the experiment, how the solution changes with
changing the (q,Q) values.

In all experiments considered we take vj,k = 2−q|j−k| in the non-blocked case and
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each element in Vj,k has the value 2−q|j−k| in the blocked case. Moreover for initial data
we take zj(0) = 2−jQ in the non-blocked case and each element in Zj(0) has the value
2−jQ for the blocked version. The difference between the blocked version and the non-
blocked version elements is that for the non-blocked case each element value is different,
whereas for the blocked version, inside the block the elements value are the same but
different blocked elements contain different values. With this choice of elements, when
the size of the problem (J) increases, old values are kept the same. For example for
J = 8 and J = 9 the elements over the matrix area for J = 8 are the same for that area
when J = 9, the only difference is that for larger problem new elements are added in
new positions.

4.1.1 Non-blocked problem

In the non-blocked case matrices VJ are dense. We have discussed the structure of the
elements |vj,k| ≤ C2−|j−k|q of V in problem (2.1) in Section 2.1. In numerical experiments
with the non-blocked problem we have considered smaller problem with maximum size
J = 19, i.e. VJ is a 20 × 20 matrix. Multiscale timestepping technique with only the
Forward Euler time stepping method i.e. only MT-FE technique are applied in this
section. For all experiments with this non-blocked problem we have used the time step
4t = 2−J and run the simulations until Tend = 1.

Before all of the experiments, we want to see the solution and its derivatives as a
function of time. In this experiment we have chosen (q,Q) = (1.5, 1.5), Vj,k = 2−|j−k|q

is a 10× 10 matrix and the initial condition zj(0) = 2−jQ is a vector of dimension 10.
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Figure 4.1. Solution vector and time derivatives of the solution for each 4t.

Though by observing the Figure 4.1 it is difficult to measure the slope exactly but it
seems that slopes (time derivatives) become smaller for increasing index j (lies further
down). We proved in Lemma 2.2.1 that it was true at t = 0, but here we see that it
holds for all time t > 0. We know that if the solution changes slowly with time, we can
use a larger time step. The Multiscale timestepping technique is designed in such a way
that the elements of the solution vector with larger index j, are calculated with larger
time steps. So Multiscale timestepping technique might be applicable for these type of
problems.

Now we will observe how the solutions look like at t = 1 and compare with initial
data. In this case we have chosen (q,Q) = (1.5, 1.5) and J = 19, V is 20× 20 matrix.
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Figure 4.2. Semilogy plot of the solutions and the initial condition.

Figure 4.2 shows the comparison of the solution of the MT-FE technique with the
FE method. It also compared the solutions with the initial condition. If we look toward
the end of the solution curves, some differences between the solutions are observed and
it is because of the properties of the MT technique. We know that for updating the last
element of the solution the MT technique iterates only one time. For the second last it
iterates only two times and so on, whereas the FE method updates the whole solution
vector by iterating with all elements. So in general there will be differences in the last
couple of elements of the solutions.

We have already mentioned that the (q,Q) values play an important role for the
structured problems. Now we make experiments with the equation (2.1) for different set
of (q,Q) values. In these experiments our aim is to note the effect of (q,Q) values on
the solutions. We plot the difference between the solutions of MT − FE & FE in max
norm, at t = Tend = 1 as a function of J = log2N . (Note that here we will consider
the max norm of the difference |uMT−F E(1) − uF E(1)|∞ as error. We know that since
|uexact(1) − uF E(1)|∞ = O(h) = O(2−J), then |uMT−F E(1) − uexact(1)| = O(2−J) if
|uMT−F E(1) − uF E(1)| = O(2−J) by the triangle inequality.). The results are given in
Figure 4.3.
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Figure 4.3. Error reduction for different set of (Q, q) values.

29



CHAPTER 4. NUMERICAL EXPERIMENTS

From both plots in Figure 4.3 we can see that for this non-blocked toy problem
the MT-FE technique reduces the error in all of the cases except if the q values are
very small (about q < 0.5). The second plot shows that results are not as sensitive
to Q values as to q. The reason is that the larger number of elements of the system,
the matrix elements are generated by q whereas Q is used to formulate the initial vector
elements. The Figure 4.3 also indicates that for this small problem the MT-FE technique
ensures about the first order of accuracy in error reduction for (q,Q) ≥ (1, 1). (Note that
4t = 2−J .)

One of the most interesting points of the MT technique is to reduce the computational
cost. Now we examine the computational cost of MT-FE technique for this very small
problem. The evaluated result is given in Figure 4.4.

Figure 4.4. Comparison of numerical cost between the standard F E method and the
MT − F E technique.

From Figure 4.4 we can see that solving this non-blocked problem the MT-FE tech-
nique takes bit more time than the FE method. According to the hypothesis of the
Multiscale timestepping technique it should be opposite (although for non-blocked prob-
lem the difference is small). We can guess one reason behind it. In the Matlab programs
inside the MT-FE technique inner loop in every time from a vector we are picking up a
number to fix the size of the problem for that step. It increases the computational cost.
Moreover when the size of the problem is not large enough then there is not enough
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significant difference between the computational cost of the MT-FE technique and the
FE method. As this non-blocked tiny problem is a toy problem we leave this point for
the next Section.

4.1.2 Blocked problem

In this section we work with the equation (2.12), where the matrix and the initial vec-
tor are structured as described in Section 2.3. We have already talked about various
characteristics of the solution’s for different sets of (q,Q) value. In this section for all
of the experiments we use time step 4t = 2−J+1 for the explicit FE, RK2 and RK4
methods and for the implicit BE method 4t = 2−J . Also for the BE method we run the
simulation until Tend = 0.5 and for other methods Tend = 1. So for all of the four cases
we run simulations with same number of iterations.

To begin with, we consider (Q, q) = (1, 1). In the previous Section in non-blocked
case we have seen the solution’s behaviour for different sets of (q,Q) value. Here we
start by observing the errors between solutions of the MT technique and some standard
ODE methods. The computed results are in Figure 4.5.

Figure 4.5. Error reduction by MT technique with different standard methods.

In Figure 4.5 we can see that for (q,Q) = (1, 1), with explicit methods the MT
technique shows some error reduction whereas as far we observe, with the implicit Euler
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the error increases.
Now we work with different sets of (q,Q) values. As for the non-blocked case, in one

case we consider q constant and different Q values and in another set we consider the
opposite, Q is constant and q values are different. Here we implement our MT technique
with all of the four standard methods, the FE, BE, RK2 and RK4 and we call them
respectively MT-FE, MT-BE, MT-RK2, MT-RK4 technique. For different methods the
examined results are given below in Figure 4.6-9.
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Figure 4.6. Error reduction by MT − F E technique for different set of (Q, q) values.
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Figure 4.7. Error reduction by MT −BE technique for different set of (Q, q) values.
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Figure 4.8. Error reduction by MT −RK2 technique for different set of (Q, q) values.
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Figure 4.9. Error reduction by MT −RK4 technique for different set of (Q, q) values.
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We can see that in all of the cases in Figure 4.6-9, the solution is more sensitive to the
matrix generator number q compared with the vector generator number Q. The same
feature was observed in the previous section for the non-blocked case. This characteristic
is expected and the reason mentioned in the previous Section, is that q has more impact
on generating the problem compared with Q. Also if we compare in each method the
bottom plots show the error reduction in all of the cases whereas on the top plots error
reduction is observed only for q ≥ 1.5. Moreover when Q = 1.5 then for any q > 1.5,
there is a sharp decrease of errors in all of the cases. Also from the top four figures
we can see that the matrix generator number q is more sensitive when MT technique is
applied with the implicit method.

Cost estimation In this section we evaluate the computational cost of the MT tech-
nique with all of the four methods FE, BE, RK2 and RK4 and compare with the standard
methods. The numerical results are given in Figures 4.10-13.

Figure 4.10. Cost evaluation of MT − F E technique and the standard Forward Euler
method
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Figure 4.11. Cost evaluation of MT − BE technique and the standard Backward Euler
method

Figure 4.12. Cost evaluation of MT − RK2 technique and the Runge-kutta 2nd order
method

38



4.1. STRUCTURED PROBLEM

Figure 4.13. Cost evaluation of MT −RK4 technique and the standard Runge-kutta 4th
order method

From Figures 4.10-13 we can see that when the problem sizes are small then the MT
technique takes a bit more time compared with the standard methods but after a certain
problem size it reverses character. From the Figures we can also see when J = 13, with
all of the standard methods the MT technique cuts a significant computational cost. The
distance between the cost line of MT technique and the cost line of standard methods
increased geometrically with increasing problem size.

To find out exactly how much faster the MT technique is, compared with its standard
method, for all of the four cases we have calculated the ratio of the computational
costs. The ratio is calculated as “computational cost by standard method" divided by
“computational cost by MT technique with that standard method".

The cost ratio for all of the four cases are given in Figure 4.14-17.
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Figure 4.14. Performance achievement by MT −F E technique compared with the stan-
dard Forward euler method.

Figure 4.15. Performance achievement by MT −BE technique compared with the stan-
dard Backward euler method.
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Figure 4.16. Performance achievement by MT − RK2 technique compared with the
standard Runge-kutta 2nd order method.

Figure 4.17. Performance achievement by MT − RK4 technique compared with the
standard Runge-kutta 4th order method.

For all of the four cases in Figure 4.14-17, a significant cost reduction by MT tech-
nique are observed. Here among all of the four techniques the MT-BE technique cuts the
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most computational cost. Moreover if we look the the right sides of all the four curves
we can see that after J = 10, the curves move almost vertically. The most interesting
point is that in all of the four cases if we compare for J = 12 and J = 13 the curves
gone about half way of the whole path. It indicates that the performance gain increases
with O(2J) = O(N). This agrees with the theory in Section 2.4.

4.2 Linear PDEs

In this section we have implemented our Multiscale timestepping technique for the lin-
ear advection equation as well as the linear advection diffusion equation. To solve these
equations, first of all we have discretized the equations by central differences in space.
Then we have transformed the matrices and the initial conditions into a wavelet ba-
sis. Finally we have solved the transformed problems by implementing our Multiscale
timestepping technique based on RK4 and CN . [See Chapter 3.]

The wavelet transform converts the matrices and the vectors into matrices and vectors
with properties similar to those that are discussed for the structured problems in Section
2.3. Also, according to the wavelet properties, if we transform the spatial discretization
matrices into a wavelet basis matrices, then the number of non-zero elements of the
wavelet basis matrices increase with the number of vanishing moments of the wavelets.
This is discussed and shown by ‘spy’ view pictures in Section 3.3. It means that for
higher order of wavelets, information is more distributed over the whole domain of the
matrices. So for different order of wavelets the solutions show different characteristics.
For example if we choose the Daubechies wavelets with most vanishing moments, the
information is the most distributed.

In this section for both of the PDEs we make numerical experiments with Daubechies
wavelets with different number of vanishing moments. In our experiments we also con-
sider Coifman wavelets of order 4. Moreover for these experiments we have chosen a
suitable exponential (almost) periodic function u = e−100(x−0.5)2 , x ∈ [0, 1] as initial
condition. Also we have used the size of step in space 4x = 1

N and time step size
4t = 2 ∗ Tend/N , where N = 2J − 1 is used to represent the size of the problem. Also
for these tests we choose Tend = 0.5.

4.2.1 Advection equation

We know that the advection equation is preferably solved by explicit methods. However
for our Multiscale timestepping technique we must use implicit methods, as different
sizes of time step are used in this technique and the time step restriction is much more
relaxed in implicit methods compared with explicit methods. For the advection equation
to make a fair comparison specially for the computational cost, we used the explicit
RK4 method as a standard method, while the Multiscale timestepping technique is
implemented with the implicit Crank-Nicolson method. Note that the eigenvalues of
the matrix A are purely imaginary. The RK4 method is explicit but unlike FE, the
stability region includes part of the imaginary axis as well as some part of the right half
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plane. When h → 0, λh therefore lies in the stability region (λ is the eigenvalue). We
also used the Crank-Nicolson method as standard method, because of the interest for
the next Section for the diffusion equation and for future considerations.

Here we have solved the advection equation (3.1) with the advection coefficient a = 1.
Results for different types of wavelets are given below, showing the order of accuracy of
the MT-CN technique.

Figure 4.18. Order of accuracy of MT-CN technique for different types of wavelets when
solving the linear advection equation (3.1).

From the Figure 4.18 we can see that the MT-CN technique shows first order accuracy
in error reduction when the discretization matrix and the initial vector are transformed
by lower order wavelets. On the other hand if we look the curves for J ≥ 8 and for higher
order wavelets it shows almost the second order of accuracy. Moreover in this experiment
the Coifman wavelet 12 and the Daubechies wavelets 4 with four vanishing moments in
both of two different types of wavelet give very similar result in error reduction.
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Computational cost We will here compare the computational cost of the MT-CN
technique with a standard RK4 method. Upon transforming the discretization into a
wavelet basis, the cost of using standard RK4 may change and we also want to estimate
this. In this experiment we have therefore measured the computational cost for all of
the three cases: cost of standard RK4 method for the original discretization problem;
cost of standard RK4 for the wavelet basis problem and cost by the MT-CN technique.

Moreover we have seen in Chapter 3 that the number of non-zero elements of the
wavelet basis matrix depends on the order of the wavelets. It means computational
cost is related to the order of the wavelets. Here we consider two different cases: Haar
wavelets and Daubechies 4 wavelets. The experimental computational costs are given in
Figure 4.19-20.

Figure 4.19. Comparison of time evaluation of the MT-CN technique and the RK4
method when solving the advection equation (3.1). The problem is transformed by the
Haar wavelets.

In Figure 4.19 we can see that though for smaller problems the MT − CN tech-
nique shows the same numerical cost with the standard RK4 method for the original
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discretization problem but with increasing the size (J > 6) of the problem some cost
reduction is observed. Finally if we look at the end of the curves we can see that the
cost by MT-CN technique is significantly lower than the standard method.

Moreover if we compare the Figure 4.20 with the Figure 4.19 we can see that the
MT-CN technique is not as fast as the Figure 4.19 and it is because of the wavelet order.
As higher order wavelet transformation matrix contained more non-zero elements and
the cost is related with the number of non-zero elements of the matrix.

Figure 4.20. Comparison of time evaluation of the MT-CN technique and the RK4
method when solving the advection equation (3.1). The problem is transformed by the
Daubechies 4 wavelets.

Now we observe the comparison of the computational cost of the MT-CN technique
and the standard CN method. We have already mentioned that this comparison for
solving the advection equation is bit messy as the solution of the advection equation is
preferably done by explicit methods which are less costly compared to implicit methods.
However the experimental result is given below in Figure 4.21.
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Figure 4.21. Comparison of computational cost for the MT-CN technique and the stan-
dard CN method when solving the linear advection equation (3.1). The problem is trans-
formed by the Haar wavelets.

From the Figure 4.21 we can see that for J > 4 the cost line of the MT − CN
technique departs from other two curves and the distance increases with increasing the
problem size.

From all of the three figures showing numerical cost evaluation for the advection
equation we can see that the computational cost of the standard method in solving the
wavelet basis problem is much higher than the other two cases. It is obvious it should
be slower than the original discretization problem because of the sparsity. We also see
that the speed is superior for the Multiscale timestepping technique. Now we look at
how much performance is gained by our MT-CN technique. In the same way as in the
structured case we have calculated the cost ratio. It is calculated as “computational cost
by CN method for original discretization matrix" divided by “ computational cost by
MT-CN technique". The result is given in Figure 4.22
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Figure 4.22. Performance achievement by MT-CN technique compared with the standard
CN method when solving the linear advection equation (3.1). For the MT-CN technique
the problem is transformed by the Haar wavelets.

4.2.2 Advection diffusion equation

In this Section we have implemented our MT technique for the linear advection diffusion
equation (3.6). For this problem we have chosen the diffusion coefficient ε = 0.1 and as
for the linear advection equation we also considered the (almost) periodic initial data
u = e−100(x−0.5)2 (x ∈ [0, 1]), size of space step 4x = 1

N , time step size 4t = 2 ∗Tend/N ,
Tend = 0.5. Here N = 2J − 1 represent the problem size.

As the diffusion equation is typically solved by implicit methods, here we used the
CN method as the standard method and the MT technique is also implemented with
the standard CN method. After these considerations, we made numerical experiments
in the same way as for the linear advection equation. The results for error reduction for
different types of wavelets are given above in Figure 4.23 .

In Figure 4.23 we can see the same characteristics of the solution in error reduction
as in the case of the linear advection equation for higher order wavelets. The decay
rate of error by the MT-CN technique shows second order accuracy for wavelets with
4 vanishing moments and higher. But for this equation the solution is divergent when
we use lower order wavelets. The reason is that for the diffusion equation the elements
are larger compared to the advection equation (P = 2 in (3.11)). The lower order Haar
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Figure 4.23. Order of accuracy of MT-CN technique for different types of wavelet when
solving the linear advection diffusion equation (3.6).

wavelet and Daubechies 2 wavelet transformation do not give sufficient decay rate to
the matrix elements (m is too small in (3.11)). But this problem is overcome by higher
order wavelet transformations.

Computational cost Figure 4.24 indicates the same properties as in Figure 4.21 for
the advection equation. After a certain size of the problem the cost of the MT − CN
technique crosses the other cost curves and the distance to them increases for larger
problem. Similarly to the cost ratio Figure 4.25 we can also see that for this problem a
significant numerical cost reduction is obtained by the MT-CN technique.

48



4.2. LINEAR PDES

Figure 4.24. Comparison of computational cost MT-CN technique and the CN method
when solving the advection diffusion equation (3.6). The problem is transformed by the
Daubechies 4 wavelets.

Figure 4.25. Performance achievement by MT-CN technique compared with CN method
when solving the advection diffusion equation (3.6). For the MT-CN technique the problem
is transformed by the Daubechies 4 wavelets.
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4.3 Non-linear ODEs
In this section we worked with the non-linear structured problem (2.14). The non-linear
term zzT b is constructed by the solution vector z and the unit vector b. The structure of
the matrix and the initial vector is same as the structure of the matrix and the solution
vector in the blocked version problem in Section 4.1.

Moreover for all of the experiments in this section we implemented our Multiscale
timestepping technique only with the FE method by considering 4t = 2−J+1 and run
the simulation until Tend = 1. After these considerations, the numerical results of error
reduction are given in Figure 4.26.

From Figure 4.26 we can see compared to the structured problem experimented in
Section 4.1, theMT−FE method for the non-linear structured problem needs bit higher
values of (q,Q). In Matlab in each time step we call the function V ∗ z + z ∗ (zT ∗ b).
If we compare with the structured problem in Section 4.1, the extra z ∗ (zT ∗ b) value
is added to the solution in each time step. For the standard FE method this value is
added to the corresponding elements of the solution vector in each time step, whereas
for theMT −FE technique specially for the lower part elements (j large) of the solution
vector the value is added very few times.

Moreover the Figure shows that compared to the matrix generator number the vector
generator number dominate the solution. If we look the formulation procedures of the
non-linear structured problem we can see that to construct the non-linear part we are
using the initial vector two times. So it is reasonable that the vector generator number
should have more impact in the solution compared to the solution of the structured
linear problem.
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Figure 4.26. Error reduction of MT technique with standard Forward Euler method for
different set of (Q, q) values.
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Chapter 5

Conclusion

In this thesis we have worked with time upscaling, using a Multiscale timestepping tech-
nique. In the solution of PDE and ODE problems, we have studied accuracy of our
technique and its computational cost. We have begun our work with some structured
ODE problems that follow some decay properties. Then we have moved to well known
PDEs. After discretization of the PDEs we transformed the matrix and the solu-
tion vector into a wavelet basis, which ensured the same properties as the structured
ODEs problem. Then we have implemented our Multiscale timesteping technique to
the modified problems.

Experimented results of this thesis showed that a significant computational cost can
be cut by using Multiscale timestepping technique to ODEs and PDEs. We have also
seen that this technique often requires implicit numerical methods compared to the
explicit time stepping methods.

With lot of advantages shown for the Multiscale timestepping technique, there are
also some drawbacks of our work. First of all, when we solved PDE problems by trans-
forming with higher order wavelets this technique is bit slower compared to the problems
that transformed with lower order wavelets. Secondly for the non-linear problems our
Multiscale timestepping technique did not show the same order of accuracy in error
reduction for the same value of the matrix generator number and vector generator num-
ber (q,Q) considered in the linear problems. But we hope that these problems will
be overcome or at least it will show better performances when this technique will be
implemented for larger problems in supercomputers.
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