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Abstract 
With the constant growth of internet applications, such as social networks, online media, 

various online communities, and mobile applications, website user traffic has grown, is very 
dynamic, and is oftentimes unpredictable. These unpredictable natures of the traffic have led 
to many new and unique challenges which must be addressed by solution architects, 
application developers, and technology researchers. All of these actors must continually 
innovate to create new attractive application and new system architectures to support the users 
of these new applications. In addition, increased traffic increases the demands for resources, 
while users demand even faster response times, despite the ever-growing datasets underlying 
many of these new applications. Several concepts and best practices have been introduced to 
build highly scalable applications by exploiting cloud computing. As no one who expect to be 
or remain a leader in business today can afford to ignore cloud computing. 

Cloud computing has emerged as a platform upon which innovation, flexibility, 
availability, and faster time-to-market can be supported by new small and medium sized 
enterprises. Cloud computing is enabling these businesses to create massively scalable 
applications, some of which handle tens of millions of active users daily. This thesis concerns 
the design, implementation, demonstration, and evaluation of a highly scalable cloud based 
architectures designed for high performance and rapid evolution for new businesses, such as 
Ifoodbag AB, in order to meet the requirement for their web-based application. This thesis 
examines how to scale resources both up and down dynamically, since there is no reason to 
allocate more or less resources than actually needed. Apart from implementing and testing the 
proposed design, this thesis presents several guidelines, best practices and recommendations 
for optimizing auto scaling process including cost analysis. Test results and analysis presented 
in this thesis, clearly shows the proposed architecture model is strongly capable of supporting 
high demand applications, provides greater flexibility and enables rapid market share growth 
for new businesses, without their need to investing in an expensive infrastructure.  

Keywords: cloud computing, internet, application scalability, internet traffic, performance. 
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Sammanfattning 
Med den ständiga tillväxten av Internet- applikationer, såsom sociala nätverk, online 

media, olika communities och mobila applikationer, har trafiken mot webbplatser ökat samt 
blivit mycket mer dynamisk och är ofta oförutsägbara. Denna oförutsägbara natur av trafiken 
har lett till många nya och unika utmaningar som måste lösas med hjälp av lösningsarkitekter, 
applikationsutvecklare och teknikforskare. Alla dessa aktörer måste ständigt förnya sig för att 
skapa nya attraktiva program och nya systemarkitekturer för att stödja användarna av dessa 
nya tillämpningar. Dessutom ökar den ökade trafikmängden krav på resurser, samtidigt som 
användarna kräver ännu snabbare svarstider, trots den ständigt växande datamängden som 
ligger som grund för många av dessa nya tillämpningar . Flera koncept och branchstandarder 
har införts för att bygga skalbara applikationer genom att utnyttja ”molnet” (”cloud 
computing”), eftersom att ingen som förväntar sig att bli eller förbli en ledare i näringslivet 
idag har råd att ignorera ”molnet”. 

Cloud computing har vuxit fram som en plattform på vilken innovation, flexibilitet, 
tillgänglighet och snabbhet till marknaden kan uppnås av nya, små och medelstora företag. 
Cloud computing är möjligt för dessa företag att skapa mycket skalbara applikationer,  vilka 
kan hanterar tiotals miljoner aktiva användare varje dag. Detta examensarbete handlar om 
utformning, genomförande, demonstration och utvärdering av en mycket skalbar 
molnbaseradearkitekturer som utformats för höga prestanda och snabb utveckling av nya 
företag, såsom Ifoodbag AB, för att uppfylla kravet på deras webb- baserad applikation. Detta 
examensarbete undersöker hur man både skalar upp och ner dynamiskt, eftersom det inte 
finns någon anledning att tillägna applikationer mer eller mindre resurser än vad som faktiskt 
behövs för stunden. Som en del av examensarbetet implementeras och testas den föreslagna 
utformningen, samt presenterar flera riktlinjer, branchstandarder och rekommendationer för 
att optimera automatisk skalning av processer. Testresultat och de analyser som presenteras i 
detta examensarbete, visar tydligt att den föreslagna arkitekturen/modellen kan stödja 
resurskrävande applikationer, ger större flexibilitet och möjliggör snabb tillväxt av 
marknadsandelar för nya företag, utan att deras behov av att investera i en dyr infrastruktur. 

Nykcelord: Cloud computing, molntjänster, Internet, skalbarhet för applikationer, 
internettrafik, prestanda 
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1 Introduction 
This chapter describes the main purpose and the problem statement that motivated and 

guided this thesis project. Following this the chapter describes the research methodology that 
was selected for this project. The following two sections present the goals of our thesis project 
and its scope. The chapter ends with a description of the structure of the entire thesis. 

1.1 Overview 
Cloud computing extends information technology (IT) computing resources across the 

Internet. Today clouds are made available by various cloud service providers. Usually, users 
are not concerned with the underlying technologies or challenges that must be overcome for 
the cloud service provider to support a scalability diverse infrastructure. These users are also 
unconcerned with the number of servers or details of the other resources that are necessary to 
support their currently desired computing/storage/networking requirements, these users 
simply want to pay for the computing capacity which they use and they expect the capacity to 
scale up or down to meet their current requirements in an on-demand basis. 

The numbers of applications, which exploit the cloud-computing model, are increasing 
rapidly as connectivity costs fall and computing hardware becomes more efficient – especially 
when operated on a large scale. Cloud services have extended beyond web applications to 
include data storage, raw computing, and access to different specialized services, such as 
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service 
(SaaS). Cloud based computing is becoming the ideal environment for scalable applications 
because it allows for rapid resource allocation in times of high demand, as well as resource 
de-allocation as demand declines. With a suitably scalable architecture, the resources and 
infrastructure of the cloud can accommodate all of the different phases of an application’s 
lifecycle, thus providing a single consistent context in which to bring an application from 
conception to development, then from production to maintenance, and finally, to a gradual 
end of life. Additionally, the cloud has become a popular solution to the problem of horizontal 
scalability. As a result “cloud application scalability” is gaining a tremendous amount of 
attention by both practitioners and researcher, see for example [1,2,3,4,5,6]. 

1.2 Problem Statement 
Application scalability may take many forms, but in principle an application and its 

underlying infrastructure should adapt to the dynamically changing conditions (demands and 
available resources at various costs) to promote the availability and reliability of a service, 
while minimizing the cost for the application service provider. With the increase in numbers 
and size of on-line communities there has been an increasing effort to exploit 
cross-functionalities across these communities. However, application service providers have 
encountered problems due to the unpredictable demand for their application(s), especially 
when external events can lead to unprecedented traffic levels to and from their 
application* [7]. This dynamic nature of demand and traffic drives the need for a massively 
scalable solution to enable the availability (and reliability) of web-based applications. 

In the earlier traditional infrastructure model, two approaches were taken in order to 
address the unpredictability of site traffic and system load, each of which is illustrated in 
Figure 1-1. One approach was to overprovision resources to handle spikes that may occur in 
traffic. Although this enables an application to increase its availability in high-traffic 
situations, it does not make effective use of resources - because a portion (and perhaps the 
                                                            
* For example, flash crowds or denial of services attacks can both lead to very high levels of traffic 

to/from an application. 
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majority) of these resources are idle during off-peak periods. This inefficiency is illustrated in 
Figure 1-1 by the gap between the blue line representing infrastructure’s capacity (which can 
be generalized to represent the number of servers in use) and the green line that is an 
indication of actual user demand for the service provided by the application. The gray vertical 
arrow illustrates the disparity between the two. This approach is obviously a costly solution 
due to the presence of unutilized capacity; therefore, this is generally not a recommended 
approach. The second approach is based on dimensioning the system for the typical usage 
(pattern) of the application, while suffering the consequences of lost traffic when peak 
demands are encountered. Although this has a lower cost in times of normal usage, it is costly 
during traffic spikes because the lost traffic typically leads to lost revenue opportunities. This 
scenario is illustrated in the Figure 1-1 by the shaded region under the demand curve between 
the green line (demand) and the blue line (infrastructure capacity). In this situation when the 
demand exceeds capacity traffic is lost and/or the application service may even become 
unavailable. 

 
Figure 1-1: Traditional Infrastructure Model 

For a dynamic and unpredictable environment neither of the above approaches with a 
traditional infrastructure model is desirable. This is why a scalable cloud architecture model 
offers an excellent fit for such dynamic and unpredictable loads. In a scalable cloud 
architecture model, it is possible to dynamically provision additional resources only when 
they are needed and then decommission them when they are no longer required. The result is 
a true utility computing paradigm where customers incur charges only for the time period 
during which they use the resources. Figure 1-2 illustrates this scalable cloud architecture 
model for dynamically providing application resources. 

In Figure 1-2, the demand curve is identical to that of Figure 1-1, but due to the dynamic 
provisioning of infrastructure resources, no infrastructure resources sit idle when there is no 
demand for this application, nor is there insufficient capacity when it is necessary to 
accommodate an increased demand for the application. 
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Figure 1-2: Scalable Cloud Architecture Model 

In this thesis we will design, implement, demonstrate, and evaluate our proposal for a 
highly scalable cloud based architecture which is designed to meet the performance and 
rapidly evolution for a new business, such as Ifoodbag’s web-based application*. In 
Chapter 3, we will describe our scalable cloud architecture’s design and present our choice of 
preferred methods and techniques for best implementing the proposed scalable cloud 
architectural model at all levels of an application’s multi-tiered architecture. This thesis will 
clarify how to scale both up and down, since for a cloud based application which is used by 
people in a local area there is going to be a fluctuation of users throughout the day and there is 
no reason to have more or less resources than actually needed. Furthermore, we will examine 
how fast we can scale up or down, and what happens if we do not scale up and down rapidly 
enough. This will be described in terms of a control loop that determines the correct 
combination of virtual machines (VMs) needed to meet the expected demands for an 
application. 

In the conclusions of the thesis, we will summarize our with respect to the gains that we 
could achieve though our performance analysis of our pilot setup of a scalable cloud 
architecture design. We identify additional mechanisms that could enable the deployment and 
maintenance of a scalable application in the cloud. We also suggest some future work that 
might build upon the results reported in this thesis. 

                                                            
* Ifoodbag is a Stockholm based startup offering weekly home delivery of food with personalized 

recipes. Further details can be found at http://www.Ifoodbag.se/. 
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1.3 Research methodology 
For this thesis project we have adopted positivist philosophic assumptions and followed a 

design science research methodology including pragmatic approach [8], which is also known 
as ‘mixed methods’, as this approaches grant researchers the freedom to use any of the 
methods, procedures and techniques typically associated with quantitative or qualitative 
research methodology. This method allowed us using different data sources, multiple 
perspectives to interpret the results and multiple methods to study a research problem. We 
have followed five steps design problems as defined by Seyyed Khandani to solve design 
problems according to the Engineering Design Process [9]. The five steps are:  

I. Define the problem 

II. Gather pertinent information 

III. Generate multiple solutions 

IV. Analyze and select a solution 

V. Test and implement the solution  

In the beginning we have followed quantitative or qualitative only research methods, 
however we have rejected this individual methods as of both are focused on very individual 
specific requirements and procedures, for example the objective of quantitative research is to 
develop and employ mathematical models, theories or hypothesis pertaining to phenomena 
[10]. But that was not appropriate to drive our research goals. Hence we have followed the 
pragmatic approach where we have had the freedom of utilizing any of these approaches 
whenever it was needed.  

1.4 Project goals 
The main goal of this thesis is to design, implementation, demonstration, and evaluation 

of a highly scalable cloud based architectures designed for high performance and rapid 
evolution for new businesses, such as Ifoodbag AB, in order to meet the requirement for their 
web-based application. The goal is also to examine how to scale both up and down, since for a 
cloud based application which is used by people in a local area there is going to be a 
fluctuation of users throughout the day and there is no reason to allocate more or less 
resources than actually needed. Additionally, this thesis examines the limitations on the rate at 
which this scaling may occur when using information from the running instances of the 
service. 

1.5 Project scope 
This thesis focuses on designing scalable cloud architecture model and defining scaling 

policies and implementing a management node to monitor and scale the application. Physical 
security, legal compliance, disaster recovery strategy, risk management and overall security of 
the architecture are out of the scope in this thesis project. We do not consider what activities 
the application servers (mainly what type of the services and application security itself) are 
supposed to perform, thus actual application implementation and its security is out of this 
thesis project. This means that we will focus on the interaction between these servers, virtual 
machines, and client web browsers via the network. As our proposed solution is implemented 
and proposed for cloud service provider either in private or public or hybrid cloud 
architecture, thus underlying infrastructure nodes (e.g. routers, switches, firewalls, servers, 
etc.) and defining their security is not focused in our thesis project. 
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1.6 Structure of this thesis 
Chapter 2 provided the reader with the necessary background to read the rest of this thesis. 

Chapter 3 describes the fundamental parts of scalable cloud architectures. Based upon these 
parts Chapter 4 describes the details of the design that we have selected for each of these 
parts. Chapter 5 describes the implementation of each of these parts and our experimental 
setup that will be used to evaluate our implementation. The experimental results and their 
analysis are given in Chapter 6. The thesis concludes in Chapter 7 with some conclusions, 
suggestions for future work, and some reflections on the social, economic, legal, and ethical 
considerations of this work. Further details are given in the appendices for those who might 
want to build upon the work described in this thesis. 
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2 General Background 
Cloud computing has emerged as one of the hottest topics in IT. The concept of cloud 

computing comes from various computing research areas, such as high performance 
computing, virtualization, utility computing, and grid computing. Due to the introduction of 
cloud computing it has never been cheaper, faster, and easier to set up a scalable, on-demand, 
geographically optimized web application environment. Cloud computing brings all of these 
features together. Cloud computing comes into focus when IT professionals think about what 
IT always needs: a way to increase capacity or add capabilities on the fly without investing in 
new infrastructure, training new personnel, or licensing new software. Cloud computing 
encompasses pay-per-use service via the Internet that extends an organization’s existing 
capacity and capabilities. Cloud computing has its own conceptual, technical, economic, and 
user experience characteristics. Clear insights into cloud computing will help the development 
and adoption of this evolving technology by both academic and industrial users. Additional 
details about cloud computing and its characteristics will be given in section 2.1. The cloud 
model is composed of three service models and four deployment models. More details about 
service and deployment models will be given following sections 2.2 and 2.3. 

One of the major component of cloud computing is virtualization. While virtualization 
technologies share a common bond by maximizing computing resources, there are differences 
between the virtualization technologies and cloud computing. Virtualization is the process of 
simulating “virtual” versions of infrastructure resources, such as computing environments, 
operating systems, storage devices, or network components. Cloud computing is the delivery 
of shared computing resources, software, or data as a service via the Internet. More details 
about virtualization will be given in section 2.4. The acronym “LAMP”* refers to a solution 
stack of software, usually free and open source software, used to run dynamic web sites or 
servers. Details about LAMP will be discussed in section 2.5. Cloud providers offer different 
cloud services based on service level of abstraction. Section 2.6 gives more detail about a 
number of the current major cloud providers. Section 2.7 reviews related work. 

2.1 What is cloud computing? 

Traditionally business applications have been very complicated and expensive. The 
amount and variety of resources (both software and hardware) needed to run these 
applications caused companies to require a whole team of experts to install, configure, test, 
run, secure, and update these systems. Cloud computing eliminates these headaches because 
resources are not managed locally; but rather an experienced vendor is responsible for 
managing the resources[11]. According to Amazon (one of the earliest cloud service 
providers), the term “cloud computing” refers to the on-demand delivery of IT resources via 
the Internet with pay-as-you-go pricing[12]. 

In the last few years, the cloud-computing model has become an important concept and 
has been widely adopted by many companies. Different companies have their own definition 
of the cloud and cloud computing, but most of these definitions focus on several important 
attributes; such as requested resources are provided rapidly on demand, the service is scalable, 
and the consumer pays only for what he or she uses. These resources might be computational 
power, storages, networks, or applications[2]. Here we quote a few definitions of cloud 
computing: 

                                                            
* Typically LAMP is realized by the combination: Linux, Apache, MySQL, PHP; however, other 

combinations of software can also be used to realize LAMP as will be described in section 2.5. 
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“Cloud computing is a model for enabling ubiquitous, convenient, on-demand 
network access to a shared pool of configurable computing resources (e.g., networks, 
servers, storage, applications, and services) that can be rapidly provisioned and 
released with minimal management effort or service provider interaction.” - The 
National Institute of Standards and Technology (NIST), USA [13]. 

"A Cloud is a type of parallel and distributed system consisting of a collection of inter 
connected and virtualized computers that are dynamically provisioned and presented 
as one or more unified computing resources based on service-level agreements 
established through negotiation between the service provider and consumers.” - R. 
Buyya, C.S Yeo, and S.Venugopal [14]. 

“A cloud is a powerful combination of cloud computing, networking, storage, 
management solutions, and business applications that facilitate a new generation of 
IT and consumer services. These services are available on demand and are delivered 
economically without compromising security or functionality”. – Cisco Systems, Inc. 
[15]. 

“Cloud computing is the next stage in the Internet's evolution, providing the means 
through which everything from computing power to computing infrastructure, 
applications, business processes to personal collaboration can be delivered to you as 
a service wherever and whenever you need”. – J. Hurwitz, R. Bloor, m. Kaufman and 
F. halper [16]. 

From the above definitions, it should be clear that cloud computing is an Internet based 
computing service that shares resources and provides information to the consumer on demand, 
much like electricity grid provides electricity on demand. The concept of cloud can be traced 
to grid computing and has been extend to address QoS (quality of service) and reliability 
issues. If there is a single point of failure in the grid, then there is a risk of failure; this is a big 
disadvantage of grid computing. In contrast, cloud computing avoids having a single point of 
failure by virtualizing grid computing in a shared environment within a common cloud. Note 
that the cloud can utilize resources from multiple administrative domains. 

The most important cloud computing paradigm is virtualization. IT resources can be 
utilized more effectively by virtualizing the major resource(s); this reduces complexity for 
consumers - while allowing IT organizations to perform their own optimizations. Cloud 
computing builds upon a virtualized infrastructure consisting of computational resources, 
storage, and network devices[17]. The details of this virtualization will be discussed later in 
this chapter. 

Basically, the cloud is a set of virtualized resources that are managed. There are many key 
characteristics, but today three different service models and four deployment models are well 
defined with respect to the cloud-computing mode. These will each be discussed in following 
sections. 

2.1.1 On-demand self-service 

A consumer* can provision computing resources based on their current (or near future) 
needs. As the consumer’s needs may change with time it is important to adapt the reservation 
of resources to those that are appropriate. To perform tasks such as building, deploying, 
managing, and scheduling, a cloud computing environment should allow the user to interact 
with the cloud in such a way as to be able to explicit reserve and return resources. The user 

                                                            
* The consumer that we are referring to here is the customer of the cloud service provider, rather than 

an end customer. 



9 
 

should able to access all the resources they needed without any interaction in advance with the 
cloud service provider[18]. Furthermore, the consumer should not be limited to a specific set 
of servers. The cloud service provider is responsible for providing sufficient resources to 
satisfy the consumer’s needs. The user controls the reservation of resources and returning of 
resources, thus the consumer is responsible to avoid wasting resources (which is in their own 
interest as they are paying for these resources – whether they are effectively using them or 
not). The better the decision made regarding current and future needs, the better the service 
that the consumer can provide and the more cost effective this service can be. 

Provisioning computing resources on demand for a large number of enterprises is one of 
the most desired capabilities of a cloud, because this eliminates the need for planning for 
future growth and avoids the loss of customers when short term traffic demands are greater 
than expected. Pay-per-use reduces the unnecessary upfront costs that otherwise an enterprise 
would have to make to purchase and install resources which would need to meet or exceed the 
expected demand. Unlike the traditional model, cloud computing helps the consumer avoid 
the costs of underused resources[19]. 

2.1.2 Ubiquitous network access 

Accessing the computing and storage capacity of a cloud should enable access through 
standard Internet enabled devices. Cloud computing is device independent, because the 
computing recourses can be accessed by heterogeneous thin or thick client platforms, in fact 
any authorized platform that has an internet connection and a web browser (or a specific 
application). It really does not matter that what kind of devices are used to access resources, 
be they smartphones, tablets, laptops, or workstations. 

2.1.3 Elasticity and scalability 

The computing resource allocations can increase or decrease according to the consumer’s 
demand. This change in resources is called elasticity. Elasticity enables scalability; hence a 
cloud should be able to scale resources (by increasing or decreasing) as necessary. Scalability 
also implies that an application can be scaled up due to additional users or when the 
application’s requirements change[20]. If on a particular day the demand varies over time, the 
system should be scaled up or down in resources to meet the actual demand. 

For example, imagine a cloud based website that averages 1,000 hits per day. Suddenly, 
on one particular date the website launches a special offer. In this case there is a higher 
probability that a larger number of users will access the site at nearly the same time. For 
example, due to this special offer the number of access to this website might rise to 10,000 on 
a particular day. In this scenario, we assume that during a normal day the cloud would assign 
one server, but during the peak hours on this particular day the service might be instantiated 
on five different servers and later return to running on a single server during non-peak hours. 
If we are hosting this service ourselves, we would need to purchase five servers in order to 
prepare for the load during the peak hours, but outside of these peak hours four of our servers 
will be idle (hence wasting resources). 

2.1.4 Horizontal and Vertical Scalability 
A consumer can scale the set of resources which they reserve either horizontally (also 

called scaling out) or vertically (also called scaling up) in order to match the application’s 
performance to meet increasing or decreasing demands upon the consumer’s application. 
Horizontal scaling (scaling out) requires adding or removing cloud servers, specifically VMs 
or devices to handle an increased or decreased application work load. Vertical scaling (scaling 
up) requires replacing a single cloud server by a more powerful server (where this power is 
quantified in terms of virtual CPU performance, available RAM, available disk capacity, etc.) 
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advantage of resource pooling is that it allows consumers for the adding and removing 
resources. Another advantage is that resource pooling can facilitate increased reliability. In 
fact, Damon Wischik, Mark Handley, and Marcelo Bagnulo Braun in their article “The 
Resource Pooling Principle” [23] make two observations: 

1 “Resource pooling is often the only practical way to achieve resilience at acceptable 
cost.” 

2 “Resource pooling is also a cost-effective way to achieve flexibility and high 
utilization.” 

2.1.6 Pay-per-use 

Without making an upfront investment, the consumer pays the cloud provider as with 
other utility based subscriptions, such as paying for electricity. Consumers are charged fees 
based on the amount of resources they actually use. The pay-per-use model helps the user to 
keep track their usage and ultimately helps them to reduce their costs. Cloud providers keep 
track of their customers’ usage information enabling them to charge their customers, generate 
reports, and invoice their customers[24]. The information gathered should be readily available 
to the customer. This information is necessary to enable the customer to realize the cost 
benefits that cloud computing brings. This pay-per-use underlies the concept of cloud 
computing and is closely related to utility computing. 

2.1.7 Self-managed platform 

In order to provide an efficient cloud service, the cloud provider must have a technology 
platform that is self-managed. Software automation can be used to make a cloud self-
managing. By leveraging some capabilities of this software the cloud provider can realize a 
best-of-breed cloud. The cloud platform is able to deploy services and tearing them down to 
recovering resources through a provisioning engine. This provisioning engine platform has a 
mechanism for scheduling and reserving resources. The platform may also have capabilities 
for configuring, managing, and reporting to ensure that resources can be allocated and 
reallocated to different consumers as the consumers’ demands change. There tools control 
access to resources and enforce policies concerning how resources can be used or what 
specific operations can be performed by each party[24]. 

All of these abilities enable business agility and also reduce necessary administration. A 
self-managed platform minimizes the amount of IT administrative effort and reduces the 
cloud provider’s operating expenses. 

2.1.8 Standardized interfaces 

An essential issue is how applications and data sources communicate with each other. In 
the case of cloud services standardized application programming interfaces (APIs) can be 
used to solve this problem. A standardized interface also enables a consumer to integrate 
different cloud services together[20]. Today there are a number of the APIs, for details the 
reader should refer to [25, 26]. 

2.1.9 Quality of Service (QoS) 

Providing support for Quality of service (QoS) requires the ability to provide different 
levels of service to different applications, users, or data flows. When we speak of QoS other 
than best effort, we generally refer to a guarantee of a certain level of performance, 
availability, security, and dependability being made by some provider[27]. QoS has been an 
issue in many distributed computing paradigms, such as grid computing and high performance 
computing. Cloud computing must also assure the desired service level for users. The cloud 
provider should ensure that their guarantees on round-the-clock availability, adequate 
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2.2.1 Infrastructure as a Service (IaaS) 

In the case of IaaS a cloud supplier provides an online infrastructure on which their 
customers can store data and develop and run whatever applications they want. IaaS offers 
virtualized resources (e.g., computation, storage, and communication) on demand [30]. IaaS 
helps the user by taking care of some of the components, starting from networking to 
provisioning the OS (as shown in Figure 2-3). However, users are responsible for middleware, 
runtime, data, and applications levels. Users basically rent a virtual machine (VM) with their 
preferred OS installed. The provider generally does not care what users do with this VM[22]. 

A fundamental building block of a cloud computing infrastructure is a server. Cloud 
computing servers are used to deploy VMs on which applications can be run. A cloud 
provider also provides various forms of data storage. Users are given privileges to perform 
certain activities on the server, such as: starting and stopping a VM, configuring access 
permission, etc. [31]. Examples of IaaS providers include Amazon, Go Grid, and Eucalyptus. 

2.2.2 Platform as a Service (PaaS) 

PaaS provides a toolkit and a number of supported programming languages to enable the 
cloud provider’s customers to build their own application and deploy this application in the 
provider’s cloud infrastructure. The users of PaaS are typically developers who develop their 
applications on the platform and provide their applications to their own end users[32]. Paas is 
one level up in abstraction from IaaS, as the cloud provider manages the platform-level 
components (such as middleware and runtime), as shown in Figure 2-3. The cloud customer 
does not manage or control the underlying cloud infrastructure, but has control over the 
deployed application and possibly can choose their preferred configuration settings for the 
application-hosting environment. Some examples of PaaS providers are Google App Engine 
and Microsoft Windows Azure Platform. 

2.2.3 Software as a Service (SaaS) 

In SaaS computer applications are accessed over the Internet, rather than being installed 
on a local computing device or in a local data center. SaaS is the most common cloud service 
that end users may have used. The cloud provider takes responsibly for the entire stack from 
the network and server to the application level, as shown in Figure 2-3. The cloud customers 
are not allowed to access the underlying infrastructure or platform; rather they can only 
change the application’s user settings. These applications are normally accessible through a 
thin client interface, such as web browser. Today end users are rapidly shifting from locally 
installed programs to online software services that offer same functionality[22]. 

SaaS can provide the general cloud computing advantages of dynamic scalability. 
Additionally, SaaS is generally end user device independent[32]. A great advantage of SaaS 
for an application provider is that there is frequently no upfront hardware cost in deploying an 
application via SaaS. This means that SaaS applications can be up and running quickly at a 
low cost. Many SaaS applications are also collaborative, in that they allow multiple users to 
share documents and even to work on these shared documents at the same time. The most 
common examples of SaaS applications are Gmail, Office 365, and Google Docs. 

Figure 2-4 shows a variety of access methods and management tools which a user will use 
to access and configure their services. The figure also shows the type of content that a 
particular service offers. 
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right distribution is a bit complicated. Linux is the OS running more than 60% of web servers 
on the internet because Linux based servers provide excellent performance, security, 
scalability, availability, and there is an audited industry performance benchmark[43]. 

2.5.2 Apache 

The second component of the LAMP stack is an Apache HTTP server. This HTTP server 
played a significant role in the initial growth of the World Wide Web. Apache is an open 
source tool created in the early 1990s. Apache is used by more than 60% of the web servers 
worldwide. The web server accepts requests for content from browsers, interprets and 
executes the request, and returns a result to the browser. When a browser requests a static 
page, the web server simply retrieves that HTML file and returns the results. In response to 
dynamic page requests from a browser, the web browser transfers control to a program or 
module running at the HTTP server that interprets the request and returns a results[43]. 

2.5.3 MySQL 

The third component of the LAMP stack is a MySQL database. MySQL is an open source 
tool which can be used to store content and configuration information for web applications. 
MySQL is a general purpose database. MySQL in particular and databases in general, have 
made it possible to build and present fully dynamic websites [43]. MySQL is a relational 
database management system. MySQL is frequently chosen by developers because it provides 
speedy website loading, reliability, and ease of use. The MySQL database architecture is 
capable of effectively scaling out by adding multiple replicated database servers. This can be 
done at low cost and as needed. Today many of the largest and fastest growing websites in the 
world employ MySQL, including Facebook, Google, Yahoo, Flickr, etc.[43]. 

2.5.4 PHP 

PHP was originally an acronym for “Personal Home Page”. It was introduced in 1994 as a 
set of Common Gateway Interface binaries programs written in the C programming language. 
Today, PHP is a widely used general purpose scripting language that is especially well suited 
to web development and can be easily embedded into HTML[43]. A web server takes PHP 
code as input, then executes it and creates a webpage as output. PHP is another integral 
component of the LAMP stack and can be found in a wide range of applications ranging from 
personal homepages to content management systems, such as Joomla[44]. 

Since PHP has a relatively simple syntax and is available with open source licensing, 
developers around the world are migrated from more difficult scripting language such as Perl. 
Full object oriented syntax support is included in the latest version of PHP, along with a 
command line capability for quick testing. PHP’s speed and adaptability play a key role in its 
increased use by enterprises. 

2.6 Current cloud service providers 
The service level of abstraction differs between the different cloud providers. The 

management level of resources also varies by cloud provider. This section presents a few of 
the most common provider details and describes the services that they offer to their 
customers. 
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Amazon Web Services (AWS) AWS is a bundled remote computing service that provides a 
cloud computing infrastructure over the Internet. Amazon Inc. 
launched AWS in 2006 [45]. Amazon packages AWS with 
scalable and virtually unlimited computing, storage, and 
bandwidth resources. AWS uses a subscription-pricing model of 
pay-as-you-go or pay-for-what-you-use. The customer can avoid 
up-front capital infrastructure expenses by substituting low 
variable costs that scale as their needs change. AWS provides a 
flexible, cost-effective, scalable, and easy-to-use cloud computing 
platform that is suitable for research, educational use, individual 
use, and for organizations of all sizes[46]. Amazon’s EC2 and 
Amazon S3 are two core IaaS services. These two services have 
been used by cloud application solution developers worldwide. 

Eucalyptus Since the Eucalyptus infrastructure is compatible with AWS (in 
either a private or hybrid cloud), the allocated resources can be 
dynamically scaled up or down as application workloads change. 
Eucalyptus Systems has announced compatibility with AWS 
Elastic Load Balancing (ELB), Auto Scaling, and CloudWatch in 
their release 3.3. 

Salesforce Salesforce is one of the pioneering cloud computing providers. 
Their Customer Relationship Management (CRM) web service is 
their first and main product. Enterprise customers build their own 
application(s) on top Salesforce’s CRM. Initially salesforce only 
offered a SaaS class product. One of the traditional issues with 
SaaS products is the limited ability to customize the application. 
However, Salesforce.com is offering force.com as a PaaS 
product. The force.com platform allows developers to develop 
applications that will execute natively on their Salesforce 
platform or they can be integrated with third party services. 
Force.com development is performed using nonstandard, 
purpose-built tools and a proprietary development language called 
Apex[47]. Scaling the platform up and down as needed and 
making all the physical resources transparent is the responsible of 
salesforce. 

OpenNebula OpenNebula is the most feature-rich, innovative, customizable 
and mature open alternative to proprietary cloud solutions when 
building virtualized enterprise data centers and cloud 
infrastructures on top of Xen, KVM, and VMware 
deployments[48]. OpenNebula is a fully open source toolkit to 
build IaaS private, public, and hybrid clouds. OpenNebula can be 
installed and run on the majority of the Linux distributions and it 
is also Amazon EC2 compatible. OpenNebula is primarily used as 
a virtualization tool to manage a virtualized infrastructure in a 
data center or cluster (typically within a private cloud). 
OpenNebula also supports a hybrid cloud to combine a local 
infrastructure with a public cloud-based infrastructure, enabling 
highly scalable hosting environments. OpenNebula also supports 
public clouds by providing cloud interfaces to expose its 
functionality for VMs, storage, and network management. 
OpenNebula also can work as a data center virtualization manager 
within an OpenStack or Eucalyptus cloud. 
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2.7 Related work 

Red Hat Inc. published “Scaling the LAMP stack in a Red Hat enterprise virtualization 
environment”[43] during 2009. This work presents performance and scaling of the industry 
standard LAMP web application stack running on Red Hat enterprise Linux 5.4 guests on a 
Red Hat Linux 5.4 host with a KVM hypervisor. 

Kaur, Kaur, and Singh published “Evaluating performance of web services in cloud 
computing environment with high availability” [49] in 2012. This paper presents a 
methodology for attaining high availability to meet the demands of web clients. In order to 
improve the response time of web services during a peak hour, dynamic allocation of host 
nodes was used. Web users can be very demanding, as they expect web services to be quickly 
accessible from anywhere in the world at all times. 

Vaquero, Rodero-Merino, and Buyya. published “Dynamically Scaling Applications in 
the Cloud” in January 2011. This work presents the most notable initiatives towards whole 
application scalability in cloud environments[1]. 

Joynet Inc. published a whitepaper entitled “Performance and Scale in Cloud Computing” 
[21]. Joyent’s Smart Technologies address many issues of scalability and performance in 
cloud computing, including dynamic vertical scalability, more efficient allocation of virtual 
resources, and efficient I/O load balancing. 

Aleksandar Draganov published a master’s thesis entitled “Exploiting Private and Hybrid 
Clouds for Compute Intensive Web Applications” [2] in 2011. This work investigates the use 
of an open source cloud management platform (OpenNebula) to create a private cloud and 
using OpenNebula for hosting compute intensive web application by managing a farm of 
virtual web servers to meet the application’s demands. 

Chieu, Mahindra, Karve and Segal published “Dynamic Scaling of Web Applications in a 
Virtualized Cloud Computing Environment” [50] in 2009. This paper presents a novel 
architecture for the dynamic scaling of web applications based on thresholds in a virtualized 
Cloud Computing environment.  

Hung, Hu and Ching Li published “Auto Scaling Model for Cloud Computing System” 
[51] in 2012. This paper presents an auto-scaling algorithm for automated provisioning and 
balancing of virtual machine resources based on active application sessions as well as the 
energy cost is considered in the proposed algorithm. 

Wolke and Meixner published “TwoSpot: A Cloud Platform for Scaling Out Web 
Applications Dynamically” [52] in 2010. This paper presents a methodology for combining 
existing and open technologies to build new software platform, which runs on virtual 
machines typically offered by IaaS provider. 

Zsolt Siklosi published a master thesis entitled “Dynamically Scalable Applications in 
Cloud Environment” [53] in 2013. This thesis work focused on automatically scaled 
infrastructure and also ensures that the amount of reserved resources is always sufficient to 
keep up a certain service level while optimizing costs by avoiding over-provisioning. 
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by 5,000 to estimate the number of load balancers that will be required to handle this traffic 
load. 

Regardless of the estimated load, we have designed to LB tier to have at least two LBs in 
order to provide redundancy in the early phase of the deployment of Ifoodbag’s application. 
For high reliability and availability we recommend placing each LB in a different availability 
zone (thus decoupling their probability of failure). As the number of users is expected to 
rapidly increase in the future, it will be possible to introduce more LBs in order to handle the 
required capacity. Initially it is possible to run each load balancers on an AWS m1.small 
instances (1 virtual core, 1.7GB memory, 32-bit platform). This is a cost-cutting measure, but 
allows the LB to subsequently be migrated to a larger instance as demand increases. In the 
early phases of an application’s lifecycle it is also possible to combine the front-end LBs and 
the application servers in the same instance in order to achieve additional cost savings. 
However, this is not a recommended approach for a production high traffic site! 

3.3 Application Tier 
Second tier of the reference architecture shown in the Figure 3-1 is called the application 

tier. This tier consists of the application servers and their associated scalable server array. In 
this tier we recommend a minimum of two application servers (to be placed in different 
availability zones) for the initial configuration. These instances must implement alert 
mechanisms to allow automatic scaling (both up and down) of the array based on instance 
specific metrics. The most common metrics that can be used for auto-scaling are CPU-idle 
fraction, amount of free memory, and system load. It is also possible to include application 
specific metrics for controlling this auto-scaling. If any of the thresholds specified by these 
metrics are met, then an alert associated with this metric is triggered, and this should result in 
scaling up by adding additional application servers in the case of increased demand or 
decommission of active servers if the load decreases. 

For guaranteed service operation, we recommend a conservative approach for scaling up 
and down the application server arrays. Therefore additional instances should launch before 
they are needed when an upward trend in demand is detected. It is important to determine the 
amount of time required for a server to become operational after it is launched as we must 
factor this into our scaling metrics. (Measurements of this will be reported later in Chapter 6.) 
Similarly, we should only decommission instances when they have been lightly utilized for a 
predetermined period of time. Scaling up liberally (that is, as soon as lower thresholds are met) 
helps to ensure that resources are continually available to serve application requests, while 
scaling down conservatively prevents terminating application server instances prematurely, 
thus avoiding undesirable user experiences. The only disadvantage of this is that if too liberal 
an approach is used when scaling up; the business will be charged for additional server time 
that was actually unnecessary. In utility computing if a server is launched unnecessarily, the 
business would experience increased charges for a maximum of one hour (the smallest billing 
granularity) because the scale-down metrics would terminate this server before the next billable 
hour began. 

It is possible to configure arrays of servers in order to bound both the minimum and 
maximum number of instances. In our design a minimum of two standalone application servers 
are recommended for high availability and reliability of the application, thus the array 
minimum should be two. However, this minimum value should be increased if the minimum 
amount of application traffic increases and the two array instances are insufficient to handle 
this load. On the other hand, the maximum array size provides an upper bound on the total 
number of running instances. This upper bound can be used to place a limit on infrastructure 
costs. The optimal instance size for an application server in a scalable array can be determined 
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via load testing and performance benchmarking. This optimal instance size will be investigated 
in Chapter 6. 

3.4 Caching Tier 
The caching tier is located in the reference architecture between the application and 

database tiers. This caching is typically implemented with memcached[60]. This additional 
caching tier is not appropriate for all application architectures, because not all applications are 
compatible with a data caching solution. Fortunately, the majority of scalable applications will 
realize improved performance by using a distributed cache. For a read-intensive application, 
caching can provide a huge performance improvement due to reduced application processing 
time and avoiding database accesses. However, for write-intensive applications typically there 
is not a great benefit to caching, but with some modifications to the classic caching paradigm it 
may be possible to achieve a considerable performance improvement. 

The memcached solution is fairly lightweight in terms of CPU utilization, but heavy (as 
heavy as the developer will allow) in terms of memory usage, so we advise that Ifoodbag use 
larger VM instance sizes (in terms of memory) for servers in this tier. Although in the early 
phases of an application’s lifecycle, the total size of all of the cached objects will tend to be 
small and sometimes a single instance of the cache may be sufficient to provide a cache for the 
entire application server tier, but we do not advise this for production applications – especially 
if the traffic increases. Additionally, a single caching server is a potential single point of failure 
for the application’s cache. A loss of this single cache instance can have a major negative 
performance impact on the application and it database. As a result we recommended that 
Ifoodbag use multiple instances of caching servers (distributed across multiple availability 
zones within the selected region/cloud) when implementing the caching tier. 

3.5 Database Tier 
The final tier in the reference architecture shown in Figure 3-1 is called the database tier. 

As for any web-based application this tier is quite critical and challenging to design correctly 
because there is no “one-size-fits-all” solution when it comes to data storage and management. 
Fortunately, there are a number of typical categories and types of applications that have an 
associated set of architectural components and best practices. 

Among the numerous potential database applications, we have selected MySQL for 
Ifoodbag as it is one of most common and widespread open source database packages. The 
architecture of the database tier is shown in Figure 3-2. This database architecture illustrates a 
scalable and recommended best practice for MySQL when used in the cloud. Although cloud-
based resources enable application flexibility, maintaining physical accessibility of these 
resources requires additional planning and consideration. Although hardware failures are 
uncommon in the cloud, the do occur and need to be planned for. Hence we recommend that 
Ifoodbag use one or more database slaves that can take over if the current master database fails. 
If the master fails a slave can be quickly promoted to become the new master using 
pre-configured scripts. If the financial budget allows, we recommend placing additional slaves 
in different availability zones in order to increase the availability and reliability of the data 
store. While the ultimate goal of database design should be to allow automated horizontal 
scaling of the database tier, practical implementations of such a solution remain an indefinable 
goal. However, there are some design concepts that different applications can incorporate to 
allow database scaling to varying degrees. As previously mentioned, it is highly recommended 
that one or more slave databases be implemented in addition to the master database, regardless 
of the phase of the application’s lifecycle – as loss of the stored data may lead to a business 
failure. Multiple slave databases will increase the overall reliability and availability of the 
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4 Detail Descriptions of the Component in the 
Proposed Architecture 

Using the reference scalable cloud architecture model described in the previous chapter, in 
this chapter we described each and every component in the various tiers of our proposed 
architecture. 

4.1 DNS server 
The Internet has billions of users and there are many resources distributed over this large 

network. From the user’s perspective, each node on this network is identified by a unique name 
called the domain name. For example, a web server provides access to a website with a given 
domain name. A mail server is used for deliver email messages to a user within a given (e-mail) 
domain. From the network’s perspective routers route Internet Protocol (IP) packets through 
the Internet based upon a unique network address (composed of a network and host interface 
portion). To access Internet resources using user –friendly domain names rather than IP 
addresses, the user need a means to translate the domain name to IP addresses and back. The 
Domain Name System (DNS) is an Internet service that translates domain names into IP 
addresses (and the reverse)[64]. Since domain names are alphanumeric, they are easier for most 
people to remember than IP addresses. This is especially true for IPv6 addresses as they are 128 
bits long. Additionally, the name is likely to be a more stable identifier than and address as the 
structure of the network and the nodes attached to it may change, hence changing the mapping 
between a host interface name and an IP address. For these reasons domain names are widely 
used to identify Internet resources. 

Because maintaining a central list of domain name to IP address correspondences would not 
be practical, knowledge about the mapping between IP addresses and domain names are 
distributed throughout the Internet in a hierarchy of authority [65]. When a user requests the IP 
address associated with a particular domain name, they probably query a DNS server in close 
network & geographic proximity to their access network provider. This DNS server either 
knows the mapping or forwards the query to another DNS server and so on, until a DNS server 
knows the IP address corresponding to the domain name in the query. After resolving the 
domain name to an IP address, the resulting IP address is returned to the user who made the 
query. Additionally, DNS servers along the way may or may not cache the mapping in 
anticipation of another query for this same mapping. 

When users access Internet resources (e.g., a web server) through their web browser to 
retrieve the appropriate web page, the browser needs an IP address to contact this web server. 
Using DNS, the Web browser gets the information it needs to retrieve the requested web page. 
The process of using DNS to map domain names to IP addresses is called name resolution [66]. 
The DNS protocol is used to perform this action. For example, when a user want to access a 
web page for a web page with the domain name ‘www.Ifoodbag.se’ then the user’s host queries 
a DNS server to learn the IP address of ‘www.Ifoodbag.se’. When the DNS server returns the 
IP address (for example, ‘46.30.212.191’) of that website then the user’s browser can initiate a 
TCP connection to this particular IP address on TCP port 80 to access the first page at this web 
site. Figure 4-1 shows, how users can find the IP address of a specific web application via a 
DNS server. 
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Table 4-3: Different types of load balancers [76] 

Software-based load 
balancers 

Software based load balancers are traffic splitters that help reduce 
workloads on compute servers by distributing traffics to different servers. 
Citrix (netScaler), F5 (BIG-IP), Squid, HA proxy are examples of software 
based load balancers. 

Hardware-based load 
balancers 

Hardware based load balancers are greater deployment capabilities. Such a 
load balancer is more flexible to work with as they frequently are designed 
to support any TCP port or application service. Using this method is more 
complicated than using a software-based load balancer, while providing a 
competitive edge over software based load balancers. Hardware based load 
balancers typically have fewer less flaws as compared to strictly software 
based balancers. 

Round-robin DNS The service host can be selected by DNS using round-robin load balancing 
techniques, over several servers with identical services. This method is 
ideal for geographically distributed and internationally used web servers as 
traffic can be preferentially distributed locally to reduce communication 
delay or distributed more widely to further distribute computational load. 

4.2.3 Squid 

Squid is a proxy and web-caching server (available under the GNU Public License) that 
many organizations use to speed up client access to commonly accessed data. It is a caching 
proxy for the web supporting protocols, such as HTTP, HTTPS, FTP, etc. It reduces bandwidth 
demands upon the web server and improves response times by caching and reusing frequently 
requested web pages [77]. Squid reduces the load on the application servers by reducing the 
number of user requests that must actually be served by the web server. 

When a HTTP request is made, the web server needs to serve some amount of content (such 
as scripts, HTML, CSS, and images). If a single server needs to serve all this content for 
hundreds of requests, performance will degrade as the number of requests increase. With a 
single server responding to hundreds of HTTP requests per second, the system’s performance 
depends on factors such as: the number of scripts, amount of HTML/CSS, number & size of 
images, etc. that need to be served. If the load is sufficiently high, the end users many 
experience poor performance. Squid can be configured in such a way that it is able to round 
robin load balance according to the request. For example, if an ‘Ifoodbag’ user requests a page 
containing images, HTML, CSS, or a script connected to the database, then webserver-1 could 
be ask to serve the images while webserver-2 will serve CSS or database content. The 
distribution of the load will depend on how many web servers are available in the server cluster 
at a given time. 

Squid allow web service administrator to distributed more requests to servers with better 
hardware and fewer requests to servers with poorer hardware using weighted round robin 
queuing. Squid can also notify the web service administrator that all the requests from a given 
user id failed for some reason. Squid proxy servers can establish hierarchical relationships 
through which cache data can be shared and requests can be passed to the proxy server in 
standard proxy mode [78]. 

4.2.4 HA Proxy 

The HA (High Availability) proxy provides a high availability, load balancing, and proxy 
solution for TCP and HTTP based applications. It is open source, free, very fast, and quite 
reliable in comparison to other solutions. This solution is particularly well suited for websites 
with high loads. Because of its mode of operation, it is extremely easy and riskless to integrate 
with an existing architecture, while it also offers the possibility to avoid damage to webservers. 
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Today, processing tens of thousands of requests per second from users is possible for hardware, 
but these sorts of loads are rarely handled by multi-process or multi-threaded models because 
of memory limits, system scheduler limits, and lock contention. To support these high loads the 
HA proxy utilizes an event-driven, single process model that allows it to support a very large 
number of connection while operating at very high speed. The event driven model does not 
have the limitations of multi-process or multi-threaded models because it allows all of the task 
to run in user space with fine grained resource and time management [57]. 

4.3 Web server/Application server 
A webserver is a program that utilizes software and networking to deliver web pages via the 

Internet or an Intranet. Two leading web server are Apache (the most widely used webserver) 
and Microsoft’s Internet Information Server (IIS). In this project, Apache has been used as a 
webserver. Powerful features (such as openness, extensibility, portability, and flexibility) of the 
Apache webserver provide benefits to website administrators which lead to higher efficiency 
and greater utility [79]. Ifoodbag’s web application was built with the open source 
programming language PHP and uses MySQL as its database. 

In this project we have used a group of servers, organized as a server cluster or server array, 
working closely together to improve performance and/or availability over that provided by a 
single server. Our goal is that if any system failure occurs then other webserver is used to 
provide services to make system (i.e., by exploiting redundancy to increase reliability). All web 
servers within the cluster are built by installing the same application and they are all connected 
to same database. 

When a failure occurs on one server in a cluster, another server takes over and the workload 
is redistributed to another server within the cluster. The benefits of using a server cluster are 
that it ensures users have constant access to important server-based resources. This solution is 
also well suited for applications that have long-running in-memory state or frequently updated 
data. In our architecture two servers will always be active in the cluster, the number of 
additional servers will scale up or down according to demand. These additional servers also 
provide a higher level of availability, reliability, and scalability compared to using a single 
computer. Some of the possible reasons for creating a server cluster are [80, 81]: 

• Avoiding application and service failures, which could affect web and essential services. 
• Avoiding system failures and reducing the impact of hardware failures, which affect different 

resources (such as CPUs, drives, memory, network adapters, and power supplies). 
• Minimizing the impact of site failures in multisite organizations, which can be caused by natural 

disasters, power outages, or connectivity outages. 

There are a number of different webservers available to host your applications. A few of 
them are free, while others are avialble on a pay to use basis. There are four leading web 
browsers: Apache, IIS, lighttpd, and Jagsaw. In addition to these web servers, there are 
additional commercial web servers available in the market, but they are very expansive. Major 
commercial web servers are Netscape's iPlanet, Bea's Web Logic, and IBM's Websphere. 
Table 4-4 briefly describes a few of these webservers. 
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Table 4-4: Different types of web servers [82, 83] 

Apache HTTP Server The Apache HTTP server is the most popular webserver in the world. It 
was developed by the Apache Software Foundation. The Apache web 
server is open source software and offers cross platform support. More 
than 60% of webservers world-wide run the Apache Web Server [84]. 

Internet Information 
Services 

Microsoft’s Internet Information Server (IIS) is a high performance Web 
Server. Because IIS is tightly integrated with the OS it is relatively easy to 
administer. IIS offer increased choice and control, without giving up 
reliability or security [85]. 

Lighttpd Lighttpd is a free web server designed for speed. It provides all the 
essential functions of a web server. Jan Kneschke, a German software 
developer, developed Lighttpd. It is designed to have low memory 
consumption, be fast & secure, and offers more effective management of 
CPU load compared to other webservers. Lighttpd is frequently a solution 
for servers that are suffering load problems. It is open source software 
licensed under the revised BSD license. 

Sun Java System Web 
Server 

This web server from Sun Microsystems (now Oracle) is a secure, easy to 
use web server well suited for medium and large web sites. Although this 
web server is free, it is not open source. It is available for most major Oss, 
specifically it runs on Windows, Linux, and Unix platforms.. It offers 
built-in HTTP reverse-proxy capabilities to provide a highly scalable 
HTTP front-end to applications. The Sun Java System web server supports 
various languages, scripts, and technologies such as PHP, Ruby on Rails, 
Perl, Python, and more. 

Jigsaw Server Jigsaw server is a java-based webserver deployed by the World Wide Web 
Consortium (W3C). It is open source and free and can run on various 
platforms (such as Linux, Unix, Windows, Mac OSX, and Free BSD). The 
Jigsaw server is an experimental platform for W3C and the Internet 
community with a modular architecture and full HTTP/1.1 support.  

Apache Tomcat Apache Tomcat or simply Tomcat is an open source webserver and servlet 
container developed by the Apache Software Foundation. It implements 
Java Servlet and Java Server Pages technologies. Apache Tomcat is one of 
the most popular options for lightweight development scenarios. Even 
though it is a web server, it can also meet the requirement for an 
application server in many cases. 

4.4 Caching web data (memcached) 
Cache is a high-speed access storage area that can be a reserved portion of either main 

memory or a storage device. Caching is the process of storing data in a cache. Today’s cloud 
supports a number of caching engines. For example, AWS ElastiCache supports two open 
source cache engines: 
Memcached Memcached was developed by Brad Fitzpatrick for LiveJournal in 2003 [86]. Today, 

top worldwide websites and portals such as Facebook, Wikipedia, twitter, and others 
use memcached. Memcached is an open source & free, high performance, distributed 
memory object caching system, intended to speed up dynamic web applications by 
alleviating database load [87]. Memcached aims to decrease high database loads by 
adding a scalable object-caching layer to an application[60]. Many large companies 
use mamcached in their system (such as: LiveJournal, Wikipedia, Slashdot, and Digg). 
Memcached is designed to be simple in order to promote rapid deployment, ease of 
development, and to solve many problems facing large data caches. 
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Redis Redis is a popular open-source in-memory key-value store that supports data structures 
such as sorted sets and lists. Redis supports cross machine redundancy using 
master/slave replication. 

Memcached was developed with some specific underlying assumptions, such as fast 
networks, cheap memory, and that memory storage should be spread out across multiple 
machines rather than a single server. A global hash table is responsible for a cache that can 
access multiple web processes to learn of changes made by others and to respond appropriately. 
Table 4-5 describes the major tasks perform by memcached to speed up the response process. 

Table 4-5: Different tasks perform by memcached [60]. 
Server Instances  Generally, a number of memcached server instances are running 

throughout the network wherever free memory is available. Memcached 
instances listen on a specific port and IP address. A specific amount of 
memory is assigned to memcached on each machine. The memcached 
software will use all the spare memory dedicated to it over the entire 
network. Multiple server instances are easy to handle by configuring them 
to listen on different ports. 

Client Read Process  When an application determines what object is needed, it uses a key (such 
as object id) as input to a hashing algorithm to check whether the object is 
available or not. If the object is available, the object is returned in response 
to the request; otherwise memcached fetches the object from the database 
and places a copy of it in its cache for later use.  

Client Write Process  When an object fetched from the database or cache is updated then the 
updated object is saved in both the database and the cache. This maintains 
the integrity of the data, but also involves an extra update to the database. 

Hashing and Keys  In a client server relationship, the server instances store the data of 
different web servers and provide this data to the server at some time in the 
future. The web application maintains a hash table to determine which 
server instance stores information about what information in stored by 
which memcached instance(s). So that, requested objects are sent to 
appropriate server in the distributed cache before accessing database to 
respond to requests. A set of keys is used to look up results via a hash. 
Eventually, the keys (and the information associated with these keys) are 
spread out across the multiple nodes running memcached. 

Independence  Each memcached server instances is operated independently. If a server 
fails within a memcached cluster, then the remaining active servers run as 
normal. However, clients can be configured to route requests to other 
machines. All data contained within theinstance that fails will be lost when 
it fails. 

Expiration Memcached follows the least recently used (LRU) caching principles, 
hence it discardes the least recently used data first from it memory. That 
means, the most frequently used data will remain in the cache, while data 
that are not used frequently will be phased out as new data enters the 
cache. 
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Table 4-6: Advantages of master-slave replication [88] 

Scale-out solutions To improve performance we can split the load of database queries across 
multiples database servers. Replication distributes the update of one master 
to one or more slaves. If any application requires more reads than writes or 
updates, then a master-slave solution is well suited for this environment. In 
such a scenario, all writes and update must take place on the master server, 
while reads can utilize any one of the slave servers. 

Analytics Live data can be updated or created in the master, while analysis of the 
data can take place without negatively affecting the performance of 
master.  

Long-distance data 
distribution 

Long distance data distribution is so easy. For example, when a local 
office needs to work with a subset or all of the data; then you can easily 
create a local copy of the data for their use without giving them permission 
to permanently access the master server. 

Backups As data is replicated to the slave, slaves are able to pause the replication 
process or make a backup without corrupting the corresponding master 
data. 

Increasing the 
performance 

Master-slave replication can improve the performance of writes (since the 
master is dedicated to updates), while dramatically increasing read speed 
across an increasing number of slaves. 

Failover alleviating In a master-slave environment, any slave can become the master in the 
event of a failure of the master.  

Spreading the load Load can be spread across different slave databases, as needed. For 
example, different sales data could be distributed to different 
departments – so that each department has the data relevant to it. 

4.6 Cloud Storage 
Cloud storage is a model of networked enterprise storage where data is stored in virtualized 

pools of storage. The cloud provider operates large data centers. Then organizations that 
require their data to be hosted buy or leased storage capacity from the cloud provider. 
Physically, the resources might be located in different geographical locations, thus the safety of 
data depends upon the cloud provider and on the application that leverages the cloud storage. 
Cloud storage provides a user with the ability to back up data stored on a server, typically this 
server is hosted by a cloud service provider [89]. Most service providers also offer redundant 
storage. When a data center is hit by a natural disaster or power outage, the data can still be 
safe and available to the user through an identical copy of the data stored in a separate data 
center. Amazon Glacier is an example of cloud storage, which offer an extremely low-cost 
storage service that provides secure and durable storage for data archiving and backup. Using a 
cloud Storage Gateway, you can back up to a given point-in-time snapshot of your on-premises 
application data to cloud storage for future recovery. There are three important characteristics 
of cloud storage [90, 91]: 

• First, consider a storage service over a network. Purists will insist that this network must be the 
Internet and it must use a web services API and REST protocol. 

• The second characteristic is that the solution is easy to scale. Scaling is more than just 
increasing capacity. Scaling should address how to reduce effort and costs. Effort is reduced by 
the removal of detailed provisioning tasks intrinsic to traditional storage. 

• The last characteristic is that the solution is easy to manage. Every storage vendor claims their 
solution is easy to manage. A single administrator can manage a petabyte across hundreds of 
servers. Cloud storage should be easy to manage, as it is a single storage appliance. Today most 
cloud storage management is truly easy, regardless of the claims by different storage vendors. 
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A database snapshot is a read-only, static view of a database (the source database). A 
snapshot is a copy of your disk volume at a specific moment in time. It contains the full 
directory structure of the volume. A snapshot can also be used for incremental backup of 
volumes; such as, a restore point of your database, long-term storage, or the starting point of 
new Cloud Block Storage (CBS) volumes [92]. A snapshot persists until the database owner 
explicitly drops it. Snapshots and replication in a conventional storage system can serve the 
same function as a traditional backup strategy. 

4.7 Management node 
Cloud management strategies typically involve dealing with important tasks, including 

performance monitoring (response times, latency, uptime, etc.), security, compliance auditing 
and management, and contingency plans. Ideally, you can perform this entire set of tasks from 
a management node. There are a lot of management tool available. With a management tool 
you can manage the cloud infrastructure, including provisioning management and automation 
of enterprise class applications across private, public, and hybrid cloud platforms. A 
management tool allows you to automate updates and manage physical, virtual, and cloud 
based systems from a single interface. The management node can also accelerate delivery of 
innovative services and simplify control of virtualized environments. In this project, we used 
‘Cloudify’ as the management tool to manage our cloud platform. Details can be found in 
Chapter 5. The main reason to use management node are [93, 94]: 

• Reduce infrastructure costs and complexities with an integrated management platform, 
• Increase speed of deployment IT operations, and 
• Enable dynamic cloud service delivery with reusable workload patterns. 
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5 Implementation 
Based on the proposed architecture (described in Chapter 3), in this chapter we consider the 

motivation for the proposed solution and describe an experimental setup to measure the 
performance of this proposed solution. 

5.1 Experimental Setup 
To implement a scalable realization of Ifoodbag’s web application in a cloud environment 

the proposed design utilizes nodes in different tiers which are connected to each other. 
Management nodes are connecting to each of these different tiers in order to monitor the 
complete cloud’s health and to implement a policy for scaling the number of applications 
instances up and down either manually or automatically based on the traffic or user load. 

Figure 5-1 shows the experiment setup that we used to measure the performance of the 
proposed solution. In this experimental setup we mainly used the Cloudify* manager, Amazon 
Elastic Compute Cloud (Amazon EC2)†, and a simple static Ifoodbag web application 
including Apache Tomcat service under the license agreement [95] for testing with Cloudify. 
The Cloudify control machine is installed in a personal laptop on a private LAN and the EC2 
cloud instances resides in AWS.  

Table 5-1 shows the details of each component of the experiment setup. To simulate the 
proposed solution and to perform basic testing of the Ifoodbag application, we emulate 
Cloudify in the local cloud [96]. In the following sections we described Cloudify and AWS 
EC2 clouds, including our main motivations for selecting them, how to install them, and how to 
deploy them in our experimental setup. Finally in section 5.6 we described a mechanism for 
generating a traffic load for the Ifoodbag application server in order to experiment with our 
scaling rules as defined in the Ifoodbag application recipe. 

 
 

Figure 5-1: High level experimental setup using Cloudify and EC2 clouds 

                                                            
* Cloudify is an enterprise-class open source PaaS stack that sits between your application and your 

chosen cloud. Details can be found at: http://www.cloudifysource.org/  
†Amazon Elastic Compute Cloud (Amazon EC2), available at: http://aws.amazon.com/ec2/  
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Table 5-1: Experimental configuration 

Network Cloudify machine is sitting on the gigabit per second private LAN. There is a fixed 
link with 250 Mbps of bandwidth from this LAN to the Internet. This fixed link 
was used to connect to the public network. Additionally, we tried to connect to the 
public network via 3G internet connectivity. 

Web client As a web client we could use any web browser (e.g. Internet Explorer, Google 
Chrome, or Mozilla Firefox).  

Client machine Operating System: OS X Mavericks 10.9.1 
RAM: 8.00 GB 
Processor: Intel®Core™ i5 @ 2.6GHz, x64-based processor 
Hard disk: 250GB 

Cloud Instances Instance Type: m1.small (See section 5.5 for details on Amazon Instance types and 
pricing) 
Configuration of the instance: RAM: 1.7 GB, OS: Amazon Linux 3.4 AMI 
2013.09.2, 1, Processor: 32 bit 1 vCPU of Intel Xeon Processor 

Tools or 
Software Used 

We used the latest version of Java JDK as this was a prerequisite for installing the 
Cloudify shell [97]. We used TextWrangler tools [98] for configuring 
(changing/configuring .groovy files, as cloudify is mainly written in the groovy 
language[99]). 

Plots To create plots we used Microsoft’s Office Excel 2010. 

5.2 Motivation for choosing Cloudify 
Some of the drivers for moving to clouds include on-demand availability and scalability 

(enabling us to scale the application resources to efficiently consume what is needed now); 
rapid deployment and agility (as this reduces the time to deploy the application by utilizing an 
agile process for provisioning computing resources); and cost-reduction (thus enabling us to 
realize cost benefits by procuring cloud based computing resources without the overhead of 
system administrators or need to set up the underlying infrastructures). 

However, using clouds commonly requires us to compromise on one or more of the 
following objectives: 

No Code Change One of the primary objectives when moving to a cloud solution is to deploy 
the application in the cloud without rewriting any of the code. This can be 
challenging if the application is not ready for an elastic cloud-based 
deployment. It can be significantly more difficult if the cloud’s prepackaged 
images do not provide the versions of services on which the application 
relies or because these images simply do not provide the specific 
environment that the application requires. 

No Lock-in An important objective is facilitating moving to a different cloud provider 
when necessary. Maintaining this flexibility requires that we avoid 
customizing the application to work in a specific cloud, as such 
customization can make it challenging to change to another of the many 
cloud providers due to the complexities of migrating to a new architecture. 

Full Control It is desirable to have full control of the environment in which the 
applications runs in order to fine-tune, monitor, upgrade, and configure 
resources in the cloud according to the application’s needs. This means we 
must avoid the limiting environments that some clouds provide.  
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After considering all of the above objectives and our organization’s individual business 
requirements, Cloudify was selected as our enterprise cloud management tool. This tool fits 
well into our proposed cloud architecture for Ifoodbag. An introduction to this tool will be 
given in the next section.  

5.3 Introduction to Cloudify  
Cloudify is an enterprise-class open source PaaS stack that sits between the application and 

the chosen cloud [100]. It enables the application to operate smoothly, while Cloudify monitors 
the applicaiton and ensures that the resources the application needs are available regardless of 
the cloud and stack used. Cloudify offers the following features: 

Any App, Any Stack Any application can be moved to the cloud without changing any code, 
regardless of the application stack (i.e. Java/Spring, Java EE, Ruby on 
Rails, etc.), database (e.g., relational databases, such as MySQL, or non-
relational databases, such as Apache Cassandra, etc.), or any 
middleware components that the application uses. This enables us to 
achieve the objective of “no code changes”. 

Any Cloud Any application can be moved to any cloud environment, from any 
platform, at any time. Cloudify supports or has been tested on almost all 
public/private clouds, including Amazon EC2, Windows Azure, 
Rackspace, and private clouds (such as OpenStack, CloudStack, 
VMWare vCloud, Citrix XenServer, etc.) Additionally, enterprises can 
deploy the same application in multiple environments (say, for cloud 
bursting [101]). Cloudify hides the APIs and configuration of a cloud 
from the application, thus the application can more easily be moved 
from cloud to cloud. This enables us to achieve the objective of “no 
lock-in”.  

Full Control The application can have the full control of its environment. In many 
clouds, there is less control because the underlying infrastructure does 
not exposed suitable interfaces to the public, and hence a management 
tool cannot monitor and fine-tune the cloud for the application as it 
would with traditional data centers and applications. However, Cloudify 
does have access to the infrastructure via its cloud driver and controller, 
hence it can provide a much greater level of control, if the organization 
wants [100]. 

5.4 Deploying Cloudify  
We deployed Cloudify version 2.6 in “.nix” (MAC OS X Mavericks) machine, but it also 

works for machine running Microsoft’s Windows OSs [102]. There are some prerequisites 
[103] to compile the Cloudify distributions (details are available at [104]). In order to run the 
Cloudify shell, after downloading the distribution you simply unzip it, then browse the bin 
directory of the distribution and run the “./cloudify.sh (for .nix)” or “cloudify.bat (for 
Windows)” file (detailed step by step installation and configuration are available in Appendix 
A). Figure 5-2 shows the Cloudify shell prompt after running the cloudify.sh file. In the 
following paragraphs we described how Cloudify works and what the Cloudify architecture 
looks like. 
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5.5 Motivation for choosing AWS 
Rapid changes in technology and business processes over the past decade have created an 

ongoing IT infrastructure challenge for experts to manage as the infrastructure needs to 
constantly (or periodically) change. Indeed, the typical business application architecture has 
completely changed in last ten years, as it evolved from desktop-centric installation to 
client/server solutions, followed by loosely coupled web services and service-oriented 
architectures (SOA) and virtualization. Reducing cost and increasing reliability are major issues 
that must be addressed by enterprise IT. While each evolutionary step built on the previous 
technology the evolution has introduced new challenges, required changes in strategy, and 
offers opportunity. Cloud computing has introduced new challenges for the latest IT 
infrastructure (as discussed in Chapter 2). Amazon Web Services (AWS) [12] provides a 
complete set of cloud computing services that enable developers to build sophisticated, scalable 
applications by exploiting a highly reliable and scalable infrastructure to deploy web-scale 
solutions with minimal support and administration costs, and greater flexibility that available 
using one’s own infrastructure or a datacenter facility [105]. 

5.5.1 The differences that distinguish AWS 

The most important features that distinguish AWS from other vendors offering traditional 
IT computing infrastructures are [105, 106]: 
Flexible The first key difference between AWS and other IT models is increased 

flexibility. AWS enables organizations to use resources (such as 
programming models, OSs, databases, and architectures) that they already 
have experience with. In addition, flexibility helps organizations to deliver 
IT solutions when demands arise in order to serve their diverse business 
needs. Finally, AWS provides flexibility when provisioning new services. 
Instead of spending time to plan, budget, procure, set up, deploy, operate, 
and hiring personnel for a new project, you can easily deploy servers on 
the cloud as and when you need. 

Cost-effective Cost is one of the most complex elements of delivering contemporary IT 
solutions. For example, developing and deploying an e-commerce 
application such as ‘Ifoodbag’ can be a low budget and successful 
deployment, followed by cost that track with the number of users and their 
usage of the application. In contrast, owning and operating your own 
infrastructure can incur considerable initial cost. The cloud provides an 
on-demand infrastructure that enables organizations to only consume the 
resources as they actually need and pay only for the resources that they 
use, avoiding the need to make any long-term commitments. 

Scalable and elastic In a traditional IT organization, scalability and elasticity often involved 
considerable investment in infrastructure. The term ‘elasticity’ used by 
AWS means scaling up and down of computer resources to follow 
business demand. For example, if traffic to a traditional e-commerce shop 
increases unexpectedly during a short period (for example, during a special 
offer period), then the administrator needs to be confident that the existing 
infrastructure can handle this traffic load and that there will not be any 
interference with normal business operations. In contrast, by using an 
elastic load balancer and dynamic scaling AWS cloud based resources can 
automatically be scaled up to meet unexpected demand and then these 
resources can be scaled down as demand decreases. AWS allows 
organizations to add or subtract resources to their applications in order to 
meet customer demand, while managing costs. 
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Secure AWS ensures the confidentiality, integrity, and availability of your data 
and promises to maintain your trust and confidence. In order to provide 
end-to-end security and end-to-end privacy, AWS builds services 
following security best practices. 

Experienced The AWS cloud provides levels of scale, security, reliability, and 
privacy for an application implemented in Amazon’s cloud. AWS 
has built an infrastructure based on the lessons they have learned 
from over sixteen years of experience in delivering large-scale 
infrastructure by following reliable, secure methods. 

5.5.2 Introduction to AWS 

AWS is a comprehensive cloud service platform that offers compute power, storage, 
content delivery, and other functionality that organizations can use to deploy applications and 
services cost effectively with flexibility, scalability, and reliability. Today AWS offers a variety 
of infrastructure services. The AWS services described in the following subsections are 
suggested for the implementation of the ‘Ifoodbag’ cloud infrastructure. 

5.5.2.1 Amazon Elastic Compute Cloud (Amazon EC2) 

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that allows you to buy 
compute capacity in the cloud, which is resizable whenever you want. You can create a bundle 
including an OS, application software, and associated configuration settings as an Amazon 
Machine Image (AMI). Then you can use these AMIs to provision multiple virtualized 
instances or decommission them using simple web service calls to scale capacity up and down 
quickly, as your business operation requirements change. Amazon EC2 in designed to make 
computing easier for developers and system administrators. It has a simple web service 
interface that allows creating instance and configuring capacity with minimal friction. Instances 
can be launched in one or more geographical regions. Each region contains multiple 
“Availability Zones” with distinct locations. If failures occurs in a specific availability zone, 
then another availability zone in the same region can provide services via low latency network 
connectivity [105], [106]. 

5.5.2.2 Elastic Load Balancing 

When traffic grows for an application, it is best practice to not allocate all the traffic to a 
single instance. Instead the incoming traffic should be distributed by an elastic load balancer 
using the Elastic Load Balancing service. Incoming traffic is automatically distributed across 
multiple instances through elastic load balancing. This load balancing also enables you to 
achieve even greater fault tolerance in your applications by providing the necessary amount of 
load balancing capacity needed according to the current traffic load. The elastic load balancer 
detects unhealthy instances and automatically reroutes traffic to healthy instances until the 
unhealthy instances have been restored. Elastic Load Balancing can be enabled within a single 
availability zone or across multiple zones (for even more consistent application performance). 

5.5.2.3 Amazon Virtual Private Cloud (Amazon VPC) 

Amazon Virtual Private Cloud lets you create a virtual network as a logically isolated area 
within the AWS cloud. You can launch resources in this network that you have defined. You 
can enable IPSec tunnel mode to ensure secure connection between one or more gateways in 
your data center to a gateway of your VPC. You can allocate your own IP address range and 
subnets; configure a route table, default route, and network gateways to suit your own 
preferences – giving you complete control over your virtual networking environment. Changes 
to the network configuration of your Amazon VPC are easy. For example, you can create a 
subnet for your web server that has access to the Internet and place your database or application 
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server in another subnet without Internet access. Amazon also allows you to create a hardware 
virtual private network (VPN) connection between your corporate data center and your VPC. 

5.5.2.4 Amazon ElastiCache 

Performance and response time to a request is the most important factor in delivering any 
IT solution. Amazon ElastiCache is a web service that improves the performance of web 
applications by allowing you to retrieve information from in-memory caching system. Such in-
memory caching systems are faster than disk-based databases. The Amazon ElastiCache 
service can be used to reduce the overhead associated with data storage infrastructures and also 
provides a more resilient system that can mitigate the risk of an overload that could result in 
slow response times to requests. Additionally, ElastiCache provides enhanced visibility of the 
key performance metrics associated with your memcached or redis nodes. Further details about 
memcached were given in section 4.4. 

5.5.2.5 Amazon Route 53 

Amazon Route53 is a highly scalable Domain Name System (DNS) web service that allows 
you manage all of the DNS records for every domain that you would like to manage. Route53 
was designed for organizations to provide an extremely reliable and cost-effective way to route 
traffic to an application that a user want to access by translating a domain name (such as 
www.Ifoodbag.se) into the IP addresses that the computer user will use to interact with the 
application. Route 53 is used to connect user requests to the relevant element of an 
infrastructure running in AWS, such as an EC2 instance, an elastic load balancer, or database. 
A dynamic DNS is needed since the AWS infrastructure can be scaled up and down, hence 
services will not have fixed IP addresses. 

5.5.2.6 Amazon Elastic Block Storage (EBS) 

Amazon Elastic Block Store (EBS) provides block level storage volumes for use with 
Amazon EC2 instances. EBS is network-attached and the content persists independently from 
the life of an instance. EBS volumes are exposed as a device within the EC2 instance running 
on AWS. An EBS volume provides highly available, highly reliable, predictable storage 
volumes. Amazon EBS particularly well suited for an application that requires a database, file 
system, or access to raw storage. In addition, snapshots of EBS volumes can be created and 
stored on Amazon Simple Storage Service (Amazon S3).  

5.5.2.7 Amazon Relational Database Service (Amazon RDS) 

Amazon Relational Database Service (Amazon RDS) is a web service that makes it easy to 
set up, administer, and scale a relational database in the cloud. It offers cost-efficient and 
resizable capacity, while minimizing time consuming database administration tasks, freeing up 
resources to focus on your application and business. Amazon RDS also allow you to access 
most well-known databases implemented with MySQL, Oracle, SQL Server, and PostgreSQL. 
This means that the code, applications, and tools you already use today with your existing 
databases can be used with Amazon RDS. Amazon RDS automatically patches the database 
and keeps backups your database, storing the backups for a configured retention period. In 
addition, Amazon RDS makes it easy to use replication to enhance availability and reliability 
for databases, while scaling out beyond the capacity of a single database deployment for 
read-heavy database workloads. 

5.5.3 Amazon EC2 instance types 

Instances are the primary building blocks in the AWS cloud. Instances are virtual servers 
that run your application(s). Instances are created from an Amazon Machine Image (AMI). You 
choose an appropriate instance type to instantiate, depending upon your current business need. 
An AMI is a template containing a software configuration and OS. You can either use an AMI 
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provided by AWS or create (and share) your own AMIs. A single AMI can be used to launch as 
many instances as you want. When you launch an instance of your application, each instance 
type is associated with different types of hardware offering different capabilities, such as 
compute, memory, and storage capabilities. Selecting a specific instance type depends on the 
requirements of the application or software that you want to run on your instances [107]. 

A large number of instance types are provide by Amazon EC2 for use in different use cases. 
These instance types define different combinations of CPU, memory, storage, and networking 
capacity, thus giving you the flexibility to select the appropriate combination of resources for 
your application. 

Table 5-2 lists some of the different instance types that Amazon EC2 provides. Further 
details about instance types can be found in [108]. 

Table 5-2: Amazon EC2 instance types 
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General 
Purpose 

m3.medium 64-bit 1 3 3.75 1 X 4 
SSD 

- Moderate 

m3.xlarge 64-bit 4 13 15 2 X 40 
SSD 

Yes Moderate 

m1.small 32-bit or 
64-bit 

1 1 1.7 1X 160 - Low 

m1.large 64-bit 2 4 7.5 2 X 
420 

Yes Moderate 

m1.xlarge 64-bit 4 8 15. 4X 420 Yes High 
Compute 
optimized 

C3.large 64-bit 2 7 3.75 2 X 16 
SSD 

- Moderate 

C3.4xlarge 64-bit 16 55 30. 2 X 
320 
SSD 

- High 

cc2.8xlarge 64-bit 32 88 60.5 4 X 
840 

- 10 Gigabit 

GPU 
instances 

g2.2xlarge 64-bit 8 26 15. 1 X 16 
SSD 

Yes High 

Memory 
optimized 

m2.lxarge 64-bit 2 6.5 17.1 1 X 
420 

- Moderate 

cr1.8xlarge 64-bit 32 88 244. 2 X 
120 
SSD 

- 10 Gigabit 

Storage 
optimized 

i2.xlarge 64-bit 4 14 30.5 1 X 
800 
SSD 

Yes Moderate 

i2.2xlarge 64-bit 8 27 61 2 X 
800 
SSD 

Yes High 

i2.8xlarge 64-bit 32 104 244. 8 X 
800 
SSD 

Yes 10 Gigabit 

Micro t1.micro 32-bit or 1 Variable 0.615 EBS  Very Low 
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instances 64-bit only 

5.5.4 Amazon EC2 pricing 

One of the primary aims when building an infrastructure in the cloud is cost. As has been 
stated multiple time users only pay for what they use. There is no minimum fee and no initial 
investment is required. Prices are based on geographical location and which types of instances 
you are running. However, pricing also varies with which AMIs that you use. On-demand 
instances enable you to pay for compute capacity by the hour with no long-term commitments. 
Table 5-3 shows some of Amazon on-demand instance type costs per hour (in US dollars). We 
considered the US East (Northern Virginia) region and Linux as the OS. Detailed information 
can be found in [109]. 

Table 5-3: Amazon EC2 pricing for Linux OS and US East (N. Virginia) region 

Instance Type vCPU ECU Memory 
(GiB) 

Instance Storage 
(GB) 

Linux /UNIX Usage

m3.medium 1 3 3.75 1 X 4 SSD $0.113 per hour 
m3.xlarge 4 13 15 2 X 40 SSD $0.450 per hour 
m1.small 1 1 1.7 1X 160 $0.060 per hour 
m1.large 2 4 7.5 2 X 420 $0.240 per hour 
m1.xlarge 4 8 15 4X 420 $0.480 per hour 
c3.large 2 7 3.75 2 X 16 SSD $0.150 per hour 

c3.4xlarge 16 55 30 2 X 320 SSD $1.200 per hour 
cc2.8xlarge 32 88 60.5 4 X 840 $2.400 per hour 
g2.2xlarge 8 26 15 60 SSD $0.650 per hour 
m2.lxarge 2 6.5 17.1 1 X 420 $0.410 per hour 

cr1.8xlarge 32 88 244 2 X 120 SSD $3.500 per hour 
i2.xlarge 4 14 30.5 1 X 800 SSD $0.853 per hour 
i2.2xlarge 8 27 61 2 X 800 SSD $1.705 per hour 
i2.8xlarge 32 104. 244 8 X 800 SSD $6.820 per hour 
t1.micro 1 Variable 0.615 EBS only $0.020 per hour 

 

5.5.5 EC2 cloud setup for Cloudify 

In order to work with Cloudify and launching our application on EC2 clouds, we first setup 
an EC2 cloud account by: 

• First creating an account through Amazon Web Services [110]. 
• Next we select a Machine Image ID (for our experiment we used “ami-6a56b81d”), Hardware 

ID (for our experiment we used “m1.small[59]”), Location ID (for our experiment we used the 
Europe West location “eu-west-1”), and key pairs (including the secret keys for the account). 

Figure 5-11, Figure 5-12, and Figure 5-13, shows how to create a key pair, access key ID, 
and secret access key via the Amazon EC2 management console. These security credentials are 
used for launching new instances as well as connect to EC2 instances. The AWS security 
credentials also can be used to verify who you are and whether you have permission to access 
the resources or not. 
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5.6 Webserver load or performance measurement tool - 
Httpref 

“httperf” is a tool for UNIX-like OSs to measure web server performance and to produce a 
traffic load on a webserver. David Mosberger wrote it initially for Hewlett Packard (HP) [111]. 
It provides an extensive facility to generate a number of HTTP workloads for measuring 
webserver performance. The aim of “httpref” is not to produce one particular benchmark, but 
rather to provide a robust, high performance tool to carryout both micro and macro level 
benchmarking. The three distinguishing characteristics of httpref are [111, 112]: 

• Robustness, which includes the ability to generate and sustain server load, 
• Support for the HTTP/1.1 and SSL protocols, and 
• Extensibility to new workload generators and performance measurement. 

Httpref only tests the standard HTTP payload for your application by default, which means, 
that it is similar to curl in that it does not load additional assets (images, javascript, or CSS) in 
the default test. In order to ensure correct results Httpref should be run on the same machine as 
the web server (to avoid any effects due to networking limitations) and you must ensure that the 
test tool and the web server are the only processes consuming significant CPU resources on the 
client machine. The sample command line [113] shown below generates a load on the indicated 
webserver to measure its performance: 

httperf –server www.Ifoodbag.se --port 80 –uri /index.php --rate 150 --num-conn 27000 --
num-call 1 --timeout 5  

Following the above command line, httpref sends HTTP get requests for the index.php page 
to a web service running on the Ifoodbag.se webserver. The maximum number of HTTP 
requests that should be generated is num-call*rate. The other parameters are: 

server IP address or hostname of the machine where the service is running 

port port the service is running 

uri The context path of the service on the server  

rate Number of connections created per second to make requests to the service. 

num-con Number of test calls made to the service 

num-call Number of calls per TCP connection. 

time-out This is the maximum amount of time that httperf waits for a successful 
response. 

For our experiment we sent the traffic load to our Ifoodbag application launched on EC2 
cloud by issuing the following commands. 

httperf --hog --server 54.194.238.66 --port 8082 --uri /ifoodbag --wsess=5,5,2 --num-conns 
1000 --rate 10 

httperf --hog --server 54.194.238.66 --port 8082 --uri /ifoodbag --wsess=20,10,2 --num-conns 
10000 --rate 30 

httperf --hog --server 54.194.238.66 --port 8082 --uri /ifoodbag --wsess=20,20,10 --num-conns 
20000 --rate 100 --timeout 15 

In our experiment, we have created different numbers of sessions with different loads to test 
the scaling of our servers. Three-parameter are needed to create sessions. The syntax is: --
wsess=N1,N2,X. Where, N1: number of sessions, N2: Number of calls per session, and X: 
delay between calls (sec). The results of these tests are given in section 6.2. 
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6.2.2 Scalability Analysis 
For dynamic or auto scalability it is very important to determine the appropriate threshold 

value for the selected metric. A low threshold will result in underutilization of the nodes 
defined in the ASG. On the other hand, a high threshold may result in higher latency, hence 
degrading the end-user’s experience. Therefore, we define the threshold value by considering 
the throughput corresponding just meeting the SLA for the application. To determine the 
appropriate threshold value, we consider scaling results based on algorithm number 1 proposed 
by Kejariwal in [115]. This algorithm must satisfy the following properties in accordance with 
the guidelines stated in section 6.2.1. 

Property I RPS per node after scale up should be greater than the scale down threshold (TD). 
This property ensures that a scale up avoids the Ping-Pong effect (see section 
6.2.1). 

Property II RPS per node after scale down should be less than the scale up threshold (TU). 
Similar to Property I, Property II ensures that a scale down avoids the Ping-Pong 
effect. 

Algorithm for scaling Up/Down: As Ifoodbag is just getting started in the market, we tried 
to define an algorithm that could scale a certain number nodes both upwards and downwards 
according to the guidelines defined in section 6.2.1. In this algorithm the management system 
will deploy a ChangeInCapacity number of nodes (to scale Up) or decommission this number 
of nodes (to scale Down). The direction of the change will be based on the AdjustmentType 
during the scaling process. For example, in our experiment the current capacity of the given 
ASG is 1 and the ChangeInCapacity is set to 3. So given a scale up event we will add 3 more 
nodes to the ASG. The details of the parameter and steps to determine the scaling thresholds 
(for scaling both up and scaling down) are: 

Input: application parameters.  
Parameters:  

D Scale down value 
U Scale up value 
TD Scale down threshold (RPS per node) 
TU Scale up threshold (RPS per node) 
Nmin Minimum number of nodes in the ASG 

Let T (SLA) return the maximum RPS per node for the specified SLA. 
TU ← 0.90 × T (SLA) 
TD ← 0.50 × TU 
Let RPSPeak, RPSmin denote the peak and minimum RPS observed for the ASG over 

the last, say, two weeks 
Let Nc, RPSn denote the current number of nodes and RPS per node respectively 
L1:   /* Scale Up (if RPSn > TU) */ 
repeat 

RPSASG ← Nc × RPSn 
Nc ← Nc + U 
RPSn ← RPSASG/Nc 

until RPSn × Nc ≤ RPSPeak 
L2:   /* Scale Down (if RPSn < TD) */ 
repeat 

RPSASG ← Nc × RPSn 
Nc ← max(Nmin,Nc − D) 
RPSn ← RPSASG/Nc 

until RPSn × Nc ≥ RPSmin or Nc = Nmin 
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if Properties I and/or II are not satisfied for each scale up and scale down 
respectively then 

Adjust D, U, TD, TU incrementally 
Revisit L1 and L2 

end if 
 

In this algorithm, the scale down value D and the scale up value U are the main inputs. 
Kejariwal states that the constants (0.90 and 0.50) used in defining TU and TD were determined 
empirically to minimize the negative impact on end-user experience and minimize ASG 
underutilization. Loop L1 in the algorithm scaling up an ASG when the incoming traffic 
increases, while Loop L2 scales down an ASG when the incoming traffic decreases. If 
Properties I and/or II (defined earlier) are not satisfied then the algorithm adjusts the parameters 
D, U, TD, TU in an incremental fashion and iterates through the loops L1 and L2. 

After implementing this algorithm in our Ifoodbag application recipe for about 30m of the 
simulation in the EC2 cloud when generating traffic load on our application server and using 
the management machine we obtained the results shown in Table 6-3. 

For our experiment, we defined RPSPeak=1300, RPSmin=50, D (scale down value) = 2, 
U (scale up value) = 3, Scale down threshold TD=40, and Scale up threshold TU=80. In our 
experiment we initialized RPSASG to the value 50 and Nc to 2, then we increased RPSASG to 200 
and according to our policy rules since RPSn approaches TU (100>80), an auto-scaling up event 
is triggered, hence (U=) 3 nodes are added to the ASG. Successively the ASG scales up until 
RPSn × Nc ≤ RPSPeak. Note that column six the New RPSn value satisfies Property I defined 
earlier. 

Conversely, during the scale down process, we considered RPSASG=1300 and Nc=14 and as 
we simulated to decrease the RPSASG value to 550, hence RPSn approaches to TD (39<40). 
Thereby auto-scaling down event triggered and removed (D=) 2 nodes from the ASG. 
Successively the ASG scales down until RPSn×Nc ≥ RPSMin or Nc = Nmin. It should be noted 
that in column twelve the New RPSn value satisfies Property II defined earlier. 

Table 6-3: Results of implementing the algorithm with RPSPeak=1300, RPSMin=50, D=2, 
U=3, TD=40, TU=80 
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Table 6-4: Utility Style Pricing [120, 121] 

Pay as you go You pay on an hourly basis from the time when you launch a resource until the 
time you terminate it. No long-term contract is required. The cloud replaces 
your upfront capital expense with a low variable cost as you pay only for what 
you use in terms of the underlying infrastructure and services that you use. 

Pay less when you 
reserve 

You can invest in reserved capacity, but because of the low upfront investment 
you get a significant discount rate. Depending on the types of instances you 
reserve, the overall savings ranges between 42% and 71% over on-demand 
capacity.  

Pay even less per 
unit by using more 

You can save even more as your business grows larger. For example, you pay 
less for per gigabyte as you use more (as the marginal price decreases). 

Pay even less as 
cloud grows 

This is the most attractive feature of a cloud. Each cloud provided always tries 
to reduce their data center and hardware costs, improve their operational 
efficiencies, and reduce their costs – hence reducing your cost of business. 

Custom pricing If none of pricing model works for your business, then a cloud provider might 
offer custom pricing for high volume projects with unique requirement. 

6.3.2 Cost factors 
When owning and operating a data center the most important factor is cost. Therefore there 

needs to be a detailed and careful analysis before start to build your own infrastructure. In 
reality it is not as simple as summing up the hardware expenses, as one must consider the utility 
pricing of resources. Several financial metrics can be used to calculate the Total Cost of 
Ownership (TCO) which includes both direct and indirect costs of a product or a service. It is 
challenging to accurately estimate the cost difference between owning an on-premises 
infrastructure and buying resources in a cloud infrastructure. In this section, we presented a 
comparative analysis of several different direct costs and indirect costs. Direct costs of 
ownership can be classified in to different categories, such as hardware cost, assets utilization, 
power efficiency, data redundancy, security, supply chain management, and personnel costs.  

Table 6-5 described these different cost factors in the ownership of an IT infrastructure. 

 
Table 6-5: Different types of cost factors [119, 121] 

Infrastructure Costs  Detail Descriptions

Hardware costs Upfront investment is always critical for enterprises to build an IT 
infrastructure. The investment required can easily be millions of dollars. 
Furthermore, expensive ongoing upgrades of resources (servers, storage devices, 
and load balancers) may be needed on top of the large initial capital investment. 
In contrast, using a cloud allows you to take advantage of the cloud provider’s 
purchase of large volumes of hardware at very low marginal cost. Cloud 
customers enjoy the benefits of this decreased cost to increasing their capacity 
and performance via enhanced functionality over time. 

Asset utilization Asset or resource utilization is major difference between two models (cloud and 
traditional). Some research shows that, annually average server utilization in 
traditional enterprises’ own data center is 5%-20% [34]. If you invest in 
virtualization and related technology to increase utilization, it is possible to 
achieve 20%-25% utilization rates. On other hand, when using the cloud’s pay 
for utility pricing model customers are only charged for resources they actually 
use, as a result customer can achieve close to 100% utilization. 

Power efficiency Based on numerous industry reports, the average Power Usages Effectiveness 
(PUE) of a data center is 2.5, thus for every 1 watt of power that is delivered to 
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Infrastructure Costs  Detail Descriptions

the servers, 1.5 watts are wasted in heat and other overhead. To build energy 
efficient dedicated IT infrastructures requires the most efficient equipment and 
adhering to industry best practices which are frequently prohibitively expensive 
for enterprises. . If a business attempts to realize their own energy efficient data 
center they would need to invest heavily to decrease their PUE ratio. However, a 
cloud infrastructure is likely to invest far more in order to decrease their PUE 
ratio (since they benefit from this investment with every additional site and rack 
of equipment), hence they can be far more energy efficient than the average 
enterprise data center. For example, Facebook’s Prineville, OR datacenter had a 
PUE of 1.06 at 18:00 GMT on 2014.02.11 (data from 
https://www.facebook.com/PrinevilleDataCenter/app_399244020173259) while 
their Forest City, NC Data Center had a PUE of 1.10 at the same time (data from 
https://www.facebook.com/ForestCityDataCenter/app_288655784601722). 

Data redundancy A highly reliable IT infrastructure requires that you maintain reliable storage & 
backup devices and operate a reliable redundant network, transit connections, 
and physical connections between data centers. In order to realize high 
reliability enterprises need to account for all of these issues and incur the related 
costs to achieve such as redundant infrastructure. However, utilizing a cloud 
enables customers to easily deploy servers in multiple availability zones with 
redundant network facilities, with the cost incurred as operating costs rather than 
capital costs. 

Security  Ensuring security, such as confidentiality, integrity, and availability of business 
data, is another direct cost of having your own infrastructure. Security costs 
include purchasing network security devices, security software licenses, smarts 
card for access control, and so on. A cloud can provide these services in keeping 
with best security practices along with features to provide end-to-end security 
and end-to-end privacy in conjunction with their cloud platform. Additional 
details can be found in [63]. 

Supply Chain 
Management 

In traditional enterprises, cost increases when purchasing hardware because time 
passes from when hardware is ordered to when it is brought online - often it 
takes a few months. This long lead time can lead to excess capacity and 
unnecessarily increased costs. Cloud providers minimize this excess capacity by 
devoting significant resources to managing their supply chain in conjunction 
with their large installed hardware base and their continuous (or periodic) 
expansion of this base. 

Personnel Different IT infrastructure teams are needed to handle heterogeneous hardware 
and related supply chains, continuously upgrading the data center’s design, 
operating the data center, scaling and managing physical growth, and so on. All 
of these personnel costs are necessary in order to achieve low infrastructure 
costs for each enterprise while these costs can be amortized over a large based in 
the case of a cloud provider. 

Indirect Costs There are a many indirect costs to build an infrastructure; the result is that 
enterprises are increasingly attracted to build their infrastructure virtually on top 
of a cloud platform. Running a large scale and highly availability infrastructure 
requires highly talented staff and the dedicated attention of management – both 
of these are areas where the cloud provider has an advantage. 
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6.3.3 Instance type selection 
In this project, we used AWS as our cloud provider and considered AWS’s services costs in 

our cost analysis. We proposed a cost effective way to save costs when ‘Ifoodbag’ starts to 
building their infrastructure in cloud. Amazon provides different ways to purchase instances in 
the cloud. These different types of instances in the AWS cloud offer different cost saving as 
Reserved Instances, On-Demand Instances, and Spot instances have different prices and time 
scales for provisioning. The actual functionalities are the same for all of these instance types. 
Table 6-6 describes these three different instance types according to their potential cost 
savings [121]. 

Table 6-6: Types of instances according to costs saving 

Reserved Instances The reserved instances pricing option allows you make a low and one time 
upfront investment for each instance that you want to reserve. The 
customer receives a significant discount on their hourly usages charges for 
these instances and they gain a specific guaranteed capacity. Additionally, 
you have the flexibility to turn them off when you do not need them, hence 
you do not even have to pay the discounted hourly rate for those you turn 
off. 

On-demand Instances The on-demand instance pricing option allows you to purchase an instance 
by the hour whenever you need without making any long-term 
commitment. Additionally, you can turn this instance on and off rapidly. 

Spot Instances The spot instance pricing option allows you to bid for unused EC2 
compute capacity. The price for spot instances fluctuates depending on the 
supply and demand for spot instance capacity.  

We highly recommended that ‘Ifoodbag’ use at least a minimum number of the reserved 
instance pricing option instances in their infrastructure because the company can save more by 
using these types of instances. AWS offers instances depending on the amount of an instance’s 
resources, described as Light, Medium, and Heavy utilization. If a company needs a consistent 
service for their users the heavy utilization type of instance is the best option. Table 6-7 shows 
how much enterprises can save by using reserved instances compared with running on-demand 
instances. We assume in these computations that the on-demand instances have 100% 
utilization. 

Table 6-7: Saving of reserved instance types over on-demand instances 

Reserve Instance type Saving over On-Demand Instances 
(1-year) (3-year) 

Light utilization up to 42%  up to 56%  

Medium utilization up to 49% up to 66% 

Heavy utilization up to 54% up to 71% 

6.3.4 Total Cost of Ownership (TCO) of running a web application in a 
cloud 

To estimate of total cost we need to consider usage patterns because the actual traffic load 
can dramatically affect the TCO of a web application. We considered the nature of Ifoodbag’s 
web application and in this TCO analysis we assume it has a constant level of traffic over time. 
AWS cloud provides a range of options to reduce costs while flexibility and scalability benefits 
remain same. In this section we described a comparative costs analysis for Ifoodbag’s web 
application running in an on-premises infrastructure versus on the AWS cloud platform. We 
assume that the company wants to deploy its web application for access via the internet to 
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interact with prospective customers, existing customers, and partners. We assumed the website 
has hundreds of thousands of visitors every month and is regularly accessed by thousands of 
customers with a traffic flow that is fairly steady state. The website is a three tier web 
application with open source content management software stores and serves a large amount of 
cooking recipes through a content delivery network. To handle this website and provide a good 
user experience, we assume the following resources are needed [109, 120, 121, 122]: 

• 2 Linux based server for web servers 
• 2 Linux based application servers 
• 2 Linux based MySQL database servers 

 

Table 6-8 compares the TCO of the on-premise alternative costs versus an AWS cloud 
infrastructure’s costs. Figure 6-8 shows a graphical comparison of the monthly TCO for 
traditional infrastructures versus a cloud. 

Table 6-8: TCO of on-premises infrastructure vs. cloud infrastructure  

TCO Web application infrastructure costs 

Amortized monthly cost over 3 
years 

On-Premises AWS cloud 
All Reserved (3 year heavy) 

Compute / server costs   

Server Hardware $306 $0 

Network Hardware $62 $0 

Hardware maintenance $47 $0 

Power and cooling $172 $0 

Data center space $144 $0 

Personnel  $1200 $0 

AWS instances $0 $429 

Total –per month $1,931 $429 

Total -3 years $69,516 $15,444 

Savings over On-Premises  77% 
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the database server. Since we assumed our website would have a steady state workload we are 
planning that all of these instances operate 24 hours per day, then a heavy utilization reserved 
instances is most cost effective option. To calculate the AWS instances costs we used AWS’s 
simple monthly cost calculator [122]. A total of six reserved instances with their costs 
amortized over a 3 years period are as follows: 
2 webservers and 
2 application servers 

High–memory extra large (m2.xlarge) instances are used in the US East 
region at a rate of $0.086 per hour with one time upfront fee of $1,922. 

2 database server Memory optimized (i2.xlarge) instances are used in the US east region at a 
rate of $0.121 per hour with one time upfront fee ~$2,740. 

 

In table 6-8, we have not added small amount of upfront fee for 3 years reserved instances. 
In order to calculate total amount of costs for Ifoodbag web application, we need to add upfront 
fee for with total 3 years monthly cost for these types of instances. The total calculated cost for 
running the Ifoodbag web application (both compute and database) on reserve instances for 3 
years = $1,5444 ($429 per month) + $13,168 (upfront investment for reserved instances) = 
$28,612. 

Based on our description above, we calculated the total cost of ownership of a traditional 
versus cloud solution for 5 years period. Figure 6-9 shows the yearly total cost comparison 
between the traditional infrastructure and cloud platform. Our assumptions for these resources 
and costs are: 

• For first year, we assumed infrastructures needed 2 web servers, 2 application servers, and 
2 database servers to serve their users. All hardware configurations same as described above for 
both platforms. No hardware replacement cost in the first year. 

• In the second year, the company would needed to add hardware as their business grows. We 
assumed 1 webserver, 1 application server, and 1 database server would be added to their server 
pool. In the cloud we assumed that the first 2 servers of each tier are utilized 100% and the rest 
of servers will scale according to load. We assumed the remaining servers would be 50% 
utilized. 

• In the third year, we assumed that new hardware would be added as well as replacements of 
some hardware due to failures or upgrades of the capabilities of the hardware. We assumed 30% 
additional hardware cost to replace old hardware. New instances would be added to the cloud 
platform. 

• In the fourth year we assumed that 50% of additional hardware would be needed and 50% of the 
existing hardware would be replaced and that the cloud would be scaled accordingly. 

• The traditional infrastructure needs continued upgrades of resources to ensure better 
performance and we also needed to add new hardware to the infrastructure as traffic to the web 
application increases. We assumed new hardware is added and 50% of resources are upgraded 
in the traditional infrastructure. The cloud is assumed to scale its resources to match business 
needs. 
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Some recommendations for the deployment of the solution in the production are: for the 
load-balancing tier it is recommended to use two LBs in order to ensure redundancy and 
reliability. However, initially it is possible to run the business with a single LB. It is also 
recommended to run these LBs on m1.large instance types, for details see [59], as these 
instance types provide 2 virtual cores, 7.5 GB of memory, and a 64-bit platform. Extensive 
testing confirms that each such LB has the capacity to handle approximately 5,000 requests per 
second, thus two LBs support a total of about 10,000 requests per second. For our experiments 
we deployed one management server instance in the cloud but it is recommended to run two 
instances in a production environment. According to our proposed architectural model we also 
recommend deploying two stand-alone application server instances in a production 
environment in order to provide high service availability. 
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7 Conclusions and Future Work 
This chapter describes our achievement in this thesis project in terms of fulfilling our goals 

(as initially defined). This chapter also suggests further research possibilities to build upon this 
thesis project. The chapter concludes with some reflections on the social, economic, 
sustainability, and ethical aspects of this thesis project. 

7.1 Conclusions 
The aim of this thesis project was to design, implement, demonstrate, and evaluation a 

highly scalable cloud based architectures for Ifoodbag’s web application. This thesis also 
examined how to dynamically scale the proposed solution both up and down, since for a cloud-
based application, especially one which is used by people in a local area, there is going to be a 
fluctuation of users throughout the day and there is no reason to allocate more or less resources 
than actually needed. In this we also focused on the fact that a scalable cloud-based architecture 
can provide great flexibility and enable rapid market share growth for a new business without 
their need to investing in an expensive infrastructure. 

We have achieved our goals as we proposed a scalable cloud architecture model, which 
clearly provides the dynamic scalability both upwards and downwards. We have demonstrated 
different guidelines and techniques in order to scale up and down based on RPS (the number of 
requests per second) at the application server(s). In our scalability policies we have utilized a 
cooldown time and ASG (Auto scaling group) properties with some predefined parameters, and 
then clearly shown that the solution satisfies desirable properties such that the RPS per node 
after a scale up should be more than the scale down threshold (TD) and RPS per node after scale 
down should be less than the scale up threshold (TU). These properties were shown to avoid the 
Ping-Pong effect during dynamic scaling. This avoidance is a very important consideration in 
an auto-scaling approach, as otherwise there system could deliver a bad end-user experience 
and in worst case leads to service unavailability. Furthermore, this dynamic scalability 
approach also illustrated that it only utilizes resources when needed, avoiding overutilization 
and underutilization and as a result clearly reduces the operational cost for the business. Our 
findings and cost analysis also shows that a newly introduced business, such as Ifoodbag AB, 
can potentially save up to approximate 90% of the upfront investment for the infrastructure 
setup and save around 50% to 60% of the monthly operational cost for managing applications 
by using the proposed cloud architecture rather than owning their own on-premises 
infrastructure. 

During this course of project, we have learned various cloud architectures, dynamic scaling 
mechanisms, and their implementations. The project also gave use very useful experience in 
working with a cloud environment - as we demonstrated our experiment on the EC2 cloud and 
deployed our management node using the Cloudify open-source management stack. We have 
customized different cloud configuration files and developed our own polices in order to 
deploy Ifoodbag’s application in a cloud environment. This thesis project proved to be a very 
good experience for both of us. Apart from that, we are confident that this thesis project will 
help us drive our own future career towards cloud technology, as cloud computing is today a 
very hot topic for the future IT solutions. 

7.2 Future Work 
Due to the limited time and resources during the course of this thesis project, it was not 

possible to perform all the tasks defined in our proposed architecture. Moreover, the 
observations and findings during the course of this thesis project suggest some areas for further 
research. We plan to carry out some of these tasks in the near future. However, other thesis 
project students and researchers may also want to explore one or more of these topics. 
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In this thesis we presented our findings based upon implementing the proposed solution in a 
single cloud availability zone. However, there is a clear need for empirical testing of the 
proposed solution across different availability zones in order to find the limits of scalability of 
the application. 

In our demonstration, most of the data and parameter values were based assumptions and 
the experience & observations from various research papers. In order to get a better results and 
further optimize the proposed solution, one could study this proposed solution using an actual 
production environment or at the very least data from a production environment. 

In our thesis project, we did not complete the implementation of all the components defined 
in our proposed architecture. For example, we did not realize the security guidelines defined by 
Sabrina Ali Tandra and Sarwarul Islam Rizvi in their thesis [52], An obvious further study 
would implement and evaluate all of the components defined in our proposed architecture 
including all of the security guidelines that they have proposed. 

In our experiment, we evaluated a dynamic scaling mechanism using only one metric (Total 
Request Count), however other metrics such as CPU/Memory utilization, number of active 
sessions, etc. or a combination of two or three metrics should be studied to learn what are the 
most important metrics and how (or if) they should be combined to provide highly dynamic and 
cost effective scaling of the system for a production version of the web application. 

In our demonstration, we deployed the solution only in an EC2 cloud with small instances. 
Further study and improvements should be made using an implementation of the solution in 
another public or private cloud using large instances. 

7.3 Reflections 

This section explores a number of social, economic, legal, and ethical aspects of this thesis 
project. 

7.3.1 Social aspects 
The proposed infrastructure and dynamic scaling solution could be deployed by any 

company (not just “Ifoodbag”) to build their infrastructure on a cloud platform. We have made 
our infrastructure highly scalable, robust, and reliable which ensure 99.99% service availability 
for the end-users. Our dynamic scaling solution allows enterprises to automatically scale up and 
down their cloud infrastructure as their traffic changes (and in the best case grows). Having a 
dynamically scaled infrastructure, enterprises might be able to shift their attention from their 
service’s availability to concentrate on sales or improve other parts of their business. Because 
the dynamically scaled infrastructure will ensure service availability during periods of high 
demand or as traffic increases, Ifoodbag’s users will enjoy smooth, fast, and reliable service 
that should increase the quality of their user experience. Customers will receive promotions to 
buy their daily or weekly meals from ‘Ifoodbag’ which will reduce the use of their valuable 
time of buying food from a grocery store. There are also some social opportunities concerning 
giving the customer people suggestions about new combinations of foods via new recipes, 
avoiding unhealthy food, and fostering discussions about healthy food. If any user is unsatisfied 
with some product, then they can immediately contact the company or authorities to take 
appropriate action regarding problem. 

7.3.2 Economic aspects 
Cost is always an important concern for enterprises. In our analysis, we proposed a cost 

effective way to build an IT infrastructure for any business that is considering or using a web 
application. Such enterprises could save 50%-60% of their monthly operating cost by building 
their infrastructure using the proposed cloud solution. Furthermore, the analysis of our solution 
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suggests that enterprises can save even more when using a cloud platform by using 3-year 
reserve instances as compared to other types of instances in the cloud. We clearly showed the 
cost difference between traditional infrastructures and the proposed cloud solution. By 
deploying web application in the cloud companies can avoid the need to make a large initial 
investment in IT infrastructure, this money can instead me used by the company to improve 
their product(s) and/or increase the number of customers by investing in marketing. In the 
proposed cloud platform, there is no maintenance, upgrade, or capital hardware cost. 
Companies can deploy instances on new hardware as they needed without making any upfront 
investment. The cloud platform is cost effective, highly scalable, robust, and reliable that can 
provide a highly available service, which can benefit many enterprises. 

7.3.3 Sustainability aspects 
Adopting a best practice cloud based solution can have a significant impact on improving 

the sustainability of the business in terms of reducing electrical power consumption, as was 
described section 6.3.2in terms of the greatly improved PUE that Facebook and Google have 
shown in comparison to on-premises best practice data centers. These same firms have shown 
that additional savings can be realized in terms of improved water usage effectiveness (thus 
decreasing the data center’s needs for water). 

7.3.4 Legal and ethical aspects 
We have used information that was open to the public in our thesis work. We ensured that 

no commercially senstive information was revealed or used in our work. The applications and 
tools that we have used are all open source, free, and publically available under GNU General 
Public License [124] or similar license. We used the Amazon cloud to perform our 
experiments. The use of this cloud was paid for by Ifoodbag. We created our own strategy to 
perform these experiments. The experiment results were not fabricated and sufficient details are 
provided in the thesis and the appendices to allow others to replicate our results. Additionally, 
our experimental data are available to others upon request. We have proposed an architecture to 
build and IT infrastructure for ‘Ifoodbag’, but it could also be used by other enterprises to make 
their web application service more reliable and to increase the quality of their end-users’ 
experience when using this service. We did not explore the question of the existence of any 
requirements to disclose business or customer information to governmental authorities (for 
example for regulator or law enforcement purposes) in our thesis project, hence this remains for 
future work. 
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Appendix B: Configuration of Cloud controllers and cloud 
drivers 
EC2 Cloud Configurations file called (ec2-cloud.groovy):  

/*************** 
 * Cloud configuration file for the Amazon ec2 cloud. Uses the default jclouds-based cloud driver. 
 * See org.cloudifysource.dsl.cloud.Cloud for more details. 
  */ 
cloud { 
 // Mandatory. The name of the cloud, as it will appear in the Cloudify UI. 
 name = "ec2" 
 /******** 
  * General configuration information about the cloud driver implementation. 
  */ 
 configuration { 

// Optional. The cloud implementation class. Defaults to the build in jclouds-based provisioning 
driver. 

  className "org.cloudifysource.esc.driver.provisioning.jclouds.DefaultProvisioningDriver" 
  storageClassName "org.cloudifysource.esc.driver.provisioning.storage.aws.EbsStorageDriver" 

// Optional. The template name for the management machines. Defaults to the first template in 
the templates section below. 

  managementMachineTemplate "SMALL_LINUX" 
// Optional. Indicates whether internal cluster communications should use the machine private IP. 
Defaults to true. 

  connectToPrivateIp true   
// Optional. Path to folder where management state will be written. Null indicates state will not be 
written. 

  persistentStoragePath persistencePath   
 } 
 /************* 
  * Provider specific information. 
  */ 
 provider { 
  // Mandatory. The name of the provider. 
  // When using the default cloud driver, maps to the Compute Service Context provider name. 
  provider "aws-ec2" 
  // Mandatory. The prefix for new machines started for servies. 
  machineNamePrefix "cloudify-agent-" 

// Optional. Defaults to true. Specifies whether cloudify should try to deploy services on the 
management machine. 

  // Do not change this unless you know EXACTLY what you are doing. 
  managementOnlyFiles ([]) 
  // Optional. Logging level for the intenal cloud provider logger. Defaults to INFO. 
  sshLoggingLevel "WARNING" 

// Mandatory. Name of the new machine/s started as cloudify management machines. Names are 
case-insensitive. 

  managementGroup "cloudify-manager" 
// Mandatory. Number of management machines to start on bootstrap-cloud. In production, 
should be 2. Can be 1 for dev. 

  numberOfManagementMachines 1 
  reservedMemoryCapacityPerMachineInMB 1024 
 } 
 
 /************* 
  * Cloud authentication information 
  */ 
 user { 
  // Optional. Identity used to access cloud. 

// When used with the default driver, maps to the identity used to create the 
ComputeServiceContext. 

  user “user” 
  // Optional. Key used to access cloud. 

// When used with the default driver, maps to the credential used to create the 
ComputeServiceContext. 

  apiKey “apiKey” 
 } 
  
 cloudStorage { 
   
 templates ([ 
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  SMALL_BLOCK : storageTemplate{ 
   deleteOnExit true 
   size 5 
   path "/storage" 

namePrefix "cloudify-storage-volume"   
 deviceName "/dev/sdc"   
 fileSystemType "ext4" 

   custom ([:]) 
   } 

         ]) 
 } 
 
 cloudCompute {   
  /*********** 
   * Cloud machine templates available with this cloud. 
   */ 
  templates ([ 
   // Mandatory. Template Name. 
   SMALL_LINUX : computeTemplate{ 
   // Mandatory. Image ID. 
   imageId "linuxImageId" 

// Mandatory. Files from the local directory will be copied to this directory on 
the remote machine. 

   remoteDirectory "/home/ec2-user/gs-files"  
   // Mandatory. Amount of RAM available to machine. 

   machineMemoryMB 1600   
   // Mandatory. Hardware ID.   
   hardwareId "hardwareId"   
   // Optional. Location ID.   
   locationId "locationId" 

// Mandatory. All files from this LOCAL directory will be copied to the remote 
machine directory. 

   localDirectory "upload" 
// Optional. Name of key file to use for authenticating to the remot machine. 
//Remove this line if key files are not used.  
keyFile "keyFile"  
username "ec2-user"   
// Additional template options.  
// When used with the default driver, the option names are considered 
// method names invoked on the TemplateOptions object with the value as the 
parameter. 
options ([ 

"securityGroups" : ["default"]as String[], 
 "keyPair" : “keyPair”  

])   
// Optional. Overrides to default cloud driver behavior. 
// When used with the default driver, maps to the overrides properties passed 
to the ComputeServiceContext a 

   overrides ([ 
"jclouds.ec2.ami-query":"",  

 "jclouds.ec2.cc-ami-query":"" 
])  

 // enable sudo.   
 privileged true   
 }, 

   SMALL_UBUNTU : computeTemplate{   
   // Mandatory. Image ID. 

   imageId “ubuntuImageId”   
   remoteDirectory "/home/ubuntu/gs-files"  
   machineMemoryMB 1600   
   hardwareId “hardwareId”   
   locationId “locationId”   
   localDirectory "upload"   
   keyFile “keyFile” 

   username "ubuntu"   
   options ([    
   "securityGroups" : ["default"]as String[],  
   "keyPair" : “keyPair”   
   ]) 
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  overrides (["jclouds.ec2.ami-query":"",    
   "jclouds.ec2.cc-ami-query":""])   
   privileged true  

  },  
 
 /***************** 
  * Optional. Custom properties used to extend existing drivers or create new ones. 
  */ 
 custom ([ 
  "org.cloudifysource.clearRemoteDirectoryOnStart" : true  
 ]) 

} 
 

EC2 Cloud Drivers (ec2-cloud.properties):  
// Credentials - You must enter your cloud provider account credentials 
user="XXXXXX" 
apiKey="XXXXXXX" 
keyFile="XXXXXXXX" 
keyPair="XXXXXXXX" 
 
// Advanced usage 
hardwareId="m1.small" 
locationId="us-east-1" 
linuxImageId="us-east-1/ami-1624987f" 
ubuntuImageId="us-east-1/ami-82fa58eb" 
// Management persistence configuration. Replace with a string path to activate. 'null' indicates no persistence. 
persistencePath=null 
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Appendix C: Writing Ifoodbag Application Recipe  
Ifoodbag-application.groovy file: 

 
application { 

 name="Ifoodbag"  
 service { 
  name = "tomcat" 

} 
} 
 

Tomcat-service.groovy file: 
 

import java.util.concurrent.TimeUnit; 
import static JmxMonitors.* 
 
service { 
 name "tomcat" 
 icon "tomcat.gif" 
 type "APP_SERVER"  
    elastic true 
 numInstances 1 
 minAllowedInstances 1 
 maxAllowedInstances 3 
  
 def instanceId = context.instanceId 
  
 def portIncrement = context.isLocalCloud() ? instanceId-1 : 0 
 def currJmxPort = jmxPort + portIncrement 
 def currHttpPort = port + portIncrement 
 def currAjpPort = ajpPort + portIncrement 
 compute { 
  template "SMALL_LINUX" 
 } 
 lifecycle { 

details { 
def currPublicIP = context.publicAddress 

   def contextPath = context.attributes.thisInstance["contextPath"] 
if (contextPath == 'ROOT') contextPath="" // ROOT means "" by convention in 
Tomcat 

   def applicationURL = "http://${currPublicIP}:${currHttpPort}/${contextPath}" 
   println "tomcat-service.groovy: applicationURL is ${applicationURL}" 
   return [ 

"Application URL":"<a href=\"${applicationURL}\" 
target=\"_blank\">${applicationURL}</a>" 

   ] 
  } 
  monitors { 
   def contextPath = context.attributes.thisInstance["contextPath"] 

if (contextPath == 'ROOT') contextPath="" // ROOT means "" by convention in 
Tomcat 

   def metricNamesToMBeansNames = [ 
   "Current Http Threads Busy": ["Catalina:type=ThreadPool,name=\"http-bio-

${currHttpPort}\"", "currentThreadsBusy"], "Current Http Thread Count": ["Catalina:type=ThreadPool,name=\"http-bio-
${currHttpPort}\"", "currentThreadCount"], "Backlog": ["Catalina:type=ProtocolHandler,port=${currHttpPort}", "backlog"], "Total 
Requests Count": ["Catalina:type=GlobalRequestProcessor,name=\"http-bio-${currHttpPort}\"", "requestCount"],  "Active Sessions": 
["Catalina:type=Manager,context=/${contextPath},host=localhost", "activeSessions"], ] 

   return getJmxMetrics("127.0.0.1",currJmxPort,metricNamesToMBeansNames) 
  } 
   
  init    "tomcat_init.groovy" 
  install "tomcat_install.groovy" 
  start   "tomcat_start.groovy" 
  preStop "tomcat_stop.groovy" 
   
  startDetectionTimeoutSecs 240 
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  startDetection { 
println "tomcat-service.groovy(startDetection): arePortsFree 

http=${currHttpPort} ajp=${currAjpPort} ..." 
   !ServiceUtils.arePortsFree([currHttpPort, currAjpPort] ) 
  } 
  postStart { 
   if ( useLoadBalancer ) {  
    println "tomcat-service.groovy: tomcat Post-start ..." 

def apacheService = context.waitForService("apacheLB", 180, 
TimeUnit.SECONDS) 

   println "tomcat-service.groovy: invoking add-node of apacheLB ..." 
   def privateIP = context.privateAddress 
   println "tomcat-service.groovy: privateIP is ${privateIP} ..." 
   def contextPath = context.attributes.thisInstance["contextPath"] 

if (contextPath == 'ROOT') contextPath="" // ROOT means "" by convention in 
Tomcat 
def currURL="http://${privateIP}:${currHttpPort}/${contextPath}" 

   println "tomcat-service.groovy: About to add ${currURL} to apacheLB ..." 
   apacheService.invoke("addNode", currURL as String, instanceId as String) 
   println "tomcat-service.groovy: tomcat Post-start ended" 
   } 
  } 
   
  postStop {  

if ( useLoadBalancer ) {  
   println "tomcat-service.groovy: tomcat Post-stop ..." 
   try {  

def apacheService = context.waitForService("apacheLB", 180, 
TimeUnit.SECONDS)   
if ( apacheService != null ) {  

    def privateIP = context.privateAddress 
    println "tomcat-service.groovy: privateIP is ${privateIP} ..." 
   def contextPath = context.attributes.thisInstance["contextPath"] 

if (contextPath == 'ROOT') contextPath="" // ROOT means "" by convention in 
Tomcat 

   def currURL="http://${privateIP}:${currHttpPort}/${contextPath}" 
   println "tomcat-service.groovy: About to remove ${currURL} from apacheLB ..." 
   apacheService.invoke("removeNode", currURL as String, instanceId as String) 
   } 
   else { 
   println "tomcat-service.groovy: waitForService apacheLB returned null" 
   } 
   } 
   catch (all) { 
   println "tomcat-service.groovy: Exception in Post-stop: " + all 
   } 
    println "tomcat-service.groovy: tomcat Post-stop ended" 
   } 
  } 
 } 
 
 customCommands ([ 
  "updateWar" : {warUrl ->  

println "tomcat-service.groovy(updateWar custom command): warUrl is 
${warUrl}..." 

   if (! warUrl) return "warUrl is null. So we do nothing." 
   context.attributes.thisService["warUrl"] = "${warUrl}" 

println "tomcat-service.groovy(updateWar customCommand): invoking 
updateWarFile custom command ..." 
def service = context.waitForService(context.serviceName, 60, 
TimeUnit.SECONDS) 
def currentInstance = service.getInstances().find{ it.instanceId == 
context.instanceId } 

   currentInstance.invoke("updateWarFile") 
   println "tomcat-service.groovy(updateWar customCommand): End" 
   return true 
  } ,    
  "updateWarFile" : "updateWarFile.groovy" 
 ])  
  
 
userInterface {  
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metricGroups = ([ 
 metricGroup { 

name "process" 
   metrics([ 
    "Total Process Cpu Time", 
   "Process Cpu Usage", 
   "Total Process Virtual Memory", 
   "Num Of Active Threads" 
   ]) 
   } , 
   metricGroup { 
    name "http" 
    metrics([ 
    "Current Http Threads Busy", 
    "Current Http Thread Count", 
    "Backlog", 
    "Total Requests Count" 
    ]) 
   } , 
 
  ]) 
 
  widgetGroups = ([ 
   widgetGroup { 
   name "Process Cpu Usage" 
   widgets ([ 
    balanceGauge{metric = "Process Cpu Usage"}, 
    barLineChart{ 
    metric "Process Cpu Usage" 
    axisYUnit Unit.PERCENTAGE 
    } 
   ]) 
   } , 
   widgetGroup { 
    name "Total Process Virtual Memory" 
    widgets([ 
    balanceGauge{metric = "Total Process Virtual Memory"}, 
    barLineChart { 
    metric "Total Process Virtual Memory" 
    axisYUnit Unit.MEMORY 
    } 
   ]) 
   } , 
   widgetGroup { 
    name "Num Of Active Threads" 
    widgets ([ 
    balanceGauge{metric = "Num Of Active Threads"}, 
    barLineChart{ 
    metric "Num Of Active Threads" 
    axisYUnit Unit.REGULAR 
    } 
    ]) 
   } , 
   widgetGroup { 
    name "Current Http Threads Busy" 
    widgets([ 
    balanceGauge{metric = "Current Http Threads Busy"}, 
    barLineChart { 
    metric "Current Http Threads Busy" 
    axisYUnit Unit.REGULAR 
    } 
    ]) 
   } , 
   widgetGroup { 
    name "Current Http Thread Count" 
    widgets([   

    balanceGauge{metric = "Current Http Thread Count"}, 
    arLineChart { 
    metric "Current Http Thread Count" 
    axisYUnit Unit.REGULAR 
    } 
    ]) 
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   } , 
   widgetGroup { 
    name "Request Backlog" 
    widgets([ 
    balanceGauge{metric = "Backlog"}, 
    barLineChart { 
    metric "Backlog" 
    axisYUnit Unit.REGULAR 
    } 
    ]) 
   } , 
   widgetGroup { 
    name "Active Sessions" 
    widgets([ 
    balanceGauge{metric = "Active Sessions"}, 
    barLineChart { 
    metric "Active Sessions" 
    axisYUnit Unit.REGULAR 
    } 
    ]) 
   } , 
   widgetGroup { 
    name "Total Requests Count" 
    widgets([ 
    balanceGauge{metric = "Total Requests Count"}, 
    barLineChart { 
    metric "Total Requests Count" 
    axisYUnit Unit.REGULAR 
    } 
    ]) 
   } , 
   widgetGroup { 
    name "Total Process Cpu Time" 
    widgets([ 
    balanceGauge{metric = "Total Process Cpu Time"}, 
    barLineChart { 
    metric "Total Process Cpu Time" 
    axisYUnit Unit.REGULAR 
    } 
    ]) 
   } 
  ]) 
 } 
  
 network { 
  port = currHttpPort 
  protocolDescription = "HTTP" 
 }  
  

} 
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Appendix D: Implementing Auto-Scaling Policies  
Auto-Scaling code: 

elastic true 
minAllowedInstances 1 
maxAllowedInstances 3 
 
scaleCooldownInSeconds 60 
samplingPeriodInSeconds 1 
 
// Defines an automatic scaling rule based on "counter" metric value 
scalingRules ([ 
 calingRule { 

serviceStatistics { 
  metric "Total Requests Count" 
  statistics Statistics.maximumThroughput 
  movingTimeRangeInSeconds 20 
 } 
 highThreshold { 
  value 1 
  instancesIncrease 1 
 } 
 lowThreshold { 
  value 0.2 
  instancesDecrease 1 
  } 
 } 
]) 

 





 

Appen
# cloudify

Deploying

 

 

ndix E: 
fy@default>

g Ifoodbag 

Deploy
>bootstrap-c

application

ing Ifoo
cloud ec2 

n in the clou

99 

odbag A

ud 

Applicattion in EEC2 

 

 





 

Appen
EC2 Man

 

ndix F: A
nagement c

Amazon
console: 

n EC2 M

101 

Management Console 

 

 





 

Appen
Cloudify 

 

 

ndix G: 
Web Mana

Cloudif
agement con

fy Web 
nsole 

103 

Manageement CConsolee 

 





 

Appen
Sending R

httperf --
1000 --ra

httperf --
10000 --r

httperf --
conns 200

Figure sh

ndix H: 
Request to 

-hog --serve
ate 10 

hog --serve
rate 30 

-hog --serv
000 --rate 1

hows adding

Simula
the server: 

er 54.194.2

er 54.194.23

ver 54.194.2
100 --timeou

g new serve

ting Au

238.66 --por

38.66 --port

238.66 --po
ut 15 

ers  

105 

uto-Scal

rt 8082  --

t 8082  --ur

ort 8082  -

ing Pro

uri /ifoodba

ri /ifoodbag

--uri /ifood

ocess 

ag --wsess=

g --wsess=2

dbag --wses

=5,5,2 --nu

20,10,2 --nu

ss=20,20,10

m-conns 

m-conns 

0 --num-

 



www.kth.se

TRITA-ICT-EX-2014:13


