
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

M D . I Q B A L H O S S A I N
a n d

M D . I Q B A L H O S S A I N

 Dynamic scaling of a web-based
application in a Cloud Architecture

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Dynamic scaling of a web-based
application in a Cloud

Architecture

Md. Iqbal Hossain (Older)
mihossai@kth.se

And

Md. Iqbal Hossain (Younger)
mihiqbal@kth.se

2014-02-28

Master’s thesis

Examiner and academic adviser
Professor Gerald Q. Maguire Jr.

School of Information and Communication Technology
KTH Royal Institute of Technology

Stockholm, Sweden

i

Abstract
With the constant growth of internet applications, such as social networks, online media,

various online communities, and mobile applications, website user traffic has grown, is very
dynamic, and is oftentimes unpredictable. These unpredictable natures of the traffic have led
to many new and unique challenges which must be addressed by solution architects,
application developers, and technology researchers. All of these actors must continually
innovate to create new attractive application and new system architectures to support the users
of these new applications. In addition, increased traffic increases the demands for resources,
while users demand even faster response times, despite the ever-growing datasets underlying
many of these new applications. Several concepts and best practices have been introduced to
build highly scalable applications by exploiting cloud computing. As no one who expect to be
or remain a leader in business today can afford to ignore cloud computing.

Cloud computing has emerged as a platform upon which innovation, flexibility,
availability, and faster time-to-market can be supported by new small and medium sized
enterprises. Cloud computing is enabling these businesses to create massively scalable
applications, some of which handle tens of millions of active users daily. This thesis concerns
the design, implementation, demonstration, and evaluation of a highly scalable cloud based
architectures designed for high performance and rapid evolution for new businesses, such as
Ifoodbag AB, in order to meet the requirement for their web-based application. This thesis
examines how to scale resources both up and down dynamically, since there is no reason to
allocate more or less resources than actually needed. Apart from implementing and testing the
proposed design, this thesis presents several guidelines, best practices and recommendations
for optimizing auto scaling process including cost analysis. Test results and analysis presented
in this thesis, clearly shows the proposed architecture model is strongly capable of supporting
high demand applications, provides greater flexibility and enables rapid market share growth
for new businesses, without their need to investing in an expensive infrastructure.

Keywords: cloud computing, internet, application scalability, internet traffic, performance.

iii

Sammanfattning
Med den ständiga tillväxten av Internet- applikationer, såsom sociala nätverk, online

media, olika communities och mobila applikationer, har trafiken mot webbplatser ökat samt
blivit mycket mer dynamisk och är ofta oförutsägbara. Denna oförutsägbara natur av trafiken
har lett till många nya och unika utmaningar som måste lösas med hjälp av lösningsarkitekter,
applikationsutvecklare och teknikforskare. Alla dessa aktörer måste ständigt förnya sig för att
skapa nya attraktiva program och nya systemarkitekturer för att stödja användarna av dessa
nya tillämpningar. Dessutom ökar den ökade trafikmängden krav på resurser, samtidigt som
användarna kräver ännu snabbare svarstider, trots den ständigt växande datamängden som
ligger som grund för många av dessa nya tillämpningar . Flera koncept och branchstandarder
har införts för att bygga skalbara applikationer genom att utnyttja ”molnet” (”cloud
computing”), eftersom att ingen som förväntar sig att bli eller förbli en ledare i näringslivet
idag har råd att ignorera ”molnet”.

Cloud computing har vuxit fram som en plattform på vilken innovation, flexibilitet,
tillgänglighet och snabbhet till marknaden kan uppnås av nya, små och medelstora företag.
Cloud computing är möjligt för dessa företag att skapa mycket skalbara applikationer, vilka
kan hanterar tiotals miljoner aktiva användare varje dag. Detta examensarbete handlar om
utformning, genomförande, demonstration och utvärdering av en mycket skalbar
molnbaseradearkitekturer som utformats för höga prestanda och snabb utveckling av nya
företag, såsom Ifoodbag AB, för att uppfylla kravet på deras webb- baserad applikation. Detta
examensarbete undersöker hur man både skalar upp och ner dynamiskt, eftersom det inte
finns någon anledning att tillägna applikationer mer eller mindre resurser än vad som faktiskt
behövs för stunden. Som en del av examensarbetet implementeras och testas den föreslagna
utformningen, samt presenterar flera riktlinjer, branchstandarder och rekommendationer för
att optimera automatisk skalning av processer. Testresultat och de analyser som presenteras i
detta examensarbete, visar tydligt att den föreslagna arkitekturen/modellen kan stödja
resurskrävande applikationer, ger större flexibilitet och möjliggör snabb tillväxt av
marknadsandelar för nya företag, utan att deras behov av att investera i en dyr infrastruktur.

Nykcelord: Cloud computing, molntjänster, Internet, skalbarhet för applikationer,
internettrafik, prestanda

v

Acknowledgements

Iqbal Hossain (Older):
First I would like to thank almighty Allah for giving me strength and the patience to

accomplish this thesis project. I am thankful to my mom (Mrs. Nurjahan Begum) and my
older brothers for their unconditional support and motivation, even from thousand miles
away. I am also grateful to my beloved wife (Rahena Easmin Ratna) for her continuous
inspiration and insisting to complete this thesis work. I would also like to thank my 4 years
old charming boy (Farhan Iqbal Taseen) for not demanding too much attention from me
during this thesis project. I am also thankful to my colleagues Tobias Östensson and Marked
Jakob for helping us writing abstract in Swedish. I would also like to thank my friends and all
family members across the globe for their encouragement during all this time. Last but not the
least I would like to thank our supervisor and examiner (Professor Gerald Q. Maguire Jr.)
who introduced us the idea of working with cloud architecture and his quick invaluable
insights have always been very helpful throughout the project.

Iqbal Hossain (Younger):
Praise to almighty, the origin of knowledge, who enables me to undertake and

accomplish this thesis work. My special gratitude goes to our supervisor and examiner
Professor Gerald Q. Maguire Jr. whose precious guidance accompanied me during this
research work. I would like to sincerely thank to my program coordinator May-Britt Eklund-
Larsson for her help and kind cooperation during my studies. My deepest gratitude goes to my
parents for their infinite support throughout my life. Finally, I would like to thank my brother,
sisters and friends for encouraging me during all this time. The efforts of myself, inspirations
of many, have led to a successful completed of my thesis project.

vi

Table of Contents
Abstract ... i
Sammanfattning ... iii
Acknowledgements .. v

Table of Contents ... vi
List of Figures .. ix

List of Tables ... xi
List of Acronyms and Abbreviations xiii
Contribution of the Authors ... xv

1 Introduction ...1
1.1 Overview .. 1
1.2 Problem Statement ... 1
1.3 Research methodology .. 4
1.4 Project goals .. 4
1.5 Project scope ... 4
1.6 Structure of this thesis .. 5

2 General Background ..7
2.1 What is cloud computing? .. 7

2.1.1 On-demand self-service ... 8
2.1.2 Ubiquitous network access ... 9
2.1.3 Elasticity and scalability ... 9
2.1.4 Horizontal and Vertical Scalability .. 9
2.1.5 Resource pooling ... 10
2.1.6 Pay-per-use ... 11
2.1.7 Self-managed platform .. 11
2.1.8 Standardized interfaces .. 11
2.1.9 Quality of Service (QoS) ... 11
2.1.10 Reliability ... 12

2.2 Cloud computing service models ... 12
2.2.1 Infrastructure as a Service (IaaS) ... 13
2.2.2 Platform as a Service (PaaS) .. 13
2.2.3 Software as a Service (SaaS) .. 13

2.3 Cloud computing deployment models .. 14
2.3.1 Public cloud .. 14
2.3.2 Private cloud .. 14
2.3.3 Community cloud .. 15
2.3.4 Hybrid cloud ... 15

2.4 Virtualization ... 15
2.4.1 Server / hardware virtualization .. 16
2.4.2 Kernel based virtual machine (KVM) .. 17

2.5 Lamp stack – Overview ... 18
2.5.1 Linux ... 18
2.5.2 Apache .. 19
2.5.3 MySQL ... 19
2.5.4 PHP ... 19

2.6 Current cloud service providers .. 19

vii

2.7 Related work ... 21

3 Scalable Cloud Architecture for a Web Application 23
3.1 Scalable Web Application Reference Architecture 23
3.2 Load Balancing Tier .. 23
3.3 Application Tier .. 24
3.4 Caching Tier .. 25
3.5 Database Tier .. 25
3.6 Management Node/Nodes .. 26
3.7 Security guidelines in the architecture ... 27

4 Detail Descriptions of the Component in the Proposed
Architecture .. 29

4.1 DNS server .. 29
4.1.1 DNS infrastructure .. 30
4.1.2 DNS name resolving process ... 31
4.1.3 DNS security aspects ... 32

4.2 Load Balancer (Squid/HA Proxy) ... 32
4.2.1 How to calculate response time ... 34
4.2.2 Different types of load balancers ... 34
4.2.3 Squid .. 35
4.2.4 HA Proxy ... 35

4.3 Web server/Application server .. 36
4.4 Caching web data (memcached) ... 37
4.5 Database .. 39
4.6 Cloud Storage .. 40
4.7 Management node .. 41

5 Implementation .. 43
5.1 Experimental Setup .. 43
5.2 Motivation for choosing Cloudify ... 44
5.3 Introduction to Cloudify ... 45
5.4 Deploying Cloudify .. 45

5.4.1 Boot-strapping Cloudify on EC2 ... 50
5.4.2 Deploying the Ifoodbag application recipe 51

5.5 Motivation for choosing AWS .. 52
5.5.1 The differences that distinguish AWS ... 52
5.5.2 Introduction to AWS .. 53

5.5.2.1 Amazon Elastic Compute Cloud (Amazon EC2) .. 53
5.5.2.2 Elastic Load Balancing ... 53
5.5.2.3 Amazon Virtual Private Cloud (Amazon VPC) ... 53
5.5.2.4 Amazon ElastiCache .. 54
5.5.2.5 Amazon Route 53 ... 54
5.5.2.6 Amazon Elastic Block Storage (EBS) .. 54
5.5.2.7 Amazon Relational Database Service (Amazon RDS) .. 54

5.5.3 Amazon EC2 instance types .. 54
5.5.4 Amazon EC2 pricing .. 56
5.5.5 EC2 cloud setup for Cloudify ... 56

5.6 Webserver load or performance measurement tool - Httpref 58

viii

6 Results and analysis .. 59
6.1 Successful deployment of the Ifoodbag application on EC2 from the

management machine ... 59
6.2 Scalability Guidelines and Analysis .. 60

6.2.1 Scalability Guidelines ... 60
6.2.2 Scalability Analysis .. 63

6.3 Cost analysis ... 65
6.3.1 Utility style pricing for cloud ... 65
6.3.2 Cost factors .. 66
6.3.3 Instance type selection .. 68
6.3.4 Total Cost of Ownership (TCO) of running a web application in a

cloud ... 68
6.3.5 Cost Analysis Summary ... 72

6.4 Comparison with some other solutions and some recommendations 72

7 Conclusions and Future Work 75
7.1 Conclusions ... 75
7.2 Future Work .. 75
7.3 Reflections .. 76

7.3.1 Social aspects ... 76
7.3.2 Economic aspects .. 76
7.3.3 Sustainability aspects .. 77
7.3.4 Legal and ethical aspects ... 77

References ... 79

Appendix A: Installation of Cloudify 87

Appendix B: Configuration of Cloud controllers and cloud
drivers ... 89

Appendix C: Writing Ifoodbag Application Recipe 93

Appendix D: Implementing Auto-Scaling Policies 97

Appendix E: Deploying Ifoodbag Application in EC2 99

Appendix F: Amazon EC2 Management Console 101

Appendix G: Cloudify Web Management Console 103

Appendix H: Simulating Auto-Scaling Process 105

ix

List of Figures
Figure 1-1: Traditional Infrastructure Model ... 2
Figure 1-2: Scalable Cloud Architecture Model .. 3
Figure 2-1: Basic single N-tier Architecture (Adapted from Figure 1,

page 9 of [21]) .. 10
Figure 2-2: Horizontally scaled load balancing and web-tier and

vertically scaled database tier (Adapted from Figure 2, page
9 of [21]) ... 10

Figure 2-3: Server stack comparison between on-premise
infrastructure, IaaS, PaaS, and SaaS (Adapted from Wely
Lau’s online article[22]) .. 12

Figure 2-4: Cloud computing stack (Adapted from Figure 1.3, page 14
of [31]) .. 14

Figure 2-5: Basic architecture of virtualization [17] 15
Figure 2-6: Bare metal/native and hosted hypervisor [17] 16
Figure 2-7: The hypervisor manages VMMs that host virtual machines

[38]. .. 17
Figure 2-8: LAMP architecture (adapted from [35]) 18
Figure 3-1: Scalable reference architecture for Ifoodbag’s web-

application .. 23
Figure 3-2: Database Tier for Ifoodbag Web-Application 26
Figure 3-3: Architecture with security guidelines as recommended in

[63]. .. 27
Figure 4-1: The normal DNS resolution process (adapted from [67]). 30
Figure 4-2: Partial DNS Name Space Hierarchy (adapted from [66]) 31
Figure 4-3: DNS name resolving process (adapted from [69]). 32
Figure 4-4: Load balancing for balancing load among multiple

application servers (adapted from [73]). 33
Figure 4-5: Master-slave replication of databases (adapted from [88]) 39
Figure 5-1: High level experimental setup using Cloudify and EC2

clouds .. 43
Figure 5-2: Cloudify Shell .. 46
Figure 5-3: Achieving the No Code Change objective 47
Figure 5-4: Achieving the No Lock-in objective 48
Figure 5-5: Achieving the Full control objective 48
Figure 5-6: Cloudify Architecture .. 49
Figure 5-7: Bootstrapping Cloudify on EC2 ... 50
Figure 5-8: Cloudify Web Management Console 50
Figure 5-9: Deploying the sample Ifoodbag web application locally 51
Figure 5-10: Ifoodbag web application launched in local-cloud 51
Figure 5-11: Create new a key pair for Amazon EC2 57
Figure 5-12: Added a new key pair named ifoodbag with a secret key 57
Figure 5-13: Creating an Access Key ID in Amazon EC2............................. 57
Figure 6-1: Ifoodbag application on EC2 cloud .. 59
Figure 6-2: Cloudify web-management console for Ifoodbag application 59

x

Figure 6-3: Defined metrics for Ifoodbag application 60
Figure 6-4: Assumed traffic pattern of a production version of the

iFoodbag application... 61
Figure 6-5: Ping-Pong Effect .. 61
Figure 6-6: Scale Up Process ... 65
Figure 6-7: Scale Down Process ... 65
Figure 6-8: Monthly TCO of traditional infrastructure versus cloud 70
Figure 6-9: Yearly TCO of traditional infrastructure versus a cloud 72

xi

List of Tables
Table 4-1: Different types of Top-Level Domains (TLD). 30
Table 4-2: DNS name resolving process [68] .. 31
Table 4-3: Different types of load balancers [76] 35
Table 4-4: Different types of web servers [82, 83] 37
Table 4-5: Different tasks perform by memcached [60]. 38
Table 4-6: Advantages of master-slave replication [88] 40
Table 5-1: Experimental configuration .. 44
Table 5-2: Amazon EC2 instance types ... 55
Table 5-3: Amazon EC2 pricing for Linux OS and US East (N. Virginia)

region .. 56
Table 6-1: Amazon EC2 Scale up Time ... 62
Table 6-2: Amazon EC2 Scale Down Time ... 62
Table 6-3: Results of implementing the algorithm with RPSPeak=1300,

RPSMin=50, D=2, U=3, TD=40, TU=80 64
Table 6-4: Utility Style Pricing [120, 121] ... 66
Table 6-5: Different types of cost factors [119, 121] 66
Table 6-6: Types of instances according to costs saving 68
Table 6-7: Saving of reserved instance types over on-demand

instances .. 68
Table 6-8: TCO of on-premises infrastructure vs. cloud infrastructure 69

xiii

List of Acronyms and Abbreviations
AMI Amazon Machine Image
API Application programming interface
ASG Auto Scaling Group
AWS Amazon Web Services
BSD Berkeley Software Distribution
CBS Cloud Block Storage
CPU Central Processing Unit
CRM Customer relationship management
CSS Cascading Style Sheets
DNS Domain Name System
DNSSEC DNS Security
EBS Elastic Block Storage
EC2 Elastic Compute Cloud
ELB Elastic Load Balancing
ESXi Elastic Sky X
FTP File Transfer Protocol
GUI Graphical User Interface
HA Proxy High Availability Proxy
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IaaS Infrastructure as a Service
IIS Internet Information Services
I/O Input / Output
IP Internet Protocol
ISP Internet Service Provider
IT Information Technology
JEE Java Enterprise Edition
JS JavaScript
KVM Kernel Virtual Machine
LAMP Linux, Apache, MySQL, PHP
LAN Local Area Network
LB Load Balancer
LRU Least Recently Used
NIST National Institute of Standards and Technology
OS Operating System
PaaS Platform as a Service
PHP Hypertext Preprocessor
PUE Power Usages Effectiveness
QEMU Quick Emulator
QoS Quality of Service
RAM Random Access Memory
REST Representational state transfer

xiv

RDS Relational Database Service
RPS Request Per Second
RTT Round Trip Time
SaaS Software as a Service
SLA Service Level Agreement
SOA Service Oriented Architecture
SSD Solid State Drive
SSL Secure Socket Layer
TCO Total Costs of Ownership
TCP Transmission Control Protocol
TLD Top Level Domain
USM Universal Service Manager
VM Virtual Machine
VMM Virtual Machine Monitor
VPC Virtual Private Cloud
VPN Virtual Private Network
VT-x Virtual Technology
W3C World Wide Web Consortium
WAN Wide Area Network

xv

Contribution of the Authors

Chapter Sections Subject Author (s) Assist
 Abstract Iqbal (Older)
1 Introduction Iqbal (Older)
2 General Background Iqbal (Younger) Iqbal (Older)

assist in
selecting study
materials and
covering
different topics

3 Scalable Cloud Architecture Design for
Web Application

Iqbal (Older) Iqbal (Younger)
assist in
designing the
architecture

4 Detail Descriptions of the Component in
the Proposed Architecture

Iqbal (Younger) Iqbal (Older)
assist in
covering topics

5 5.1-5.4 Implementation Iqbal (Older)
5 5.5-5.6 Implementation Iqbal (Younger)
6 6.1-6.2,

6.4
Results and analysis Iqbal (Older)

6 6.3 Results and analysis Iqbal (Younger)
7 7.1-7.2 Conclusions and Future Work Iqbal (Older)
7 7.3 Conclusions and Future Work Iqbal (Younger)

1

1 Introduction
This chapter describes the main purpose and the problem statement that motivated and

guided this thesis project. Following this the chapter describes the research methodology that
was selected for this project. The following two sections present the goals of our thesis project
and its scope. The chapter ends with a description of the structure of the entire thesis.

1.1 Overview
Cloud computing extends information technology (IT) computing resources across the

Internet. Today clouds are made available by various cloud service providers. Usually, users
are not concerned with the underlying technologies or challenges that must be overcome for
the cloud service provider to support a scalability diverse infrastructure. These users are also
unconcerned with the number of servers or details of the other resources that are necessary to
support their currently desired computing/storage/networking requirements, these users
simply want to pay for the computing capacity which they use and they expect the capacity to
scale up or down to meet their current requirements in an on-demand basis.

The numbers of applications, which exploit the cloud-computing model, are increasing
rapidly as connectivity costs fall and computing hardware becomes more efficient – especially
when operated on a large scale. Cloud services have extended beyond web applications to
include data storage, raw computing, and access to different specialized services, such as
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service
(SaaS). Cloud based computing is becoming the ideal environment for scalable applications
because it allows for rapid resource allocation in times of high demand, as well as resource
de-allocation as demand declines. With a suitably scalable architecture, the resources and
infrastructure of the cloud can accommodate all of the different phases of an application’s
lifecycle, thus providing a single consistent context in which to bring an application from
conception to development, then from production to maintenance, and finally, to a gradual
end of life. Additionally, the cloud has become a popular solution to the problem of horizontal
scalability. As a result “cloud application scalability” is gaining a tremendous amount of
attention by both practitioners and researcher, see for example [1,2,3,4,5,6].

1.2 Problem Statement
Application scalability may take many forms, but in principle an application and its

underlying infrastructure should adapt to the dynamically changing conditions (demands and
available resources at various costs) to promote the availability and reliability of a service,
while minimizing the cost for the application service provider. With the increase in numbers
and size of on-line communities there has been an increasing effort to exploit
cross-functionalities across these communities. However, application service providers have
encountered problems due to the unpredictable demand for their application(s), especially
when external events can lead to unprecedented traffic levels to and from their
application* [7]. This dynamic nature of demand and traffic drives the need for a massively
scalable solution to enable the availability (and reliability) of web-based applications.

In the earlier traditional infrastructure model, two approaches were taken in order to
address the unpredictability of site traffic and system load, each of which is illustrated in
Figure 1-1. One approach was to overprovision resources to handle spikes that may occur in
traffic. Although this enables an application to increase its availability in high-traffic
situations, it does not make effective use of resources - because a portion (and perhaps the

* For example, flash crowds or denial of services attacks can both lead to very high levels of traffic

to/from an application.

2

majority) of these resources are idle during off-peak periods. This inefficiency is illustrated in
Figure 1-1 by the gap between the blue line representing infrastructure’s capacity (which can
be generalized to represent the number of servers in use) and the green line that is an
indication of actual user demand for the service provided by the application. The gray vertical
arrow illustrates the disparity between the two. This approach is obviously a costly solution
due to the presence of unutilized capacity; therefore, this is generally not a recommended
approach. The second approach is based on dimensioning the system for the typical usage
(pattern) of the application, while suffering the consequences of lost traffic when peak
demands are encountered. Although this has a lower cost in times of normal usage, it is costly
during traffic spikes because the lost traffic typically leads to lost revenue opportunities. This
scenario is illustrated in the Figure 1-1 by the shaded region under the demand curve between
the green line (demand) and the blue line (infrastructure capacity). In this situation when the
demand exceeds capacity traffic is lost and/or the application service may even become
unavailable.

Figure 1-1: Traditional Infrastructure Model

For a dynamic and unpredictable environment neither of the above approaches with a
traditional infrastructure model is desirable. This is why a scalable cloud architecture model
offers an excellent fit for such dynamic and unpredictable loads. In a scalable cloud
architecture model, it is possible to dynamically provision additional resources only when
they are needed and then decommission them when they are no longer required. The result is
a true utility computing paradigm where customers incur charges only for the time period
during which they use the resources. Figure 1-2 illustrates this scalable cloud architecture
model for dynamically providing application resources.

In Figure 1-2, the demand curve is identical to that of Figure 1-1, but due to the dynamic
provisioning of infrastructure resources, no infrastructure resources sit idle when there is no
demand for this application, nor is there insufficient capacity when it is necessary to
accommodate an increased demand for the application.

3

Figure 1-2: Scalable Cloud Architecture Model

In this thesis we will design, implement, demonstrate, and evaluate our proposal for a
highly scalable cloud based architecture which is designed to meet the performance and
rapidly evolution for a new business, such as Ifoodbag’s web-based application*. In
Chapter 3, we will describe our scalable cloud architecture’s design and present our choice of
preferred methods and techniques for best implementing the proposed scalable cloud
architectural model at all levels of an application’s multi-tiered architecture. This thesis will
clarify how to scale both up and down, since for a cloud based application which is used by
people in a local area there is going to be a fluctuation of users throughout the day and there is
no reason to have more or less resources than actually needed. Furthermore, we will examine
how fast we can scale up or down, and what happens if we do not scale up and down rapidly
enough. This will be described in terms of a control loop that determines the correct
combination of virtual machines (VMs) needed to meet the expected demands for an
application.

In the conclusions of the thesis, we will summarize our with respect to the gains that we
could achieve though our performance analysis of our pilot setup of a scalable cloud
architecture design. We identify additional mechanisms that could enable the deployment and
maintenance of a scalable application in the cloud. We also suggest some future work that
might build upon the results reported in this thesis.

* Ifoodbag is a Stockholm based startup offering weekly home delivery of food with personalized

recipes. Further details can be found at http://www.Ifoodbag.se/.

4

1.3 Research methodology
For this thesis project we have adopted positivist philosophic assumptions and followed a

design science research methodology including pragmatic approach [8], which is also known
as ‘mixed methods’, as this approaches grant researchers the freedom to use any of the
methods, procedures and techniques typically associated with quantitative or qualitative
research methodology. This method allowed us using different data sources, multiple
perspectives to interpret the results and multiple methods to study a research problem. We
have followed five steps design problems as defined by Seyyed Khandani to solve design
problems according to the Engineering Design Process [9]. The five steps are:

I. Define the problem

II. Gather pertinent information

III. Generate multiple solutions

IV. Analyze and select a solution

V. Test and implement the solution

In the beginning we have followed quantitative or qualitative only research methods,
however we have rejected this individual methods as of both are focused on very individual
specific requirements and procedures, for example the objective of quantitative research is to
develop and employ mathematical models, theories or hypothesis pertaining to phenomena
[10]. But that was not appropriate to drive our research goals. Hence we have followed the
pragmatic approach where we have had the freedom of utilizing any of these approaches
whenever it was needed.

1.4 Project goals
The main goal of this thesis is to design, implementation, demonstration, and evaluation

of a highly scalable cloud based architectures designed for high performance and rapid
evolution for new businesses, such as Ifoodbag AB, in order to meet the requirement for their
web-based application. The goal is also to examine how to scale both up and down, since for a
cloud based application which is used by people in a local area there is going to be a
fluctuation of users throughout the day and there is no reason to allocate more or less
resources than actually needed. Additionally, this thesis examines the limitations on the rate at
which this scaling may occur when using information from the running instances of the
service.

1.5 Project scope
This thesis focuses on designing scalable cloud architecture model and defining scaling

policies and implementing a management node to monitor and scale the application. Physical
security, legal compliance, disaster recovery strategy, risk management and overall security of
the architecture are out of the scope in this thesis project. We do not consider what activities
the application servers (mainly what type of the services and application security itself) are
supposed to perform, thus actual application implementation and its security is out of this
thesis project. This means that we will focus on the interaction between these servers, virtual
machines, and client web browsers via the network. As our proposed solution is implemented
and proposed for cloud service provider either in private or public or hybrid cloud
architecture, thus underlying infrastructure nodes (e.g. routers, switches, firewalls, servers,
etc.) and defining their security is not focused in our thesis project.

5

1.6 Structure of this thesis
Chapter 2 provided the reader with the necessary background to read the rest of this thesis.

Chapter 3 describes the fundamental parts of scalable cloud architectures. Based upon these
parts Chapter 4 describes the details of the design that we have selected for each of these
parts. Chapter 5 describes the implementation of each of these parts and our experimental
setup that will be used to evaluate our implementation. The experimental results and their
analysis are given in Chapter 6. The thesis concludes in Chapter 7 with some conclusions,
suggestions for future work, and some reflections on the social, economic, legal, and ethical
considerations of this work. Further details are given in the appendices for those who might
want to build upon the work described in this thesis.

7

2 General Background
Cloud computing has emerged as one of the hottest topics in IT. The concept of cloud

computing comes from various computing research areas, such as high performance
computing, virtualization, utility computing, and grid computing. Due to the introduction of
cloud computing it has never been cheaper, faster, and easier to set up a scalable, on-demand,
geographically optimized web application environment. Cloud computing brings all of these
features together. Cloud computing comes into focus when IT professionals think about what
IT always needs: a way to increase capacity or add capabilities on the fly without investing in
new infrastructure, training new personnel, or licensing new software. Cloud computing
encompasses pay-per-use service via the Internet that extends an organization’s existing
capacity and capabilities. Cloud computing has its own conceptual, technical, economic, and
user experience characteristics. Clear insights into cloud computing will help the development
and adoption of this evolving technology by both academic and industrial users. Additional
details about cloud computing and its characteristics will be given in section 2.1. The cloud
model is composed of three service models and four deployment models. More details about
service and deployment models will be given following sections 2.2 and 2.3.

One of the major component of cloud computing is virtualization. While virtualization
technologies share a common bond by maximizing computing resources, there are differences
between the virtualization technologies and cloud computing. Virtualization is the process of
simulating “virtual” versions of infrastructure resources, such as computing environments,
operating systems, storage devices, or network components. Cloud computing is the delivery
of shared computing resources, software, or data as a service via the Internet. More details
about virtualization will be given in section 2.4. The acronym “LAMP”* refers to a solution
stack of software, usually free and open source software, used to run dynamic web sites or
servers. Details about LAMP will be discussed in section 2.5. Cloud providers offer different
cloud services based on service level of abstraction. Section 2.6 gives more detail about a
number of the current major cloud providers. Section 2.7 reviews related work.

2.1 What is cloud computing?

Traditionally business applications have been very complicated and expensive. The
amount and variety of resources (both software and hardware) needed to run these
applications caused companies to require a whole team of experts to install, configure, test,
run, secure, and update these systems. Cloud computing eliminates these headaches because
resources are not managed locally; but rather an experienced vendor is responsible for
managing the resources[11]. According to Amazon (one of the earliest cloud service
providers), the term “cloud computing” refers to the on-demand delivery of IT resources via
the Internet with pay-as-you-go pricing[12].

In the last few years, the cloud-computing model has become an important concept and
has been widely adopted by many companies. Different companies have their own definition
of the cloud and cloud computing, but most of these definitions focus on several important
attributes; such as requested resources are provided rapidly on demand, the service is scalable,
and the consumer pays only for what he or she uses. These resources might be computational
power, storages, networks, or applications[2]. Here we quote a few definitions of cloud
computing:

* Typically LAMP is realized by the combination: Linux, Apache, MySQL, PHP; however, other

combinations of software can also be used to realize LAMP as will be described in section 2.5.

8

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction.” - The
National Institute of Standards and Technology (NIST), USA [13].

"A Cloud is a type of parallel and distributed system consisting of a collection of inter
connected and virtualized computers that are dynamically provisioned and presented
as one or more unified computing resources based on service-level agreements
established through negotiation between the service provider and consumers.” - R.
Buyya, C.S Yeo, and S.Venugopal [14].

“A cloud is a powerful combination of cloud computing, networking, storage,
management solutions, and business applications that facilitate a new generation of
IT and consumer services. These services are available on demand and are delivered
economically without compromising security or functionality”. – Cisco Systems, Inc.
[15].

“Cloud computing is the next stage in the Internet's evolution, providing the means
through which everything from computing power to computing infrastructure,
applications, business processes to personal collaboration can be delivered to you as
a service wherever and whenever you need”. – J. Hurwitz, R. Bloor, m. Kaufman and
F. halper [16].

From the above definitions, it should be clear that cloud computing is an Internet based
computing service that shares resources and provides information to the consumer on demand,
much like electricity grid provides electricity on demand. The concept of cloud can be traced
to grid computing and has been extend to address QoS (quality of service) and reliability
issues. If there is a single point of failure in the grid, then there is a risk of failure; this is a big
disadvantage of grid computing. In contrast, cloud computing avoids having a single point of
failure by virtualizing grid computing in a shared environment within a common cloud. Note
that the cloud can utilize resources from multiple administrative domains.

The most important cloud computing paradigm is virtualization. IT resources can be
utilized more effectively by virtualizing the major resource(s); this reduces complexity for
consumers - while allowing IT organizations to perform their own optimizations. Cloud
computing builds upon a virtualized infrastructure consisting of computational resources,
storage, and network devices[17]. The details of this virtualization will be discussed later in
this chapter.

Basically, the cloud is a set of virtualized resources that are managed. There are many key
characteristics, but today three different service models and four deployment models are well
defined with respect to the cloud-computing mode. These will each be discussed in following
sections.

2.1.1 On-demand self-service

A consumer* can provision computing resources based on their current (or near future)
needs. As the consumer’s needs may change with time it is important to adapt the reservation
of resources to those that are appropriate. To perform tasks such as building, deploying,
managing, and scheduling, a cloud computing environment should allow the user to interact
with the cloud in such a way as to be able to explicit reserve and return resources. The user

* The consumer that we are referring to here is the customer of the cloud service provider, rather than

an end customer.

9

should able to access all the resources they needed without any interaction in advance with the
cloud service provider[18]. Furthermore, the consumer should not be limited to a specific set
of servers. The cloud service provider is responsible for providing sufficient resources to
satisfy the consumer’s needs. The user controls the reservation of resources and returning of
resources, thus the consumer is responsible to avoid wasting resources (which is in their own
interest as they are paying for these resources – whether they are effectively using them or
not). The better the decision made regarding current and future needs, the better the service
that the consumer can provide and the more cost effective this service can be.

Provisioning computing resources on demand for a large number of enterprises is one of
the most desired capabilities of a cloud, because this eliminates the need for planning for
future growth and avoids the loss of customers when short term traffic demands are greater
than expected. Pay-per-use reduces the unnecessary upfront costs that otherwise an enterprise
would have to make to purchase and install resources which would need to meet or exceed the
expected demand. Unlike the traditional model, cloud computing helps the consumer avoid
the costs of underused resources[19].

2.1.2 Ubiquitous network access

Accessing the computing and storage capacity of a cloud should enable access through
standard Internet enabled devices. Cloud computing is device independent, because the
computing recourses can be accessed by heterogeneous thin or thick client platforms, in fact
any authorized platform that has an internet connection and a web browser (or a specific
application). It really does not matter that what kind of devices are used to access resources,
be they smartphones, tablets, laptops, or workstations.

2.1.3 Elasticity and scalability

The computing resource allocations can increase or decrease according to the consumer’s
demand. This change in resources is called elasticity. Elasticity enables scalability; hence a
cloud should be able to scale resources (by increasing or decreasing) as necessary. Scalability
also implies that an application can be scaled up due to additional users or when the
application’s requirements change[20]. If on a particular day the demand varies over time, the
system should be scaled up or down in resources to meet the actual demand.

For example, imagine a cloud based website that averages 1,000 hits per day. Suddenly,
on one particular date the website launches a special offer. In this case there is a higher
probability that a larger number of users will access the site at nearly the same time. For
example, due to this special offer the number of access to this website might rise to 10,000 on
a particular day. In this scenario, we assume that during a normal day the cloud would assign
one server, but during the peak hours on this particular day the service might be instantiated
on five different servers and later return to running on a single server during non-peak hours.
If we are hosting this service ourselves, we would need to purchase five servers in order to
prepare for the load during the peak hours, but outside of these peak hours four of our servers
will be idle (hence wasting resources).

2.1.4 Horizontal and Vertical Scalability
A consumer can scale the set of resources which they reserve either horizontally (also

called scaling out) or vertically (also called scaling up) in order to match the application’s
performance to meet increasing or decreasing demands upon the consumer’s application.
Horizontal scaling (scaling out) requires adding or removing cloud servers, specifically VMs
or devices to handle an increased or decreased application work load. Vertical scaling (scaling
up) requires replacing a single cloud server by a more powerful server (where this power is
quantified in terms of virtual CPU performance, available RAM, available disk capacity, etc.)

10

in order
Figure 2

Fig

Figure 2

In v
addition
scaling
traffic, s
exceeds
sustaine
(both di
spread t
useful t
returned
provide

2.1.5

Clou
using a
pooled
accordin
thus the
in many
country
consum
changes
respons
cloud pr
not perm
dynamic

r to handle
2-1 to Figur

ure 2-1: B

2-2: H

vertical scali
nal processi
up may also
scaling up p
s the newly
ed increases
isk and net
the load ov
to utilize r
d to the poo
rs offer). Fu

Reso

ud provider
a multi-tena
then assign
ng to their
e consumer
y cases for

y, state, or d
mers and the

s in allocat
ibility to en
rovider mu
manently a
cally assign

increased o
re 2-2.

Basic single N

Horizontally
tier

ing there ar
ing power t
o increase I
provides ad
y provision
s in deman
twork bandw
ver the sepa
resources fr
ol and used
urther detail

ource poo

rs typically
ant model.
ned to spec
customers’
generally d
the consum

data center)
se allocatio

tion should
nsure that o
st also addr

assign a par
ns resource

or decreased

N-tier Archi

y scaled load
(Adapted fr

re additional
then vertica
I/O bandwid
dding extra r
ned resourc
nd as horizo
width). How
arate instan
rom a pool
by others (

ls of resourc

oling

 allocate th
This mean
ific consum
demands.

does not kn
mer to speci
[13]. Provid

ons change o
be transpa

one consum
ress other s
rticular reso
es based up

d demand.

itecture (Ad

d balancing a
rom Figure 2

l CPU cycle
al scaling m
dth. When b
resources to
ces[21]. Co
ontal scalin
wever, hori

nces. Additi
l of resour
(this is the s
ce pooling a

heir resourc
ns that diff
mers for the
These reso

now the loca
ify the loca
ders dynam
over time b
arent to the
mer cannot
ecurity issu
ources to a

upon their c

This is repr

dapted from

and web-tie
2, page 9 of

es available
may suffice
businesses e
o support ad
onversely, h
ng scales C
izontal scal
ionally, to a
ces, so tha
scaling adv
are describe

ces in order
ferent physi
eir use base
urces are g
ation of res

ation at a hi
mically alloc

ased on the
e consumer,

access the
ues. For exa
a specific in
consumers’

resented in

 Figure 1, p

r and vertic
[21])

e, so if the t
e. Additiona
experience g
dditional de
horizontal s

CPU power,
ing requires
avoid idle r
at unneeded
antage that
ed in the nex

r to serve m
ical and vi
ed upon dy

generally loc
ources, how
gher level o

cate their re
eir consume
, as it is th
data of oth

ample, the c
ndividual cu
 demands[2

the transiti

page 9 of [21

cally scaled d

task simply
ally, in som
gradual incr

emand until
scaling can
, memory,
s load bala
resources it
d resources
large cloud

xt subsectio

multiple co
irtual resou
ynamic assi
cation indep
wever, it is
of abstracti

esources to
ers’ demand
he cloud pr
her custom
cloud provi
ustomer, bu
22]. An ad

ion from

])

database

requires
me cases
reases in
the load

n handle
and I/O

ancing to
t is very
s can be
d service
on.

onsumers
urces are
gnments
pendent,
possible

ion (e.g.,
different

ds. These
rovider’s

mers. The
der does
ut rather
dditional

11

advantage of resource pooling is that it allows consumers for the adding and removing
resources. Another advantage is that resource pooling can facilitate increased reliability. In
fact, Damon Wischik, Mark Handley, and Marcelo Bagnulo Braun in their article “The
Resource Pooling Principle” [23] make two observations:

1 “Resource pooling is often the only practical way to achieve resilience at acceptable
cost.”

2 “Resource pooling is also a cost-effective way to achieve flexibility and high
utilization.”

2.1.6 Pay-per-use

Without making an upfront investment, the consumer pays the cloud provider as with
other utility based subscriptions, such as paying for electricity. Consumers are charged fees
based on the amount of resources they actually use. The pay-per-use model helps the user to
keep track their usage and ultimately helps them to reduce their costs. Cloud providers keep
track of their customers’ usage information enabling them to charge their customers, generate
reports, and invoice their customers[24]. The information gathered should be readily available
to the customer. This information is necessary to enable the customer to realize the cost
benefits that cloud computing brings. This pay-per-use underlies the concept of cloud
computing and is closely related to utility computing.

2.1.7 Self-managed platform

In order to provide an efficient cloud service, the cloud provider must have a technology
platform that is self-managed. Software automation can be used to make a cloud self-
managing. By leveraging some capabilities of this software the cloud provider can realize a
best-of-breed cloud. The cloud platform is able to deploy services and tearing them down to
recovering resources through a provisioning engine. This provisioning engine platform has a
mechanism for scheduling and reserving resources. The platform may also have capabilities
for configuring, managing, and reporting to ensure that resources can be allocated and
reallocated to different consumers as the consumers’ demands change. There tools control
access to resources and enforce policies concerning how resources can be used or what
specific operations can be performed by each party[24].

All of these abilities enable business agility and also reduce necessary administration. A
self-managed platform minimizes the amount of IT administrative effort and reduces the
cloud provider’s operating expenses.

2.1.8 Standardized interfaces

An essential issue is how applications and data sources communicate with each other. In
the case of cloud services standardized application programming interfaces (APIs) can be
used to solve this problem. A standardized interface also enables a consumer to integrate
different cloud services together[20]. Today there are a number of the APIs, for details the
reader should refer to [25, 26].

2.1.9 Quality of Service (QoS)

Providing support for Quality of service (QoS) requires the ability to provide different
levels of service to different applications, users, or data flows. When we speak of QoS other
than best effort, we generally refer to a guarantee of a certain level of performance,
availability, security, and dependability being made by some provider[27]. QoS has been an
issue in many distributed computing paradigms, such as grid computing and high performance
computing. Cloud computing must also assure the desired service level for users. The cloud
provider should ensure that their guarantees on round-the-clock availability, adequate

12

resource
their ser
could pr

2.1.10

Clou
a comm
fixed se
in terms

2.2 C
Clou

resource
custome
availabl
will var
in mind
that the
at any p
in resou

The
can cho
Softwar
many cl
the use
differen
PaaS, an
server. T
everythi
infrastru
describe

Fig
SaaS (A

es, perform
rvice (to wh
rove fatal fo

0 Relia

ud provider
mitting uptim
ervice param
s of reliabili

Cloud co
ud provider
ed provided
ers choose
le from eac
ry with the t
d that their c

customer c
point of time
urce allocati
re are three

oose or subs
re as a Serv
loud provid

er has versu
nces in the n
nd SaaS clo
The first sta
ing from th
ucture busin
ed the other

ure 2-3: S
Adapted from

ance, and b
hich they an
or the cloud

ability

r should hav
me for thei

meter, e.g., A
ity, which c

omputin
rs offer clou
d by the pro
a cloud pro

ch provider.
type of cust
cloud provid
can rent new
e[29]. How
ion and thes
e types of se
scribe to: In
vice (SaaS)
ders. These
us the con
number of
oud has. Th
ack on the l
he network
ness model
r types of se

Server stack
m Wely Lau

bandwidth a
nd their cus

d provider’s

ve able to pr
r service. I
Amazon pu
corresponds

ng servi
ud services,
ovider’s clo
ovider, they
. The cloud
tomer (e.g.,
der will be c
w resources

wever, the cu
se changes d
ervice mode
frastructure
. These thr
different se

ntrol which
parts of the
his should b
left is an on

king all the
that many

ervice mode

comparison
u’s online art

are met as a
stomers agr
 customers[

rovide their
In today’s p
ublished that
 to a once-a

ce mod
, which give
oud dependi
y should co
d service ty
personal ho

charging the
or release e

ustomer may
do not occu
els that are
e as a Servic
ree differen
ervice mod

h the cloud
e complete
be compare
n-premises e
 way up to
businesses

els.

n between on
ticle[22])

agreed to in
ree). Any co
[18].

r customers
public cloud
t its EC2 us

a-week failu

els
e their user
ing upon th
ompare the

ype and opt
ome use, bu
em on a pay
existing reso
y be charge

ur instantane
widely use

ce (IaaS), P
t types of s
els differ in

d provider
service stac

ed to the co
environmen
o applicatio
use today.

n-premise in

the service
ompromise

with reliab
ds, reliabilit
sers can exp
ure rate[28].

s more or le
he type of cl
ir needs to
imal choice

usiness). Cu
y as you go
ources acco
ed a minimu
eously.
d in cloud c
latform as a
service mod
n the amoun
has. Figure
ck that a cu

ontrol of a p
nt where use
ons. This is
The follow

nfrastructur

e-level agree
in these gu

ble service, i
ity is specif
pect 99.95%
.

ess control
loud servic
 the cloud
e of cloud

ustomer shou
basis, whic

ording to the
um cost for

computing,
a Service (P
dels are pro
nt of contro
e 2-3 show
ustomer of
private on-p
er must take
s the tradit

wing subsect

re, IaaS, Paa

ement of
uarantees

i.e., with
fied as a

% uptime

over the
e. When
services
provider
uld keep

ch means
eir needs
changes

the user
PaaS), or
ovide by
ol which
ws these
an IaaS,
premises
e care of
tional IT
tion will

aS, and

13

2.2.1 Infrastructure as a Service (IaaS)

In the case of IaaS a cloud supplier provides an online infrastructure on which their
customers can store data and develop and run whatever applications they want. IaaS offers
virtualized resources (e.g., computation, storage, and communication) on demand [30]. IaaS
helps the user by taking care of some of the components, starting from networking to
provisioning the OS (as shown in Figure 2-3). However, users are responsible for middleware,
runtime, data, and applications levels. Users basically rent a virtual machine (VM) with their
preferred OS installed. The provider generally does not care what users do with this VM[22].

A fundamental building block of a cloud computing infrastructure is a server. Cloud
computing servers are used to deploy VMs on which applications can be run. A cloud
provider also provides various forms of data storage. Users are given privileges to perform
certain activities on the server, such as: starting and stopping a VM, configuring access
permission, etc. [31]. Examples of IaaS providers include Amazon, Go Grid, and Eucalyptus.

2.2.2 Platform as a Service (PaaS)

PaaS provides a toolkit and a number of supported programming languages to enable the
cloud provider’s customers to build their own application and deploy this application in the
provider’s cloud infrastructure. The users of PaaS are typically developers who develop their
applications on the platform and provide their applications to their own end users[32]. Paas is
one level up in abstraction from IaaS, as the cloud provider manages the platform-level
components (such as middleware and runtime), as shown in Figure 2-3. The cloud customer
does not manage or control the underlying cloud infrastructure, but has control over the
deployed application and possibly can choose their preferred configuration settings for the
application-hosting environment. Some examples of PaaS providers are Google App Engine
and Microsoft Windows Azure Platform.

2.2.3 Software as a Service (SaaS)

In SaaS computer applications are accessed over the Internet, rather than being installed
on a local computing device or in a local data center. SaaS is the most common cloud service
that end users may have used. The cloud provider takes responsibly for the entire stack from
the network and server to the application level, as shown in Figure 2-3. The cloud customers
are not allowed to access the underlying infrastructure or platform; rather they can only
change the application’s user settings. These applications are normally accessible through a
thin client interface, such as web browser. Today end users are rapidly shifting from locally
installed programs to online software services that offer same functionality[22].

SaaS can provide the general cloud computing advantages of dynamic scalability.
Additionally, SaaS is generally end user device independent[32]. A great advantage of SaaS
for an application provider is that there is frequently no upfront hardware cost in deploying an
application via SaaS. This means that SaaS applications can be up and running quickly at a
low cost. Many SaaS applications are also collaborative, in that they allow multiple users to
share documents and even to work on these shared documents at the same time. The most
common examples of SaaS applications are Gmail, Office 365, and Google Docs.

Figure 2-4 shows a variety of access methods and management tools which a user will use
to access and configure their services. The figure also shows the type of content that a
particular service offers.

14

Fig

2.3 C

Alth
computi
architec
geograp
public,
deploym

2.3.1

Any
physica
made a
reluctan
applicat
Window

2.3.2

Arm
other or
specific
custome
by the c
party ra
may be

Ano
private
infrastru
resource
processi
custome

ure 2-4: C

Cloud co

hough clou
ing utilities

cture, varia
phical distri

private, co
ment models

Publ

y subscriber
al infrastruct
available in
nt to choose
tion operate
ws Azure Pl

Priva

mbrust et al
rganization,

c group or o
er owns and
customer, th
ather than th
more suitab

other way to
cloud, a c

ucture to t
es within t
ing only on
er of the clo

Cloud compu

omputin

ud computi
s, the differe
ations in ph
ibution). Re
ommunity,
s will be de

lic cloud

r can acces
ture of a pub

n a pay-as-
e a public c
es on sensiti
latform, Am

ate cloud

l. [34] defin
, not made
rganization

d fully contr
hese private
he customer
ble when an
o build a pri
cloud prov
this particu
the cloud th
n dedicated
oud provider

uting stack (

ng deplo

ing has em
ent infrastru
hysical loc
egardless o
or hybrid
scribe in fo

s a public c
blic cloud. A
you-go ma
cloud due t
ive data. Ex

mazon’s AW

d

ne a private
available to

n and access
rols the priv
e clouds are
r. A private

n application
ivate cloud
ider alloca

ular virtual
he custome

d servers an
r.

(Adapted fr

oyment

merged ma
ucture deplo
cation, and
of cloud se

based on
ollowing sub

cloud via th
Armbrust e

anner to th
to privacy,
xamples of p

WS, and Goo

e cloud as
o the gener

s is limited t
vate cloud.
e frequently
e cloud is le
n must proc
is to create

ates particu
private cl

er can be a
nd that thes

rom Figure 1

models

ainly due t
oyment mod

location o
rvice type,
its deploy

bsections.

he internet.
et al. [33] de
he general

policy, and
public cloud
ogle’s AppE

an “interna
ral public.”
to that group
Although a
y built, inst
ess cost effe
cess sensitiv
e a virtual pr
ular resourc
loud. Due
assured tha
se servers a

1.3, page 14

to the app
dels are dist
of the data

a cloud ca
yment mode

The cloud
efine a publi
public”. So

d security c
d services in
Engine.

al data cent
A private

p or organiz
private clo

talled, and m
fective than
ve data.
rivate cloud

ces within
to the allo

at their data
are not sha

of [31])

pearance of
tinguishing

a center (a
an be class
el. These

d provider o
ic cloud as
ome custom
concerns wh
nclude: Mic

ter of a bus
cloud is bu
zation. One

oud might b
managed by
a public cl

d. To build
their publi

ocation of
a is stored

ared with an

f public
by their

and their
sified as
different

owns the
a “cloud

mers are
hen their
crosoft’s

siness or
uilt for a
e specific
e owned
y a third
loud, but

a virtual
ic cloud
specific
on and

ny other

2.3.3

A co
requirem
conside
manage

2.3.4

A h
private,
propriet
load ba
systems
one clo
exploit
offers, b
cloud. T
this solu

2.4 V
Virt

practice
and pot
creation
differen

b
c
p

We
infrastru
(OS, me
(VMs) t
of infra
hypervi

Com

ommunity c
ments (e.g
rations). Cu

ement of thi

Hybr

hybrid cloud
and commu

tary technol
alancing bet
s that are co
oud to anot

the scalab
but they als
The hybrid
ution has be

Virtualiz
tualization
e, as it has
tential of m

n of virtual
nt definition
“Virtualizati
boundaries o
client, storag
potentially b

can descr
ucture resou
emory, stora
that run in a
structure re
sor[17]. Fig

munity c

cloud is sh
g., mission
ustomers m
s communit

rid cloud

d is a comp
unity) that r
logy that en
tween cloud
onnected in
ther cloud.
ility and c
so want to
cloud mod

ecome incre

zation
is not a n
been used s
mainframe
l resources

ns for virtual
ion is the ab
of those reso
ge, networks

be abstracted

ribe virtual
urces. For
age, etc.). A
a container
esources to
gure 2-5 sho

Figure 2-5:

cloud

ared among
n, security

might agree
ty cloud mig

position of
remain uniq
nables data
ds)[35]. A h

n such a wa
Customers

cost-compet
keep their

del combine
easingly pop

ew concept
since 1960.
computers
on top of

lization. On
bstraction of
ources from r
s, application
d from resour

lization as
example, a

All or part o
provided b
run on the

ows the basi

Basic

g two or m
ty requirem
to share co
ght be done

f two or mo
que entities
a and applic
hybrid clou

ay that prog
s might util
titiveness c
sensitive da

es the benef
pular[22].

t in the co
. The origin
s. In cloud
f a set of u
ne such defi
f IT resource
resource use
ns or OSs. E
rce users.”-G

the proce
physical s

of these reso
by that host.

same hardw
ic architectu

c architectu

ore organiz
ments, an
onfiguration
e by themse

ore distinct
but are bou

cation porta
ud can also
grams and d
lize this ap

capabilities
ata on their
fits from bo

omputing in
nal idea wa
d computing
underlying
inition is:
es that masks
ers. An IT res
Essentially, a
Gartner, Inc.

ess of inst
erver or ho

ources can b
. Virtualizat
ware that is
ure of this a

ure of virtua

zations that
nd policy
n and cloud
lves or by a

cloud infr
und together
ability (e.g.,
 be defined

data can be
pproach bec

that a pub
r own prem
oth deploym

ndustry; it
as to help m
g, virtualiz
physical re

s the physica
source can b

any IT buildi
 [36].

tantiating v
ost consists
be allocated
tion enables
s controlled
approach to

lization [17]

have simil
and com

d managem
a third party

rastructures
r by standar
, cloud burs
d as multip
moved eas

cause they
blic cloud

mises or in a
ment model

is actually
maximize th
zation invo
esources. T

al nature and
be a server, a
ing block can

virtual vers
of some r
to virtual m

s multiple i
d and manag

virtualizati

]

15

lar cloud
mpliance
ent. The

y.

(public,
rdized or
sting for

ple cloud
sily from

want to
provider
a private
ls, hence

y an old
he power
lves the
here are

d
a
n

sions of
esources

machines
nstances
ged by a
on.

16

A h
allows m
physica
two prim
hypervi
and Cit
hypervi
Microso
2-6 show

Peop
Virtuali
share th
an on-d
Virtuali
forward
without
depende
Today
server/h
network
virtualiz
followin

2.4.1

Virt
for host
based u
physica
resource
VMs on
directly
exploits
with arc

hypervisor, a
multiple op

al hardware
mary categ
sor runs dir

trix XenSer
sor runs on
oft’s Virtua
ws the arch

Fig

ple are of
ization is th
he underlyin
demand m
ization is an
d means for

the custom
ence of a
the term

hardware v
k virtualizat
zation and k
ng subsectio

Serv

tualizing the
ting custom
upon abstra
al hardware
es of the h
n the under

y on the und
s the hardwa
chitecture an

also called
perating sys
and creates

gories: bare
rectly on th
rver are exa
top of the h

al PC, and O
itectural de

gure 2-6:

ften confus
he ability to
ng hardware
anner, to
n enabler f
r a cloud pr

mer needing
customer o
virtualizati

virtualization
tion, and st
kernel-based
on.

ver / hard

e hardware/
mers. One p
action, henc
e layer by
hardware be
rlying host.
derlying har
are abstract
nd impleme

a virtual m
stems to run
s and runs t

metal (also
he host’s ha
amples of b
host’s opera
Oracle’s Vir
sign of thes

Bare m

sed about
run multipl

e resources
allow scal

for cloud co
rovider to i

g to invest i
on specific
on is wid
n, operatin
orage virtua
d virtual ma

dware vir

/server is p
physical ma
ce hardware
use of a h

etween the
Figure 2-7

rdware. Eac
ion to run a

entation[38]

machine mon
n on a phys
the VMs. H
o called na
ardware. VM
bare metal/
ating system
rtualBox ar
se two differ

etal/native a

how virtu
le operating
. Cloud com
ling up an
omputing, b
increase cap
in new infra

hardware
dely applied
ng system
alization. In
achines (KV

rtualizatio

erhaps the
achine is d
e virtualiza
hypervisor[3
different g
 illustrates
ch VM runn
a guest OS.
].

nitor (VMM
sical host. I

Hypervisors
ative) and h
Mware ESX
/native hype

m. VMware
re examples
rent categor

and hosted h

ualization a
g systems o
mputing is t
nd down o
because virt
pacity or a
astructure.
and softwa
d to a nu
virtualizatio
n this thesis
VMs). Each

on

most comm
ivided into

ation is acc
37]. The h
uest operat
the case wh

ning on the
The functio

M), is a soft
It controls a
can be cate

hosted. A ba
Xi, Microso
ervisors. In
Workstatio

s of hosted h
ries of hype

hypervisor [

and cloud
n a single p
the provisio

of resource
tualization p
dd capabili
Cloud comp
are through
umber of c
on, applica
s, we will u

h of these wi

mon type of
many VM

complished
ypervisor s
ing system
here the hy
hypervisor

onality of th

ftware platfo
access to th
egorized int
are metal o

oft Hyper-V
n contrast, a
on, VMware
hypervisors

ervisors.

[17]

computing
physical sys
oning of ser
s for a cu
provides a
ities for a c

mputing rem
h virtualizat
concepts in
ation virtua
use server/h
ill be descri

f virtualizati
Ms. Virtualiz

by abstrac
shares the

ms (OSs) run
ypervisor is
r runs as a
he hyperviso

form that
he host’s
to one of
or native
V, KVM,
a hosted
e Fusion,
s. Figure

g differ.
stem and
rvices in
ustomer.
straight-

customer
oves the
tion[30].
ncluding
alization,
hardware
ibed in a

ion used
zation is
cting the
physical
nning in
running

VM and
or varies

Fig

Base
virtualiz

Full

Hardwa

Para-vi

2.4.2

Kern
hardwar
AMD-V
the Linu
for KV
virtualiz
hypervi
unmatch
OSs [40

• W
• A

t

ure 2-7: T

ed on diffe
zation. Thes

are assisted

irtualized

Kern

nel-based V
re which im

V)[39]. KVM
ux kernel. K

VM hyperv
zer). No m
sor. The K
hed perform
0]. In additio
Within a sing
All hosts wit
type, count,

The hypervis

erent levels
se different

The
VM.
and
resul

d Hard
years
proc
this
instru
hype
the p
of pr

In pa
insid
know
prov
appr

nel based

Virtual Mac
mplements v
M is an exa
KVM is inc
visors is Q
matter what
KVM hype
mance and
on, the follo
gle cluster, th
thin a cluster
and have the

sor manages

of abstract
levels of vi

guest OS d
 The hyperv
the underly
lts of physic

dware assist
s, hardware
essors in or
processor
uctions can

ervisor. Thi
performance
rocessors wi

ara-virtualiz
de a virtual
w that it is v
ided by th
opriate calls

d virtual m

chine (KVM
virtualizatio
ample of su
luded with

QEMU (a
Linux dist

rvisor deliv
scalability

owing hardw
he hosts mus
r must be ho
e same featur

s VMMs tha

tion, there a
irtualization

does not hav
visor handle
ying hardw
cal operatio

ted virtualiz
e vendors h
rder to enha
for runnin

n be sent to
is reduces t
e. Intel’s VT
ith virtualiz

zation the gu
machine. T

virtualized i
he hypervi
s to the hyp

machine (

M) is a full
on extension
uch a hyperv

a variety of
generic an
tribution yo
vers a sec
for guests

ware require
st be running

omogenous, t
re flags.

at host virtu

are differen
n are:

ve any kno
es all the op
are. Note t

ons on the ha

zation is an
have added
ance the per
g VMs. Fo
the CPU w

the load on
T-x and AM
zation suppo

uest OS is r
The modifie
in order to t
isor. OSs

pervisor.

(KVM)

virtualizati
ns (specific
visor and it
f Linux bas

nd open so
ou want to
ure, robust
running Li

ements need
g the same di
this means th

ual machines

nt levels of

owledge tha
perations be
hat the hyp
ardware for

alternative
virtualizati

rformance a
or this rea
without bein
n the hyperv
MD’s AMD-
ort [19].

recompiled
ed version
take advanta
require ex

ion solution
cally by exp

has been d
ed OSs. Th
ource mach
o use, you
t virtualizat
inux or Mi
d to be met
istribution (v
hat the CPUs

s [38].

hardware o

at it is runn
etween the g
pervisor ma
r future use.

approach. I
ion support
and function

ason, specif
ng translate
visor and i
-v are the e

prior to ins
of the OS n
age of the f
xtensions t

n for Linux
ploiting Inte
developed a
he main requ
hine emula
can run th
tion platfor
icrosoft’s W
[41]:

version) of K
s must be of

17

or server

ing on a
guest OS
ay cache
.

In recent
t to their
nality of
fic CPU
d by the
ncreases

examples

stallation
needs to

functions
to make

x on x86
el VT or

as part of
uirement
ator and
he KVM
rm with

Windows

KVM.
the same

18

• T
• A

2.5 L
The

purpose
combine
languag

Lin
Ap
My

PH

The
infrastru
HTTP w

• L
• T
• F
• t

M
• F

Alth
.NET ha
database
develop
scalable
requirin
details.

Figu
forward
from the
executin

2.5.1

Linu
provide
the web

The processo
A 64-bit CPU

Lamp st
 acronym L

e web serv
es some of

ge). LAMP i
nux
ache HTTP

ySQL

HP

 combinati
ucture. Tod
web server.
LAMP stack
Tomcat Java
Full Java En
the WISA s
Microsoft SQ
Full .NET st

hough LAM
ave had, th
es, and ser

pers around
e, and very
ng that the

ure 2-8 illu
ds HTTP co
e Linux ker
ng the PHP

Linux

ux is the m
s a robust o

b server. Do

ors must all b
U and x86 pr

tack – O
LAMP refe
vers. This
f the princip
is an acrony

an o
server a w

a da
be u
a sc
Rub

ion of the
day many di

Some of th
k,
a-based stack
nterprise Edit
stack: Windo
QL Server (d
tack.

MP has not
e LAMP st
rvers on th
the world i

y robust. LA
developer

ustrates the
onnections t
rnel. Apach
code. Datab

Figure 2-8:

x

most importa
operating sy
ozens of dif

be either Inte
rocessor is re

Overview
ers to a stac
software is

ple compon
ym which o
operating sys

web server
atabase mana
used as datab
cripting langu
by can be use
ese technol
fferent stac
e most popu

k,
tion (JEE) sta
ows (operati
database), an

had the sam
tack is used
he web tod
is that it is
AMP allow
spending a

very straig
o the Apach
e forwards
base querie

LAM

ant compon
ystem, whic
fferent Linu

el-VT or AM
ecommended

w
ck of softw
s generally

nents (OS, w
original stoo
stem

agement syst
base server)
uage (other s
ed)
logies is

cks includin
ular availab

ack,
ing system),
nd ASP (scrip

me amount
d by more th
day. The m
free, easily

ws develope
disproport

ghtforward
he HTTP se
dynamic pa
s are sent to

MP architect

nent of the
ch provides
ux distribut

MD-V enable
d, but not req

ware that is
free and

web server,
od for:

tem or datab

scripting lang

widely use
ng LAMP ar
ble web serv

Internet Inf
pting languag

of commer
han two-thi
main attract
y configured
ers to achie
tionate amo

architectur
erver, whic
age requests
o MySQL th

ture (adapte

LAMP sta
s the underl
tion are ava

d.
quired.

widely use
open sourc
database se

ase server (P

guages such

ed to reali
re designed
ver stacks ar

formation Se
ge), and

rcial promo
rds of the s
tion of the
d, easily dep
eve high pe
ount of time

re of the L
h serves sta
s to PHP an
hrough PHP

ed from [35]

ck installed
ying securi

ailable today

ed to build
ce software
erver, and s

PostgreSQL

as Python, P

lize a web
d to augmen
re:

ervices (web

otion that J2
scripting lan
e LAMP s
ployed, fas
erformance
e on admin

LAMP stack
atic content
nd is respon
P[42].

)

d on server
ity and plat
y, but choo

d general
e which
scripting

can also

Perl, and

b server
nt a basic

b server),

2EE and
nguages,
tack for
t, highly
without

nistrative

k. Linux
t directly
nsible for

s. Linux
form for

osing the

19

right distribution is a bit complicated. Linux is the OS running more than 60% of web servers
on the internet because Linux based servers provide excellent performance, security,
scalability, availability, and there is an audited industry performance benchmark[43].

2.5.2 Apache

The second component of the LAMP stack is an Apache HTTP server. This HTTP server
played a significant role in the initial growth of the World Wide Web. Apache is an open
source tool created in the early 1990s. Apache is used by more than 60% of the web servers
worldwide. The web server accepts requests for content from browsers, interprets and
executes the request, and returns a result to the browser. When a browser requests a static
page, the web server simply retrieves that HTML file and returns the results. In response to
dynamic page requests from a browser, the web browser transfers control to a program or
module running at the HTTP server that interprets the request and returns a results[43].

2.5.3 MySQL

The third component of the LAMP stack is a MySQL database. MySQL is an open source
tool which can be used to store content and configuration information for web applications.
MySQL is a general purpose database. MySQL in particular and databases in general, have
made it possible to build and present fully dynamic websites [43]. MySQL is a relational
database management system. MySQL is frequently chosen by developers because it provides
speedy website loading, reliability, and ease of use. The MySQL database architecture is
capable of effectively scaling out by adding multiple replicated database servers. This can be
done at low cost and as needed. Today many of the largest and fastest growing websites in the
world employ MySQL, including Facebook, Google, Yahoo, Flickr, etc.[43].

2.5.4 PHP

PHP was originally an acronym for “Personal Home Page”. It was introduced in 1994 as a
set of Common Gateway Interface binaries programs written in the C programming language.
Today, PHP is a widely used general purpose scripting language that is especially well suited
to web development and can be easily embedded into HTML[43]. A web server takes PHP
code as input, then executes it and creates a webpage as output. PHP is another integral
component of the LAMP stack and can be found in a wide range of applications ranging from
personal homepages to content management systems, such as Joomla[44].

Since PHP has a relatively simple syntax and is available with open source licensing,
developers around the world are migrated from more difficult scripting language such as Perl.
Full object oriented syntax support is included in the latest version of PHP, along with a
command line capability for quick testing. PHP’s speed and adaptability play a key role in its
increased use by enterprises.

2.6 Current cloud service providers
The service level of abstraction differs between the different cloud providers. The

management level of resources also varies by cloud provider. This section presents a few of
the most common provider details and describes the services that they offer to their
customers.

20

Amazon Web Services (AWS) AWS is a bundled remote computing service that provides a
cloud computing infrastructure over the Internet. Amazon Inc.
launched AWS in 2006 [45]. Amazon packages AWS with
scalable and virtually unlimited computing, storage, and
bandwidth resources. AWS uses a subscription-pricing model of
pay-as-you-go or pay-for-what-you-use. The customer can avoid
up-front capital infrastructure expenses by substituting low
variable costs that scale as their needs change. AWS provides a
flexible, cost-effective, scalable, and easy-to-use cloud computing
platform that is suitable for research, educational use, individual
use, and for organizations of all sizes[46]. Amazon’s EC2 and
Amazon S3 are two core IaaS services. These two services have
been used by cloud application solution developers worldwide.

Eucalyptus Since the Eucalyptus infrastructure is compatible with AWS (in
either a private or hybrid cloud), the allocated resources can be
dynamically scaled up or down as application workloads change.
Eucalyptus Systems has announced compatibility with AWS
Elastic Load Balancing (ELB), Auto Scaling, and CloudWatch in
their release 3.3.

Salesforce Salesforce is one of the pioneering cloud computing providers.
Their Customer Relationship Management (CRM) web service is
their first and main product. Enterprise customers build their own
application(s) on top Salesforce’s CRM. Initially salesforce only
offered a SaaS class product. One of the traditional issues with
SaaS products is the limited ability to customize the application.
However, Salesforce.com is offering force.com as a PaaS
product. The force.com platform allows developers to develop
applications that will execute natively on their Salesforce
platform or they can be integrated with third party services.
Force.com development is performed using nonstandard,
purpose-built tools and a proprietary development language called
Apex[47]. Scaling the platform up and down as needed and
making all the physical resources transparent is the responsible of
salesforce.

OpenNebula OpenNebula is the most feature-rich, innovative, customizable
and mature open alternative to proprietary cloud solutions when
building virtualized enterprise data centers and cloud
infrastructures on top of Xen, KVM, and VMware
deployments[48]. OpenNebula is a fully open source toolkit to
build IaaS private, public, and hybrid clouds. OpenNebula can be
installed and run on the majority of the Linux distributions and it
is also Amazon EC2 compatible. OpenNebula is primarily used as
a virtualization tool to manage a virtualized infrastructure in a
data center or cluster (typically within a private cloud).
OpenNebula also supports a hybrid cloud to combine a local
infrastructure with a public cloud-based infrastructure, enabling
highly scalable hosting environments. OpenNebula also supports
public clouds by providing cloud interfaces to expose its
functionality for VMs, storage, and network management.
OpenNebula also can work as a data center virtualization manager
within an OpenStack or Eucalyptus cloud.

21

2.7 Related work

Red Hat Inc. published “Scaling the LAMP stack in a Red Hat enterprise virtualization
environment”[43] during 2009. This work presents performance and scaling of the industry
standard LAMP web application stack running on Red Hat enterprise Linux 5.4 guests on a
Red Hat Linux 5.4 host with a KVM hypervisor.

Kaur, Kaur, and Singh published “Evaluating performance of web services in cloud
computing environment with high availability” [49] in 2012. This paper presents a
methodology for attaining high availability to meet the demands of web clients. In order to
improve the response time of web services during a peak hour, dynamic allocation of host
nodes was used. Web users can be very demanding, as they expect web services to be quickly
accessible from anywhere in the world at all times.

Vaquero, Rodero-Merino, and Buyya. published “Dynamically Scaling Applications in
the Cloud” in January 2011. This work presents the most notable initiatives towards whole
application scalability in cloud environments[1].

Joynet Inc. published a whitepaper entitled “Performance and Scale in Cloud Computing”
[21]. Joyent’s Smart Technologies address many issues of scalability and performance in
cloud computing, including dynamic vertical scalability, more efficient allocation of virtual
resources, and efficient I/O load balancing.

Aleksandar Draganov published a master’s thesis entitled “Exploiting Private and Hybrid
Clouds for Compute Intensive Web Applications” [2] in 2011. This work investigates the use
of an open source cloud management platform (OpenNebula) to create a private cloud and
using OpenNebula for hosting compute intensive web application by managing a farm of
virtual web servers to meet the application’s demands.

Chieu, Mahindra, Karve and Segal published “Dynamic Scaling of Web Applications in a
Virtualized Cloud Computing Environment” [50] in 2009. This paper presents a novel
architecture for the dynamic scaling of web applications based on thresholds in a virtualized
Cloud Computing environment.

Hung, Hu and Ching Li published “Auto Scaling Model for Cloud Computing System”
[51] in 2012. This paper presents an auto-scaling algorithm for automated provisioning and
balancing of virtual machine resources based on active application sessions as well as the
energy cost is considered in the proposed algorithm.

Wolke and Meixner published “TwoSpot: A Cloud Platform for Scaling Out Web
Applications Dynamically” [52] in 2010. This paper presents a methodology for combining
existing and open technologies to build new software platform, which runs on virtual
machines typically offered by IaaS provider.

Zsolt Siklosi published a master thesis entitled “Dynamically Scalable Applications in
Cloud Environment” [53] in 2013. This thesis work focused on automatically scaled
infrastructure and also ensures that the amount of reserved resources is always sufficient to
keep up a certain service level while optimizing costs by avoiding over-provisioning.

3 Sca
Ap

This c
in clouds
architectu

3.1 S
For If

applicatio
tiers of th
these tier

Figur
architectu
of a cach
incorpora
Squid we
caching t

Figur

3.2 L
In the

utilize tw
usually r
m1.large
platform[
thus two
new webs

alable
pplicati

chapter pres
s. Each of t
ure in detail

Scalable
foodbag[54
on. In this s
his model,

rs.
re 3-1 illustr
ure looks m
hing tier b
ates various
eb cache da
ool) will en

re 3-1: Sca

oad Bal
e reference

wo load bala
run on top

instance t
[59]. Each
LBs suppo

site’s highe

Cloud
ion
sents the ma
the sections
l.

Web Ap
4], we have
section we
as well as

rates the ref
much like the
between the
s enhancem
aemon will
nhance the a

alable refere

ancing T
architecture

ancers, for e
of Amazo

types, whic
LB has the

ort a total o
est expected

 Archit

ain architec
 describes t

pplicatio
 designed a
will describ
demonstrat

ference arch
e classic thr
e applicatio

ments to pro
enhance th

application s

ence archite

Tier
e the first (l
example run
n’s Web S

ch provide
e capacity t
f about 10,

d traffic rate

23

tectur

cture of a w
the differen

on Refer
a scalable c
be this refer
te the optim

hitecture m
ree-tier web
on servers
ovide high
he performa
server perfo

ecture for If

load balanc
nning HA p
Services (A

2 virtual c
to handle a
000 reques

e in terms of

e for a

eb-based ap
nt tiers and

rence A
cloud archit
rence archit

mized funct

odel for Ifo
b application
and the da
performanc

ance of the
ormance.

foodbag’s we

cing) tier (a
roxy [57]. T

AWS) Elasti
cores, 7.5G

approximate
ts per secon
f requests p

a Web

pplication d
the manage

rchitect
tecture for
tecture and
ionalities p

oodbag’s we
n architectu
atabase. In
ce [55, 56]
web servic

eb-applicati

s shown in
These load b
ic Compute

GB of mem
ely 5,000 re
nd. It is po
er second, t

designed for
ement node

ture
use with th
outline the

provided by

eb-applicati
ure with the

addition, e
]. For exam
ce and APC

ion

the Figure
balancers (L
e Cloud (E

mory, and
equests per
ssible to es
then divide

r running
es of the

heir web
e distinct

each of

ion. This
addition

each tier
mple, the
C (a PHP

3-1) we
LBs) are

EC2)[58]
a 64-bit
second,

stimate a
this rate

24

by 5,000 to estimate the number of load balancers that will be required to handle this traffic
load.

Regardless of the estimated load, we have designed to LB tier to have at least two LBs in
order to provide redundancy in the early phase of the deployment of Ifoodbag’s application.
For high reliability and availability we recommend placing each LB in a different availability
zone (thus decoupling their probability of failure). As the number of users is expected to
rapidly increase in the future, it will be possible to introduce more LBs in order to handle the
required capacity. Initially it is possible to run each load balancers on an AWS m1.small
instances (1 virtual core, 1.7GB memory, 32-bit platform). This is a cost-cutting measure, but
allows the LB to subsequently be migrated to a larger instance as demand increases. In the
early phases of an application’s lifecycle it is also possible to combine the front-end LBs and
the application servers in the same instance in order to achieve additional cost savings.
However, this is not a recommended approach for a production high traffic site!

3.3 Application Tier
Second tier of the reference architecture shown in the Figure 3-1 is called the application

tier. This tier consists of the application servers and their associated scalable server array. In
this tier we recommend a minimum of two application servers (to be placed in different
availability zones) for the initial configuration. These instances must implement alert
mechanisms to allow automatic scaling (both up and down) of the array based on instance
specific metrics. The most common metrics that can be used for auto-scaling are CPU-idle
fraction, amount of free memory, and system load. It is also possible to include application
specific metrics for controlling this auto-scaling. If any of the thresholds specified by these
metrics are met, then an alert associated with this metric is triggered, and this should result in
scaling up by adding additional application servers in the case of increased demand or
decommission of active servers if the load decreases.

For guaranteed service operation, we recommend a conservative approach for scaling up
and down the application server arrays. Therefore additional instances should launch before
they are needed when an upward trend in demand is detected. It is important to determine the
amount of time required for a server to become operational after it is launched as we must
factor this into our scaling metrics. (Measurements of this will be reported later in Chapter 6.)
Similarly, we should only decommission instances when they have been lightly utilized for a
predetermined period of time. Scaling up liberally (that is, as soon as lower thresholds are met)
helps to ensure that resources are continually available to serve application requests, while
scaling down conservatively prevents terminating application server instances prematurely,
thus avoiding undesirable user experiences. The only disadvantage of this is that if too liberal
an approach is used when scaling up; the business will be charged for additional server time
that was actually unnecessary. In utility computing if a server is launched unnecessarily, the
business would experience increased charges for a maximum of one hour (the smallest billing
granularity) because the scale-down metrics would terminate this server before the next billable
hour began.

It is possible to configure arrays of servers in order to bound both the minimum and
maximum number of instances. In our design a minimum of two standalone application servers
are recommended for high availability and reliability of the application, thus the array
minimum should be two. However, this minimum value should be increased if the minimum
amount of application traffic increases and the two array instances are insufficient to handle
this load. On the other hand, the maximum array size provides an upper bound on the total
number of running instances. This upper bound can be used to place a limit on infrastructure
costs. The optimal instance size for an application server in a scalable array can be determined

25

via load testing and performance benchmarking. This optimal instance size will be investigated
in Chapter 6.

3.4 Caching Tier
The caching tier is located in the reference architecture between the application and

database tiers. This caching is typically implemented with memcached[60]. This additional
caching tier is not appropriate for all application architectures, because not all applications are
compatible with a data caching solution. Fortunately, the majority of scalable applications will
realize improved performance by using a distributed cache. For a read-intensive application,
caching can provide a huge performance improvement due to reduced application processing
time and avoiding database accesses. However, for write-intensive applications typically there
is not a great benefit to caching, but with some modifications to the classic caching paradigm it
may be possible to achieve a considerable performance improvement.

The memcached solution is fairly lightweight in terms of CPU utilization, but heavy (as
heavy as the developer will allow) in terms of memory usage, so we advise that Ifoodbag use
larger VM instance sizes (in terms of memory) for servers in this tier. Although in the early
phases of an application’s lifecycle, the total size of all of the cached objects will tend to be
small and sometimes a single instance of the cache may be sufficient to provide a cache for the
entire application server tier, but we do not advise this for production applications – especially
if the traffic increases. Additionally, a single caching server is a potential single point of failure
for the application’s cache. A loss of this single cache instance can have a major negative
performance impact on the application and it database. As a result we recommended that
Ifoodbag use multiple instances of caching servers (distributed across multiple availability
zones within the selected region/cloud) when implementing the caching tier.

3.5 Database Tier
The final tier in the reference architecture shown in Figure 3-1 is called the database tier.

As for any web-based application this tier is quite critical and challenging to design correctly
because there is no “one-size-fits-all” solution when it comes to data storage and management.
Fortunately, there are a number of typical categories and types of applications that have an
associated set of architectural components and best practices.

Among the numerous potential database applications, we have selected MySQL for
Ifoodbag as it is one of most common and widespread open source database packages. The
architecture of the database tier is shown in Figure 3-2. This database architecture illustrates a
scalable and recommended best practice for MySQL when used in the cloud. Although cloud-
based resources enable application flexibility, maintaining physical accessibility of these
resources requires additional planning and consideration. Although hardware failures are
uncommon in the cloud, the do occur and need to be planned for. Hence we recommend that
Ifoodbag use one or more database slaves that can take over if the current master database fails.
If the master fails a slave can be quickly promoted to become the new master using
pre-configured scripts. If the financial budget allows, we recommend placing additional slaves
in different availability zones in order to increase the availability and reliability of the data
store. While the ultimate goal of database design should be to allow automated horizontal
scaling of the database tier, practical implementations of such a solution remain an indefinable
goal. However, there are some design concepts that different applications can incorporate to
allow database scaling to varying degrees. As previously mentioned, it is highly recommended
that one or more slave databases be implemented in addition to the master database, regardless
of the phase of the application’s lifecycle – as loss of the stored data may lead to a business
failure. Multiple slave databases will increase the overall reliability and availability of the

26

applicatio
mechanis

Figur

In a
though th
Proxy ser
to the da
while if a
request to
applicatio
but there
being retu
the maste
the most
Ifoodbag
expect th
nature of
least mos
with MyS

3.6 M
Last

node/nod
Different
proposed
years, bo
utilize op
methods.

on. Additio
sm for datab

re 3-2: Da

MySQL Pr
he applicati
rver instead
atabase, the
a read requ
o one of the
on over the
is a risk th

urned in res
er database.
effective m
application

hat this ratio
f the databa
st of) the wr
SQL proxy

Managem
but not lea

des. This/th
t methods w
d cloud arch
oth in comm
pen source

These man

nally, these
base reads, s

atabase Tier

roxy config
on servers

d of the mas
e proxy serv
est is perfo
e slave data
available s

hat the repli
sponse to a
. As a resul
method of d
n is domin

o will remain
ase writes a
rite operatio
is appropria

ment No
ast, a final
hese node/n
will employ
hitecture. S
mercially an
tools and c
nagement n

e slaves ena
such as prov

for Ifoodba

guration, no
use their no
ster MySQL
ver passes

ormed by th
abase server
slave databa
ication dela

a read reque
lt, for write
database sc
ated by rea
n throughou

and the busi
ons until an
ate for Ifood

ode/Nod
componen

nodes are a
y in order t
everal clou
nd open so
customize th
node/nodes

able horizo
vided by M

ag Web-App

o changes
ormal datab
L server. If
this reques

he applicatio
rs, thus dist
ase servers.
ay to the sla
est if the rea
e intensive
caling. How
ad requests
ut the applic
iness needs
off peak tim

dbag’s appl

des
nt of this re
actually th
to provide

ud managem
ource deploy
hem based
will emplo

ontal scaling
MySQL Prox

plication

are needed
base connec
an applicat

st directly t
on, then the
tributing th
This load

ave databas
ad occurs so
applications

wever, based
s in compar
cation’s life
s it may be
me. As a res
lication.

eference ar
he center o
scalability

ment tools h
yments [4,
upon our o

oy all the sc

g of the da
xy (shown in

in the app
ctor, they p
ion perform
to the mast
e MySQL P
e overall da
distribution
es may resu
oon after th
s a proxy s
d upon our
rison to wr
e cycle. Furt
possible to

sult horizon

chitecture i
of this refe
and high p

have being
5, 48, 61,

own design
caling polic

atabase usin
n Figure 3-2

plication tie
point to the
ms a write o
ter database
Proxy will s
ata read loa

n is quite im
ult in outda
he data is w
solution ma

initial anal
rite operatio
rthermore, g
o delay all
ntal database

is the man
erence arch
performance

deployed i
62]. We e
considerati

cies and mo

ng proxy
2).

er. Even
MySQL

operation
e server,
send this
ad of the
mportant,
ated data

written to
y not be
lysis the
ons. We
given the
of (or at
e scaling

agement
hitecture.
e for the
in recent
expect to
ions and
onitoring

resources
will be co

3.7 S
Anoth

proposed
detailed s
recomme
propose t
their com

Figur

s in the clou
overed in Ch

Security
her Master

d a set of sec
security me
end that HT
that all of th

mmunication

re 3-3: Ar

ud architectu
hapter 5 and

guidelin
’s thesis pr
curity guide

easures that
TP’s securi
he nodes sh
n with the m

rchitecture w

ure. Further
d Chapter 6

nes in th
roject by S
elines for ou
should be a

ity be impro
hould use VP
management

with security

r details of
6.

he arch
Sabrina Ali
ur architect
applied to t
oved by usin
PN tunnelin
t node(s).

y guidelines

these tools

itecture
i Tandra an
ure[63]. Th
the DNS qu
ng HTTPS,
ng instead o

as recomm

and the cus

e
nd Sarwaru

heir security
uery to the D
 rather usin

of normal T

ended in [63

stomization

ul Islam R
y guidelines
DNS server
ng HTTP. A
TCP connec

3].

27

 of them

Rizvi has
s provide
r and the

Also they
tions for

29

4 Detail Descriptions of the Component in the
Proposed Architecture

Using the reference scalable cloud architecture model described in the previous chapter, in
this chapter we described each and every component in the various tiers of our proposed
architecture.

4.1 DNS server
The Internet has billions of users and there are many resources distributed over this large

network. From the user’s perspective, each node on this network is identified by a unique name
called the domain name. For example, a web server provides access to a website with a given
domain name. A mail server is used for deliver email messages to a user within a given (e-mail)
domain. From the network’s perspective routers route Internet Protocol (IP) packets through
the Internet based upon a unique network address (composed of a network and host interface
portion). To access Internet resources using user –friendly domain names rather than IP
addresses, the user need a means to translate the domain name to IP addresses and back. The
Domain Name System (DNS) is an Internet service that translates domain names into IP
addresses (and the reverse)[64]. Since domain names are alphanumeric, they are easier for most
people to remember than IP addresses. This is especially true for IPv6 addresses as they are 128
bits long. Additionally, the name is likely to be a more stable identifier than and address as the
structure of the network and the nodes attached to it may change, hence changing the mapping
between a host interface name and an IP address. For these reasons domain names are widely
used to identify Internet resources.

Because maintaining a central list of domain name to IP address correspondences would not
be practical, knowledge about the mapping between IP addresses and domain names are
distributed throughout the Internet in a hierarchy of authority [65]. When a user requests the IP
address associated with a particular domain name, they probably query a DNS server in close
network & geographic proximity to their access network provider. This DNS server either
knows the mapping or forwards the query to another DNS server and so on, until a DNS server
knows the IP address corresponding to the domain name in the query. After resolving the
domain name to an IP address, the resulting IP address is returned to the user who made the
query. Additionally, DNS servers along the way may or may not cache the mapping in
anticipation of another query for this same mapping.

When users access Internet resources (e.g., a web server) through their web browser to
retrieve the appropriate web page, the browser needs an IP address to contact this web server.
Using DNS, the Web browser gets the information it needs to retrieve the requested web page.
The process of using DNS to map domain names to IP addresses is called name resolution [66].
The DNS protocol is used to perform this action. For example, when a user want to access a
web page for a web page with the domain name ‘www.Ifoodbag.se’ then the user’s host queries
a DNS server to learn the IP address of ‘www.Ifoodbag.se’. When the DNS server returns the
IP address (for example, ‘46.30.212.191’) of that website then the user’s browser can initiate a
TCP connection to this particular IP address on TCP port 80 to access the first page at this web
site. Figure 4-1 shows, how users can find the IP address of a specific web application via a
DNS server.

30

Figur

4.1.1
The D

domain n
domain, w
domain (T
second le
under onl
three type

Table

Country-
(ccTLDs)

Sponsore
TLDs (gT

Unsponso
TLDs (gT

A pa
consists o
the doma
name spa
either run
other serv
name serv
directly b
DNS serv

re 4-1: Th

DNS i
DNS serve

name space
which is re
TLD), also
evel or ente
ly a single r
es [66]:
e 4-1: Dif

-code TL
)

ed gene
TLDs)

ored gene
TLDs)

artial DNS
of many na
ain name. N
ace. If there
n directly b
vice provid
vers outside
by the comp
ver associat

he normal D

infrastruc
r infrastruc
is organized

epresent as a
called a chi

erprise level
root domain

fferent types

LDs These
territor
.in, and

eric These
interes
.museu

eric These
gTLDs

name spac
ame servers

Name server
e is any furt
by the organ
der. For exa
e of Ifoodba
pany and th
ed with the

NS resolutio

cture
cture is geo
d in the form
a dot (“.”).
ild domain
l domains, a
n. Top Leve

s of Top-Lev

types of to
ries. There a
d .jp.
specialized
t. These TL

um.
domains lac

s includes .co

e hierarchy
and each n

rs are genera
ther level o
nization or

ample, mail.
ag.se know
he DNS reso

domain nam

on process (

ographically
m of hierarc
The next l
of the root
and so on.

el Domains

vel Domains

op-level do
are more tha

domains ha
LDs include

ck a sponso
om, .net, .org

y is shown
name serve
ally concern

of domain n
outsourced

.Ifoodbag.se
about only
olution of t
me Ifoodba

(adapted fro

y distribute
chy with the
evel in the
domain. Th
There are m
(TLDs) are

s (TLD).

mains are a
an 240 ccTL

ve a sponso
e .edu, .gov

ring organiz
g, .biz, .info,

n in Figure
r contains i
n about the

name space
d to an Inter
e is a forth
“Ifoodbag.s

this name is
ag.se.

om [67]).

ed througho
e top most l
hierarchy i

he next leve
more than 2
 categorized

associated w
LDs. Exampl

or representin
v, .int, .mil,

zation. The l
.name, and .

4-2. The D
information
top three le
available, t

rnet Service
level doma

se” and mai
s done by a

out the wo
level called
is called a t
el domain is
250 TLDs a
d into the fo

with countri
les include .

ng a commu
, .aero, .coo

list of unspo
.pro.

DNS infras
n about a po
evels of the
the DNS se
e Provider
ain, in that
il.Ifoodbag.
a company

rld. The
d the root
top-level
s called a
available
ollowing

ies and
.uk, .se,

unity of
op, and

onsored

structure
ortion of
e domain
evers are
(ISP) or
case the
se is run
operated

Figur

4.1.2
A res

communi
process t
‘Ifoodbag
with othe
DNS que
performe

Table

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

re 4-2: Pa

DNS n
solver is a
icating with
that consist
g’ website.
er DNS ser
ery specifies
d in this pro

e 4-2: DN

A DNS cli
to resolve
example).

The DNS
information
root name

The root D
knows the
DNS sever
to the recu
name serve

Now the
Ifoodbag.se

TLD name
So it replie
address.

Now the r
Ifoodbag.se

The author
of the web

Finally, th
replies to t
now stores
avoid resol
this respon
from the ca

rtial DNS N

name res
a program t
h appropria
ts of recurs
Usually, ho

rvers in ord
s whether a
ocess are gi

NS name res

ient, also ca
the IP addr

server imm
n in cache.
server.

DNS server
authoritativ

rs know an a
ursive name
er.

recursive n
e domain, w

e server kno
es to the re

recursive n
e domain, w

ritative nam
server.

e recursive
the visitor’s
s this inform
lving proce
nse valid to
ache.

Name Space

olving pr
that resolve
ate name se
ive and ite
osts perform
der to resolv
an iterative
ven in Tabl

solving proc

alled a resol
ress for www

mediate rep
If it does n

recognizes
ve name ser
authoritativ
e server wit

name serve
which know

ows the auth
ecursive nam

name serve
which know

me server for

 name reso
s host with
mation in ca
ss. The DN

o communic

Hierarchy (

rocess
es hostnam
ervers. Figu
erative quer
m recursive
ve the quer
or recursiv

le 4-2.

cess [68]

lver, sends
ww.ifoodbag

plies with r
not found an

the top-lev
rver for top

ve name serv
th an IP ad

er contacts
ws the mappi

thoritative n
me server w

er contacts
ws the mappi

r the Ifoodb

olving proc
IP address

ache for com
NS response
cate after th

(adapted fro

mes to IP a
ure 4-3 pre
ries when a

queries and
ry using ite
ve lookup sh

recursive q
g.se (here w

requested i
nything then

el domain n
p-level dom
ver for the .
ddress of th

s the TLD
ings for hos

name server
with this au

the author
ings for hos

bag.se doma

ess has fin
of ‘Ifoodb

mmunicatin
e has time st
hat the info

om [66])

addresses (
esents a DN
a visitor wa
d a DNS se
rative queri
hould be pe

uery to a na
we assume ‘i

information
n it forward

name from t
ains (TLDs
se domain.

he .se doma

(.se) nam
stnames in t

r for the Ifo
uthoritative

ritative nam
stnames in t

ain replies w

ished. Now
ag’ web ser

ng faster wit
tamp that in
ormation sh

(or the reve
NS name r
ants to brow
erver comm
ries. Howev
erformed. T

ame server
ifoodbag.se

n, if it foun
ds the reque

that request
s). These to
The server
ain’s author

me server f
this domain

oodbag.se d
name serv

me server f
this domain

with the IP a

w the name
rver. The re
th webserve
ndicates ho
hould be re

31

erse) by
resolving
wser the

municates
ver, each
The steps

asking
e’ as an

nd that
est to a

t and it
op-level

replies
ritative

for the
n.

domain.
ver’s IP

for the
n.

address

server
esolver
er or to
w long

emoved

32

Figur

4.1.3

DNS
Master’s
that DNS
attacks an

4.2 L
Load

traffic ov
load bala
servers, th
Using a
scaling o
method. N
increases
of a load
nodes wi
applicatio

Using
enterprise
Thus, if a
requests r

re 4-3: DN

DNS s

security asp
thesis writt

S Security
nd DNS pro

oad Bal
balancing

ver a set of
ancer in a
hus avoidin
load balan

out an appl
New server
/decreases.

d balancer.
ithin the s
on), with th

g a load ba
e web appli
any single s
resulting in

NS name res

security a

pects and so
ten by Sabri
(DNSSEC)

otocol attack

ancer (S
is a core ne
servers hos
scalable ar

ng problems
ncer improv
lication serv
rs can be e
Sending tra
To balance
erver clust
e goal of op

alancer resu
ication. In t
server fails,
a highly av

solving proc

aspects

olutions bas
ina Ali Tand
) be used t
ks). Further

Squid/H
etworking s
sting the sam
chitecture i
s that would
ves both a
ver infrastr

easily added
affic immed

e server load
er (a group
ptimizing th

ults in high
this approac
another ser

vailable syst

cess (adapted

sed on our p
dra and Sar
to solve DN
r details can

HA Prox
solution tha
me applicat
is to distrib
d occur with
application
ructure, loa
d to or rem
diately to th
d, the load
p of server

he overall sy

her availab
ch high ava
rver takes it
tem [71].

d from [69])

proposed ar
rwarul Islam
NS security

n be found in

xy)
at is respons
tion content
bute applica
h the failure
availability

ad balancing
moved from
hese new ser

balancer d
rs simultan
ystem’s perf

bility and in
ailability is
ts place as s

).

rchitecture a
m Rizvi and
y issues (su
n their thesi

sible for dis
t. The main
ation reque
e of a single
y and respo
g is the m
the resour

rvers is the
distributes re
neously run
formance.

ncreases th
provided th
soon as pos

are describe
[63]. They

uch as DN
is.

stributing in
n purpose of
ests across
e application
onsiveness[

most straight
rce pool as
main respo
equests to

nning a giv

he scalabilit
hrough redu
ssible to pro

ed in the
propose

S server

ncoming
f using a
multiple
n server.
[70]. To
tforward
demand

onsibility
different
ven web

ty of an
undancy.
ocess the

As an
portal eve
these use
does not
competito
with this
each serv
requires a
executes
be distrib
seen by th
Figure 4-
load amo

Figur
from [73]

n example
ery day. A

ers expects t
get satisfa

ors. Each u
site. With m

ver has only
a collection
its copy of

buted across
he end user
-4 depicts a
ong multiple

re 4-4: Lo
).

consider Y
given end u

the same or
actory perfo
user request
millions of r
y a finite am
n of servers
the web ap
s the set of
rs. A load ba
network di

e application

oad balancin

Yahoo, milli
user may v
better perfo

ormance, th
causes a ce

requests, th
mount of co
s (perhaps o
plication se

f servers in
alancer dist
agram of ho
n servers.

ng for balanc

ions of use
visit Yahoo’
formance ea
hen this por
ertain amou

he load on th
omputing po
organized a
eparately so
order to m

tributes the
ow a load b

cing load am

ers througho
’s web appl
ach time the
rtal might r
unt of load
hese servers
ower, to ha
as server cl

o as the load
maintain the

incoming re
alancer can

mong multip

out the wor
ication repe

ey visit this
risk losing
on the web

s can increa
andle that si
lusters). Ho
d increases t

same level
equests acro

n be used to

ple applicati

rld access
eatedly and
website. If
its user ba

b servers as
ase rapidly.
ite’s aggreg

owever, eac
the requests
l of perform
oss the serv
balance the

ion servers (

33

Yahoo’s
d each of
f the user
se to its

ssociated
Because

gate load
ch server
s need to
mance as
vers [72].
e offered

(adapted

34

4.2.1

In Se
called “F
wide area
Equation

Equat

measure w

Webs
user’s sat
satisfactio

R

Payload

Bandwid

Round T
(RTT)
AppTurn

Concurre
Requests

Cs
Cc

4.2.2
Load

devices,
distribute
in Table 4

How t

eptember 20
Field Guide
a network (
4-1.

Eq

tion 4-1 sho
web applica

Eq

site perform
tisfaction w
on. The term

dth

Trip Time

ns

ent
s

Differ
balancing

CPUs, disk
e tasks into
4-3.

to calcula

006, Peter
to Applica

(WAN) app

quation 4-1:

owed WAN
ation perfor

quation 4-2:

mance depen
when visiting
ms used in t

The respo
when the
response ti
The payloa
to the bro
image files
Rate of tr
generated
Usually, b
separate ba
Amount of
to the serve

The numb
could be im
process of
Number of
example, In
default.
Compute ti
Compute ti

rent types
comprises

k storages a
different av

ate respon

Sevcik and
ation Delive
plication per

 The origina

N performan
rmance. The

: The web ve

nds on resp
g the websi
these two eq
nse time is
pages are
me is measu
ad term repre
wser, includ
s).
ransfer to a
from multip
andwidth is
andwidths.
f time requir
er and back.

er of resour
mages, JS, C
rendering th
f simultaneo
nternet Expl

ime on the se
ime on the cl

s of load
several di

and other re
vailable reso

nse time

d Rebecca W
ery System
rformance

al WAN per

nce, but wit
e modified e

ersion of per

ponse time.
ite, while a
quations are
the total tim

displayed b
ured in secon
resents the to
ding markup

and from th
ple resources

expressed in

red for a data

rce files a re
CSS, or any
he page.
ous requests
orer perform

erver.
lient.

balancer
ifferent typ
esources. It
ources. Som

Wetzel of N
ms”[74]. The

and include

rformance e

th a few m
equation is

rformance e

A lower re
higher resp

e described
me from wh
y the user’

nds (or millis
otal number
p and all res

e browser.
s then the b
n bytes per

a packet to tr

equested pag
other files r

a browser w
ms a maximum

rs
pes of utili

is the optim
me load bal

NetForecast
e paper foc
ed the equa

quation [74

inor change
shown in Eq

equation [75

esponse tim
ponse time
below:

hen the user
s web brow
econds).
of bytes sen
sources (suc

If the reque
bandwidth m
second by a

raverse from

ge needs. Th
retrieved by

will make for
m of two con

zing server
mal way to
ancing strat

t published
cused on im
ation shown

4].

es it can be
quation 4-2

5]

me will imp
degrades th

requests a p
wser. Typica

nt by the web
ch as CSS,

uested web p
might asymm
averaging al

m the user’s b

hese resourc
y the browser

r resource fi
ncurrent requ

r clusters,
o use resour
tegies are d

a paper
mproving
n here as

e used to
2.

rove the
he user’s

page to
ally the

b server
JS, and

page is
metrical.
l of the

browser

ces files
r in the

les. For
uests by

network
rces that

described

35

Table 4-3: Different types of load balancers [76]

Software-based load
balancers

Software based load balancers are traffic splitters that help reduce
workloads on compute servers by distributing traffics to different servers.
Citrix (netScaler), F5 (BIG-IP), Squid, HA proxy are examples of software
based load balancers.

Hardware-based load
balancers

Hardware based load balancers are greater deployment capabilities. Such a
load balancer is more flexible to work with as they frequently are designed
to support any TCP port or application service. Using this method is more
complicated than using a software-based load balancer, while providing a
competitive edge over software based load balancers. Hardware based load
balancers typically have fewer less flaws as compared to strictly software
based balancers.

Round-robin DNS The service host can be selected by DNS using round-robin load balancing
techniques, over several servers with identical services. This method is
ideal for geographically distributed and internationally used web servers as
traffic can be preferentially distributed locally to reduce communication
delay or distributed more widely to further distribute computational load.

4.2.3 Squid

Squid is a proxy and web-caching server (available under the GNU Public License) that
many organizations use to speed up client access to commonly accessed data. It is a caching
proxy for the web supporting protocols, such as HTTP, HTTPS, FTP, etc. It reduces bandwidth
demands upon the web server and improves response times by caching and reusing frequently
requested web pages [77]. Squid reduces the load on the application servers by reducing the
number of user requests that must actually be served by the web server.

When a HTTP request is made, the web server needs to serve some amount of content (such
as scripts, HTML, CSS, and images). If a single server needs to serve all this content for
hundreds of requests, performance will degrade as the number of requests increase. With a
single server responding to hundreds of HTTP requests per second, the system’s performance
depends on factors such as: the number of scripts, amount of HTML/CSS, number & size of
images, etc. that need to be served. If the load is sufficiently high, the end users many
experience poor performance. Squid can be configured in such a way that it is able to round
robin load balance according to the request. For example, if an ‘Ifoodbag’ user requests a page
containing images, HTML, CSS, or a script connected to the database, then webserver-1 could
be ask to serve the images while webserver-2 will serve CSS or database content. The
distribution of the load will depend on how many web servers are available in the server cluster
at a given time.

Squid allow web service administrator to distributed more requests to servers with better
hardware and fewer requests to servers with poorer hardware using weighted round robin
queuing. Squid can also notify the web service administrator that all the requests from a given
user id failed for some reason. Squid proxy servers can establish hierarchical relationships
through which cache data can be shared and requests can be passed to the proxy server in
standard proxy mode [78].

4.2.4 HA Proxy

The HA (High Availability) proxy provides a high availability, load balancing, and proxy
solution for TCP and HTTP based applications. It is open source, free, very fast, and quite
reliable in comparison to other solutions. This solution is particularly well suited for websites
with high loads. Because of its mode of operation, it is extremely easy and riskless to integrate
with an existing architecture, while it also offers the possibility to avoid damage to webservers.

36

Today, processing tens of thousands of requests per second from users is possible for hardware,
but these sorts of loads are rarely handled by multi-process or multi-threaded models because
of memory limits, system scheduler limits, and lock contention. To support these high loads the
HA proxy utilizes an event-driven, single process model that allows it to support a very large
number of connection while operating at very high speed. The event driven model does not
have the limitations of multi-process or multi-threaded models because it allows all of the task
to run in user space with fine grained resource and time management [57].

4.3 Web server/Application server
A webserver is a program that utilizes software and networking to deliver web pages via the

Internet or an Intranet. Two leading web server are Apache (the most widely used webserver)
and Microsoft’s Internet Information Server (IIS). In this project, Apache has been used as a
webserver. Powerful features (such as openness, extensibility, portability, and flexibility) of the
Apache webserver provide benefits to website administrators which lead to higher efficiency
and greater utility [79]. Ifoodbag’s web application was built with the open source
programming language PHP and uses MySQL as its database.

In this project we have used a group of servers, organized as a server cluster or server array,
working closely together to improve performance and/or availability over that provided by a
single server. Our goal is that if any system failure occurs then other webserver is used to
provide services to make system (i.e., by exploiting redundancy to increase reliability). All web
servers within the cluster are built by installing the same application and they are all connected
to same database.

When a failure occurs on one server in a cluster, another server takes over and the workload
is redistributed to another server within the cluster. The benefits of using a server cluster are
that it ensures users have constant access to important server-based resources. This solution is
also well suited for applications that have long-running in-memory state or frequently updated
data. In our architecture two servers will always be active in the cluster, the number of
additional servers will scale up or down according to demand. These additional servers also
provide a higher level of availability, reliability, and scalability compared to using a single
computer. Some of the possible reasons for creating a server cluster are [80, 81]:

• Avoiding application and service failures, which could affect web and essential services.
• Avoiding system failures and reducing the impact of hardware failures, which affect different

resources (such as CPUs, drives, memory, network adapters, and power supplies).
• Minimizing the impact of site failures in multisite organizations, which can be caused by natural

disasters, power outages, or connectivity outages.

There are a number of different webservers available to host your applications. A few of
them are free, while others are avialble on a pay to use basis. There are four leading web
browsers: Apache, IIS, lighttpd, and Jagsaw. In addition to these web servers, there are
additional commercial web servers available in the market, but they are very expansive. Major
commercial web servers are Netscape's iPlanet, Bea's Web Logic, and IBM's Websphere.
Table 4-4 briefly describes a few of these webservers.

37

Table 4-4: Different types of web servers [82, 83]

Apache HTTP Server The Apache HTTP server is the most popular webserver in the world. It
was developed by the Apache Software Foundation. The Apache web
server is open source software and offers cross platform support. More
than 60% of webservers world-wide run the Apache Web Server [84].

Internet Information
Services

Microsoft’s Internet Information Server (IIS) is a high performance Web
Server. Because IIS is tightly integrated with the OS it is relatively easy to
administer. IIS offer increased choice and control, without giving up
reliability or security [85].

Lighttpd Lighttpd is a free web server designed for speed. It provides all the
essential functions of a web server. Jan Kneschke, a German software
developer, developed Lighttpd. It is designed to have low memory
consumption, be fast & secure, and offers more effective management of
CPU load compared to other webservers. Lighttpd is frequently a solution
for servers that are suffering load problems. It is open source software
licensed under the revised BSD license.

Sun Java System Web
Server

This web server from Sun Microsystems (now Oracle) is a secure, easy to
use web server well suited for medium and large web sites. Although this
web server is free, it is not open source. It is available for most major Oss,
specifically it runs on Windows, Linux, and Unix platforms.. It offers
built-in HTTP reverse-proxy capabilities to provide a highly scalable
HTTP front-end to applications. The Sun Java System web server supports
various languages, scripts, and technologies such as PHP, Ruby on Rails,
Perl, Python, and more.

Jigsaw Server Jigsaw server is a java-based webserver deployed by the World Wide Web
Consortium (W3C). It is open source and free and can run on various
platforms (such as Linux, Unix, Windows, Mac OSX, and Free BSD). The
Jigsaw server is an experimental platform for W3C and the Internet
community with a modular architecture and full HTTP/1.1 support.

Apache Tomcat Apache Tomcat or simply Tomcat is an open source webserver and servlet
container developed by the Apache Software Foundation. It implements
Java Servlet and Java Server Pages technologies. Apache Tomcat is one of
the most popular options for lightweight development scenarios. Even
though it is a web server, it can also meet the requirement for an
application server in many cases.

4.4 Caching web data (memcached)
Cache is a high-speed access storage area that can be a reserved portion of either main

memory or a storage device. Caching is the process of storing data in a cache. Today’s cloud
supports a number of caching engines. For example, AWS ElastiCache supports two open
source cache engines:
Memcached Memcached was developed by Brad Fitzpatrick for LiveJournal in 2003 [86]. Today,

top worldwide websites and portals such as Facebook, Wikipedia, twitter, and others
use memcached. Memcached is an open source & free, high performance, distributed
memory object caching system, intended to speed up dynamic web applications by
alleviating database load [87]. Memcached aims to decrease high database loads by
adding a scalable object-caching layer to an application[60]. Many large companies
use mamcached in their system (such as: LiveJournal, Wikipedia, Slashdot, and Digg).
Memcached is designed to be simple in order to promote rapid deployment, ease of
development, and to solve many problems facing large data caches.

38

Redis Redis is a popular open-source in-memory key-value store that supports data structures
such as sorted sets and lists. Redis supports cross machine redundancy using
master/slave replication.

Memcached was developed with some specific underlying assumptions, such as fast
networks, cheap memory, and that memory storage should be spread out across multiple
machines rather than a single server. A global hash table is responsible for a cache that can
access multiple web processes to learn of changes made by others and to respond appropriately.
Table 4-5 describes the major tasks perform by memcached to speed up the response process.

Table 4-5: Different tasks perform by memcached [60].
Server Instances Generally, a number of memcached server instances are running

throughout the network wherever free memory is available. Memcached
instances listen on a specific port and IP address. A specific amount of
memory is assigned to memcached on each machine. The memcached
software will use all the spare memory dedicated to it over the entire
network. Multiple server instances are easy to handle by configuring them
to listen on different ports.

Client Read Process When an application determines what object is needed, it uses a key (such
as object id) as input to a hashing algorithm to check whether the object is
available or not. If the object is available, the object is returned in response
to the request; otherwise memcached fetches the object from the database
and places a copy of it in its cache for later use.

Client Write Process When an object fetched from the database or cache is updated then the
updated object is saved in both the database and the cache. This maintains
the integrity of the data, but also involves an extra update to the database.

Hashing and Keys In a client server relationship, the server instances store the data of
different web servers and provide this data to the server at some time in the
future. The web application maintains a hash table to determine which
server instance stores information about what information in stored by
which memcached instance(s). So that, requested objects are sent to
appropriate server in the distributed cache before accessing database to
respond to requests. A set of keys is used to look up results via a hash.
Eventually, the keys (and the information associated with these keys) are
spread out across the multiple nodes running memcached.

Independence Each memcached server instances is operated independently. If a server
fails within a memcached cluster, then the remaining active servers run as
normal. However, clients can be configured to route requests to other
machines. All data contained within theinstance that fails will be lost when
it fails.

Expiration Memcached follows the least recently used (LRU) caching principles,
hence it discardes the least recently used data first from it memory. That
means, the most frequently used data will remain in the cache, while data
that are not used frequently will be phased out as new data enters the
cache.

4.5 D
A dat

managed
as user i
provides
analyze u
to place d

A dis
Managem
may be s
geograph
that the d
each of th
that looks
process d
data. In o
change oc

Maste
to one or
ripple thr
each upd
asynchron
the chang
synchron
depicts m

Maste
to user re
system.

Database
tabase is a c
, and update
nformation
users with

usage, and s
data in diffe

stributed d
ment System
stored in m

hic location
distributed d
he database
s for chang
distributes a
our project w
ccurs.

er-slave rep
r more othe
rough to the
date. Repli
nous. The d
ges are mad

nous. If chan
master-slave

Figur

er and slave
equests. Ta

e
collection o
ed. Typicall
, product d
the approp

so on. In the
erent geogra

atabase is
m in which
multiple ins

or different
databases ar
es contains u
ges in the di
all of the d
we used a m

plication ena
er database
e slaves. Eac
ication in
difference b
de at the sa
nges are enq
 replication

re 4-5: Ma

e replication
able 4-6 des

of informatio
ly a databas

details, tran
priate capab
e ‘Ifoodbag
aphic locatio

a database
storage dev
tances and
t geographic
re up to dat
up to date d
istributed da

databases ch
master-slave

ables data fr
servers cal

ch slave sen
a master-s

between the
ame time in
queued and
n of database

aster-slave r

n of databas
scribes the

on that is o
se contains

nsections, an
bilities to co
’ infrastruct
ons.

e that is u
vice are no
these insta

c locations
te, replicati
data over tim
atabase. Wh
hanges to e
e replication

from one da
lled slaves.
nds a messa
slave comb
se is simply

n both the m
written late
es.

replication o

ses is design
advantages

rganized so
aggregation
nd inventor
ontrol read/
ture we use

under the c
ot (all) attac
ances can b
spread thou
on and dup
me. Replica
hen changes
nsure that q

n process to

atabase serv
When the

age stating th
bination ca
y the time w
master-slave
er, then it is

of databases

ned to impro
s of using m

o that it can
ns of data re
ries. A data
write acces
a distribute

control of a
ched to a co
be located
ugh out the
plication pro
ation uses s
s are identif
queries will
update our

er (the mast
master log

hat it has su
an be eithe
when the ch
e databases,
asynchrono

(adapted fr

ove perform
master-slave

 easily be a
ecords or fil
abase admi
ss, generate
ed database

a central D
ommon CP
either in th
network. T

ocesses ensu
specialized
fied, the rep
ll return the
r database w

ter) to be re
gs the updat
uccessfully
er synchro
hanges prop
, then the u
ous [88]. Fi

rom [88])

mance in res
e replicatio

39

accessed,
les, such
inistrator
 reports,
in order

Database
PU. Data
he same
o ensure
ures that
software
plication
e current
when any

eplicated
tes, they
received
nous or

pagate. If
update is
igure 4-5

sponding
on in the

40

Table 4-6: Advantages of master-slave replication [88]

Scale-out solutions To improve performance we can split the load of database queries across
multiples database servers. Replication distributes the update of one master
to one or more slaves. If any application requires more reads than writes or
updates, then a master-slave solution is well suited for this environment. In
such a scenario, all writes and update must take place on the master server,
while reads can utilize any one of the slave servers.

Analytics Live data can be updated or created in the master, while analysis of the
data can take place without negatively affecting the performance of
master.

Long-distance data
distribution

Long distance data distribution is so easy. For example, when a local
office needs to work with a subset or all of the data; then you can easily
create a local copy of the data for their use without giving them permission
to permanently access the master server.

Backups As data is replicated to the slave, slaves are able to pause the replication
process or make a backup without corrupting the corresponding master
data.

Increasing the
performance

Master-slave replication can improve the performance of writes (since the
master is dedicated to updates), while dramatically increasing read speed
across an increasing number of slaves.

Failover alleviating In a master-slave environment, any slave can become the master in the
event of a failure of the master.

Spreading the load Load can be spread across different slave databases, as needed. For
example, different sales data could be distributed to different
departments – so that each department has the data relevant to it.

4.6 Cloud Storage
Cloud storage is a model of networked enterprise storage where data is stored in virtualized

pools of storage. The cloud provider operates large data centers. Then organizations that
require their data to be hosted buy or leased storage capacity from the cloud provider.
Physically, the resources might be located in different geographical locations, thus the safety of
data depends upon the cloud provider and on the application that leverages the cloud storage.
Cloud storage provides a user with the ability to back up data stored on a server, typically this
server is hosted by a cloud service provider [89]. Most service providers also offer redundant
storage. When a data center is hit by a natural disaster or power outage, the data can still be
safe and available to the user through an identical copy of the data stored in a separate data
center. Amazon Glacier is an example of cloud storage, which offer an extremely low-cost
storage service that provides secure and durable storage for data archiving and backup. Using a
cloud Storage Gateway, you can back up to a given point-in-time snapshot of your on-premises
application data to cloud storage for future recovery. There are three important characteristics
of cloud storage [90, 91]:

• First, consider a storage service over a network. Purists will insist that this network must be the
Internet and it must use a web services API and REST protocol.

• The second characteristic is that the solution is easy to scale. Scaling is more than just
increasing capacity. Scaling should address how to reduce effort and costs. Effort is reduced by
the removal of detailed provisioning tasks intrinsic to traditional storage.

• The last characteristic is that the solution is easy to manage. Every storage vendor claims their
solution is easy to manage. A single administrator can manage a petabyte across hundreds of
servers. Cloud storage should be easy to manage, as it is a single storage appliance. Today most
cloud storage management is truly easy, regardless of the claims by different storage vendors.

41

A database snapshot is a read-only, static view of a database (the source database). A
snapshot is a copy of your disk volume at a specific moment in time. It contains the full
directory structure of the volume. A snapshot can also be used for incremental backup of
volumes; such as, a restore point of your database, long-term storage, or the starting point of
new Cloud Block Storage (CBS) volumes [92]. A snapshot persists until the database owner
explicitly drops it. Snapshots and replication in a conventional storage system can serve the
same function as a traditional backup strategy.

4.7 Management node
Cloud management strategies typically involve dealing with important tasks, including

performance monitoring (response times, latency, uptime, etc.), security, compliance auditing
and management, and contingency plans. Ideally, you can perform this entire set of tasks from
a management node. There are a lot of management tool available. With a management tool
you can manage the cloud infrastructure, including provisioning management and automation
of enterprise class applications across private, public, and hybrid cloud platforms. A
management tool allows you to automate updates and manage physical, virtual, and cloud
based systems from a single interface. The management node can also accelerate delivery of
innovative services and simplify control of virtualized environments. In this project, we used
‘Cloudify’ as the management tool to manage our cloud platform. Details can be found in
Chapter 5. The main reason to use management node are [93, 94]:

• Reduce infrastructure costs and complexities with an integrated management platform,
• Increase speed of deployment IT operations, and
• Enable dynamic cloud service delivery with reusable workload patterns.

43

5 Implementation
Based on the proposed architecture (described in Chapter 3), in this chapter we consider the

motivation for the proposed solution and describe an experimental setup to measure the
performance of this proposed solution.

5.1 Experimental Setup
To implement a scalable realization of Ifoodbag’s web application in a cloud environment

the proposed design utilizes nodes in different tiers which are connected to each other.
Management nodes are connecting to each of these different tiers in order to monitor the
complete cloud’s health and to implement a policy for scaling the number of applications
instances up and down either manually or automatically based on the traffic or user load.

Figure 5-1 shows the experiment setup that we used to measure the performance of the
proposed solution. In this experimental setup we mainly used the Cloudify* manager, Amazon
Elastic Compute Cloud (Amazon EC2)†, and a simple static Ifoodbag web application
including Apache Tomcat service under the license agreement [95] for testing with Cloudify.
The Cloudify control machine is installed in a personal laptop on a private LAN and the EC2
cloud instances resides in AWS.

Table 5-1 shows the details of each component of the experiment setup. To simulate the
proposed solution and to perform basic testing of the Ifoodbag application, we emulate
Cloudify in the local cloud [96]. In the following sections we described Cloudify and AWS
EC2 clouds, including our main motivations for selecting them, how to install them, and how to
deploy them in our experimental setup. Finally in section 5.6 we described a mechanism for
generating a traffic load for the Ifoodbag application server in order to experiment with our
scaling rules as defined in the Ifoodbag application recipe.

Figure 5-1: High level experimental setup using Cloudify and EC2 clouds

* Cloudify is an enterprise-class open source PaaS stack that sits between your application and your

chosen cloud. Details can be found at: http://www.cloudifysource.org/
†Amazon Elastic Compute Cloud (Amazon EC2), available at: http://aws.amazon.com/ec2/

44

Table 5-1: Experimental configuration

Network Cloudify machine is sitting on the gigabit per second private LAN. There is a fixed
link with 250 Mbps of bandwidth from this LAN to the Internet. This fixed link
was used to connect to the public network. Additionally, we tried to connect to the
public network via 3G internet connectivity.

Web client As a web client we could use any web browser (e.g. Internet Explorer, Google
Chrome, or Mozilla Firefox).

Client machine Operating System: OS X Mavericks 10.9.1
RAM: 8.00 GB
Processor: Intel®Core™ i5 @ 2.6GHz, x64-based processor
Hard disk: 250GB

Cloud Instances Instance Type: m1.small (See section 5.5 for details on Amazon Instance types and
pricing)
Configuration of the instance: RAM: 1.7 GB, OS: Amazon Linux 3.4 AMI
2013.09.2, 1, Processor: 32 bit 1 vCPU of Intel Xeon Processor

Tools or
Software Used

We used the latest version of Java JDK as this was a prerequisite for installing the
Cloudify shell [97]. We used TextWrangler tools [98] for configuring
(changing/configuring .groovy files, as cloudify is mainly written in the groovy
language[99]).

Plots To create plots we used Microsoft’s Office Excel 2010.

5.2 Motivation for choosing Cloudify
Some of the drivers for moving to clouds include on-demand availability and scalability

(enabling us to scale the application resources to efficiently consume what is needed now);
rapid deployment and agility (as this reduces the time to deploy the application by utilizing an
agile process for provisioning computing resources); and cost-reduction (thus enabling us to
realize cost benefits by procuring cloud based computing resources without the overhead of
system administrators or need to set up the underlying infrastructures).

However, using clouds commonly requires us to compromise on one or more of the
following objectives:

No Code Change One of the primary objectives when moving to a cloud solution is to deploy
the application in the cloud without rewriting any of the code. This can be
challenging if the application is not ready for an elastic cloud-based
deployment. It can be significantly more difficult if the cloud’s prepackaged
images do not provide the versions of services on which the application
relies or because these images simply do not provide the specific
environment that the application requires.

No Lock-in An important objective is facilitating moving to a different cloud provider
when necessary. Maintaining this flexibility requires that we avoid
customizing the application to work in a specific cloud, as such
customization can make it challenging to change to another of the many
cloud providers due to the complexities of migrating to a new architecture.

Full Control It is desirable to have full control of the environment in which the
applications runs in order to fine-tune, monitor, upgrade, and configure
resources in the cloud according to the application’s needs. This means we
must avoid the limiting environments that some clouds provide.

45

After considering all of the above objectives and our organization’s individual business
requirements, Cloudify was selected as our enterprise cloud management tool. This tool fits
well into our proposed cloud architecture for Ifoodbag. An introduction to this tool will be
given in the next section.

5.3 Introduction to Cloudify
Cloudify is an enterprise-class open source PaaS stack that sits between the application and

the chosen cloud [100]. It enables the application to operate smoothly, while Cloudify monitors
the applicaiton and ensures that the resources the application needs are available regardless of
the cloud and stack used. Cloudify offers the following features:

Any App, Any Stack Any application can be moved to the cloud without changing any code,
regardless of the application stack (i.e. Java/Spring, Java EE, Ruby on
Rails, etc.), database (e.g., relational databases, such as MySQL, or non-
relational databases, such as Apache Cassandra, etc.), or any
middleware components that the application uses. This enables us to
achieve the objective of “no code changes”.

Any Cloud Any application can be moved to any cloud environment, from any
platform, at any time. Cloudify supports or has been tested on almost all
public/private clouds, including Amazon EC2, Windows Azure,
Rackspace, and private clouds (such as OpenStack, CloudStack,
VMWare vCloud, Citrix XenServer, etc.) Additionally, enterprises can
deploy the same application in multiple environments (say, for cloud
bursting [101]). Cloudify hides the APIs and configuration of a cloud
from the application, thus the application can more easily be moved
from cloud to cloud. This enables us to achieve the objective of “no
lock-in”.

Full Control The application can have the full control of its environment. In many
clouds, there is less control because the underlying infrastructure does
not exposed suitable interfaces to the public, and hence a management
tool cannot monitor and fine-tune the cloud for the application as it
would with traditional data centers and applications. However, Cloudify
does have access to the infrastructure via its cloud driver and controller,
hence it can provide a much greater level of control, if the organization
wants [100].

5.4 Deploying Cloudify
We deployed Cloudify version 2.6 in “.nix” (MAC OS X Mavericks) machine, but it also

works for machine running Microsoft’s Windows OSs [102]. There are some prerequisites
[103] to compile the Cloudify distributions (details are available at [104]). In order to run the
Cloudify shell, after downloading the distribution you simply unzip it, then browse the bin
directory of the distribution and run the “./cloudify.sh (for .nix)” or “cloudify.bat (for
Windows)” file (detailed step by step installation and configuration are available in Appendix
A). Figure 5-2 shows the Cloudify shell prompt after running the cloudify.sh file. In the
following paragraphs we described how Cloudify works and what the Cloudify architecture
looks like.

46

Figur

Cloud
its servic
services &
simple pr

1

2

* Apache

technolo

re 5-2: Clo

dify uses se
ces & their
& their reso
rocess, as fo

1. Deploym

 C
m
d
a
h

 P
e
la

 F

2. Deploy t

 P
o

 D
o

Tomcat is an

ogies. Details

oudify Shell

ets of instruc
r interdepen
ources. Dep
ollows:

ment prepara

Cloud setup
machine det
driver. For
and location
hardware, an

Prepared th
experiment
aunch the If

Finally desc

the applicat

Provision re
our case EC

Download, i
our experim

n open sourc
s available at

l

ctions and m
ndencies, in
ploying and

ations

p (for our im
tails (hardw
our experim

n as Europe
nd locations

e binaries
we used si
foodbag app

ribe the app

ion and it se

equired mac
2 cloud driv

install, and
ment this is A

ce software i
t: http://tomc

methods cal
n order to

d managing

mplementat
ware, image
ment we us
e zone. For
s - see sectio

required fo
imple Apac
plication in

plication’s l

ervices

chines in th
vers).

configure t
Apache Tom

implementat
cat.apache.or

lled recipes
monitor, s
the applica

ion we use
e ID, locatio
sed Linux i
detail abou

on 5.3 of th

or the serv
che Tomcat

the cloud.

lifecycle and

he cloud by

the required
mcat).

tion of the Ja
rg/

 to describe
self-heal, a
ation with C

d EC2 clou
on, key file
image with
ut EC2 clou

his chapter.

ices and ap
t* and run a

d its service

y configurin

d services of

ava Servlet a

e an applica
and scale in
Cloudify be

uds) and co
e, etc.) in th
h m1.small
ud setup, in

pplication.
a simple jsp

es using rec

ng cloud dr

f the applic

and JavaServ

ation and
n/out its

ecomes a

nfigured
he cloud
instance

nstances,

For our
p file to

ipes.

ivers (in

ation (in

ver Pages

3

The a
architectu

No C
ec2-cloud
achieve th

Figur

No L
cloud dri
exists in
move from

 In
a

 C

3. Finally
graphica

above proce
ure enables

Code Chang
d.groovy fil
he No Code

re 5-3: Ac

ock-in: Thi
ivers. For o
any open c
m EC2 to a

nstall the
application)

Configure th

monitor an
al user interf

esses are m
us to achiev

ge: Just to c
les) and Ifo
e Change ob

chieving the

is objective
our experim
loud platfor

any other clo

application
.

he metrics u

nd manage
face (GUI)

made simple
ve the appli

configure cl
oodbag app
bjective.

No Code Ch

is achieved
ment we us
rm. Hence
oud platform

(for our e

used to mon

the deploy
or the Clou

e and possib
ication’s obj

loud drivers
plication rec

hange objec

d by configu
sed the “SM
there is No
m. Figure 5-

experiment

nitor and sca

yment usin
udify shell.

ble due to t
jectives, as

s (in our ca
cipes. Figur

ctive

uring the co
MALL_LIN
o Lock-in if
-4 shows th

we used

ale the appli

g Cloudify

the Cloudify
follows:

ase us ec2-c
re 5-3 show

ompute temp
NUX” temp
f in future if
his objective

a simple I

ication’s fea

y web man

fy architectu

cloud.proper
ws the proc

plate section
plate. This t
f Ifoodbag
e.

47

Ifoodbag

atures.

agement

ure. This

rties and
edure to

ns of the
template
wants to

48

Figur

Full
Cloudify
metrics a
Figure 5-
them: To
have achi

Figur

By co
achieve a
at run tim
the instru
applicatio
or custom

re 5-4: Ac

Control: T
shell by c

and scaling r
-5 shows th
otal Reques
ieved the fu

re 5-5: Ac

onfiguring a
a number of
me Cloudify
uctions in a
on recipes w
m metrics).

chieving the

This is ach
configuring
rules. For o
hese monito
st Count a

ull control o

chieving the

and optimiz
f desirable f
y will autom
a recipe) an
we can easil
Other featu

No Lock-in

hieved usin
g applicatio
our experime
oring/scalin
and (Numb
bjective.

Full control

ing the Clo
features, suc
matically rep
nd Auto Sca
ly scale in/o
ures include

n objective

ng the Clo
on/service r
ent we crea

ng metrics a
er of) Acti

l objective

oudify contr
ch as: autom
place this m
cale- Your w
out our app
e any app,

oudify web
recipes and
ated several
and shows m
ive Session

rollers or ap
matic self-h

machine with
way (By co

plication ser
any stack a

manageme
d defining c

monitoring
meters asso

ns. This figu

plication re
ealing (If a
h a new mac
onfiguring s
vices based
and any clo

ent console
custom mo

g or scaling
ociated with
gure shows

ecipes we ca
any machine
achine, by fo
scaling rule

d on out-of-
oud, autom

e or the
onitoring
metrics.

h two of
how we

an easily
e crashes
ollowing
es in the
 the-box

mation of

the entire
provision

Cloud
enables a
Cloud Co
Service A
realize th
no lock-i
service i
architectu

Univer

Cloud

Cloud

Using
required t
the appli
machines

Figur

e applicatio
ning any VM

dify uses a
a simple dep
ontrollers, a
Adapters th
he key featu
in, and full
initialization
ure of these
rsal Service

Controllers

Driver

g this archi
to run any s
ication stac
s and image

re 5-6: Clo

on lifecycle
Ms.

layered ar
ployment pr
and Cloud D
hat are depl
res that allo
l control by
n, scaling
three layer

Manager

itecture, it
specific app
ck. Recipes
es for chosen

oudify Arch

e, and fully

chitecture t
rocess. The
Driver. This
loyed in ev
ow the appli
y simply tr
mechanism
s:

The USM
services in
operations
Cloud con
orchestrate
monitors t
on the valu
Using the
virtual env
application

is very ea
plication inc
s use cloud
n cloud.

hitecture

testable on

that hides (
layers are c
s layering i
very Cloudi
ication to ac
ranslating r

m, and serv

M allows depl
n any tier b
s that are to b
ntrollers are
es the dep
the applicatio
ues of real-ti

e cloud drive
vironment a
n.

asy to write
cluding how
d driver co

n your pers

(most of) th
called Univ
is made pos
ify provisio
chieve its o
recipes into
vice monito

loyment and
by using an
be performed
the brains o

ployment of
on, and trigg
ime metrics a
er it is poss
nd abstract t

e recipes d
w to install,
onfiguration

sonal laptop

he impleme
ersal Servic
ssible by C
oned machi
bjectives w
 actions wi
oring. Figu

d managemen
extensible re
d.
of the system
f the applic
gers alerts an
and loads.
ible to host
the provision

describing a
start, orche

n files that

p without h

entation det
ce Manager

Cloudify’s U
ine. These

with no code
with the inst
ure 5-6 sh

nt of any mi
ecipe to des

m. A cloud c
cation, con

nd scaling ru

t provisionin
ning details

all the com
estrate, and

describes

49

hassle of

tails and
r (USM),
Universal

adapters
e change,
tallation,
ows the

iddleware
scribe the

controller
tinuously

ules based

ng in any
from the

mponents
monitor
specific

50

5.4.1

After
in the pr
Cloudify

clo

Figur
troublesh
computer

Figur

Figur
the local

Figur

Boot-

completing
revious sect
shell:

oudify@defa

re 5-7 show
hooting purp
r.

re 5-7: Bo

re 5-8 show
cloud.

re 5-8: Clo

strapping

g all the EC
tion, we no

ault>bootstr

ws the boo
pose we al

ootstrapping

ws the Cloud

oudify Web

g Cloudify

C2 cloud con
ow bootstra

rap-cloud e

otstrapping
lso bootstra

g Cloudify on

dify web m

Manageme

fy on EC2

nfiguration
ap Cloudify

ec2

process of
apped Clou

n EC2

management

ent Console

files and co
y by issuin

f Cloudify
udify on th

console aft

ompiled Clo
g the comm

on EC2. F
e local-clou

ter we have

oudify as d
mand below

For simulat
ud of our

e bootstrapp

described
w in the

ting and
personal

ped it on

5.4.2

After
Ifoodbag
Figure 5
installing
personal
deploying
somethin
without n
troublesh

Figur

Figur
local clou

Figur

Deplo

Cloudify h
application
-9 shows t

g the applic
computer.

g the applic
ng goes wro
needing to

hooting.

re 5-9: De

re 5-10 show
ud.

re 5-10: Ifo

oying the

has been dep
n (a simple j
the Ifoodba
ation in the
This illus

cation to the
ong we can

launch any

eploying the

ws the Ifoo

oodbag web

Ifoodbag

ployed on th
jsp page tha
ag applicati
e EC2 cloud
trates the

e cloud it is
easily trou

y VMs in

sample Ifoo

odbag web a

application

g applicat

he EC2 clou
at is only us
ion installa
d, we simu
beauty of

s possible to
ubleshoot th
the cloud,

odbag web a

application

launched in

tion recip

ud, now it is
sed for testin
ation proce
ulate the pro

this open-
o check if e
he process i

avoiding u

application l

after it wa

n local-cloud

pe

s the time to
ng purposes
ss in the l

ocess in the
-source stac
verything is
n the local-

unnecessary

locally

as successfu

d

o deploy ou
s) in the EC
local-cloud.
e local-clou
ck as even
s working o
-cloud envi

y cloud cos

ully launche

51

ur simple
C2 cloud.
. Before

ud of our
n before
or not. If
ironment
sts while

ed in the

52

5.5 Motivation for choosing AWS
Rapid changes in technology and business processes over the past decade have created an

ongoing IT infrastructure challenge for experts to manage as the infrastructure needs to
constantly (or periodically) change. Indeed, the typical business application architecture has
completely changed in last ten years, as it evolved from desktop-centric installation to
client/server solutions, followed by loosely coupled web services and service-oriented
architectures (SOA) and virtualization. Reducing cost and increasing reliability are major issues
that must be addressed by enterprise IT. While each evolutionary step built on the previous
technology the evolution has introduced new challenges, required changes in strategy, and
offers opportunity. Cloud computing has introduced new challenges for the latest IT
infrastructure (as discussed in Chapter 2). Amazon Web Services (AWS) [12] provides a
complete set of cloud computing services that enable developers to build sophisticated, scalable
applications by exploiting a highly reliable and scalable infrastructure to deploy web-scale
solutions with minimal support and administration costs, and greater flexibility that available
using one’s own infrastructure or a datacenter facility [105].

5.5.1 The differences that distinguish AWS

The most important features that distinguish AWS from other vendors offering traditional
IT computing infrastructures are [105, 106]:
Flexible The first key difference between AWS and other IT models is increased

flexibility. AWS enables organizations to use resources (such as
programming models, OSs, databases, and architectures) that they already
have experience with. In addition, flexibility helps organizations to deliver
IT solutions when demands arise in order to serve their diverse business
needs. Finally, AWS provides flexibility when provisioning new services.
Instead of spending time to plan, budget, procure, set up, deploy, operate,
and hiring personnel for a new project, you can easily deploy servers on
the cloud as and when you need.

Cost-effective Cost is one of the most complex elements of delivering contemporary IT
solutions. For example, developing and deploying an e-commerce
application such as ‘Ifoodbag’ can be a low budget and successful
deployment, followed by cost that track with the number of users and their
usage of the application. In contrast, owning and operating your own
infrastructure can incur considerable initial cost. The cloud provides an
on-demand infrastructure that enables organizations to only consume the
resources as they actually need and pay only for the resources that they
use, avoiding the need to make any long-term commitments.

Scalable and elastic In a traditional IT organization, scalability and elasticity often involved
considerable investment in infrastructure. The term ‘elasticity’ used by
AWS means scaling up and down of computer resources to follow
business demand. For example, if traffic to a traditional e-commerce shop
increases unexpectedly during a short period (for example, during a special
offer period), then the administrator needs to be confident that the existing
infrastructure can handle this traffic load and that there will not be any
interference with normal business operations. In contrast, by using an
elastic load balancer and dynamic scaling AWS cloud based resources can
automatically be scaled up to meet unexpected demand and then these
resources can be scaled down as demand decreases. AWS allows
organizations to add or subtract resources to their applications in order to
meet customer demand, while managing costs.

53

Secure AWS ensures the confidentiality, integrity, and availability of your data
and promises to maintain your trust and confidence. In order to provide
end-to-end security and end-to-end privacy, AWS builds services
following security best practices.

Experienced The AWS cloud provides levels of scale, security, reliability, and
privacy for an application implemented in Amazon’s cloud. AWS
has built an infrastructure based on the lessons they have learned
from over sixteen years of experience in delivering large-scale
infrastructure by following reliable, secure methods.

5.5.2 Introduction to AWS

AWS is a comprehensive cloud service platform that offers compute power, storage,
content delivery, and other functionality that organizations can use to deploy applications and
services cost effectively with flexibility, scalability, and reliability. Today AWS offers a variety
of infrastructure services. The AWS services described in the following subsections are
suggested for the implementation of the ‘Ifoodbag’ cloud infrastructure.

5.5.2.1 Amazon Elastic Compute Cloud (Amazon EC2)

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that allows you to buy
compute capacity in the cloud, which is resizable whenever you want. You can create a bundle
including an OS, application software, and associated configuration settings as an Amazon
Machine Image (AMI). Then you can use these AMIs to provision multiple virtualized
instances or decommission them using simple web service calls to scale capacity up and down
quickly, as your business operation requirements change. Amazon EC2 in designed to make
computing easier for developers and system administrators. It has a simple web service
interface that allows creating instance and configuring capacity with minimal friction. Instances
can be launched in one or more geographical regions. Each region contains multiple
“Availability Zones” with distinct locations. If failures occurs in a specific availability zone,
then another availability zone in the same region can provide services via low latency network
connectivity [105], [106].

5.5.2.2 Elastic Load Balancing

When traffic grows for an application, it is best practice to not allocate all the traffic to a
single instance. Instead the incoming traffic should be distributed by an elastic load balancer
using the Elastic Load Balancing service. Incoming traffic is automatically distributed across
multiple instances through elastic load balancing. This load balancing also enables you to
achieve even greater fault tolerance in your applications by providing the necessary amount of
load balancing capacity needed according to the current traffic load. The elastic load balancer
detects unhealthy instances and automatically reroutes traffic to healthy instances until the
unhealthy instances have been restored. Elastic Load Balancing can be enabled within a single
availability zone or across multiple zones (for even more consistent application performance).

5.5.2.3 Amazon Virtual Private Cloud (Amazon VPC)

Amazon Virtual Private Cloud lets you create a virtual network as a logically isolated area
within the AWS cloud. You can launch resources in this network that you have defined. You
can enable IPSec tunnel mode to ensure secure connection between one or more gateways in
your data center to a gateway of your VPC. You can allocate your own IP address range and
subnets; configure a route table, default route, and network gateways to suit your own
preferences – giving you complete control over your virtual networking environment. Changes
to the network configuration of your Amazon VPC are easy. For example, you can create a
subnet for your web server that has access to the Internet and place your database or application

54

server in another subnet without Internet access. Amazon also allows you to create a hardware
virtual private network (VPN) connection between your corporate data center and your VPC.

5.5.2.4 Amazon ElastiCache

Performance and response time to a request is the most important factor in delivering any
IT solution. Amazon ElastiCache is a web service that improves the performance of web
applications by allowing you to retrieve information from in-memory caching system. Such in-
memory caching systems are faster than disk-based databases. The Amazon ElastiCache
service can be used to reduce the overhead associated with data storage infrastructures and also
provides a more resilient system that can mitigate the risk of an overload that could result in
slow response times to requests. Additionally, ElastiCache provides enhanced visibility of the
key performance metrics associated with your memcached or redis nodes. Further details about
memcached were given in section 4.4.

5.5.2.5 Amazon Route 53

Amazon Route53 is a highly scalable Domain Name System (DNS) web service that allows
you manage all of the DNS records for every domain that you would like to manage. Route53
was designed for organizations to provide an extremely reliable and cost-effective way to route
traffic to an application that a user want to access by translating a domain name (such as
www.Ifoodbag.se) into the IP addresses that the computer user will use to interact with the
application. Route 53 is used to connect user requests to the relevant element of an
infrastructure running in AWS, such as an EC2 instance, an elastic load balancer, or database.
A dynamic DNS is needed since the AWS infrastructure can be scaled up and down, hence
services will not have fixed IP addresses.

5.5.2.6 Amazon Elastic Block Storage (EBS)

Amazon Elastic Block Store (EBS) provides block level storage volumes for use with
Amazon EC2 instances. EBS is network-attached and the content persists independently from
the life of an instance. EBS volumes are exposed as a device within the EC2 instance running
on AWS. An EBS volume provides highly available, highly reliable, predictable storage
volumes. Amazon EBS particularly well suited for an application that requires a database, file
system, or access to raw storage. In addition, snapshots of EBS volumes can be created and
stored on Amazon Simple Storage Service (Amazon S3).

5.5.2.7 Amazon Relational Database Service (Amazon RDS)

Amazon Relational Database Service (Amazon RDS) is a web service that makes it easy to
set up, administer, and scale a relational database in the cloud. It offers cost-efficient and
resizable capacity, while minimizing time consuming database administration tasks, freeing up
resources to focus on your application and business. Amazon RDS also allow you to access
most well-known databases implemented with MySQL, Oracle, SQL Server, and PostgreSQL.
This means that the code, applications, and tools you already use today with your existing
databases can be used with Amazon RDS. Amazon RDS automatically patches the database
and keeps backups your database, storing the backups for a configured retention period. In
addition, Amazon RDS makes it easy to use replication to enhance availability and reliability
for databases, while scaling out beyond the capacity of a single database deployment for
read-heavy database workloads.

5.5.3 Amazon EC2 instance types

Instances are the primary building blocks in the AWS cloud. Instances are virtual servers
that run your application(s). Instances are created from an Amazon Machine Image (AMI). You
choose an appropriate instance type to instantiate, depending upon your current business need.
An AMI is a template containing a software configuration and OS. You can either use an AMI

55

provided by AWS or create (and share) your own AMIs. A single AMI can be used to launch as
many instances as you want. When you launch an instance of your application, each instance
type is associated with different types of hardware offering different capabilities, such as
compute, memory, and storage capabilities. Selecting a specific instance type depends on the
requirements of the application or software that you want to run on your instances [107].

A large number of instance types are provide by Amazon EC2 for use in different use cases.
These instance types define different combinations of CPU, memory, storage, and networking
capacity, thus giving you the flexibility to select the appropriate combination of resources for
your application.

Table 5-2 lists some of the different instance types that Amazon EC2 provides. Further
details about instance types can be found in [108].

Table 5-2: Amazon EC2 instance types

Instance
Family

In
st

an
ce

 T
yp

e

Pr
oc

es
so

r
A

rc
hi

te
ct

ur
e

vC
PU

EC
U

M
em

or
y

(G
iB

)

In
st

an
ce

St

or
ag

e
(G

B
)

EB
S-

O

pt
im

iz
ed

A

va
ila

bl
e

N
et

w
or

k
Pe

rf
or

m
an

ce

General
Purpose

m3.medium 64-bit 1 3 3.75 1 X 4
SSD

- Moderate

m3.xlarge 64-bit 4 13 15 2 X 40
SSD

Yes Moderate

m1.small 32-bit or
64-bit

1 1 1.7 1X 160 - Low

m1.large 64-bit 2 4 7.5 2 X
420

Yes Moderate

m1.xlarge 64-bit 4 8 15. 4X 420 Yes High
Compute
optimized

C3.large 64-bit 2 7 3.75 2 X 16
SSD

- Moderate

C3.4xlarge 64-bit 16 55 30. 2 X
320
SSD

- High

cc2.8xlarge 64-bit 32 88 60.5 4 X
840

- 10 Gigabit

GPU
instances

g2.2xlarge 64-bit 8 26 15. 1 X 16
SSD

Yes High

Memory
optimized

m2.lxarge 64-bit 2 6.5 17.1 1 X
420

- Moderate

cr1.8xlarge 64-bit 32 88 244. 2 X
120
SSD

- 10 Gigabit

Storage
optimized

i2.xlarge 64-bit 4 14 30.5 1 X
800
SSD

Yes Moderate

i2.2xlarge 64-bit 8 27 61 2 X
800
SSD

Yes High

i2.8xlarge 64-bit 32 104 244. 8 X
800
SSD

Yes 10 Gigabit

Micro t1.micro 32-bit or 1 Variable 0.615 EBS Very Low

56

instances 64-bit only

5.5.4 Amazon EC2 pricing

One of the primary aims when building an infrastructure in the cloud is cost. As has been
stated multiple time users only pay for what they use. There is no minimum fee and no initial
investment is required. Prices are based on geographical location and which types of instances
you are running. However, pricing also varies with which AMIs that you use. On-demand
instances enable you to pay for compute capacity by the hour with no long-term commitments.
Table 5-3 shows some of Amazon on-demand instance type costs per hour (in US dollars). We
considered the US East (Northern Virginia) region and Linux as the OS. Detailed information
can be found in [109].

Table 5-3: Amazon EC2 pricing for Linux OS and US East (N. Virginia) region

Instance Type vCPU ECU Memory
(GiB)

Instance Storage
(GB)

Linux /UNIX Usage

m3.medium 1 3 3.75 1 X 4 SSD $0.113 per hour
m3.xlarge 4 13 15 2 X 40 SSD $0.450 per hour
m1.small 1 1 1.7 1X 160 $0.060 per hour
m1.large 2 4 7.5 2 X 420 $0.240 per hour
m1.xlarge 4 8 15 4X 420 $0.480 per hour
c3.large 2 7 3.75 2 X 16 SSD $0.150 per hour

c3.4xlarge 16 55 30 2 X 320 SSD $1.200 per hour
cc2.8xlarge 32 88 60.5 4 X 840 $2.400 per hour
g2.2xlarge 8 26 15 60 SSD $0.650 per hour
m2.lxarge 2 6.5 17.1 1 X 420 $0.410 per hour

cr1.8xlarge 32 88 244 2 X 120 SSD $3.500 per hour
i2.xlarge 4 14 30.5 1 X 800 SSD $0.853 per hour
i2.2xlarge 8 27 61 2 X 800 SSD $1.705 per hour
i2.8xlarge 32 104. 244 8 X 800 SSD $6.820 per hour
t1.micro 1 Variable 0.615 EBS only $0.020 per hour

5.5.5 EC2 cloud setup for Cloudify

In order to work with Cloudify and launching our application on EC2 clouds, we first setup
an EC2 cloud account by:

• First creating an account through Amazon Web Services [110].
• Next we select a Machine Image ID (for our experiment we used “ami-6a56b81d”), Hardware

ID (for our experiment we used “m1.small[59]”), Location ID (for our experiment we used the
Europe West location “eu-west-1”), and key pairs (including the secret keys for the account).

Figure 5-11, Figure 5-12, and Figure 5-13, shows how to create a key pair, access key ID,
and secret access key via the Amazon EC2 management console. These security credentials are
used for launching new instances as well as connect to EC2 instances. The AWS security
credentials also can be used to verify who you are and whether you have permission to access
the resources or not.

Figur

Figur

Figur

re 5-11: Cr

re 5-12: Ad

re 5-13: Cr

reate new a k

dded a new k

reating an A

key pair for

key pair nam

Access Key ID

r Amazon EC

med ifoodba

D in Amazo

C2

ag with a sec

on EC2

cret key

57

58

5.6 Webserver load or performance measurement tool -
Httpref

“httperf” is a tool for UNIX-like OSs to measure web server performance and to produce a
traffic load on a webserver. David Mosberger wrote it initially for Hewlett Packard (HP) [111].
It provides an extensive facility to generate a number of HTTP workloads for measuring
webserver performance. The aim of “httpref” is not to produce one particular benchmark, but
rather to provide a robust, high performance tool to carryout both micro and macro level
benchmarking. The three distinguishing characteristics of httpref are [111, 112]:

• Robustness, which includes the ability to generate and sustain server load,
• Support for the HTTP/1.1 and SSL protocols, and
• Extensibility to new workload generators and performance measurement.

Httpref only tests the standard HTTP payload for your application by default, which means,
that it is similar to curl in that it does not load additional assets (images, javascript, or CSS) in
the default test. In order to ensure correct results Httpref should be run on the same machine as
the web server (to avoid any effects due to networking limitations) and you must ensure that the
test tool and the web server are the only processes consuming significant CPU resources on the
client machine. The sample command line [113] shown below generates a load on the indicated
webserver to measure its performance:

httperf –server www.Ifoodbag.se --port 80 –uri /index.php --rate 150 --num-conn 27000 --
num-call 1 --timeout 5

Following the above command line, httpref sends HTTP get requests for the index.php page
to a web service running on the Ifoodbag.se webserver. The maximum number of HTTP
requests that should be generated is num-call*rate. The other parameters are:

server IP address or hostname of the machine where the service is running

port port the service is running

uri The context path of the service on the server

rate Number of connections created per second to make requests to the service.

num-con Number of test calls made to the service

num-call Number of calls per TCP connection.

time-out This is the maximum amount of time that httperf waits for a successful
response.

For our experiment we sent the traffic load to our Ifoodbag application launched on EC2
cloud by issuing the following commands.

httperf --hog --server 54.194.238.66 --port 8082 --uri /ifoodbag --wsess=5,5,2 --num-conns
1000 --rate 10

httperf --hog --server 54.194.238.66 --port 8082 --uri /ifoodbag --wsess=20,10,2 --num-conns
10000 --rate 30

httperf --hog --server 54.194.238.66 --port 8082 --uri /ifoodbag --wsess=20,20,10 --num-conns
20000 --rate 100 --timeout 15

In our experiment, we have created different numbers of sessions with different loads to test
the scaling of our servers. Three-parameter are needed to create sessions. The syntax is: --
wsess=N1,N2,X. Where, N1: number of sessions, N2: Number of calls per session, and X:
delay between calls (sec). The results of these tests are given in section 6.2.

6 Re
In thi

the Ifood
solution i
proposed
optimizin

6.1 S
E

As w
running i
rules in o
deployme
experime
deployme

Figur

Figur
EC2 clou

Figur

esults a
is chapter, w

dbag applica
in comparis

d solution
ng technique

Successf
C2 from
e esplained
in our perso
order to veri
ent of the a
ental setup a
ent of the If

re 6-1: Ifo

re 6-2 show
ud.

re 6-2: Clo

and an
we describe
ation on the
son with tra
with some
es [115]. Fi

ful deplo
m the ma
d earlier we
onal compu
ify that this
application
as described
foodbag app

oodbag appli

ws the Clou

oudify web-

nalysis
e and analy
e EC2 cloud
aditional inf
 other sol
nally the ch

oyment
anagem

started by
uter and con

application
server in th
d in our pro
plication on

ication on E

dify web-m

managemen

59

yze of our f
d. We give
frastructure
lutions [3,
hapter offers

of the I
ment mac

deploying
nfigured wi
n worked as
he EC2 clou
oposed arch

n the EC2 cl

EC2 cloud

management

nt console fo

findings con
a cost analy

e solutions.
4, 21, 11

s some reco

Ifoodba
chine
the Ifoodba
ith our reso
s expected.
ud using the
hitecture. Fi
oud.

t console fo

or Ifoodbag

ncerning ins
ysis based o
Additionall
4] includin

ommendatio

g applic

ag applicatio
ource provis
In this chap
e managem
igure 6-1 sh

or the Ifood

application

stalling and
on our impl
ly, we com
ng some p
ons and guid

cation o

on on a loc
sioning and
pter we desc

ment machin
hows the su

dbag applic

d scaling
emented
pare our

proposed
delines.

n

cal-cloud
d scaling
cribe the

ne of our
uccessful

ation on

60

Now
to evalua
recomme
to exploit

6.2 S
In thi

down) sc
defined a
utilization
have defi
console.

Figur

The r
used the
independ
action is
specified
scaling a
specified
new scali

 “
wh
sc
Th
sc

6.2.1
To op

applicatio
resources
we could
traffic pa
day time
simulated
in the y-a
mainly a
day time
Ifoodbag

that our app
ate the scal
endations / b
t the elastici

Scalabilit
is section w
calability m
a number o
n, HTTP th
ined for the

re 6-3: De

results prese
incoming R

dent of the a
invoked wh
number of

ction is not
a cooldown

ing process

“Cooldown
hich no oth

caling activ
his period is
caling activi

Scalab
ptimize sca
on in a prod
s to develop
d not get ac
attern as illu
 and is at

d this for a
axis and tim

food deliv
than at nig
application

plication ha
ling mecha
best practice
ity of the cl

ty Guide
we describe

mechanisms.
of metrics,
hread count
e Ifoodbag a

efined metric

ented in this
RPS (Requ
application
hen the spe
f time peri
t triggered d
n time (usin
will be trig

is the perio
her scaling a
vity to beco
s configura
ities (such a

bility Gui
aling it is q
duction env
p the applic
ccess to the
ustrated in F
a level hig
24hrs time

me frame is
very applica
ght. Howev
n will be lau

as been succ
anisms, ana
es. We begi
loud.

elines a
e the results

To dynam
specifically

t, Request B
application

cs for Ifoodb

s chapter wi
uest Per Sec

but is direc
ecified metr
ods as defi
due to a su
ng Amazon’
ggered only

od of time a
activity can
me visible

able, and giv
as scale-in a

idelines
quite import
ironment. D
ation, henc
 live traffic

Figure 6-4. I
gher than at

frame, whe
shown in x

ation where
ver, in the f
unched to th

cessfully lau
alyze our fi
in in section

nd Anal
s of our tes

mically scale
y: Active s
Backlog, an
as they are

bag applicat

ill be based
cond) metri
ctly related
ric remains
ined in the

udden spike
’s definition
after compl

after auto-s
n take place

in the metr
ves the syst
and scale-o

tant to stud
During our t
e it was no
c pattern of
In this patte
t night. In
ere the traff

x-axis. We a
people wil

future the li
he public.

unched in th
indings, do
n 6.2 by sys

lysis
sts and find
e or monito
sessions, R
nd etc. Figu
 shown in t

tion

on the “Tot
ic to drive
to throughp
above the s
scaling po
in the valu

n of this term
leting the pr

scaling init
. A cooldow
rics that or
em time to p
ut) that affe

dy and unde
thesis work

ot ready to g
f the Ifoodb
ern the traffi
order to ge

fic load rep
assumed thi
ll use such
ive traffic p

he cloud arc
o cost evalu
stematically

dings conce
or the ifood
Request Cou

ure 6-3 sho
the Cloudify

tal Request
auto-scalin

put. Note th
specified th
olicy. This
ue of a metr
m - see belo
revious scal

iates a scal
wn period al
iginally trig
perform and
ect capacity

erstand the
k, Ifoodbag
go on live, a
bag applicat
ic load rema
et this traff
resented as
s traffic pat
application

pattern can

chitecture, i
uations, and
y examining

erning (both
dbag applica
unts, CPU/M
ows the me
fy web-man

Count” me
ng, as this m
hat an Auto
hreshold val
is to ensur

tric. In addi
ow) to ensu
ling process

ling activity
llows the eff
ggered the
d adjust to

y.”[116, 117

traffic load
AB also lev
and becaus
tion, we as
ains high du
fic pattern w
 request pe
ttern, as Ifo
n mainly du
be examine

it is time
d define
g scaling

h up and
ation we
Memory

etrics we
nagement

etric. We
metric is
o Scaling
lue for a
re that a
ition, we
ure that a
s.

y during
ffect of a
activity.
any new

7]

d on the
veraging
e of that
sumed a
uring the
we have
r second
odbag is

uring the
ed when

Figure

Even
exploitati
us to pro
Avoiding
Conserva

• Av
pr
va
se
to
wh
(a
de
tri
re
Pi
ca
re
su

Figur

• Be
ad
th
sc
A
sc
lat
be
vi
w

6-4: A

though this
ion of the e
opose guide

Ping-Pong
ative Scale D

voiding Ping
rocess for 10
alue by prod
erver. As we
o alternating
hen the RPS

as defined in
ecreases and
iggered. Now

epeat! From t
ing-Pong eff
ause a viola
ecommended
usceptible to

re 6-5: Pin

eing Proacti
ddition of a n
he ASG (auto
cale up both V
SG. Table 6

caling up. Fr
tency and im
efore the tim
iolated! How
ill be consid

Assumed tra

s varying n
lasticity in

elines for th
g Effect; B
Down. Each

g-Pong Effec
0 minutes wi
ducing HTTP
have not spe
scale up and

S increases it
the scaling
when it falls

w that there
this experien
fect can pote
ation of the

d best practi
the Ping-Pon

ng-Pong Eff

ive, Not Rea
new applicat
o scaling gro
VMs in com
6-2 illustrate
rom data sh
mproves the

me the servic
wever, proact

ered in sectio

affic pattern

nature of tra
the cloud en

he use of sc
Being Proa
h of these w

ct: To verify
thout specify
P requests (
ecified a coo

d scale down
t triggers the
policies). Ho
s below the t
are fewer n

nce and the re
entially resul
e service le
ce when de
ng effect.

fect

active: Durin
ion server to
oup). With th

mparison with
es that handl
hown in both
e user exper
ce latency ap
ive scaling u
on 6.3.

n of a produ

affic pattern
nvironment
caling techn
active, No

will be descr

y our basic
fying the coo
(as described
oldown time
n events, as il

scaling up e
owever, now
threshold spe
nodes the RP
ecommendat
lt in increas
evel agreem
efining scalin

ng the scalin
ook ~42 seco
he scaling g

h the 42 seco
ling a scale
h tables we
rience, by en
pproaches th
up increases

uction versio

ns makes it
t it gives us
niques. Som
t Reactive;

ribed below

scaling mech
oldown timer
d in section
this load res
llustrated in
event, thus a

w that there a
ecified for sc
PS per node
tions stated i
ed latency a

ment (SLA)
ng policies

ng process w
onds. Table 6
group size of

nds that it ta
down even
can see tha

nsuring the
e limits of th
the operation

n of the iFo

more diffic
some insig

me of these
; and Agg
.

hanism we m
r and optimiz
5.6) to the

sulted in the
Figure 6-5.
dding a num

are more nod
caling down

will increas
n [115, 116]

and, in the w
of the serv

to ensure th

we observed
6-1 illustrates
f two VMs it
akes to scale
t takes almo

at scaling up
ASG is pro
he SLA – th
nal cost of th

oodbag appli

cult to optim
ghts, hence i
e guidelines
gressive Sc

measured th
zed metrics
Ifoodbag ap
Ping-Pong e
. This occurs

mber of new m
des the RPS
a scale down
se and the c
 we observe

worst case, m
vice. Hence
hat the polic

that each su
s the measur
t takes 50 se
up a single V
ost the same
p proactively
ovisioned su
hus the SLA
he business.

61

ication

mize the
it allows

s include
cale Up,

he scaling
threshold

pplication
effect due
s because
machines
per node

n event is
cycle will
d that the
may even
e it is a
cy is not

uccessful
rement of
econds to
VM sized
e time as
y reduces
ufficiently
A is never

This cost

62

AS
Do

• Ag

fo
th
ap
up
lo
un

In
tre
ac
th
ha
ex
th
el
de
ill
as
th

Figure

ASG
UP

SG (Scale
wn VMs)

1
2

ggressive Sc
or any busine
han the expec
pproach prov
p we will no
onger. For th
nnecessarily

n contrast, w
end) to decre
ccidentally u
hroughout (in
ave rejected
xperience. Fu
he bottom lin
sewhere (thi
esired the au
lustrated in F
s below, whe
he iFoodbag a

e 6-4:

G (Scale
P VMs)

1

2

3

Table

Table 6-

Termina
Star

5.16.1
5.20.0

cale Up, Con
ess. Hence, w
cted traffic,

vides a buffe
ot immediate
his reason an
higher opera

we use a cons
eases in traff

under provisi
n the worst c

an aggressi
urthermore, f
ne as poor p
is holds true
uto-scaling p
Figure 6-4. F
ere left side f
application a

Traffic Pat

Machine S
Time

05.05.04

05:07:40

05:11:30

6-1:

-2: A

ation
rt

Te

15
02

nservative Sc
we deployed
thus providi

er for increas
ely scale dow
n aggressive
ational costs.

servative sca
fic. On the o
ioning, there
ase, the serv
ve scale dow
from a corpo
performance
in general f

profile when
For better un
figure represe
and right side

tern

Start Ma

4

0

0

Amazon EC

Amazon EC2

ermination
End

5.17.02
5.20.57

cale Down: D
d an aggressi
ing a better
sed traffic du
wn – hence
 scale up ap
.

ale down pol
other hand, a
eby adversely
vice may bec
wn policy a
orate standpo
 is likely to

for any end-u
operating in

nderstanding
ents the assu
e figure impl

F

achine Read
Time

05.05.46

05:08:30

05:12:25

C2 Scale up

2 Scale Dow

Suc

Delivering th
ive scale up
end-user exp

uring the coo
the system

pproach may

licy to adapt
an aggressive
y impacting

come unavail
as it is likely
oint lower thr
o causes the
user facing s
n the produc
we placed b

umed traffic p
licates its des

igure 6-6:

dy Total T

Time

wn Time

ccessful Ter
(Secon

47
55

he best user
policy to be
perience. An
oldown perio
remains in

y result in ov

t more slowl
e scale down

response lat
lable). For al
y to lead to
roughput wo
end-users to

service). Figu
ction environ
both figures
pattern of a p
sired auto sca

Desire
 produc

Time To ma
(Secon

42

50

55

rmination
ds)

experience i
e able to han
n aggressive
od, i.e., havin
a scaled up

over provisio

ly (than the
n policy may
tency and de
ll of these re
degraded e

ould adversel
o take their
ure 6-6 illus
nment under
side by side
production v
aling resourc

ed Auto-Scal
ction enviro

ake VMs rea
nds)

is critical
ndle more

scale up
ng scaled
state for

oning and

historical
y result in
ecreasing

easons we
nd-user’s
ly impact
business

trates the
r the load
e together
version of
ces.

ling Profile
nment

ady

in the

63

6.2.2 Scalability Analysis
For dynamic or auto scalability it is very important to determine the appropriate threshold

value for the selected metric. A low threshold will result in underutilization of the nodes
defined in the ASG. On the other hand, a high threshold may result in higher latency, hence
degrading the end-user’s experience. Therefore, we define the threshold value by considering
the throughput corresponding just meeting the SLA for the application. To determine the
appropriate threshold value, we consider scaling results based on algorithm number 1 proposed
by Kejariwal in [115]. This algorithm must satisfy the following properties in accordance with
the guidelines stated in section 6.2.1.

Property I RPS per node after scale up should be greater than the scale down threshold (TD).
This property ensures that a scale up avoids the Ping-Pong effect (see section
6.2.1).

Property II RPS per node after scale down should be less than the scale up threshold (TU).
Similar to Property I, Property II ensures that a scale down avoids the Ping-Pong
effect.

Algorithm for scaling Up/Down: As Ifoodbag is just getting started in the market, we tried
to define an algorithm that could scale a certain number nodes both upwards and downwards
according to the guidelines defined in section 6.2.1. In this algorithm the management system
will deploy a ChangeInCapacity number of nodes (to scale Up) or decommission this number
of nodes (to scale Down). The direction of the change will be based on the AdjustmentType
during the scaling process. For example, in our experiment the current capacity of the given
ASG is 1 and the ChangeInCapacity is set to 3. So given a scale up event we will add 3 more
nodes to the ASG. The details of the parameter and steps to determine the scaling thresholds
(for scaling both up and scaling down) are:

Input: application parameters.
Parameters:

D Scale down value
U Scale up value
TD Scale down threshold (RPS per node)
TU Scale up threshold (RPS per node)
Nmin Minimum number of nodes in the ASG

Let T (SLA) return the maximum RPS per node for the specified SLA.
TU ← 0.90 × T (SLA)
TD ← 0.50 × TU
Let RPSPeak, RPSmin denote the peak and minimum RPS observed for the ASG over

the last, say, two weeks
Let Nc, RPSn denote the current number of nodes and RPS per node respectively
L1: /* Scale Up (if RPSn > TU) */
repeat

RPSASG ← Nc × RPSn
Nc ← Nc + U
RPSn ← RPSASG/Nc

until RPSn × Nc ≤ RPSPeak
L2: /* Scale Down (if RPSn < TD) */
repeat

RPSASG ← Nc × RPSn
Nc ← max(Nmin,Nc − D)
RPSn ← RPSASG/Nc

until RPSn × Nc ≥ RPSmin or Nc = Nmin

64

if Properties I and/or II are not satisfied for each scale up and scale down
respectively then

Adjust D, U, TD, TU incrementally
Revisit L1 and L2

end if

In this algorithm, the scale down value D and the scale up value U are the main inputs.
Kejariwal states that the constants (0.90 and 0.50) used in defining TU and TD were determined
empirically to minimize the negative impact on end-user experience and minimize ASG
underutilization. Loop L1 in the algorithm scaling up an ASG when the incoming traffic
increases, while Loop L2 scales down an ASG when the incoming traffic decreases. If
Properties I and/or II (defined earlier) are not satisfied then the algorithm adjusts the parameters
D, U, TD, TU in an incremental fashion and iterates through the loops L1 and L2.

After implementing this algorithm in our Ifoodbag application recipe for about 30m of the
simulation in the EC2 cloud when generating traffic load on our application server and using
the management machine we obtained the results shown in Table 6-3.

For our experiment, we defined RPSPeak=1300, RPSmin=50, D (scale down value) = 2,
U (scale up value) = 3, Scale down threshold TD=40, and Scale up threshold TU=80. In our
experiment we initialized RPSASG to the value 50 and Nc to 2, then we increased RPSASG to 200
and according to our policy rules since RPSn approaches TU (100>80), an auto-scaling up event
is triggered, hence (U=) 3 nodes are added to the ASG. Successively the ASG scales up until
RPSn × Nc ≤ RPSPeak. Note that column six the New RPSn value satisfies Property I defined
earlier.

Conversely, during the scale down process, we considered RPSASG=1300 and Nc=14 and as
we simulated to decrease the RPSASG value to 550, hence RPSn approaches to TD (39<40).
Thereby auto-scaling down event triggered and removed (D=) 2 nodes from the ASG.
Successively the ASG scales down until RPSn×Nc ≥ RPSMin or Nc = Nmin. It should be noted
that in column twelve the New RPSn value satisfies Property II defined earlier.

Table 6-3: Results of implementing the algorithm with RPSPeak=1300, RPSMin=50, D=2,
U=3, TD=40, TU=80

Scale Up Scale Down

C
ur

re
nt

N

od
es

s

N
od

es

A
dd

ed

R
PS

A
SG

R
PS

n

To
ta

l
N

od
es

N
ew

R

PS
n

C
ur

re
nt

N

od
es

N
od

es

R
em

ov
ed

R
PS

A
SG

R
PS

n

To
ta

l
N

od
es

N
ew

R

PS
n

2 50 25 2 14 1300 92.85

 200 550

 3 5 66.67 2 12 45.83

 550 450

 3 8 68.75 2 10 45.00

 900 350

 3 11 81.81 2 8 43.75

 1250 250

 3 14 89.25 2 6 41.67

Figur
upwards
with as s
decreases
above me

Figure

Altho
nodes in
algorithm
based on
business
recomme
ensures b
throughpu
evaluate
comparin

6.3 C

Comp
services
(whether
et al. a cl
complexi
low cost
Stockholm
business
infrastruc
[119]) a
traditiona

6.3.1
A clo

you to p
Additiona
while onl
described

re 6-6 and F
and downw

scaling up v
s it triggers
entioned po

6-6: S

ough we ha
our scaling

ms which dim
n average t

requiremen
ended emplo
better end-u
ut of the ap
different co

ng a traditio

Cost ana

panies need
to end-use
the busines

loud provid
ity of IT inf
when comp
m based sta
cost effecti

cture using
comparativ

al infrastruc

Utility
oud can prov
pay for ex
ally, you ca
ly needing

d this utility

Figure 6-7 s
wards. When
value of 3 a
 the scaling
licy rules. T

Scale Up Pro

ave demons
g rules and
mension th
throughput.
nts, in acc
oying the A
user experie
pplication i
ost factors
nal infrastru

alysis

d an elastic,
ers. Low c
ss is a startu
des scalabili
frastructure
pared to a tr
artup comp
ive with a h
a cloud p

ve cost analy
cture alterna

y style pr
vide a rang

xactly those
an scale you
to pay for

y style pricin

shows our a
n the load i
as defined i
g down eve
This set of p

ocess

trated the p
the Total R
e size of th
The choic

ordance w
Aggressive S
ence. Addit
n the cloud
for the pro
ucture with

, reliable, f
ost and re
up or an est
ity, 99.999%
e [118]. The
raditional /
pany, wants
highly scala
latform. In
ysis of real

atives.

ricing for
ge of service
e resources
ur resources
these resou

ng for a clou

approach of
increases th
in the polic
ent with a s
parameters e

Fi

policy impl
Request Cou
he change as
ce of algor

with differen
Scale Up, C
tion, we bel
d architectu
oposed clou

the propose

flexible, and
eliable serv
tablished bu
% reliability
ese capabili
dedicated i

s to start th
able infrast

n the follow
lizing this i

cloud
es for their
s that you
s whenever
urces when
ud.

f implemen
he RPS valu
cy rules. In
scaling dow
ensures the

igure 6-7:

lementation
unt metric, K
s a percenta
rithm and s
nt metrices
Conservativ
lieve that th
re to the de

ud architectu
ed cloud arc

d low cost
ices are m

usiness). Fo
y, and high
ities are pro
nfrastructur

heir e-comm
tructure, we
wing subsec
infrastructur

users. Mor
have used

you want a
you actual

nting auto sc
ue triggers th

contrast, w
wn value of

two propert

Scale D

s by using
Kejariwal [
age of the c
step size sh
 defined in

ve Scale Do
his approac
emand. In t
ure to prov
chitecture.

infrastructu
major conce

rtunately, a
performanc

ovided by a
re. In this p

merce busin
e propose th
ction we pr
re via a clo

e over utiliz
d for your
as your busi
lly have use

caling polic
the scaling u

when the RP
2 as define

rties defined

Down Proce

a fixed nu
[115] presen
current capa
hould be b
n section
own approa
ch better ad
the next sec
vide a cost

ure to prov
erns for bu
according to
ce with a m
a cloud at r
project ‘Ifoo
ness. To ma
hat they bu
resent (bas

oud platform

zing a clou
r business
iness needs
ed them. T

65

cies both
up event
PS value
ed in the
d earlier.

ess

umber of
nts other
acity and
based on
6.2. We

ach, as it
dapts the
ction we
analysis

ide their
usinesses
o Kondo,
minimum
elatively

odbag’, a
ake their
uild their
ed upon

m versus

d allows
process.
 change,
able 6-4

66

Table 6-4: Utility Style Pricing [120, 121]

Pay as you go You pay on an hourly basis from the time when you launch a resource until the
time you terminate it. No long-term contract is required. The cloud replaces
your upfront capital expense with a low variable cost as you pay only for what
you use in terms of the underlying infrastructure and services that you use.

Pay less when you
reserve

You can invest in reserved capacity, but because of the low upfront investment
you get a significant discount rate. Depending on the types of instances you
reserve, the overall savings ranges between 42% and 71% over on-demand
capacity.

Pay even less per
unit by using more

You can save even more as your business grows larger. For example, you pay
less for per gigabyte as you use more (as the marginal price decreases).

Pay even less as
cloud grows

This is the most attractive feature of a cloud. Each cloud provided always tries
to reduce their data center and hardware costs, improve their operational
efficiencies, and reduce their costs – hence reducing your cost of business.

Custom pricing If none of pricing model works for your business, then a cloud provider might
offer custom pricing for high volume projects with unique requirement.

6.3.2 Cost factors
When owning and operating a data center the most important factor is cost. Therefore there

needs to be a detailed and careful analysis before start to build your own infrastructure. In
reality it is not as simple as summing up the hardware expenses, as one must consider the utility
pricing of resources. Several financial metrics can be used to calculate the Total Cost of
Ownership (TCO) which includes both direct and indirect costs of a product or a service. It is
challenging to accurately estimate the cost difference between owning an on-premises
infrastructure and buying resources in a cloud infrastructure. In this section, we presented a
comparative analysis of several different direct costs and indirect costs. Direct costs of
ownership can be classified in to different categories, such as hardware cost, assets utilization,
power efficiency, data redundancy, security, supply chain management, and personnel costs.

Table 6-5 described these different cost factors in the ownership of an IT infrastructure.

Table 6-5: Different types of cost factors [119, 121]

Infrastructure Costs Detail Descriptions

Hardware costs Upfront investment is always critical for enterprises to build an IT
infrastructure. The investment required can easily be millions of dollars.
Furthermore, expensive ongoing upgrades of resources (servers, storage devices,
and load balancers) may be needed on top of the large initial capital investment.
In contrast, using a cloud allows you to take advantage of the cloud provider’s
purchase of large volumes of hardware at very low marginal cost. Cloud
customers enjoy the benefits of this decreased cost to increasing their capacity
and performance via enhanced functionality over time.

Asset utilization Asset or resource utilization is major difference between two models (cloud and
traditional). Some research shows that, annually average server utilization in
traditional enterprises’ own data center is 5%-20% [34]. If you invest in
virtualization and related technology to increase utilization, it is possible to
achieve 20%-25% utilization rates. On other hand, when using the cloud’s pay
for utility pricing model customers are only charged for resources they actually
use, as a result customer can achieve close to 100% utilization.

Power efficiency Based on numerous industry reports, the average Power Usages Effectiveness
(PUE) of a data center is 2.5, thus for every 1 watt of power that is delivered to

67

Infrastructure Costs Detail Descriptions

the servers, 1.5 watts are wasted in heat and other overhead. To build energy
efficient dedicated IT infrastructures requires the most efficient equipment and
adhering to industry best practices which are frequently prohibitively expensive
for enterprises. . If a business attempts to realize their own energy efficient data
center they would need to invest heavily to decrease their PUE ratio. However, a
cloud infrastructure is likely to invest far more in order to decrease their PUE
ratio (since they benefit from this investment with every additional site and rack
of equipment), hence they can be far more energy efficient than the average
enterprise data center. For example, Facebook’s Prineville, OR datacenter had a
PUE of 1.06 at 18:00 GMT on 2014.02.11 (data from
https://www.facebook.com/PrinevilleDataCenter/app_399244020173259) while
their Forest City, NC Data Center had a PUE of 1.10 at the same time (data from
https://www.facebook.com/ForestCityDataCenter/app_288655784601722).

Data redundancy A highly reliable IT infrastructure requires that you maintain reliable storage &
backup devices and operate a reliable redundant network, transit connections,
and physical connections between data centers. In order to realize high
reliability enterprises need to account for all of these issues and incur the related
costs to achieve such as redundant infrastructure. However, utilizing a cloud
enables customers to easily deploy servers in multiple availability zones with
redundant network facilities, with the cost incurred as operating costs rather than
capital costs.

Security Ensuring security, such as confidentiality, integrity, and availability of business
data, is another direct cost of having your own infrastructure. Security costs
include purchasing network security devices, security software licenses, smarts
card for access control, and so on. A cloud can provide these services in keeping
with best security practices along with features to provide end-to-end security
and end-to-end privacy in conjunction with their cloud platform. Additional
details can be found in [63].

Supply Chain
Management

In traditional enterprises, cost increases when purchasing hardware because time
passes from when hardware is ordered to when it is brought online - often it
takes a few months. This long lead time can lead to excess capacity and
unnecessarily increased costs. Cloud providers minimize this excess capacity by
devoting significant resources to managing their supply chain in conjunction
with their large installed hardware base and their continuous (or periodic)
expansion of this base.

Personnel Different IT infrastructure teams are needed to handle heterogeneous hardware
and related supply chains, continuously upgrading the data center’s design,
operating the data center, scaling and managing physical growth, and so on. All
of these personnel costs are necessary in order to achieve low infrastructure
costs for each enterprise while these costs can be amortized over a large based in
the case of a cloud provider.

Indirect Costs There are a many indirect costs to build an infrastructure; the result is that
enterprises are increasingly attracted to build their infrastructure virtually on top
of a cloud platform. Running a large scale and highly availability infrastructure
requires highly talented staff and the dedicated attention of management – both
of these are areas where the cloud provider has an advantage.

68

6.3.3 Instance type selection
In this project, we used AWS as our cloud provider and considered AWS’s services costs in

our cost analysis. We proposed a cost effective way to save costs when ‘Ifoodbag’ starts to
building their infrastructure in cloud. Amazon provides different ways to purchase instances in
the cloud. These different types of instances in the AWS cloud offer different cost saving as
Reserved Instances, On-Demand Instances, and Spot instances have different prices and time
scales for provisioning. The actual functionalities are the same for all of these instance types.
Table 6-6 describes these three different instance types according to their potential cost
savings [121].

Table 6-6: Types of instances according to costs saving

Reserved Instances The reserved instances pricing option allows you make a low and one time
upfront investment for each instance that you want to reserve. The
customer receives a significant discount on their hourly usages charges for
these instances and they gain a specific guaranteed capacity. Additionally,
you have the flexibility to turn them off when you do not need them, hence
you do not even have to pay the discounted hourly rate for those you turn
off.

On-demand Instances The on-demand instance pricing option allows you to purchase an instance
by the hour whenever you need without making any long-term
commitment. Additionally, you can turn this instance on and off rapidly.

Spot Instances The spot instance pricing option allows you to bid for unused EC2
compute capacity. The price for spot instances fluctuates depending on the
supply and demand for spot instance capacity.

We highly recommended that ‘Ifoodbag’ use at least a minimum number of the reserved
instance pricing option instances in their infrastructure because the company can save more by
using these types of instances. AWS offers instances depending on the amount of an instance’s
resources, described as Light, Medium, and Heavy utilization. If a company needs a consistent
service for their users the heavy utilization type of instance is the best option. Table 6-7 shows
how much enterprises can save by using reserved instances compared with running on-demand
instances. We assume in these computations that the on-demand instances have 100%
utilization.

Table 6-7: Saving of reserved instance types over on-demand instances

Reserve Instance type Saving over On-Demand Instances
(1-year) (3-year)

Light utilization up to 42% up to 56%

Medium utilization up to 49% up to 66%

Heavy utilization up to 54% up to 71%

6.3.4 Total Cost of Ownership (TCO) of running a web application in a
cloud

To estimate of total cost we need to consider usage patterns because the actual traffic load
can dramatically affect the TCO of a web application. We considered the nature of Ifoodbag’s
web application and in this TCO analysis we assume it has a constant level of traffic over time.
AWS cloud provides a range of options to reduce costs while flexibility and scalability benefits
remain same. In this section we described a comparative costs analysis for Ifoodbag’s web
application running in an on-premises infrastructure versus on the AWS cloud platform. We
assume that the company wants to deploy its web application for access via the internet to

69

interact with prospective customers, existing customers, and partners. We assumed the website
has hundreds of thousands of visitors every month and is regularly accessed by thousands of
customers with a traffic flow that is fairly steady state. The website is a three tier web
application with open source content management software stores and serves a large amount of
cooking recipes through a content delivery network. To handle this website and provide a good
user experience, we assume the following resources are needed [109, 120, 121, 122]:

• 2 Linux based server for web servers
• 2 Linux based application servers
• 2 Linux based MySQL database servers

Table 6-8 compares the TCO of the on-premise alternative costs versus an AWS cloud
infrastructure’s costs. Figure 6-8 shows a graphical comparison of the monthly TCO for
traditional infrastructures versus a cloud.

Table 6-8: TCO of on-premises infrastructure vs. cloud infrastructure

TCO Web application infrastructure costs

Amortized monthly cost over 3
years

On-Premises AWS cloud
All Reserved (3 year heavy)

Compute / server costs

Server Hardware $306 $0

Network Hardware $62 $0

Hardware maintenance $47 $0

Power and cooling $172 $0

Data center space $144 $0

Personnel $1200 $0

AWS instances $0 $429

Total –per month $1,931 $429

Total -3 years $69,516 $15,444

Savings over On-Premises 77%

70

Figur

Accor
traditiona
configura
and also
that serve
In this an
salary an
the hardw
one-time
infrastruc

Server ha

Network

Hardware

Power an

Data cent

Personne

For A
3 -year h
for the w

* We have

re 6-8: Mo

rding to o
al infrastru
ations are as
we assume
ers are not v
nalysis we a
nd benefits.
ware. For a

costs mon
cture are:

ardware

hardware

e maintenan

nd cooling

ter space

el

Amazon’s c
heavy utiliza
webserver an

e used prices

onthly TCO

ur assumpt
uctures bas
s follows. F
d equipmen
virtualized w
ssumed a to
There are s

a fair comp
nthly over

Dell
Extr

Dell
man

nce 3-ye

Pow
elec

$23
spac

IT i
24/4
man

loud platfo
ation. We h
nd applicati

from [121] i

O of tradition

tions, we c
sed upon

For on-prem
nt and perso
without virt
otal annual c
significant
arison betw
a 3 year p

l PowerEdg
ra Large (m

l PowerEdg
nagement sw

ear Dell Pro

wer/cooling
ctricity price

,000 per kW
ce divided b

nfrastructur
4/365 facili
naging the M

rm, we con
ave chosen
ion servers

in this analys

nal infrastru

considered
market p

mises infrast
onnel are lo
tualization s
cost per per
one-time co

ween on-pre
period. Our

ge R310 con
m2.xlarge) A

ge Rack Ch
witch.

oSupport.

for 1 serve
e of $0.09 p

W of redund
by useful lif

res teams a
ity, databas
MySQL data

nsidered Am
n high memo

and storage

sis.

ucture versu

the costs
prices. Our
tructures, w
ocated in Un
software lic
rson $120,0
osts ($2,492
emises vers
r hardware

nfiguration,
Amazon EC2

hassis Dell P

er, with a d
per kW hour

dant IT pow
fe of 15 yea

are needed,
se administ
abase, and s

mazon EC2
ory extra la
e optimized

us cloud

of differen
r assumpti

we have used
nited states.
censing and
00 person th
2 per server
sus a cloud
assumption

equivalent
2 Instance.

PowerConn

data center
r.

wer and $300
rs.

such as ope
tration team
so on.

reserved in
arge (m2.xla
d (i2.xlarge)

nt cost fac
ions of h
d prices fro
. We have
manageme

that is includ
r*) when se

d, we amort
ns for on p

t of a High-M

nect Switch

PUE of 2.5

0 per squar

erations sta
ms needed

nstances, w
arge) EC2 i
) EC2 insta

ctors for
hardware
om [121]
assumed

ent costs.
ded both
etting up
tized the
premises

Memory

es and a

5 and an

e foot of

affs for a
are for

which are
nstances

ances for

71

the database server. Since we assumed our website would have a steady state workload we are
planning that all of these instances operate 24 hours per day, then a heavy utilization reserved
instances is most cost effective option. To calculate the AWS instances costs we used AWS’s
simple monthly cost calculator [122]. A total of six reserved instances with their costs
amortized over a 3 years period are as follows:
2 webservers and
2 application servers

High–memory extra large (m2.xlarge) instances are used in the US East
region at a rate of $0.086 per hour with one time upfront fee of $1,922.

2 database server Memory optimized (i2.xlarge) instances are used in the US east region at a
rate of $0.121 per hour with one time upfront fee ~$2,740.

In table 6-8, we have not added small amount of upfront fee for 3 years reserved instances.
In order to calculate total amount of costs for Ifoodbag web application, we need to add upfront
fee for with total 3 years monthly cost for these types of instances. The total calculated cost for
running the Ifoodbag web application (both compute and database) on reserve instances for 3
years = $1,5444 ($429 per month) + $13,168 (upfront investment for reserved instances) =
$28,612.

Based on our description above, we calculated the total cost of ownership of a traditional
versus cloud solution for 5 years period. Figure 6-9 shows the yearly total cost comparison
between the traditional infrastructure and cloud platform. Our assumptions for these resources
and costs are:

• For first year, we assumed infrastructures needed 2 web servers, 2 application servers, and
2 database servers to serve their users. All hardware configurations same as described above for
both platforms. No hardware replacement cost in the first year.

• In the second year, the company would needed to add hardware as their business grows. We
assumed 1 webserver, 1 application server, and 1 database server would be added to their server
pool. In the cloud we assumed that the first 2 servers of each tier are utilized 100% and the rest
of servers will scale according to load. We assumed the remaining servers would be 50%
utilized.

• In the third year, we assumed that new hardware would be added as well as replacements of
some hardware due to failures or upgrades of the capabilities of the hardware. We assumed 30%
additional hardware cost to replace old hardware. New instances would be added to the cloud
platform.

• In the fourth year we assumed that 50% of additional hardware would be needed and 50% of the
existing hardware would be replaced and that the cloud would be scaled accordingly.

• The traditional infrastructure needs continued upgrades of resources to ensure better
performance and we also needed to add new hardware to the infrastructure as traffic to the web
application increases. We assumed new hardware is added and 50% of resources are upgraded
in the traditional infrastructure. The cloud is assumed to scale its resources to match business
needs.

72

Figur

6.3.5
We fo

alternativ
purchasin
instances
much hig
traditiona
depend o
major com
infrastruc
with busi
providers
rapidly u
due to the
applicatio
with host

6.4 C
re

As w
solutions
our solut
good pro
manage
solution i
Cloudify

* Such as c

re 6-9: Ye

Cost A
ound that w
ve. The m
ng 3-year h
. The analy

gher than th
al and clou
n many cos
mponents o
cture. In con
iness deman
s are respon
upgrade thei
eir high vol
on in the cl
ting a web a

Comparis
ecomme

we mentione
are mainly

tion is fully
ogramming
their own
is open-sou
from a com

can be gaine

early TCO o

Analysis S
with a cloud

maximum b
heavy utiliz
ysis above s
he TCO of a
ud infrastru
st factors th
of this cost i
ntrast, a clo
nds. This av
nsible for e
ir infrastruc
lumes of pu
loud while
application i

son with
endation

ed in Chap
proprietary

y open-sour
skills and
business a

urce and pu
mpany called

ed by reading

f traditiona

Summary
d you can sa
enefit and
zation reser
seems to in
a cloud. Fur

uctures over
at cause the
s the cost of

oud allows th
voids the ex

ensuring rel
cture for bet
urchases. Co
benefiting f
in an on-pre

h some
ns

pter 1 there
y solution w
rce based a
little cloud

application
ublicly avail
d GigaSpac

g our thesis!

al infrastruct

y
ave 59% of

cost effec
rved instan
ndicate that
rthermore,
r a 5 year
e total infra
f the person

the custome
xtra cost fo
liability and
tter perform

ompanies ga
from a scal
emises infra

other s

e are some
with addition
and publicly
d architectur

in the clo
lable, it is

ces [123].

ture versus

f costs in co
ctive instan
ces of Am
TCO in a

we found la
period. Tr

astructure co
nnel to mana
er to deploy
or personnel
d performan
mance, their
ain econom
lable and ro
astructure.

olutions

e other solu
nal licensing
y available
re knowled
ud architec
also possib

a cloud

omparison w
nces would
azon EC2
dedicated e
arge costs d
raditional in
ost to be qui
age and upg
resources a

l and upgra
nce. Althou
r costs decr
ic benefits b
obust infras

s and so

utions [3, 4
g and suppo
. An experi
ge* can eas
cture. Altho
le to get pr

with an on-p
d be achie
and Amaz

environmen
differences
nfrastructur

uite high. On
grade the tra
as need and
ades since th
ugh cloud p
rease with t
by deployin
structure in

ome

4, 18, 101]
ort costs. In
rienced pers
sily implem
ough the p
remium sup

premises
eved by
on RDS

nt can be
between

res costs
ne of the
aditional

d to scale
he cloud

providers
time and
ng a web
contrast

]. These
contrast

son with
ment and
proposed
pport for

73

Some recommendations for the deployment of the solution in the production are: for the
load-balancing tier it is recommended to use two LBs in order to ensure redundancy and
reliability. However, initially it is possible to run the business with a single LB. It is also
recommended to run these LBs on m1.large instance types, for details see [59], as these
instance types provide 2 virtual cores, 7.5 GB of memory, and a 64-bit platform. Extensive
testing confirms that each such LB has the capacity to handle approximately 5,000 requests per
second, thus two LBs support a total of about 10,000 requests per second. For our experiments
we deployed one management server instance in the cloud but it is recommended to run two
instances in a production environment. According to our proposed architectural model we also
recommend deploying two stand-alone application server instances in a production
environment in order to provide high service availability.

75

7 Conclusions and Future Work
This chapter describes our achievement in this thesis project in terms of fulfilling our goals

(as initially defined). This chapter also suggests further research possibilities to build upon this
thesis project. The chapter concludes with some reflections on the social, economic,
sustainability, and ethical aspects of this thesis project.

7.1 Conclusions
The aim of this thesis project was to design, implement, demonstrate, and evaluation a

highly scalable cloud based architectures for Ifoodbag’s web application. This thesis also
examined how to dynamically scale the proposed solution both up and down, since for a cloud-
based application, especially one which is used by people in a local area, there is going to be a
fluctuation of users throughout the day and there is no reason to allocate more or less resources
than actually needed. In this we also focused on the fact that a scalable cloud-based architecture
can provide great flexibility and enable rapid market share growth for a new business without
their need to investing in an expensive infrastructure.

We have achieved our goals as we proposed a scalable cloud architecture model, which
clearly provides the dynamic scalability both upwards and downwards. We have demonstrated
different guidelines and techniques in order to scale up and down based on RPS (the number of
requests per second) at the application server(s). In our scalability policies we have utilized a
cooldown time and ASG (Auto scaling group) properties with some predefined parameters, and
then clearly shown that the solution satisfies desirable properties such that the RPS per node
after a scale up should be more than the scale down threshold (TD) and RPS per node after scale
down should be less than the scale up threshold (TU). These properties were shown to avoid the
Ping-Pong effect during dynamic scaling. This avoidance is a very important consideration in
an auto-scaling approach, as otherwise there system could deliver a bad end-user experience
and in worst case leads to service unavailability. Furthermore, this dynamic scalability
approach also illustrated that it only utilizes resources when needed, avoiding overutilization
and underutilization and as a result clearly reduces the operational cost for the business. Our
findings and cost analysis also shows that a newly introduced business, such as Ifoodbag AB,
can potentially save up to approximate 90% of the upfront investment for the infrastructure
setup and save around 50% to 60% of the monthly operational cost for managing applications
by using the proposed cloud architecture rather than owning their own on-premises
infrastructure.

During this course of project, we have learned various cloud architectures, dynamic scaling
mechanisms, and their implementations. The project also gave use very useful experience in
working with a cloud environment - as we demonstrated our experiment on the EC2 cloud and
deployed our management node using the Cloudify open-source management stack. We have
customized different cloud configuration files and developed our own polices in order to
deploy Ifoodbag’s application in a cloud environment. This thesis project proved to be a very
good experience for both of us. Apart from that, we are confident that this thesis project will
help us drive our own future career towards cloud technology, as cloud computing is today a
very hot topic for the future IT solutions.

7.2 Future Work
Due to the limited time and resources during the course of this thesis project, it was not

possible to perform all the tasks defined in our proposed architecture. Moreover, the
observations and findings during the course of this thesis project suggest some areas for further
research. We plan to carry out some of these tasks in the near future. However, other thesis
project students and researchers may also want to explore one or more of these topics.

76

In this thesis we presented our findings based upon implementing the proposed solution in a
single cloud availability zone. However, there is a clear need for empirical testing of the
proposed solution across different availability zones in order to find the limits of scalability of
the application.

In our demonstration, most of the data and parameter values were based assumptions and
the experience & observations from various research papers. In order to get a better results and
further optimize the proposed solution, one could study this proposed solution using an actual
production environment or at the very least data from a production environment.

In our thesis project, we did not complete the implementation of all the components defined
in our proposed architecture. For example, we did not realize the security guidelines defined by
Sabrina Ali Tandra and Sarwarul Islam Rizvi in their thesis [52], An obvious further study
would implement and evaluate all of the components defined in our proposed architecture
including all of the security guidelines that they have proposed.

In our experiment, we evaluated a dynamic scaling mechanism using only one metric (Total
Request Count), however other metrics such as CPU/Memory utilization, number of active
sessions, etc. or a combination of two or three metrics should be studied to learn what are the
most important metrics and how (or if) they should be combined to provide highly dynamic and
cost effective scaling of the system for a production version of the web application.

In our demonstration, we deployed the solution only in an EC2 cloud with small instances.
Further study and improvements should be made using an implementation of the solution in
another public or private cloud using large instances.

7.3 Reflections

This section explores a number of social, economic, legal, and ethical aspects of this thesis
project.

7.3.1 Social aspects
The proposed infrastructure and dynamic scaling solution could be deployed by any

company (not just “Ifoodbag”) to build their infrastructure on a cloud platform. We have made
our infrastructure highly scalable, robust, and reliable which ensure 99.99% service availability
for the end-users. Our dynamic scaling solution allows enterprises to automatically scale up and
down their cloud infrastructure as their traffic changes (and in the best case grows). Having a
dynamically scaled infrastructure, enterprises might be able to shift their attention from their
service’s availability to concentrate on sales or improve other parts of their business. Because
the dynamically scaled infrastructure will ensure service availability during periods of high
demand or as traffic increases, Ifoodbag’s users will enjoy smooth, fast, and reliable service
that should increase the quality of their user experience. Customers will receive promotions to
buy their daily or weekly meals from ‘Ifoodbag’ which will reduce the use of their valuable
time of buying food from a grocery store. There are also some social opportunities concerning
giving the customer people suggestions about new combinations of foods via new recipes,
avoiding unhealthy food, and fostering discussions about healthy food. If any user is unsatisfied
with some product, then they can immediately contact the company or authorities to take
appropriate action regarding problem.

7.3.2 Economic aspects
Cost is always an important concern for enterprises. In our analysis, we proposed a cost

effective way to build an IT infrastructure for any business that is considering or using a web
application. Such enterprises could save 50%-60% of their monthly operating cost by building
their infrastructure using the proposed cloud solution. Furthermore, the analysis of our solution

77

suggests that enterprises can save even more when using a cloud platform by using 3-year
reserve instances as compared to other types of instances in the cloud. We clearly showed the
cost difference between traditional infrastructures and the proposed cloud solution. By
deploying web application in the cloud companies can avoid the need to make a large initial
investment in IT infrastructure, this money can instead me used by the company to improve
their product(s) and/or increase the number of customers by investing in marketing. In the
proposed cloud platform, there is no maintenance, upgrade, or capital hardware cost.
Companies can deploy instances on new hardware as they needed without making any upfront
investment. The cloud platform is cost effective, highly scalable, robust, and reliable that can
provide a highly available service, which can benefit many enterprises.

7.3.3 Sustainability aspects
Adopting a best practice cloud based solution can have a significant impact on improving

the sustainability of the business in terms of reducing electrical power consumption, as was
described section 6.3.2in terms of the greatly improved PUE that Facebook and Google have
shown in comparison to on-premises best practice data centers. These same firms have shown
that additional savings can be realized in terms of improved water usage effectiveness (thus
decreasing the data center’s needs for water).

7.3.4 Legal and ethical aspects
We have used information that was open to the public in our thesis work. We ensured that

no commercially senstive information was revealed or used in our work. The applications and
tools that we have used are all open source, free, and publically available under GNU General
Public License [124] or similar license. We used the Amazon cloud to perform our
experiments. The use of this cloud was paid for by Ifoodbag. We created our own strategy to
perform these experiments. The experiment results were not fabricated and sufficient details are
provided in the thesis and the appendices to allow others to replicate our results. Additionally,
our experimental data are available to others upon request. We have proposed an architecture to
build and IT infrastructure for ‘Ifoodbag’, but it could also be used by other enterprises to make
their web application service more reliable and to increase the quality of their end-users’
experience when using this service. We did not explore the question of the existence of any
requirements to disclose business or customer information to governmental authorities (for
example for regulator or law enforcement purposes) in our thesis project, hence this remains for
future work.

79

References
[1] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically scaling applications in the

cloud,” ACM SIGCOMM Comput. Commun. Rev., vol. 41, no. 1, pp. 45–52, 2011.
[2] A. Draganov, “Exploiting Private and Hybrid Clouds for Compute Intensive Web

Applications,” Master's thesis, The University of Edinburgh, August 2011. Available:
https://www.epcc.ed.ac.uk/sites/default/files/Dissertations/2010-2011/AleksandarDraganov.pdf

[3] Amazon, “Auto Scaling.” [Online]. Available: http://aws.amazon.com/autoscaling/. [Accessed:
17-May-2013].

[4] “Cloud Management for Public and Private Clouds by RightScale.” [Online]. Available:
http://www.rightscale.com/?utm_expid=3535964-35. [Accessed: 17-May-2013].

[5] “Cloudify - Deploy a Multi-Tier App on EC2.” [Online]. Available:
http://www.cloudifysource.org/guide/2.5/qsg/quick_start_guide_ec2. [Accessed: 17-May-2013].

[6] Nakul E. Sibiraj, “Managing the Cloud with Open Source Tools,” Comput. Sci. Eng. Univ.
Calicut, A seminar report for a Bachelor of Technology, 2011. Available from:
http://www.slideshare.net/nakule/seminar-report-managing-the-cloud-with-open-source-tools

[7] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash crowds and denial of service attacks:
characterization and implications for CDNs and web sites,” in Proceedings of the 11th
international conference on World Wide Web, New York, NY, USA, 2002, pp. 293–304.

[8] “Alzheimer Europe - Research - Understanding dementia research - Types of research - The
four main approaches.” [Online]. Available: http://www.alzheimer-
europe.org/Research/Understanding-dementia-research/Types-of-research/The-four-main-
approaches. [Accessed: 13-Feb-2014].

[9] S. Khandani, “Engineering Design Process,” Aug. 2005. Available:
http://www.saylor.org/site/wp-content/uploads/2012/09/ME101-4.1-Engineering-Design-
Process.pdf

[10] “Research Methods/Types of Research - Wikibooks, open books for an open world.” [Online].
Available: http://en.wikibooks.org/wiki/Research_Methods/Types_of_Research. [Accessed: 13-
Feb-2014].

[11] Salesforce.com, “What is Cloud Computing Technology? - salesforce.com.” [Online].
Available: http://www.salesforce.com/cloudcomputing/. [Accessed: 12-May-2013].

[12] Amazon, “What is Cloud Computing by Amazon Web Services | AWS.” [Online]. Available:
http://aws.amazon.com/what-is-cloud-computing/. [Accessed: 07-May-2013].

[13] US Department of Commerce, “Final Version of NIST Cloud Computing Definition Published.”
[Online]. Available: http://www.nist.gov/itl/csd/cloud-102511.cfm. [Accessed: 12-May-2013].

[14] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-Oriented Cloud Computing: Vision, Hype,
and Reality for Delivering IT Services as Computing Utilities,” in High Performance
Computing and Communications, 2008. HPCC ’08. 10th IEEE International Conference on,
2008, pp. 5–13.

[15] Cisco Systems, “Cloud Computing - Overview.” [Online]. Available:
http://www.cisco.com/web/solutions/trends/cloud/index.html. [Accessed: 07-May-2013].

[16] J. Hurwitz, R. Bloor, M. Kaufman, and F. Halper, “What Is Cloud Computing? - For
Dummies.” [Online]. Available: http://www.dummies.com/how-to/content/what-is-cloud-
computing.html. [Accessed: 07-May-2013].

[17] Heather Boothe, “The Difference Between Cloud Computing and Virtualization,” Blog, 19-Feb-
2013. [Online]. Available: http://www.virtualcommand.com/virtualization-cloud-computing-
difference/. [Accessed: 12-May-2013].

[18] Joe Schulz, “Key Features Of Cloud Computing, Blog, CloudTweaks,” 03-Sep-2012. [Online].
Available: http://www.cloudtweaks.com/2012/09/key-features-of-cloud-computing/. [Accessed:
12-May-2013].

[19] V. Delgado, “Exploring the limits of cloud computing,”Master's thesis, KTH Royal Institute of
Technology, School of Information and Communication Technology, Stockholm, Sweden,
TRITA-ICT-EX-2010:277, November 2010. Available:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-27002

80

[20] J. Hur, R. B, M. Kaufman, and F. Ha, “Cloud Computing Characteristics - For Dummies.”
[Online]. Available: http://www.dummies.com/how-to/content/cloud-computing-
characteristics.html?cid=embedlink. [Accessed: 12-May-2013].

[21] Joyent Inc, “Performance and Scale in Cloud Computing”, White Paper,
http://www.joyent.com/content/06-developers/01-resources/07-performance-and-scale-in-cloud-
computing/performance-scale-cloud-computing.pdf

[22] W. Lau, “An Introduction to Cloud Computing Characteristics and Service/Deployment Models
| Cloud Zone,” 16-May-2012. [Online]. Available: http://cloud.dzone.com/articles/introduction-
cloud-computing. [Accessed: 12-May-2013].

[23] D. Wischik, M. Handley, and M. B. Braun, “The Resource Pooling Principle,” SIGCOMM
Comput Commun Rev, vol. 38, no. 5, pp. 47–52, Sep. 2008.

[24] D. M. Surgient, “The five defining characteristics of cloud computing,” ZDNet. 9 April 2009
[Online]. Available: http://www.zdnet.com/news/the-five-defining-characteristics-of-cloud-
computing/287001. [Accessed: 12-May-2013].

[25] J. Medaugh, “How Powerful APIs Leverage Cloud Computing,” Enterprise Cloud Blog.
8 October 2013 [Online]. Available: http://www.terremark.com/blog/powerful-apis-leverage-
cloud-computing/. [Accessed: 13-Feb-2014].

[26] D. Petcu, C. Craciun, and M. Rak, “Towards a Cross Platform Cloud API - Components for
Cloud Federation.,” Proceedings of the 1st International Conference on Cloud Computing and
Services Science (CLOSER 2011), Noordwijkerhout, Netherlands, 7-9 May, 2011. SciTePress
2011, ISBN 978-989-8425-52-2, pp. 166–169, 2011.

[27] S. Lindskog, Modeling and tuning security from a quality of service perspective. Doctoral
dissertation, Chalmers University of Technology, Institutionen för data- och informationsteknik,
Göteborg, Sweden, ISBN 91-7291-578-1, 2005. Available:
http://www.cs.kau.se/~stefan/publications/PhD05/full_text.pdf

[28] N. Limrungsi, J. Zhao, Y. Xiang, T. Lan, H. H. Huang, and S. Subramaniam, “Providing
reliability as an elastic service in cloud computing,” in Communications (ICC), 2012 IEEE
International Conference on, 2012, pp. 2912–2917.

[29] A. Huth and J. Cebula, “The Basics of Cloud Computing,” United States Computer Emergency
Readiness Team, 2011. Avalable: http://www.us-
cert.gov/sites/default/files/publications/CloudComputingHuthCebula.pdf

[30] B. L. Sahu and R. Tiwari, “A Comprehensive Study on Cloud Computing,” Int. J., vol. 2, no. 9,
2012.

[31] W. Voorsluys, J. Broberg, and R. Buyya, “Introduction to Cloud Computing,” in Cloud
Computing, R. Buyya, J. Broberg, and A. Goscinski, Eds. John Wiley & Sons, Inc., 2011, pp. 1–
41.

[32] C. Barnatt, “Cloud Computing: ExplainingComputers.com.” Blog, Last modified 13 September
2012 [Online]. Available: http://explainingcomputers.com/cloud.html. [Accessed: 12-May-
2013].

[33] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A.
Patterson, A. Rabkin, and M. Zaharia, “Above the Clouds: A Berkeley View of Cloud
Computing,” University of California, EECS Department, Berkeley, California Technical
Report No. UCB/EECS-2009-28, 10 February 2009. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

[34] A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, and I.
Stoica, “Above the clouds: A Berkeley view of cloud computing,” Dept Electr. Eng Comput
Sci. Univ. Calif. Berkeley Rep UCBEECS, vol. 28, 2009.

[35] “Defining Cloud Computing’s Key Characteristics, Deployment and Delivery Types | Tek-Tips
Whitepaper Library.” [Online]. Available: http://tek-tips.nethawk.net/defining-cloud-
computings-key-characteristics-deployment-and-delivery-types/. [Accessed: 12-May-2013].

[36] “Gartner IT Glossary - Virtualization.” [Online]. Available: http://www.gartner.com/it-
glossary/virtualization/. [Accessed: 12-May-2013].

[37] B. Hill, “Virtualization - Beginner’s Guide,” 12-Mar-2012. [Online]. Available:
http://www.petri.co.il/intro-to-virtualization.htm. [Accessed: 12-May-2013].

81

[38] VMware, Inc, “Understanding Full Virtualization, Paravirtualization, and Hardware Assist.”
10 November 2007. Available:
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf

[39] “Kernel Based Virtual Machine (KVM).” [Online]. Available: http://www.linux-
kvm.org/page/Main_Page. [Accessed: 12-May-2013].

[40] Red Hat, Inc., “RED HAT ENTERPRISE VIRTUALIZATION FOR SERVERS 2.2:
FEATURE COMPARISON,” 2011. Available:
http://www.redhat.com/f/pdf/rhev/final2.2/DOC103_RHEV_FeatureMatrix_3073747_0610_ma
_web.pdf

[41] CloudStack, “8.1. KVM Hypervisor Host Installation.” [Online]. Available:
http://cloudstack.apache.org/docs/en-US/Apache_CloudStack/4.0.0-
incubating/html/Installation_Guide/hypervisor-kvm-install-flow.html. [Accessed: 05-Aug-
2013].

[42] “LAMP (Software Bundle),Why LAMP (Linux Apache MySQL PHP) is the best.” [Online].
Available: http://linuxsolutions.org.in/lamp.html. [Accessed: 12-May-2013].

[43] Red Hat Inc., “Scaling the LAMP Stack in a Red Hat Enterprise Virtualization Environment,”
Aug. 2009. Available: http://www.redhat.com/rhecm/rest-
rhecm/jcr/repository/collaboration/jcr:system/jcr:versionStorage/54a4560b0a070d5442cedf2879
9bff35/1/jcr:frozenNode/rh:resourceFile

[44] Bodvoc Ltd., “An Overview of a Web Server,”, | Bodvoc’s Blog, 02-Jul-2010. [Online].
Available: http://bodvoc.wordpress.com/2010/07/02/an-overview-of-a-web-server/. [Accessed:
12-May-2013].

[45] C. Janseen, “What is Amazon Web Services (AWS)? - Definition from Techopedia,”
Techopedia.com. [Online]. Available: http://www.techopedia.com/definition/26426/amazon-
web-services-aws. [Accessed: 12-May-2013].

[46] Amazon, “What is Amazon Web Services? - Getting Started with AWS.” [Online]. Available:
http://docs.aws.amazon.com/gettingstarted/latest/awsgsg-intro/intro.html. [Accessed: 12-May-
2013].

[47] Salesforce.com, Inc., “Force.com: A Comprehensive Look at the World’s Premier Cloud-
Computing Platform.” Whitepaper, 2009. Available:
http://www.developerforce.com/media/Forcedotcom_Whitepaper/WP_Forcedotcom-
InDepth_040709_WEB.pdf

[48] “OpenNebula - Open Source Data Center Virtualization.” [Online]. Available:
http://opennebula.org/about:technology. [Accessed: 12-May-2013].

[49] D. Kaur, K. Kaur, and S. Dilbag Singh, “Evaluating performance of web services in cloud
computing environment with high availability,” Glob. J. Comput. Sci. Technol., vol. 12, no. 11-
B, 2012.

[50] T. C. Chieu, A. Mohindra, A. A. Karve, and A. Segal, “Dynamic Scaling of Web Applications
in a Virtualized Cloud Computing Environment,” in IEEE International Conference on e-
Business Engineering, 2009. ICEBE ’09, 2009, pp. 281–286.

[51] C.-L. Hung, Y.-C. Hu, and K.-C. Li, “Auto-Scaling Model for Cloud Computing System.,” Int.
J. Hybrid Inf. Technol., vol. 5, no. 2, 2012.

[52] A. Wolke and G. Meixner, “TwoSpot: A Cloud Platform for Scaling Out Web Applications
Dynamically,” in Towards a Service-Based Internet, E. D. Nitto and R. Yahyapour, Eds.
Springer Berlin Heidelberg, 2010, pp. 13–24.

[53] Z. Micskei, “Dynamically Scalable Applications Cloud Environment,” Dissertation, Budapest
University of Technology and Economics, Budapest, Hungry, Available:
http://mit.bme.hu/~micskeiz/education/onlab/siklosi_zsolt/siklosi-zsolt_dynamically-scalable-
applications-in-cloud-environment.pdf

[54] “ifoodbag.” [Online]. Available: http://www.ifoodbag.se/. [Accessed: 18-May-2013].
[55] D. Occhipinti, “Building Scalable Web Sites – Scalability | Linux, PHP, LAMP, The Web in a

blog.” Blog, 20 January 2009 [Online]. Available: http://www.danieleocchipinti.com/blog-
linux-php-lamp-web/linux/linux-command-line/building-scalable-web-sites-scalability.
[Accessed: 18-May-2013].

82

[56] Oracle, “Scaling WikiPedia with LAMP: 7 billion page views per month (Alka Gupta’s
Cloud).” [Online]. Available:
https://blogs.oracle.com/WebScale/entry/scaling_wikipedia_with_lamp_7. [Accessed: 18-May-
2013].

[57] “HAProxy - The Reliable, High Performance TCP/HTTP Load Balancer.” Last modified
17 December 2013. [Online]. Available: http://haproxy.1wt.eu/. [Accessed: 18-May-2013].

[58] Amazon, “Amazon Elastic Compute Cloud (Amazon EC2), Cloud Computing Servers.”
[Online]. Available: http://aws.amazon.com/ec2/. [Accessed: 18-May-2013].

[59] Amazon, “Amazon EC2 Instances.” [Online]. Available: http://aws.amazon.com/ec2/instance-
types/#selecting-instance-types. [Accessed: 18-May-2013].

[60] J. Leishman, B. Robison, and J. Taylor, “Memcached.” . Available:
http://xecanson.jp/memcached/memcached_BestDoc_English.pdf

[61] “OpenNode – About.” [Online]. Available: http://opennodecloud.com/about/. [Accessed: 19-
May-2013].

[62] “Overview of Eucalyptus.” [Online]. Available:
http://www.eucalyptus.com/docs/3.2/ag/euca_oview.html. [Accessed: 12-May-2013].

[63] S. Ali Tandra and S. Islam Rizvi, “Security for cloud based services.” Master's thesis, KTH
Royal Institute of Technology, School of Information and Communication Technology,
Stockholm, Sweden, January-2014. Available: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-
140601

[64] “How the domain name system works - Bravenet Wiki.” [Online]. Available:
http://wiki.bravenet.com/How_the_domain_name_system_works. [Accessed: 16-Jan-2014].

[65] “What is domain name system (DNS)? - Definition from WhatIs.com.” [Online]. Available:
http://searchnetworking.techtarget.com/definition/domain-name-system. [Accessed: 16-Jan-
2014].

[66] R. Chandramouli and S. Rose, “Secure domain name system (DNS) deployment guide,”
Recomm. Natl. Inst. Stand. Technol., 2009.

[67] “How DNS Works-The Pharming Guide - Whitepapers - www.technicalinfo.net.” [Online].
Available: http://www.technicalinfo.net/papers/Pharming2.html. [Accessed: 17-Jan-2014].

[68] “DNS Amplification Attack - Nirlog.com - Technology, Life and other stuff that come
along….” [Online]. Available: http://nirlog.com/2006/03/28/dns-amplification-attack/.
[Accessed: 17-Jan-2014].

[69] A. Kotelnikov, “Doman Name Server (DNS) : Sequence of DNS lookups.” Lecture materials
for the course "Linux for Engineering and Information Technology Applications", Rutgers
University, Department of Mechanical and Aerospace Engineering, March 2009 [Online].
Available: http://coewww.rutgers.edu/www1/linuxclass2009/lessons/lesson9/sec_2.php.
[Accessed: 17-Jan-2014].

[70] Citrix Systems, Inc. “What is load balancing?,” Citrix.com. [Online]. Available:
http://www.citrix.com/content/citrix/en_us/glossary/load-balancing.html. [Accessed: 17-Jan-
2014].

[71] V. Viswanathan, “Load Balancing Web Applications," O’Reilly Media, 28 September 2001.
[Online]. Available: http://www.onjava.com/pub/a/onjava/2001/09/26/load.html. [Accessed: 17-
Jan-2014].

[72] P. M. Sangal, “Load Balancing for Web Application Performance and Scalability,” Jul-2009.
[Online]. Available: http://www.devx.com/enterprise/Article/42332. [Accessed: 17-Jan-2014].

[73] “jetNEXUS ADC and Load Balancing Platforms.” [Online]. Available:
http://www.jetnexus.com/load-balancing-platforms.html. [Accessed: 17-Jan-2014].

[74] P. Sevcik and R. Wetzel, “Field Guide to Application Delivery Systems.” NetForecast, Inc.,
September 2006. Available: http://www.netforecast.com/wp-
content/uploads/2012/06/NFR5085-Field-Guide-to-Application-Delivery-Systems.pdf

[75] R. Campbell and K. Alstad, “Performance: Scaling Strategies for ASP.NET Applications,”
Microsoft, April 2008. [Online]. Available: http://msdn.microsoft.com/en-
us/magazine/cc500561.aspx. [Accessed: 17-Jan-2014].

83

[76] writer02, “Different Types of Load Balancers in Computer Networking,” HubPages. 24 July
2011 [Online]. Available: http://writer02.hubpages.com/hub/Different-Types-of-Load-
Balancers-in-Computer-Networking. [Accessed: 20-Jan-2014].

[77] Parker Samp, “HOWTO: Load balance HTTP with Linux and Squid.” [Online]. Available:
http://parkersamp.com/2010/11/howto-load-balance-http-with-linux-and-squid/. [Accessed: 17-
Jan-2014].

[78] T. Northcutt, “Implementing Web Server Load Balancing, Failover, and State with Squid.”
[Online]. Available:
http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/SA/v15/i01/a4.htm.
[Accessed: 20-Jan-2014].

[79] AJEET, “Benefits of Web Server Apache | Downgraf.” 11 October 2012 [Online]. Available:
http://www.downgraf.com/all-articles/benefits-of-web-server-apache/#prettyphoto[13924]/0/.
[Accessed: 27-Jan-2014].

[80] Boz Zashev (editor),“Server cluster definition.” last edited on 29 September 2010 [Online].
Available: http://wordframe.com/docs/wiki/server-cluster-definition/. [Accessed: 17-Jan-2014].

[81] Microsoft, “What Is a Server Cluster?: Server Clusters (MSCS).” [Online]. Available:
http://technet.microsoft.com/en-us/library/cc785197(v=ws.10).aspx. [Accessed: 17-Jan-2014].

[82] tutorialspoint., “Web - Server Types.” [Online]. Available:
http://www.tutorialspoint.com/web_developers_guide/web_server_types.htm. [Accessed: 20-
Jan-2014].

[83] A. Sharma, “Tomcat - Is This an Application Server ? | Javalobby.” DZone, 6 September 2008
[Online]. Available: http://java.dzone.com/articles/tomcat-is-application-server-0. [Accessed:
20-Jan-2014].

[84] E. Geier, “6 Excellent Linux/Open Source Web Servers - Apache, Nginx, Lighttpd - Reviews,”
LinuxPlanet QuinStreet Inc., 6 December 2010. [Online]. Available:
http://www.linuxplanet.com/linuxplanet/reviews/7239/1. [Accessed: 13-Feb-2014].

[85] Microsoft, “Microsoft Web Platform - Server, IIS, Internet Information Services.” [Online].
Available: http://www.microsoft.com/web/platform/server.aspx. [Accessed: 13-Feb-2014].

[86] J. Persyn, “Introduction to Memcached”, 27 May-2010. Available:
http://www.jurriaanpersyn.com/archives/2010/05/27/introduction-to-memcached/

[87] “memcached - a distributed memory object caching system.” [Online]. Available:
http://memcached.org/. [Accessed: 17-Jan-2014].

[88] Marina Sprava, “Database Master-Slave Replication in the Cloud,” Jelastic Blog. 15 January
2013 by [Online]. Available: http://blog.jelastic.com/2013/01/15/database-master-slave-
replication-in-the-cloud/. [Accessed: 17-Jan-2014].

[89] ProfitBricks, “Cloud Lexicon,” ProfitBricks. [Online]. Available:
http://www.profitbricks.co.uk/cloud-lexicon. [Accessed: 14-Feb-2014].

[90] ProfitBricks, “Your Knowledge Base about Cloud Computing:Cloud Lexicon,” ProfitBricks.
[Online]. Available: http://www.profitbricks.co.uk/cloud-lexicon. [Accessed: 17-Jan-2014].

[91] Team Parascale, “Defining Cloud Storage : Three Key Characteristics,” ITProPortal.
3 December 2008 [Online]. Available: http://www.itproportal.com/2008/12/03/defining-cloud-
storage-three-key-characteristics/. [Accessed: 17-Jan-2014].

[92] Rackspace Support, “Create and Use Cloud Block Storage Snapshots.” Rackspace US, Inc.,
Article ID: 3138, 4 November 2013 [Online]. Available:
http://www.rackspace.com/knowledge_center/article/create-and-use-cloud-block-storage-
snapshots. [Accessed: 22-Jan-2014].

[93] “What is Cloud Management? A Definition from Webopedia.com.”, QuinStreet Inc. [Online].
Available: http://www.webopedia.com/TERM/C/cloud_management.html. [Accessed: 22-Jan-
2014].

[94] IBM, “Cloud Management.” [Online]. Available: http://www-
03.ibm.com/software/products/en/category/SWU20. [Accessed: 22-Jan-2014].

[95] “Apache License, Version 2.0.” [Online]. Available: http://www.apache.org/licenses/LICENSE-
2.0. [Accessed: 11-Jan-2014].

[96] “Cloudify - Deploy a Simple Application Locally.” [Online]. Available:
http://www.cloudifysource.org/guide/2.6/qsg/qsg. [Accessed: 11-Jan-2014].

84

[97] “Cloudify - Cloudify Installation and Setup.” [Online]. Available:
http://www.cloudifysource.org/guide/2.6/setup/installation_and_setup. [Accessed: 26-Dec-
2013].

[98] “Bare Bones Software | Welcome.” [Online]. Available: http://www.barebones.com/.
[Accessed: 10-Jan-2014].

[99] “Groovy - Home.” [Online]. Available: http://groovy.codehaus.org/. [Accessed: 11-Jan-2014].
[100] “Cloudify - The Open PaaS Stack.” [Online]. Available: http:/www.cloudifysource.org/.

[Accessed: 11-Jan-2014].
[101] “What is Cloudbursting?- Trend Cloud Security Blog – Cloud Computing Experts.” [Online].

Available: http://cloud.trendmicro.com/what-is-cloudbursting/. [Accessed: 27-Jan-2014].
[102] “Cloudify - Installing the Cloudify Shell.” [Online]. Available:

http://www.cloudifysource.org/guide/2.6/setup/installing_the_cloudify_client. [Accessed: 27-
Jan-2014].

[103] “Cloudify - Cloudify Shell Prerequisites.” [Online]. Available:
http://www.cloudifysource.org/guide/2.6/setup/cloudify_prerequisites. [Accessed: 27-Jan-
2014].

[104] “Cloudify - Get Cloudify.” [Online]. Available:
http://www.cloudifysource.org/downloads/get_cloudify?utm_source=CloudifySource%25252B
Community&utm_medium=Download%25252BButton&utm_campaign=Free%25252BDownlo
ad. [Accessed: 27-Jan-2014].

[105] J. Varia and S. Mathew, “Amazon Web Services: Overview of Amazon Web Services.” January
2014. Available: http://d36cz9buwru1tt.cloudfront.net/AWS_Overview.pdf

[106] J. Varia, “Amazon Web Services - Architecting for The Cloud: Best Practices.” January
2011.Available: http://media.amazonwebservices.com/AWS_Cloud_Best_Practices.pdf

[107] “Instance Types - Amazon Elastic Compute Cloud.” [Online]. Available:
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html. [Accessed: 23-
January 2014].

[108] “AWS | Amazon EC2 | Instance Types.” [Online]. Available:
http://aws.amazon.com/ec2/instance-types/. [Accessed: 23-Jan-2014].

[109] “Amazon EC2 pricing.” [Online]. Available: http://aws.amazon.com/ec2/pricing/. [Accessed:
24-Jan-2014].

[110] “Amazon Web Services Sign In.” [Online]. Available:
https://www.amazon.com/ap/signin?openid.assoc_handle=aws&openid.return_to=https%3A%2
F%2Fsignin.aws.amazon.com%2Foauth%3Fresponse_type%3Dcode%26client_id%3Darn%25
3Aaws%253Aiam%253A%253A015428540659%253Auser%252Fec2%26redirect_uri%3Dhttp
s%253A%252F%252Fconsole.aws.amazon.com%252Fec2%252F%253Fstate%253DhashArgs
%252523%2526isauthcode%253Dtrue%26noAuthCookie%3Dtrue&openid.mode=checkid_setu
p&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.identity=http%3A%
2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.claimed_id=http%3A%2
F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&action=&disableCorpSignUp=&cl
ientContext=&marketPlaceId=&poolName=&authCookies=&pageId=aws.ssop&siteState=awsc
ustomer&accountStatusPolicy=P1&sso=&openid.pape.preferred_auth_policies=MultifactorPhy
sical&openid.pape.max_auth_age=120&openid.ns.pape=http%3A%2F%2Fspecs.openid.net%2
Fextensions%2Fpape%2F1.0&server=%2Fap%2Fsignin%3Fie%3DUTF8&accountPoolAlias=
&forceMobileApp=0&forceMobileLayout=0. [Accessed: 01-Feb-2014].

[111] D. Mos and T. Jin, “httpref -A Tool for Measuring Web Server Performance,” HP Research
Labs. Technical report HPL-98-61, March 1998. Available:
http://www.hpl.hp.com/techreports/98/HPL-98-61.pdf

[112] N. Jauhari, “Load / Performance Testing Web Application - Httperf | Linux Blog.” [Online].
Available: http://linuxpoison.blogspot.se/2011/10/load-performance-testing-web.html.
[Accessed: 25-Jan-2014].

[113] D. Kumarage, “Benchmark testing with httperf | Damitha’s Web Log.” Blog, 15 March 2009
[Online]. Available: http://damithakumarage.wordpress.com/2009/03/15/benchmark-testing-
with-httperf/. [Accessed: 25-Jan-2014].

85

[114] VMware, Inc., “VDI Server Sizing and Scaling.” VMware, Inc, Aug-2008. Available:
https://www.vmware.com/pdf/vdi_sizing_vi3.pdf

[115] A. Kejariwal, “Techniques for Optimizing Cloud Footprint.” In proceedings of IEEE
International Conference on Cloud Engineering (IC2E), DOI: 10.1109/IC2E.2013.14, March
2013, pp. 258–268.

[116] Amazon, “Auto Scaling.” [Online]. Available: http://docs.aws.amazon.com/AutoScaling/2010-
08-01/DeveloperGuide/index.html?AS_Concepts.html. [Accessed: 06-Feb-2014].

[117] T. Hassanov, “Web Application Scaling in Amazon Cloud.” B.Sc. Thesis, University of Tartu,
Faculty of Mathmatics and Computer Science, May-2012. Available:
http://comserv.cs.ut.ee/forms/ati_report/downloader.php?file=6321A0D6E5723DBF1DBBC7F
2E5BB5041B4AF668C

[118] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D. P. Anderson, “Cost-benefit analysis of
cloud computing versus desktop grids,” in Parallel & Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium on, 2009, pp. 1–12.

[119] Amazon, “The Economics of the AWS Cloud vs. Owned IT Infrastructure.” Amazon web
services, 7 December 2009. Available:
http://media.amazonwebservices.com/The_Economics_of_the_AWS_Cloud_vs_Owned_IT_Inf
rastructure.pdf

[120] Amazon “How AWS pricing works.” Amazon web services, March 2012. Availabe:
http://media.amazonwebservices.com/AWS_Pricing_Overview.pdf

[121] V. Jinesh, “The Total Cost of (Non) Ownership of Web Applications in the Cloud.” Amazon
web services, August 2012. Available:
http://media.amazonwebservices.com/AWS_TCO_Web_Applications.pdf

[122] Amazon “Amazon Web Services Simple Monthly Calculator.” [Online]. Available:
http://calculator.s3.amazonaws.com/calc5.html. [Accessed: 31-Jan-2014].

[123] “GigaSpaces | XAP In-Memory Computing software platform | Cloudify - Deploy, Manage &
Scale your apps on the cloud.” [Online]. Available:
http://www.gigaspaces.com/?utm_source=Google&utm_medium=PPC&utm_term=FromCloud
&utm_content=DeployManageScale&utm_campaign=GigaSpaces%2BBrand&gclid=COO8kOi
rvLwCFYiQcgodgAcA2g. [Accessed: 08-Feb-2014].

[124] “GNU General Public License v2.0 - GNU Project - Free Software Foundation.” [Online].
Available: http://www.gnu.org/licenses/gpl-2.0.html. [Accessed: 08-Feb-2014].

Appen
Prere

minimum
machines.

• JD
• Th

di
• %

va
%

Download
Then brow
“cloudify

ndix A:
equisites: Be

requiremen
.

DK 1.6 or h
he JAVA_H
irectory. Fo

%JAVA_HO
ariable.

%JAVA_HO

d and unzip t
wse the bin

y.bat (for W

Installa
fore you inst
ts. The follow

higher—dow
HOME env

or example,
OME%\bin

OME%\bin;%

the Cloudify
n directory o

Windows)

ation of
tall the Cloud
wing minimu

wnload the l
vironment v
D:\Java\jdk
must be a

%SystemRo

y distribution
of the distrib

87

Cloudif
dify shell, ma
um requirem

latest update
variable mu

k1.6.0_32.
added to th

For
oot%\System

n file
bution and r

fy
ake sure tha

ments are for

e available
ust point to

he beginnin

m32;%Syst

run the “./cl

t your enviro
r both Windo

(e.g. JDK 6
o the corre

ng of the P

temRoot%;.

loudify.sh (f

onment mee
ows and *nix

6 Update 32
ect JDK (n

PATH envi
e

.

for .nix)” o

ets all the
x

)
not JRE)

ironment
example,

r

89

Appendix B: Configuration of Cloud controllers and cloud
drivers
EC2 Cloud Configurations file called (ec2-cloud.groovy):

/***************
 * Cloud configuration file for the Amazon ec2 cloud. Uses the default jclouds-based cloud driver.
 * See org.cloudifysource.dsl.cloud.Cloud for more details.
 */
cloud {
 // Mandatory. The name of the cloud, as it will appear in the Cloudify UI.
 name = "ec2"
 /********
 * General configuration information about the cloud driver implementation.
 */
 configuration {

// Optional. The cloud implementation class. Defaults to the build in jclouds-based provisioning
driver.

 className "org.cloudifysource.esc.driver.provisioning.jclouds.DefaultProvisioningDriver"
 storageClassName "org.cloudifysource.esc.driver.provisioning.storage.aws.EbsStorageDriver"

// Optional. The template name for the management machines. Defaults to the first template in
the templates section below.

 managementMachineTemplate "SMALL_LINUX"
// Optional. Indicates whether internal cluster communications should use the machine private IP.
Defaults to true.

 connectToPrivateIp true
// Optional. Path to folder where management state will be written. Null indicates state will not be
written.

 persistentStoragePath persistencePath
 }
 /*************
 * Provider specific information.
 */
 provider {
 // Mandatory. The name of the provider.
 // When using the default cloud driver, maps to the Compute Service Context provider name.
 provider "aws-ec2"
 // Mandatory. The prefix for new machines started for servies.
 machineNamePrefix "cloudify-agent-"

// Optional. Defaults to true. Specifies whether cloudify should try to deploy services on the
management machine.

 // Do not change this unless you know EXACTLY what you are doing.
 managementOnlyFiles ([])
 // Optional. Logging level for the intenal cloud provider logger. Defaults to INFO.
 sshLoggingLevel "WARNING"

// Mandatory. Name of the new machine/s started as cloudify management machines. Names are
case-insensitive.

 managementGroup "cloudify-manager"
// Mandatory. Number of management machines to start on bootstrap-cloud. In production,
should be 2. Can be 1 for dev.

 numberOfManagementMachines 1
 reservedMemoryCapacityPerMachineInMB 1024
 }

 /*************
 * Cloud authentication information
 */
 user {
 // Optional. Identity used to access cloud.

// When used with the default driver, maps to the identity used to create the
ComputeServiceContext.

 user “user”
 // Optional. Key used to access cloud.

// When used with the default driver, maps to the credential used to create the
ComputeServiceContext.

 apiKey “apiKey”
 }

 cloudStorage {

 templates ([

90

 SMALL_BLOCK : storageTemplate{
 deleteOnExit true
 size 5
 path "/storage"

namePrefix "cloudify-storage-volume"
 deviceName "/dev/sdc"
 fileSystemType "ext4"

 custom ([:])
 }

])
 }

 cloudCompute {
 /***********
 * Cloud machine templates available with this cloud.
 */
 templates ([
 // Mandatory. Template Name.
 SMALL_LINUX : computeTemplate{
 // Mandatory. Image ID.
 imageId "linuxImageId"

// Mandatory. Files from the local directory will be copied to this directory on
the remote machine.

 remoteDirectory "/home/ec2-user/gs-files"
 // Mandatory. Amount of RAM available to machine.

 machineMemoryMB 1600
 // Mandatory. Hardware ID.
 hardwareId "hardwareId"
 // Optional. Location ID.
 locationId "locationId"

// Mandatory. All files from this LOCAL directory will be copied to the remote
machine directory.

 localDirectory "upload"
// Optional. Name of key file to use for authenticating to the remot machine.
//Remove this line if key files are not used.
keyFile "keyFile"
username "ec2-user"
// Additional template options.
// When used with the default driver, the option names are considered
// method names invoked on the TemplateOptions object with the value as the
parameter.
options ([

"securityGroups" : ["default"]as String[],
 "keyPair" : “keyPair”

])
// Optional. Overrides to default cloud driver behavior.
// When used with the default driver, maps to the overrides properties passed
to the ComputeServiceContext a

 overrides ([
"jclouds.ec2.ami-query":"",

 "jclouds.ec2.cc-ami-query":""
])

 // enable sudo.
 privileged true
 },

 SMALL_UBUNTU : computeTemplate{
 // Mandatory. Image ID.

 imageId “ubuntuImageId”
 remoteDirectory "/home/ubuntu/gs-files"
 machineMemoryMB 1600
 hardwareId “hardwareId”
 locationId “locationId”
 localDirectory "upload"
 keyFile “keyFile”

 username "ubuntu"
 options ([
 "securityGroups" : ["default"]as String[],
 "keyPair" : “keyPair”
])

91

 overrides (["jclouds.ec2.ami-query":"",
 "jclouds.ec2.cc-ami-query":""])
 privileged true

 },

 /*****************
 * Optional. Custom properties used to extend existing drivers or create new ones.
 */
 custom ([
 "org.cloudifysource.clearRemoteDirectoryOnStart" : true
])

}

EC2 Cloud Drivers (ec2-cloud.properties):
// Credentials - You must enter your cloud provider account credentials
user="XXXXXX"
apiKey="XXXXXXX"
keyFile="XXXXXXXX"
keyPair="XXXXXXXX"

// Advanced usage
hardwareId="m1.small"
locationId="us-east-1"
linuxImageId="us-east-1/ami-1624987f"
ubuntuImageId="us-east-1/ami-82fa58eb"
// Management persistence configuration. Replace with a string path to activate. 'null' indicates no persistence.
persistencePath=null

93

Appendix C: Writing Ifoodbag Application Recipe
Ifoodbag-application.groovy file:

application {

 name="Ifoodbag"
 service {
 name = "tomcat"

}
}

Tomcat-service.groovy file:

import java.util.concurrent.TimeUnit;
import static JmxMonitors.*

service {
 name "tomcat"
 icon "tomcat.gif"
 type "APP_SERVER"
 elastic true
 numInstances 1
 minAllowedInstances 1
 maxAllowedInstances 3

 def instanceId = context.instanceId

 def portIncrement = context.isLocalCloud() ? instanceId-1 : 0
 def currJmxPort = jmxPort + portIncrement
 def currHttpPort = port + portIncrement
 def currAjpPort = ajpPort + portIncrement
 compute {
 template "SMALL_LINUX"
 }
 lifecycle {

details {
def currPublicIP = context.publicAddress

 def contextPath = context.attributes.thisInstance["contextPath"]
if (contextPath == 'ROOT') contextPath="" // ROOT means "" by convention in
Tomcat

 def applicationURL = "http://${currPublicIP}:${currHttpPort}/${contextPath}"
 println "tomcat-service.groovy: applicationURL is ${applicationURL}"
 return [

"Application URL":"<a href=\"${applicationURL}\"
target=\"_blank\">${applicationURL}"

]
 }
 monitors {
 def contextPath = context.attributes.thisInstance["contextPath"]

if (contextPath == 'ROOT') contextPath="" // ROOT means "" by convention in
Tomcat

 def metricNamesToMBeansNames = [
 "Current Http Threads Busy": ["Catalina:type=ThreadPool,name=\"http-bio-

${currHttpPort}\"", "currentThreadsBusy"], "Current Http Thread Count": ["Catalina:type=ThreadPool,name=\"http-bio-
${currHttpPort}\"", "currentThreadCount"], "Backlog": ["Catalina:type=ProtocolHandler,port=${currHttpPort}", "backlog"], "Total
Requests Count": ["Catalina:type=GlobalRequestProcessor,name=\"http-bio-${currHttpPort}\"", "requestCount"], "Active Sessions":
["Catalina:type=Manager,context=/${contextPath},host=localhost", "activeSessions"],]

 return getJmxMetrics("127.0.0.1",currJmxPort,metricNamesToMBeansNames)
 }

 init "tomcat_init.groovy"
 install "tomcat_install.groovy"
 start "tomcat_start.groovy"
 preStop "tomcat_stop.groovy"

 startDetectionTimeoutSecs 240

94

 startDetection {
println "tomcat-service.groovy(startDetection): arePortsFree

http=${currHttpPort} ajp=${currAjpPort} ..."
 !ServiceUtils.arePortsFree([currHttpPort, currAjpPort])
 }
 postStart {
 if (useLoadBalancer) {
 println "tomcat-service.groovy: tomcat Post-start ..."

def apacheService = context.waitForService("apacheLB", 180,
TimeUnit.SECONDS)

 println "tomcat-service.groovy: invoking add-node of apacheLB ..."
 def privateIP = context.privateAddress
 println "tomcat-service.groovy: privateIP is ${privateIP} ..."
 def contextPath = context.attributes.thisInstance["contextPath"]

if (contextPath == 'ROOT') contextPath="" // ROOT means "" by convention in
Tomcat
def currURL="http://${privateIP}:${currHttpPort}/${contextPath}"

 println "tomcat-service.groovy: About to add ${currURL} to apacheLB ..."
 apacheService.invoke("addNode", currURL as String, instanceId as String)
 println "tomcat-service.groovy: tomcat Post-start ended"
 }
 }

 postStop {

if (useLoadBalancer) {
 println "tomcat-service.groovy: tomcat Post-stop ..."
 try {

def apacheService = context.waitForService("apacheLB", 180,
TimeUnit.SECONDS)
if (apacheService != null) {

 def privateIP = context.privateAddress
 println "tomcat-service.groovy: privateIP is ${privateIP} ..."
 def contextPath = context.attributes.thisInstance["contextPath"]

if (contextPath == 'ROOT') contextPath="" // ROOT means "" by convention in
Tomcat

 def currURL="http://${privateIP}:${currHttpPort}/${contextPath}"
 println "tomcat-service.groovy: About to remove ${currURL} from apacheLB ..."
 apacheService.invoke("removeNode", currURL as String, instanceId as String)
 }
 else {
 println "tomcat-service.groovy: waitForService apacheLB returned null"
 }
 }
 catch (all) {
 println "tomcat-service.groovy: Exception in Post-stop: " + all
 }
 println "tomcat-service.groovy: tomcat Post-stop ended"
 }
 }
 }

 customCommands ([
 "updateWar" : {warUrl ->

println "tomcat-service.groovy(updateWar custom command): warUrl is
${warUrl}..."

 if (! warUrl) return "warUrl is null. So we do nothing."
 context.attributes.thisService["warUrl"] = "${warUrl}"

println "tomcat-service.groovy(updateWar customCommand): invoking
updateWarFile custom command ..."
def service = context.waitForService(context.serviceName, 60,
TimeUnit.SECONDS)
def currentInstance = service.getInstances().find{ it.instanceId ==
context.instanceId }

 currentInstance.invoke("updateWarFile")
 println "tomcat-service.groovy(updateWar customCommand): End"
 return true
 } ,
 "updateWarFile" : "updateWarFile.groovy"
])

userInterface {

95

metricGroups = ([
 metricGroup {

name "process"
 metrics([
 "Total Process Cpu Time",
 "Process Cpu Usage",
 "Total Process Virtual Memory",
 "Num Of Active Threads"
])
 } ,
 metricGroup {
 name "http"
 metrics([
 "Current Http Threads Busy",
 "Current Http Thread Count",
 "Backlog",
 "Total Requests Count"
])
 } ,

])

 widgetGroups = ([
 widgetGroup {
 name "Process Cpu Usage"
 widgets ([
 balanceGauge{metric = "Process Cpu Usage"},
 barLineChart{
 metric "Process Cpu Usage"
 axisYUnit Unit.PERCENTAGE
 }
])
 } ,
 widgetGroup {
 name "Total Process Virtual Memory"
 widgets([
 balanceGauge{metric = "Total Process Virtual Memory"},
 barLineChart {
 metric "Total Process Virtual Memory"
 axisYUnit Unit.MEMORY
 }
])
 } ,
 widgetGroup {
 name "Num Of Active Threads"
 widgets ([
 balanceGauge{metric = "Num Of Active Threads"},
 barLineChart{
 metric "Num Of Active Threads"
 axisYUnit Unit.REGULAR
 }
])
 } ,
 widgetGroup {
 name "Current Http Threads Busy"
 widgets([
 balanceGauge{metric = "Current Http Threads Busy"},
 barLineChart {
 metric "Current Http Threads Busy"
 axisYUnit Unit.REGULAR
 }
])
 } ,
 widgetGroup {
 name "Current Http Thread Count"
 widgets([

 balanceGauge{metric = "Current Http Thread Count"},
 arLineChart {
 metric "Current Http Thread Count"
 axisYUnit Unit.REGULAR
 }
])

96

 } ,
 widgetGroup {
 name "Request Backlog"
 widgets([
 balanceGauge{metric = "Backlog"},
 barLineChart {
 metric "Backlog"
 axisYUnit Unit.REGULAR
 }
])
 } ,
 widgetGroup {
 name "Active Sessions"
 widgets([
 balanceGauge{metric = "Active Sessions"},
 barLineChart {
 metric "Active Sessions"
 axisYUnit Unit.REGULAR
 }
])
 } ,
 widgetGroup {
 name "Total Requests Count"
 widgets([
 balanceGauge{metric = "Total Requests Count"},
 barLineChart {
 metric "Total Requests Count"
 axisYUnit Unit.REGULAR
 }
])
 } ,
 widgetGroup {
 name "Total Process Cpu Time"
 widgets([
 balanceGauge{metric = "Total Process Cpu Time"},
 barLineChart {
 metric "Total Process Cpu Time"
 axisYUnit Unit.REGULAR
 }
])
 }
])
 }

 network {
 port = currHttpPort
 protocolDescription = "HTTP"
 }

}

97

Appendix D: Implementing Auto-Scaling Policies
Auto-Scaling code:

elastic true
minAllowedInstances 1
maxAllowedInstances 3

scaleCooldownInSeconds 60
samplingPeriodInSeconds 1

// Defines an automatic scaling rule based on "counter" metric value
scalingRules ([
 calingRule {

serviceStatistics {
 metric "Total Requests Count"
 statistics Statistics.maximumThroughput
 movingTimeRangeInSeconds 20
 }
 highThreshold {
 value 1
 instancesIncrease 1
 }
 lowThreshold {
 value 0.2
 instancesDecrease 1
 }
 }
])

Appen
cloudify

Deploying

ndix E:
fy@default>

g Ifoodbag

Deploy
>bootstrap-c

application

ing Ifoo
cloud ec2

n in the clou

99

odbag A

ud

Applicattion in EEC2

Appen
EC2 Man

ndix F: A
nagement c

Amazon
console:

n EC2 M

101

Management Console

Appen
Cloudify

ndix G:
Web Mana

Cloudif
agement con

fy Web
nsole

103

Manageement CConsolee

Appen
Sending R

httperf --
1000 --ra

httperf --
10000 --r

httperf --
conns 200

Figure sh

ndix H:
Request to

-hog --serve
ate 10

hog --serve
rate 30

-hog --serv
000 --rate 1

hows adding

Simula
the server:

er 54.194.2

er 54.194.23

ver 54.194.2
100 --timeou

g new serve

ting Au

238.66 --por

38.66 --port

238.66 --po
ut 15

ers

105

uto-Scal

rt 8082 --

t 8082 --ur

ort 8082 -

ing Pro

uri /ifoodba

ri /ifoodbag

--uri /ifood

ocess

ag --wsess=

g --wsess=2

dbag --wses

=5,5,2 --nu

20,10,2 --nu

ss=20,20,10

m-conns

m-conns

0 --num-

www.kth.se

TRITA-ICT-EX-2014:13

