Dynamic scaling of a web-based
application in a Cloud Architecture

&

L,

MD. IOBAL HOSSAIN EFKTHS
and %Xiﬂéﬁéﬁgo

MD. IOBAL HOSSAIN sse

KTH Information and
Communication Technology

Degree projectin
Communication Systems
Second level, 30.0 HEC
Stockholm, Sweden

Dynamic scaling of a web-based
application in a Cloud
Architecture

Md. Igbal Hossain (Older)
mihossai@kth.se

And

Md. Igbal Hossain (Y ounger)
mihigbal@kth.se

2014-02-28

Master’s thesis

Examiner and academic adviser
Professor Gerald Q. Maguire Jr.

School of Information and Communication Technology
KTH Royal Institute of Technology
Stockholm, Sweden

Abstract

With the constant growth of internet applications, such as social networks, online media,
various online communities, and mobile applications, website user traffic has grown, is very
dynamic, and is oftentimes unpredictable. These unpredictable natures of the traffic have led
to many new and unique challenges which must be addressed by solution architects,
application developers, and technology researchers. All of these actors must continually
innovate to create new attractive application and new system architectures to support the users
of these new applications. In addition, increased traffic increases the demands for resources,
while users demand even faster response times, despite the ever-growing datasets underlying
many of these new applications. Several concepts and best practices have been introduced to
build highly scalable applications by exploiting cloud computing. As no one who expect to be
or remain a leader in business today can afford to ignore cloud computing.

Cloud computing has emerged as a platform upon which innovation, flexibility,
availability, and faster time-to-market can be supported by new small and medium sized
enterprises. Cloud computing is enabling these businesses to create massively scalable
applications, some of which handle tens of millions of active users daily. This thesis concerns
the design, implementation, demonstration, and evaluation of a highly scalable cloud based
architectures designed for high performance and rapid evolution for new businesses, such as
Ifoodbag AB, in order to meet the requirement for their web-based application. This thesis
examines how to scale resources both up and down dynamically, since there is no reason to
allocate more or less resources than actually needed. Apart from implementing and testing the
proposed design, this thesis presents several guidelines, best practices and recommendations
for optimizing auto scaling process including cost analysis. Test results and analysis presented
in this thesis, clearly shows the proposed architecture model is strongly capable of supporting
high demand applications, provides greater flexibility and enables rapid market share growth
for new businesses, without their need to investing in an expensive infrastructure.

Keywords: cloud computing, internet, application scalability, internet traffic, performance.

Sammanfattning

Med den stindiga tillvixten av Internet- applikationer, sisom sociala nétverk, online
media, olika communities och mobila applikationer, har trafiken mot webbplatser dkat samt
blivit mycket mer dynamisk och &r ofta oforutségbara. Denna ofrutsdgbara natur av trafiken
har lett till ménga nya och unika utmaningar som maste l6sas med hjilp av 16sningsarkitekter,
applikationsutvecklare och teknikforskare. Alla dessa aktorer maste stindigt fornya sig for att
skapa nya attraktiva program och nya systemarkitekturer for att stodja anvindarna av dessa
nya tillimpningar. Dessutom Okar den 6kade trafikmédngden krav pa resurser, samtidigt som
anviandarna krdver dnnu snabbare svarstider, trots den stindigt vixande datamingden som
ligger som grund for ménga av dessa nya tillimpningar . Flera koncept och branchstandarder
har inforts for att bygga skalbara applikationer genom att utnyttja “molnet” (’cloud
computing”), eftersom att ingen som forvintar sig att bli eller forbli en ledare 1 néringslivet
idag har rad att ignorera “molnet”.

Cloud computing har vuxit fram som en plattform pd vilken innovation, flexibilitet,
tillganglighet och snabbhet till marknaden kan uppnas av nya, sma och medelstora foretag.
Cloud computing dr mdjligt for dessa foretag att skapa mycket skalbara applikationer, vilka
kan hanterar tiotals miljoner aktiva anvidndare varje dag. Detta examensarbete handlar om
utformning, genomforande, demonstration och utvirdering av en mycket skalbar
molnbaseradearkitekturer som utformats for hdga prestanda och snabb utveckling av nya
foretag, sdsom Ifoodbag AB, for att uppfylla kravet pé deras webb- baserad applikation. Detta
examensarbete undersoker hur man bade skalar upp och ner dynamiskt, eftersom det inte
finns ndgon anledning att tilligna applikationer mer eller mindre resurser dn vad som faktiskt
behovs for stunden. Som en del av examensarbetet implementeras och testas den foreslagna
utformningen, samt presenterar flera riktlinjer, branchstandarder och rekommendationer for
att optimera automatisk skalning av processer. Testresultat och de analyser som presenteras i
detta examensarbete, visar tydligt att den fOreslagna arkitekturen/modellen kan stddja
resurskrdvande applikationer, ger storre flexibilitet och mojliggdr snabb tillvixt av
marknadsandelar for nya foretag, utan att deras behov av att investera i en dyr infrastruktur.

Nykcelord: Cloud computing, molntjanster, Internet, skalbarhet for applikationer,
internettrafik, prestanda

Acknowledgements

Igbal Hossain (Older):

First I would like to thank almighty Allah for giving me strength and the patience to
accomplish this thesis project. I am thankful to my mom (Mrs. Nurjahan Begum) and my
older brothers for their unconditional support and motivation, even from thousand miles
away. | am also grateful to my beloved wife (Rahena Easmin Ratna) for her continuous
inspiration and insisting to complete this thesis work. I would also like to thank my 4 years
old charming boy (Farhan Igbal Taseen) for not demanding too much attention from me
during this thesis project. I am also thankful to my colleagues Tobias Ostensson and Marked
Jakob for helping us writing abstract in Swedish. I would also like to thank my friends and all
family members across the globe for their encouragement during all this time. Last but not the
least I would like to thank our supervisor and examiner (Professor Gerald Q. Maguire Jr.)
who introduced us the idea of working with cloud architecture and his quick invaluable
insights have always been very helpful throughout the project.

Igbal Hossain (Y ounger):

Praise to almighty, the origin of knowledge, who enables me to undertake and
accomplish this thesis work. My special gratitude goes to our supervisor and examiner
Professor Gerald Q. Maguire Jr. whose precious guidance accompanied me during this
research work. I would like to sincerely thank to my program coordinator May-Britt Eklund-
Larsson for her help and kind cooperation during my studies. My deepest gratitude goes to my
parents for their infinite support throughout my life. Finally, I would like to thank my brother,
sisters and friends for encouraging me during all this time. The efforts of myself, inspirations
of many, have led to a successful completed of my thesis project.

Table of Contents

Y € 15 1 = T3 [
Sammanfattning........oooiii i e ii
ACKNOWIEAgEMENTS ... e \%
Table Of CONTENTS ...oiiiiiii e aaaaa Vi
LISt Of FIQUIES .. et e e eeeaees IX
LISt Of Tables . ee e Xi
List of Acronyms and Abbreviations...........c.cooiiiiiiiiiiiinn... Xiii
Contribution of the AUTNOrSo e XV
1 INtrOdUCTION .. 1
I O O 1Y 1 1
1.2 Problem Statement. 1
1.3 Research methodologycooiiiiii e 4
1.4 ProJecCt gOals. ... e 4
I T 1] = o = o o o 1= 4
1.6 Structure of this theSiS e 5
2 General Backgroundooiiiiiiiiii e 7
2.1 What is cloud COMPULING? ...ooriiiii i ettt cieeeeeens 7
2.1.1 On-demand Self-SErVIiCecc ettt 8
2.1.2 UDbIiquitous NETWOIK GCCESSuuui ittt e e 9
2.1.3 Elasticity and scalabilitycooooiiiiii 9
2.1.4 Horizontal and Vertical Scalability ... 9
2.1.5 ReSOUICE POOIING. ...ttt 10

P T G T o= e o 1= e = 11
2.1.7 Self-managed platformoiiiiii e 11
2.1.8 Standardized INterfaCes.oooiiii e 11
2.1.9 Quality of Service (QO0S) ..cciiiiiii i 11
2.1.10 Reliability ..cooeii e 12
2.2 Cloud computing Service MOdelS.........ouiiiiiiiii i 12
2.2.1 Infrastructure as a Service (1aaS)ccviiiiiiiiiiii i 13
2.2.2 Platform as a Service (PaaS)ccvviiiiiiiiiiiiiiiiei e 13
2.2.3 Software as a ServiCe (SaaS)ccuuiuiiiiii i 13

2.3 Cloud computing deployment modelscooiiiiiiiiiiiiiiiii e 14
2.3.1 Public cloud. ... e 14
2.3.2 Private ClOUd ...t 14
2.3.3 CommUNItY ClOUdo e 15
2.3.4 HyDrid ClOUd ... e 15
2.4 VIrtualiZation . ..o e 15
2.4.1 Server / hardware virtualizationc..oiiiiiiiiiiiii e 16
2.4.2 Kernel based virtual machine (KVM) ... 17
2.5 Lamp StaCK — OVeIVIEBW ... ettt a e eeeeeeens 18
2208 0t I 15 18

2. 5. 2 APACKNE L e 19
2.5, 3 MY SOttt ittt et aas 19

2. 5.4 PHIP s 19

2.6 Current cloud ServiCe ProViderscooiiiieiiii e eaeeaaaas 19

Vi

2.7 (R LSY E=Y (ST0 BV o) o G 21

3 Scalable Cloud Architecture for a Web Application........ 23
3.1 Scalable Web Application Reference Architecture...............ccccoeveai... 23
3.2 Load BalanCing Tiert 23
G G N o o] | o> X o [0 o I = 24
G R @ T 1 o o N 1= 25
G T B T = o = L= T 25
3.6 Management NOAe/NOAES......ccoiiiiiiiiii e eeeenn 26
3.7 Security guidelines in the architecture ..., 27

4 Detail Descriptions of the Component in the Proposed

ArChITECTUrE. ... oo i eeaas 29

L O B N T =T Y= 29
4.1.1 DNS INfrastrUCTUIe ..ottt eeaaaaans 30
4.1.2 DNS name resolVIiNg PrOCESS.uieiie e a e aaaas 31
4.1.3 DNS SECUNLY ASPECES ..ttt ettt et eeaa e e aaaaaaas 32
4.2 Load Balancer (SQUIA/HA ProXY) ... aeee e 32
4.2.1 How to calculate response time eaaaaaaaas 34
4.2.2 Different types of load balancersccooiiiiiiiiiiii e 34
B B o [1o 35
S o N o 64 Y 35
4.3 Web server/ApplicatiOn SEIVEN ...t eeeeeaeaeenes 36
4.4 Caching web data (memcached)c.ccoveiiiiiiiiiiii e 37
T I - Y = o - 1] 39
4 T O [0 15 [0 [0] =T o =P 40
4.7 Management NOOEcoiiiiiii ettt e e e eeeaaeeaeaannes 41

5 Implementation ..o 43
5.1 EXperimental SETUPcooviiiiiii e 43
5.2 Motivation for choosing Cloudifyccooiiiiiiiiiii e 44
5.3 Introduction tO CloUdiTycouiii e 45
5.4 Deploying CloUdify e 45

5.4.1 Boot-strapping Cloudify on EC2......cooiiiiiiiiii e 50
5.4.2 Deploying the Ifoodbag application recipe.........ccoviiiiiiiiiiinininnen. 51
5.5 Motivation for choosing AW S 52
5.5.1 The differences that distinguish AWS ..., 52
5.5.2 INtroducCtion 1O AW S ... ettt 53
5.5.2.1 Amazon Elastic Compute Cloud (AmMazon EC2)ccceeriiiiieiiiiiniieeieeeieeesieesieesiee s e e 53
5.5.2.2 Elastic LOAd BalanCing......ueevuiiiiiiiriiieieeniee sttt sttt ettt be e sbeesbee st neas 53
5.5.2.3 Amazon Virtual Private Cloud (AMAazon VPC)c.cccceeeiiieiiieeeieesieeste e sreesire e siaeesaeeesvaeesree s 53
5.5.2.4 AMAzoN ElaStiCACh@...cccuuiiiiiiieeciee ettt sttt e et e e e naeeeen e 54
5.5.25 AMAzZON ROUTE 53 ...ttt e e ettt e e e s e bt e e e e e e e bbbt e e e e e esaanreeenans 54
5.5.2.6 Amazon Elastic BlOCk StOrage (EBS)......ueeeeiuiiiieiee ettt ettt et e 54
5.5.2.7 Amazon Relational Database Service (AmMazon RDS).......ccccueieeiiiieiiiie e et eiaee e 54
5.5.3 AmMazon EC2 INSTANCE TYPES .. nuuuii it a e aaans 54
554 AmMazon EC2 PriCINGg oeeeiiiiiii ittt e e aa e aaaaens 56
5.5.5 EC2 cloud setup for Cloudifyccooiiiiiiiiiiiiii e 56
5.6 Webserver load or performance measurement tool - Httpref............... 58

Vi

6 Results and analysiscoooiiiiiii i eeeeeaa 59
6.1 Successful deployment of the Ifoodbag application on EC2 from the

management MacChineo e eeeeeeaeaeas 59
6.2 Scalability Guidelines and ANalySiS.......coviiiiiiiiiiiii e 60
6.2.1 Scalability GUIdEliNeS ... e 60
6.2.2 Scalability ANalySiS......ooi e 63
6.3 COSt ANaAlY SIS -iiiiiiiiiiii i s 65
6.3.1 Utility style pricing for Cloudooiiiiiiii e 65
B6.3.2 COSt A O S e 66
6.3.3 Instance type seleCtionoooiiiiiiiiii 68
6.3.4 Total Cost of Ownership (TCO) of running a web application in a
o [0 115 Lo 68
6.3.5 Cost ANAlYSIS SUMMAIY ...oooiiiiiiii e e e eeeeans 72
6.4 Comparison with some other solutions and some recommendations..... 72
7 Conclusions and Future Workccoiiiiiiiiiiiiiiiiaaann. 75
7.1 CONCIUSIONS .. ettt e e 75
7.2 FULUIE WOTK .o ettt ettt aaaeee e 75
7.3 RefleCtioNS ..o e 76
7.3.1 SOCIAl AP TS ..t e 76
7.3.2 ECONOMIC @SPECES. ..ttt ittt ettt e e et eeeeaeann 76
7.3.3 Sustainability aSpeCtS ... e 77
7.3.4 Legal and ethical asSpectsccoviiiiiiiiii e 77
R EIENCES .. e 79
Appendix A: Installation of Cloudify...........cooovviiiiiiiiiiina.... 87
Appendix B: Configuration of Cloud controllers and cloud
AEIV TS e 89
Appendix C: Writing Ifoodbag Application Recipe.................. 93
Appendix D: Implementing Auto-Scaling Policies.................. 97
Appendix E: Deploying Ifoodbag Application in EC2 99
Appendix F: Amazon EC2 Management Console 101
Appendix G: Cloudify Web Management Console................ 103
Appendix H: Simulating Auto-Scaling Process 105

viii

List of Figures

Figure 1-1:
Figure 1-2:
Figure 2-1:

Figure 2-2:

Figure 2-3:

Figure 2-4:

Figure 2-5:
Figure 2-6:
Figure 2-7:

Figure 2-8:
Figure 3-1:

Figure 3-2:
Figure 3-3:

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:

Figure 4-5:
Figure 5-1:

Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:

Figure 5-10:
Figure 5-11:
Figure 5-12:
Figure 5-13:

Figure 6-1:
Figure 6-2:

Traditional Infrastructure Modelccooiiiiiiiiiiiiii i 2
Scalable Cloud Architecture Model ... 3
Basic single N-tier Architecture (Adapted from Figure 1,

PAGE O OF [2]) e e s 10

Horizontally scaled load balancing and web-tier and

vertically scaled database tier (Adapted from Figure 2, page

O OF 20 cini et 10
Server stack comparison between on-premise

infrastructure, laaS, PaaS, and SaaS (Adapted from Wely

Lau’s online article[22]) ..o 12
Cloud computing stack (Adapted from Figure 1.3, page 14

o) 11 1) 14
Basic architecture of virtualization [17]cccoviiiiiiiiiiiniin... 15
Bare metal/native and hosted hypervisor [17]cccvveeeeeea..... 16
The hypervisor manages VMMs that host virtual machines

G 2= 17
LAMP architecture (adapted from [35]) ..cceviiiieeniiiiiiiiiine. . 18
Scalable reference architecture for Ifoodbag’s web-

APPHCALION ... e 23
Database Tier for Ifoodbag Web-Application 26
Architecture with security guidelines as recommended in

152 S 27
The normal DNS resolution process (adapted from [67]). 30
Partial DNS Name Space Hierarchy (adapted from [66]).......... 31
DNS name resolving process (adapted from [69]).c........... 32
Load balancing for balancing load among multiple

application servers (adapted from [73]). .cceviiieiiiiiiiiiiiiiaaans 33
Master-slave replication of databases (adapted from [88])....... 39
High level experimental setup using Cloudify and EC2

o [0 11 T £ 43
Cloudify Shell ... e 46
Achieving the No Code Change objective..........oooiiiiiiiinann. ... 47
Achieving the No Lock-in objectiveccooiiiiiiiiiiiii . 48
Achieving the Full control objectivecccoevviiiiiiiiiiiien .. 48
Cloudify ArChiteCtUIreooeiii i et 49
Bootstrapping Cloudify on EC2......cciiiiiiiiii e 50
Cloudify Web Management Consolecooiiiiiiiiiiiiiiiiinnnn.... 50
Deploying the sample Ifoodbag web application locally............ 51
Ifoodbag web application launched in local-cloud.................... 51
Create new a key pair for Amazon EC2cooiiiiiiiiiiiiann... 57
Added a new key pair named ifoodbag with a secret key 57
Creating an Access Key ID in Amazon EC2...........oviiiiiiiinn... 57
Ifoodbag application on EC2 cloud..........ooiiiiiiiiii i 59
Cloudify web-management console for Ifoodbag application..... 59

ix

Figure 6-3:
Figure 6-4:

Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:
Figure 6-9:

Defined metrics for Ifoodbag applicationccoceeeea... 60
Assumed traffic pattern of a production version of the

iFoodbag application............ooiiiii 61
PiNg-PoNg EffeCt ... 61
SCAlE UP PrOCESS ittt et 65
Scale DOWN PIrOCESS ...ttt 65
Monthly TCO of traditional infrastructure versus cloud............. 70
Yearly TCO of traditional infrastructure versus a cloud............. 72

List of Tables

Table 4-1:
Table 4-2:
Table 4-3:
Table 4-4:
Table 4-5:
Table 4-6:
Table 5-1:
Table 5-2:
Table 5-3:

Table 6-1:
Table 6-2:
Table 6-3:

Table 6-4:
Table 6-5:
Table 6-6:
Table 6-7:

Table 6-8:

Different types of Top-Level Domains (TLD)........cccooeeeveeea.... 30
DNS name resolving process [68] ccccceveeiiiiiiiiiiiii et 31
Different types of load balancers [76]cccovvvvvviiviiieeinninnnn., 35
Different types of web servers [82, 83].cccevvvvivviiiiiiiiinnn 37
Different tasks perform by memcached [60]. 38
Advantages of master-slave replication [88]cccoeiiiiait. 40
Experimental configuration..... 44
Amazon EC2 iNStanCe tyPeS. oo 55
Amazon EC2 pricing for Linux OS and US East (N. Virginia)

L= | 0] o 56
Amazon EC2 Scale up TimMe ... 62
Amazon EC2 Scale DOWN TiMe....ouiiiiiiiii e eeciieeee e 62
Results of implementing the algorithm with RPSpe,c=1300,
RPSuin=50, D=2, U=3, Tp=40, Tu=80 ...eeiiiiiiiiiiiiieiiiieeannnns 64
Utility Style Pricing [120, 121 ...cvviiiiiiiiiiiiiii e 66
Different types of cost factors [119, 121].....cccoviiiiiiiiiinnnnnn.... 66
Types of instances according to costs savinNg........ccceevvvvieiinn.. 68
Saving of reserved instance types over on-demand

IMSTANC S . i 68
TCO of on-premises infrastructure vs. cloud infrastructure....... 69

Xi

List of Acronyms and Abbreviations

AMI
API
ASG
AWS
BSD
CBS
CPU
CRM
CSS
DNS
DNSSEC
EBS
EC2
ELB
ESXi
FTP
GUI
HA Proxy
HTML
HTTP
HTTPS
TaaS
1IS

/0

1P

ISP

IT

JEE

JS
KVM
LAMP
LAN
LB
LRU
NIST
(ON]
PaaS
PHP
PUE
QEMU
QoS
RAM
REST

Amazon Machine Image
Application programming interface
Auto Scaling Group

Amazon Web Services
Berkeley Software Distribution
Cloud Block Storage

Central Processing Unit
Customer relationship management
Cascading Style Sheets
Domain Name System

DNS Security

Elastic Block Storage

Elastic Compute Cloud

Elastic Load Balancing

Elastic Sky X

File Transfer Protocol
Graphical User Interface

High Availability Proxy
Hypertext Markup Language
Hypertext Transfer Protocol
Hypertext Transfer Protocol Secure
Infrastructure as a Service
Internet Information Services
Input / Output

Internet Protocol

Internet Service Provider
Information Technology

Java Enterprise Edition
JavaScript

Kernel Virtual Machine

Linux, Apache, MySQL, PHP
Local Area Network

Load Balancer

Least Recently Used

National Institute of Standards and Technology
Operating System

Platform as a Service
Hypertext Preprocessor

Power Usages Effectiveness
Quick Emulator

Quality of Service

Random Access Memory
Representational state transfer

xiii

RDS
RPS
RTT
SaaS
SLA
SOA
SSD
SSL
TCO
TCP
TLD
USM
VM
VMM
VPC
VPN
VT-x
W3C
WAN

Xiv

Relational Database Service
Request Per Second

Round Trip Time

Software as a Service

Service Level Agreement
Service Oriented Architecture
Solid State Drive

Secure Socket Layer

Total Costs of Ownership
Transmission Control Protocol
Top Level Domain

Universal Service Manager
Virtual Machine

Virtual Machine Monitor
Virtual Private Cloud

Virtual Private Network
Virtual Technology

World Wide Web Consortium
Wide Area Network

Contribution of the Authors

Chapter

Sections

Subj ect

Author (s)

5.1-54
5.5-5.6

6.1-6.2,
6.4

6.3
7.1-7.2
7.3

Abstract
Introduction
General Background

Scalable Cloud Architecture Design for
Web Application

Detail Descriptions of the Component in
the Proposed Architecture

Implementation
Implementation
Results and analysis

Results and analysis
Conclusions and Future Work
Conclusions and Future Work

XV

Igbal (Older)
Igbal (Older)
Igbal (Younger)

Igbal (Older)

Igbal (Younger)

Igbal (Older)
Igbal (Younger)
Igbal (Older)

Igbal (Younger)
Igbal (Older)
Igbal (Younger)

Igbal (Older)
assist in
selecting study
materials and
covering
different topics
Igbal (Younger)
assist in
designing the
architecture
Igbal (Older)
assist in
covering topics

1 Introduction

This chapter describes the main purpose and the problem statement that motivated and
guided this thesis project. Following this the chapter describes the research methodology that
was selected for this project. The following two sections present the goals of our thesis project
and its scope. The chapter ends with a description of the structure of the entire thesis.

1.1 Overview

Cloud computing extends information technology (IT) computing resources across the
Internet. Today clouds are made available by various cloud service providers. Usually, users
are not concerned with the underlying technologies or challenges that must be overcome for
the cloud service provider to support a scalability diverse infrastructure. These users are also
unconcerned with the number of servers or details of the other resources that are necessary to
support their currently desired computing/storage/networking requirements, these users
simply want to pay for the computing capacity which they use and they expect the capacity to
scale up or down to meet their current requirements in an on-demand basis.

The numbers of applications, which exploit the cloud-computing model, are increasing
rapidly as connectivity costs fall and computing hardware becomes more efficient — especially
when operated on a large scale. Cloud services have extended beyond web applications to
include data storage, raw computing, and access to different specialized services, such as
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service
(SaaS). Cloud based computing is becoming the ideal environment for scalable applications
because it allows for rapid resource allocation in times of high demand, as well as resource
de-allocation as demand declines. With a suitably scalable architecture, the resources and
infrastructure of the cloud can accommodate all of the different phases of an application’s
lifecycle, thus providing a single consistent context in which to bring an application from
conception to development, then from production to maintenance, and finally, to a gradual
end of life. Additionally, the cloud has become a popular solution to the problem of horizontal
scalability. As a result “cloud application scalability” is gaining a tremendous amount of
attention by both practitioners and researcher, see for example [1,2,3,4,5,6].

1.2 Problem Statement

Application scalability may take many forms, but in principle an application and its
underlying infrastructure should adapt to the dynamically changing conditions (demands and
available resources at various costs) to promote the availability and reliability of a service,
while minimizing the cost for the application service provider. With the increase in numbers
and size of on-line communities there has been an increasing effort to exploit
cross-functionalities across these communities. However, application service providers have
encountered problems due to the unpredictable demand for their application(s), especially
when external events can lead to unprecedented traffic levels to and from their
application [7]. This dynamic nature of demand and traffic drives the need for a massively
scalable solution to enable the availability (and reliability) of web-based applications.

In the earlier traditional infrastructure model, two approaches were taken in order to
address the unpredictability of site traffic and system load, each of which is illustrated in
Figure 1-1. One approach was to overprovision resources to handle spikes that may occur in
traffic. Although this enables an application to increase its availability in high-traffic
situations, it does not make effective use of resources - because a portion (and perhaps the

" For example, flash crowds or denial of services attacks can both lead to very high levels of traffic
to/from an application.

majority) of these resources are idle during off-peak periods. This inefficiency is illustrated in
Figure 1-1 by the gap between the blue line representing infrastructure’s capacity (which can
be generalized to represent the number of servers in use) and the green line that is an
indication of actual user demand for the service provided by the application. The gray vertical
arrow illustrates the disparity between the two. This approach is obviously a costly solution
due to the presence of unutilized capacity; therefore, this is generally not a recommended
approach. The second approach is based on dimensioning the system for the typical usage
(pattern) of the application, while suffering the consequences of lost traffic when peak
demands are encountered. Although this has a lower cost in times of normal usage, it is costly
during traffic spikes because the lost traffic typically leads to lost revenue opportunities. This
scenario is illustrated in the Figure 1-1 by the shaded region under the demand curve between
the green line (demand) and the blue line (infrastructure capacity). In this situation when the
demand exceeds capacity traffic is lost and/or the application service may even become
unavailable.

‘ Traditional Infrastructure Model ‘

Customer disattisfaction
(Insufficient Hardware)

/

Large Capital
Expenditure

Infrastructure Cost

Predicted Demand

/\ Actual Demand

G —p Opportunity Cost

Traditional Hardware Resources

\ 4

Time

Figurel-1. Traditional Infrastructure Model

For a dynamic and unpredictable environment neither of the above approaches with a
traditional infrastructure model is desirable. This is why a scalable cloud architecture model
offers an excellent fit for such dynamic and unpredictable loads. In a scalable cloud
architecture model, it is possible to dynamically provision additional resources only when
they are needed and then decommission them when they are no longer required. The result is
a true utility computing paradigm where customers incur charges only for the time period
during which they use the resources. Figure 1-2 illustrates this scalable cloud architecture
model for dynamically providing application resources.

In Figure 1-2, the demand curve is identical to that of Figure 1-1, but due to the dynamic
provisioning of infrastructure resources, no infrastructure resources sit idle when there is no
demand for this application, nor is there insufficient capacity when it is necessary to
accommodate an increased demand for the application.

A Scalable Cloud Architecture Model

Infrastructure Cost

Predicted Demand

/\ Actual Demand

® Automatic Trigger Action

Scalable Cloud HW

Time
Figure1-2: Scalable Cloud Architecture Model

In this thesis we will design, implement, demonstrate, and evaluate our proposal for a
highly scalable cloud based architecture which is designed to meet the performance and
rapidly evolution for a new business, such as Ifoodbag’s web-based application’. In
Chapter 3, we will describe our scalable cloud architecture’s design and present our choice of
preferred methods and techniques for best implementing the proposed scalable cloud
architectural model at all levels of an application’s multi-tiered architecture. This thesis will
clarify how to scale both up and down, since for a cloud based application which is used by
people in a local area there is going to be a fluctuation of users throughout the day and there is
no reason to have more or less resources than actually needed. Furthermore, we will examine
how fast we can scale up or down, and what happens if we do not scale up and down rapidly
enough. This will be described in terms of a control loop that determines the correct
combination of virtual machines (VMs) needed to meet the expected demands for an
application.

In the conclusions of the thesis, we will summarize our with respect to the gains that we
could achieve though our performance analysis of our pilot setup of a scalable cloud
architecture design. We identify additional mechanisms that could enable the deployment and
maintenance of a scalable application in the cloud. We also suggest some future work that
might build upon the results reported in this thesis.

" Ifoodbag is a Stockholm based startup offering weekly home delivery of food with personalized
recipes. Further details can be found at http://www.Ifoodbag.se/.

1.3 Research methodology

For this thesis project we have adopted positivist philosophic assumptions and followed a
design science research methodology including pragmatic approach [8], which is also known
as ‘mixed methods’, as this approaches grant researchers the freedom to use any of the
methods, procedures and techniques typically associated with quantitative or qualitative
research methodology. This method allowed us using different data sources, multiple
perspectives to interpret the results and multiple methods to study a research problem. We
have followed five steps design problems as defined by Seyyed Khandani to solve design
problems according to the Engineering Design Process [9]. The five steps are:

I. Define the problem

II. Gather pertinent information
III. Generate multiple solutions
IV. Analyze and select a solution
V. Test and implement the solution

In the beginning we have followed quantitative or qualitative only research methods,
however we have rejected this individual methods as of both are focused on very individual
specific requirements and procedures, for example the objective of quantitative research is to
develop and employ mathematical models, theories or hypothesis pertaining to phenomena
[10]. But that was not appropriate to drive our research goals. Hence we have followed the
pragmatic approach where we have had the freedom of utilizing any of these approaches
whenever it was needed.

1.4 Project goals

The main goal of this thesis is to design, implementation, demonstration, and evaluation
of a highly scalable cloud based architectures designed for high performance and rapid
evolution for new businesses, such as I[foodbag AB, in order to meet the requirement for their
web-based application. The goal is also to examine how to scale both up and down, since for a
cloud based application which is used by people in a local area there is going to be a
fluctuation of users throughout the day and there is no reason to allocate more or less
resources than actually needed. Additionally, this thesis examines the limitations on the rate at
which this scaling may occur when using information from the running instances of the
service.

1.5 Project scope

This thesis focuses on designing scalable cloud architecture model and defining scaling
policies and implementing a management node to monitor and scale the application. Physical
security, legal compliance, disaster recovery strategy, risk management and overall security of
the architecture are out of the scope in this thesis project. We do not consider what activities
the application servers (mainly what type of the services and application security itself) are
supposed to perform, thus actual application implementation and its security is out of this
thesis project. This means that we will focus on the interaction between these servers, virtual
machines, and client web browsers via the network. As our proposed solution is implemented
and proposed for cloud service provider either in private or public or hybrid cloud
architecture, thus underlying infrastructure nodes (e.g. routers, switches, firewalls, servers,
etc.) and defining their security is not focused in our thesis project.

1.6 Structure of this thesis

Chapter 2 provided the reader with the necessary background to read the rest of this thesis.
Chapter 3 describes the fundamental parts of scalable cloud architectures. Based upon these
parts Chapter 4 describes the details of the design that we have selected for each of these
parts. Chapter 5 describes the implementation of each of these parts and our experimental
setup that will be used to evaluate our implementation. The experimental results and their
analysis are given in Chapter 6. The thesis concludes in Chapter 7 with some conclusions,
suggestions for future work, and some reflections on the social, economic, legal, and ethical
considerations of this work. Further details are given in the appendices for those who might
want to build upon the work described in this thesis.

2 General Background

Cloud computing has emerged as one of the hottest topics in IT. The concept of cloud
computing comes from various computing research areas, such as high performance
computing, virtualization, utility computing, and grid computing. Due to the introduction of
cloud computing it has never been cheaper, faster, and easier to set up a scalable, on-demand,
geographically optimized web application environment. Cloud computing brings all of these
features together. Cloud computing comes into focus when IT professionals think about what
IT always needs: a way to increase capacity or add capabilities on the fly without investing in
new infrastructure, training new personnel, or licensing new software. Cloud computing
encompasses pay-per-use service via the Internet that extends an organization’s existing
capacity and capabilities. Cloud computing has its own conceptual, technical, economic, and
user experience characteristics. Clear insights into cloud computing will help the development
and adoption of this evolving technology by both academic and industrial users. Additional
details about cloud computing and its characteristics will be given in section 2.1. The cloud
model is composed of three service models and four deployment models. More details about
service and deployment models will be given following sections 2.2 and 2.3.

One of the major component of cloud computing is virtualization. While virtualization
technologies share a common bond by maximizing computing resources, there are differences
between the virtualization technologies and cloud computing. Virtualization is the process of
simulating “virtual” versions of infrastructure resources, such as computing environments,
operating systems, storage devices, or network components. Cloud computing is the delivery
of shared computing resources, software, or data as a service via the Internet. More details
about virtualization will be given in section 2.4. The acronym “LAMP”" refers to a solution
stack of software, usually free and open source software, used to run dynamic web sites or
servers. Details about LAMP will be discussed in section 2.5. Cloud providers offer different
cloud services based on service level of abstraction. Section 2.6 gives more detail about a
number of the current major cloud providers. Section 2.7 reviews related work.

2.1 What is cloud computing?

Traditionally business applications have been very complicated and expensive. The
amount and variety of resources (both software and hardware) needed to run these
applications caused companies to require a whole team of experts to install, configure, test,
run, secure, and update these systems. Cloud computing eliminates these headaches because
resources are not managed locally; but rather an experienced vendor is responsible for
managing the resources[11]. According to Amazon (one of the earliest cloud service
providers), the term “cloud computing” refers to the on-demand delivery of IT resources via
the Internet with pay-as-you-go pricing[12].

In the last few years, the cloud-computing model has become an important concept and
has been widely adopted by many companies. Different companies have their own definition
of the cloud and cloud computing, but most of these definitions focus on several important
attributes; such as requested resources are provided rapidly on demand, the service is scalable,
and the consumer pays only for what he or she uses. These resources might be computational
power, storages, networks, or applications[2]. Here we quote a few definitions of cloud
computing:

" Typically LAMP is realized by the combination: Linux, Apache, MySQL, PHP; however, other
combinations of software can also be used to realize LAMP as will be described in section 2.5.

7

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction.” - The
National Institute of Standards and Technology (NIST), USA [13].

"4 Cloud is a type of parallel and distributed system consisting of a collection of inter
connected and virtualized computers that are dynamically provisioned and presented
as one or more unified computing resources based on service-level agreements
established through negotiation between the service provider and consumers.” - R.
Buyya, C.S Yeo, and S.Venugopal [14].

“A cloud is a powerful combination of cloud computing, networking, storage,
management solutions, and business applications that facilitate a new generation of
IT and consumer services. These services are available on demand and are delivered
economically without compromising security or functionality”. — Cisco Systems, Inc.

[15].

“Cloud computing is the next stage in the Internet's evolution, providing the means
through which everything from computing power to computing infrastructure,
applications, business processes to personal collaboration can be delivered to you as
a service wherever and whenever you need”. — J. Hurwitz, R. Bloor, m. Kaufman and
F. halper [16].

From the above definitions, it should be clear that cloud computing is an Internet based
computing service that shares resources and provides information to the consumer on demand,
much like electricity grid provides electricity on demand. The concept of cloud can be traced
to grid computing and has been extend to address QoS (quality of service) and reliability
issues. If there is a single point of failure in the grid, then there is a risk of failure; this is a big
disadvantage of grid computing. In contrast, cloud computing avoids having a single point of
failure by virtualizing grid computing in a shared environment within a common cloud. Note
that the cloud can utilize resources from multiple administrative domains.

The most important cloud computing paradigm is virtualization. IT resources can be
utilized more effectively by virtualizing the major resource(s); this reduces complexity for
consumers - while allowing IT organizations to perform their own optimizations. Cloud
computing builds upon a virtualized infrastructure consisting of computational resources,
storage, and network devices[17]. The details of this virtualization will be discussed later in
this chapter.

Basically, the cloud is a set of virtualized resources that are managed. There are many key
characteristics, but today three different service models and four deployment models are well
defined with respect to the cloud-computing mode. These will each be discussed in following
sections.

2.1.1 On-demand self-service

A consumer can provision computing resources based on their current (or near future)
needs. As the consumer’s needs may change with time it is important to adapt the reservation
of resources to those that are appropriate. To perform tasks such as building, deploying,
managing, and scheduling, a cloud computing environment should allow the user to interact
with the cloud in such a way as to be able to explicit reserve and return resources. The user

" The consumer that we are referring to here is the customer of the cloud service provider, rather than
an end customer.

8

should able to access all the resources they needed without any interaction in advance with the
cloud service provider|[18]. Furthermore, the consumer should not be limited to a specific set
of servers. The cloud service provider is responsible for providing sufficient resources to
satisfy the consumer’s needs. The user controls the reservation of resources and returning of
resources, thus the consumer is responsible to avoid wasting resources (which is in their own
interest as they are paying for these resources — whether they are effectively using them or
not). The better the decision made regarding current and future needs, the better the service
that the consumer can provide and the more cost effective this service can be.

Provisioning computing resources on demand for a large number of enterprises is one of
the most desired capabilities of a cloud, because this eliminates the need for planning for
future growth and avoids the loss of customers when short term traffic demands are greater
than expected. Pay-per-use reduces the unnecessary upfront costs that otherwise an enterprise
would have to make to purchase and install resources which would need to meet or exceed the
expected demand. Unlike the traditional model, cloud computing helps the consumer avoid
the costs of underused resources[19].

2.1.2 Ubiquitous network access

Accessing the computing and storage capacity of a cloud should enable access through
standard Internet enabled devices. Cloud computing is device independent, because the
computing recourses can be accessed by heterogeneous thin or thick client platforms, in fact
any authorized platform that has an internet connection and a web browser (or a specific
application). It really does not matter that what kind of devices are used to access resources,
be they smartphones, tablets, laptops, or workstations.

2.1.3 Elasticity and scalability

The computing resource allocations can increase or decrease according to the consumer’s
demand. This change in resources is called elasticity. Elasticity enables scalability; hence a
cloud should be able to scale resources (by increasing or decreasing) as necessary. Scalability
also implies that an application can be scaled up due to additional users or when the
application’s requirements change[20]. If on a particular day the demand varies over time, the
system should be scaled up or down in resources to meet the actual demand.

For example, imagine a cloud based website that averages 1,000 hits per day. Suddenly,
on one particular date the website launches a special offer. In this case there is a higher
probability that a larger number of users will access the site at nearly the same time. For
example, due to this special offer the number of access to this website might rise to 10,000 on
a particular day. In this scenario, we assume that during a normal day the cloud would assign
one server, but during the peak hours on this particular day the service might be instantiated
on five different servers and later return to running on a single server during non-peak hours.
If we are hosting this service ourselves, we would need to purchase five servers in order to
prepare for the load during the peak hours, but outside of these peak hours four of our servers
will be idle (hence wasting resources).

2.1.4 Horizontal and Vertical Scalability

A consumer can scale the set of resources which they reserve either horizontally (also
called scaling out) or vertically (also called scaling up) in order to match the application’s
performance to meet increasing or decreasing demands upon the consumer’s application.
Horizontal scaling (scaling out) requires adding or removing cloud servers, specifically VMs
or devices to handle an increased or decreased application work load. Vertical scaling (scaling
up) requires replacing a single cloud server by a more powerful server (where this power is
quantified in terms of virtual CPU performance, available RAM, available disk capacity, etc.)

in order to handle increased or decreased demand. This is represented in the transition from
Figure 2-1 to Figure 2-2.

s Serin Gt

pug 3 =

Figure2-1: Basic single N-tier Architecture (Adapted from Figure 1, page 9 of [21])

¥

‘2

:
A |

* e P

Figure 2-2: Horizontally scaled load balancing and web-tier and vertically scaled database
tier (Adapted from Figure 2, page 9 of [21])

In vertical scaling there are additional CPU cycles available, so if the task simply requires
additional processing power then vertical scaling may suffice. Additionally, in some cases
scaling up may also increase I/O bandwidth. When businesses experience gradual increases in
traffic, scaling up provides adding extra resources to support additional demand until the load
exceeds the newly provisioned resources[21]. Conversely, horizontal scaling can handle
sustained increases in demand as horizontal scaling scales CPU power, memory, and I/O
(both disk and network bandwidth). However, horizontal scaling requires load balancing to
spread the load over the separate instances. Additionally, to avoid idle resources it is very
useful to utilize resources from a pool of resources, so that unneeded resources can be
returned to the pool and used by others (this is the scaling advantage that large cloud service
providers offer). Further details of resource pooling are described in the next subsection.

2.1.5 Resource pooling

Cloud providers typically allocate their resources in order to serve multiple consumers
using a multi-tenant model. This means that different physical and virtual resources are
pooled then assigned to specific consumers for their use based upon dynamic assignments
according to their customers’ demands. These resources are generally location independent,
thus the consumer generally does not know the location of resources, however, it is possible
in many cases for the consumer to specify the location at a higher level of abstraction (e.g.,
country, state, or data center)[13]. Providers dynamically allocate their resources to different
consumers and these allocations change over time based on their consumers’ demands. These
changes in allocation should be transparent to the consumer, as it is the cloud provider’s
responsibility to ensure that one consumer cannot access the data of other customers. The
cloud provider must also address other security issues. For example, the cloud provider does
not permanently assign a particular resources to a specific individual customer, but rather
dynamically assigns resources based upon their consumers’ demands[22]. An additional

10

advantage of resource pooling is that it allows consumers for the adding and removing
resources. Another advantage is that resource pooling can facilitate increased reliability. In
fact, Damon Wischik, Mark Handley, and Marcelo Bagnulo Braun in their article “The
Resource Pooling Principle” [23] make two observations:
1 “Resource pooling is often the only practical way to achieve resilience at acceptable
cost.”

2 “Resource pooling is also a cost-effective way to achieve flexibility and high
utilization.”

2.1.6 Pay-per-use

Without making an upfront investment, the consumer pays the cloud provider as with
other utility based subscriptions, such as paying for electricity. Consumers are charged fees
based on the amount of resources they actually use. The pay-per-use model helps the user to
keep track their usage and ultimately helps them to reduce their costs. Cloud providers keep
track of their customers’ usage information enabling them to charge their customers, generate
reports, and invoice their customers[24]. The information gathered should be readily available
to the customer. This information is necessary to enable the customer to realize the cost
benefits that cloud computing brings. This pay-per-use underlies the concept of cloud
computing and is closely related to utility computing.

2.1.7 Self-managed platform

In order to provide an efficient cloud service, the cloud provider must have a technology
platform that is self-managed. Software automation can be used to make a cloud self-
managing. By leveraging some capabilities of this software the cloud provider can realize a
best-of-breed cloud. The cloud platform is able to deploy services and tearing them down to
recovering resources through a provisioning engine. This provisioning engine platform has a
mechanism for scheduling and reserving resources. The platform may also have capabilities
for configuring, managing, and reporting to ensure that resources can be allocated and
reallocated to different consumers as the consumers’ demands change. There tools control
access to resources and enforce policies concerning how resources can be used or what
specific operations can be performed by each party[24].

All of these abilities enable business agility and also reduce necessary administration. A
self-managed platform minimizes the amount of IT administrative effort and reduces the
cloud provider’s operating expenses.

2.1.8 Standardized interfaces

An essential issue is how applications and data sources communicate with each other. In
the case of cloud services standardized application programming interfaces (APIs) can be
used to solve this problem. A standardized interface also enables a consumer to integrate
different cloud services together[20]. Today there are a number of the APIs, for details the
reader should refer to [25, 26].

2.1.9 Quality of Service (Qo0S)

Providing support for Quality of service (QoS) requires the ability to provide different
levels of service to different applications, users, or data flows. When we speak of QoS other
than best effort, we generally refer to a guarantee of a certain level of performance,
availability, security, and dependability being made by some provider[27]. QoS has been an
issue in many distributed computing paradigms, such as grid computing and high performance
computing. Cloud computing must also assure the desired service level for users. The cloud
provider should ensure that their guarantees on round-the-clock availability, adequate

11

resources, performance, and bandwidth are met as agreed to in the service-level agreement of
their service (to which they and their customers agree). Any compromise in these guarantees
could prove fatal for the cloud provider’s customers[18].

2.1.10 Reliability

Cloud provider should have able to provide their customers with reliable service, i.e., with
a committing uptime for their service. In today’s public clouds, reliability is specified as a
fixed service parameter, e.g., Amazon published that its EC2 users can expect 99.95% uptime
in terms of reliability, which corresponds to a once-a-week failure rate[28].

2.2 Cloud computing service models

Cloud providers offer cloud services, which give their users more or less control over the
resourced provided by the provider’s cloud depending upon the type of cloud service. When
customers choose a cloud provider, they should compare their needs to the cloud services
available from each provider. The cloud service type and optimal choice of cloud provider
will vary with the type of customer (e.g., personal home use, business). Customer should keep
in mind that their cloud provider will be charging them on a pay as you go basis, which means
that the customer can rent new resources or release existing resources according to their needs
at any point of time[29]. However, the customer may be charged a minimum cost for changes
in resource allocation and these changes do not occur instantaneously.

There are three types of service models that are widely used in cloud computing, the user
can choose or subscribe to: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), or
Software as a Service (SaaS). These three different types of service models are provide by
many cloud providers. These different service models differ in the amount of control which
the user has versus the control which the cloud provider has. Figure 2-3 shows these
differences in the number of parts of the complete service stack that a customer of an laaS,
PaaS, and SaaS cloud has. This should be compared to the control of a private on-premises
server. The first stack on the left is an on-premises environment where user must take care of
everything from the networking all the way up to applications. This is the traditional IT
infrastructure business model that many businesses use today. The following subsection will
described the other types of service models.

On-Premise Infrastructure Platform Software
Environment (as a Service) (as a Service) (as a Service)
£ = ___ ==
Application Application 2 icati icati
@ PP m Application Application
L) £
Data § Data 3 Data Data
: £ . >
6:3 Runtime 3 Runtime Runtime Runtime z
E Middleware b Middleware Middleware z | | Middleware 03
2| Loss 0/s = 0/s 31|oss >
g Virtualization i izati 3 5 3
irtualizatio Virtualization H Virtualization 2 | | virtualization E
™ ~
Server Server 3 Server 5 Server cﬁL
o =
Storage Storage E Storage E“ Storage
, , o E
Networking Networking I =S Networking Networking
-~

Figure2-3: Server stack comparison between on-premiseinfrastructure, laaS, PaaS, and
SaaS (Adapted from Wely Lau’sonline articlg[22])

12

2.2.1 Infrastructure as a Service (laaS)

In the case of IaaS a cloud supplier provides an online infrastructure on which their
customers can store data and develop and run whatever applications they want. laaS offers
virtualized resources (e.g., computation, storage, and communication) on demand [30]. [aaS
helps the user by taking care of some of the components, starting from networking to
provisioning the OS (as shown in Figure 2-3). However, users are responsible for middleware,
runtime, data, and applications levels. Users basically rent a virtual machine (VM) with their
preferred OS installed. The provider generally does not care what users do with this VM[22].

A fundamental building block of a cloud computing infrastructure is a server. Cloud
computing servers are used to deploy VMs on which applications can be run. A cloud
provider also provides various forms of data storage. Users are given privileges to perform
certain activities on the server, such as: starting and stopping a VM, configuring access
permission, etc. [31]. Examples of [aaS providers include Amazon, Go Grid, and Eucalyptus.

2.2.2 Platform as a Service (PaaS)

PaaS provides a toolkit and a number of supported programming languages to enable the
cloud provider’s customers to build their own application and deploy this application in the
provider’s cloud infrastructure. The users of PaaS are typically developers who develop their
applications on the platform and provide their applications to their own end users[32]. Paas is
one level up in abstraction from laaS, as the cloud provider manages the platform-level
components (such as middleware and runtime), as shown in Figure 2-3. The cloud customer
does not manage or control the underlying cloud infrastructure, but has control over the
deployed application and possibly can choose their preferred configuration settings for the
application-hosting environment. Some examples of PaaS providers are Google App Engine
and Microsoft Windows Azure Platform.

2.2.3 Software as a Service (SaaS)

In SaaS computer applications are accessed over the Internet, rather than being installed
on a local computing device or in a local data center. SaaS is the most common cloud service
that end users may have used. The cloud provider takes responsibly for the entire stack from
the network and server to the application level, as shown in Figure 2-3. The cloud customers
are not allowed to access the underlying infrastructure or platform; rather they can only
change the application’s user settings. These applications are normally accessible through a
thin client interface, such as web browser. Today end users are rapidly shifting from locally
installed programs to online software services that offer same functionality[22].

SaaS can provide the general cloud computing advantages of dynamic scalability.
Additionally, SaaS is generally end user device independent[32]. A great advantage of SaaS
for an application provider is that there is frequently no upfront hardware cost in deploying an
application via SaaS. This means that SaaS applications can be up and running quickly at a
low cost. Many SaaS applications are also collaborative, in that they allow multiple users to
share documents and even to work on these shared documents at the same time. The most
common examples of SaaS applications are Gmail, Office 365, and Google Docs.

Figure 2-4 shows a variety of access methods and management tools which a user will use
to access and configure their services. The figure also shows the type of content that a
particular service offers.

13

3 Service J i Main Access & ’
Class Management Tool Service content
/ /
SaaS Cloud Applications
b Social networking, Office suites, CRM, Video
@ Web Browser processing
4 2§ e
PaaS Cloud Cloud Platform
Development Programming Languages, Frameworks,
@ Environment Mashups editors, Structured data
> 2 v
i laas Virtual f Cloud Infrastructure
Infrastructure Compute Servers, Data Storage,
g Manager Firewall, Load Balancer
J J

Figure2-4: Cloud computing stack (Adapted from Figure 1.3, page 14 of [31])

2.3 Cloud computing deployment models

Although cloud computing has emerged mainly due to the appearance of public
computing utilities, the different infrastructure deployment models are distinguishing by their
architecture, variations in physical location, and location of the data center (and their
geographical distribution). Regardless of cloud service type, a cloud can be classified as
public, private, community, or hybrid based on its deployment model. These different
deployment models will be describe in following subsections.

2.3.1 Public cloud

Any subscriber can access a public cloud via the internet. The cloud provider owns the
physical infrastructure of a public cloud. Armbrust et al. [33] define a public cloud as a “cloud
made available in a pay-as-you-go manner to the general public”. Some customers are
reluctant to choose a public cloud due to privacy, policy, and security concerns when their
application operates on sensitive data. Examples of public cloud services include: Microsoft’s
Windows Azure Platform, Amazon’s AWS, and Google’s AppEngine.

2.3.2 Private cloud

Armbrust et al. [34] define a private cloud as an “internal data center of a business or
other organization, not made available to the general public.” A private cloud is built for a
specific group or organization and access is limited to that group or organization. One specific
customer owns and fully controls the private cloud. Although a private cloud might be owned
by the customer, these private clouds are frequently built, installed, and managed by a third
party rather than the customer. A private cloud is less cost effective than a public cloud, but
may be more suitable when an application must process sensitive data.

Another way to build a private cloud is to create a virtual private cloud. To build a virtual
private cloud, a cloud provider allocates particular resources within their public cloud
infrastructure to this particular virtual private cloud. Due to the allocation of specific
resources within the cloud the customer can be assured that their data is stored on and
processing only on dedicated servers and that these servers are not shared with any other
customer of the cloud provider.

14

2.3.3 Community cloud

A community cloud is shared among two or more organizations that have similar cloud
requirements (e.g., mission, security requirements, and policy and compliance
considerations). Customers might agree to share configuration and cloud management. The
management of this community cloud might be done by themselves or by a third party.

2.3.4 Hybrid cloud

A hybrid cloud is a composition of two or more distinct cloud infrastructures (public,
private, and community) that remain unique entities but are bound together by standardized or
proprietary technology that enables data and application portability (e.g., cloud bursting for
load balancing between clouds)[35]. A hybrid cloud can also be defined as multiple cloud
systems that are connected in such a way that programs and data can be moved easily from
one cloud to another cloud. Customers might utilize this approach because they want to
exploit the scalability and cost-competitiveness capabilities that a public cloud provider
offers, but they also want to keep their sensitive data on their own premises or in a private
cloud. The hybrid cloud model combines the benefits from both deployment models, hence
this solution has become increasingly popular[22].

2.4 Virtualization

Virtualization is not a new concept in the computing industry; it is actually an old
practice, as it has been used since 1960. The original idea was to help maximize the power
and potential of mainframe computers. In cloud computing, virtualization involves the
creation of virtual resources on top of a set of underlying physical resources. There are
different definitions for virtualization. One such definition is:

“Virtualization is the abstraction of IT resources that masks the physical nature and
boundaries of those resources from resource users. An IT resource can be a server, a
client, storage, networks, applications or OSs. Essentially, any IT building block can
potentially be abstracted from resource users. ”’-Gartner, Inc. [36].

We can describe virtualization as the process of instantiating wirtual versions of
infrastructure resources. For example, a physical server or host consists of some resources
(OS, memory, storage, etc.). All or part of these resources can be allocated to virtual machines
(VMs) that run in a container provided by that host. Virtualization enables multiple instances
of infrastructure resources to run on the same hardware that is controlled and managed by a
hypervisor[17]. Figure 2-5 shows the basic architecture of this approach to virtualization.

Operating System

Figure 2-5: Basic ar chitecture of virtualization [17]

)
@
=

e

s

8

@

E

o

15

A hypervisor, also called a virtual machine monitor (VMM), is a software platform that
allows multiple operating systems to run on a physical host. It controls access to the host’s
physical hardware and creates and runs the VMs. Hypervisors can be categorized into one of
two primary categories: bare metal (also called native) and hosted. A bare metal or native
hypervisor runs directly on the host’s hardware. VMware ESXi, Microsoft Hyper-V, KVM,
and Citrix XenServer are examples of bare metal/native hypervisors. In contrast, a hosted
hypervisor runs on top of the host’s operating system. VMware Workstation, VMware Fusion,
Microsoft’s Virtual PC, and Oracle’s VirtualBox are examples of hosted hypervisors. Figure
2-6 shows the architectural design of these two different categories of hypervisors.

©® ccoooco

|__Hypervisor IS Hypervisor |

T o

Phisical Hardware Phisical Hardware

Figure 2-6: Bare metal/native and hosted hypervisor [17]

People are often confused about how virtualization and cloud computing differ.
Virtualization is the ability to run multiple operating systems on a single physical system and
share the underlying hardware resources. Cloud computing is the provisioning of services in
an on-demand manner, to allow scaling up and down of resources for a customer.
Virtualization is an enabler for cloud computing, because virtualization provides a straight-
forward means for a cloud provider to increase capacity or add capabilities for a customer
without the customer needing to invest in new infrastructure. Cloud computing removes the
dependence of a customer on specific hardware and software through virtualization[30].
Today the term virtualization is widely applied to a number of concepts including
server/hardware virtualization, operating system virtualization, application virtualization,
network virtualization, and storage virtualization. In this thesis, we will use server/hardware
virtualization and kernel-based virtual machines (KVMs). Each of these will be described in a
following subsection.

2.4.1 Server / hardware virtualization

Virtualizing the hardware/server is perhaps the most common type of virtualization used
for hosting customers. One physical machine is divided into many VMs. Virtualization is
based upon abstraction, hence hardware virtualization is accomplished by abstracting the
physical hardware layer by use of a hypervisor[37]. The hypervisor shares the physical
resources of the hardware between the different guest operating systems (OSs) running in
VMs on the underlying host. Figure 2-7 illustrates the case where the hypervisor is running
directly on the underlying hardware. Each VM running on the hypervisor runs as a VM and
exploits the hardware abstraction to run a guest OS. The functionality of the hypervisor varies
with architecture and implementation[38].

16

Figure2-7: Thehypervisor manages VM Msthat host virtual machines [38].

Based on different levels of abstraction, there are different levels of hardware or server
virtualization. These different levels of virtualization are:

Full The guest OS does not have any knowledge that it is running on a
VM. The hypervisor handles all the operations between the guest OS
and the underlying hardware. Note that the hypervisor may cache
results of physical operations on the hardware for future use.

Hardware assisted Hardware assisted virtualization is an alternative approach. In recent
years, hardware vendors have added virtualization support to their
processors in order to enhance the performance and functionality of
this processor for running VMs. For this reason, specific CPU
instructions can be sent to the CPU without being translated by the
hypervisor. This reduces the load on the hypervisor and increases
the performance. Intel’s VT-x and AMD’s AMD-v are the examples
of processors with virtualization support [19].

Para-virtualized In para-virtualization the guest OS is recompiled prior to installation
inside a virtual machine. The modified version of the OS needs to
know that it is virtualized in order to take advantage of the functions
provided by the hypervisor. OSs require extensions to make
appropriate calls to the hypervisor.

2.4.2 Kernel based virtual machine (KVM)

Kernel-based Virtual Machine (KVM) is a full virtualization solution for Linux on x86
hardware which implements virtualization extensions (specifically by exploiting Intel VT or
AMD-V)[39]. KVM is an example of such a hypervisor and it has been developed as part of
the Linux kernel. KVM is included with a variety of Linux based OSs. The main requirement
for KVM hypervisors is QEMU (a generic and open source machine emulator and
virtualizer). No matter what Linux distribution you want to use, you can run the KVM
hypervisor. The KVM hypervisor delivers a secure, robust virtualization platform with
unmatched performance and scalability for guests running Linux or Microsoft’s Windows
OSs [40]. In addition, the following hardware requirements need to be met [41]:

e Within a single cluster, the hosts must be running the same distribution (version) of KVM.

e All hosts within a cluster must be homogenous, this means that the CPUs must be of the same

type, count, and have the same feature flags.

17

e The processors must all be either Intel-VT or AMD-V enabled.
e A 64-bit CPU and x86 processor is recommended, but not required.

2.5 Lamp stack — Overview

The acronym LAMP refers to a stack of software that is widely used to build general
purpose web servers. This software is generally free and open source software which
combines some of the principle components (OS, web server, database server, and scripting
language). LAMP is an acronym which original stood for:

Linux an operating system

Apache HTTP server a web server

MySQL a database management system or database server (PostgreSQL can also
be used as database server)

PHP a scripting language (other scripting languages such as Python, Perl, and
Ruby can be used)

The combination of these technologies is widely used to realize a web server
infrastructure. Today many different stacks including LAMP are designed to augment a basic
HTTP web server. Some of the most popular available web server stacks are:

LAMP stack,

Tomcat Java-based stack,

Full Java Enterprise Edition (JEE) stack,

the WISA stack: Windows (operating system), Internet Information Services (web server),
Microsoft SQL Server (database), and ASP (scripting language), and

e Full NET stack.

Although LAMP has not had the same amount of commercial promotion that J2EE and
NET have had, the LAMP stack is used by more than two-thirds of the scripting languages,
databases, and servers on the web today. The main attraction of the LAMP stack for
developers around the world is that it is free, easily configured, easily deployed, fast, highly
scalable, and very robust. LAMP allows developers to achieve high performance without
requiring that the developer spending a disproportionate amount of time on administrative
details.

Figure 2-8 illustrates the very straightforward architecture of the LAMP stack. Linux
forwards HTTP connections to the Apache HTTP server, which serves static content directly
from the Linux kernel. Apache forwards dynamic page requests to PHP and is responsible for
executing the PHP code. Database queries are sent to MySQL through PHP[42].

Static Content Dynamic Content

HTTP
Connections

Figure 2-8: LAMP architecture (adapted from [35])

2.5.1 Linux

Linux is the most important component of the LAMP stack installed on servers. Linux
provides a robust operating system, which provides the underlying security and platform for
the web server. Dozens of different Linux distribution are available today, but choosing the

18

right distribution is a bit complicated. Linux is the OS running more than 60% of web servers
on the internet because Linux based servers provide excellent performance, security,
scalability, availability, and there is an audited industry performance benchmark[43].

2.5.2 Apache

The second component of the LAMP stack is an Apache HTTP server. This HTTP server
played a significant role in the initial growth of the World Wide Web. Apache is an open
source tool created in the early 1990s. Apache is used by more than 60% of the web servers
worldwide. The web server accepts requests for content from browsers, interprets and
executes the request, and returns a result to the browser. When a browser requests a static
page, the web server simply retrieves that HTML file and returns the results. In response to
dynamic page requests from a browser, the web browser transfers control to a program or
module running at the HTTP server that interprets the request and returns a results[43].

2.5.3 MySQL

The third component of the LAMP stack is a MySQL database. MySQL is an open source
tool which can be used to store content and configuration information for web applications.
MySQL is a general purpose database. MySQL in particular and databases in general, have
made it possible to build and present fully dynamic websites [43]. MySQL is a relational
database management system. MySQL is frequently chosen by developers because it provides
speedy website loading, reliability, and ease of use. The MySQL database architecture is
capable of effectively scaling out by adding multiple replicated database servers. This can be
done at low cost and as needed. Today many of the largest and fastest growing websites in the
world employ MySQL, including Facebook, Google, Yahoo, Flickr, etc.[43].

254 PHP

PHP was originally an acronym for “Personal Home Page”. It was introduced in 1994 as a
set of Common Gateway Interface binaries programs written in the C programming language.
Today, PHP is a widely used general purpose scripting language that is especially well suited
to web development and can be easily embedded into HTML[43]. A web server takes PHP
code as input, then executes it and creates a webpage as output. PHP is another integral
component of the LAMP stack and can be found in a wide range of applications ranging from
personal homepages to content management systems, such as Joomla[44].

Since PHP has a relatively simple syntax and is available with open source licensing,
developers around the world are migrated from more difficult scripting language such as Perl.
Full object oriented syntax support is included in the latest version of PHP, along with a
command line capability for quick testing. PHP’s speed and adaptability play a key role in its
increased use by enterprises.

2.6 Current cloud service providers

The service level of abstraction differs between the different cloud providers. The
management level of resources also varies by cloud provider. This section presents a few of
the most common provider details and describes the services that they offer to their
customers.

19

Amazon Web Services (AWS)

Eucalyptus

Salesforce

OpenNebula

20

AWS is a bundled remote computing service that provides a
cloud computing infrastructure over the Internet. Amazon Inc.
launched AWS in 2006 [45]. Amazon packages AWS with
scalable and virtually unlimited computing, storage, and
bandwidth resources. AWS uses a subscription-pricing model of
pay-as-you-go or pay-for-what-you-use. The customer can avoid
up-front capital infrastructure expenses by substituting low
variable costs that scale as their needs change. AWS provides a
flexible, cost-effective, scalable, and easy-to-use cloud computing
platform that is suitable for research, educational use, individual
use, and for organizations of all sizes[46]. Amazon’s EC2 and
Amazon S3 are two core laaS services. These two services have
been used by cloud application solution developers worldwide.

Since the Eucalyptus infrastructure is compatible with AWS (in
either a private or hybrid cloud), the allocated resources can be
dynamically scaled up or down as application workloads change.
Eucalyptus Systems has announced compatibility with AWS
Elastic Load Balancing (ELB), Auto Scaling, and CloudWatch in
their release 3.3.

Salesforce is one of the pioneering cloud computing providers.
Their Customer Relationship Management (CRM) web service is
their first and main product. Enterprise customers build their own
application(s) on top Salesforce’s CRM. Initially salesforce only
offered a SaaS class product. One of the traditional issues with
SaaS products is the limited ability to customize the application.
However, Salesforce.com is offering force.com as a PaaS
product. The force.com platform allows developers to develop
applications that will execute natively on their Salesforce
platform or they can be integrated with third party services.
Force.com development is performed using nonstandard,
purpose-built tools and a proprietary development language called
Apex[47]. Scaling the platform up and down as needed and
making all the physical resources transparent is the responsible of
salesforce.

OpenNebula is the most feature-rich, innovative, customizable
and mature open alternative to proprietary cloud solutions when
building virtualized enterprise data centers and cloud
infrastructures on top of Xen, KVM, and VMware
deployments[48]. OpenNebula is a fully open source toolkit to
build IaaS private, public, and hybrid clouds. OpenNebula can be
installed and run on the majority of the Linux distributions and it
is also Amazon EC2 compatible. OpenNebula is primarily used as
a virtualization tool to manage a virtualized infrastructure in a
data center or cluster (typically within a private cloud).
OpenNebula also supports a hybrid cloud to combine a local
infrastructure with a public cloud-based infrastructure, enabling
highly scalable hosting environments. OpenNebula also supports
public clouds by providing cloud interfaces to expose its
functionality for VMs, storage, and network management.
OpenNebula also can work as a data center virtualization manager
within an OpenStack or Eucalyptus cloud.

2.7 Related work

Red Hat Inc. published “Scaling the LAMP stack in a Red Hat enterprise virtualization
environment”[43] during 2009. This work presents performance and scaling of the industry
standard LAMP web application stack running on Red Hat enterprise Linux 5.4 guests on a
Red Hat Linux 5.4 host with a KVM hypervisor.

Kaur, Kaur, and Singh published “Evaluating performance of web services in cloud
computing environment with high availability” [49] in 2012. This paper presents a
methodology for attaining high availability to meet the demands of web clients. In order to
improve the response time of web services during a peak hour, dynamic allocation of host
nodes was used. Web users can be very demanding, as they expect web services to be quickly
accessible from anywhere in the world at all times.

Vaquero, Rodero-Merino, and Buyya. published “Dynamically Scaling Applications in
the Cloud” in January 2011. This work presents the most notable initiatives towards whole
application scalability in cloud environments[1].

Joynet Inc. published a whitepaper entitled “Performance and Scale in Cloud Computing”
[21]. Joyent’s Smart Technologies address many issues of scalability and performance in
cloud computing, including dynamic vertical scalability, more efficient allocation of virtual
resources, and efficient I/O load balancing.

Aleksandar Draganov published a master’s thesis entitled “Exploiting Private and Hybrid
Clouds for Compute Intensive Web Applications” [2] in 2011. This work investigates the use
of an open source cloud management platform (OpenNebula) to create a private cloud and
using OpenNebula for hosting compute intensive web application by managing a farm of
virtual web servers to meet the application’s demands.

Chieu, Mahindra, Karve and Segal published “Dynamic Scaling of Web Applications in a
Virtualized Cloud Computing Environment” [50] in 2009. This paper presents a novel
architecture for the dynamic scaling of web applications based on thresholds in a virtualized
Cloud Computing environment.

Hung, Hu and Ching Li published “Auto Scaling Model for Cloud Computing System”
[51] in 2012. This paper presents an auto-scaling algorithm for automated provisioning and
balancing of virtual machine resources based on active application sessions as well as the
energy cost is considered in the proposed algorithm.

Wolke and Meixner published “TwoSpot: A Cloud Platform for Scaling Out Web
Applications Dynamically” [52] in 2010. This paper presents a methodology for combining
existing and open technologies to build new software platform, which runs on virtual
machines typically offered by IaaS provider.

Zsolt Siklosi published a master thesis entitled “Dynamically Scalable Applications in
Cloud Environment” [53] in 2013. This thesis work focused on automatically scaled
infrastructure and also ensures that the amount of reserved resources is always sufficient to
keep up a certain service level while optimizing costs by avoiding over-provisioning.

21

3 Scalable Cloud Architecture for a Web
Application

This chapter presents the main architecture of a web-based application designed for running
in clouds. Each of the sections describes the different tiers and the management nodes of the
architecture in detail.

3.1 Scalable Web Application Reference Architecture

For Ifoodbag[54], we have designed a scalable cloud architecture for use with their web
application. In this section we will describe this reference architecture and outline the distinct
tiers of this model, as well as demonstrate the optimized functionalities provided by each of
these tiers.

Figure 3-1 illustrates the reference architecture model for Ifoodbag’s web-application. This
architecture looks much like the classic three-tier web application architecture with the addition
of a caching tier between the application servers and the database. In addition, each tier
incorporates various enhancements to provide high performance [55, 56]. For example, the
Squid web cache daemon will enhance the performance of the web service and APC (a PHP
caching tool) will enhance the application server performance.

\/

User request
b Each LB can su pport up to
5000 request per second,
two LBs will nu
Load Balancer 1 Load Balancer 2 m,‘; ";”;;,'E.:;,E" Load Balancing Tier
on top
7 -\i V I - m1.large Instances
\ Server Array

Application Server 3+APC | — -| Application Server N+APC

Application Server 14APC l Application Server 2+APC

:”i__&-=:r::—¥—'— / ‘
|
|

Application Tier

Management

i — . \\ . e

> =1
e

ilability | Database Tier

APC: PHP Caching Tool
Memcached: Distributed
memory caching

Replication

Cloud pshot Backup

Figure3-1: Scalablereference arhitecturefor Ifoodbag' s web-application

3.2 Load Balancing Tier

In the reference architecture the first (load balancing) tier (as shown in the Figure 3-1) we
utilize two load balancers, for example running HA proxy [57]. These load balancers (LBs) are
usually run on top of Amazon’s Web Services (AWS) Elastic Compute Cloud (EC2)[58]
ml.large instance types, which provide 2 virtual cores, 7.5GB of memory, and a 64-bit
platform[59]. Each LB has the capacity to handle approximately 5,000 requests per second,
thus two LBs support a total of about 10,000 requests per second. It is possible to estimate a
new website’s highest expected traffic rate in terms of requests per second, then divide this rate

23

by 5,000 to estimate the number of load balancers that will be required to handle this traffic
load.

Regardless of the estimated load, we have designed to LB tier to have at least two LBs in
order to provide redundancy in the early phase of the deployment of Ifoodbag’s application.
For high reliability and availability we recommend placing each LB in a different availability
zone (thus decoupling their probability of failure). As the number of users is expected to
rapidly increase in the future, it will be possible to introduce more LBs in order to handle the
required capacity. Initially it is possible to run each load balancers on an AWS ml.small
instances (1 virtual core, 1.7GB memory, 32-bit platform). This is a cost-cutting measure, but
allows the LB to subsequently be migrated to a larger instance as demand increases. In the
early phases of an application’s lifecycle it is also possible to combine the front-end LBs and
the application servers in the same instance in order to achieve additional cost savings.
However, this is not a recommended approach for a production high traffic site!

3.3 Application Tier

Second tier of the reference architecture shown in the Figure 3-1 is called the application
tier. This tier consists of the application servers and their associated scalable server array. In
this tier we recommend a minimum of two application servers (to be placed in different
availability zones) for the initial configuration. These instances must implement alert
mechanisms to allow automatic scaling (both up and down) of the array based on instance
specific metrics. The most common metrics that can be used for auto-scaling are CPU-idle
fraction, amount of free memory, and system load. It is also possible to include application
specific metrics for controlling this auto-scaling. If any of the thresholds specified by these
metrics are met, then an alert associated with this metric is triggered, and this should result in
scaling up by adding additional application servers in the case of increased demand or
decommission of active servers if the load decreases.

For guaranteed service operation, we recommend a conservative approach for scaling up
and down the application server arrays. Therefore additional instances should launch before
they are needed when an upward trend in demand is detected. It is important to determine the
amount of time required for a server to become operational after it is launched as we must
factor this into our scaling metrics. (Measurements of this will be reported later in Chapter 6.)
Similarly, we should only decommission instances when they have been lightly utilized for a
predetermined period of time. Scaling up liberally (that is, as soon as lower thresholds are met)
helps to ensure that resources are continually available to serve application requests, while
scaling down conservatively prevents terminating application server instances prematurely,
thus avoiding undesirable user experiences. The only disadvantage of this is that if too liberal
an approach is used when scaling up; the business will be charged for additional server time
that was actually unnecessary. In utility computing if a server is launched unnecessarily, the
business would experience increased charges for a maximum of one hour (the smallest billing
granularity) because the scale-down metrics would terminate this server before the next billable
hour began.

It is possible to configure arrays of servers in order to bound both the minimum and
maximum number of instances. In our design a minimum of two standalone application servers
are recommended for high availability and reliability of the application, thus the array
minimum should be two. However, this minimum value should be increased if the minimum
amount of application traffic increases and the two array instances are insufficient to handle
this load. On the other hand, the maximum array size provides an upper bound on the total
number of running instances. This upper bound can be used to place a limit on infrastructure
costs. The optimal instance size for an application server in a scalable array can be determined

24

via load testing and performance benchmarking. This optimal instance size will be investigated
in Chapter 6.

3.4 Caching Tier

The caching tier is located in the reference architecture between the application and
database tiers. This caching is typically implemented with memcached[60]. This additional
caching tier is not appropriate for all application architectures, because not all applications are
compatible with a data caching solution. Fortunately, the majority of scalable applications will
realize improved performance by using a distributed cache. For a read-intensive application,
caching can provide a huge performance improvement due to reduced application processing
time and avoiding database accesses. However, for write-intensive applications typically there
is not a great benefit to caching, but with some modifications to the classic caching paradigm it
may be possible to achieve a considerable performance improvement.

The memcached solution is fairly lightweight in terms of CPU utilization, but heavy (as
heavy as the developer will allow) in terms of memory usage, so we advise that Ifoodbag use
larger VM instance sizes (in terms of memory) for servers in this tier. Although in the early
phases of an application’s lifecycle, the total size of all of the cached objects will tend to be
small and sometimes a single instance of the cache may be sufficient to provide a cache for the
entire application server tier, but we do not advise this for production applications — especially
if the traffic increases. Additionally, a single caching server is a potential single point of failure
for the application’s cache. A loss of this single cache instance can have a major negative
performance impact on the application and it database. As a result we recommended that
Ifoodbag use multiple instances of caching servers (distributed across multiple availability
zones within the selected region/cloud) when implementing the caching tier.

3.5 Database Tier

The final tier in the reference architecture shown in Figure 3-1 is called the database tier.
As for any web-based application this tier is quite critical and challenging to design correctly
because there is no “one-size-fits-all” solution when it comes to data storage and management.
Fortunately, there are a number of typical categories and types of applications that have an
associated set of architectural components and best practices.

Among the numerous potential database applications, we have selected MySQL for
Ifoodbag as it is one of most common and widespread open source database packages. The
architecture of the database tier is shown in Figure 3-2. This database architecture illustrates a
scalable and recommended best practice for MySQL when used in the cloud. Although cloud-
based resources enable application flexibility, maintaining physical accessibility of these
resources requires additional planning and consideration. Although hardware failures are
uncommon in the cloud, the do occur and need to be planned for. Hence we recommend that
Ifoodbag use one or more database slaves that can take over if the current master database fails.
If the master fails a slave can be quickly promoted to become the new master using
pre-configured scripts. If the financial budget allows, we recommend placing additional slaves
in different availability zones in order to increase the availability and reliability of the data
store. While the ultimate goal of database design should be to allow automated horizontal
scaling of the database tier, practical implementations of such a solution remain an indefinable
goal. However, there are some design concepts that different applications can incorporate to
allow database scaling to varying degrees. As previously mentioned, it is highly recommended
that one or more slave databases be implemented in addition to the master database, regardless
of the phase of the application’s lifecycle — as loss of the stored data may lead to a business
failure. Multiple slave databases will increase the overall reliability and availability of the

25

application. Additionally, these slaves enable horizontal scaling of the database using proxy
mechanism for database reads, such as provided by MySQL Proxy (shown in Figure 3-2).

Server Array

Application Tier
Ifoodbag Apps 1+APC Ifoodbag Apps 2+APC Ifoodbag Apps 3+APC | — — —| foodbag Apps N+APC

Database Tier

Replication

Cloud Snapshot Backup

Figure 3-2: Database Tier for Ifoodbag Web-Application

In a MySQL Proxy configuration, no changes are needed in the application tier. Even
though the application servers use their normal database connector, they point to the MySQL
Proxy server instead of the master MySQL server. If an application performs a write operation
to the database, the proxy server passes this request directly to the master database server,
while if a read request is performed by the application, then the MySQL Proxy will send this
request to one of the slave database servers, thus distributing the overall data read load of the
application over the available slave database servers. This load distribution is quite important,
but there is a risk that the replication delay to the slave databases may result in outdated data
being returned in response to a read request if the read occurs soon after the data is written to
the master database. As a result, for write intensive applications a proxy solution may not be
the most effective method of database scaling. However, based upon our initial analysis the
Ifoodbag application is dominated by read requests in comparison to write operations. We
expect that this ratio will remain throughout the application’s life cycle. Furthermore, given the
nature of the database writes and the business needs it may be possible to delay all of (or at
least most of) the write operations until an off peak time. As a result horizontal database scaling
with MySQL proxy is appropriate for /foodbag’s application.

3.6 Management Node/Nodes

Last but not least, a final component of this reference architecture is the management
node/nodes. This/these node/nodes are actually the center of this reference architecture.
Different methods will employ in order to provide scalability and high performance for the
proposed cloud architecture. Several cloud management tools have being deployed in recent
years, both in commercially and open source deployments [4, 5, 48, 61, 62]. We expect to
utilize open source tools and customize them based upon our own design considerations and
methods. These management node/nodes will employ all the scaling policies and monitoring

26

resources in the cloud architecture. Further details of these tools and the customization of them
will be covered in Chapter 5 and Chapter 6.

3.7 Security guidelines in the architecture

Another Master’s thesis project by Sabrina Ali Tandra and Sarwarul Islam Rizvi has
proposed a set of security guidelines for our architecture[63]. Their security guidelines provide
detailed security measures that should be applied to the DNS query to the DNS server and the
recommend that HTTP’s security be improved by using HTTPS, rather using HTTP. Also they
propose that all of the nodes should use VPN tunneling instead of normal TCP connections for
their communication with the management node(s).

for Ifoodbag Web

Load Balancing Tier

1
/ \ Server Array '

\Wmn&wim |Applnuon5um2+m[|MWM‘L—JT\MWMM|

Caching Tier

Database Tier

APC: PHP Caching Tool
Memcached: Distributed
memaey caching

Replication

Cloud] hot Backup

Figure3-3: Architecturewith security guidelinesas recommended in [63].

27

4 Detail Descriptions of the Component in the
Proposed Architecture

Using the reference scalable cloud architecture model described in the previous chapter, in
this chapter we described each and every component in the various tiers of our proposed
architecture.

4.1 DNS server

The Internet has billions of users and there are many resources distributed over this large
network. From the user’s perspective, each node on this network is identified by a unique name
called the domain name. For example, a web server provides access to a website with a given
domain name. A mail server is used for deliver email messages to a user within a given (e-mail)
domain. From the network’s perspective routers route Internet Protocol (IP) packets through
the Internet based upon a unique network address (composed of a network and host interface
portion). To access Internet resources using user —friendly domain names rather than IP
addresses, the user need a means to translate the domain name to IP addresses and back. The
Domain Name System (DNS) is an Internet service that translates domain names into IP
addresses (and the reverse)[64]. Since domain names are alphanumeric, they are easier for most
people to remember than IP addresses. This is especially true for IPv6 addresses as they are 128
bits long. Additionally, the name is likely to be a more stable identifier than and address as the
structure of the network and the nodes attached to it may change, hence changing the mapping
between a host interface name and an IP address. For these reasons domain names are widely
used to identify Internet resources.

Because maintaining a central list of domain name to IP address correspondences would not
be practical, knowledge about the mapping between IP addresses and domain names are
distributed throughout the Internet in a hierarchy of authority [65]. When a user requests the IP
address associated with a particular domain name, they probably query a DNS server in close
network & geographic proximity to their access network provider. This DNS server either
knows the mapping or forwards the query to another DNS server and so on, until a DNS server
knows the IP address corresponding to the domain name in the query. After resolving the
domain name to an IP address, the resulting IP address is returned to the user who made the
query. Additionally, DNS servers along the way may or may not cache the mapping in
anticipation of another query for this same mapping.

When users access Internet resources (e.g., a web server) through their web browser to
retrieve the appropriate web page, the browser needs an IP address to contact this web server.
Using DNS, the Web browser gets the information it needs to retrieve the requested web page.
The process of using DNS to map domain names to IP addresses is called name resolution [66].
The DNS protocol is used to perform this action. For example, when a user want to access a
web page for a web page with the domain name ‘www.Ifoodbag.se’ then the user’s host queries
a DNS server to learn the IP address of ‘www.Ifoodbag.se’. When the DNS server returns the
IP address (for example, ‘46.30.212.191°) of that website then the user’s browser can initiate a
TCP connection to this particular IP address on TCP port 80 to access the first page at this web
site. Figure 4-1 shows, how users can find the IP address of a specific web application via a
DNS server.

29

uwes
i
— 1
‘,’T;’rE T \-.-La

Figure4-1: Thenormal DNS resolution process (adapted from [67]).

4.1.1 DNS infrastructure

The DNS server infrastructure is geographically distributed throughout the world. The
domain name space is organized in the form of hierarchy with the top most level called the root
domain, which is represent as a dot (“.”). The next level in the hierarchy is called a top-level
domain (TLD), also called a child domain of the root domain. The next level domain is called a
second level or enterprise level domains, and so on. There are more than 250 TLDs available
under only a single root domain. Top Level Domains (TLDs) are categorized into the following

three types [66]:
Table4-1: Different typesof Top-Level Domains(TLD).

Country-code TLDs These types of top-level domains are associated with countries and

(ccTLDs) territories. There are more than 240 ccTLDs. Examples include .uk, .se,
.in, and .jp.

Sponsored generic These specialized domains have a sponsor representing a community of

TLDs(gTLDs) interest. These TLDs include .edu, .gov, .int, .mil, .aero, .coop, and
.museum.

Unsponsored generic These domains lack a sponsoring organization. The list of unsponsored
TLDs(gTLDs) gTLDs includes .com, .net, .org, .biz, .info, .name, and .pro.

A partial DNS name space hierarchy is shown in Figure 4-2. The DNS infrastructure
consists of many name servers and each name server contains information about a portion of
the domain name. Name servers are generally concern about the top three levels of the domain
name space. If there is any further level of domain name space available, the DNS severs are
either run directly by the organization or outsourced to an Internet Service Provider (ISP) or
other service provider. For example, mail.Ifoodbag.se is a forth level domain, in that case the
name servers outside of Ifoodbag.se know about only “Ifoodbag.se” and mail.Ifoodbag.se is run
directly by the company and the DNS resolution of this name is done by a company operated
DNS server associated with the domain name Ifoodbag.se.

30

0
Q
o

Figure4-2: Partial DNS Name Space Hierarchy (adapted from [66])

4.1.2 DNS name resolving process

A resolver is a program that resolves hostnames to IP addresses (or the reverse) by
communicating with appropriate name servers. Figure 4-3 presents a DNS name resolving
process that consists of recursive and iterative queries when a visitor wants to browser the
‘Ifoodbag’ website. Usually, hosts perform recursive queries and a DNS server communicates
with other DNS servers in order to resolve the query using iterative queries. However, each
DNS query specifies whether an iterative or recursive lookup should be performed. The steps
performed in this process are given in Table 4-2.

Table4-2: DNSname resolving process [68]

Stepl A DNS client, also called a resolver, sends recursive query to a name server asking
to resolve the IP address for www.ifoodbag.se (here we assume ‘ifoodbag.se’ as an
example).

Step2 The DNS server immediate replies with requested information, if it found that
information in cache. If it does not found anything then it forwards the request to a
root name server.

Step3 The root DNS server recognizes the top-level domain name from that request and it
knows the authoritative name server for top-level domains (TLDs). These top-level
DNS severs know an authoritative name server for the .se domain. The server replies
to the recursive name server with an [P address of the .se domain’s authoritative
name server.

Step4 Now the recursive name server contacts the TLD (.se) name server for the
Ifoodbag.se domain, which knows the mappings for hostnames in this domain.

Step5 TLD name server knows the authoritative name server for the Ifoodbag.se domain.
So it replies to the recursive name server with this authoritative name server’s IP
address.

Step6 Now the recursive name server contacts the authoritative name server for the
Ifoodbag.se domain, which knows the mappings for hostnames in this domain.

Step 7 The authoritative name server for the Ifoodbag.se domain replies with the IP address
of the web server.

Step 8 Finally, the recursive name resolving process has finished. Now the name server
replies to the visitor’s host with IP address of ‘Ifoodbag’ web server. The resolver
now stores this information in cache for communicating faster with webserver or to
avoid resolving process. The DNS response has time stamp that indicates how long
this response valid to communicate after that the information should be removed
from the cache.

31

Figure4-3: DNSnameresolving process (adapted from [69]).

4.1.3 DNS security aspects

DNS security aspects and solutions based on our proposed architecture are described in the
Master’s thesis written by Sabrina Ali Tandra and Sarwarul Islam Rizvi and [63]. They propose
that DNS Security (DNSSEC) be used to solve DNS security issues (such as DNS server
attacks and DNS protocol attacks). Further details can be found in their thesis.

4.2 Load Balancer (Squid/HA Proxy)

Load balancing is a core networking solution that is responsible for distributing incoming
traffic over a set of servers hosting the same application content. The main purpose of using a
load balancer in a scalable architecture is to distribute application requests across multiple
servers, thus avoiding problems that would occur with the failure of a single application server.
Using a load balancer improves both application availability and responsiveness[70]. To
scaling out an application server infrastructure, load balancing is the most straightforward
method. New servers can be easily added to or removed from the resource pool as demand
increases/decreases. Sending traffic immediately to these new servers is the main responsibility
of a load balancer. To balance server load, the load balancer distributes requests to different
nodes within the server cluster (a group of servers simultaneously running a given web
application), with the goal of optimizing the overall system’s performance.

Using a load balancer results in higher availability and increases the scalability of an
enterprise web application. In this approach high availability is provided through redundancy.
Thus, if any single server fails, another server takes its place as soon as possible to process the
requests resulting in a highly available system [71].

32

As an example consider Yahoo, millions of users throughout the world access Yahoo’s
portal every day. A given end user may visit Yahoo’s web application repeatedly and each of
these users expects the same or better performance each time they visit this website. If the user
does not get satisfactory performance, then this portal might risk losing its user base to its
competitors. Each user request causes a certain amount of load on the web servers associated
with this site. With millions of requests, the load on these servers can increase rapidly. Because
each server has only a finite amount of computing power, to handle that site’s aggregate load
requires a collection of servers (perhaps organized as server clusters). However, each server
executes its copy of the web application separately so as the load increases the requests need to
be distributed across the set of servers in order to maintain the same level of performance as
seen by the end users. A load balancer distributes the incoming requests across the servers [72].
Figure 4-4 depicts a network diagram of how a load balancer can be used to balance the offered
load among multiple application servers.

i b R e
Client connections

Q Q 2
E \T/ Ex/ Eu/

Internet

CEARR, (EAvEN JEARRY
ifEmny ffEmR ismEBBi
iAEmEy IREEer AsEREy

\samay AL L L AN rr/
Lol LAY T

Web / application servers

Figure4-4: Load balancing for balancing load among multiple application servers (adapted
from [73]).

33

4.2.1 How to calculate response time

In September 2006, Peter Sevcik and Rebecca Wetzel of NetForecast published a paper
called “Field Guide to Application Delivery Systems”[74]. The paper focused on improving
wide area network (WAN) application performance and included the equation shown here as
Equation 4-1.

Payioad Ly &/ Ly s Al - >
R =~ - + AppTurns(R7TT) + Cs + Cc
Bandwidth

Equation 4-1: Theoriginal WAN performance equation [74].

Equation 4-1 showed WAN performance, but with a few minor changes it can be used to
measure web application performance. The modified equation is shown in Equation 4-2.

Payload AppTurns(RTT) . .
+ RTT + + Cs + Cc

" Bandwidth Concurrent Requests

Equation 4-2: The web version of performance equation [75]

Website performance depends on response time. A lower response time will improve the
user’s satisfaction when visiting the website, while a higher response time degrades the user’s
satisfaction. The terms used in these two equations are described below:

R The response time is the total time from when the user requests a page to
when the pages are displayed by the user’s web browser. Typically the
response time is measured in seconds (or milliseconds).

Payload The payload term represents the total number of bytes sent by the web server
to the browser, including markup and all resources (such as CSS, JS, and
image files).

Bandwidth Rate of transfer to and from the browser. If the requested web page is
generated from multiple resources then the bandwidth might asymmetrical.
Usually, bandwidth is expressed in bytes per second by averaging all of the
separate bandwidths.

Round Trip Time Amount of time required for a data packet to traverse from the user’s browser
(RTT) to the server and back.

AppTurns The number of resource files a requested page needs. These resources files
could be images, JS, CSS, or any other files retrieved by the browser in the
process of rendering the page.

Concurrent Number of simultaneous requests a browser will make for resource files. For

Requests example, Internet Explorer performs a maximum of two concurrent requests by
default.

Cs Compute time on the server.

Cc Compute time on the client.

4.2.2 Different types of load balancers

Load balancing comprises several different types of utilizing server clusters, network
devices, CPUs, disk storages and other resources. It is the optimal way to use resources that
distribute tasks into different available resources. Some load balancing strategies are described
in Table 4-3.

34

Table 4-3: Different types of load balancers|[76]

Software-based load Software based load balancers are traffic splitters that help reduce

balancers workloads on compute servers by distributing traffics to different servers.
Citrix (netScaler), F5 (BIG-IP), Squid, HA proxy are examples of software
based load balancers.

Hardware-based load Hardware based load balancers are greater deployment capabilities. Such a

balancers load balancer is more flexible to work with as they frequently are designed
to support any TCP port or application service. Using this method is more
complicated than using a software-based load balancer, while providing a
competitive edge over software based load balancers. Hardware based load
balancers typically have fewer less flaws as compared to strictly software
based balancers.

Round-robin DNS The service host can be selected by DNS using round-robin load balancing
techniques, over several servers with identical services. This method is
ideal for geographically distributed and internationally used web servers as
traffic can be preferentially distributed locally to reduce communication
delay or distributed more widely to further distribute computational load.

4.2.3 Squid

Squid is a proxy and web-caching server (available under the GNU Public License) that
many organizations use to speed up client access to commonly accessed data. It is a caching
proxy for the web supporting protocols, such as HTTP, HTTPS, FTP, etc. It reduces bandwidth
demands upon the web server and improves response times by caching and reusing frequently
requested web pages [77]. Squid reduces the load on the application servers by reducing the
number of user requests that must actually be served by the web server.

When a HTTP request is made, the web server needs to serve some amount of content (such
as scripts, HTML, CSS, and images). If a single server needs to serve all this content for
hundreds of requests, performance will degrade as the number of requests increase. With a
single server responding to hundreds of HTTP requests per second, the system’s performance
depends on factors such as: the number of scripts, amount of HTML/CSS, number & size of
images, etc. that need to be served. If the load is sufficiently high, the end users many
experience poor performance. Squid can be configured in such a way that it is able to round
robin load balance according to the request. For example, if an ‘Ifoodbag’ user requests a page
containing images, HTML, CSS, or a script connected to the database, then webserver-1 could
be ask to serve the images while webserver-2 will serve CSS or database content. The
distribution of the load will depend on how many web servers are available in the server cluster
at a given time.

Squid allow web service administrator to distributed more requests to servers with better
hardware and fewer requests to servers with poorer hardware using weighted round robin
queuing. Squid can also notify the web service administrator that all the requests from a given
user id failed for some reason. Squid proxy servers can establish hierarchical relationships
through which cache data can be shared and requests can be passed to the proxy server in
standard proxy mode [78].

4.2.4 HA Proxy

The HA (High Availability) proxy provides a high availability, load balancing, and proxy
solution for TCP and HTTP based applications. It is open source, free, very fast, and quite
reliable in comparison to other solutions. This solution is particularly well suited for websites
with high loads. Because of its mode of operation, it is extremely easy and riskless to integrate
with an existing architecture, while it also offers the possibility to avoid damage to webservers.

35

Today, processing tens of thousands of requests per second from users is possible for hardware,
but these sorts of loads are rarely handled by multi-process or multi-threaded models because
of memory limits, system scheduler limits, and lock contention. To support these high loads the
HA proxy utilizes an event-driven, single process model that allows it to support a very large
number of connection while operating at very high speed. The event driven model does not
have the limitations of multi-process or multi-threaded models because it allows all of the task
to run in user space with fine grained resource and time management [57].

4.3 Web server/Application server

A webserver is a program that utilizes software and networking to deliver web pages via the
Internet or an Intranet. Two leading web server are Apache (the most widely used webserver)
and Microsoft’s Internet Information Server (IIS). In this project, Apache has been used as a
webserver. Powerful features (such as openness, extensibility, portability, and flexibility) of the
Apache webserver provide benefits to website administrators which lead to higher efficiency
and greater utility [79]. Ifoodbag’s web application was built with the open source
programming language PHP and uses MySQL as its database.

In this project we have used a group of servers, organized as a server cluster or server array,
working closely together to improve performance and/or availability over that provided by a
single server. Our goal is that if any system failure occurs then other webserver is used to
provide services to make system (i.e., by exploiting redundancy to increase reliability). All web
servers within the cluster are built by installing the same application and they are all connected
to same database.

When a failure occurs on one server in a cluster, another server takes over and the workload
is redistributed to another server within the cluster. The benefits of using a server cluster are
that it ensures users have constant access to important server-based resources. This solution is
also well suited for applications that have long-running in-memory state or frequently updated
data. In our architecture two servers will always be active in the cluster, the number of
additional servers will scale up or down according to demand. These additional servers also
provide a higher level of availability, reliability, and scalability compared to using a single
computer. Some of the possible reasons for creating a server cluster are [80, 81]:

e Avoiding application and service failures, which could affect web and essential services.

e Avoiding system failures and reducing the impact of hardware failures, which affect different

resources (such as CPUs, drives, memory, network adapters, and power supplies).

e Minimizing the impact of site failures in multisite organizations, which can be caused by natural

disasters, power outages, or connectivity outages.

There are a number of different webservers available to host your applications. A few of
them are free, while others are avialble on a pay to use basis. There are four leading web
browsers: Apache, IIS, lighttpd, and Jagsaw. In addition to these web servers, there are
additional commercial web servers available in the market, but they are very expansive. Major
commercial web servers are Netscape's iPlanet, Bea's Web Logic, and IBM's Websphere.
Table 4-4 briefly describes a few of these webservers.

36

Table 4-4: Different types of web servers[82, 83]

Apache HTTP Server

Internet I nformation
Services

Lighttpd

Sun Java System Web
Server

Jigsaw Server

Apache Tomcat

The Apache HTTP server is the most popular webserver in the world. It
was developed by the Apache Software Foundation. The Apache web
server is open source software and offers cross platform support. More
than 60% of webservers world-wide run the Apache Web Server [84].

Microsoft’s Internet Information Server (IIS) is a high performance Web
Server. Because IIS is tightly integrated with the OS it is relatively easy to
administer. IIS offer increased choice and control, without giving up
reliability or security [85].

Lighttpd is a free web server designed for speed. It provides all the
essential functions of a web server. Jan Kneschke, a German software
developer, developed Lighttpd. It is designed to have low memory
consumption, be fast & secure, and offers more effective management of
CPU load compared to other webservers. Lighttpd is frequently a solution
for servers that are suffering load problems. It is open source software
licensed under the revised BSD license.

This web server from Sun Microsystems (now Oracle) is a secure, easy to
use web server well suited for medium and large web sites. Although this
web server is free, it is not open source. It is available for most major Oss,
specifically it runs on Windows, Linux, and Unix platforms.. It offers
built-in HTTP reverse-proxy capabilities to provide a highly scalable
HTTP front-end to applications. The Sun Java System web server supports
various languages, scripts, and technologies such as PHP, Ruby on Rails,
Perl, Python, and more.

Jigsaw server is a java-based webserver deployed by the World Wide Web
Consortium (W3C). It is open source and free and can run on various
platforms (such as Linux, Unix, Windows, Mac OSX, and Free BSD). The
Jigsaw server is an experimental platform for W3C and the Internet
community with a modular architecture and full HTTP/1.1 support.

Apache Tomcat or simply Tomcat is an open source webserver and servlet
container developed by the Apache Software Foundation. It implements
Java Servlet and Java Server Pages technologies. Apache Tomcat is one of
the most popular options for lightweight development scenarios. Even
though it is a web server, it can also meet the requirement for an
application server in many cases.

4.4 Caching web data (memcached)

Cache is a high-speed access storage area that can be a reserved portion of either main
memory or a storage device. Caching is the process of storing data in a cache. Today’s cloud
supports a number of caching engines. For example, AWS ElastiCache supports two open

source cache engines:

Memcached Memcached was developed by Brad Fitzpatrick for LiveJournal in 2003 [86]. Today,
top worldwide websites and portals such as Facebook, Wikipedia, twitter, and others
use memcached. Memcached is an open source & free, high performance, distributed
memory object caching system, intended to speed up dynamic web applications by
alleviating database load [87]. Memcached aims to decrease high database loads by
adding a scalable object-caching layer to an application[60]. Many large companies
use mamcached in their system (such as: LiveJournal, Wikipedia, Slashdot, and Digg).
Memcached is designed to be simple in order to promote rapid deployment, ease of
development, and to solve many problems facing large data caches.

37

Redis Redis is a popular open-source in-memory key-value store that supports data structures
such as sorted sets and lists. Redis supports cross machine redundancy using
master/slave replication.

Memcached was developed with some specific underlying assumptions, such as fast
networks, cheap memory, and that memory storage should be spread out across multiple
machines rather than a single server. A global hash table is responsible for a cache that can
access multiple web processes to learn of changes made by others and to respond appropriately.
Table 4-5 describes the major tasks perform by memcached to speed up the response process.

Table4-5: Different tasks perform by memcached [60].

Server Instances Generally, a number of memcached server instances are running
throughout the network wherever free memory is available. Memcached
instances listen on a specific port and IP address. A specific amount of
memory is assigned to memcached on each machine. The memcached
software will use all the spare memory dedicated to it over the entire
network. Multiple server instances are easy to handle by configuring them
to listen on different ports.

Client Read Process When an application determines what object is needed, it uses a key (such
as object id) as input to a hashing algorithm to check whether the object is
available or not. If the object is available, the object is returned in response
to the request; otherwise memcached fetches the object from the database
and places a copy of it in its cache for later use.

Client Write Process When an object fetched from the database or cache is updated then the
updated object is saved in both the database and the cache. This maintains
the integrity of the data, but also involves an extra update to the database.

Hashing and Keys In a client server relationship, the server instances store the data of
different web servers and provide this data to the server at some time in the
future. The web application maintains a hash table to determine which
server instance stores information about what information in stored by
which memcached instance(s). So that, requested objects are sent to
appropriate server in the distributed cache before accessing database to
respond to requests. A set of keys is used to look up results via a hash.
Eventually, the keys (and the information associated with these keys) are
spread out across the multiple nodes running memcached.

Independence Each memcached server instances is operated independently. If a server
fails within a memcached cluster, then the remaining active servers run as
normal. However, clients can be configured to route requests to other
machines. All data contained within theinstance that fails will be lost when
it fails.

Expiration Memcached follows the least recently used (LRU) caching principles,
hence it discardes the least recently used data first from it memory. That
means, the most frequently used data will remain in the cache, while data
that are not used frequently will be phased out as new data enters the
cache.

38

4.5 Database

A database is a collection of information that is organized so that it can easily be accessed,
managed, and updated. Typically a database contains aggregations of data records or files, such
as user information, product details, transections, and inventories. A database administrator
provides users with the appropriate capabilities to control read/write access, generate reports,
analyze usage, and so on. In the ‘Ifoodbag’ infrastructure we use a distributed database in order
to place data in different geographic locations.

A distributed database is a database that is under the control of a central Database
Management System in which storage device are not (all) attached to a common CPU. Data
may be stored in multiple instances and these instances can be located either in the same
geographic location or different geographic locations spread though out the network. To ensure
that the distributed databases are up to date, replication and duplication processes ensures that
each of the databases contains up to date data over time. Replication uses specialized software
that looks for changes in the distributed database. When changes are identified, the replication
process distributes all of the databases changes to ensure that queries will return the current
data. In our project we used a master-slave replication process to update our database when any
change occurs.

Master-slave replication enables data from one database server (the master) to be replicated
to one or more other database servers called slaves. When the master logs the updates, they
ripple through to the slaves. Each slave sends a message stating that it has successfully received
each update. Replication in a master-slave combination can be either synchronous or
asynchronous. The difference between these is simply the time when the changes propagate. If
the changes are made at the same time in both the master-slave databases, then the update is
synchronous. If changes are enqueued and written later, then it is asynchronous [88]. Figure 4-5
depicts master-slave replication of databases.

S

Figure4-5: Master-dave replication of databases (adapted from [88])

Master and slave replication of databases is designed to improve performance in responding
to user requests. Table 4-6 describes the advantages of using master-slave replication in the
system.

39

Table 4-6: Advantages of master-slavereplication [88]

Scale-out solutions To improve performance we can split the load of database queries across
multiples database servers. Replication distributes the update of one master
to one or more slaves. If any application requires more reads than writes or
updates, then a master-slave solution is well suited for this environment. In
such a scenario, all writes and update must take place on the master server,
while reads can utilize any one of the slave servers.

Analytics Live data can be updated or created in the master, while analysis of the
data can take place without negatively affecting the performance of
master.

Long-distance data Long distance data distribution is so easy. For example, when a local

distribution office needs to work with a subset or all of the data; then you can easily

create a local copy of the data for their use without giving them permission
to permanently access the master server.

Backups As data is replicated to the slave, slaves are able to pause the replication
process or make a backup without corrupting the corresponding master
data.

Increasing the Master-slave replication can improve the performance of writes (since the

performance master is dedicated to updates), while dramatically increasing read speed
across an increasing number of slaves.

Failover alleviating In a master-slave environment, any slave can become the master in the
event of a failure of the master.

Spreading the load Load can be spread across different slave databases, as needed. For

example, different sales data could be distributed to different
departments — so that each department has the data relevant to it.

4.6 Cloud Storage

Cloud storage is a model of networked enterprise storage where data is stored in virtualized
pools of storage. The cloud provider operates large data centers. Then organizations that
require their data to be hosted buy or leased storage capacity from the cloud provider.
Physically, the resources might be located in different geographical locations, thus the safety of
data depends upon the cloud provider and on the application that leverages the cloud storage.
Cloud storage provides a user with the ability to back up data stored on a server, typically this
server is hosted by a cloud service provider [89]. Most service providers also offer redundant
storage. When a data center is hit by a natural disaster or power outage, the data can still be
safe and available to the user through an identical copy of the data stored in a separate data
center. Amazon Glacier is an example of cloud storage, which offer an extremely low-cost
storage service that provides secure and durable storage for data archiving and backup. Using a
cloud Storage Gateway, you can back up to a given point-in-time snapshot of your on-premises
application data to cloud storage for future recovery. There are three important characteristics
of cloud storage [90, 91]:

e First, consider a storage service over a network. Purists will insist that this network must be the

Internet and it must use a web services API and REST protocol.

e The second characteristic is that the solution is easy to scale. Scaling is more than just
increasing capacity. Scaling should address how to reduce effort and costs. Effort is reduced by
the removal of detailed provisioning tasks intrinsic to traditional storage.

e The last characteristic is that the solution is easy to manage. Every storage vendor claims their
solution is easy to manage. A single administrator can manage a petabyte across hundreds of
servers. Cloud storage should be easy to manage, as it is a single storage appliance. Today most
cloud storage management is truly easy, regardless of the claims by different storage vendors.

40

A database snapshot is a read-only, static view of a database (the source database). A
snapshot is a copy of your disk volume at a specific moment in time. It contains the full
directory structure of the volume. A snapshot can also be used for incremental backup of
volumes; such as, a restore point of your database, long-term storage, or the starting point of
new Cloud Block Storage (CBS) volumes [92]. A snapshot persists until the database owner
explicitly drops it. Snapshots and replication in a conventional storage system can serve the
same function as a traditional backup strategy.

4.7 Management node

Cloud management strategies typically involve dealing with important tasks, including
performance monitoring (response times, latency, uptime, etc.), security, compliance auditing
and management, and contingency plans. Ideally, you can perform this entire set of tasks from
a management node. There are a lot of management tool available. With a management tool
you can manage the cloud infrastructure, including provisioning management and automation
of enterprise class applications across private, public, and hybrid cloud platforms. A
management tool allows you to automate updates and manage physical, virtual, and cloud
based systems from a single interface. The management node can also accelerate delivery of
innovative services and simplify control of virtualized environments. In this project, we used
‘Cloudify’ as the management tool to manage our cloud platform. Details can be found in
Chapter 5. The main reason to use management node are [93, 94]:

e Reduce infrastructure costs and complexities with an integrated management platform,

e Increase speed of deployment IT operations, and

e Enable dynamic cloud service delivery with reusable workload patterns.

41

5 Implementation

Based on the proposed architecture (described in Chapter 3), in this chapter we consider the
motivation for the proposed solution and describe an experimental setup to measure the
performance of this proposed solution.

5.1 Experimental Setup

To implement a scalable realization of Ifoodbag’s web application in a cloud environment
the proposed design utilizes nodes in different tiers which are connected to each other.
Management nodes are connecting to each of these different tiers in order to monitor the
complete cloud’s health and to implement a policy for scaling the number of applications
instances up and down either manually or automatically based on the traffic or user load.

Figure 5-1 shows the experiment setup that we used to measure the performance of the
proposed solution. In this experimental setup we mainly used the Cloudify* manager, Amazon
Elastic Compute Cloud (Amazon EC2)f, and a simple static Ifoodbag web application
including Apache Tomcat service under the license agreement [95] for testing with Cloudify.
The Cloudify control machine is installed in a personal laptop on a private LAN and the EC2
cloud instances resides in AWS.

Table 5-1 shows the details of each component of the experiment setup. To simulate the
proposed solution and to perform basic testing of the Ifoodbag application, we emulate
Cloudify in the local cloud [96]. In the following sections we described Cloudify and AWS
EC2 clouds, including our main motivations for selecting them, how to install them, and how to
deploy them in our experimental setup. Finally in section 5.6 we described a mechanism for
generating a traffic load for the Ifoodbag application server in order to experiment with our
scaling rules as defined in the Ifoodbag application recipe.

AWS Cloud (Cloudify Application Cluster

sl lf - =
Nt N
_) - = Scale IN
Clouity | Clouity _) - — \ N/ \
Controfle Clowd Drrve o i 8
= N | ey ; MLI;'EE” |r\c:t'.'.':n\ | Storage .\c.‘rr.ll-)’u_l_.
= -~ Scale OUT
T
Cloudify Controll
Machine
(Management Node)
(Private LAN

Figure5-1: High level experimental setup using Cloudify and EC2 clouds

" Cloudify is an enterprise-class open source PaaS stack that sits between your application and your
_ chosen cloud. Details can be found at: http://www.cloudifysource.org/
"Amazon Elastic Compute Cloud (Amazon EC2), available at: http://aws.amazon.com/ec2/

43

Table5-1: Experimental configuration

Networ k Cloudify machine is sitting on the gigabit per second private LAN. There is a fixed
link with 250 Mbps of bandwidth from this LAN to the Internet. This fixed link
was used to connect to the public network. Additionally, we tried to connect to the
public network via 3G internet connectivity.

Web client As a web client we could use any web browser (e.g. Internet Explorer, Google
Chrome, or Mozilla Firefox).

Client machine | Operating System: OS X Mavericks 10.9.1

RAM: 8.00 GB

Processor: Intel“Core™ i5 @ 2.6GHz, x64-based processor
Hard disk: 250GB

Cloud Instances | Instance Type: m1.small (See section 5.5 for details on Amazon Instance types and
pricing)

Configuration of the instance: RAM: 1.7 GB, OS: Amazon Linux 3.4 AMI
2013.09.2, 1, Processor: 32 bit 1 vCPU of Intel Xeon Processor

Toolsor We used the latest version of Java JDK as this was a prerequisite for installing the
SoftwareUsed | Cloudify shell [97]. We wused TextWrangler tools [98] for configuring
(changing/configuring .groovy files, as cloudify is mainly written in the groovy
language[99]).

Plots To create plots we used Microsoft’s Office Excel 2010.

5.2 Motivation for choosing Cloudify

Some of the drivers for moving to clouds include on-demand availability and scalability
(enabling us to scale the application resources to efficiently consume what is needed now);
rapid deployment and agility (as this reduces the time to deploy the application by utilizing an
agile process for provisioning computing resources); and cost-reduction (thus enabling us to
realize cost benefits by procuring cloud based computing resources without the overhead of
system administrators or need to set up the underlying infrastructures).

However, using clouds commonly requires us to compromise on one or more of the

following objectives:

No Code Change One of the primary objectives when moving to a cloud solution is to deploy
the application in the cloud without rewriting any of the code. This can be
challenging if the application is not ready for an elastic cloud-based
deployment. It can be significantly more difficult if the cloud’s prepackaged
images do not provide the versions of services on which the application
relies or because these images simply do not provide the specific
environment that the application requires.

No L ock-in An important objective is facilitating moving to a different cloud provider
when necessary. Maintaining this flexibility requires that we avoid
customizing the application to work in a specific cloud, as such
customization can make it challenging to change to another of the many
cloud providers due to the complexities of migrating to a new architecture.

Full Control It is desirable to have full control of the environment in which the
applications runs in order to fine-tune, monitor, upgrade, and configure
resources in the cloud according to the application’s needs. This means we
must avoid the limiting environments that some clouds provide.

44

After considering all of the above objectives and our organization’s individual business
requirements, Cloudify was selected as our enterprise cloud management tool. This tool fits
well into our proposed cloud architecture for Ifoodbag. An introduction to this tool will be
given in the next section.

5.3 Introduction to Cloudify

Cloudify is an enterprise-class open source PaaS stack that sits between the application and
the chosen cloud [100]. It enables the application to operate smoothly, while Cloudify monitors
the applicaiton and ensures that the resources the application needs are available regardless of
the cloud and stack used. Cloudify offers the following features:

Any App, Any Stack Any application can be moved to the cloud without changing any code,
regardless of the application stack (i.e. Java/Spring, Java EE, Ruby on
Rails, etc.), database (e.g., relational databases, such as MySQL, or non-
relational databases, such as Apache Cassandra, etc.), or any
middleware components that the application uses. This enables us to
achieve the objective of “no code changes”.

Any Cloud Any application can be moved to any cloud environment, from any
platform, at any time. Cloudify supports or has been tested on almost all
public/private clouds, including Amazon EC2, Windows Azure,
Rackspace, and private clouds (such as OpenStack, CloudStack,
VMWare vCloud, Citrix XenServer, etc.) Additionally, enterprises can
deploy the same application in multiple environments (say, for cloud
bursting [101]). Cloudify hides the APIs and configuration of a cloud
from the application, thus the application can more easily be moved
from cloud to cloud. This enables us to achieve the objective of “no
lock-in”.

Full Control The application can have the full control of its environment. In many
clouds, there is less control because the underlying infrastructure does
not exposed suitable interfaces to the public, and hence a management
tool cannot monitor and fine-tune the cloud for the application as it
would with traditional data centers and applications. However, Cloudify
does have access to the infrastructure via its cloud driver and controller,
hence it can provide a much greater level of control, if the organization
wants [100].

5.4 Deploying Cloudify

We deployed Cloudify version 2.6 in “.nix” (MAC OS X Mavericks) machine, but it also
works for machine running Microsoft’s Windows OSs [102]. There are some prerequisites
[103] to compile the Cloudify distributions (details are available at [104]). In order to run the
Cloudify shell, after downloading the distribution you simply unzip it, then browse the bin
directory of the distribution and run the “./cloudify.sh (for .nix)” or “cloudify.bat (for
Windows)” file (detailed step by step installation and configuration are available in Appendix
A). Figure 5-2 shows the Cloudify shell prompt after running the cloudify.sh file. In the
following paragraphs we described how Cloudify works and what the Cloudify architecture
looks like.

45

@00

clouds
config

cloudify.bat
cloudify.sh
esm.bat

esm.sh

gs-agent.bat
gs-agent.sh
gs-webui . bat
gs-webui.sh

logs

bin — java — 145x43 .
work

notice.txt

Igbals-MacBook-Pro:gigaspaces-cloudify-2.6.2-ga-b540@ igbal$ cd bin

Igbals-MacBook-Pro:bin igbal$

Igbals-MacBook-Pro:bin igbal$

Igbals-MacBook-Pro:bin igbal$

Igbals-MacBook-Pro:bin igbal$ 1s

gs.bat Jjava_pidl27@.hprof setenv.sh

gs.sh jova_pid1488. hprof startJinilUS.bat
gsc.bat java_pid761.hprof startJinilUS.sh
gsc.sh lookupbrowser.bat startJiniTX_Mahalo.bat
gsm.bat lookupbrowser.sh start)iniTX_Mahalo.sh
gsm.sh platform-info.bat temp

gsm_nolus.bat platform-info.sh

gsm_nolus.sh setenv.bat

Igbals-MacBook-Pro:bin igbal$./cloudify.sh

GigaSpaces Cloudify Shell.

Hit '<tabe' for a list of available commands.
Hit '[omd] --help' for help on a specific command.
Hit '<octrl-d»' or 'exit' to exit the console.

Cloudify version: 2.6.2-540@-RELEASE

cloudi fy@default>

Figure5-2;

C

loudify Shell

Cloudify uses sets of instructions and methods called recipes to describe an application and
its services & their interdependencies, in order to monitor, self-heal, and scale in/out its
services & their resources. Deploying and managing the application with Cloudify becomes a
simple process, as follows:

1.

Deployment preparations

Cloud setup (for our implementation we used EC2 clouds) and configured
machine details (hardware, image ID, location, key file, etc.) in the cloud
driver. For our experiment we used Linux image with ml.small instance
and location as Europe zone. For detail about EC2 cloud setup, instances,
hardware, and locations - see section 5.3 of this chapter.

Prepared the binaries required for the services and application. For our
experiment we used simple Apache Tomcat™ and run a simple jsp file to
launch the Ifoodbag application in the cloud.

Finally describe the application’s lifecycle and its services using recipes.

2. Deploy the application and it services

Provision required machines in the cloud by configuring cloud drivers (in
our case EC2 cloud drivers).

Download, install, and configure the required services of the application (in
our experiment this is Apache Tomcat).

" Apache Tomcat is an open source software implementation of the Java Servlet and JavaServer Pages
technologies. Details available at: http://tomcat.apache.org/

46

= Install the application (for our experiment we used a simple Ifoodbag
application).

= Configure the metrics used to monitor and scale the application’s features.

3. Finally monitor and manage the deployment using Cloudify web management
graphical user interface (GUI) or the Cloudify shell.

The above processes are made simple and possible due to the Cloudify architecture. This
architecture enables us to achieve the application’s objectives, as follows:

No Code Change: Just to configure cloud drivers (in our case us ec2-cloud.properties and
ec2-cloud.groovy files) and Ifoodbag application recipes. Figure 5-3 shows the procedure to
achieve the No Code Change objective.

EC2 Cloud Properties

apiKey='
keyFile
keyPair=" XXX XXX "

hardwareId="ml.small"

locationld="eu-west

linuxImageld="eu-west-1/ami-6aS56bE
aﬁ;w //ubuntulmageld="eu-west-1/ami-80987ef?7
// Management persistence configuration.

=.a persistencePath=null

Sh) = Ifoodbag Application Recipe
application {

3 f
S name="1Ifoodbag"

service {
NARE = N COmCAT”

}

51

Figure5-3: Achieving the No Code Change objective

No Lock-in: This objective is achieved by configuring the compute template sections of the
cloud drivers. For our experiment we used the “SMALL LINUX” template. This template
exists in any open cloud platform. Hence there is No Lock-in if in future if Ifoodbag wants to
move from EC2 to any other cloud platform. Figure 5-4 shows this objective.

47

Floud {
{7/ Marcatcry. The name of the cloud,
fiaz It will eppeer Li Lhe Clowdlly UI.
nome = "ecd”

1

cloudCompuce |

. LINUX : computeTemplate(template MSMALL LINUX"
imageld "XE) " 4 }
remotedirectory © Z "e,
machinsMemo "o,. v SMALL LINUX : conputeTenplacs(
hardwareId - i imageld “en-west-1Sani-Ea3€bEid®
locationld resotebirectory ®/heme/esi-user/ga-files®
localDirectory “upload® " 4 | machineMemor-yNB
keyFile hardvareld *nl.mmail’
usernaze locaticnid "=
options ([localDirecs
“default”]as String(], keyTile “ce
ussrmane "o
1 opciona ([

8% 1 [*defsul:*]as Szzingll,

Figure5-4: Achieving the No L ock-in objective

Full Control: This is achieved using the Cloudify web management console or the
Cloudify shell by configuring application/service recipes and defining custom monitoring
metrics and scaling rules. For our experiment we created several monitoring or scaling metrics.
Figure 5-5 shows these monitoring/scaling metrics and shows meters associated with two of
them: Total Request Count and (Number of) Active Sessions. This figure shows how we
have achieved the full control objective.

monitors {

"Current Hctp Thread ': ["Catalina:type=ThreadPool,

}\"", "currencThreadsBusy"],

name '
"Bac Xe 1F porc=§{currHccpPcrc}™, "backlog™].,
"Tot "Catalina:type=GlobalRequestProcessor,
name=\ currHtocpPorti\"", "requestCount"],
"Active Sessicna": ["Catalina:type=Manager, context=/S${ctxPath},
host=localhost”, "activeSessions"],
]
i return getJmxMetrics("127.0.0..",currdmxPort,metricNamesToMEeansNames)
} ‘
Total Req quests Per Second
/ ¥

Figure5-5: Achieving the Full control objective

By configuring and optimizing the Cloudify controllers or application recipes we can easily
achieve a number of desirable features, such as: automatic self-healing (If any machine crashes
at run time Cloudify will automatically replace this machine with a new machine, by following
the instructions in a recipe) and Auto Scale- Your way (By configuring scaling rules in the
application recipes we can easily scale in/out our application services based on out-of- the-box
or custom metrics). Other features include any app, any stack and any cloud, automation of

48

the entire application lifecycle, and fully testable on your personal laptop without hassle of
provisioning any VMs.

Cloudify uses a layered architecture that hides (most of) the implementation details and
enables a simple deployment process. The layers are called Universal Service Manager (USM),
Cloud Controllers, and Cloud Driver. This layering is made possible by Cloudify’s Universal
Service Adapters that are deployed in every Cloudify provisioned machine. These adapters
realize the key features that allow the application to achieve its objectives with no code change,
no lock-in, and full control by simply translating recipes into actions with the installation,
service initialization, scaling mechanism, and service monitoring. Figure 5-6 shows the
architecture of these three layers:

Universal Service Manager The USM allows deployment and management of any middleware
services in any tier by using an extensible recipe to describe the
operations that are to be performed.

Cloud Controllers Cloud controllers are the brains of the system. A cloud controller
orchestrates the deployment of the application, continuously
monitors the application, and triggers alerts and scaling rules based
on the values of real-time metrics and loads.

Cloud Driver Using the cloud driver it is possible to host provisioning in any
virtual environment and abstract the provisioning details from the
application.

Using this architecture, it is very easy to write recipes describing all the components
required to run any specific application including how to install, start, orchestrate, and monitor
the application stack. Recipes use cloud driver configuration files that describes specific
machines and images for chosen cloud.

Network Security

Configuration Configuration

Figure5-6: Cloudify Architecture

49

54.1 Boot-strapping Cloudify on EC2

After completing all the EC2 cloud configuration files and compiled Cloudify as described

in the previous section, we now bootstrap Cloudify by issuing the command below in the
Cloudify shell:

cloudify@default>bootstrap-cloud ec2

Figure 5-7 shows the bootstrapping process of Cloudify on EC2. For simulating and

troubleshooting purpose we also bootstrapped Cloudify on the local-cloud of our personal
computer.

cloudi fy@default> bootstrap-

bootstrap-cloud bootstrap-localcloud

cloudi fy@default> bootstrap-cloud ec2

Setting security profile to "nonsecure”

Bootstraopping cloud ec2. This may take a few minutes.

Validating Cloudify URL "http://repository.cloudifysource.org/org/cloudifysource/2.6.2-5408-RELEASE/gigaspaces-cloudify-2.6.2-ga-b5400. tar.gz"
Establishing connection with provider aws-ec2.

Established connection with provider ows-ec2.

Starting validation of cloud configuration

Validating provider nome “ows-ec2"

Volidating oll templotes

Starting validation of template “SMALL_LINUX®

Volidating cloud API credentials

Validating image “eu-west-1/omi-6056b81d™ and hardware "ml.small” for location "eu-west-1"
Validating security group "defoult®

Validating key pair "test-keypair-eu®

Template “SMALL_LINUX® wvalidated

Cloud configuration validation completed
Creating provisioning Context

Attempting Cloudify Management WM provisioning.

storting machine with template : {image={id=eu-west-1/ami-6a56b81d, providerId=omi-6a56b81d, nome=omzn-ami-pv-2013.09.2.1386-ebs, location={scope=REGION, id=eu-west-1
descriptionseu-west-1, porent=ows-ec2, iso3166Codes=[IE]}, os={family=unrecognized, arch=paravirtual, version=, descriptioneamazon/omzn-ami-pv-2913.09 86-ebs, 1
4Bit=false}, description=Amazon Linux AMI 1386 PV EBS, status=AVAILABLE[available], loginUsersecZ-user, userMetodoto={owner=137112412989, rootDeviceType=ebs, virtual
at\un!'\.'pe-pnm.lrtun'l hypervisor=xen}}, hordwore={id=ml.small, providerId=ml.small, processors=[{cores=1.8, speed=1.8}], rom=1748, volumes=[{type=LOCAL, size=10.0, de
'dev/sdal, bootDevice=true, durable-fnlse} {type=LOCAL, size=158.8, device=/dev/sdaZ, bootDevice=false, durable=false}], supportsImage=And(ALWAYS_TRUE,Or(isWi
3 rm-qu\rcsvlrtual\zat\onfypg(pdravlrtual‘)),A!.IM'S TRUE , ALNAYS_TRUE)}, locations={s cr;pe-REuIN ideeu-west-1, descriptionseu-west-1, parentwaws-ec2, iso3166Codess[I
i st-keypair-eu, userDato=[35, 99, 188, 111, 117, 18@, 45, 99, 111, 118, 182, 185, 103, 18, 114, 11, 112, 111, 95, 117, 112’
114, 97, 100, 161, 58, 32 111, 110, 101, 18]}}
ement staorted successfully.
Attempting to occess Manogement VM 54.194.101.57
Uploading files to 54.194.101.57.
Using "/var/folders/dd/pmxgbffaZhnlj3Thkdjz5t5040000gn.,/ T/ /vfs_cache®™ as temporory files store.
Permanently odded '54.194.101. (RSA) to the list of known hosts.
Launching agent on 54.194.181.
Connecting to 54.194.101.57:
Permanently added '54.194.101.57' (RSA) to the list of known hosts.
Established connection with Management VM 54.194.101.57.
Rest service is agvoilable at: http://54.194.101.57:8100.
Webui service is ovailoble ot: http://54.194.181.57:8099.
Successfully created Cloudify Manager on provider ec2. Use the “teardown-cloud ec2® command to terminate all machine:
cloudi fy@defoult>

Figure5-7: Bootstrapping Cloudify on EC2

Figure 5-8 shows the Cloudify web management console after we have bootstrapped it on

the local cloud.

50

& Chrome File Edit View History Bookmarks Window Help - B0 04 | =6 sz QE
ann

S Management Comsole x| |4 oodbag Web Application

« c 192.168,0.5:8099/C

Dashboard

All Apps Infrastructure Application Services Data Replication
a |y v W o
v et v 1 o
| v vo
Resources i v @
v CPU Cors L3 Mamory vE 2

13% used ek B9.9% wsed, 7.2G0
: e External Data Sourca

o

B feecd | EemTimdne

Figure5- 8 Cloudify Web Management Console

54.2 Deploying the Ifoodbag application recipe

After Cloudify has been deployed on the EC2 cloud, now it is the time to deploy our simple
Ifoodbag application (a simple jsp page that is only used for testing purposes) in the EC2 cloud.
Figure 5-9 shows the Ifoodbag application installation process in the local-cloud. Before
installing the application in the EC2 cloud, we simulate the process in the local-cloud of our
personal computer. This illustrates the beauty of this open-source stack as even before
deploying the application to the cloud it is possible to check if everything is working or not. If
something goes wrong we can easily troubleshoot the process in the local-cloud environment
without needing to launch any VMs in the cloud, avoiding unnecessary cloud costs while
troubleshooting.

- ¥aNs) bin — java — 171x44 -]

[Igbals-MacBook-Pro.local/192.168.9.5] tomcat-1 POST_START completed, duration: @.@ seconds
[tomeat] Deployed 1 planned 1
Service "tomcot® successfully installed (1 Instances)

cloudi fy#i foodbog= uninstoll-opplicotion ifoodbag
Are you sure you want to uninstall opplicotion: «<ifoodbags? [y/n] ¥

[tomcat] Deployed 1 planned @
[Igbals-MacBook-Pro. local /192, 168.8.5] tomcat-1 PRE_STOP invoked

[Igbals-MacBook-Pro. 1o 168.9.5] tomcat-1 PRE_STOP completed, durgtion: 12.3 seconds
[Igbals-MacBook-Pro. loca .168,9.5] tomcat-1 STOP invob

[Tgbals-MacBook-Pro. loca .8.5] tomcat-1 5 ed. Reoson: Attempt to kill process 2367 foiled!
[Tabals-MacBook-Pro. local/1 8.9.5] tomcat-1 TOP invok
[Igbals-MacBook-Pro. local /192.168.9.5] tomcat-1 POST_STOP cospleted, duration: .8 seconds

Sl:r“n(e “tomcat™ wos stopped successfully , releasing cloud resources...
Service "tomcat™ uninstolled successfully

clowdi fyldefault= instoll-opplicotion ifoodbag
Validoting file ifoodbag

Uploading application ifoodbag

Application [ifoodbag] with 1 services
Service [tomcat] 1 plonned instances
Deploying tomcat with 1 planned instonces.

[Igbals-MacBook-Pro.local /192.168.8.5] tomcat-1 INIT imvoked

[Tgbals-MacBook-Pro. loca 92.168.9.5] tomcat-1 INIT completed, duration: 5.7 seconds
[Igbals-MacBook-Pro. loca .@.5] tomcot-1 INSTALL invoked

[Tabals-MacBook-Pro. local/1 .5] tomcat-1 INSTALL completed, duration: 17.3 seconds
[Igbals-MacBook-Pro. loca 68.8.5] tomcat-1 PRE_START invoked

[Tgbals-MacBook-Pro. 1 .5] tomcat-1 PRE_START completed, duration: 1.1 seconds
[Igbals-MacBook-Pro. loca 168.8.5] tomcat-1 START invoked

.8.5] tomcat-1 POST_START inveked
168.9.5] tomcat-1 POST_START completed, duration: 9.0 seconds

Service tnn:ot uccessfully installed (1 Instonces)

c‘luld’i Fy#i foodbag>

Figure5-9: Deploying the sample Ifoodbag web application locally

Figure 5-10 shows the Ifoodbag web application after it was successfully launched in the
local cloud.

" ‘ Chrome File Edit View History Bookmarks Window Help . _e r_li @ D) i T Sa23:26 Q.
B OO o pManagement Console x| [Hoodbag Web Application %
c 192.168.0.5:8082 /ifoodbag) @ 0=)

ifoodbag

Home Ragister Product Recipes News &info About Us Contact Feadback Product page

Login Form

X

&

Remember Me

Simple life !

Welcome to Ifoodbag!

Home

© Hoodbag 2014 Back to Top

Yippee! You've just deployed your first application to the cloud.

Sat Feb 01 23:22:39 CET 2014

Flgure 5-10: Ifoodbag web appllcatlon Iaunched in Iocal cloud

51

5.5 Motivation for choosing AWS

Rapid changes in technology and business processes over the past decade have created an
ongoing IT infrastructure challenge for experts to manage as the infrastructure needs to
constantly (or periodically) change. Indeed, the typical business application architecture has
completely changed in last ten years, as it evolved from desktop-centric installation to
client/server solutions, followed by loosely coupled web services and service-oriented
architectures (SOA) and virtualization. Reducing cost and increasing reliability are major issues
that must be addressed by enterprise IT. While each evolutionary step built on the previous
technology the evolution has introduced new challenges, required changes in strategy, and
offers opportunity. Cloud computing has introduced new challenges for the latest IT
infrastructure (as discussed in Chapter 2). Amazon Web Services (AWS) [12] provides a
complete set of cloud computing services that enable developers to build sophisticated, scalable
applications by exploiting a highly reliable and scalable infrastructure to deploy web-scale
solutions with minimal support and administration costs, and greater flexibility that available
using one’s own infrastructure or a datacenter facility [105].

55.1 The differences that distinguish AWS

The most important features that distinguish AWS from other vendors offering traditional

IT computing infrastructures are [105, 106]:

Flexible The first key difference between AWS and other IT models is increased
flexibility. AWS enables organizations to use resources (such as
programming models, OSs, databases, and architectures) that they already
have experience with. In addition, flexibility helps organizations to deliver
IT solutions when demands arise in order to serve their diverse business
needs. Finally, AWS provides flexibility when provisioning new services.
Instead of spending time to plan, budget, procure, set up, deploy, operate,
and hiring personnel for a new project, you can easily deploy servers on
the cloud as and when you need.

Cost-effective Cost is one of the most complex elements of delivering contemporary IT
solutions. For example, developing and deploying an e-commerce
application such as ‘Ifoodbag’ can be a low budget and successful
deployment, followed by cost that track with the number of users and their
usage of the application. In contrast, owning and operating your own
infrastructure can incur considerable initial cost. The cloud provides an
on-demand infrastructure that enables organizations to only consume the
resources as they actually need and pay only for the resources that they
use, avoiding the need to make any long-term commitments.

Scalable and elastic In a traditional IT organization, scalability and elasticity often involved
considerable investment in infrastructure. The term ‘elasticity’ used by
AWS means scaling up and down of computer resources to follow
business demand. For example, if traffic to a traditional e-commerce shop
increases unexpectedly during a short period (for example, during a special
offer period), then the administrator needs to be confident that the existing
infrastructure can handle this traffic load and that there will not be any
interference with normal business operations. In contrast, by using an
elastic load balancer and dynamic scaling AWS cloud based resources can
automatically be scaled up to meet unexpected demand and then these
resources can be scaled down as demand decreases. AWS allows
organizations to add or subtract resources to their applications in order to
meet customer demand, while managing costs.

52

Secure AWS ensures the confidentiality, integrity, and availability of your data
and promises to maintain your trust and confidence. In order to provide
end-to-end security and end-to-end privacy, AWS builds services
following security best practices.

Experienced The AWS cloud provides levels of scale, security, reliability, and
privacy for an application implemented in Amazon’s cloud. AWS
has built an infrastructure based on the lessons they have learned
from over sixteen years of experience in delivering large-scale
infrastructure by following reliable, secure methods.

55.2 Introduction to AWS

AWS is a comprehensive cloud service platform that offers compute power, storage,
content delivery, and other functionality that organizations can use to deploy applications and
services cost effectively with flexibility, scalability, and reliability. Today AWS offers a variety
of infrastructure services. The AWS services described in the following subsections are
suggested for the implementation of the ‘Ifoodbag’ cloud infrastructure.

55.2.1 Amazon Elastic Compute Cloud (Amazon EC2)

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that allows you to buy
compute capacity in the cloud, which is resizable whenever you want. You can create a bundle
including an OS, application software, and associated configuration settings as an Amazon
Machine Image (AMI). Then you can use these AMIs to provision multiple virtualized
instances or decommission them using simple web service calls to scale capacity up and down
quickly, as your business operation requirements change. Amazon EC2 in designed to make
computing easier for developers and system administrators. It has a simple web service
interface that allows creating instance and configuring capacity with minimal friction. Instances
can be launched in one or more geographical regions. Each region contains multiple
“Availability Zones” with distinct locations. If failures occurs in a specific availability zone,
then another availability zone in the same region can provide services via low latency network
connectivity [105], [106].

5522 Elastic Load Balancing

When traffic grows for an application, it is best practice to not allocate all the traffic to a
single instance. Instead the incoming traffic should be distributed by an elastic load balancer
using the Elastic Load Balancing service. Incoming traffic is automatically distributed across
multiple instances through elastic load balancing. This load balancing also enables you to
achieve even greater fault tolerance in your applications by providing the necessary amount of
load balancing capacity needed according to the current traffic load. The elastic load balancer
detects unhealthy instances and automatically reroutes traffic to healthy instances until the
unhealthy instances have been restored. Elastic Load Balancing can be enabled within a single
availability zone or across multiple zones (for even more consistent application performance).

55.2.3 Amazon Virtual Private Cloud (Amazon VPC)

Amazon Virtual Private Cloud lets you create a virtual network as a logically isolated area
within the AWS cloud. You can launch resources in this network that you have defined. You
can enable IPSec tunnel mode to ensure secure connection between one or more gateways in
your data center to a gateway of your VPC. You can allocate your own IP address range and
subnets; configure a route table, default route, and network gateways to suit your own
preferences — giving you complete control over your virtual networking environment. Changes
to the network configuration of your Amazon VPC are easy. For example, you can create a
subnet for your web server that has access to the Internet and place your database or application

53

server in another subnet without Internet access. Amazon also allows you to create a hardware
virtual private network (VPN) connection between your corporate data center and your VPC.

55.2.4 Amazon ElastiCache

Performance and response time to a request is the most important factor in delivering any
IT solution. Amazon ElastiCache is a web service that improves the performance of web
applications by allowing you to retrieve information from in-memory caching system. Such in-
memory caching systems are faster than disk-based databases. The Amazon ElastiCache
service can be used to reduce the overhead associated with data storage infrastructures and also
provides a more resilient system that can mitigate the risk of an overload that could result in
slow response times to requests. Additionally, ElastiCache provides enhanced visibility of the
key performance metrics associated with your memcached or redis nodes. Further details about
memcached were given in section 4.4.

55.2.5 Amazon Route 53

Amazon Route53 is a highly scalable Domain Name System (DNS) web service that allows
you manage all of the DNS records for every domain that you would like to manage. Route53
was designed for organizations to provide an extremely reliable and cost-effective way to route
traffic to an application that a user want to access by translating a domain name (such as
www.Ifoodbag.se) into the IP addresses that the computer user will use to interact with the
application. Route 53 is used to connect user requests to the relevant element of an
infrastructure running in AWS, such as an EC2 instance, an elastic load balancer, or database.
A dynamic DNS is needed since the AWS infrastructure can be scaled up and down, hence
services will not have fixed IP addresses.

5.5.2.6 Amazon Elastic Block Storage (EBS)

Amazon Elastic Block Store (EBS) provides block level storage volumes for use with
Amazon EC2 instances. EBS is network-attached and the content persists independently from
the life of an instance. EBS volumes are exposed as a device within the EC2 instance running
on AWS. An EBS volume provides highly available, highly reliable, predictable storage
volumes. Amazon EBS particularly well suited for an application that requires a database, file
system, or access to raw storage. In addition, snapshots of EBS volumes can be created and
stored on Amazon Simple Storage Service (Amazon S3).

55.2.7 Amazon Relational Database Service (Amazon RDS)

Amazon Relational Database Service (Amazon RDS) is a web service that makes it easy to
set up, administer, and scale a relational database in the cloud. It offers cost-efficient and
resizable capacity, while minimizing time consuming database administration tasks, freeing up
resources to focus on your application and business. Amazon RDS also allow you to access
most well-known databases implemented with MySQL, Oracle, SQL Server, and PostgreSQL.
This means that the code, applications, and tools you already use today with your existing
databases can be used with Amazon RDS. Amazon RDS automatically patches the database
and keeps backups your database, storing the backups for a configured retention period. In
addition, Amazon RDS makes it easy to use replication to enhance availability and reliability
for databases, while scaling out beyond the capacity of a single database deployment for
read-heavy database workloads.

55.3 Amazon EC2 instance types

Instances are the primary building blocks in the AWS cloud. Instances are virtual servers
that run your application(s). Instances are created from an Amazon Machine Image (AMI). You
choose an appropriate instance type to instantiate, depending upon your current business need.
An AMI is a template containing a software configuration and OS. You can either use an AMI

54

provided by AWS or create (and share) your own AMIs. A single AMI can be used to launch as
many instances as you want. When you launch an instance of your application, each instance
type is associated with different types of hardware offering different capabilities, such as
compute, memory, and storage capabilities. Selecting a specific instance type depends on the
requirements of the application or software that you want to run on your instances [107].

A large number of instance types are provide by Amazon EC2 for use in different use cases.
These instance types define different combinations of CPU, memory, storage, and networking
capacity, thus giving you the flexibility to select the appropriate combination of resources for
your application.

Table 5-2 lists some of the different instance types that Amazon EC2 provides. Further
details about instance types can be found in [108].

Table5-2:

Amazon EC2 instance types

General m3.medium 64-bit 1 3 3.75 1 X4 - Moderate
Purpose SSD
m3.xlarge 64-bit 4 13 15 2X40 Yes Moderate
SSD
ml.small 32-bitor 1 1 1.7 1X160 - Low
64-bit
ml.large 64-bit 2 4 7.5 2X Yes Moderate
420
ml.xlarge 64-bit 4 8 15. 4X 420 Yes High
Compute C3.large 64-bit 2 7 3.75 2X16 - Moderate
optimized SSD
C3.4xlarge 64-bit 16 55 30. 2X - High
320
SSD
cc2.8xlarge 64-bit 32 88 60.5 4X - 10 Gigabit
840
GPU g2.2xlarge 64-bit 8 26 15. 1X16 Yes High
instances SSD
Memory m2.lxarge 64-bit 2 6.5 17.1 1X - Moderate
optimized 420
crl.8xlarge 64-bit 32 88 244, 2X - 10 Gigabit
120
SSD
Storage i2.xlarge 64-bit 4 14 30.5 1X Yes Moderate
optimized 800
SSD
i2.2xlarge 64-bit 8 27 61 2X Yes High
800
SSD
i2.8xlarge 64-bit 32 104 244. 8X Yes 10 Gigabit
800
SSD
Micro t1.micro 32-bitor 1 Variable 0.615 EBS Very Low

55

| instances 64-bit only

554 Amazon EC2 pricing

One of the primary aims when building an infrastructure in the cloud is cost. As has been
stated multiple time users only pay for what they use. There is no minimum fee and no initial
investment is required. Prices are based on geographical location and which types of instances
you are running. However, pricing also varies with which AMIs that you use. On-demand
instances enable you to pay for compute capacity by the hour with no long-term commitments.
Table 5-3 shows some of Amazon on-demand instance type costs per hour (in US dollars). We
considered the US East (Northern Virginia) region and Linux as the OS. Detailed information

can be found in [109].

Table5-3;

Amazon EC2 pricing for Linux OS and US East (N. Virginia) region

m3.medium 1 3 3.75 1 X 4 SSD $0.113 per hour
m3.xlarge 4 13 15 2 X 40 SSD $0.450 per hour
m2l.small 1 1 1.7 1X 160 $0.060 per hour
ml.large 2 4 7.5 2 X 420 $0.240 per hour
ml.xlarge 4 8 15 4X 420 $0.480 per hour
c3.large 2 7 3.75 2X 16 SSD $0.150 per hour
c3.4xlarge 16 55 30 2 X 320 SSD $1.200 per hour
cc2.8xlarge 32 88 60.5 4 X 840 $2.400 per hour
g2.2xlarge 8 26 15 60 SSD $0.650 per hour
m2.Ixarge 2 6.5 17.1 1 X 420 $0.410 per hour
crl.8xlarge 32 88 244 2 X 120 SSD $3.500 per hour
i2.xlarge 4 14 30.5 1 X 800 SSD $0.853 per hour
i2.2xlarge g 27 61 2 X 800 SSD $1.705 per hour
i2.8xlarge 32 104. 244 8 X 800 SSD $6.820 per hour
tl.micro 1 Variable 0.615 EBS only $0.020 per hour
555 EC2 cloud setup for Cloudify

In order to work with Cloudify and launching our application on EC2 clouds, we first setup
an EC2 cloud account by:
e First creating an account through Amazon Web Services [110].
e Next we select a Machine Image ID (for our experiment we used “ami-6a56b81d”), Hardware
ID (for our experiment we used “m1l.small[59]”), Location ID (for our experiment we used the
Europe West location “eu-west-1"), and key pairs (including the secret keys for the account).

Figure 5-11, Figure 5-12, and Figure 5-13, shows how to create a key pair, access key 1D,
and secret access key via the Amazon EC2 management console. These security credentials are
used for launching new instances as well as connect to EC2 instances. The AWS security
credentials also can be used to verify who you are and whether you have permission to access
the resources or not.

56

Create Key Pair

Key pair name: |IIoodNn

Figure5-11: Create new a key pair for Amazon EC2

INSTANCES
Instances

Spot Requests
Reserved Instances

IMAGES
AMis
Bundle Tasks

ELASTIC BLOCK STORE
Volumes

Snapshots

NETWORK & SECURAITY
Security Groups
Elastic IPs
Placement Groups
Load Balancers

Key Pairs

Network Interfaces

AUTO SCALING

—

Filter; | Q Search Key Pairs... *
Kay pair nama = Fingerprint
test-keypair-eu 20:bcie2:fe:46:8a:4f: 8a:d5: 1d:bc: 15:83:2c:93:e9:9f:80:45: 11
ifoodbag e:55:19:18: ARALTT :Bo:49:5hida 19

Select a key pair

___ @ 2008 - 2014, Amazan Web Services, Inc. or its affiliates. All rights reserved. Privacy Policy Terms of Use

{ eansele.aws amazon.

o & @

£ ¢ 1to2of2KeyPairs =~

Feedback

Figure5-12: Added a new key pair named ifoodbag with a secret key

Dashboard

Details

Groups

Usars

Roles

Identity Providers

Password Policy

|
« Your Security Credentials

Usa this page to manage the credentials for your AWS To manage for AWS Identity and Access Mangement (LAM) users, use the 1AM Consala .

'+ Password
+ Multi-Factor Authentication (MFA)

= Access Keys (Access Key ID and Secret Access Key)

MNote: You can have a maximum of two access keys (active or inactive) at a time.

Created Deleted Access Key ID Status
Feb 1512014 AKIAJSWEKAP4INISQ460 Active
Dec 29th 2013 e

To learn more about the types of AWS credentials and how they're used, sea AWS Security Credentials in AWS General Reference.

Actions
Make Inactive | Delete
Make Inactive | Delete

A If you must retri isting secret keys:

© 2008 - 2014, Amazon Web Services, Inc. or its affiliates. All rights reserved. Privacy Palicy Terms of Usa

Figure5-13: Creating an AccessKey ID in Amazon EC2

Go to the legacy Security Credentials page and then save your keys in a secure location. The legacy Security Credentials

Feedback

57

5.6 Webserver load or performance measurement tool -
Httpref

“httpert” is a tool for UNIX-like OSs to measure web server performance and to produce a
traffic load on a webserver. David Mosberger wrote it initially for Hewlett Packard (HP) [111].
It provides an extensive facility to generate a number of HTTP workloads for measuring
webserver performance. The aim of “httpref” is not to produce one particular benchmark, but
rather to provide a robust, high performance tool to carryout both micro and macro level
benchmarking. The three distinguishing characteristics of httprefare [111, 112]:

¢ Robustness, which includes the ability to generate and sustain server load,

e Support for the HTTP/1.1 and SSL protocols, and

e Extensibility to new workload generators and performance measurement.

Httpref only tests the standard HTTP payload for your application by default, which means,
that it is similar to curl in that it does not load additional assets (images, javascript, or CSS) in
the default test. In order to ensure correct results Httpref should be run on the same machine as
the web server (to avoid any effects due to networking limitations) and you must ensure that the
test tool and the web server are the only processes consuming significant CPU resources on the
client machine. The sample command line [113] shown below generates a load on the indicated
webserver to measure its performance:

httperf —server www.Ifoodbag.se --port 80 —uri /index.php --rate 150 --num-conn 27000 --
num-call 1 --timeout 5

Following the above command line, httpref sends HTTP get requests for the index.php page
to a web service running on the Ifoodbag.se webserver. The maximum number of HTTP
requests that should be generated is num-call*rate. The other parameters are:

server IP address or hostname of the machine where the service is running

port port the service is running

uri The context path of the service on the server

rate Number of connections created per second to make requests to the service.

num-con Number of test calls made to the service
num-call ~ Number of calls per TCP connection.

time-out This is the maximum amount of time that httperf waits for a successful
response.

For our experiment we sent the traffic load to our Ifoodbag application launched on EC2
cloud by issuing the following commands.

httperf --hog --server 54.194.238.66 --port 8082 --uri /ifoodbag --wsess=3,5,2 --num-conns
1000 --rate 10

httperf --hog --server 54.194.238.66 --port 8082 --uri /ifoodbag --wsess=20,10,2 --num-conns
10000 --rate 30

httperf --hog --server 54.194.238.66 --port 8082 --uri /ifoodbag --wsess=20,20,10 --num-conns
20000 --rate 100 --timeout 15

In our experiment, we have created different numbers of sessions with different loads to test
the scaling of our servers. Three-parameter are needed to create sessions. The syntax is: --
wsess=N1,N2,X. Where, N1: number of sessions, N2: Number of calls per session, and X:
delay between calls (sec). The results of these tests are given in section 6.2.

58

6 Results and analysis

In this chapter, we describe and analyze of our findings concerning installing and scaling
the Ifoodbag application on the EC2 cloud. We give a cost analysis based on our implemented
solution in comparison with traditional infrastructure solutions. Additionally, we compare our
proposed solution with some other solutions [3, 4, 21, 114] including some proposed
optimizing techniques [115]. Finally the chapter offers some recommendations and guidelines.

6.1 Successful deployment of the Ifoodbag application on
EC2 from the management machine

As we esplained earlier we started by deploying the Ifoodbag application on a local-cloud
running in our personal computer and configured with our resource provisioning and scaling
rules in order to verify that this application worked as expected. In this chapter we describe the
deployment of the application server in the EC2 cloud using the management machine of our
experimental setup as described in our proposed architecture. Figure 6-1 shows the successful
deployment of the Ifoodbag application on the EC2 cloud.

B 0 O &, Management Consale % [#|ioodbag Web Application EC2 Management Console = < Management Console % | [#|ioodbag Web Application >

() 54,194.238.66:8082 /ifoodbag/ DO

5

ifoodbag ——

Fogister Product Recipes News & info About Us Contact Feedback Product page

ifoodbag

Simple life !

Login Form
sy

-

Remember Mo

Croate an account »
Forgot your usemama’ 7
Forgot your password?

Welcome to Ifoodbag!

© ifoodbag 2014 Back to Top

Yippee! You've just deployed your first application to the cloud.
Sun Feb 02 03:13:49 UTC 2014

Figure6-1: Ifoodbag application on EC2 cloud

Figure 6-2 shows the Cloudify web-management console for the Ifoodbag application on
EC2 cloud.

0O s Management Cansole x| Woodnag Web = Ecz Console = | = Management Consobe = |4 Woodbag Web Application

- (< 54.194.7.155:8099/Gs_webui.htmi o O

Applications T bearm miars about premium suppart Sligkies

[Balect Apphcation: [T i meengoneer |

IEEEE" N SSES " EEEE" (- iR
Figure6-2: Cloudify web-management console for |foodbag application

59

Now that our application has been successfully launched in the cloud architecture, it is time
to evaluate the scaling mechanisms, analyze our findings, do cost evaluations, and define
recommendations / best practices. We begin in section 6.2 by systematically examining scaling
to exploit the elasticity of the cloud.

6.2 Scalability Guidelines and Analysis

In this section we describe the results of our tests and findings concerning (both up and
down) scalability mechanisms. To dynamically scale or monitor the ifoodbag application we
defined a number of metrics, specifically: Active sessions, Request Counts, CPU/Memory
utilization, HTTP thread count, Request Backlog, and etc. Figure 6-3 shows the metrics we
have defined for the Ifoodbag application as they are shown in the Cloudify web-management
console.

[Mot | Hosts Services Logs Events Grid Events Tmaing Ricipes Progress

Cusiom: Process Cpu Usage s Custorn: Total Process Virtual Memory - Cusiom: Num Of Active Threads . { Cusiom: Current Hitp Threads Busy

Cusiom: Current Hitp Thread Count - | Custom: Request Backiog - Custom: Active Sessions =] |1 Custom: Total Requests Count
o3 T / 1y || e s a— — /
\ \ \ \

Figure6-3: Defined metricsfor 1foodbag application

The results presented in this chapter will be based on the “Total Request Count” metric. We
used the incoming RPS (Request Per Second) metric to drive auto-scaling, as this metric is
independent of the application but is directly related to throughput. Note that an Auto Scaling
action is invoked when the specified metric remains above the specified threshold value for a
specified number of time periods as defined in the scaling policy. This is to ensure that a
scaling action is not triggered due to a sudden spike in the value of a metric. In addition, we
specified a cooldown time (using Amazon’s definition of this term - see below) to ensure that a
new scaling process will be triggered only after completing the previous scaling process.

“Cooldown is the period of time after auto-scaling initiates a scaling activity during
which no other scaling activity can take place. A cooldown period allows the effect of a
scaling activity to become visible in the metrics that originally triggered the activity.
This period is configurable, and gives the system time to perform and adjust to any new
scaling activities (such as scale-in and scale-out) that affect capacity.”[116, 117]

6.2.1 Scalability Guidelines

To optimize scaling it is quite important to study and understand the traffic load on the
application in a production environment. During our thesis work, Ifoodbag AB also leveraging
resources to develop the application, hence it was not ready to go on live, and because of that
we could not get access to the live traffic pattern of the Ifoodbag application, we assumed a
traffic pattern as illustrated in Figure 6-4. In this pattern the traffic load remains high during the
day time and is at a level higher than at night. In order to get this traffic pattern we have
simulated this for a 24hrs time frame, where the traffic load represented as request per second
in the y-axis and time frame is shown in x-axis. We assumed this traffic pattern, as Ifoodbag is
mainly a food delivery application where people will use such application mainly during the
day time than at night. However, in the future the live traffic pattern can be examined when
Ifoodbag application will be launched to the public.

60

Traffic Pattern in Production

250 T

200 -
150 A
s
E 100 —Traftic Lo
50
0 1
PP PEFE P PP P PP PRSP PP PP PP P P PP
U S CAHIE A e PR P R A N L
Time
Figure 6-4: Assumed traffic pattern of a production version of theiFoodbag application

Even though this varying nature of traffic patterns makes it more difficult to optimize the
exploitation of the elasticity in the cloud environment it gives us some insights, hence it allows
us to propose guidelines for the use of scaling techniques. Some of these guidelines include
Avoiding Ping-Pong Effect; Being Proactive, Not Reactive; and Aggressive Scale Up,
Conservative Scale Down. Each of these will be described below.

No of Nodes (Negetive nodes
represent scabe down process)
o

-3 4

Avoiding Ping-Pong Effect: To verify our basic scaling mechanism we measured the scaling
process for 10 minutes without specifying the cooldown timer and optimized metrics threshold
value by producing HTTP requests (as described in section 5.6) to the Ifoodbag application
server. As we have not specified a cooldown time this load resulted in the Ping-Pong effect due
to alternating scale up and scale down events, as illustrated in Figure 6-5. This occurs because
when the RPS increases it triggers the scaling up event, thus adding a number of new machines
(as defined in the scaling policies). However, now that there are more nodes the RPS per node
decreases and when it falls below the threshold specified for scaling down a scale down event is
triggered. Now that there are fewer nodes the RPS per node will increase and the cycle will
repeat! From this experience and the recommendations stated in [115, 116] we observed that the
Ping-Pong effect can potentially result in increased latency and, in the worst case, may even
cause a violation of the service level agreement (SLA) of the service. Hence it is a
recommended best practice when defining scaling policies to ensure that the policy is not
susceptible to the Ping-Pong effect.

== Curent Nodes

=~ Scaling (Ping-Pong Effect)

Figure6-5: Ping-Pong Effect

Being Proactive, Not Reactive: During the scaling process we observed that each successful
addition of a new application server took ~42 seconds. Table 6-1 illustrates the measurement of
the ASG (auto scaling group). With the scaling group size of two VMs it takes 50 seconds to
scale up both VMs in comparison with the 42 seconds that it takes to scale up a single VM sized
ASG. Table 6-2 illustrates that handling a scale down event takes almost the same time as
scaling up. From data shown in both tables we can see that scaling up proactively reduces
latency and improves the user experience, by ensuring the ASG is provisioned sufficiently
before the time the service latency approaches the limits of the SLA — thus the SLA is never
violated! However, proactive scaling up increases the operational cost of the business. This cost
will be considered in section 6.3.

61

Table6-1: Amazon EC2 Scaleup Time

1 05.05.04 05.05.46 42

2 05:07:40 05:08:30 50

3 05:11:30 05:12:25 55
Table 6-2; Amazon EC2 Scale Down Time

1 5.16.15 5.17.02 47

2 5.20.02 5.20.57 55

o Aggressive Scale Up, Conservative Scale Down: Delivering the best user experience is critical
for any business. Hence, we deployed an aggressive scale up policy to be able to handle more
than the expected traffic, thus providing a better end-user experience. An aggressive scale up
approach provides a buffer for increased traffic during the cooldown period, i.e., having scaled
up we will not immediately scale down — hence the system remains in a scaled up state for
longer. For this reason an aggressive scale up approach may result in over provisioning and
unnecessarily higher operational costs.

In contrast, we use a conservative scale down policy to adapt more slowly (than the historical
trend) to decreases in traffic. On the other hand, an aggressive scale down policy may result in
accidentally under provisioning, thereby adversely impacting response latency and decreasing
throughout (in the worst case, the service may become unavailable). For all of these reasons we
have rejected an aggressive scale down policy as it is likely to lead to degraded end-user’s
experience. Furthermore, from a corporate standpoint lower throughput would adversely impact
the bottom line as poor performance is likely to causes the end-users to take their business
elsewhere (this holds true in general for any end-user facing service). Figure 6-6 illustrates the
desired the auto-scaling profile when operating in the production environment under the load
illustrated in Figure 6-4. For better understanding we placed both figures side by side together
as below, where left side figure represents the assumed traffic pattern of a production version of
the iFoodbag application and right side figure implicates its desired auto scaling resources.

DESIRED AUTO SCALING PROFILE

Traffic Patternin Production -

e s N —TnfficLoad E i; 1 -/_./'_v '___‘

Buo
/ \ — =" —=Noor NoDES
e —— " :—4—0—0—/ -
LSS S S S
\é’1&’3&"?@@0“0&1@@@@@0@\@1@3@tu"‘j@be“,\o"%@\q@mo@ﬁ,toﬂ’@@@ O S A RO FOIO SO LT N L
Time -
Figure 6-4: Traffic Pattern Figure 6-6: Desired Auto-Scaling Profilein the

production environment

6.2.2 Scalability Analysis

For dynamic or auto scalability it is very important to determine the appropriate threshold
value for the selected metric. A low threshold will result in underutilization of the nodes
defined in the ASG. On the other hand, a high threshold may result in higher latency, hence
degrading the end-user’s experience. Therefore, we define the threshold value by considering
the throughput corresponding just meeting the SLA for the application. To determine the
appropriate threshold value, we consider scaling results based on algorithm number 1 proposed
by Kejariwal in [115]. This algorithm must satisfy the following properties in accordance with
the guidelines stated in section 6.2.1.

Property | RPS per node after scale up should be greater than the scale down threshold (7b).

This property ensures that a scale up avoids the Ping-Pong effect (see section
6.2.1).

Property Il RPS per node after scale down should be less than the scale up threshold (Tv).

Similar to Property I, Property Il ensures that a scale down avoids the Ping-Pong
effect.

Algorithm for scaling Up/Down: As Ifoodbag is just getting started in the market, we tried
to define an algorithm that could scale a certain number nodes both upwards and downwards
according to the guidelines defined in section 6.2.1. In this algorithm the management system
will deploy a ChangelnCapacity number of nodes (to scale Up) or decommission this number
of nodes (to scale Down). The direction of the change will be based on the AdjustmentType
during the scaling process. For example, in our experiment the current capacity of the given
ASG is 1 and the ChangelnCapacity is set to 3. So given a scale up event we will add 3 more
nodes to the ASG. The details of the parameter and steps to determine the scaling thresholds
(for scaling both up and scaling down) are:

Input: application parameters.
Parameters:
D Scale down value
U Scale up value
Tp Scale down threshold (RPS per node)
Ty Scale up threshold (RPS per node)
Nmin Minimum number of nodes in the ASG
Let 7 (SLA) return the maximum RPS per node for the specified SLA.
Ty« 0.90 x T(SLA)
Tp«— 0.50 x Ty
Let RPSpeak, RPSin denote the peak and minimum RPS observed for the ASG over
the last, say, two weeks
Let N, RPS, denote the current number of nodes and RPS per node respectively
L1: /* Scale Up (if RPS,, > Ty) */
repeat
RPSasg < N, x RPS,
N, «—N.+U
RPS,, < RPSasc/N,
until RPS,, x N, < RPSpeax
L2: /* Scale Down (if RPS, < Tp) */
repeat
RPSasg < N, x RPS,
N, «— max(Npin,N. — D)
RPS,, < RPSasc/N,
until RPS,, x N, > RPSpnin 0 Ne = Nmin

63

if Properties I and/or II are not satisfied for each scale up and scale down
respectively then

Adjust D, U, Tp, Ty incrementally

Revisit L1 and L2
end if

In this algorithm, the scale down value D and the scale up value U are the main inputs.
Kejariwal states that the constants (0.90 and 0.50) used in defining 7y and 7p were determined
empirically to minimize the negative impact on end-user experience and minimize ASG
underutilization. Loop L1 in the algorithm scaling up an ASG when the incoming traffic
increases, while Loop L2 scales down an ASG when the incoming traffic decreases. If
Properties I and/or II (defined earlier) are not satisfied then the algorithm adjusts the parameters
D, U, Tp, Tyin an incremental fashion and iterates through the loops L1 and L2.

After implementing this algorithm in our Ifoodbag application recipe for about 30m of the
simulation in the EC2 cloud when generating traffic load on our application server and using
the management machine we obtained the results shown in Table 6-3.

For our experiment, we defined RPSpex=1300, RPSiy=50, D (scale down value) = 2,
U (scale up value) = 3, Scale down threshold 7p=40, and Scale up threshold 7y=80. In our
experiment we initialized RPSagg to the value 50 and N, to 2, then we increased RPSsg to 200
and according to our policy rules since RPS, approaches Ty (100>80), an auto-scaling up event
is triggered, hence (U=) 3 nodes are added to the ASG. Successively the ASG scales up until
RPS,, x N; < RPSpeik. Note that column six the New RPS, value satisfies Property I defined
earlier.

Conversely, during the scale down process, we considered RPS5s6=1300 and N.=14 and as
we simulated to decrease the RPSssg value to 550, hence RPS, approaches to 7p (39<40).
Thereby auto-scaling down event triggered and removed (D=) 2 nodes from the ASG.
Successively the ASG scales down until RPS,xN, > RPSyin or Ne = Npin. It should be noted
that in column twelve the New RPS;, value satisfies Property II defined earlier.

Table6-3: Resultsof implementing the algorithm with RPSpe=1300 RPSyi,=50, D=2,
U=3, Tp=40, Ty=80

Scale Up Scale Down
B
E % v O 8 7] E wn w 2 3 75}
O 0O o 9 < = — O = O o o < < = — O =
ES | v 92} 2] 85 B2 W E S < & %2} %2} s 2w
=) o o & & o © [S-" S5 O S © =B [a B o © O A
OZ | Z2< = Z Z O Z Z &~ ~ ~ = Z Z &~
2 50 25 2 14 1300 92.85
200 550
3 5 66.67 2 12 45.83
550 450
3 8 68.75 2 10 45.00
900 350
3 11 81.81 2 8 43.75
1250 250
3 14 89.25 2 6 41.67

64

Figure 6-6 and Figure 6-7 shows our approach of implementing auto scaling policies both
upwards and downwards. When the load increases the RPS value triggers the scaling up event
with as scaling up value of 3 as defined in the policy rules. In contrast, when the RPS value
decreases it triggers the scaling down event with a scaling down value of 2 as defined in the
above mentioned policy rules. This set of parameters ensures the two properties defined earlier.

Scale UP Scale Down

16 15
12 2,
g 10 10 §
25 Lg 2
2%} [%2

5 T 2

0+ Lo

0 20 40 60 80 100 120 100 90 80 70 60 50 40 30 20 10 0
Request Per Seconds (RPS) Request Per Seconds (RPS)
Figure 6-6: Scale Up Process Figure 6-7: Scale Down Process

Although we have demonstrated the policy implementations by using a fixed number of
nodes in our scaling rules and the Total Request Count metric, Kejariwal [115] presents other
algorithms which dimension the size of the change as a percentage of the current capacity and
based on average throughput. The choice of algorithm and step size should be based on
business requirements, in accordance with different metrices defined in section 6.2. We
recommended employing the Aggressive Scale Up, Conservative Scale Down approach, as it
ensures better end-user experience. Addition, we believe that this approach better adapts the
throughput of the application in the cloud architecture to the demand. In the next section we
evaluate different cost factors for the proposed cloud architecture to provide a cost analysis
comparing a traditional infrastructure with the proposed cloud architecture.

6.3 Cost analysis

Companies need an elastic, reliable, flexible, and low cost infrastructure to provide their
services to end-users. Low cost and reliable services are major concerns for businesses
(whether the business is a startup or an established business). Fortunately, according to Kondo,
et al. a cloud provides scalability, 99.999% reliability, and high performance with a minimum
complexity of IT infrastructure [118]. These capabilities are provided by a cloud at relatively
low cost when compared to a traditional / dedicated infrastructure. In this project ‘Ifoodbag’, a
Stockholm based startup company, wants to start their e-commerce business. To make their
business cost effective with a highly scalable infrastructure, we propose that they build their
infrastructure using a cloud platform. In the following subsection we present (based upon
[119]) a comparative cost analysis of realizing this infrastructure via a cloud platform versus
traditional infrastructure alternatives.

6.3.1 Utility style pricing for cloud

A cloud can provide a range of services for their users. More over utilizing a cloud allows
you to pay for exactly those resources that you have used for your business process.
Additionally, you can scale your resources whenever you want as your business needs change,
while only needing to pay for these resources when you actually have used them. Table 6-4
described this utility style pricing for a cloud.

65

Pay asyou go

Pay lesswhen you
reserve

Pay even less per
unit by using more
Pay even less as
cloud grows

Custom pricing

Table 6-4: Utility Style Pricing [120, 121]

You pay on an hourly basis from the time when you launch a resource until the
time you terminate it. No long-term contract is required. The cloud replaces
your upfront capital expense with a low variable cost as you pay only for what
you use in terms of the underlying infrastructure and services that you use.

You can invest in reserved capacity, but because of the low upfront investment
you get a significant discount rate. Depending on the types of instances you
reserve, the overall savings ranges between 42% and 71% over on-demand
capacity.

You can save even more as your business grows larger. For example, you pay
less for per gigabyte as you use more (as the marginal price decreases).

This is the most attractive feature of a cloud. Each cloud provided always tries
to reduce their data center and hardware costs, improve their operational
efficiencies, and reduce their costs — hence reducing your cost of business.

If none of pricing model works for your business, then a cloud provider might
offer custom pricing for high volume projects with unique requirement.

6.3.2 Cost factors

When owning and operating a data center the most important factor is cost. Therefore there
needs to be a detailed and careful analysis before start to build your own infrastructure. In
reality it is not as simple as summing up the hardware expenses, as one must consider the utility
pricing of resources. Several financial metrics can be used to calculate the Total Cost of
Ownership (TCO) which includes both direct and indirect costs of a product or a service. It is
challenging to accurately estimate the cost difference between owning an on-premises

infrastructure and b

uying resources in a cloud infrastructure. In this section, we presented a

comparative analysis of several different direct costs and indirect costs. Direct costs of

ownership can be cl

assified in to different categories, such as hardware cost, assets utilization,

power efficiency, data redundancy, security, supply chain management, and personnel costs.

Table 6-5 described these different cost factors in the ownership of an IT infrastructure.

Table 6-5: Different types of cost factors[119, 121]

Infrastructure Costs

Detail Descriptions

Har dwar e costs

Asset utilization

Power efficiency

Upfront investment is always critical for enterprises to build an IT
infrastructure. The investment required can easily be millions of dollars.
Furthermore, expensive ongoing upgrades of resources (servers, storage devices,
and load balancers) may be needed on top of the large initial capital investment.
In contrast, using a cloud allows you to take advantage of the cloud provider’s
purchase of large volumes of hardware at very low marginal cost. Cloud
customers enjoy the benefits of this decreased cost to increasing their capacity
and performance via enhanced functionality over time.

Asset or resource utilization is major difference between two models (cloud and
traditional). Some research shows that, annually average server utilization in
traditional enterprises’ own data center is 5%-20% [34]. If you invest in
virtualization and related technology to increase utilization, it is possible to
achieve 20%-25% utilization rates. On other hand, when using the cloud’s pay
for utility pricing model customers are only charged for resources they actually
use, as a result customer can achieve close to 100% utilization.

Based on numerous industry reports, the average Power Usages Effectiveness
(PUE) of a data center is 2.5, thus for every 1 watt of power that is delivered to

66

I nfrastructure Costs

Detail Descriptions

Data redundancy

Security

Supply Chain
M anagement

Per sonnel

Indirect Costs

the servers, 1.5 watts are wasted in heat and other overhead. To build energy
efficient dedicated IT infrastructures requires the most efficient equipment and
adhering to industry best practices which are frequently prohibitively expensive
for enterprises. . If a business attempts to realize their own energy efficient data
center they would need to invest heavily to decrease their PUE ratio. However, a
cloud infrastructure is likely to invest far more in order to decrease their PUE
ratio (since they benefit from this investment with every additional site and rack
of equipment), hence they can be far more energy efficient than the average
enterprise data center. For example, Facebook’s Prineville, OR datacenter had a
PUE of 1.06 at 1800 GMT on 2014.02.11 (data from
https://www.facebook.com/PrinevilleDataCenter/app_399244020173259) while
their Forest City, NC Data Center had a PUE of 1.10 at the same time (data from
https://www.facebook.com/ForestCityDataCenter/app 288655784601722).

A highly reliable IT infrastructure requires that you maintain reliable storage &
backup devices and operate a reliable redundant network, transit connections,
and physical connections between data centers. In order to realize high
reliability enterprises need to account for all of these issues and incur the related
costs to achieve such as redundant infrastructure. However, utilizing a cloud
enables customers to easily deploy servers in multiple availability zones with
redundant network facilities, with the cost incurred as operating costs rather than
capital costs.

Ensuring security, such as confidentiality, integrity, and availability of business
data, is another direct cost of having your own infrastructure. Security costs
include purchasing network security devices, security software licenses, smarts
card for access control, and so on. A cloud can provide these services in keeping
with best security practices along with features to provide end-to-end security
and end-to-end privacy in conjunction with their cloud platform. Additional
details can be found in [63].

In traditional enterprises, cost increases when purchasing hardware because time
passes from when hardware is ordered to when it is brought online - often it
takes a few months. This long lead time can lead to excess capacity and
unnecessarily increased costs. Cloud providers minimize this excess capacity by
devoting significant resources to managing their supply chain in conjunction
with their large installed hardware base and their continuous (or periodic)
expansion of this base.

Different IT infrastructure teams are needed to handle heterogeneous hardware
and related supply chains, continuously upgrading the data center’s design,
operating the data center, scaling and managing physical growth, and so on. All
of these personnel costs are necessary in order to achieve low infrastructure
costs for each enterprise while these costs can be amortized over a large based in
the case of a cloud provider.

There are a many indirect costs to build an infrastructure; the result is that
enterprises are increasingly attracted to build their infrastructure virtually on top
of a cloud platform. Running a large scale and highly availability infrastructure
requires highly talented staff and the dedicated attention of management — both
of these are areas where the cloud provider has an advantage.

67

6.3.3 Instance type selection

In this project, we used AWS as our cloud provider and considered AWS’s services costs in
our cost analysis. We proposed a cost effective way to save costs when ‘Ifoodbag’ starts to
building their infrastructure in cloud. Amazon provides different ways to purchase instances in
the cloud. These different types of instances in the AWS cloud offer different cost saving as
Reserved Instances, On-Demand Instances, and Spot instances have different prices and time
scales for provisioning. The actual functionalities are the same for all of these instance types.
Table 6-6 describes these three different instance types according to their potential cost
savings [121].

Table 6-6: Types of instances accor ding to costs saving

Reserved Instances The reserved instances pricing option allows you make a low and one time
upfront investment for each instance that you want to reserve. The
customer receives a significant discount on their hourly usages charges for
these instances and they gain a specific guaranteed capacity. Additionally,
you have the flexibility to turn them off when you do not need them, hence
you do not even have to pay the discounted hourly rate for those you turn
off.

On-demand Instances The on-demand instance pricing option allows you to purchase an instance
by the hour whenever you need without making any long-term
commitment. Additionally, you can turn this instance on and off rapidly.

Spot I nstances The spot instance pricing option allows you to bid for unused EC2
compute capacity. The price for spot instances fluctuates depending on the
supply and demand for spot instance capacity.

We highly recommended that ‘Ifoodbag’ use at least a minimum number of the reserved
instance pricing option instances in their infrastructure because the company can save more by
using these types of instances. AWS offers instances depending on the amount of an instance’s
resources, described as Light, Medium, and Heavy utilization. If a company needs a consistent
service for their users the heavy utilization type of instance is the best option. Table 6-7 shows
how much enterprises can save by using reserved instances compared with running on-demand
instances. We assume in these computations that the on-demand instances have 100%
utilization.

Table6-7: Saving of reserved instance types over on-demand instances
ﬁ (1-year) (3-year)
Light utilization up to 42% up to 56%
Medium utilization up to 49% up to 66%
Heavy utilization up to 54% up to 71%
6.3.4 Total Cost of Ownership (TCO) of running a web application in a
cloud

To estimate of total cost we need to consider usage patterns because the actual traffic load
can dramatically affect the TCO of a web application. We considered the nature of Ifoodbag’s
web application and in this TCO analysis we assume it has a constant level of traffic over time.
AWS cloud provides a range of options to reduce costs while flexibility and scalability benefits
remain same. In this section we described a comparative costs analysis for Ifoodbag’s web
application running in an on-premises infrastructure versus on the AWS cloud platform. We
assume that the company wants to deploy its web application for access via the internet to

68

interact with prospective customers, existing customers, and partners. We assumed the website
has hundreds of thousands of visitors every month and is regularly accessed by thousands of
customers with a traffic flow that is fairly steady state. The website is a three tier web
application with open source content management software stores and serves a large amount of
cooking recipes through a content delivery network. To handle this website and provide a good
user experience, we assume the following resources are needed [109, 120, 121, 122]:

e 2 Linux based server for web servers
e 2 Linux based application servers
e 2 Linux based MySQL database servers

Table 6-8 compares the TCO of the on-premise alternative costs versus an AWS cloud
infrastructure’s costs. Figure 6-8 shows a graphical comparison of the monthly TCO for
traditional infrastructures versus a cloud.

Table 6-8: TCO of on-premisesinfrastructurevs. cloud infrastructure

On-Premises AWS cloud
All Reserved (3 year heavy)
Compute / server costs

$306 $0
$62 $0
$47 $0
$172 $0
$144 $0
$1200 $0
AWS instances $0 $429
Total —per month $1,931 $429
Total -3 years $69,516 $15,444

Savings over On-Premises 77%

69

1400
1200
=
< 1000
s
£
<~ 800
T
| 600 -
£
E 400 ss==Traditional Infrastructure Costs
(&)
200 @m==(loud Costs
0
& & e b e & &
& ¢ & & & o
& > & & 2 & &
&S RS & > & R N
< N & o & Ry
o & & & ° &
&)
= Q@@ <
Cost factors

Figure6-8: Monthly TCO of traditional infrastructure versus cloud

According to our assumptions, we considered the costs of different cost factors for
traditional infrastructures based upon market prices. Our assumptions of hardware
configurations are as follows. For on-premises infrastructures, we have used prices from [121]
and also we assumed equipment and personnel are located in United states. We have assumed
that servers are not virtualized without virtualization software licensing and management costs.
In this analysis we assumed a total annual cost per person $120,000 person that is included both
salary and benefits. There are significant one-time costs ($2,492 per server*) when setting up
the hardware. For a fair comparison between on-premises versus a cloud, we amortized the
one-time costs monthly over a 3 year period. Our hardware assumptions for on premises
infrastructure are:

Server hardware Dell PowerEdge R310 configuration, equivalent of a High-Memory
Extra Large (m2.xlarge) Amazon EC2 Instance.

Network hardware Dell PowerEdge Rack Chassis Dell PowerConnect Switches and a
management switch.

Hardware maintenance 3-year Dell ProSupport.

Power and cooling Power/cooling for 1 server, with a data center PUE of 2.5 and an
electricity price of $0.09 per kW hour.

Data center space $23,000 per kW of redundant IT power and $300 per square foot of
space divided by useful life of 15 years.

Personnel IT infrastructures teams are needed, such as operations staffs for a
24/4/365 facility, database administration teams needed are for
managing the MySQL database, and so on.

For Amazon’s cloud platform, we considered Amazon EC2 reserved instances, which are
3 -year heavy utilization. We have chosen high memory extra large (m2.xlarge) EC2 instances
for the webserver and application servers and storage optimized (i2.xlarge) EC2 instances for

" We have used prices from [121] in this analysis.

70

the database server. Since we assumed our website would have a steady state workload we are
planning that all of these instances operate 24 hours per day, then a heavy utilization reserved
instances is most cost effective option. To calculate the AWS instances costs we used AWS’s
simple monthly cost calculator [122]. A total of six reserved instances with their costs
amortized over a 3 years period are as follows:

2 webservers and High-memory extra large (m2.xlarge) instances are used in the US East
2 application servers region at a rate of $0.086 per hour with one time upfront fee of $1,922.
2 database server Memory optimized (i2.xlarge) instances are used in the US east region at a

rate of $0.121 per hour with one time upfront fee ~$2,740.

In table 6-8, we have not added small amount of upfront fee for 3 years reserved instances.
In order to calculate total amount of costs for Ifoodbag web application, we need to add upfront
fee for with total 3 years monthly cost for these types of instances. The total calculated cost for
running the Ifoodbag web application (both compute and database) on reserve instances for 3
years = $1,5444 ($429 per month) + $13,168 (upfront investment for reserved instances) =
$28,612.

Based on our description above, we calculated the total cost of ownership of a traditional
versus cloud solution for 5 years period. Figure 6-9 shows the yearly total cost comparison
between the traditional infrastructure and cloud platform. Our assumptions for these resources
and costs are:

e For first year, we assumed infrastructures needed 2 web servers, 2 application servers, and
2 database servers to serve their users. All hardware configurations same as described above for
both platforms. No hardware replacement cost in the first year.

e In the second year, the company would needed to add hardware as their business grows. We
assumed 1 webserver, 1 application server, and 1 database server would be added to their server
pool. In the cloud we assumed that the first 2 servers of each tier are utilized 100% and the rest
of servers will scale according to load. We assumed the remaining servers would be 50%
utilized.

e In the third year, we assumed that new hardware would be added as well as replacements of
some hardware due to failures or upgrades of the capabilities of the hardware. We assumed 30%
additional hardware cost to replace old hardware. New instances would be added to the cloud
platform.

e In the fourth year we assumed that 50% of additional hardware would be needed and 50% of the
existing hardware would be replaced and that the cloud would be scaled accordingly.

e The traditional infrastructure needs continued upgrades of resources to ensure better
performance and we also needed to add new hardware to the infrastructure as traffic to the web
application increases. We assumed new hardware is added and 50% of resources are upgraded
in the traditional infrastructure. The cloud is assumed to scale its resources to match business
needs.

71

45000
40000
35000
30000
25000

H Traditional Infrastructure Costs
20000

¥ Cloud Costs
15000

10000

5000 | " | - el - L“
0 m u “
1 2 3 4 5

Time period (In years)

Total Infrastructure costs in dollar (yearly)

Figure6-9: Yearly TCO dof traditional infrastructure versusa cloud

6.3.5 Cost Analysis Summary

We found that with a cloud you can save 59% of costs in comparison with an on-premises
alternative. The maximum benefit and cost effective instances would be achieved by
purchasing 3-year heavy utilization reserved instances of Amazon EC2 and Amazon RDS
instances. The analysis above seems to indicate that TCO in a dedicated environment can be
much higher than the TCO of a cloud. Furthermore, we found large costs differences between
traditional and cloud infrastructures over a 5 year period. Traditional infrastructures costs
depend on many cost factors that cause the total infrastructure cost to be quite high. One of the
major components of this cost is the cost of the personnel to manage and upgrade the traditional
infrastructure. In contrast, a cloud allows the customer to deploy resources as need and to scale
with business demands. This avoids the extra cost for personnel and upgrades since the cloud
providers are responsible for ensuring reliability and performance. Although cloud providers
rapidly upgrade their infrastructure for better performance, their costs decrease with time and
due to their high volumes of purchases. Companies gain economic benefits by deploying a web
application in the cloud while benefiting from a scalable and robust infrastructure in contrast
with hosting a web application in an on-premises infrastructure.

6.4 Comparison with some other solutions and some
recommendations

As we mentioned in Chapter 1 there are some other solutions [3, 4, 18, 101]. These
solutions are mainly proprietary solution with additional licensing and support costs. In contrast
our solution is fully open-source based and publicly available. An experienced person with
good programming skills and little cloud architecture knowledge™ can easily implement and
manage their own business application in the cloud architecture. Although the proposed
solution is open-source and publicly available, it is also possible to get premium support for
Cloudify from a company called GigaSpaces [123].

" Such as can be gained by reading our thesis!

72

Some recommendations for the deployment of the solution in the production are: for the
load-balancing tier it is recommended to use two LBs in order to ensure redundancy and
reliability. However, initially it is possible to run the business with a single LB. It is also
recommended to run these LBs on ml.large instance types, for details see [59], as these
instance types provide 2 virtual cores, 7.5 GB of memory, and a 64-bit platform. Extensive
testing confirms that each such LB has the capacity to handle approximately 5,000 requests per
second, thus two LBs support a total of about 10,000 requests per second. For our experiments
we deployed one management server instance in the cloud but it is recommended to run two
instances in a production environment. According to our proposed architectural model we also
recommend deploying two stand-alone application server instances in a production
environment in order to provide high service availability.

73

7 Conclusions and Future Work

This chapter describes our achievement in this thesis project in terms of fulfilling our goals
(as initially defined). This chapter also suggests further research possibilities to build upon this
thesis project. The chapter concludes with some reflections on the social, economic,
sustainability, and ethical aspects of this thesis project.

7.1 Conclusions

The aim of this thesis project was to design, implement, demonstrate, and evaluation a
highly scalable cloud based architectures for Ifoodbag’s web application. This thesis also
examined how to dynamically scale the proposed solution both up and down, since for a cloud-
based application, especially one which is used by people in a local area, there is going to be a
fluctuation of users throughout the day and there is no reason to allocate more or less resources
than actually needed. In this we also focused on the fact that a scalable cloud-based architecture
can provide great flexibility and enable rapid market share growth for a new business without
their need to investing in an expensive infrastructure.

We have achieved our goals as we proposed a scalable cloud architecture model, which
clearly provides the dynamic scalability both upwards and downwards. We have demonstrated
different guidelines and techniques in order to scale up and down based on RPS (the number of
requests per second) at the application server(s). In our scalability policies we have utilized a
cooldown time and ASG (Auto scaling group) properties with some predefined parameters, and
then clearly shown that the solution satisfies desirable properties such that the RPS per node
after a scale up should be more than the scale down threshold (7o) and RPS per node after scale
down should be less than the scale up threshold (Tv). These properties were shown to avoid the
Ping-Pong effect during dynamic scaling. This avoidance is a very important consideration in
an auto-scaling approach, as otherwise there system could deliver a bad end-user experience
and in worst case leads to service unavailability. Furthermore, this dynamic scalability
approach also illustrated that it only utilizes resources when needed, avoiding overutilization
and underutilization and as a result clearly reduces the operational cost for the business. Our
findings and cost analysis also shows that a newly introduced business, such as Ifoodbag AB,
can potentially save up to approximate 90% of the upfront investment for the infrastructure
setup and save around 50% to 60% of the monthly operational cost for managing applications
by using the proposed cloud architecture rather than owning their own on-premises
infrastructure.

During this course of project, we have learned various cloud architectures, dynamic scaling
mechanisms, and their implementations. The project also gave use very useful experience in
working with a cloud environment - as we demonstrated our experiment on the EC2 cloud and
deployed our management node using the Cloudify open-source management stack. We have
customized different cloud configuration files and developed our own polices in order to
deploy Ifoodbag’s application in a cloud environment. This thesis project proved to be a very
good experience for both of us. Apart from that, we are confident that this thesis project will
help us drive our own future career towards cloud technology, as cloud computing is today a
very hot topic for the future IT solutions.

7.2 Future Work

Due to the limited time and resources during the course of this thesis project, it was not
possible to perform all the tasks defined in our proposed architecture. Moreover, the
observations and findings during the course of this thesis project suggest some areas for further
research. We plan to carry out some of these tasks in the near future. However, other thesis
project students and researchers may also want to explore one or more of these topics.

75

In this thesis we presented our findings based upon implementing the proposed solution in a
single cloud availability zone. However, there is a clear need for empirical testing of the
proposed solution across different availability zones in order to find the limits of scalability of
the application.

In our demonstration, most of the data and parameter values were based assumptions and
the experience & observations from various research papers. In order to get a better results and
further optimize the proposed solution, one could study this proposed solution using an actual
production environment or at the very least data from a production environment.

In our thesis project, we did not complete the implementation of all the components defined
in our proposed architecture. For example, we did not realize the security guidelines defined by
Sabrina Ali Tandra and Sarwarul Islam Rizvi in their thesis [52], An obvious further study
would implement and evaluate all of the components defined in our proposed architecture
including all of the security guidelines that they have proposed.

In our experiment, we evaluated a dynamic scaling mechanism using only one metric (Total
Request Count), however other metrics such as CPU/Memory utilization, number of active
sessions, etc. or a combination of two or three metrics should be studied to learn what are the
most important metrics and how (or if) they should be combined to provide highly dynamic and
cost effective scaling of the system for a production version of the web application.

In our demonstration, we deployed the solution only in an EC2 cloud with small instances.
Further study and improvements should be made using an implementation of the solution in
another public or private cloud using large instances.

7.3 Reflections

This section explores a number of social, economic, legal, and ethical aspects of this thesis
project.

7.3.1 Social aspects

The proposed infrastructure and dynamic scaling solution could be deployed by any
company (not just “Ifoodbag”) to build their infrastructure on a cloud platform. We have made
our infrastructure highly scalable, robust, and reliable which ensure 99.99% service availability
for the end-users. Our dynamic scaling solution allows enterprises to automatically scale up and
down their cloud infrastructure as their traffic changes (and in the best case grows). Having a
dynamically scaled infrastructure, enterprises might be able to shift their attention from their
service’s availability to concentrate on sales or improve other parts of their business. Because
the dynamically scaled infrastructure will ensure service availability during periods of high
demand or as traffic increases, Ifoodbag’s users will enjoy smooth, fast, and reliable service
that should increase the quality of their user experience. Customers will receive promotions to
buy their daily or weekly meals from ‘Ifoodbag’ which will reduce the use of their valuable
time of buying food from a grocery store. There are also some social opportunities concerning
giving the customer people suggestions about new combinations of foods via new recipes,
avoiding unhealthy food, and fostering discussions about healthy food. If any user is unsatisfied
with some product, then they can immediately contact the company or authorities to take
appropriate action regarding problem.

7.3.2 Economic aspects

Cost is always an important concern for enterprises. In our analysis, we proposed a cost
effective way to build an IT infrastructure for any business that is considering or using a web
application. Such enterprises could save 50%-60% of their monthly operating cost by building
their infrastructure using the proposed cloud solution. Furthermore, the analysis of our solution

76

suggests that enterprises can save even more when using a cloud platform by using 3-year
reserve instances as compared to other types of instances in the cloud. We clearly showed the
cost difference between traditional infrastructures and the proposed cloud solution. By
deploying web application in the cloud companies can avoid the need to make a large initial
investment in IT infrastructure, this money can instead me used by the company to improve
their product(s) and/or increase the number of customers by investing in marketing. In the
proposed cloud platform, there is no maintenance, upgrade, or capital hardware cost.
Companies can deploy instances on new hardware as they needed without making any upfront
investment. The cloud platform is cost effective, highly scalable, robust, and reliable that can
provide a highly available service, which can benefit many enterprises.

7.3.3 Sustainability aspects

Adopting a best practice cloud based solution can have a significant impact on improving
the sustainability of the business in terms of reducing electrical power consumption, as was
described section 6.3.2in terms of the greatly improved PUE that Facebook and Google have
shown in comparison to on-premises best practice data centers. These same firms have shown
that additional savings can be realized in terms of improved water usage effectiveness (thus
decreasing the data center’s needs for water).

7.3.4 Legal and ethical aspects

We have used information that was open to the public in our thesis work. We ensured that
no commercially senstive information was revealed or used in our work. The applications and
tools that we have used are all open source, free, and publically available under GNU General
Public License [124] or similar license. We used the Amazon cloud to perform our
experiments. The use of this cloud was paid for by Ifoodbag. We created our own strategy to
perform these experiments. The experiment results were not fabricated and sufficient details are
provided in the thesis and the appendices to allow others to replicate our results. Additionally,
our experimental data are available to others upon request. We have proposed an architecture to
build and IT infrastructure for ‘Ifoodbag’, but it could also be used by other enterprises to make
their web application service more reliable and to increase the quality of their end-users’
experience when using this service. We did not explore the question of the existence of any
requirements to disclose business or customer information to governmental authorities (for
example for regulator or law enforcement purposes) in our thesis project, hence this remains for
future work.

77

References

(1]
(2]

(3]
(4]

(9]

[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically scaling applications in the
cloud,” ACM SIGCOMM Comput. Commun. Rev., vol. 41, no. 1, pp. 45-52, 2011.

A. Draganov, “Exploiting Private and Hybrid Clouds for Compute Intensive Web
Applications,” Master's thesis, The University of Edinburgh, August 2011. Available:
https://www.epcc.ed.ac.uk/sites/default/files/Dissertations/2010-2011/AleksandarDraganov.pdf
Amazon, “Auto Scaling.” [Online]. Available: http://aws.amazon.com/autoscaling/. [Accessed:
17-May-2013].

“Cloud Management for Public and Private Clouds by RightScale.” [Online]. Available:
http://www.rightscale.com/?utm_expid=3535964-35. [Accessed: 17-May-2013].

“Cloudify - Deploy a Multi-Tier App on EC2.” [Online]. Available:
http://www.cloudifysource.org/guide/2.5/qsg/quick_start guide ec2. [Accessed: 17-May-2013].

Nakul E. Sibiraj, “Managing the Cloud with Open Source Tools,” Comput. Sci. Eng. Univ.
Calicut, A seminar report for a Bachelor of Technology, 2011. Available from:
http://www.slideshare.net/nakule/seminar-report-managing-the-cloud-with-open-source-tools

J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash crowds and denial of service attacks:
characterization and implications for CDNs and web sites,” in Proceedings of the 11th
international conference on World Wide Web, New York, NY, USA, 2002, pp. 293-304.
“Alzheimer Europe - Research - Understanding dementia research - Types of research - The
four main approaches.” [Online]. Available: http://www.alzheimer-
europe.org/Research/Understanding-dementia-research/Types-of-research/The-four-main-
approaches. [Accessed: 13-Feb-2014].

S. Khandani, “Engineering Design Process,” Aug. 2005. Available:
http://www.savylor.org/site/wp-content/uploads/2012/09/ME101-4.1-Engineering-Design-
Process.pdf

“Research Methods/Types of Research - Wikibooks, open books for an open world.” [Online].
Available: http://en.wikibooks.org/wiki/Research_Methods/Types_of Research. [Accessed: 13-
Feb-2014].

Salesforce.com, “What is Cloud Computing Technology? - salesforce.com.” [Online].
Available: http://www.salesforce.com/cloudcomputing/. [Accessed: 12-May-2013].

Amazon, “What is Cloud Computing by Amazon Web Services | AWS.” [Online]. Available:
http://aws.amazon.com/what-is-cloud-computing/. [Accessed: 07-May-2013].

US Department of Commerce, “Final Version of NIST Cloud Computing Definition Published.”
[Online]. Available: http://www.nist.gov/itl/csd/cloud-102511.cfm. [Accessed: 12-May-2013].
R. Buyya, C. S. Yeo, and S. Venugopal, “Market-Oriented Cloud Computing: Vision, Hype,
and Reality for Delivering IT Services as Computing Utilities,” in High Performance
Computing and Communications, 2008. HPCC "08. 10th IEEE International Conference on,
2008, pp. 5-13.

Cisco Systems, “Cloud Computing - Overview.” [Online]. Available:
http://www.cisco.com/web/solutions/trends/cloud/index.html. [Accessed: 07-May-2013].

J. Hurwitz, R. Bloor, M. Kaufman, and F. Halper, “What Is Cloud Computing? - For
Dummies.” [Online]. Available: http://www.dummies.com/how-to/content/what-is-cloud-
computing.html. [Accessed: 07-May-2013].

Heather Boothe, “The Difference Between Cloud Computing and Virtualization,” Blog, 19-Feb-
2013. [Online]. Available: http://www.virtualcommand.com/virtualization-cloud-computing-
difference/. [Accessed: 12-May-2013].

Joe Schulz, “Key Features Of Cloud Computing, Blog, CloudTweaks,” 03-Sep-2012. [Online].
Available: http://www.cloudtweaks.com/2012/09/key-features-of-cloud-computing/. [Accessed:
12-May-2013].

V. Delgado, “Exploring the limits of cloud computing,”Master's thesis, KTH Royal Institute of
Technology, School of Information and Communication Technology, Stockholm, Sweden,
TRITA-ICT-EX-2010:277, November 2010. Available:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-27002

79

[20]

[21]

(27]

(28]

[29]

[30]

[31]

[34]

[35]

[36]

[37]

80

J. Hur, R. B, M. Kaufman, and F. Ha, “Cloud Computing Characteristics - For Dummies.”
[Online]. Available: http://www.dummies.com/how-to/content/cloud-computing-
characteristics.html?cid=embedlink. [Accessed: 12-May-2013].

Joyent Inc, “Performance and Scale in Cloud Computing”, White Paper,
http://www.joyent.com/content/06-developers/01-resources/07-performance-and-scale-in-cloud-
computing/performance-scale-cloud-computing.pdf

W. Lau, “An Introduction to Cloud Computing Characteristics and Service/Deployment Models
| Cloud Zone,” 16-May-2012. [Online]. Available: http://cloud.dzone.com/articles/introduction-
cloud-computing. [Accessed: 12-May-2013].

D. Wischik, M. Handley, and M. B. Braun, “The Resource Pooling Principle,” SIGCOMM
Comput Commun Rev, vol. 38, no. 5, pp. 47-52, Sep. 2008.

D. M. Surgient, “The five defining characteristics of cloud computing,” ZDNet. 9 April 2009
[Online]. Available: http://www.zdnet.com/news/the-five-defining-characteristics-of-cloud-
computing/287001. [Accessed: 12-May-2013].

J. Medaugh, “How Powerful APIs Leverage Cloud Computing,” Enterprise Cloud Blog.

8 October 2013 [Online]. Available: http://www.terremark.com/blog/powerful-apis-leverage-
cloud-computing/. [Accessed: 13-Feb-2014].

D. Petcu, C. Craciun, and M. Rak, “Towards a Cross Platform Cloud API - Components for
Cloud Federation.,” Proceedings of the 1st International Conference on Cloud Computing and
Services Science (CLOSER 2011), Noordwijkerhout, Netherlands, 7-9 May, 2011. SciTePress
2011, ISBN 978-989-8425-52-2, pp. 166169, 2011.

S. Lindskog, Modeling and tuning security from a quality of service perspective. Doctoral
dissertation, Chalmers University of Technology, Institutionen for data- och informationsteknik,
Goteborg, Sweden, ISBN 91-7291-578-1, 2005. Available:
http://www.cs.kau.se/~stefan/publications/PhDO05/full text.pdf

N. Limrungsi, J. Zhao, Y. Xiang, T. Lan, H. H. Huang, and S. Subramaniam, “Providing
reliability as an elastic service in cloud computing,” in Communications (ICC), 2012 IEEE
International Conference on, 2012, pp. 2912-2917.

A. Huth and J. Cebula, “The Basics of Cloud Computing,” United States Computer Emergency
Readiness Team, 2011. Avalable: http://www.us-
cert.gov/sites/default/files/publications/CloudComputingHuthCebula.pdf

B. L. Sahu and R. Tiwari, “A Comprehensive Study on Cloud Computing,” Int. J., vol. 2, no. 9,
2012.

W. Voorsluys, J. Broberg, and R. Buyya, “Introduction to Cloud Computing,” in Cloud
Computing, R. Buyya, J. Broberg, and A. Goscinski, Eds. John Wiley & Sons, Inc., 2011, pp. 1-
41.

C. Barnatt, “Cloud Computing: ExplainingComputers.com.” Blog, Last modified 13 September
2012 [Online]. Available: http://explainingcomputers.com/cloud.html. [Accessed: 12-May-
2013].

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A.
Patterson, A. Rabkin, and M. Zaharia, “Above the Clouds: A Berkeley View of Cloud
Computing,” University of California, EECS Department, Berkeley, California Technical
Report No. UCB/EECS-2009-28, 10 February 2009. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, and L.
Stoica, “Above the clouds: A Berkeley view of cloud computing,” Dept Electr. Eng Comput
Sci. Univ. Calif. Berkeley Rep UCBEECS, vol. 28, 2009.

“Defining Cloud Computing’s Key Characteristics, Deployment and Delivery Types | Tek-Tips
Whitepaper Library.” [Online]. Available: http://tek-tips.nethawk.net/defining-cloud-
computings-key-characteristics-deployment-and-delivery-types/. [Accessed: 12-May-2013].
“Gartner IT Glossary - Virtualization.” [Online]. Available: http://www.gartner.com/it-
glossary/virtualization/. [Accessed: 12-May-2013].

B. Hill, “Virtualization - Beginner’s Guide,” 12-Mar-2012. [Online]. Available:
http://www.petri.co.il/intro-to-virtualization.htm. [Accessed: 12-May-2013].

[42]

[43]

[46]

[47]

[51]

[52]

[53]

[54]
[55]

VMware, Inc, “Understanding Full Virtualization, Paravirtualization, and Hardware Assist.”
10 November 2007. Available:

http://www.vmware.com/files/pdf/VMware paravirtualization.pdf

“Kernel Based Virtual Machine (KVM).” [Online]. Available: http:/www.linux-
kvm.org/page/Main_Page. [Accessed: 12-May-2013].

Red Hat, Inc., “RED HAT ENTERPRISE VIRTUALIZATION FOR SERVERS 2.2:
FEATURE COMPARISON,” 2011. Available:
http://www.redhat.com/f/pdf/irhev/final2.2/DOC103_RHEV_FeatureMatrix 3073747 0610 _ma
_web.pdf

CloudStack, “8.1. KVM Hypervisor Host Installation.” [Online]. Available:
http://cloudstack.apache.org/docs/en-US/Apache_CloudStack/4.0.0-
incubating/html/Installation_Guide/hypervisor-kvm-install-flow.html. [Accessed: 05-Aug-
2013].

“LAMP (Software Bundle), Why LAMP (Linux Apache MySQL PHP) is the best.” [Online].
Available: http://linuxsolutions.org.in/lamp.html. [Accessed: 12-May-2013].

Red Hat Inc., “Scaling the LAMP Stack in a Red Hat Enterprise Virtualization Environment,”
Aug. 2009. Available: http://www.redhat.com/rhecm/rest-
rhecm/jcr/repository/collaboration/jcr:system/jer:versionStorage/54a4560b0a070d5442cedf2879
9bft35/1/jcr:frozenNode/rh:resourceFile

Bodvoc Ltd., “An Overview of a Web Server,”, | Bodvoc’s Blog, 02-Jul-2010. [Online].
Available: http://bodvoc.wordpress.com/2010/07/02/an-overview-of-a-web-server/. [Accessed:
12-May-2013].

C. Janseen, “What is Amazon Web Services (AWS)? - Definition from Techopedia,”
Techopedia.com. [Online]. Available: http://www.techopedia.com/definition/26426/amazon-
web-services-aws. [Accessed: 12-May-2013].

Amazon, “What is Amazon Web Services? - Getting Started with AWS.” [Online]. Available:
http://docs.aws.amazon.com/gettingstarted/latest/awsgsg-intro/intro.html. [Accessed: 12-May-
2013].

Salesforce.com, Inc., “Force.com: A Comprehensive Look at the World’s Premier Cloud-
Computing Platform.” Whitepaper, 2009. Available:
http://www.developerforce.com/media/Forcedotcom Whitepaper/WP_Forcedotcom-
InDepth_040709 WEB.pdf

“OpenNebula - Open Source Data Center Virtualization.” [Online]. Available:
http://opennebula.org/about:technology. [Accessed: 12-May-2013].

D. Kaur, K. Kaur, and S. Dilbag Singh, “Evaluating performance of web services in cloud
computing environment with high availability,” Glob. J. Comput. Sci. Technol., vol. 12, no. 11-
B, 2012.

T. C. Chieu, A. Mohindra, A. A. Karve, and A. Segal, “Dynamic Scaling of Web Applications
in a Virtualized Cloud Computing Environment,” in /EEE International Conference on e-
Business Engineering, 2009. ICEBE 09, 2009, pp. 281-286.

C.-L. Hung, Y.-C. Hu, and K.-C. Li, “Auto-Scaling Model for Cloud Computing System.,” Int.
J. Hybrid Inf. Technol., vol. 5, no. 2, 2012.

A. Wolke and G. Meixner, “TwoSpot: A Cloud Platform for Scaling Out Web Applications
Dynamically,” in Towards a Service-Based Internet, E. D. Nitto and R. Yahyapour, Eds.
Springer Berlin Heidelberg, 2010, pp. 13-24.

Z. Micskei, “Dynamically Scalable Applications Cloud Environment,” Dissertation, Budapest
University of Technology and Economics, Budapest, Hungry, Available:
http://mit.bme.hu/~micskeiz/education/onlab/siklosi_zsolt/siklosi-zsolt dynamically-scalable-
applications-in-cloud-environment.pdf

“ifoodbag.” [Online]. Available: http://www.ifoodbag.se/. [Accessed: 18-May-2013].

D. Occhipinti, “Building Scalable Web Sites — Scalability | Linux, PHP, LAMP, The Web in a
blog.” Blog, 20 January 2009 [Online]. Available: http://www.danieleocchipinti.com/blog-
linux-php-lamp-web/linux/linux-command-line/building-scalable-web-sites-scalability.
[Accessed: 18-May-2013].

81

[56]

[70]

[71]

[72]
(73]

[74]

[75]

82

Oracle, “Scaling WikiPedia with LAMP: 7 billion page views per month (Alka Gupta’s
Cloud).” [Online]. Available:
https://blogs.oracle.com/WebScale/entry/scaling_wikipedia_with_lamp_7. [Accessed: 18-May-
2013].

“HAProxy - The Reliable, High Performance TCP/HTTP Load Balancer.” Last modified

17 December 2013. [Online]. Available: http://haproxy.lwt.eu/. [Accessed: 18-May-2013].
Amazon, “Amazon Elastic Compute Cloud (Amazon EC2), Cloud Computing Servers.”
[Online]. Available: http://aws.amazon.com/ec2/. [Accessed: 18-May-2013].

Amazon, “Amazon EC2 Instances.” [Online]. Available: http://aws.amazon.com/ec2/instance-
types/#selecting-instance-types. [Accessed: 18-May-2013].

J. Leishman, B. Robison, and J. Taylor, “Memcached.” . Available:
http://xecanson.jp/memcached/memcached BestDoc_English.pdf

“OpenNode — About.” [Online]. Available: http://opennodecloud.com/about/. [Accessed: 19-
May-2013].

“Overview of Eucalyptus.” [Online]. Available:
http://www.eucalyptus.com/docs/3.2/ag/euca_oview.html. [Accessed: 12-May-2013].

S. Ali Tandra and S. Islam Rizvi, “Security for cloud based services.” Master's thesis, KTH
Royal Institute of Technology, School of Information and Communication Technology,
Stockholm, Sweden, January-2014. Available: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-
140601

“How the domain name system works - Bravenet Wiki.” [Online]. Available:
http://wiki.bravenet.com/How_the domain_name_system works. [Accessed: 16-Jan-2014].
“What is domain name system (DNS)? - Definition from Whatls.com.” [Online]. Available:
http://searchnetworking.techtarget.com/definition/domain-name-system. [Accessed: 16-Jan-
2014].

R. Chandramouli and S. Rose, “Secure domain name system (DNS) deployment guide,”
Recomm. Natl. Inst. Stand. Technol., 2009.

“How DNS Works-The Pharming Guide - Whitepapers - www.technicalinfo.net.” [Online].
Available: http://www.technicalinfo.net/papers/Pharming?.html. [Accessed: 17-Jan-2014].
“DNS Amplification Attack - Nirlog.com - Technology, Life and other stuff that come
along....” [Online]. Available: http://nirlog.com/2006/03/28/dns-amplification-attack/.
[Accessed: 17-Jan-2014].

A. Kotelnikov, “Doman Name Server (DNS) : Sequence of DNS lookups.” Lecture materials
for the course "Linux for Engineering and Information Technology Applications", Rutgers
University, Department of Mechanical and Aerospace Engineering, March 2009 [Online].
Available: http://coewww.rutgers.edu/www 1/linuxclass2009/lessons/lesson9/sec_2.php.
[Accessed: 17-Jan-2014].

Citrix Systems, Inc. “What is load balancing?,” Citrix.com. [Online]. Available:
http://www.citrix.com/content/citrix/en_us/glossary/load-balancing.html. [Accessed: 17-Jan-
2014].

V. Viswanathan, “Load Balancing Web Applications," O’Reilly Media, 28 September 2001.
[Online]. Available: http://www.onjava.com/pub/a/onjava/2001/09/26/load.html. [Accessed: 17-
Jan-2014].

P. M. Sangal, “Load Balancing for Web Application Performance and Scalability,” Jul-2009.
[Online]. Available: http://www.devx.com/enterprise/Article/42332. [Accessed: 17-Jan-2014].
“jetNEXUS ADC and Load Balancing Platforms.” [Online]. Available:
http://www.jetnexus.com/load-balancing-platforms.html. [Accessed: 17-Jan-2014].

P. Sevcik and R. Wetzel, “Field Guide to Application Delivery Systems.” NetForecast, Inc.,
September 2006. Available: http://www.netforecast.com/wp-
content/uploads/2012/06/NFR5085-Field-Guide-to-Application-Delivery-Systems.pdf

R. Campbell and K. Alstad, “Performance: Scaling Strategies for ASP.NET Applications,”
Microsoft, April 2008. [Online]. Available: http://msdn.microsoft.com/en-
us/magazine/cc500561.aspx. [Accessed: 17-Jan-2014].

[76]

[77]

[78]

[79]

[80]
[81]

[82]

[83]

writer02, “Different Types of Load Balancers in Computer Networking,” HubPages. 24 July
2011 [Online]. Available: http://writer02.hubpages.com/hub/Different-Types-of-Load-
Balancers-in-Computer-Networking. [Accessed: 20-Jan-2014].

Parker Samp, “HOWTO: Load balance HTTP with Linux and Squid.” [Online]. Available:
http://parkersamp.com/2010/11/howto-load-balance-http-with-linux-and-squid/. [Accessed: 17-
Jan-2014].

T. Northcutt, “Implementing Web Server Load Balancing, Failover, and State with Squid.”
[Online]. Available:
http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/SA/v15/i01/a4.htm.
[Accessed: 20-Jan-2014].

AJEET, “Benefits of Web Server Apache | Downgraf.” 11 October 2012 [Online]. Available:
http://www.downgraf.com/all-articles/benefits-of-web-server-apache/#prettyphoto[139241/0/.
[Accessed: 27-Jan-2014].

Boz Zashev (editor),“Server cluster definition.” last edited on 29 September 2010 [Online].
Available: http://wordframe.com/docs/wiki/server-cluster-definition/. [Accessed: 17-Jan-2014].
Microsoft, “What Is a Server Cluster?: Server Clusters (MSCS).” [Online]. Available:
http://technet.microsoft.com/en-us/library/cc785197(v=ws.10).aspx. [Accessed: 17-Jan-2014].
tutorialspoint., “Web - Server Types.” [Online]. Available:
http://www.tutorialspoint.com/web_developers guide/web_server_types.htm. [Accessed: 20-
Jan-2014].

A. Sharma, “Tomcat - Is This an Application Server ? | Javalobby.” DZone, 6 September 2008
[Online]. Available: http://java.dzone.com/articles/tomcat-is-application-server-0. [Accessed:
20-Jan-2014].

E. Geier, “6 Excellent Linux/Open Source Web Servers - Apache, Nginx, Lighttpd - Reviews,”
LinuxPlanet QuinStreet Inc., 6 December 2010. [Online]. Available:
http://www.linuxplanet.com/linuxplanet/reviews/7239/1. [Accessed: 13-Feb-2014].

Microsoft, “Microsoft Web Platform - Server, IIS, Internet Information Services.” [Online].
Available:_http://www.microsoft.com/web/platform/server.aspx. [Accessed: 13-Feb-2014].

J. Persyn, “Introduction to Memcached”, 27 May-2010. Available:
http://www.jurriaanpersyn.com/archives/2010/05/27/introduction-to-memcached/
“memcached - a distributed memory object caching system.” [Online]. Available:
http://memcached.org/. [Accessed: 17-Jan-2014].

Marina Sprava, “Database Master-Slave Replication in the Cloud,” Jelastic Blog. 15 January
2013 by [Online]. Available: http://blog.jelastic.com/2013/01/15/database-master-slave-
replication-in-the-cloud/. [Accessed: 17-Jan-2014].

ProfitBricks, “Cloud Lexicon,” ProfitBricks. [Online]. Available:
http://www.profitbricks.co.uk/cloud-lexicon. [Accessed: 14-Feb-2014].

ProfitBricks, “Your Knowledge Base about Cloud Computing:Cloud Lexicon,” ProfitBricks.
[Online]. Available: http://www.profitbricks.co.uk/cloud-lexicon. [Accessed: 17-Jan-2014].
Team Parascale, “Defining Cloud Storage : Three Key Characteristics,” ITProPortal.

3 December 2008 [Online]. Available: http://www.itproportal.com/2008/12/03/defining-cloud-
storage-three-key-characteristics/. [Accessed: 17-Jan-2014].

Rackspace Support, “Create and Use Cloud Block Storage Snapshots.” Rackspace US, Inc.,
Article ID: 3138, 4 November 2013 [Online]. Available:
http://www.rackspace.com/knowledge center/article/create-and-use-cloud-block-storage-
snapshots. [Accessed: 22-Jan-2014].

“What is Cloud Management? A Definition from Webopedia.com.”, QuinStreet Inc. [Online].
Available: http://www.webopedia.com/TERM/C/cloud_management.html. [Accessed: 22-Jan-
2014].

IBM, “Cloud Management.” [Online]. Available: http://www-
03.ibm.com/software/products/en/category/SWU20. [Accessed: 22-Jan-2014].

“Apache License, Version 2.0.” [Online]. Available: http://www.apache.org/licenses/LICENSE-
2.0. [Accessed: 11-Jan-2014].

“Cloudify - Deploy a Simple Application Locally.” [Online]. Available:
http://www.cloudifysource.org/guide/2.6/qsg/qsg. [Accessed: 11-Jan-2014].

83

[97]

(98]

[99]
[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]
[109]

[110]

[111]

[112]

[113]

84

“Cloudify - Cloudify Installation and Setup.” [Online]. Available:
http://www.cloudifysource.org/guide/2.6/setup/installation_and_setup. [Accessed: 26-Dec-
2013].

“Bare Bones Software | Welcome.” [Online]. Available: http://www.barebones.com/.
[Accessed: 10-Jan-2014].

“Groovy - Home.” [Online]. Available: http://groovy.codehaus.org/. [Accessed: 11-Jan-2014].
“Cloudify - The Open PaaS Stack.” [Online]. Available: http:/www.cloudifysource.org/.
[Accessed: 11-Jan-2014].

“What is Cloudbursting?- Trend Cloud Security Blog — Cloud Computing Experts.” [Online].
Available: http://cloud.trendmicro.com/what-is-cloudbursting/. [Accessed: 27-Jan-2014].
“Cloudify - Installing the Cloudify Shell.” [Online]. Available:
http://www.cloudifysource.org/guide/2.6/setup/installing_the cloudify_client. [Accessed: 27-
Jan-2014].

“Cloudify - Cloudify Shell Prerequisites.” [Online]. Available:
http://www.cloudifysource.org/guide/2.6/setup/cloudify_prerequisites. [Accessed: 27-Jan-
2014].

“Cloudify - Get Cloudify.” [Online]. Available:

http://www.cloudifysource.org/downloads/get cloudify?utm_source=CloudifySource%25252B
Community&utm_medium=Download%25252BButton&utm_campaign=Free%25252BDownlo
ad. [Accessed: 27-Jan-2014].

J. Varia and S. Mathew, “Amazon Web Services: Overview of Amazon Web Services.” January
2014. Available: http://d36cz9buwrul tt.cloudfront.net/ AWS_Overview.pdf

J. Varia, “Amazon Web Services - Architecting for The Cloud: Best Practices.” January
2011.Available: http://media.amazonwebservices.com/AWS Cloud Best Practices.pdf
“Instance Types - Amazon Elastic Compute Cloud.” [Online]. Available:
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html. [Accessed: 23-
January 2014].

“AWS | Amazon EC2 | Instance Types.” [Online]. Available:
http://aws.amazon.com/ec2/instance-types/. [Accessed: 23-Jan-2014].

“Amazon EC2 pricing.” [Online]. Available: http://aws.amazon.com/ec2/pricing/. [Accessed:
24-Jan-2014].

“Amazon Web Services Sign In.” [Online]. Available:
https://www.amazon.com/ap/signin?openid.assoc _handle=aws&openid.return to=https%3A%2

F%2Fsignin.aws.amazon.com%?2Foauth%3Fresponse type%3Dcode%26¢client id%3Darn%25
3Aaws%253Aiam%253A%253A015428540659%253 Auser%252Fec2%26redirect_uri%3Dhttp
$%253A%252F%?252Fconsole.aws.amazon.com%252Fec2%252F%?253Fstate%253DhashArgs
%252523%25261sauthcode%253Dtrue%26noAuthCookie%3Dtrue&openid.mode=checkid setu
p&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.identity=http%3 A%
2F%?2Fspecs.openid.net%2Fauth%2F2.0%?2Fidentifier_select&openid.claimed id=http%3A %2
F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier select&action=&disableCorpSignUp=&cl
ientContext=&marketPlaceld=&poolName=&authCookies=&pageld=aws.ssop&siteState=awsc
ustomer&accountStatusPolicy=P 1 &sso=&openid.pape.preferred_auth_policies=MultifactorPhy
sical&openid.pape.max_auth age=120&openid.ns.pape=http%3A%2F%2Fspecs.openid.net%?2
Fextensions%2Fpape%2F1.0&server=%2Fap%2Fsignin%3Fie%3DUTF8&accountPoolAlias=
&forceMobileApp=0&forceMobileLayout=0. [Accessed: 01-Feb-2014].

D. Mos and T. Jin, “httpref -A Tool for Measuring Web Server Performance,” HP Research
Labs. Technical report HPL-98-61, March 1998. Available:
http://www.hpl.hp.com/techreports/98/HPL-98-61.pdf

N. Jauhari, “Load / Performance Testing Web Application - Httperf | Linux Blog.” [Online].
Available: http://linuxpoison.blogspot.se/2011/10/load-performance-testing-web.html.
[Accessed: 25-Jan-2014].

D. Kumarage, “Benchmark testing with httperf | Damitha’s Web Log.” Blog, 15 March 2009
[Online]. Available: http://damithakumarage.wordpress.com/2009/03/15/benchmark-testing-
with-httperf/. [Accessed: 25-Jan-2014].

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

VMware, Inc., “VDI Server Sizing and Scaling.” VMware, Inc, Aug-2008. Available:
https://www.vmware.com/pdf/vdi_sizing_vi3.pdf

A. Kejariwal, “Techniques for Optimizing Cloud Footprint.” In proceedings of IEEE
International Conference on Cloud Engineering (IC2E), DOI: 10.1109/IC2E.2013.14, March
2013, pp. 258-268.

Amazon, “Auto Scaling.” [Online]. Available: http://docs.aws.amazon.com/AutoScaling/2010-
08-01/DeveloperGuide/index.html?AS _Concepts.html. [Accessed: 06-Feb-2014].

T. Hassanov, “Web Application Scaling in Amazon Cloud.” B.Sc. Thesis, University of Tartu,
Faculty of Mathmatics and Computer Science, May-2012. Available:
http://comserv.cs.ut.ee/forms/ati_report/downloader.php?file=6321A0D6E5723DBF1DBBC7F
2E5BB5041B4AF668C

D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D. P. Anderson, “Cost-benefit analysis of
cloud computing versus desktop grids,” in Parallel & Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium on, 2009, pp. 1-12.

Amazon, “The Economics of the AWS Cloud vs. Owned IT Infrastructure.” Amazon web
services, 7 December 2009. Available:

http://media.amazonwebservices.com/The Economics of the AWS Cloud vs_ Owned IT Inf
rastructure.pdf

Amazon “How AWS pricing works.” Amazon web services, March 2012. Availabe:
http://media.amazonwebservices.com/AWS _Pricing_Overview.pdf

V. Jinesh, “The Total Cost of (Non) Ownership of Web Applications in the Cloud.” Amazon
web services, August 2012. Available:

http://media.amazonwebservices.com/AWS TCO_Web_Applications.pdf

Amazon “Amazon Web Services Simple Monthly Calculator.” [Online]. Available:
http://calculator.s3.amazonaws.com/calc5.html. [Accessed: 31-Jan-2014].

“GigaSpaces | XAP In-Memory Computing software platform | Cloudify - Deploy, Manage &
Scale your apps on the cloud.” [Online]. Available:
http://www.gigaspaces.com/?utm_source=Google&utm medium=PPC&utm_term=FromCloud
&utm_content=DeployManageScale&utm_campaign=GigaSpaces%2BBrand&gclid=COO8kOi
rvLwCFYiQcgodgAcA2g. [Accessed: 08-Feb-2014].

“GNU General Public License v2.0 - GNU Project - Free Software Foundation.” [Online].
Available: http://www.gnu.org/licenses/gpl-2.0.html. [Accessed: 08-Feb-2014].

85

Appendix A: Installation of Cloudify

Prerequisites: Before you install the Cloudify shell, make sure that your environment meets all the
minimum requirements. The following minimum requirements are for both Windows and *nix
machines.

e JDK 1.6 or higher—download the latest update available (e.g. JDK 6 Update 32)

e The JAVA HOME environment variable must point to the correct JDK (not JRE)
directory. For example, D:\Java\jdk1.6.0 32.

e %JAVA HOME%\bin must be added to the beginning of the PATH environment
variable. For example,
%JAVA_ _HOME%\bin;%SystemRoot%\System32;%SystemRoot%;.

Download and unzip the Cloudify distribution file
Then browse the bin directory of the distribution and run the *“./cloudify.sh (for .nix)” or
“cloudify.bat (for Windows)

® 00 bin — java — 145x43 L

clouds logs work

config notice.txt

Igbals-MacBook-Pro:gigaspaces-cloudify-2.6.2-ga-b5400 igbal$ cd bin

Igbals-MacBook-Pro:bin igbal$

Igbals-MacBook-Pro:bin igbal$

Igbals-MacBook-Pro:bin igbal$

Igbals-MacBook-Pro:bin igbal$ 1s

cloudify.bat gs.bat java_pidl27@.hprof setenv.sh

cloudify,sh gs.sh java_pid1488. hprof startJinilUS,bat
esm.bat gsc.bat java_pid761.hprof startJinilUS.sh
esm.sh gsc.sh lookupbrowser . bat startJiniTX_Mahalo.bat
gs-agent.bat gsm. bat lookupbrowser.sh start]iniTX_Mahalo.sh
gs-agent.sh gsm.sh platform-info.bat temp

gs-webui.bat gsm_nolus.bat platform-info.sh

gs-webui.sh gsm_niolus.sh setenv.bat

Igbals-MacBook-Pro:bin igbal$./cloudify.sh

GigaSpaces Cloudify Shell.

Hit '<tabe' for a list of available commands.
Hit '[omd] --help' for help on a specific command.
Hit '<ctrl-é' or 'exit' to exit the console.

Cloudify version: 2.6.2-540@-RELEASE

cloudi fy@defoul t>

87

Appendix B: Configuration of Cloud controllers and cloud

drivers

EC2 Cloud Configurationsfile called (ec2-cloud.groovy):

/***************

* Cloud configuration file for the Amazon ec2 cloud. Uses the default jclouds-based cloud driver.
* See org.cloudifysource.dsl.cloud.Cloud for more details.

*/
cloud {

// Mandatory. The name of the cloud, as it will appear in the Cloudify Ul.

name = "ec2"
/********

* General configuration information about the cloud driver implementation.

*/

configuration {

}

/*************

// Optional. The cloud implementation class. Defaults to the build in jclouds-based provisioning
driver.

className "org.cloudifysource.esc.driver.provisioning.jclouds.DefaultProvisioningDriver"
storageClassName "org.cloudifysource.esc.driver.provisioning.storage.aws.EbsStorageDriver"

// Optional. The template name for the management machines. Defaults to the first template in
the templates section below.

managementMachineTemplate "SMALL_LINUX"

// Optional. Indicates whether internal cluster communications should use the machine private IP.
Defaults to true.

connectToPrivatelp true

// Optional. Path to folder where management state will be written. Null indicates state will not be
written.

persistentStoragePath persistencePath

* Provider specific information.

*/

provider {

}

R ko

// Mandatory. The name of the provider.

// When using the default cloud driver, maps to the Compute Service Context provider name.
provider "aws-ec2"

// Mandatory. The prefix for new machines started for servies.

machineNamePrefix "cloudify-agent-"

// Optional. Defaults to true. Specifies whether cloudify should try to deploy services on the
management machine.

// Do not change this unless you know EXACTLY what you are doing.

managementOnlyFiles ([])

// Optional. Logging level for the intenal cloud provider logger. Defaults to INFO.

sshLoggingLevel "WARNING"

// Mandatory. Name of the new machine/s started as cloudify management machines. Names are
case-insensitive.

managementGroup "cloudify-manager"

// Mandatory. Number of management machines to start on bootstrap-cloud. In production,
should be 2. Can be 1 for dev.

numberOfManagementMachines 1

reservedMemoryCapacityPerMachinelnMB 1024

* Cloud authentication information

*/

user {

}
cloudStorage {

templates ([

// Optional. Identity used to access cloud.

// When used with the default driver, maps to the identity used to create the
ComputeServiceContext.

user “user”

// Optional. Key used to access cloud.

// When used with the default driver, maps to the credential used to create the
ComputeServiceContext.

apiKey “apiKey”

89

90

SMALL_BLOCK : storageTemplate{

}

cloudCompute {

/***********

deleteOnExit true

size 5

path "/storage"

namePrefix "cloudify-storage-volume"
deviceName "/dev/sdc"
fileSystemType "ext4"

custom ([:])

* Cloud machine templates available with this cloud.

*/
templates ([

// Mandatory. Template Name.
SMALL_LINUX : computeTemplate{
// Mandatory. Image ID.
imageld "linuximageld"
// Mandatory. Files from the local directory will be copied to this directory on
the remote machine.
remoteDirectory "/home/ec2-user/gs-files"
// Mandatory. Amount of RAM available to machine.
machineMemoryMB 1600
// Mandatory. Hardware ID.
hardwareld "hardwareld"
// Optional. Location ID.
locationld "locationld"
// Mandatory. All files from this LOCAL directory will be copied to the remote
machine directory.
localDirectory "upload"
// Optional. Name of key file to use for authenticating to the remot machine.
//Remove this line if key files are not used.
keyFile "keyFile"
username "ec2-user"
// Additional template options.
// When used with the default driver, the option names are considered
// method names invoked on the TemplateOptions object with the value as the
parameter.
options ([
"securityGroups" : ["default"]as String][],
"keyPair" : “keyPair”
1
// Optional. Overrides to default cloud driver behavior.
// When used with the default driver, maps to the overrides properties passed
to the ComputeServiceContext a
overrides ([

"jclouds.ec2.ami-query":"",
"jclouds.ec2.cc-ami-query":""
1
// enable sudo.
privileged true
b
SMALL_UBUNTU : computeTemplate{
// Mandatory. Image ID.
imageld “ubuntulmageld”
remoteDirectory "/home/ubuntu/gs-files"
machineMemoryMB 1600
hardwareld “hardwareld”
locationld “locationld”
localDirectory "upload"
keyFile “keyFile”
username "ubuntu”
options ([
"securityGroups" : ["default"]as String[],
"keyPair" : “keyPair”
)]

overrides (["jclouds.ec2.ami-query":"",
"jclouds.ec2.cc-ami-query":""])
privileged true

h

/*****************

* Optional. Custom properties used to extend existing drivers or create new ones.
*/
custom ([

"org.cloudifysource.clearRemoteDirectoryOnStart" : true

)

EC2 Cloud Drivers (ec2-cloud.properties):
// Credentials - You must enter your cloud provider account credentials
user="XXXXXX"
apiKey="XXXXXXX"
keyFile="XXXXXXXX"
keyPair="XXXXXXXX"

// Advanced usage

hardwareld="m1.small"

locationld="us-east-1"

linuximageld="us-east-1/ami-1624987f"

ubuntulmageld="us-east-1/ami-82fa58eb"

// Management persistence configuration. Replace with a string path to activate. 'null' indicates no persistence.
persistencePath=null

91

Appendix C: Writing Ifoodbag Application Recipe
| foodbag-application.groovy file:

application {
name="Ifoodbag"
service {
name = "tomcat"

Tomcat-service.groovy file:

import java.util.concurrent.TimeUnit;
import static JmxMonitors.*

service {
name "tomcat"
icon "tomcat.gif"
type "APP_SERVER"
elastic true
numinstances 1
minAllowedInstances 1
maxAllowedIinstances 3

def instanceld = context.instanceld

def portincrement = context.isLocalCloud() ? instanceld-1: 0
def currJmxPort = jmxPort + portincrement

def currHttpPort = port + portincrement

def currAjpPort = ajpPort + portincrement

compute {
template "SMALL_LINUX"
}
lifecycle {
details {
def currPubliclP = context.publicAddress
def contextPath = context.attributes.thisInstance["contextPath"]
if (contextPath == 'ROOT') contextPath="" // ROOT means "" by convention in
Tomcat
def applicationURL = "http://${currPubliclP}:${currHttpPort}/${contextPath}"
println "tomcat-service.groovy: applicationURL is ${applicationURL}"
return [
"Application URL":"<a href=\"${applicationURL}\"
target=\"_blank\">${applicationURL}"
1
}
monitors {

def contextPath = context.attributes.thisInstance["contextPath"]

if (contextPath == 'ROOT') contextPath="" // ROOT means "" by convention in

Tomcat

def metricNamesToMBeansNames = [

"Current Http Threads Busy": ["Catalina:type=ThreadPool,name=\"http-bio-
S${currHttpPort}\"", "currentThreadsBusy"], "Current Http Thread Count": ["Catalina:type=ThreadPool,name=\"http-bio-
${currHttpPort}\"", "currentThreadCount"], "Backlog": ["Catalina:type=ProtocolHandler,port=${currHttpPort}", “backlog"], "Total
Requests Count": ["Catalina:type=GlobalRequestProcessor,name=\"http-bio-${currHttpPort}\"", "requestCount"], "Active Sessions":
["Catalina:type=Manager,context=/${contextPath},host=localhost", "activeSessions"],]

return getmxMetrics("127.0.0.1",currJmxPort,metricNamesToMBeansNames)

}

init "tomcat_init.groovy"
install "tomcat_install.groovy"
start "tomcat_start.groovy"

preStop "tomcat_stop.groovy"

startDetectionTimeoutSecs 240

93

startDetection {

printin "tomcat-service.groovy(startDetection): arePortsFree

http=${currHttpPort} ajp=${currAjpPort}..."

}
postStart {

postStop {

}

customCommands ([

IServiceUtils.arePortsFree([currHttpPort, currAjpPort])

if (useLoadBalancer) {

println "tomcat-service.groovy: tomcat Post-start ..."
def apacheService = context.waitForService("apachelB", 180,
TimeUnit.SECONDS)
println "tomcat-service.groovy: invoking add-node of apachelB ..."
def privatelP = context.privateAddress
println "tomcat-service.groovy: privatelP is ${privatelP}..."
def contextPath = context.attributes.thisinstance["contextPath"]
if (contextPath == 'ROOT') contextPath="" // ROOT means "" by convention in
Tomcat
def currURL="http://${privatelP}:${currHttpPort}/${contextPath}"
println "tomcat-service.groovy: About to add ${currURL} to apachelB ..."
apacheService.invoke("addNode", currURL as String, instanceld as String)
println "tomcat-service.groovy: tomcat Post-start ended"

}

if (useLoadBalancer) {
println "tomcat-service.groovy: tomcat Post-stop ..."
try {
def apacheService = context.waitForService("apachelB", 180,
TimeUnit.SECONDS)
if (apacheService != null) {
def privatelP = context.privateAddress
println "tomcat-service.groovy: privatelP is ${privatelP}..."
def contextPath = context.attributes.thisInstance["contextPath"]
if (contextPath == 'ROOT') contextPath="" // ROOT means "" by convention in
Tomcat
def currURL="http://${privatelP}:${currHttpPort}/${contextPath}"
printin "tomcat-service.groovy: About to remove ${currURL} from apachelB ..."
apacheService.invoke("removeNode", currURL as String, instanceld as String)
}
else {
printin "tomcat-service.groovy: waitForService apachelB returned null"

}

}
catch (all) {
printin "tomcat-service.groovy: Exception in Post-stop: " + all
}
println "tomcat-service.groovy: tomcat Post-stop ended"
}

"updateWar" : {warUrl ->

}I

"updateWarFile"

)

userinterface {

94

printin "tomcat-service.groovy(updateWar custom command): warUrl is
S${warUrl}..."

if (! warUrl) return "warUrl is null. So we do nothing."
context.attributes.thisService["warUrl"] = "${warUrl}"

printin "tomcat-service.groovy(updateWar customCommand): invoking
updateWarFile custom command ..."

def service = context.waitForService(context.serviceName, 60,
TimeUnit.SECONDS)
def currentinstance = service.getinstances().find{ it.instanceld ==

context.instanceld }

currentinstance.invoke("updateWarFile")

println "tomcat-service.groovy(updateWar customCommand): End"
return true

: "updateWarFile.groovy"

metricGroups = ([

metricGroup {

)

widgetGroups = ([

name "process”

metrics([

"Total Process Cpu Time",
"Process Cpu Usage",

"Total Process Virtual Memory",
"Num Of Active Threads"

1

b

metricGroup {
name "http"
metrics([

"Current Http Threads Busy",
"Current Http Thread Count",
"Backlog",
"Total Requests Count"
)]

}l

widgetGroup {
name "Process Cpu Usage"
widgets ([
balanceGauge{metric = "Process Cpu Usage"},
barLineChart{
metric "Process Cpu Usage"
axisYUnit Unit.PERCENTAGE
}
)]
b
widgetGroup {
name "Total Process Virtual Memory"
widgets([
balanceGauge{metric = "Total Process Virtual Memory"},
barLineChart {
metric "Total Process Virtual Memory"
axisYUnit Unit. MEMORY
}
)]
b
widgetGroup {
name "Num Of Active Threads"
widgets ([
balanceGauge{metric = "Num Of Active Threads"},
barLineChart{
metric "Num Of Active Threads"
axisYUnit Unit.REGULAR
}
1
I
widgetGroup {
name "Current Http Threads Busy"
widgets([
balanceGauge{metric = "Current Http Threads Busy"},
barLineChart {
metric "Current Http Threads Busy"
axisYUnit Unit.REGULAR
}
1
I
widgetGroup {
name "Current Http Thread Count"
widgets([
balanceGauge{metric = "Current Http Thread Count"},
arLineChart {
metric "Current Http Thread Count"
axisYUnit Unit.REGULAR
}
1

95

I
widgetGroup {
name "Request Backlog"
widgets([
balanceGauge{metric = "Backlog"},
barLineChart {
metric "Backlog"
axisYUnit Unit.REGULAR
}
1
I
widgetGroup {
name "Active Sessions"
widgets([
balanceGauge{metric = "Active Sessions"},
barLineChart {
metric "Active Sessions"
axisYUnit Unit.REGULAR
}
1
I
widgetGroup {
name "Total Requests Count"
widgets([
balanceGauge{metric = "Total Requests Count"},
barLineChart {
metric "Total Requests Count"
axisYUnit Unit.REGULAR
}
1
I
widgetGroup {
name "Total Process Cpu Time"
widgets([
balanceGauge{metric = "Total Process Cpu Time"},
barLineChart {
metric "Total Process Cpu Time"
axisYUnit Unit.REGULAR
}
1

}

network {
port = currHttpPort
protocolDescription = "HTTP"

Appendix D: Implementing Auto-Scaling Policies
Auto-Scaling code:

elastic true
minAllowedInstances 1
maxAllowedInstances 3

scaleCooldownInSeconds 60
samplingPeriodIinSeconds 1

// Defines an automatic scaling rule based on "counter" metric value
scalingRules ([

calingRule {
serviceStatistics {
metric "Total Requests Count"
statistics Statistics.maximumThroughput
movingTimeRangelnSeconds 20
}
highThreshold {
value 1
instancesincrease 1
}
lowThreshold {
value 0.2
instancesDecrease 1
}

97

Appendix E: Deploying Ifoodbag Application in EC2
cloudify@default>bootstrap-cloud ec2

cloudi fyfdefault> bootstrap-

bootstrap-cloud bootstrap-localcloud

cloudi fy@default> bootstrap-cloud ec2

Setting security profile to "nonsecure”.

Bootstrapping cloud ec2. This may toke a few minutes.

Validating Cloudify URL "http://repository.cloudifysource.org/org/cloudifysource/2.6.2-540@-RELEASE/gigaspaces-cloudify-2.6.2-ga-b540@. tar.gz"

Establishing connection with provider ows-ecZ.

Established connection with provider aws-ec2.

Starting validation of cloud configuration

Validating provider name “aws-ec2" [

Validating all templates

Starting validation of template “SMALL_LIN

Validating cloud API credentials

Validating image “eu-west-1/omi-Ga56b81d™ and hardware "ml.small” for location “eu-west-1°

Validating security group "defoult”

Validating key pair "test-keypair-eu®

Template “SMALL_LINUX® validated

Cloud configuration validotion completed

Creating provisioning Context

Attempting Cloudify Management WM provisioning.

starting machine with template : {imoge={id=eu-west-1/ami-6056b81d, providerId=ami-6a56b81d, name=amzn-omi-pv-2013.89.2,.1386-ebs, location={scope=REGION, id=eu-west-1

description=eu-west-1, porent=ows-ec2, is03166Codes=[IE]}, os={fomily=unrecognized, arch=paravirtual, version=, description=omozon/omzn-omi-pv-2813.89.2.1386-ebs, is

4Bit=false}, description=Amozon Linux AMI 1386 PV EBS, status=AVAILABLE[available], loginUser=ecZ-user, userMetadato={owner=137112412989, rooctDeviceType=ebs, virtualizj

ationTypesparavirtual, hypervisor=xen}}, hardware={id=ml.small, providerId=ml.small, processors=[{cores=1.8, speed=1.8}], ram=1748, volumes=[{type=LOCAL, size=10.0, d

vice=/dev/sdal, bootDevicestrue, duroble=false}, {type=LOCAL, size=150.8, device=/dev/sdao2, bootDevice=false, durable=false}], supportsImage=And(ALWAYS_TRUE,Or(isWindg

ws(), requiresVirtualizotionType(paravirtual)),ALWAYS_TRUE ,ALWAYS_TRUED}, location={scope=REGION, id=eu-west-1, description=eu-west-1, parent=ows-ec2, iso3166Codes=[IE]|

}, options={groupNames=[defoult], keyPair=test-keypair-eu, userDato=[35, 99, 188, 111, 117, 100, 45, 99, 111, 118, 102, 105, 103, 19, 114, 11, 112, 111, 95, 117, 112}
> 97,100, 101, 58, 32, 11@, 111, 119, 101, 1@]}} 1

Management started successfully.

Attempting to access Manogement VM 54.194,101.57.

Uploading files to 54.194.101.57.

Using "/var/folders/dd/pmxgbffiZhnlj37kdjz5t504000@gn/T/vfs_cache” as temporary files store.

Permanently odded '54.194.101.57" (RSA) to the list of known hosts.

Launching agent on 54.194.101.57.

Connecting to 54.194.101.57

Permanently odded '54.194.101.57' (RSA) to the list of known hosts.

Established connection with Management VM 54.194.101.57.

Rest service is ovailable at: http://54.194.191.57:8100.

Webui service is available at: http://54.194.181.57:8099.

Successfully created Cloudify Manager on provider ec2. Use the "teardown-cloud ec2” command to terminate all machines.

cloudi fy@defoul >

Deploying Ifoodbag application in the cloud

®s N o bin — java — 171x44
[1Igbals-MacBook-Pro.local/192.168.8.5] tomcat-1 POST_START completed, duration: 8.8 seconds
[tomcat] Deployed 1 planned 1

Service “tomcat" successfully installed (1 Instances)

cloudi fy#i foodbag> uninstall-application ifoodbag
Are you sure you want to uninstall applicotion: <ifoodbag>?

[tomcat] Deployed 1 planned @
[Igbals-MacBook-Pro.locol/192.168.8.5] tomcat-1 PRE_STOP inwvoked

[Iqbals-MacBook-Pro.1ocal/192.168.9.5] tomcat-1 PRE_STOP completed, duration: 12.3 seconds
[Igbals-MacBook-Pro.local/192.168.8.5] tomcat-1 STOP invoked

[Igbals-MacBook-Pro.local /192 .168.8.5] e STOP foiled. Reason: Attempt to kill process 2367 failed!
[Igbals-MacBook-Pro.local A192,168.8.5] POST_STOP invoked
[Igbals-MacBook-Pro.local /192.168.8.5] tomcat-1 POST_STOP completed, duration: @.0 seconds

Service “"tomcat” wos stopped successfully , releasing cloud resources...
Service “tomcat” uninstolled successfully

cloudi fyldefoult> install-opplication ifoodbag
Validating file ifoodbag

Uploading application ifoodbag

Application [ifoodbag] with 1 services
Service [tomcat] 1 planned instances
Deploying tomcat with 1 planned instences.

.loeal /192,.168.0.5] tomcat-1 INIT invoked

[Igbals-MacBook-Pro.local/192.168.9.5] tomcat-1 INIT completed, duration: 7 seconds [
[Igbals-MacBook-Pro.local/192.168.8.5] tomcat-1 INSTALL invoked

[Igbals-MacBook-Pro.locol/192.168.8.5] tomcat-1 INSTALL completed, duration: 17.3 seconds
[Igbals-MacBook-Pro, local /192, 168.9.5] tomeat-1 PRE_START invoked
[Igbals-MacBook-Pro. local /192, 168.9.5] tomcot-1 PRE_START completed, durotion: 1.1 seconds
[Igbals-MacBook-Pro.locol/192.168.9.5] tomcat-1 START invoked

[1gbols-MacBook-Pro.local/192,168.8.5] tomcat-1 POST_START invoked

[Igbols-MacBook-Pro. local/192.168.9.5] tomcat-1 POST_START completed, duration: 9.8 seconds
[tomcat] Deployed 1 plonned 1

Service "tomcaot™ successfully instolled (1 Instances)

cloudi fy#i foodbag>

99

Appendix F: Amazon EC2 Management Console
EC2 Management console:

Create Key Pair Import Key Pair

- 4

Instances Filter: | Q

Spot Aequests

Reserved Instances Key pair name -
= IMAGES test-keypair-eu

AMis ifoodbag

Bundle Tasks

Volumes

Snapshots

Security Groups
Elastic IPs
Placement Groups Select a key pair
Load Balancers

Key Pairs

Network Interfaces

£ 2008
https:/ feonsole. aws.amazon

2014, Amazon Web Services, Inc. or its affiliates. All rig

. gl 1

Chrome File Edit View History Bookmarks Wind

Fingerprint

20:bc:e2:fe:46:8a:4:09a:d5: 1d:bc: 15:83:2c:93:00,0: 8e:40: 11

el:55:19: 18:4bccacea: 33:41. 77:19:14:82:11:32:8c:4%:5bc4a: 19

Privacy Policy — Terms of Use

Help

® 08 ¢ Management Console % web -

Qe D=+

S & 0

1 to 2 of 2 Key Pairs

Feedback

i = @& sun05:01 Q =

Tl
Ll

&~ C [https:/ /console.aws.amazon.com/ec2 /v2 /homeTreg

Services -~

EC2 Conso x| <& Management Console x

ion=eu-west-1#instances

[#]tfaodbag Web Application x

Igbal Hossain «

&) Cloudify - Deploy a Mult % ®
e

eland » Help »

EC2 Dashboard P
Events 1 o # 0
Tags Filter: All instances ¥ All instance types ¥ ' * 1 to 4 of 4 Instances
v - Name F- 1 D =~ | Type ~ Availability Zone - State - Status Checks Alarm Status Publi
Spot Requests {foodbag-manager Hof0atff1 m1.small eu-west-1c & running & 2/2check.. Naone ‘, ec2-5
Reserved Instances ifocdbag-app2 i-a13ed3cef m1.small eu-west-1c & terminated Nane *
T Hocdbag-app1 -73bd7132 m1.small eu-west-1c @ running & Zi2check.. None Y 2S5
AMIs ifoodbag-app3 i-5eb0401f m1.small eu-west-1c & terminated Nong %
Bundle Tasks
Volumes
Snapshots
Security Groups
Ermathc 1Fs Select an instance above _N =]
Placement Groups
Load Balancers
Key Pairs
Network Interfaces
Privacy Policy Terms of Use Feedback

101

Appendix G: Cloudify Web Management Console

Cloudify Web Management console

- c 192.168.0.5:8099/Gs_webui.htm| 0=
' 1
Cloudify ¥
Dashboard Applications Hosts To learn more about premium support gick heme
Grid Status
Health | All Apps Infrastructure Application Services Data Replication
- A a8 1 e v @ 2 we (060 re/sec) 0
— A Fair S S - fogte il e (01
& ifoodbag W 93 1 Deployers v O 1 AppSener
Resources v B 1 ochestrators
¥ CPU Cores £ Memory v 2uss
Current: 13% used Current: B9.9% used, 7.2G8 i)
Last 2 Minutes: Last 2 Minutes: External Data Source

oom

————

“pasm

23:26:30

Status Type Description Location Last Update

+ Ah wWARNING Physical Memory Utilization Memnory crossed abave a 0% threshold, for a period of 1 minute, with an .- Igbals-MacBook-Pro.Jocal (192.168.0.5) 2014 Feb 1 23:27:07 T
+ V' SEvERE Mesmber Alive Indicator Re-provisioned helloworld tomeat [1] instance helloworld.tomcat [1] 2014 Feb 1 21:59:38 £
+ V' SEVERE Member Alive Indicator Ret-provisioned helloworld tomeat [1] instance hellowarld tomeat [1] 2014 Feb 1 21:58:36 #.
+ V' SEVERE Member Alive Indicator Re-provisioned helloworld.tomeat [1] instance helioworid.tomeat [1] 2014 Feb 1 21:57:33 #.
+ V' severe Member Alive Indicator Ree-provisioned helloworld tomeat [1] instance hellowarld tomeat [1] 2014 Feb 1 21:56:30 #.

® 09 management Console
54.194.7.155:8099/Gs_webui.htrmi

® | Moodbag Web » | WmEcz ,- Consale = | [#]Woadbag Web Application =

= L=

Logged in as: anonymous

K Applications Hosts To beii mone about pramium supEort Slkck heng
Belect Application: [Taie] unning On: ec2
tomcat ~ a1
i/
[s T = R
|
]
e |
1
b R v b e b e v b s T
[Cumtcen: Curment Hitp Threed Count =10 Cumtom: Request Backiog =] [=1 Custom: Total Hequasts Count -

= T : V0 b4z I
: u]

" gai1890 Oy o100 1 ® pa:issa D416:30 421630

103

Appendix H: Simulating Auto-Scaling Process
Sending Request to the server:

httperf --hog --server 54.194.238.66 --port 8082 --uri /ifoodbag --wsess=35,5,2 --num-conns
1000 --rate 10

httperf --hog --server 54.194.238.66 --port 8082 --uri /ifoodbag --wsess=20,10,2 --num-conns
10000 --rate 30

httperf --hog --server 54.194.238.66 --port 8082 --uri /ifoodbag --wsess=20,20,10 --num-
conns 20000 --rate 100 --timeout 15

Figure shows adding new servers

#f Chrome File Edit View History Bookmarks Wind Help B O« i =k sun0s06 QI
® OO ¢ mnagement Console x| [slHoodbag Web Application | (17 ECZ Management Corst % |) Management Console % ' [24]lfoodbag Web Application % 3 Cloudify - Deploy a Mull Ca
- c https:/ /console.aws.amazon.com/ec2 /v2 [home?region=eu-west- 1#Instances: Ca=

T Services ~ Edit Igbal Hossain » Ireland = Help =
St - - [V c o0
Events 4

Tags Filter; All instances > All instance types ¥ | x 1to 5 of 5 Instances

= . Name Y- 1D Type = Zone - State - Status Checks - Alarm Status - Publi

| Instances
Spot Requests Hfoodbag-manager i-bf0atff1 m1.small eu-west-1c @ running @ 22check... None % ec2s
Reserved Instances Hoodbag-app2 -a13a3cel m1.smal eu-west-ic & terminated None ™
S foodbag-app1 T3bd7132 m1.smal eu-west-1c @ running & 22check.. None % ec25
AMIs ifoodbag-appd 16643058 m1.smal euwest-1c @ running & 22check... None % ec25
Bundie Tasks ifoodbag-app3 H5ab0401f m1.smal eu-west-1c @ terminated None L™
Volumes
Snapshots
Security Groups
" Select an instance above _B=N=|
Elastic IPs
Placement Groups
Lead Balancers
Kay Pairs
Network Interfaces
£ 2008 - 2014, Amazon Web Services, Inc. or its affiliates. All rights reserved Privacy Palicy Terms of Use Feedback

105

TRITA-ICT-EX-2014:13

www.kth.se

