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Abstract
A lane position system and enhancement techniques, for increasing the robust-
ness and availability of such a system, are investigated. The enhancements are
performed by using additional sensor sources like map data and GPS. The thesis
contains a description of the system, two models of the system and two imple-
mented filters for the system. The thesis also contains conclusions and results of
theoretical and experimental tests of the increased robustness and availability of
the system. The system can be integrated with an existing system that inves-
tigates driver behavior, developed for fatigue. That system was developed in a
project named Drowsi, where among others Volvo Technology participated.

Sammanfattning
Ett filpositioneringssystem undersöks och förbättringstekniker för ökandet av ro-
busthet och tillgängligheten av ett sådant system genom att använda ytterligare
sensorkällor som kartdata och GPS. Detta examensarbete presenterar beskriv-
ningen av ett system, två modeller och två implementerade filter. Examensarbetet
innehåller också slutsatser och resultat av teoretiska och experimentella tester
som plottar och grafer av ökad robusthet och tillgängligheten av systemet. Detta
system kan bli integrerat med ett framtaget system som tittar på körrelaterat be-
teende vid trötthet. Systemet är utvecklat i ett projekt kallat Drowsi, där bland
andra Volvo Technology deltog.
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Chapter 1

Introduction

Advanced driver assistance systems like drowsiness detection can obtain informa-
tion about the position of a vehicle determined from a lane position monitoring
system. Volvo Technology Corporation (VTEC) develops a wide range of prod-
ucts of advanced driver assistance systems and an accurate positioning system is
needed as input to a drowsiness detection system. This thesis was performed at
VTEC from October 2010 to April 2011 and was a part of the Drowsi project. This
thesis presents a positioning system, using camera information, Dead Reckoning
(DR) sensors, Global Positioning System (GPS) and map data. This chapter will
give a brief description about the background, problem specification, objectives
and thesis outline.

1.1 Background
Today active safety is a growing area of research within the automotive industry.
Providers of driver assistance systems develop a wide range of products to make
the driving easier and safer. Modern vehicles are equiped with driver assistance ap-
plications like planning and guidance functions, but also active safety systems that
consider danger awareness, drowsiness detection, driver behavior, and physical fea-
tures about the vehicle. A great challenge that these improved safety systems and
also navigation systems have is to determine the position of a vehicle with high
accurancy. Many navigation and safety systems demand accurate positioning and
mapping of the vehicle within the lane. Modern navigation systems commonly use
Global Navigation Satellite Systems (GNSS), like GPS. The satellite coverage is
not always ideal in urban areas because the GPS receiver can suffer from problems
with e.g. signal masking, tunnels, multipath reflections and high buildings [1]. Sig-
nal masking occurs when the GPS receiver can not match at least four satellites to
estimate a position [2]. Under these circumstances the GPS is normally improved
with DR sensors in order to maintain accurate vehicle positioning. Such DR sen-
sors in modern vehicles can be inertial sensors in for example anti-skid systems,
gyroscopes measuring yaw rate of the ego vehicle, accelerometers measuring the
longitudinal and lateral acceleration of the vehicle and odometric e.g. wheel-speed
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4 Introduction

sensors in Anti-Lock Braking System (ABS) accessible through a data bus, such as
Controller Area Network (CAN). External sensors like cameras, RAdio Detection
And Ranging (RADAR) and LIght Detection and Ranging (LIDAR) can also give
useful information in order to determine the position of the vehicle in the lane.
Since navigable maps, provided by for example NavTeQ [3] and TeleAtlas [4], store
geographical information about the road network, navigable road maps can be uti-
lized to determine the correlation between the road network and the position of
the vehicle. Map data from navigable maps added to a positioning system can
increase the accurancy of the position of the vehicle. Information from several
different sensors are used to determine a more accurate position of the vehicle in
the lane compared to using the sensors separately. This is called sensor fusion and
it is also a big research area in the automotive industry.

1.2 Volvo Technology Corporation
This section is based on information from [5]. This thesis has been performed at the
department of Human, Systems and Structures at VTEC in Gothenburg. VTEC
has around 500 employees and is located at Lundbystrand and Chalmers Science
Park in Gothenburg and also has establishments in Lyon, France, Greensboro and
Hagerstown, USA, Bangalore, India and Ageo, Japan. VTEC is an innovation
company with primary customers within the Volvo Group, but selected suppliers
are also provided services. The main research and development areas at VTEC
are transportation, telematics, internet applications, databases, ergonomics, elec-
tronics, combustion, mechanics, industrial hygiene and industrial processes and all
development are done on contract basis. Human, Systems and Structures is a de-
partment that has a wide experience of research and development within the area
of active safety systems and Human-Machine Interaction (HMI) integration. Some
of the main research areas at the Intelligent Vehicle Technologies (IVT) group are
development of Driving Assistance Systems e.g. lateral and longitudinal vehicle
control, vehicle automation, vehicle-to-vehicle communication, collision avoidance,
monitoring of driver drowsiness and distraction, etc..

1.3 Problem Specification and Goal
Camera information can be used in order to locate the position of the vehicle
within the lane and therefore the camera can be considered as a lane postioning
system. The goal of the thesis is to investigate if the robustness and availability of
the lane positioning system (camera) can be increased by using additional sensor
sources like map data and GPS. The goal of the thesis is also to investigate which
performance this new lane positioning system has. In this thesis a camera, DR,
GPS and map data are integrated with an extended Kalman filter (EKF) in order
to estimate the position of a vehicle. Figure 1.1 shows an overview of the new lane
positioning system. The idea with the lane positioning system is that it should
give an estimate of where the vehicle is located within the lane, to a drowsiness
detection system. The drowsiness detection system investigates the behaviour of
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the driver to detect drowsiness. The drowsiness system was earlier developed in
a project, which is named Drowsi, where among others Volvo Technology partici-
pated.

Figure 1.1. A system overview for the lane positioning system, [6]. The lane positioning
system (system) consists of a lane position sensor (camera), vehicle sensors, map data
and GPS, where the data/signals are sent to the sensor fusion algorithm. All signals
are sent via different CAN buses, which is an electronic network used for communication
between different components and systems in the vehicle. The signals from the camera
are the relative angle between vehicle and road ψRE , the lateral displacement of the
vehicle in lane lE and the curvature at the ego vehicle c0. The signals that are coming
from the vehicle sensors are steering wheel angle δs, the longitudinal velocity vx and
yaw rate ψ̇E . The signals that are coming from map data and GPS are the curvature
from map data c0mapdata and GPSheading, x and y position from GPS. The model of
the system is a combined vehicle and road model. More descriptions about the system,
model and signals can be found in chapters 7 and 8.

1.4 Contributions
The aim of this section is to give a brief summary of my contributions in this thesis
work. My main contributions in this thesis are the following:

• The first part of the thesis was that the author did a pre-study what other
authors have done in the area of investigating a lane positioning system
and was presented as a literature study, see chapter 2. For instance, which
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methods the authors are using and how the authors work is related to this
thesis.

• The author collect data to be able to analyze the performance of the devel-
oped lane positioning system, see chapter 5. Vägverket (Swedish National
Road Administration), here abbreviated SNRA has also collect data. These
measured values from the collected data from the SNRA are considered as
true and will be compared to the data that the author collected. The true
values are then going to be a measure to see how good the model in this
thesis is. To understand the different collected data, their behaviour and
characteristic better two small parts from the route have been selected, see
chapter 5.1.1 and 5.1.2 respectively.

• The author has developed a model for the lane positioning monotoring sys-
tem, see figure 1.1. The model is an extended and modified model, based
on a model called Single Track Model with Road Interaction (STMI) from
the literature study, see chapter 2. The STMI model has been extended by
adding measurements from additional sensor sources such as vehicle sensors,
GPS and map data, see chapter 7.

• The author has extended the model from chapter 7 by integrating already
known models such as GPS and DR model, constant velocity model, coordi-
nated turn model to the extended model of the lane positioning monitoring
system, see chapter 8. Measurements and estimations from additional sensor
sources such as vehicle sensors, GPS and map data has been integrated into
the extended model to match the lane positioning monitoring system.

• The states in the model in chapter 7 are estimated by an KF. The KF is
based on the theory in chapter 6. The KF is implemented from scratch in
Matlab by the author. The position of the vehicle in lane is estimated by
the KF.

• The states in the extended model in chapter 8 are estimated by an EKF.
The EKF is based on the theory in chapter 6. The EKF is implemented
from scratch in Matlab by the author. The position of the vehicle in lane is
estimated by the EKF.

• The author has translated C# code for the mathematical formulas and ex-
pressions for the transformations between coordinates in the WGS 84 frame
and RT90 coordinates based on the theory from chapter 3.4 and implemented
it into Matlab.

• Four different techniques described in chapter 9.1, 9.2, 9.3 and 9.4 have been
developed by the author to be able to compare the estimated curvature from
the EKF with data from SNRA. The fourth technique, see chapter 9.4, has
also been divided by the author into three subtechniques.

• The author contributes an evaluation in order to investigate whether the
robustness and availability of such a system increases, using additional sensor
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sources like map data. Three cases have been tested, see chapter 9. Case
A is when the curvature without map data is estimated by the EKF. Case
B is when the curvature with map data is estimated by the EKF and Case
C is when the curvature both with map data and with reliable camera data
is estimated by the EKF. The author evaluated the solution offline using
simulations and a signal that indicates if the LPS system has reliable camera
data over a large sequence has been manually added to the system estimated
by the EKF in the measurement update. There is a signal from the LPS
system that indicates if the camera data is reliable and could be used for an
online solution.

• The author presents in chapter 9, the results of the investigation, sensor
fusions and enhancements techniques, tables and figures and Root Mean
Square (RMS) values, described in chapter 9.5 is used to evaluate the per-
formance of the lane position monitoring system.

• The author has made a summarization of conclusions from the results and
evaluation of the lane positioning monitoring system presented in chapter
9. Some ideas for future work are also discussed by the author, see chapter
10.2.

1.5 Thesis Outline
In chapter 2 a literature study is presented of what other authors have done in the
area of investigating a lane positioning system. For instance, which methods the
authors are using and how the authors work is related to this thesis. Chapter 3 de-
scribes the theory of earth models, conversion between different coordinate frames,
the theory of different coordinate frames and map projetions. Chapter 4 presents
different positioning techniques. In chapter 5 data collection and preprocessing
needed for this thesis are discussed. In chapter 6 estimation theory is described.
The model and the extended model for the lane positioning system are given in
chapter 7 and chapter 8. Chapter 9 is a summary of the results and in chapter 10
conclusions from the results and some ideas for future work are discussed. Finally,
in Appendix A, figures from the raw data are presented and Appendix B shows
some figures from the results in chapter 9.





Chapter 2

Literature Study

The aim of this chapter is to give a brief introduction to what other authors
have done in the area of investigating the performance of lane position monitoring
systems and to investigate techniques for increasing the robustness and availability
of such a system by using additional sensor sources like map data and GPS. The
authors’ works that have been studied in this literature study contains all variants
of lane positioning systems, but it does not necessarily mean that it is the main
subject of the authors’ different works. The techniques for enhancing the accuracy
of the positioning system and aspects the authors are looking at and how the
different authors work (models, techniques, aspects) differ from each other. It is
also of interest for this thesis to look at what other authors have done in the area of
similar models for the ego vehicle and the using of lane and curvature information
from a camera system.

2.1 Related Work with Positioning Systems using
additional Sensor Sources

Digitally stored map information and a DR system are used by the author in
[2] to produce a high performance vehicle positioning module. Signals to achieve
accurate position are integrated from relative sensors like wheel speed sensors, ac-
celerometers and gyroscopes with information stored from a digital map. The term
relative sensors is used to describe sensors that measure the movements relative
an absolute position [7]. The problem is formulated as a non-linear estimation
problem to estimate the absolute position when the absolute heading is known.
This solution uses Bayesian estimation. A grid based method that is referred to as
the point-mass filter and a sequential Monte Carlo method has been investigated
and evaluated. Simulation results show that by using this technique it is possible
to obtain position estimates with accuracy comparable to the accuracy obtained
if GPS is used. A positioning system based on the suggested method can both
be used as a stand-alone solution or as a complement to other already existing
systems. An extended model where the absolute heading angle is estimated by a

9
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particle filter has also been considered. The aim in [2] is to use digitally stored
map information and a DR system to obtain a more accurate vehicle position. The
usage of map data in vehicle positioning and DR models in [2] are comparable with
the ones in this work.

The authors in [8] use a DR system that receive information from low cost
in-vehicle sensors like gyroscope and speedometers and a GPS receiver. The DR
system and the GPS are integrated with an extended Kalman filter to obtain an
estimate of the position of the vehicle. The system is able to give an estimated
position in the horizontal plane with a relatively high update frequency and with
the accuracy of the GPS receiver used when the evaluation of the positioning
algorithm is implemented. In addition the system is also able to take care of
GPS signal masking, chapter 1.1, for a certain period of time. An off-line map
matching algorithm has also been implemented to give a more accurate position
of the vehicle. The aim of [8] is to use DR and GPS to determine the position of a
vehicle and to match the vehicle’s position against a digital map. The DR approach
for yaw rate and the transformation between WGS-84 and UTM coordinates and
backwards in [8] are the same as in this thesis.

When it comes to appropriate models of positioning systems and the use of lane
and curvature information [9] is also of interest. The author in [9] is concerned
with automotive active safety, and the main theme is a safety function known as
Emergency Lane Assist (ELA). ELA is a lane guidance system and such systems
normally use a camera to monitor lane markings. This safety function requires
a certain accuracy of the information from the sensors, in particular information
about the road shape and the positions of surrounding objects. In addition, the
ELA requires a robust threat assessment. In order to meet the higher accuracy re-
quirements of the sensor information, several signal processing methods have been
developed and evaluated. Each of the methods has been evaluated based on how
much it improves the accuracy of the estimate from the sensor information and
how it performs in relation to the requirement of the ELA. In addition, different
threat assessment methods are studied. A common element in both signal process-
ing and threat assessment is that they are based on driver behaviour models. This
means that they speculate that drivers are more likely to behave in certain ways
than others depending on the actual traffic situation that they are exposed to.
Most of the studied methods are general, which means that there are possibilities
to apply them in other safety systems, especially when the complete picture of the
vehicle surroundings is considered. All methods studied in [9] have been evaluated
using authentic sensor data from both actual and relevant traffic environments.
The aim in [9] is to prevent accidents before they occur, which belongs to the area
of active safety research. Appropriate driver behaviour models and the using of
lane and curvature information comparable to this thesis can be found in [9]. The
main methods employed in [9] are:

• An assessment method for new and potentially beneficial safety functions is
included in the development of the new safety function Emergency Lane As-
sist (ELA). The ELA safety function has been evaluated in three ways. The
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first evaluation is performed using simulations, the second by using artificial
scenarios on a test track and the final evaluation uses authentic traffic data.

• Development and evaluation of different geometric models in an integrated
filter for a combination of road shape estimation and target tracking.

• A demonstration of how to use change detection in order to detect lane
changes of leading vehicles. This solution is then used to improve the lane
shape estimation accuracy in the integrated filter.

• A demonstration of how a marginalized particle filter can be used in the inte-
grated filter instead of an extended Kalman filter. The marginalized particle
filter is based on a non-linear model.

• A method for obtaining true road geometry parameters from recorded sensor
data, which can be used as a reference for filter tuning. An advantage is that
this can be done without extra sensors or other hardware.

• A statistical threat assessment method based on vehicle dynamics and a
driver behaviour model that is stochastic. A more accurate and longer pre-
diction can be made using this method. This method also consider how the
object interacts in the road scene.

• A dynamic vehicle model that can be used in curved, road-aligned coordi-
nates. This means that the coordinate system used by the model is shaped
according to the shape of the road. By using this model, the threat assess-
ment can be carried out in the road-aligned coordinates immediately.

In the paper [10] the authors introduce a method for land-vehicle navigation
systems. The main idea with this system is to fuse GPS and DR data. This is
especially useful in urban areas where GPS outages can happen. The differential
odometry of the vehicle is computed by the DR sensor. Fusing the road map
database of a Geographical Information Systems (GIS) is also done by the authors
algorithm. This is done with improving the positioning accuracy in mind. The dig-
ital road map is a measure of a set of node locations and road bearings in the model
in [10]. The Mahalanobis metric is used to initialise this measurement equation.
In order to allow a direct modelling of the map errors and uncertainties (embedded
in the filter) this measurement equation is used. The available measurements are
sequentially processed by the filter. This builds on a centralized fusion algorithm.
In order to show the advantages for vehicle positioning of the suggested method
the authors presents experimental results. These results are based on an urban
transport network scenario where signals from the GPS are poor. The authors in
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[10] solve the multisensor estimation problem by an extended Kalman filter (EKF)
that fuses the GPS, odometer and road map data in order to get more accurate
vehicle position in a similar way as this thesis solves the non-linear estimation
problem. The vehicle locations in [10] are also given in UTM coordinates as in
this thesis.

A data fusion strategy for the global localisation of car-like vehicles is pre-
sented in [11]. Raw GNSS measurements, DR sensors and road map data are
used to build the system. Map information is used as a heading observation in a
Kalman filter presented as a new method by the authors in [11]. The advantage of
such a method when the GPS information is not available is shown by experimen-
tal results. A conservative localization strategy that is based on DR navigation is
introduce by the authors in [11] when GPS outages happends. The map data and
the GNSS measurements are not considered in cases when the consistency test are
uncertain. The performance is better when only the available information is used
consistently, as experimental results show. Map data, DR sensors and raw GPS
data is fused in order to get global localization of car-like vehicles is the goal of
this paper. The authors in paper [11] fuse GPS data, the DR sensors and the map
data to get more accurate vehicle position in a similar way as this thesis solves
the non-linear estimation problem. The ECEF frame is also used in [11] as in this
thesis.

The author in [12] has modelled the ego vehicle with a Coordinated or Constant
Turn Model. In order to construct this ego vehicle, the study uses a dynamic model
called Single Track Model. This model includes a tire model which uses geometric
relationships. Furthermore the model has an extension for modeling the road.
Commonly this Single Track Model with Road Interaction is used for autonomous
driving and lane keeping. The collection of external data is made possible through
the use of three sensors. The first setup consists of a forward looking camera and
radar. The second configuration also consists of a forward looking camera and
radars, but with the difference that the radars are not only forward looking but
can also point to the rear and side. The third set up is designed to give an axle
height value by using internal or proprioceptive sensors. The study, which uses
particle Filter (PF) and EKF variants, features sensor fusion in order to obtain
better information than that which would be obtainable if seperated sensors were
used. Here [12] details how the motion of a tracked object is estimated and how
properties of static objects such as road lines are calculated. In this study, the
author discusses the problem of estimating the motion of an ego vehicle and its
surroundings in order to improve the drivers’ situational awareness. Appropriate
models and the use of lane and curvature information for this thesis can be found
in [12]. The model that has been chosen for this thesis study, is a modified and
extended version of the model Single Track Model with Road Interaction featured
in [12].



Chapter 3

Coordinate Systems and
Geographical Positions

In this work an EKF is used to estimate the position of the vehicle in the lane. In
order for the EKF to give an accurate estimate of the position of the vehicle all the
signals from the different sensor sources have to be in the same coordinate system.
The position of the vehicle from the positioning system is always described as a
number of coordinates and a coordinate system is needed to determine where the
vehicle is located. In order to model data from the different positioning techniques,
described in chapter 4 it is also important to know which earth model and map
projection that is used. This chapter will give a brief introduction to earth models,
map projections and coordinate systems used in this thesis.

3.1 Models of the Earth
To describe a position on the surface of the earth an approximation of the earth
is needed. Earth models that are used in this work are spheres, and the ellipsoids
Bessel 1841 and WGS 84. A sphere with a fixed axis of rotation is the most used
simple earth model in positioning and navigation systems, which frequently uses
the surface of the earth as a reference [13].

To describe the shape of the earth a reference ellipsoid can be used as a simpli-
fication. A reference ellipsoid consists of a symmetric body around the rotational
axis, in other words a rotational ellipsoid. Bessel 1841 is a reference ellipsoid. The
semi-major axis in Bessel 1841 is approximately 6377 km and the polar radius is
approximately 6356 km. In order to describe how flattened the earth model is the
concept of flattening is introduced. The flattening f is defined as f = a−b

a , where
a is equal to the semi-major axis and b is the polar radius. The inverse flattening
is defined by 1/f and is in Bessel 1841 approximately 299.

The United States Department of Defense (U.S. DoD) has developed a more
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complex earth model named the World Geodetic System 1984 (WGS 84), which
is an international standard for navigation. In the earth model WGS 84, the
equatorial radius is 6378 km, the polar radius is 6357 km, the ellipsoid’s centre is
at the earth’s center of mass and the rotational axis is the earth’s rotational axis.
The inverse flattening is in WGS 84 approximately 298.

3.2 Cartesian, Geocentric and Geodetic Coordi-
nates

Geocentric, geodetic and 3D Cartesian coordinate systems are used in positioning
applications. For defining the coordinates of a point with geocentric coordinate
system, shown in Figure 3.1, one can use the following scheme: define the mass
centre of the earth as the origo and give the latitude (φ), longitude (λ) and dis-
tance from the orgin to the point itself (r) [7].

To define a geodetic coordinate system, one needs to have a given ellipsoid
and plane through the polar axis of the ellipsoid [7]. In Figure 3.2 a 3D carte-
sian coordinate system and a geodetic system are shown. The angle between the
equatorial plane and the extension of the normal to the ellipsoid surface towards
the interior of the earth is defined as the geodetic latitude (φ). Observe that the
extension of the normal to the ellipsoidal earth model towards the interior of the
earth generally will not intersect the centre of the earth according to the elliptic
form of the earth model. The angle in the equatorial plane between the prime
meridan and the orthogonal projection of the point of interest in the equatorial
plane is defined as the geodetic longitude (λ). The distance between the point of
interest and the ellipsoid, measured along the normal to the surface of the ellipsoid
is defined as the geodetic height (d) [7]. The goal is to construct an ellipsoid that
is as good approximation for the surface of the mean sea level as possible in order
to be able to use the geodetic height as an approximation for height over the sea
level. Note that for instance in air navigation the height over the surface of the
earth is critical and therefore the geodetic height should be treated carefully.

Figure 3.1. A geocentric coordinate system with latitude φ, longitude λ and the distance
from the orgin to the point itself r. CM is the mass centre of the earth [7], [8].
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Figure 3.2. A geodetic coordinate system with latitude φ, longitude λ and the geodetic
height d and a cartesian coordinate systems with coordinates X, Y and Z. The mass
centre of the earth is abbreviated with CM [7], [8].

Geodetic coordinates are often used. This is because in positioning and navi-
gation 3D cartesian coordinates are not appropriate and as an example if moving
north a certain distance, except at the equator, it will not result in an increase
only in the Z value (assuming Z defined as pointing north). For geodetic coordi-
nates the same movement always give an increase only in latitude. When geodetic
coordinates are used in positioning systems they cause some problems. Formulas
for 2D cartesian coordinates are more straightforward to use than corresponding
mathematical formulas for calculating a distance from geodetic coordinates. The
geodetic latitude and longitude coordinates are often transformed to 2D cartesian
coordinates [7], this is to avoid problems. In this thesis if nothing else is said, a 2D
map is always considered when a map is refered. In this case map projections are
the transformation between geodetic and 2D cartesian coordinates and what type
of 2D projection used depends on what is to be modelled. To be able to transition
from geodetic coordinates to flat two-dimensional coordinates one applies a map
projection, see 3.3.

3.3 Map Projections
A map projection projects the surface of the ellipsoid on a plane and can be con-
sidered as the link between the reference ellipsoid and the map. This section
describes two sorts of map projections: conformal and equivalent projection. The
first of the two map projections is conformal and in this projection all angles are
preserved. The angles on the surface of the earth are equal to the angles on the
map. The second map projection is equivalent projection. In this projection when
comparing any area on the map and the corresponding area on earth a constant
ratio is achieved. Projections can not be both conformal and equivalent [7]. A
projection is exact when a map projection is used to transform one type of coor-
dinates to another type of coordinates without loosing data. Regardless of which
type of projection that is used, when approximating the 3D spherical earth with
the 2D representation, it is impossible to be exact in every aspect.
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A 2D projection of the earth is used to make an approximation. The errors in
this approximation are negligible for common map users. Many projections have
been made to approximate a certain local area accurately. However, if these pro-
jections are used on other areas they will lead to poor or even invalid projections,
which means they are not very useful for worldwide applications unlike the confor-
mal Universal Transverse Mercator (UTM) projection. A GPS can be integrated
with a DR system, described in section 4.2, which often outputs its data in UTM
coordinates. In this case one option is to transform WGS 84 coordinates to UTM
coordinates (this transformation is called the UTM projection, not to be confused
with UTM coordinates).

It is possible to divide the surface of the ellipsoid earth model. UTM divides
the earth model into 60 zones, each 6 degrees wide in longitude. A zone reaches
from 80 degrees S to 84 degrees N and the central meridian is also in the centre
of the zone. The N axis is defined in north direction and the E axis is defined
in the east direction. 2D cartesian coordinates are used. For the areas north of
the latitude 84 degrees north, and south of 80 degrees south, a Universal Polar
Stereographic (UPS) projection has been used. Since the data collection for this
thesis did not take place in these areas UPS will not be further described. The
UTM coordinates are given in metres and are referred to as northing and east-
ing [7]. The point where the central meridian intersects the equator is the orgin
of each zone. A problem occurs if all points west of the central meridian in the
zone either have to be given negative values or assigned with a direction. This is
the case if the orgin is assigned with the value of zero. In order to counter this
the central meridian in each zone is given a false easting of 500 000 m. Because
this values will be lower than 500 000 to the points west of central meridian. If
referring to a position in the southern hemisphere, the equator is given a false
northing of 10 000 000 m. Similariy, if referring to a position on the northern
hemisphere a false northing of 0 can be given [14]. This is because all points in the
southern hemisphere have to be negative or assigned with a south direction when
the equator would be given the northing value 0. The UTM projection is easy to
use for a positioning system design working in one zone and transitions between
different zones are more difficult to handle. The UTM projection is a worldwide
projection.

This section is based on [15]. The Swedish grid (in Swedish RT90, Rikets Nät)
is a newer modified version of the coordinate system RT38 from 1938. RT90 uses
a Gauss conformal projection which preserves the angles and the chosen central
meridian in the longitudinal direction, and it is used for Swedish government maps.
Synonyms for Gauss conformal projection are Gauss-Krüger (GK) and transverse
Mercator map projection (TM). Starting from the central meridian to the actual
system of projection the x-coordinates are calculated positive north and the y-
coordinates positive east. In order to avoid negative y-coordinates an addition
of 1500 km has been made. Now the central meridian is defined in relation to
zero central meridian in Greenwich, but from the beginning the central meridian
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is defined as 2.5 gon (1 gon = 0.9 degrees) west of the Stockholm Observatory.
SWEREF 99 is a three-dimensional reference system. SWEREF99 has its origin in
the mass centre of the earth. In the future SWEREF99 is going to replace RT90.

3.4 Coordinate Frames
A coordinate system can specify the location of a point using a vector from an
origin to the point itself. Some coordinate frames are being used to design the
positioning system in this thesis. There are several frames; the earth-centred,
earth-fixed (ECEF) coordinate frame rotates with the earth and has the X-axis
towards the Greenwich meridian. For describing the location of the point in an
ECEF frame the three-dimensional (3D) cartesian coordinates and geodetic co-
ordinates are useful. In section 3.2 more information about different coordinates
can be found. The second earth frame, WGS 84 frame, is also earth-fixed and
earth-centred. The WGS 84 ellipsoidal earth model and geodetic coordinates are
used. The WGS 84 frame is actually an example of an ECEF frame and has its
prime meridian through Greenwich. The third frame, NEZ frame (NEZ after its
axes North East Height), has its orgin in the vehicle typically centre of sensor
cluster or mass centre of the vehicle. In the NEZ frame, the N-axis always points
north, E-axis always points east and Z-axis points up from the centre of the earth.
Finally, the last frame in this thesis, the Body frame, has the same origin as the
NEZ coordinate frame and the X-axis is in the direction of the vehicle, the Z-axis
is through the roof of the vehicle and the Y-axis forms the right hand orthogonal
coordinate frame.

This work uses mathematical formulas and expressions for the transformations
between coordinates in the WGS 84 frame and UTM coordinates described in
[8]. The mathematical formulas and expressions for the transformations between
coordinates in the WGS 84 frame and RT90 coordinates is from [15], [16] and [17].





Chapter 4

Positioning Techniques
Related to This Thesis

The three main approaches to determine the position of the vehicle today are
stand-alone, satellite based and terrestrial radio based. A stand-alone device is
self-contained and does not require any other devices to function. A satellite nav-
igation system uses satellites to determine the position of the vehicle. Terrestrial
radio based system for positioning use base stations and antenna system for mo-
bile phones, two-way radios, microwave applications and Personal Communication
Systems (PCS) to broadcast signals to the vehicle. Positionining in mobile radio
systems can be found in [18] and is an example of a terrestrial radio based ap-
proach used for postioning. This thesis will present a combination of two of these
approaches. These two approaches are camera and DR, which are stand-alone
approaches and GPS, which is a satellite based positioning system. To set up a
DR algorithm, speed and direction of travel are used and measured from in-vehicle
sensors. If a DR model is combined with map data and GPS, a more accurate
system can be obtained and certain drawbacks can be avoided, compared to using
the two models separetly [19].

4.1 Camera
A camera can be used as a vehicle positioning system in the lane. Maps and 3D
models can be automatically designed from camera data. An image sensor alone
can be used for pose, i.e. position and direction, estimation and structure recon-
struction. This is called Structure from Motion (SfM), [20]. SfM is a cost-efficient
approach when augmented imagery application, which is generated by adding vir-
tual objects into real images, is created. SfM is cost-efficient since it requires
no additional hardware. A single camera SfM matches image features between
consecutive image frames and, based on a geometric camera model, estimate the
camera poses and 3D positions of the observed features. This is the most com-
mon approach for single camera SfM. SfM fails when image features cannot be
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matched robustly between consecutive frames. This happens when image infor-
mation is poor, which is the main drawback with SfM. Using Bundle Adjustment
(BA) accuracy can be improved by optimizing an estimate numerically. An initial
estimate that is accurate enough to converge is required for BA in order to improve
accuracy and robustness, as shown in e.g. [21] and [22]. A single track vehicle
motion model can be included in a BA framework [23]. Accuracy of visual BA can
be combined with vehicle motion models and standard in-vehicle sensor data (like
wheel speeds, yaw rate and steering wheel angle). The system creates an accurate
and robust pose estimate for a camera. BA is often computinally demanding,
which is not the case for the camera mentioned in chapter 1.3 were the outputs
of the camera is lane positioning data. This work uses the signals relative angle
between vehicle and road, lateral displacement of the vehicle in lane, curvature at
the ego vehicle from a LPS system in order to determine the position of the vehicle
in lane. The data from LPS system will be further described in chapter 5.

4.2 Dead Reckoning

A DR system calculates the position of the vehicle at any time instance, if the
starting location and all previous displacements are known. DR systems calculate
the travelled distance and the direction of travel. Inertial Navigation System
(INS) is an example of a DR system, and it calculates the position of a vehicle
from its acceleration and angular velocities. In this thesis another DR approach
is considered where the position of the vehicle and attitude1 are calculated from
the longitudinal velocity vx and the yaw angle of the ego vehicle ψE . The yaw
rate and attitude are supposed to be constant, while the longitudinal velocity is
changing during a sample period. This approach of DR system has the following
equations:

N(t+1) = N(t) + T ∗ v(x) ∗ cosψE(t) (4.1)
E(t+1) = E(t) + T ∗ v(x) ∗ sinψE(t) (4.2)
ψE(t+1) = ψE(t) + T ∗ ψ̇E(t) , (4.3)

where N and E are the north, east position coordinates. T is the sample time
and ψE is the yaw angle, which is defined as in Figure 4.1. DR systems have
the advantage that they can be run with a high sample frequency compared to
the GPS. Drawbacks with DR systems are errors in position and attitude that
comes from sensor inaccuracies and the assumption of constant yaw rate, attitude
and the longitudinal velocity is changing over a sample period. The calculated
position is less accurate over time because errors in position and attitude tend to
accumulate as the vehicle continues to travel.

1The attitude is the relation between the body frame and the NEZ frame and can be described
with three angles, namely the yaw angle, the pitch angle and the roll angle [24]. In this thesis
only the yaw angle is referred to as the attitude.
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Figure 4.1. The definition of the yaw angle ψE

4.3 GPS
The GPS is a global satellite-based radio navigation system developed by the
United States Department of Defense (U.S DoD) originally for military purposes
but is nowadays also accesible for civilians. The GPS consists of at least 24 satel-
lites arranged in six orbital planes. Each satellite carries a high precision atomic
clock and broadcasts encoded messages at regular and known time instants. Each
message includes an identification number and the location of the satellite. A re-
ceiver on the ground decodes the signal and uses the signal propagation time to
calculate a pseudorange. In order to determine its position, the receiver needs to
know the pseudorange to the satellites and their locations. Simultaneous observa-
tion of at least four unique satellites permits determination of the 3D coordinates
of the receiver. The coordinates can be calculated in, for example, a WGS-84
frame or an ECEF-frame [5]. Certain drawbacks with the GPS receivers is low
sample frequency, low resolution, low accuracy, multipath, loss of GPS position
through urban canyons or road tunnels. The multipath effect is due to reflection of
GPS signals on blocking objects and mainly appears in the surroundings of large
buildings or other elevations. The reflected signal is detected later by the GPS
receiver than the direct signal. The consequence is an error in the range of a few
meter of the estimated GPS position. One advantage of GPS receivers is that
they do not suffer from error growth, which occurs for DR systems. DR systems
run with high sample frequency and they do not have the risk for signal masking,
chapter 1.1, which is an another drawback with GPS.





Chapter 5

Data Collection and
Preprocessing

This chapter describes the data collection and preprocessing of the signals before
the signals are evaluated. The purpose of this chapter is also to give a better
understanding of the signal’s behaviour and characteristics.

5.1 Data Collection
One of Volvo’s test trucks was used to collect data. The test vehicle started to
collect data near Lundbyvassen in Gothenburg to Kullamotet near Bollebygd and
back again to Volvo Technology’s garage at Götaverksgatan see figure 5.1. The
route took one hour five minutes and 54 seconds to drive.

Figure 5.1. The route from Lundbyvassen in Gothenburg to Kullamotet near Bollebygd
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The test vehicle was equipped with camera, gyroscope and a GPS receiver.
All signals were sent from different Controller Area Network (CAN) buses, which
is an electronic network used for information communication between different
components and systems in the vehicle. An industrial PC and Vector CANape
were used to collect and store the data. The Vector CANape is a data collection
program, installed on a computer.

There were three different kinds of data from the test vehicle, namely data
from LPS system, data from vehicle sensors and data from GPS. This issue will be
discussed further in this chapter together with the preprocessing of the collected
data.

To understand the different data from the LPS system, data from vehicle sen-
sors, data from GPS their behaviour and characteristic better two small parts from
the route have been selected named Data sequence 1 and Data sequence 2. Data
sequence 1 and Data sequence 2 are discussed in chapter 5.1.1 and 5.1.2.

5.1.1 Data Sequence 1
Data sequence 1 is a road stretch with curves without any disturbance except
that the test vehicle passed a connecting road at the time 532 seconds and an
overtaking car crossed the center line of the lane at the time 582 seconds. The
different signals from the LPS system, from the vehicle sensors, from the GPS
figures of Data sequence 1 are listed in table 5.2, 5.4 and 5.6.

5.1.2 Data Sequence 2
It is also important to know how the data from the LPS system, data from the
vehicle sensors, data from the GPS behaves and their characteristics under dis-
turbance. The disturbance is caused by overtaking cars of the test vehicle at the
time 665 seconds, 704 seconds, 714 seconds, turning road at the time 665 seconds,
the test vehicle is going under a bridge at the time 680 seconds, connected road at
the time 698 seconds. The connected road can explain why the LPS system lost
connection for a while around the time 694 seconds because it do not know which
lines of the two lanes it should be tracking. In table 5.2, 5.4 and 5.6 figures of data
sequence 2 for the different signals from the LPS system, from the vehicle sensors
and from the GPS are listed.

5.1.3 Data from the LPS System
This section is based on information from [25]. The Lane Position Sensor (LPS)
system is a closed system. An image processing system helps the LPS system to
monitor the position of the vehicle in lane. Visible lane markings are used, also
curbs and road boundaries may in some cases be detected by the LPS system.
This happens when the road has no visible lane markings on the outside. The
LPS system determines the most probable lane from a combination of all detected
lane markings. Other functionalities of the LPS system is that the measurement
is stabilized from the tracked lane markings that are found, but the system also
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Figure 5.2. The relation between the signals that are coming from the LPS system and
the vehicle and the road
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seperates changes in road layout from ego movements and the predicted detection
range. The LPS system includes a camera, which is mounted inside the vehicle.
The camera tracks the white dashed lines in the lane. Figure 5.2 shows how the
signals that are coming from the LPS system are related to the vehicle and the
road. The signals from the LPS system will be further discussed in chapter 7.1.
For how they are decided see chapter 5.2.1. The sampling frequencies of the data
from the LPS system are proprietary information and will not be mentioned in
this thesis. The relative angle between vehicle and road ψRE has the unit in
radians, the lateral displacement of the vehicle in lane lE has the unit metre and
the curvature at the ego vehicle c0 has the unit m−1. In table 5.1 information from
the LPS system are listed. Since all three variables in the table 5.1 are determined
from the LPS system, the measurement error will be dependent. The relative
angle is given between -45 and 45 degrees. The relative angle of the data from
the LPS system is given with a certain resolution. This explains the quantified
effects and that the relative angle is discrete in levels in figure A.7, A.8 for Data
sequence 1 and in figure A.21, A.22 for Data sequence 2. However the resolution
is proprietary information and can not be disclosed. The curvature is defined
between -1/250 m−1 and +1/250 m−1. Similary to the relative angle of the data
from the LPS system, the curvature of the data from the LPS system is given with
a certain resolution. This explains the quantified effects and that the curvature is
discrete in levels in figure A.10, A.11 for Data sequence 1 and in figure A.24, A.25
for Data sequence 2. However the resolution is proprietary information and can
not be disclosed.

Table 5.1. Information from LPS system

Signal Symbol Unit
The relative angle between vehicle and road ψRE rad
The lateral displacement of the vehicle in lane lE m

The curvature at the ego vehicle c0 m−1

Table 5.2. Figures from data from left (l) and right (r) lane marker of the LPS system
Signal Data sequence 1 Data sequence 2

The relative angle between vehicle and road l:A.7, r:A.8 l:A.21, r:A.22
The lateral displacement of the vehicle in lane A.9 A.23

The curvature at the ego vehicle l:A.10, r:A.11 l:A.24, r:A.25

5.1.4 Data from Vehicle Sensors
The sampling frequencies of the data from the vehicle sensors are proprietary
information and will not be mentioned in this thesis. The signals that come
from the vehicle’s sensors are steering wheel angle δs has the unit in radians,
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the longitudinal velocity vx has the unit metre per second and yaw rate ψ̇E which
is measured by a gyro and has the unit radians per second. In table 5.3 information
from the vehicle sensors are listed.

Table 5.3. Information from vehicle sensors

Signal Symbol Unit
Steering wheel angle δs rad
Longitudinal velocity vx m/s

Yaw rate ψ̇E rad/s

Table 5.4. Figures from data from vehicle sensors

Signal Data sequence 1 Data sequence 2
Steering wheel angle A.12 A.26
Longitudinal velocity A.13 A.27

Yaw rate A.14 A.28

5.1.5 Data from the GPS

The GPS receiver that has been used is a Garmin GPS 18 [26] receiver and the
signals that are coming from map data and GPS are the curvature from map data
c0mapdata and has the unit m−1, GPSheading and has the unit in degrees, x and
y position which gives the position in longitude and latitude and have the unit in
degrees from GPS are all sampled with 1 Hz. How data from the GPS is decided
is further discussed in chapter 5.2.3. In table 5.5 information from the data from
GPS are listed.

Table 5.5. Data from GPS

Signal Symbol Frequency Unit
X-coordinate of GPS xGPS 1 Hz degree
Y-coordinate of GPS yGPS 1 Hz degree

GPS heading GPSheading 1 Hz degree
Curvature from map data c0mapdata 1 Hz m−1
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Table 5.6. Figures from data from GPS in WGS 84 (l) and in RT90 (r)

Signal Data sequence 1 Data sequence 2
X-coordinate of GPS l:A.15, r:A.16 l:A.29, r:A.30
Y-coordinate of GPS l:A.17, r:A.18 l:A.31, r:A.32

GPS heading A.19 A.33
The curvature from map data A.20 A.34

5.1.6 Data from the Swedish National Road Administration

Vägverket (Swedish National Road Administration), here abbreviated SNRA, has
driven part of this route and measured it with laser scanners. This route is lo-
cated on the countryside outside Gothenburg and was driven from Öis gården to
Kullamotet near Bollebygd see figure 5.3. The collected data from the SNRA
were given as a csv-file and were loaded into Matlab. The collected data from the
SNRA that is useful for this thesis includes distance, velocity, x-, y-position and
curvature defined positive for left turn. These measured values are considered as
true and will be compared to the data that were collected from Volvo’s truck. The
true values are then going to be a measure to see how good the model in this thesis
is.

Figure 5.3. The Swedish National Road Administration’s route from Öis gården to
Kullamotet near Bollebygd

The collected data from the SNRA is sampled every metre. The curvature
has the unit 10000 per metre and is defined positive for left turn. In table 5.7
information from the data from the vehicle sensor’s are listed.
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Table 5.7. Data from the Swedish National Road Administration.

Signal Symbol Unit Figure
Distance sv metre A.2

X-coordinate of GPS xGPS degree A.3
Y-coordinate of GPS yGPS degree A.4

Curvature c0Lv 10000/m A.5
Longitudinal velocity vxv km/h A.6

5.2 Preprocessing
The inputs and measurement signals from the vehicle sensors (yaw rate, velocity,
steering wheel angle), LPS system (camera), map data and GPS are preprocessed
before the signals are estimated by the EKF. E.g mean value calculations and
some signals are linear interpolated in order to get the signals in the same time
basis are some examples of preprocessing.

5.2.1 Data from the LPS system
Notice from the figures listed in table 5.2 that the data from the LPS system
is discrete in levels and have quantified effects that depends on internal signal
processing have been made in the LPS system [25]. The relative angle between
vehicle and road ψRE and the curvature at the ego vehicle c0 from the LPS system
is measured both on the left side and right side on the vehicle. Separately linear
interpolation has been done to have relative angle between vehicle and road re-
spectively curvature left and right in the same time basis. Mean value calculations
have been made also to give relative angle between vehicle and road ψRE and the
curvature at the ego vehicle c0 from the LPS system in the middle. The curvature
at the ego vehicle c0 from the LPS system in the middle is defined positive right
in the figures in this thesis.

5.2.2 Data from the Vehicle Sensors
To obtain the front wheel angle δf , the steering wheel angle δs is divided by 17, see
chapter 7.1. To obtain the estimated yaw rate ψ̇E , described in chapter 7.1, the
front wheel angle δf and the longitudinal velocity vx were linearly interpolated to
get the measurements in the same time basis. Since longitudinal velocity vx was
measured at a lower rate than δf , its time basis was chosen. The estimated yaw
rate ψ̇E was then calculated as front wheel angle δf multiplied by the longitudinal
velocity vx and then divided by the wheel base on the vehicle lb.

5.2.3 Data from the GPS
The GPS uses the reference system WGS84, which gives the position in longitude
and latitude. The signals from GPS are converted to x- and y-coordinates in RT90,
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see chapter 3.4. This transformation has been implemented in Matlab. After data
collection x-, y-position and time from GPS is sent into Volvo’s map data program
[27], [28]. The map data program take out road attributes from a given map and
gives out map data matched with x-, y-position and time. The map data program
outputs a set of road attributes but since this thesis was interested in sensor fusion
the curvature from map data with the curvature from LPS system only the curve
radius were selected of the road attributes. Since the curvature from map data is
noisy the signal has been low pass filtered. The low pass filter that has been used
is a sixth order Butterworth filter with the cutoff frequency of 0.25 Hz.

5.2.4 Data from the Swedish National Road Administration
The curvature from the SNRA is divided by 10000 to obtain the unit m−1 and the
longitudinal velocity from the Swedish National SNRA is divided by 3.6 to obtain
the unit m/s see chapter 5.1.6. Since the curvature from the SNRA included
white noise the signal has been low pass filtered. The low pass filter that has been
used is a sixth order Butterworth filter with the cutoff frequency of 0.25 Hz. The
white noise can be due to the SNRA measure equipment or other vibrations in the
vehicle (i.e. not input related to curvature).



Chapter 6

Theory

The purpose of this chapter is to give a brief introduction to the Kalman filter and
the extended Kalman filter theory. There are many books about this subject and
this thesis uses similiar notations and equations as in [29]. More about Kalman
filter and extended Kalman filter theory can be found in [30].

6.1 The Linear State Space Model

The states in a linear state space model are

xk+1 = Fkxk +Gu,kuk +Gw,kwk, (6.1)
yk = Hkxk +Dkuk + vk, (6.2)

where xk is the state vector and yk is the output of the system. Fk is the system
matrix, Gu,k is the system input matrix, Gw,k is the process noise matrix, Hk is
the measurement matrix, Dk is the measurement input matrix.

The process noise wk and the measurement noise vk are Gaussian noise with
the following properties:

E(wk) = 0, (6.3)
E(vk) = 0, (6.4)

where E(x) is the expectation of x.

COV (wk) = Qk, (6.5)
COV (vk) = Rk. (6.6)

Qk is the covariance matrix of the process noise and Rk covariance matrix of the
measurement noise.
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6.2 The Kalman Filter
The states in a linear state space model can be estimated by the Kalman filter
(KF). The KF is initialized with

E(x0) = x̂1|0, (6.7)
COV (x0) = P1|0. (6.8)

The double time index k|m means time k given measurements up to time m.
P is the covariance matrix of the state estimation error. Equation (6.1) implies
(without any observations) that the initial state (6.7) and covariance (6.8) are
propagated as

x̂k|0 = Fkx̂k−1|0, (6.9)
Pk|0 = FkPk−1|0F

T
k +GkQkG

T
k . (6.10)

Algorithm 6.1 Consider a model described by p(y|θ), a conditional probability
density function (PDF) where y is an observation due to a parameter θ. A good
estimator θ̂ is sought. To map α, the observations to an estimate, a estimator
θ̂ = α(y) is introduced. The mean square error (MSE) is denoted as

MSE(θ) = E((θ◦ − θ̂)2) = E((θ̂ − E(θ̂))2 + (θ◦ − E(θ̂))2,

where θ◦ is the true parameter. Let introduce the best linear unbiased estimator
(BLUE). The linear functions θ̂ = α(y) = Ly that minimimes the MSE are
bounded by the BLUE as well as the estimator to be unbiased. In order to get
the best linear unbiased filter for the linear model (6.1), the following recursions
are used and initialized with x̂1|0 = E(x0) and P1|0 = COV (x0):

1. Measurement update.
The observation up to time k have been used to form the estimate x̂k|k of
the state xk

x̂k|k = x̂k|k−1 +Kkεk, (6.11)
Pk|k = Pk|k−1 −KkHkPk|k−1 = Pk|k−1 −KkSkK

T
k . (6.12)

2. Time update.

x̂k+1|k = Fkx̂k|k +Gu,kuk, (6.13)
Pk+1|k = FkPk|kF

T
k +Gw,kQkG

T
w,k (6.14)

Where the innovation is defined as

εk = yk −Hkx̂k|k−1 −Dkuk, (6.15)
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for the innovation covariance is given by

Sk = HkPk|k−1H
T
k +Rk, (6.16)

and Kalman gain is defined as

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)−1. (6.17)

The measurement update can then be written

x̂k|k = x̂k|k−1 +Kkεk, (6.18)
Pk|k = Pk|k−1 −KkHkPk|k−1 = Pk|k−1 −KkSkK

T
k . (6.19)
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Figure 6.1. Kalman filter: Overview of the calculation.

6.3 Overview of the Calculations in the KF
The KF algorithm is recursive, which means the optimal estimate of the current
state can be calculated from the estimated state of the previous time step and
the current measurement. The KF algorithm can be divided into two parts; time
update (prediction) and measurement update (correction). An overview of the
calculations in the KF can be found in figure 6.1. First the KF are initialized
with E(x0) = x̂1|0 and COV (x0) = P1|0. In the time update, the KF estimates
the current state from the previous state. This can be applied when no new



34 Theory

information have been obtained in the KF. See the equation in step 1 in figure
6.1. The first term in the equation in step 2 indicates how the uncertainty in
the estimate is propagated to the next point. The second term indicates how
much uncertainty increases because of the noise wk in the equation (6.1). The
next step is to calculate the measurement obtained at the time k i.e. yk, should be
weighted in the time update equations. In the measurement update, the prediction
error/innovation εk is calculated and can be interpreted as the genuinely new
information in the measurement yk. The new genuine information is the part
of the measurements that can not be explain of the estimates of the state i.e.
εk = yk− ŷk|k−1. In step 2 in figure 6.1 the innovation covariance Sk is computed.
In step 3 in figure the Kalman gainKk is computed. Kk is a function of the relative
certainty of the measurements Pk|k−1 and the measurements yk of the current state
estimate x̂k|k. A high Kalman gain means that the KF places more weight on the
measurements i.e., the filter rely more on the measurements. A low Kalman gain
means that the KF rely more on the model predictions in order to smooth out noise
but deacrising the responsiveness. Sk together with Kk represents the second term
in equation 5 in figure 6.1 and indicates how much uncertainty Pk|k−1 is reduced
by weighting the data into the new measurement yk according to equation 4. The
outputs at k will be the input for k + 1 and then the algorithm begins again.

6.4 The Nonlinear State Space Model and EKF
The states in a nonlinear state space model with additive Gaussian noise

xk+1 = f(xk, uk) + wk (6.20)
yk = h(xk, uk) + vk. (6.21)

The extended Kalman filter (EKF) estimates the states in a nonlinear state space
model with additive Gaussian noise. The nonlinear filter recursion has one mea-
surement update (similar to the Kalman filter in the linear case). This is provided
that x̂k|k, Pk|k and a time update yielding are present. First order Taylor expan-
sion of a nonlinear function z=g(x) is made around x̂,

z = g(x) ≈ g(x̂) + g
′
(x̂)(x− x̂), (6.22)

where x ∼ <nx and (initially for notational convenience) z ∼ <1. g′(x̂) denotes
the Jacobian evaluated at x̂ and this can be related to a linear state space model
by the Kalman filter.

Here detailed recursions for the extended Kalman filter (EKF) will be given.
The function h(x, u, 0) is written more compactly h(x), and similary f(x) =
f(x, u, 0). The transformation approximation gives Riccatti-based EKF. The ma-
trices
(h′x(x̂))ij = δhi(x)

δxj
|x=x̂ and (f ′x(x̂))ij = δhi(x)

δxj
|x=x̂, where i = 1, ...,m, m is the

number of measurements and j = 1, ..., n, n is the number of states to simplify the
notations.
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Algorithm 6.2
For the model (6.20), the following recursions are used and initialized with x̂1|0
and P1|0:

1. Measurement update.

x̂k|k = x̂k|k−1 +Kkεk (6.23)
Pk|k = Pk|k−1

− Pk|k−1(h
′

x(x̂k|k−1))TS−1
k h

′

x(x̂k|k−1)Pk|k−1 (6.24)

2. Time update.

x̂k+1|k = f(x̂k|k) (6.25)

Pk+1|k = f
′

x(x̂k|k)Pk|k(f
′

x(x̂k|k))T +Qk (6.26)

Where the innovation is defined as

εk = yk − h(x̂k|k−1) (6.27)

for the innovation covariance is given by

Sk = h
′

x(x̂k|k−1)Pk|k−1(h
′

x(x̂k|k−1))T +Rk (6.28)

and Kalman gain is defined as

Kk = Pk|k−1(h
′

x(x̂k|k−1))TS−1
k (6.29)
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Figure 6.2. Extended Kalman filter: Overview of the calculation.

6.5 Overview of the Calculations in the EKF
An overview of the calculation in the EKF can be seen in figure 6.2. In step 1
in the time update first order Taylor expansion of a nonlinear function z=g(x) is
made around the current estimate state x̂,

z = g(x) ≈ g(x̂) + g
′
(x̂)(x− x̂), (6.30)

where x ∼ <nx and (initially for notational convenience) z ∼ <1. g′(x̂) denotes
the Jacobian evaluated at x̂ and this can be related to a linear state space model
by the Kalman filter. The linearization around the current estimate state x̂ is
made for all the updates in the standard EKF. After the linearization the states
are estimated in the EKF in a similar way as the KF, compare figure 6.2 and figure
6.1.

6.6 Alternative Filters
The reason why an EKF is selected is to provide a simple way of weighting together
different measurement signals. Another reason is that the equations of the model
in chapter 8 do not contain as many nonlinearities and therefore a more advanced
filter such as particle filter (PF) will not be needed. The purpose of this section is
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that it will give a brief introduction to alternative filters that can be used instead
of the EKF. This section is based on information from [31] and [29].

The goal with unscented Kalman filter (UKF) [32], [33] is to fit a Gaussian
distribution at each time step. This is done by propagating a number of points in
the state space. UKF is often more accurate an EKF. This is mainly because the
quadratic term is accomodated in nonlinear models. Two other variants of this
principle are the divided difference filter (DFF) [34] and the quadrature Kalman
filter (QKF). Once again, these filters are bounded to be applicated to posterior
distributions that is unmodial.

Gaussian sum Kalman filters (GS-KF) presented in [35] can handle multimodial
posterios. The filters include a Gaussian mixture distribution and the posterior.
An extension of this idea is the Kalman filter approximations such as the Gaussian
sum quadrature Kalman filter (GS-QKF) in [36].

In [35], [37] the point mass filter (PMF) is described. The filter estimates the
state recursively by griding the state space and computing the posterior. PMF is
able to represent any posterior distribution. The filter also applies to any nonlinear
and non-Gaussian model. The algorithm is of quadratic complexity in the grid size.

Notice that the model is an approximation using Gaussian distributions as the
posterior and this is both propagated by EKF and UKF. The PMF, on the other
hand, approximates the posterior over a grid and uses the original model. Similary
to the PMF, an numerical approximation to the nonlinear filtering problem is also
outputed by the PF. The PF uses an stochastic grid that is adaptive. In the state
space relevant grid points from the adaptive stochastic grid are automatically
selected. It should also be mentioned that the standard PF has linear complexity
in the number of grid points compared to the PMF.





Chapter 7

Model

The system model, see figure 1.1 is a modified and extended version of a model
called Single Track Model with Road Interaction (STMRI). The STMRI is nor-
mally used for autonomous driving and lane keeping and is described by [38]. A
deeper description and more information about STMRI and its equations can be
found in [39] and [40]. The equations for the lane positioning state space model are
in discrete state space form. To go from continuous form to discrete form Euler’s
method has been used. Euler’s method is described in e.g. [41]. The state space
vector for the system, see figure 1.1, is estimated by a KF with the measurement
signals from the vehicle sensors (yaw rate, velocity, steering wheel angle), LPS
system (camera), map data and GPS. The KF can be implemented in Matlab.

7.1 Single Track Model with Road Interaction

The vehicle motion is described with respect to a road fixed coordinate frame. The
relative angle between vehicle and road is ψRE and is according to Ackermann’s
steering geometry described by

ψ̇RE = vxc0 + ψ̇E ,

where the inverse of the road’s radius gives the current curvature of the road,
c0 = 1/R. The yaw rate ψ̇E is computed as

ψ̇E = vx
lb
δf ,

where lb is the wheel base of the vehicle and vx is the ego vehicle’s longitudinal
velocity. To get the relative angle between vehicle and road ψRE the LPS system
in the vehicle measures heading angle right χR and the heading angle left χL. The
mean value between χR and χL is equal to ψRE , see figure 7.1.
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Figure 7.1. The relative angle between vehicle and road is ψRE . In the body coordinate
system, (x̂, ŷ) is the position of the moving vehicle. The position (x,y) in the curved
coordinate system follows and is attached to the road. The lateral displacement of the
vehicle in lane is lE . The radius of the road is R and the current curvature of the road
is c0. The derivative of the current curvature of the road is c1.

The lateral displacement of the vehicle in lane lE has the following relation

l̇E = vx sin(ψRE) ≈ vxψRE
for small angles of ψRE .

The front wheel angle δf and the steering wheel angle δs has the following
relation

δf = δs
δk
,

where δk is a constant, which depends on the referred vehicle. This constant δk is
equal to 17 for the test vehicle mentioned in chapter 5.1.
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A transition curve, whose curvature c changes linearly with its curve length xc
is described as a clothoid and gives the relation

c(xc) = c0 + c1xc.

Suppose xc = 0 at the position of the ego vehicle, in other words xc is fixed to
the ego vehicle. c0 and c1 will be time varying state variables when driving along
the road and passing through different road segments. A curvature change in the
transition curve at the position of the vehicle gives the relation

dc(xc)
dt

= ċ0 = dc0

dxc

dxc
dt

= c1vx,

where vx is the ego vehicle’s longitudinal velocity. To get the curvature at the ego
vehicle c0, the LPS system in the vehicle measure the curvature right c0R

and the
curvature left c0L

and the mean value between c0R
and c0L

is equal to c0. See
figure 7.1.

7.2 State Space Model for the complete Lane Po-
sitioning System

The following dynamic discrete time state space equations describes the position
of the vehicle in the lane:

ψRE(t+1) = ψRE(t) + T ∗ vx ∗ c0(t) + T ∗ ψ̇E + w1,t (7.1)
lE(t+1) = lE(t) + T ∗ vx ∗ ψRE(t) + w2,t (7.2)
δs(t+1) = δs(t) + w3,t (7.3)
δoffss(t+1)

= δoffss(t)
+ w4,t (7.4)

c0(t+1) = c0(t) + T ∗ vx ∗ c1(t) + w5,t (7.5)
c1(t+1) = c1(t) + w6,t (7.6)

The definitions of ψRE , lE , δs, c0, c1, vx and ψ̇E are described in section 7.1 and
δoffss in section 7.2.1. The KF in the lane position system, see figure 1.1 is based
on the lane positioning system state space model described in this section, which
gives the following state space vector

[ψRE , lE , δs, δoffss , c0, c1].

All the states in the state space vector are initialised with their first measurement
signal except the curvature and its derivate, that are initialised to zero. This
model of the position of the vehicle in the lane is linear and can be estimated
by a KF. Chapter 8 describes an extended version of this lane positioning system
state space model. The extended lane positioning system state space model has
nonlinear state equations and therefore an EKF has been chosen.



42 Model

7.2.1 Complete Measurement Equations
The steering wheel angle measurement has an offset and is a state variable in the
model. The steering wheel angle offset δoffss has the following relation

δms = δs + δoffss

where the measured steering wheel angle is δms . Position and time from GPS have
been loaded into Volvo’s map data program, which gives curvature and time in
order to match map data with the other signals in the lane positioning system state
space model. The GPS position is in WGS 84 coordinates, which is described in
section 3.3. The measurements used in the KF are relative angle between vehicle
and road, lateral displacement of vehicle in lane, steering wheel angle, curvature
from LPS system, curvature from map data and GPS position in order to match
it with correct curvature and have the following linear measurement equations

ψREmeasured,(t+1) = ψRE(t+1) + v1,(t+1) (7.7)
lEmeasured,(t+1) = lE(t+1) + v2,(t+1) (7.8)
δsmeasured,(t+1) = δs(t+1) + δoffss(t+1)

+ v3,(t+1) (7.9)

c0measured,(t+1) = c0(t+1) + v4,(t+1) (7.10)
c0mapdatameasured,(t+1) = c0mapdata(t+1) + v5,(t+1) (7.11)
xmeasured,(t+1) = x(t+1) + v6,(t+1) (7.12)
ymeasured,(t+1) = y(t+1) + v7,t+1 (7.13)

, where vk, for k = 1, 2...7, is measurement noise.



Chapter 8

Extended Model

The model from chapter 7 can be extended. More reliable measurement signals
from additional sensor sources give a more accurate position of the vehicle in the
lane. The extended model and its equations and signals will be described in this
chapter.

8.1 GPS and DR Model
The absolute position from the GPS is important to know in order to match the
position with the road attributes from map data. In order to get a more accurate
absolute position and avoid certain drawbacks with GPS, discussed in chapter 4.3,
a DR model will be used together with the GPS. These complementary charac-
teristics indicate that integration of a DR system and GPS can be advantageous.
This integration will be done using an EKF.

The DR model is a dynamic model with constant speed and the following state
space vector x(t)

x(t) =

X(t)
Y (t)
ψE


with it’s derivative

ẋ(t) =

vxcosψEvxsinψE
ψ̇E


Assuming constant velocity and yaw rate, the discreate time formulas are

X(t+1) = X(t) + TvxcosψE(t) (8.1)
Y(t+1) = Y(t) + TvxsinψE(t) (8.2)
ψE(t+1) = ψE(t) + T ψ̇E(t) (8.3)
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that in a NEZ frame, see chapter 3.4, have the following expressions

N(t+1) = N(t) + Tv(x)cosψE(t) (8.4)
E(t+1) = E(t) + Tv(x)sinψE(t) (8.5)
ψE(t+1) = ψE(t) + T ψ̇E(t) (8.6)

The expressions are based on small changes in yaw during one sample interval.
Note the assumption that there are no lateral velocity in the DR model. There
are different approaches of calculating a vehicle’s absolute position. Since the GPS
has slow sample frequency, the approach here, is that the DR measurements are
estimated by the EKF, every time the EKF does not have GPS measurements. In
this thesis a DR system and a GPS receiver will be integrated with an EKF. To
compare the absolute position from the GPS with the calculated position from the
DR, the GPS position can be transformed from WGS 84 to UTM coordinates or
RT90. Transformation to RT90 coordinates has been chosen to be able to compare
data with SNRA data.

8.2 Constant Velocity Model
This model is called constant velocity model and has the following equations in
continuous time.

The state space vector

x(t) =
[
p(t)
v(t)

]
where p(t) denotes the position in 2D (N, E).

By definition the position’s derivative is equal to the longitudinal velocity

ṗx = vx

where the longitudinal velocity’s derivative v̇x is modeled by the following relation

v̇x = w.

The next state of velocity’s derivative is unknown and to cover the errors in the
model, the next state of velocity’s derivative has been set to gaussian white noise
w with mean value equal to zero.

8.3 Coordinated Turn Model
This model is called coordinated turn model and is based on the same principles
as the constant acceleration model, described in [29]. The state space vector is

x(t) =

ψEψ̇E
ψ̈E

 .
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If p(t) is given by yaw angle ψE . The following relation will hold

p(t) = ψE

The yaw angle’s derivative is defined by following relation

ψ̇E = W

where W is the angular velocity.
The angular velocity is defined by the following relation

Ẇ = α

where α is the angular acceleration. The angular acceleration has the following
relation

α̇ = w

In a comparision between the constant acceleration model and the coordinated turn
model it is seen that they are based on the same principles, the only difference
here in the coordinated turn model is that this model has an angular velocity and
angular acceleration instead of a velocity and an acceleration as in the constant
acceleration model, which explains the following two states.

The yaw rate ψ̇E has the following trivial relation
ψ̇E = ψ̇E .
ψ̈E is the next state of yaw rate ψ̇E and defined as
ψ̈E = w.
The next state of yaw rate’s derivative is unknown and to cover the errors in

the model, the next state of yaw rate’s derivative has been set to white noise with
expected value w.

8.4 State Space Model for the complete Extended
Lane Positioning System

The equations describing the extended model give the following dynamic time
discrete equations

ψRE(t+1) = ψRE(t) + Tvx(t)c0(t) − T ψ̇E(t) + w1,t (8.7)
lE(t+1) = lE(t) + Tvx(t)ψRE(t) + w2,t (8.8)
c0(t+1) = c0(t) + Tvx(t)c1(t) + w3,t (8.9)
c1(t+1) = c1(t) + w4,t (8.10)
N(t+1) = N(t) + Tv(x)cosψE(t) + w5,t (8.11)
E(t+1) = E(t) + Tv(x)sinψE(t) + w6,t (8.12)
vx(t+1) = vx(t) + w7,t (8.13)
ψE(t+1) = ψE(t) + T ψ̇E(t) + w8,t (8.14)
ψ̇E(t+1) = ψ̇E(t) + w9,t (8.15)
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The definitions of ψRE , lE , c0, c1, vx and ψ̇E are described in section 7.1 and
the definitions of N , E, vx, ψE , ψ̇E are described in section 8.2, 8.3 and 8.4.
An extended and modified version of the model, described in section 7, has been
implemented in Matlab. The EKF in the extended model is based on the signal
model described in the previous section, which gives the following state space
vector

[ψRE , lE , c0, c1, N,E, vx, ψE , ψ̇E ].

All states in the state space vector are initialised with their first measurement
signal except curvature and its derivate, that are initialised to zero. The extended
model has nonlinear state equations and therefore an EKF has been chosen.

8.4.1 Complete Extended Measurement Equations
To compare the absolute position from the GPS with the calculated position from
the DR, the GPS position can be transformed from WGS 84 to UTM or RT90
coordinates. Transformation to RT90 coordinates has been chosen to be able to
compare data with SNRA data. Position and time have been loaded into Volvo’s
map data program, which gives curvature and time in order to match map data
with the other signals in the extended lane positioning system state space model.
The measurements in the EKF are relative angle between vehicle and road, lat-
eral displacement of the vehicle in the lane, steering wheel angle, curvature from
LPS system, curvature from map data and GPS position in order to match it
with correct curvature from map data and have the following linear measurements
equations

ψREmeasured,(t+1) = ψRE(t+1) + v1,(t+1) (8.16)
lEmeasured,(t+1) = lE(t+1) + v2,(t+1) (8.17)
c0measured,(t+1) = c0(t+1) + v3,(t+1) (8.18)
c0mapdatameasured,(t+1) = c0mapdata(t+1) + v4,(t+1) (8.19)
Nmeasured,(t+1) = x(t+1) + v5,(t+1) (8.20)
Emeasured,(t+1) = y(t+1) + v6,t+1 (8.21)
vxmeasured,(t+1) = vx(t+1) + v7,t+1 (8.22)
ψ̇Emeasured,(t+1) = ψ̇E(t+1) + v8,t+1 (8.23)
GPSheadingmeasured,(t+1) = ψE(t+1) + v9,t+1 (8.24)
vxmeasured,(t+1) ∗ δsmeasured,(t+1)

lb
= ψ̇E(t+1) + v10,t+1 (8.25)

, where vk, for k = 1, 2...10, is measurement noise.



Chapter 9

Results

The aim of this thesis was to investigate the performance of a lane position mon-
itoring system (described in chapter 1.3) and investigate enhancement techniques
for increasing the robustness and availability of such a system by using additional
sensor sources like map data and GPS. This chapter presents the results of the
investigation and Root Mean Square (RMS) values, described in chapter 9.5 is
used to evaluate the performance of the lane position monitoring system. In order
to investigate whether the robustness and availability of such a system, using addi-
tional sensor sources like map data, increase, four techniques described in chapter
9.1, 9.2, 9.3 and 9.4 are introduced. Two data sequences, Data sequence 1 and
Data sequence 2, described in chapter 5.1.1 and chapter 5.1.2, and three cases,
Case A, B and C are also used. The EKF is described in chapter 6. Case A is
when the curvature without map data is estimated by the EKF. Case B is when
the curvature with map data is estimated by the EKF and Case C is when the
curvature both with map data and with reliable camera data is estimated by the
EKF. The author evaluated the solution offline using simulations and a signal that
indicates if the LPS system has reliable camera data over a large sequence has been
manually added to the system estimated by the EKF in the measurement update.
There is a signal from the lane positioning sensor (LPS) system that indicates if
the camera data is reliable and could be used for an online solution.

9.1 Technique 1: Curvature and Position Com-
pared with Data from the Swedish National
Road Administration

To be able to compare the estimated curvature from the EKF with data from
Vägverket (Swedish National Road Administration, SNRA), the distance between
one GPS position as estimated by the EKF and the GPS positions from SNRA are
calculated. The GPS positions estimated by the EKF are referred to as GPSF ,
with coordinates x̂GPS and ŷGPS , and the GPS positions from SNRA, referred to
as GPSV , with coordinates xGPSV and yGPSV . One data point from the EKF
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is said to "match" one of the data points from SNRA, if the distance between the
two positions is less than a constant C, i.e.

‖GPSV −GPSF‖ =
√

(xGPSV − x̂GPS)2 + (yGPSV − ŷGPS)2 < C. (9.1)

Every time a match between the positions has been found the estimated curvature
by the EKF and SNRA are saved and compared. Initially, the EKF estimated
the curvature without map data for Data sequence 1, as seen in figure 9.1 and
subsequently the EKF estimated the curvature with map data for Data sequence
1, as shown in figure 9.2. A similiar comparison has been made for Data sequence
2, where the EKF estimated the curvature without map data, figure 9.3 and addi-
tionally with map data, figure 9.4 and finally with map data and reliable camera
data, figure 9.5.

Figure 9.1. Comparison between the measured curvature from SNRA c0LV (gray) and
the estimated curvature without map data from the EKF c0 (black dashed) for Data
sequence 1, as described in chapter 5.1.1 and according to technique 1. Note that the
scale is very small (1 ∗ 10−4), resulting in small changes in time have a large effect in the
curvature.
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Figure 9.2. Comparison between the measured curvature from SNRA c0LV (gray) and
the estimated curvature with map data from the EKF c0 (black dashed) for Data sequence
1, as described in chapter 5.1.1 and according to technique 1. Note that the scale is very
small (1 ∗ 10−4), resulting in small changes in time have a large effect in the curvature.

Figure 9.3. Comparison between the measured curvature from SNRA c0LV (gray) and
the estimated curvature without map data from the EKF c0 (black dashed) for Data
sequence 2, as described in chapter 5.1.2 and according to technique 1. Note that the
scale is very small (1 ∗ 10−4), resulting in small changes in time have a large effect in the
curvature.
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Figure 9.4. Comparison between the measured curvature from SNRA c0LV (gray) and
the estimated curvature with map data from the EKF c0 (black dashed) for Data sequence
2, as described in chapter 5.1.2 and according to technique 1. Note that the scale is very
small (1 ∗ 10−4), resulting in small changes in time have a large effect in the curvature.

Figure 9.5. Comparison between the measured curvature from SNRA c0LV (gray) and
the estimated curvature with map data and reliable camera data from the EKF c0 (black
dashed) for Data sequence 2, as described in chapter 5.1.2 and according to technique
1. Note that the scale is very small (1 ∗ 10−4), resulting in small changes in time have a
large effect in the curvature.
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9.2 Technique 2: Curvature and Distance Com-
pared with Data from the Swedish National
Road Administration

The curvature of one data point of the EKF is compared to that of a matching
data point from SNRA, as described by equation 9.1. The estimated distance, s,
measured in metres, from the EKF in chapter 6 is calculated for Data sequence 1
and 2 in chapter 5.1.1 and 5.1.2. According to

si =
i+1∑
j=1

vxj ∗∆t, (9.2)

where si is the distance between data point i and i + 1, the longitudinal velocity
vxj is estimated from the EKF and the time ∆t is the EKF simulation time step,
here equal to 0.01 s.

The estimated distance s and the distance from SNRA, defined as sv, are
linearly interpolated, giving the matching estimated curvature c0 from the EKF
and the curvature c0Lv from SNRA. Initially, the EKF estimated the curvature
without map data for Data sequence 1, as seen in figure 9.6, and for Data sequence
2 in figure 9.8. Furthermore the EKF estimated the curvature with map data, as
shown in figure 9.7 for Data sequence 1 and in figure 9.9 for Data sequence 2.
Finally the EKF estimated the curvature with map data and reliable camera data,
see figure 9.10 for Data sequence 2.

Figure 9.6. Comparison between the measured curvature from SNRA c0LV (gray) and
the estimated curvature without map data from the EKF c0 (black dashed) for Data
sequence 1, as described in chapter 5.1.1 and according to technique 2. Note that the
scale is very small (1 ∗ 10−4), resulting in small changes in time have a large effect in the
curvature.
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Figure 9.7. Comparison between the measured curvature from SNRA c0LV (gray) and
the estimated curvature with map data from the EKF c0 (black dashed) for Data sequence
1, as described in chapter 5.1.1 and according to technique 2. Note that the scale is very
small (1 ∗ 10−4), resulting in small changes in time have a large effect in the curvature.

Figure 9.8. Comparison between the measured curvature from SNRA c0LV (gray) and
the estimated curvature without map data from the EKF c0 (black dashed) for Data
sequence 2, as described in chapter 5.1.2 and according to technique 2. Note that the
scale is very small (1 ∗ 10−4), resulting in small changes in time have a large effect in the
curvature.
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Figure 9.9. Comparison between the measured curvature from SNRA c0LV (gray) and
the estimated curvature with map data from the EKF c0 (black dashed) for Data sequence
2, as described in chapter 5.1.2 and according to technique 2. Note that the scale is very
small (1 ∗ 10−4), resulting in small changes in time have a large effect in the curvature.

Figure 9.10. Comparison between the measured curvature from SNRA c0LV (gray) and
the estimated curvature with map data and reliable camera data from the EKF c0 (black
dashed) for Data sequence 2, as described in chapter 5.1.2 and according to technique
2. Note that the scale is very small (1 ∗ 10−4), resulting in small changes in time have a
large effect in the curvature.
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9.3 Technique 3: Curvature and Time Compared
with the Data from the Swedish National Road
Administration

The data from the SNRA in chapter 5.1.6 is sampled per metre. A match for the
norm between the first GPS position, GPSF , is estimated from the EKF, and
the GPS position from the SNRA, GPSV , are found according to equation 9.1.
The distance between two of SNRA’s data points is one metre. Thus the average
velocity between two data points can be calculated. Then the time tv is calculated
according to

tvi =
i∑

j=0
( 1
vxi+vxi−1

2
), (9.3)

where ti is the time between data points i − 1 and i, the longitudinal velocity
vxi is estimated from the EKF in chapter 6. The time tv from the SNRA and the
time t from the EKF are linearly interpolated, resulting in the matching estimated
curvature c0 from the EKF and the curvature c0Lv from SNRA. Initially, the EKF
estimated the curvature without map data for Data sequence 1, as seen in figure
9.11, and for Data sequence 2, figure 9.13. Subsequently the EKF estimated the
curvature with map data, figure 9.12 for Data sequence 1 and figure 9.14 for Data
sequence 2. Finally the EKF estimated the curvature with map data and reliable
camera data, as shown in figure 9.15 for Data sequence 2.

Figure 9.12. Comparison between the measured curvature from SNRA c0LV (gray)
and the estimated curvature with map data from the EKF c0 (black dashed) for Data
sequence 1, as described in chapter 5.1.1 and according to technique 3. Note that the
scale is very small (1 ∗ 10−4), resulting in small changes in time have a large effect in the
curvature.
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Figure 9.11. Comparison between the measured curvature from SNRA c0LV (gray)
and the estimated curvature without map data from the EKF c0 (black dashed) for Data
sequence 1, as described in chapter 5.1.1 and according to technique 3. Note that the
scale is very small (1 ∗ 10−4), resulting in small changes in time have a large effect in the
curvature.

Figure 9.13. Comparison between the measured curvature from SNRA c0LV (gray)
and the estimated curvature without map data from the EKF c0 (black dashed) for Data
sequence 2, as described in chapter 5.1.2 and according to technique 3. Note that the
scale is very small (1 ∗ 10−4), resulting in small changes in time have a large effect in the
curvature.
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Figure 9.14. Comparison between the measured curvature from SNRA c0LV (gray)
and the estimated curvature without map data from the EKF c0 (black dashed) for Data
sequence 2, as described in chapter 5.1.2 and according to technique 3. Note that the
scale is very small (1 ∗ 10−4), resulting in small changes in time have a large effect in the
curvature.

Figure 9.15. Comparison between the measured curvature from SNRA c0LV (gray) and
the estimated curvature with map data and reliable camera data from the EKF c0 (black
dashed) for Data sequence 2, as described in chapter 5.1.2 and according to technique
3. Note that the scale is very small (1 ∗ 10−4), resulting in small changes in time have a
large effect in the curvature.
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9.4 Technique 4: Curvature and Position Com-
pared with Data from the Swedish National
Road Administration

Technique 4 will be divided into three subtechniques. Initially, the GPS positions
from the EKF and the GPS positions from SNRA are compared. Every time the
nearest match between the positions from the EKF and SNRA has been found the
corresponding estimated curvature by the EKF and SNRA are saved and com-
pared. 31269 matching GPS points have been found between the GPS positions
from the EKF and the GPS positions from SNRA. This subtechnique will be re-
ferred to as T4GPS. After the best norm has been chosen as the starting point in
the same way as in T4GPS, distance and time are calculated in the same way as
in section 9.2 and 9.3. The estimated curvature by the EKF and SNRA are saved
and compared as in section 9.2 and 9.3. These subtechniques will be referred to as
T4Distance and T4Time. In figures B.1, B.6, B.11, the EKF estimated the curva-
ture without map data for Data sequence 1 can be seen and the corresponding data
for Data sequence 2 can be seen in figures B.3, B.8, B.13. Subsequently the EKF
estimated the curvature with map data, figures B.2, B.7, B.12 for Data sequence
1 and figures B.4, B.9, B.14 for Data sequence 2. Finally the EKF estimated the
curvature with map data and reliable camera data, as shown in figures B.5, B.10,
B.15 for Data sequence 2.

9.5 Root Mean Square
RMS is used to investigate whether the availability and robustness of the lane
positioning monotoring system increase when curvature from map data is used.
The RMS value of a set of values is the square root of the arithmetic mean of the
squares of the original values.

In the case of a set of n values c01, c02, ..., c0n, the RMS value is given by

c0rms =
√

1
n

(c2
01 + c2

02 + ...+ c2
0n), (9.4)

where in this case n is the size of the array for the estimated curvature from
the EKF in chapter 6 and the curvature from SNRA (see chapter 5.1.6) for all
techniques 1-3. Here c0 is defined as the difference between the estimated curvature
and the curvature from SNRA for all techniques 1-3.

9.6 Summarization of Results
Table 9.1 and 9.2 summarizes RMS values and data for all investigations for tech-
niques 1-3 combined with Data sequences 1-2 and cases A, B, C. In the tables
Table 9.1 and 9.2, the techniques 1-3 will be abbreviated T1-T3 and Data se-
quences 1-2 will be referred to as D1-D2. The last column in table 9.2 shows, in
percent, the improvement RMS values for Case B and C compared to Case A.
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Table 9.3 summarizes the RMS values and data for all investigations for technique
4 and its subtechniques T4GPS, T4Distance and T4Time in a similar way.

Table 9.1. RMS values and data for all investigations.

Investigation Figure Number of GPS points Number of duplicates Norm
T1-D1-Case A - 815 2 0.5 m
T1-D1-Case B - 815 2 0.5 m
T1-D2-Case A - 7 0 0.5 m
T1-D2-Case B - 7 0 0.5 m
T1-D1-Case A - 3257 1263 1 m
T1-D1-Case B - 3257 1263 1 m
T1-D2-Case A - 516 113 1 m
T1-D2-Case B - 516 113 1 m
T1-D1-Case A 9.1 13894 9539 2 m
T1-D1-Case B 9.2 13894 9539 2 m
T1-D2-Case A 9.3 6639 4183 2 m
T1-D2-Case B 9.4 6639 4183 2 m
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Table 9.2. RMS values and data for all investigations.

Investigation Norm Figure RMS Percent
T1-D1-Case A 0.5 m - 1.9397 ∗ 10−4 m−1 -
T1-D1-Case B 0.5 m - 1.9149 ∗ 10−4 m−1 1.28
T1-D2-Case A 0.5 m - 1.0089 ∗ 10−4 m−1 -
T1-D2-Case B 0.5 m - 1.0309 ∗ 10−4 m−1 -2.18
T1-D2-Case C 0.5 m - 1.0309 ∗ 10−4 m−1 -2.18
T2-D1-Case A 0.5 m - 2.2100 ∗ 10−4 m−1 -
T2-D1-Case B 0.5 m - 2.1403 ∗ 10−4 m−1 3.15
T2-D2-Case A 0.5 m - 1.8552 ∗ 10−4 m−1 -
T2-D2-Case B 0.5 m - 1.8077 ∗ 10−4 m−1 2.56
T2-D2-Case C 0.5 m - 1.6949 ∗ 10−4 m−1 8.64
T3-D1-Case A 0.5 m - 2.8212 ∗ 10−4 m−1 -
T3-D1-Case B 0.5 m - 2.7600 ∗ 10−4 m−1 2.17
T3-D2-Case A 0.5 m - 1.9453 ∗ 10−4 m−1 -
T3-D2-Case B 0.5 m - 1.8956 ∗ 10−4 m−1 2.55
T3-D2-Case C 0.5 m - 1.7594 ∗ 10−4 m−1 9.56
T1-D1-Case A 1 m - 2.0220 ∗ 10−4 m−1 -
T1-D1-Case B 1 m - 1.9827 ∗ 10−4 m−1 1.94
T1-D2-Case A 1 m - 1.3134 ∗ 10−4 m−1 -
T1-D2-Case B 1 m - 1.2811 ∗ 10−4 m−1 2.46
T1-D2-Case C 1 m - 1.2812 ∗ 10−4 m−1 2.45
T2-D1-Case A 1 m - 2.1941 ∗ 10−4 m−1 -
T2-D1-Case B 1 m - 2.1247 ∗ 10−4 m−1 3.16
T2-D2-Case A 1 m - 1.8530 ∗ 10−4 m−1 -
T2-D2-Case B 1 m - 1.8079 ∗ 10−4 m−1 2.43
T2-D2-Case C 1 m - 1.6958 ∗ 10−4 m−1 8.48
T3-D1-Case A 1 m - 2.8663 ∗ 10−4 m−1 -
T3-D1-Case B 1 m - 2.8078 ∗ 10−4 m−1 2.04
T3-D2-Case A 1 m - 1.9441 ∗ 10−4 m−1 -
T3-D2-Case B 1 m - 1.8971 ∗ 10−4 m−1 2.42
T3-D2-Case C 1 m - 1.7532 ∗ 10−4 m−1 9.82
T1-D1-Case A 2 m 9.1 2.2301 ∗ 10−4 m−1 -
T1-D1-Case B 2 m 9.2 2.1709 ∗ 10−4 m−1 2.65
T1-D2-Case A 2 m 9.3 2.0026 ∗ 10−4 m−1 -
T1-D2-Case B 2 m 9.4 1.9634 ∗ 10−4 m−1 1.96
T1-D2-Case C 2 m 9.5 1.6824 ∗ 10−4 m−1 15.99
T2-D1-Case A 2 m 9.6 2.1923 ∗ 10−4 m−1 -
T2-D1-Case B 2 m 9.7 2.1290 ∗ 10−4 m−1 2.89
T2-D2-Case A 2 m 9.8 1.8173 ∗ 10−4 m−1 -
T2-D2-Case B 2 m 9.9 1.7728 ∗ 10−4 m−1 2.45
T2-D2-Case C 2 m 9.10 1.6846 ∗ 10−4 m−1 7.30
T3-D1-Case A 2 m 9.11 2.6321 ∗ 10−4 m−1 -
T3-D1-Case B 2 m 9.12 2.5816 ∗ 10−4 m−1 1.92
T3-D2-Case A 2 m 9.13 1.9294 ∗ 10−4 m−1 -
T3-D2-Case B 2 m 9.14 1.8774 ∗ 10−4 m−1 2.70
T3-D2-Case C 2 m 9.15 1.7190 ∗ 10−4 m−1 10.90
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Table 9.3. RMS values and data for all investigations of technique 4.

Investigation Figure RMS Percent
T4GPS-D1-Case A B.1 2.3147 ∗ 10−4 m−1 -
T4GPS-D1-Case B B.2 2.2567 ∗ 10−4 m−1 2.51
T4GPS-D2-Case A B.3 1.9474 ∗ 10−4 m−1 -
T4GPS-D2-Case B B.4 1.9042 ∗ 10−4 m−1 2.22
T4GPS-D2-Case C B.5 1.7802 ∗ 10−4 m−1 8.59

T4Distance-D1-Case A B.6 2.1941 ∗ 10−4 m−1 -
T4Distance-D1-Case B B.7 2.1247 ∗ 10−4 m−1 3.16
T4Distance-D2-Case A B.8 1.8564 ∗ 10−4 m−1 -
T4Distance-D2-Case B B.9 1.8089 ∗ 10−4 m−1 2.56
T4Distance-D2-Case C B.10 1.6955 ∗ 10−4 m−1 8.67
T4Time-D1-Case A B.11 2.7425 ∗ 10−4 m−1 -
T4Time-D1-Case B B.12 2.6877 ∗ 10−4 m−1 2.00
T4Time-D2-Case A B.13 1.9449 ∗ 10−4 m−1 -
T4Time-D2-Case B B.14 1.8977 ∗ 10−4 m−1 2.43
T4Time-D2-Case C B.15 1.7609 ∗ 10−4 m−1 9.46



Chapter 10

Conclusions and Future
Work

This chapter is a summarization of conclusions from the results and evaluation
of the lane positioning monitoring system presented in chapter 9. Some ideas for
future work are also discussed.

10.1 Summary of Conclusions
The aim of this thesis was to investigate the performance of a lane position mon-
itoring system and investigate enhancement techniques for increasing the robust-
ness and availability of such a system by using additional sensor sources like map
data and GPS.

The evaluation of RMS values in Table 9.2 showed that Case C gives up to
almost 16 percent improvement of RMS values and Case B more than 3 percent
improvement of RMS values compared to Case A, depending on which norm that is
used in equation 9.1. Case A is when the curvature without map data is estimated
by the EKF and Case B is when the curvature with map data is estimated by the
EKF. Finally, Case C is when the curvature with map data and reliable camera
data is estimated by the EKF.

Another aspect of the evaluation of RMS values in Table 9.2, is that technique
1 is more accurate than technique 2 and 3, since the RMS values is smaller for
technique 1. The figures in chapter 9.2 and chapter 9.3, the evaluation of RMS
values in table 9.1 showed that technique 2 gives more accurate information for the
lane position monotoring system than technique 3. It is harder to draw conclusions
from the pictures in chapter 9.1 since it depending on how many matching GPS
positions between the estimated GPS positions by the EKF and the measured
GPS positions by SNRA.

Table 9.1 showed that technique 1, described in chapter 9.1, had problems
finding matching GPS positions between the estimated GPS positions by EKF
and the measured GPS positons from SNRA for Data sequence 2 compared to
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Data sequence 1. This depends on that the data is including disturbance in Data
sequence 2, see chapter 5.1.2, compared to Data sequence 1, described in chapter
5.1.1. This means that it is harder for the EKF to estimate the position of the
vehicle under disturbance, but even in this case the RMS values in Table 9.2 showed
that Case C gives up to almost 16 percent improvement of RMS values and Case
B gives up to almost three percent improvement of RMS values compared to Case
A.

The negative values of the technique 1 when the standard is less than 0.5 m
may be because a GPS point on the connecting road in Data sequence 2. Since
Case B and C are dependent on each other the error occurs in both cases, but
since technique 2, technique 3 and technique 4 showed improvement for Case B
and Case C in Data sequence 2, the error can be considered as negligible.

The evaluation of RMS values in Table 9.3 showed that Case C gives up to more
than nine percent improvement of RMS values and Case B more than 3 percent
improvement of RMS values compared to Case A. An aspect of the evaluation of
RMS values in Table 9.3, is that technique 1 is more accurate than technique 4,
since the RMS values is smaller for technique 1. Similary, subtechnique T4Time is
more accurate than T4Distance and T4GPS, since the RMS values is smaller for
subtechnique T4GPS. The figures in chapter B.1.2 and chapter B.1.1, the evalua-
tion of RMS values in table 9.3 showed that subtechnique T4Distance gives more
accurate information for the lane position monotoring system than subtechnique
T4GPS.

The data from the SNRA is not optimal since it needs to be preprocessed,
see chapter 5.1.6, but it the best comparing data that was given to this thesis to
evaluate the EKF. The SNRA data fullfills its purpose but in future work it can
be an idea to consider which comparing data is used or collecting specific data to
evaluate the EKF.

In the beginning of this thesis, the inputs and measurement signals from the
vehicle sensors (yaw rate, velocity, steering wheel angle), LPS system (camera),
map data and GPS, were sent to the developed sensor fusion model. The discrete
part of the logged data was interpolated. Linear interpolation was performed to
have everything in the same time scale. The model is written in Matlab code and
runs in Matlab and the code runs in an EKF. This method was tested in order
to try to solve the problem that the sensors come with different sampling time,
see chapter 5. This method didn’t work since there is a big risk that the data is
destroyed, when its being linear interpolated before it is estimated by the EKF. A
better method, which is used in this thesis and described in chapter 6, is to do a
measurement update in the EKF every time a measurement comes.

10.2 Future work
More development work has to be done to improve the performance of the lane
position monotoring system. An idea can be to integrate a spline model or a model
made by toroids, for the purpose of building up the road, considering as an extra
reference and giving better data to the lane positioning monitoring system.
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More evaluation work for the parameters Qk and Rk, both described in chapter
6 can be done, in order to give a more accurate position of the lane position
monotoring system.

A graphical user interface can be implemented for the lane position monotoring
system in order to give a better reference to a system that looks on drivers be-
haviour developed for drowsiness. The system is earlier made in a project, which
is named Drowsi, where Volvo Technology participated among others.

Useful state and measurement equations from a positioning system with com-
plete vehicle state model, described in [8], can be integrated into the extended
model described in chapter 8. The gyroscope error model and the GPS error
model in [8], can both for example be integrated in order to get an improvement
of the estimated position by the EKF. The GPS error model, which is described
in section 4.3 in [8], can be used to avoid errors.

Other improvements that can be made are if the camera can give more im-
portant information to the lane position monitoring system. It can for example
be how the lines are drawn, the lines direction of travel, how many lines that are
detected on the road. For example can such information be used if the camera
detect lines cross the lane that information can be valuable as an extra reference
telling the lane position monotoring system something is wrong. Other important
information the camera can give are if bright lines are drawn on dark background
such information can help the lane position monotoring system detect connected
roads, crossings, roundabouts, tunnels, bridges and overtaking vehicles in order to
get a more secure reference of the vehicle’s position. That information can also
be useful if the road has many lanes or if the road does not have any lines for
the camera to measure. It can also be useful information for the lane position
monotoring system when it snowing, raining or when there are changes of lights
on the road for example when the vehicle is going under a bridge or through a
tunnel.

Important improvements of the lane position monotoring system using addi-
tional sensor sources like map data and GPS that can be done, is to run data
through Volvo’s updated version of the map data program that also including
more accurate maps than the ones that were used in this thesis, to evaluate the
perfomance. Finally, more road attributes than curve radius from Volvo’s map
data program can be used to estimate the vehicle’s position. For example the road
attribute distance to next crossing can be used as a measurement signal in the
extended model in chapter 8, in order to give a more accurate position of the lane
position monotoring system.





Bibliography

[1] Elliot D. Kaplan. Understanding GPS: principles and applications. Artech
House, 1996.

[2] Peter Hall. A Bayesian Approach to Map-Aided Vehicle Positioning.
Linköping University Institute of Technology, 2001. LiTH-ISY-EX-3102.

[3] www.navteq.com.

[4] www.tomtom.com.

[5] www.volvogroup.com.

[6] Volvo Technology Corporation. 2010.

[7] Y.Zhao. Vehicle Location and Navigation Systems. Artech House
Publishers,Inc, Norwood, Great Britain, 1997.

[8] David Andersson and Johan Fjellström. Vehicle Positioning with Map
Matching Using Integration of a Dead Reckoning System and GPS.
Linköping University Institute of Technology, 2004.
LiTH-ISY-EX-3457-2004.

[9] Andreas Eidehall. Tracking and threat assessment for automotive collision
avoidance. Linköping University Institute of Technology, 2007. No. 1066.

[10] Boucher C. Noyer J.-C. Lahrech, A. Accurate vehicle positioning in urban
areas. Laboratoire d’Analyse des Systèmes du Littoral, Université du
Littoral Côte d’Opale, 50 rue F. Buisson, BP 699, 62 228 Calais Cedex,
France, 2005. 0-7803-9252-3.

[11] Bonnifait Philippe Bétaille David Fouque, Clément. Enhancement of Global
Vehicle Localization using Navigable Road Maps and Dead-Reckoning.
HeuDiaSyC UMR CNRS 6599, Universite de Technologie de Compiegne,
France, LCPC, Nantes, France, 2008. 1-4244-1537-3.

[12] Christian Lundquist. Sensor Fusion for Automotive Applications. Linköping
University Institute of Technology, 2011. No. 1409.

65



66 Bibliography

[13] Hans Bohlin. Integrationsmetoder för tröghetsnavigeringssystem och GPS.
Department of Electrical Engineering, Linköping University, Linköping,
Sweden, 1994. LITH-ISY-EX-1398.

[14] R. Behringer. http://home.t online.de/home/kontext/utm.htm. volume 310
of Fortschrittsberichte VDI, Reihe 12. VDI Verlag, Düsseldorf Germany,
1997. Also as: PhD Thesis, Universität der Bundeswehr, 1996.

[15] www.lantmateriet.se/geodesi/.

[16] Arnold Andreasson. http://mellifica.se/konsult. 2007.

[17] Björn Sållarp. http://blog.sallarp.com. License:
http://creativecommons.org/licenses/by-nc-sa/3.0/ public class
GaussKreuger, 2009.

[18] M. Macnaughtan C. Drane and C. Scott. Positioning GSM telephones.
IEEE Communications Magazine, 36(4), Computer Systems Engineering
University of Technology, Sydney, Australia, April 1998.

[19] Jay Farrell and Matthew Barth. The Global Positioning System and Inertial
Navigation. McGraw-Hill, New York, USA, 1998.

[20] Richard Hartley and Andrew Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2 edition, 3 2004.

[21] Henrik Stewénius Chris Engels and David Nistér. Bundle adjustment rules.
Photogrammetric Computer Vision, 2, 2006.

[22] Motilal Agrawal Kurt Konolige and Joan Solà. Large-scale visual odometry
for rough terrain. Robotics Research, 2011.

[23] Jonas Fredriksson Jonas Nilsson and Anders C.E. Ödblom. Bundle
adjustment using single-track vehicle model. IEEE International Conference
on Robotics and Automation (ICRA), pages 2888 – 2893, 5 2013.

[24] Per-Johan Nordlund. En simuleringsmiljö för tröghetsnavigering samt en
metod för integration av tröghetsnavigeringssystem och GPS. Master’s
thesis LiTH-ISY-EX-1728, Department of Electrical Engineering, Linköping
University, Linköping, Sweden, December 1996.

[25] Ralf Raimann. VT LPS Performance Specification. Internal document at
Volvo Technology Corporation, 2003. Document number: 10096047.

[26] Garmin. GPS 18 Technical Specifikations. Garmin International, Inc., june
2005. 190-00307-00.

[27] Anders Karlsson. Integration of map data for truck applications. Volvo
Technology, Dept. 6320 M1.6, Götaverksgatan 10, 405 08 Göteborg, Sweden,
9 2009.



Bibliography 67

[28] Per Nordqvist. GPSToRoute documentation. Volvo Technology
Corporation, Dept. 6350 M1.6, Götaverksgatan 10, 405 08 Göteborg,
Sweden, 2010.

[29] Fredrik Gustafsson. Statistical Sensor Fusion. Studentlitteratur AB, Lund,
2010. ISBN 978-91-44-05489-6.

[30] Fredrik Gustafsson, Lennart Ljung, and Mille Millnert. Signalbehandling.
Studentlitteratur AB, Lund, 2009. ISBN 978-91-44-01709-9.

[31] Fredrik Gustafsson. Particle filter theory and practice with positioning
applications. Aerospace and Electronic Systems Magazine, IEEE, 25:53–82,
7 2010.

[32] S.J. Julier, J.K. Uhlmann, and H.F. Durrant-Whyte. A new approach for
filtering nonlinear systems. In Proceedings of the American Control
Conference, vol.3:1628–1632, 1995.

[33] S.J. Julier, J.K. Uhlmann, and H.F. Durrant-Whyte. Unscented filtering
and nonlinear estimation. Proceedings of IEEE, 92:401–422, 3 (Mar.2004).

[34] Magnus Noorgard, Niels K. Poulsen, and Ole Ravn. New developments in
state estimation of nonlinear systems. Automatica, 36:1627–1638, 2000.

[35] Daniel L. Alspach and Harold W. Sorenson. Nonlinear bayesian estimation
using gaussian sum approximations. IEEE Transaction on Automatic
Control, 17:439–448, 1972.

[36] Haykin S. Arasaratnam, I. and R. Elliot. Discrete-time nonlinear filtering
algorithms using gauss-hermite quadrature. Proceedings of IEEE,
95:953–977, 2007.

[37] Stuart C. Kramer and Harold W. Sorenson. Recursive bayesian estimation
using piece-wise constant. Automatica, 24:789–801, 1988.

[38] Christian Lundquist. Automotive Sensor Fusion for Situation Awareness.
Linköping University Institute of Technology, 2009. No. 1422.

[39] Ernst D. Dickmanns. Dynamic Vision for Perception and Control of Motion.
Springer-Verlag, 2007. ISBN 978-1-84628-637-7.

[40] R. Behringer. Visuelle Erkennung und Interpretation des Fahrspurverlaufes
durch Rechnersehen für ein autonomes Strassenfahrzeug. volume 310 of
Fortschrittsberichte VDI, Reihe 12. VDI Verlag, Düsseldorf Germany, 1997.
Also as: PhD Thesis, Universität der Bundeswehr, 1996.

[41] Torkel Glad Lennart Ljung. Modellbygge och Simulering. Studentlitteratur,
2 edition, 2004. ISBN 978-91-44-02443-1.





Appendix A

Figures

A.1 The raw signal for the whole route

In this section figures of the raw signal for the whole route are shown to give a
better understanding of the signal’s behaviour and characteristics.

A.1.1 Data from GPS
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Figure A.1. Raw signal: Curve radius from map data

69



70 Figures

A.1.2 Data from the Swedish National Road
Administration
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Figure A.2. Raw signal: Distance from Vägverket
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Figure A.3. Raw signal: x-coordinate of GPS in RT90 from Vägverket
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Figure A.4. Raw signal: y-coordinate of GPS in RT90 from Vägverket
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Figure A.5. Raw signal: Curvature from Vägverket
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Figure A.6. Raw signal: Longitudinal velocity from Vägverket

A.2 The raw signal on a selected interval for the
whole route on a road stretch with curves

A.2.1 Data from LPS system on a road stretch with curves
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Figure A.7. Raw signal: Relative angle left between vehicle and road on a road strech
with curves
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Figure A.8. Raw signal: Relative angle right between vehicle and road on a road strech
with curves
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Figure A.9. Raw signal: Lateral displacement of vehicle in lane on a road strech with
curves
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Figure A.10. Raw signal: Curvature from LPS system left on a road strech with curves
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Figure A.11. Raw signal: Curvature from LPS system right on a road strech with
curves
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A.2.2 Data from vehicle sensors
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Figure A.12. Raw signal: Steering wheel angle on a road strech with curves
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Figure A.13. Raw signal: Longitudinal velocity on a road strech with curves



76 Figures

540 550 560 570 580 590

−0.04

−0.02

0

0.02

Time [s]

Y
aw

 R
at

e Ψ
E
 [m

/s
]

Figure A.14. Raw signal: Yaw Rate on a road strech with curves

A.2.3 Data from GPS
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Figure A.15. Raw signal: x-coordinate of GPS in WGS 84 on a road strech with curves
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Figure A.16. Raw signal: x-coordinate of GPS in RT90 on a road strech with curves

540 550 560 570 580 590

57.675

57.6755

57.676

57.6765

Time [s]

Po
si

tio
n 

in
 L

at
itu

de
 ° 

[d
eg

re
es

]

Figure A.17. Raw signal: y-coordinate of GPS in WGS 84 on a road strech with curves
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Figure A.18. Raw signal: y-coordinate of GPS in RT90 on a road strech with curves
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Figure A.19. Raw signal: The ego vehicle´s yaw angle on a road strech with curves
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Figure A.20. Raw signal: Curvature from map data on a road strech with curves

A.3 The raw signal on a selected interval for the
whole route with disturbance

A.3.1 Data from LPS system
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Figure A.21. Raw signal: Relative angle left between vehicle and road on a road strech
with slight curves with disturbance
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Figure A.22. Raw signal: Relative angle right between vehicle and road on a road
strech with slight curves with disturbance
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Figure A.23. Raw signal: Lateral displacement of vehicle in lane on a road strech with
slight curves with disturbance
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Figure A.24. Raw signal: Curvature from LPS system left on a road strech with slight
curves with disturbance
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Figure A.25. Raw signal: Curvature from LPS system right on a road strech with slight
curves with disturbance
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A.3.2 Data from vehicle sensors
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Figure A.26. Raw signal: Steering wheel angle on a road strech with slight curves with
disturbance
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Figure A.27. Raw signal: Longitudinal velocity on a road strech with slight curves
with disturbance



A.3 The raw signal on a selected interval for the whole route with
disturbance 83

660 670 680 690 700 710 720
−0.01

0

0.01

0.02

0.03

Time [s]

Y
aw

 r
at

e Ψ
R

E [r
ad

/s
]

Figure A.28. Raw signal: Yaw Rate on a road strech with slight curves with disturbance

A.3.3 Data from GPS
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Figure A.29. Raw signal: x-coordinate of GPS in WGS 84 on a road strech with slight
curves with disturbance
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Figure A.30. Raw signal: x-coordinate of GPS in RT90 on a road strech with slight
curves with disturbance
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Figure A.31. Raw signal: y-coordinate of GPS in WGS 84 on a road strech with slight
curves with disturbance
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Figure A.32. Raw signal: y-coordinate of GPS in RT90 on a road strech with slight
curves with disturbance
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Figure A.33. Raw signal: The ego vehicle´s yaw angle on a road strech with slight
curves with disturbance
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Figure A.34. Raw signal: Curvature from map data on a road strech with slight curves
with disturbance



Appendix B

Figures from technique 4,
chapter 9.4

B.1 Technique 4
In this appendix figures from technique 4, chapter 9.4 are presented.

B.1.1 Subtechnique T4GPS
Here figures from subtechnique T4GPS, chapter 9.4 are provided.

Figure B.1. Comparison between the measured curvature from SNRA c0LV (gray) and
the estimated curvature without map data from the EKF c0 (black dashed) for Data
sequence 1, as described in chapter 5.1.1 and according to technique 4. Note that the
scale is very small (1 ∗ 10−4), resulting in small changes in time have a large effect in the
curvature.
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Figure B.2. Comparison between the measured curvature from SNRA c0LV (gray)
and the estimated curvature with map data from the EKF c0 (black dashed) for Data
sequence 1, as described in chapter 5.1.1 and according to technique 4. Note that the
scale is very small (1 ∗ 10−4), resulting in small changes in time have a large effect in the
curvature.

Figure B.3. Comparison between the measured curvature from SNRA c0LV (gray) and
the estimated curvature without map data from the EKF c0 (black dashed) for Data
sequence 1, as described in chapter 5.1.1 and according to technique 4. Note that the
scale is very small (1 ∗ 10−4), resulting in small changes in time have a large effect in the
curvature.
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Figure B.4. Comparison between the measured curvature from SNRA c0LV (gray)
and the estimated curvature with map data from the EKF c0 (black dashed) for Data
sequence 1, as described in chapter 5.1.1 and according to technique 4. Note that the
scale is very small (1 ∗ 10−4), resulting in small changes in time have a large effect in the
curvature.

Figure B.5. Comparison between the measured curvature from SNRA c0LV (gray) and
the estimated curvature with map data and reliable camera data from the EKF c0 (black
dashed) for Data sequence 1, as described in chapter 5.1.1 and according to technique
4. Note that the scale is very small (1 ∗ 10−4), resulting in small changes in time have a
large effect in the curvature.
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B.1.2 Subtechnique T4Distance

The figures of subtechnique T4Distance, chapter 9.4 are here presented.

Figure B.6. Comparison between the measured curvature from SNRA c0LV (gray) and
the estimated curvature without map data from the EKF c0 (black dashed) for Data
sequence 1, as described in chapter 5.1.1 and according to technique 4. Note that the
scale is very small (1 ∗ 10−4), resulting in small changes in time have a large effect in the
curvature.
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Figure B.7. Comparison between the measured curvature from SNRA c0LV (gray)
and the estimated curvature with map data from the EKF c0 (black dashed) for Data
sequence 1, as described in chapter 5.1.1 and according to technique 4. Note that the
scale is very small (1 ∗ 10−4), resulting in small changes in time have a large effect in the
curvature.

Figure B.8. Comparison between the measured curvature from SNRA c0LV (gray) and
the estimated curvature without map data from the EKF c0 (black dashed) for Data
sequence 1, as described in chapter 5.1.1 and according to technique 4. Note that the
scale is very small (1 ∗ 10−4), resulting in small changes in time have a large effect in the
curvature.
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Figure B.9. Comparison between the measured curvature from SNRA c0LV (gray)
and the estimated curvature with map data from the EKF c0 (black dashed) for Data
sequence 1, as described in chapter 5.1.1 and according to technique 4. Note that the
scale is very small (1 ∗ 10−4), resulting in small changes in time have a large effect in the
curvature.

Figure B.10. Comparison between the measured curvature from SNRA c0LV (gray) and
the estimated curvature with map data and reliable camera data from the EKF c0 (black
dashed) for Data sequence 1, as described in chapter 5.1.1 and according to technique
4. Note that the scale is very small (1 ∗ 10−4), resulting in small changes in time have a
large effect in the curvature.
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B.1.3 Subtechnique T4Time
Figures from subtechnique T4Time, chapter 9.4 are shown here.

Figure B.11. Comparison between the measured curvature from SNRA c0LV (gray)
and the estimated curvature without map data from the EKF c0 (black dashed) for Data
sequence 1, as described in chapter 5.1.1 and according to technique 4. Note that the
scale is very small (1 ∗ 10−4), resulting in small changes in time have a large effect in the
curvature.
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Figure B.12. Comparison between the measured curvature from SNRA c0LV (gray)
and the estimated curvature with map data from the EKF c0 (black dashed) for Data
sequence 1, as described in chapter 5.1.1 and according to technique 4. Note that the
scale is very small (1 ∗ 10−4), resulting in small changes in time have a large effect in the
curvature.

Figure B.13. Comparison between the measured curvature from SNRA c0LV (gray)
and the estimated curvature without map data from the EKF c0 (black dashed) for Data
sequence 1, as described in chapter 5.1.1 and according to technique 4. Note that the
scale is very small (1 ∗ 10−4), resulting in small changes in time have a large effect in the
curvature.
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Figure B.14. Comparison between the measured curvature from SNRA c0LV (gray)
and the estimated curvature with map data from the EKF c0 (black dashed) for Data
sequence 1, as described in chapter 5.1.1 and according to technique 4. Note that the
scale is very small (1 ∗ 10−4), resulting in small changes in time have a large effect in the
curvature.

Figure B.15. Comparison between the measured curvature from SNRA c0LV (gray) and
the estimated curvature with map data and reliable camera data from the EKF c0 (black
dashed) for Data sequence 1, as described in chapter 5.1.1 and according to technique
4. Note that the scale is very small (1 ∗ 10−4), resulting in small changes in time have a
large effect in the curvature.


