
DEGREE PROJECT, IN , SECOND LEVELSYSTEMS, CONTROL & ROBOTICS

STOCKHOLM, SWEDEN 2014

Development and Implementation of
Star Tracker Electronics

MARCUS LINDH

KTH ROYAL INSTITUTE OF TECHNOLOGY

ELECTRICAL ENGINEERING, SPACE AND PLASMA PHYSICS DEPARTMENT

Development and Implementation of
Star Tracker Electronics

MARCUS LINDH, MARCULIN@KTH.SE

Stockholm 2014

Space and Plasma Physics
School of Electrical Engineering

Kungliga Tekniska Högskolan

XR-EE-SPP 2014:001

i

Development and Implementation of Star Tracker Electronics

Abstract

Star trackers are essential instruments commonly used on satellites. They pro-
vide precise measurement of the orientation of a satellite and are part of the at-
titude control system. For cubesats star trackers need to be small, consume low
power and preferably cheap to manufacture. In this thesis work the electronics for
a miniature star tracker has been developed. A star detection algorithm has been
implemented in hardware logic, tested and verified. A platform for continued work
is presented and future improvements of the current implementation are discussed.

Utveckling och implementering av elektronik för en stjärnkamera

Sammanfattning

Stjärnkameror är vanligt förekommande instrument på satelliter. De tillhan-
dahåller information om satellitens orientering med mycket hög precision och är
en viktig del i satellitens reglersystem. För kubsatelliter måste dessa vara små,
strömsnåla och helst billiga att tillverka. I detta examensarbete har elektroniken
för en sådan stjärnkamera utvecklats. En algoritm som detekterar stjärnor har im-
plementerats i hårdvara, testats och verifierats. En hårdvaruplattform som fortsatt
arbete kan utgå ifrån har skapats och förslag på förbättringar diskuteras.

keywords
miniature star tracker, cubesat, real-time blob detection, FPGA image processing,
CMOS image sensor, smartfusion2 SoC, attitude control, hardware development

ii

Acknowledgements
During frustrating and seemingly impossible problems, my super-
visors Nicola Schlatter and Nickolay Ivchenko have been of great
support. The possibility to discuss the problems has been invaluable.
Special thanks goes to Daria for posting memes cheering up in the
lab, Ruslan for unforgettable moments, Francesco for serving us
Italian delicacies and home-made ice cream and Niko for just being
you. You will all be remembered.

I wish to thank the ones supporting me throughout this time. All of
my friends at KTH and my family. Without you, it would never have
been possible.

Let the next adventure begin!

iii

Contents
Abbreviations vi

1 Introduction 1
1.1 Objectives . 2

2 Prestudy 3
2.1 Different Types of Trackers . 3
2.2 Comparision of Commercial Star Trackers 3
2.3 Principle of Operation . 3

3 Components of the Star Tracker 5
3.1 Optical Assembly . 5
3.2 Image Sensor . 7
3.3 Camera FPGA . 9
3.4 Smartfusion2 SoC . 9
3.5 Communication . 10
3.6 Housing . 10

4 Camera FPGA and Image Processing 11
4.1 Realtime Centroid Calculation . 11
4.2 Realtime Centroid Calculation Algorithm 13

4.2.1 Row by Row Explanation of FIFO Events 20
4.2.2 Design Constraints . 22
4.2.3 Digital Division in the Algorithm 23
4.2.4 Threshold Value for the Algorithm 23
4.2.5 Timing Issues . 23

4.3 Camera FPGA Firmware . 24
4.3.1 Firmware 1, Blob Detection 24
4.3.2 Firmware 2, Camera Testing 24

4.4 SPI Communication with Camera FPGA 24

5 Testing 29
5.1 Simulated Stars . 29
5.2 More Complicated Star Patterns . 30
5.3 Star Photography . 30
5.4 Multi-purpose Software . 32

6 Conclusions and Discussion 37
6.1 Social and Ethical Aspects . 39

A Exposure Time Calculation 43

B Serial Divider 44

C Blob Detection Algorithm 45

iv

List of Figures
1 Sextant. 1
2 Conceptual diagram of the LISA and tracking. 4
3 Conceptual overview of the star tracker unit. 5
4 Actual hardware setup. 6
5 Camera assembly. 6
6 Closeup of the image sensor mounted on a specially made PCB. . . . 8
7 Actel A3P250 FPGA used for image processing. 9
8 M2S050 Smartfusion2 SOC used for LISA and tracking. 10
9 Close-up view of a star before and after applying a threshold filter . . 11
10 Projection of the scene on the image sensor [1, p. 11]. 13
11 Visualization of the blob detection algorithm as four layers 14
12 Ghosting and checking distance. 15
13 Layer 1 in the algorithm. 16
14 Layer 2 in the algorithm. 16
15 Layer 3 in the algorithm. 17
16 Layer 4 in the algorithm. 18
17 Row-wise read out. 21
18 Viewdraw schematic. 25
19 Rechargeable light source with adjustable intensity to simulate stars. . 29
20 Fiber optic strand driven from a red laser diode. 30
21 USB charging jack and charging indicator. 31
22 GUI of the multi-purpose software. 33
23 The Blobber Software. 34
24 Blobber software showing single pixel detection with green markers. . 35
25 Real-time data captured by serial terminal. 35
26 Logfile containing a video sequence being played. 36
27 Horizon in the FOV. 38

v

Abbreviations
CCD - Charged-coupled Device
CCTV - Closed-circuit Television
CMOS - Complementary Metal–oxide–semiconductor
EMC - Electromagnetic Compatibility
FIFO - First In First Out
FOV - Field Of View
FPGA - Field Programmable Gate Array
FPS - Frames Per Second
GUI - Graphical User Interface
I2C - Inter-Integrated Circuit
iLCC - Leadless Chip Carrier
IO - Input Output
KTH - Kungliga Tekniska Högskolan
LASER - Light Amplification by Stimulated Emission
LED - Light Emitting Diode
LISA - Lost In Space Algorithm
LVTTL - Low-voltage Transistor-transistor Logic
MP - Megapixel
PCB - Printed Circuit Board
SEU - Single Event Upset
SOC - System on a Chip
SPI - Serial Peripheral Interface
SPP - Space and Plasma Physics
UART - Universal Asynchronous Receiver/Transmitter
USB - Universal Serial Bus
VHDL - (Very High Speed Integrated Circuit) Hardware Description Language

vi

vii

1 Introduction
Celestial navigation is a technique that has been used for thousand of years. In its sim-
plest form, it uses angular measurements between the horizon and a celestial object.
An instrument used for this kind of measurement is often referred to as an sextant, see
Figure 1. Technology has made more precise and automated techniques available. A
camera can replace the human observer and automated software can search through
digital star catalogues trying to find a matching field of view. All of this can be done in
a fraction of a second. The core of the principle, usage of celestial objects for naviga-
tion, is still the same as several thousand of years ago.

Figure 1: Sextant. An early instrument for celestial navigation. Picture originally taken
by U.S. National Oceanic and Atmospheric Administration [2].

It is particularly important for spacecraft to get information about its current orien-
tation. By constantly measuring the deviation from the desired orientation, actuators
can apply torque as needed to reorient the object. A system used for keeping the orien-
tation is usually referred to as an attitude control system. The attitude control system
often contains a multitude of sensors and feedback inputs. One of the most precious
input to this system is the data from a star tracker.

The particular star tracker developed in this project is to be used in the SEAM
(Small Explorer for Advanced Missions) nano satellite project. It is a three unit’s high
(3U) cubesat which can be used for advanced scientific experiments. A one unit (1U)
cubesat has the dimensions 10 × 10 × 10 cm giving SEAM the overall dimensions
30 × 10 × 10 cm. The SEAM project is sponsored by FP7, 7th Framework Programme
for Research and Technological Development [3]. The rocket containing the actual
satellite system is planned to be launched in 2016.

1

Several commercial star tracker solutions exist but are not easily accessible. They
are often expensive and too large for being used in small satellites such as cubesats.
By developing a cheaper and smaller substitute more satellites can be equipped with
the technology in the future. As satellites are frequently used for various research
projects the data from a star tracker are essential. It enables higher precision of the
attitude determination and can be combined with advanced measurements. In the long
run the solution may become more widespread and help getting higher precision of
measurements and attitude determination which can improve research quality.

1.1 Objectives
Most of the available trackers are aimed for large satellites and are as previous men-
tioned rather expensive. The objective of this project is to develop a hardware solution
for a miniature sized star tracker. The tracker should be low cost, consume low power,
have a small footprint and high accuracy. A robust platform is to be developed on which
further work can be done to finalize the star tracker. Some of the design objectives are
given in Table 1.

Table 1: Design objectives.

Acquisition time <5 s
Update rate 4 Hz
Field of view 6◦ × 6◦

Image sensor 5 MP (2594 × 1944) CMOS
Power consumption <1 W

This degree project focuses on the practical hardware implementation and creation
of a robust platform on which further work can be done. Most of the focus has been
on developing an efficient star detection algorithm and a software for doing various
tests. The project of developing the star tracker involves two other students focusing
on their respective fields. The identification and tracking algorithm is developed by
Francesco Vallegra [4]. Magnitude correction and database compilation are done by
Nikola Shterev [5].

One of the biggest questions was if it would even be possible to do the star detection
in the hardware proposed. The suggested FPGA is very small and limited. No memo-
ries should be used for storing frames from the camera requiring all image processing
to be done on the fly.

2

2 Prestudy
Star trackers have been used in various space applications for several decades. In the
beginning they were very basic with limited functionality. As technology now allows
it they have become more advanced and with higher performance.

2.1 Different Types of Trackers
“Star sensing and tracking devices can be divided into three major classes: star scan-
ners, which use the spacecraft rotation to provide the searching and sensing function;
gimbaled star trackers, which search out and acquire stars using mechanical action; and
fixed head star trackers, which have electronic searching and tracking capabilities over
a limited field of view.” [6]

Nowadays most of the trackers use an image sensor, CCD or CMOS, to capture a
picture of the stars and perform the tracking. This degree project is about a fixed head
CMOS sensor based tracker with a fixed field of view (FOV). Most of the commercially
available trackers are designed to be mounted on medium sized satellites and not many
miniature trackers exist. Since the development of technology has come quite far it
is now possible to construct a relatively small tracker and still get high precision. In
particular, the availability of small sensitive cameras, powerful processors, small flash
memories and field programmable gate arrays (FPGA) have made this possible. For
comparison, ASTROS is a star tracker from 1985. It weighted 41 kg and had a power
consumption of 43 W [7]. Today, equivalent performance can be achieved from units
weighting less than 0.5 kg with a power consumption less than 1 W [8].

2.2 Comparision of Commercial Star Trackers
A range of commercially available star trackers have been studied and are compared
in Table 2. Generally, the acquisition time, the time after power up to a fixed position
acquired, is in the range of a couple of seconds. Refresh rates are 4-10 Hz. Most
of the sensors used have a quite low resolution and CCD sensors seem to be most
dominating. The Nano Star Tracker is the one most comparable to our star tracker
development since it is also aimed for small cubesats.

2.3 Principle of Operation
At initial start up the tracker does not know its position. It is lost in space. When an
algorithm has detected all visible stars by the image sensor a lost in space algorithm
(LISA) will be performed on the data. The LISA is what finds the orientation of the
star tracker by comparing the detected stars with a star catalogue stored in memory.
After the orientation is acquired by LISA, the tracking of the stars can be performed.
Frame by frame from the camera are compared to find the motion of the stars between
the frames. A prediction is made which stars should be visible in the next frame and
incorporates them in the tracking. The result of the tracking algorithm is a quater-
nion describing the orientation of the star tracker. Inputs to the two algorithms are

3

Table 2: Comparison of some commercial trackers.

Name Acquisition
time

Update
rate

FOV Sensor reso-
lution

TERMA HE5AS
[6]

3-5 s 4 Hz 22◦ × 22◦ 1024x1024
CCD

A-STR (au-
tonomous star
tracker) [6], [9]

<6 s 10 Hz 16.4◦×16.4◦ 512x512
CCD

Nano Star
Tracker [8]

2 s 5 Hz 12.0◦ × 9.0◦ ?

preprocessed data from the camera and information from a database containing a star
catalogue. A conceptual diagram of the LISA and tracking structure is shown in Fig-
ure 2.

Figure 2: Conceptual diagram of the LISA and tracking part of the star tracker. The
output from the tracking is a quaternion.

There are several ways of representing the orientation of an object in 3D space.
One of the most common method is by the use of quaternions. Since the attitude con-
trol system in the cubesat is using quaternions it is natural to design the output from
the star tracker to be in the same format.

The brightness of a star is classified as its magnitude. The lower the number, the
brighter the star is. The catalogue is compiled in such a way that it contains only stars
of sufficient magnitude to be detected by the sensor. There is a strong relationship
between which magnitudes of stars can be seen and the sensors sensitivity, speed of the
optics and exposure time.

4

3 Components of the Star Tracker
The star tracker being developed for SEAM at the Space and Plasma Department (SPP)
at KTH can be subdivided in three major parts. The first is the image sensor which
captures the image of the stars. The second is the camera FPGA performing the image
processing and star detection. The third is the Smartfusion2 SOC for LISA and track-
ing.

A simplified overview of the star tracker is shown in Figure 3. The actual hardware
setup used for implementing and testing is shown in Figure 4. In this section, technical
details are presented for each component and subsystem.

Figure 3: Conceptual overview of the star tracker unit.

3.1 Optical Assembly
The lens used during the development and testing is a standard C-mounted CCTV lens
from Fujinon. The specific model of the lens is HF16HA-1B. It has a 16 mm fixed
focal length, adjustable focus and an aperture between F1.4 and F16. The field of view
is fixed at 17◦ × 12◦. A custom made C-mount bracket has been manufactured for use
together with the lens and a custom made image sensor PCB. The bracket and the im-
age sensor PCB have been developed at the Space and Plasma Physics Department at
KTH. The camera assembly containing the image sensor PCB, C-mount bracket and
CCTV lens is shown in Figure 5.

For the flight version of the star tracker a single lens system is proposed to be used.
If such a method is used it allows for higher light input to the sensor. A higher light
input to the sensor makes it possible to detect dimmer object with the same exposure
time. It is being investigated if a single lens system is feasible to use in this application.
As a single lens system gives a smaller field of view, it may result in too few stars being
detected to be able to run the star identification algorithm.

To prevent stray light from the sun or other bright objects to enter the image sensor,

5

Figure 4: Actual hardware setup. The PCB with the camera FPGA is stacked on top of
the Smartfusion2 board.

the optical assembly will be shielded with a black baffle. The baffle will prevent stray
light from entering the optical path and is a common practice in such systems.

Figure 5: Camera assembly.

6

3.2 Image Sensor
Aptina manufactures the image sensor used. The specific model chosen is MT9P031
[1], and is a CMOS sensor. It comes in a 48-pin iLCC package and provides 12 parallel
data lines for clocking out the pixels. The reason for choosing this sensor is superior
low-light performance, low dark current and being simple to interface. The sensor has
a native resolution of 2592 × 1944 pixels (5 MP) but can be lowered if needed by en-
abling internal binning modes.

Registers define the operation mode and settings of the sensor. These can be ac-
cessed and written by the user by means of I2C communication. The registers are here
called REGXX, where XX is the number of the register. The settings most relevant to
the startracker are exposure time and analogue signal gain. Exposure time is affected
by the value of several registers and needs to be calculated.

The exposure time tEXP is calculated [1, p. 31] using

tEXP = S W × tROW − S O × 2 × tPIXCLK , (1)

where S W is shutter width, tROW is the row time, S O is shutter overhead and tPIXCLK is
the period 1

fPIXCLK
of the pixel clock. fPIXCLK is the frequency of the clock signal to the

sensor.

Shutter width S W is calculated as

S W = max(1, (216 × S hutter Width U pper) + S hutter Width Lower),

where S hutter Width U pper is the value of REG08. S hutter Width Lower is the
value of REG09. tROW is the period from the first pixel output in a row to the first
pixel output in the next row. tROW is calculated as

tROW = 2 × tPIXCLK ×max((
W
2

+ max(HB,HBmin)), (41 + 346 × (Row Bin + 1) + 99)).

W is the output image width. In this project W = 2592. HB is horizontal blanking
HB = REG05 + 1. Row Bin is the row-wise binning configuration. HBmin is calculated
as

HBmin = 346 × (Row Bin + 1) + 64 +
WDC

2
.

Shutter overhead S O is calculated as

S O = 208 × (Row Bin + 1) + 98 + min(S D, S Dmax) − 94,

where S D = S hutter Delay + 1. S hutter Delay is the value of REG12. In our case to
obtain the full 5 MP resolution Row Bin = 0. S Dmax = 1232 if S W < 3, S Dmax = 1504
otherwise.

The exposure time is affected by several parameters but can be changed mainly by
altering the value of REG09. Complete Matlab code for calculating the exposure time

7

is given in Appendix A.

A clock signal of 32.768 MHz has been used during this project. By using the
default register values as listen in Table 3 in Equation 1, one yields the exposure time
tEXP = 0.2070 s. Since stars are very dim, a rather long exposure time is required. A
frame rate of 4 fps has been used during the development phase. This value is chosen
due to the standard exposure time of the sensor and the limiting clock frequency used.

Table 3: Default register values.

REG03 0x0797
REG04 0x0A1F
REG05 0x0000
REG06 0x0019
REG08 0x0000
REG09 0x0797
REG12 0x0000

The image sensor requires steady voltage supplies at 1.8 V and 2.8 V. A PCB,
shown in Figure 6, for the image sensor and voltage regulators has been designed at
SPP. This makes it possible to run the image sensor PCB from one single 3.3 V power
source. The voltage levels of the IO interface of the sensor are standard LVTTL.

Figure 6: Closeup of the image sensor mounted on a specially made PCB.

From the factory image sensor may be affected by a problem called hot pixels.
These are individual pixels stuck at unusual high values. This is a problem generally
affecting a very low number of pixels when the image sensor is brand new. This is
something to be aware of and it is handled in the star detection algorithm.

8

3.3 Camera FPGA
The logics for communicating with the camera are implemented in an Actel Proasic 3
FPGA. The specific model used is A3P250 and is shown in Figure 7 soldered on a PCB.
The FPGA contains a fabric with 250 K gates. It is widely used in aviation, space and
military applications due to its robustness. It is reliable even if exposed to radiation
which is one key factor when designing for space applications.

The main task for the camera FPGA is to control and process data from the image
sensor. It loads appropriate parameters to the sensor by using the I2C interface. The
image processing and star detection is done entirely on the camera FPGA in near real-
time as the data are clocked out from the image sensor. The outputted data from the
camera FPGA are a message containing X, Y and I for each detected star in the field of
view. Details follow in section 4.

Figure 7: Actel A3P250 FPGA used for image processing.

3.4 Smartfusion2 SoC
The Smartfusion2 SOC is a system on a chip containing both an FPGA fabric and an
ARM Cortex M3 processor. It communicates with the camera FPGA and will perform
the star identification algorithm (LISA) and tracking. Figure 8 shows the Smartfusion2
mounted on a PCB.

There are a couple of manufacturers (Xilinx, Altera, Lattice etc.) providing system
on a chip solutions. They have however a very high Single Event Upset (SEU) failure
rate at high altitudes caused by radiation. The Smartfusion2 is designed with this in
mind and has zero failures in the event of SEU [10]. This makes it a good choice for
space applications.

The Smartfusion2 SOC is intended to perform the star identification and tracking
algorithms. These are however not fully developed yet and not implemented. A simple
software for the Smartfusion2 to access star data from the camera FPGA through SPI
and relaying it on the UART connection have been implemented.

9

Figure 8: M2S050 Smartfusion2 SOC used for LISA and tracking.

3.5 Communication
To have a reliable data transfer between the star tracker unit and other satellite systems
a RS-422 interface is suitable. Since RS-422 is using balanced data transmission, it
can reliably be used even in harsh environments with EMC noise. For flexibility, both
balanced and unbalanced connection should be available for interfacing. The unbal-
anced connection could easily be connected to a serial port on a computer for testing
and debugging.

3.6 Housing
The housing should be constructed of a material shielding the electronics from radi-
ation and still be lightweight. It should secure all electronics component in a robust
fashion. The optical assembly should preferably be hermetically sealed to prevent par-
ticles entering the optical path.

10

4 Camera FPGA and Image Processing
When a star is in the field of view of the star tracker it is projected on the image sensor
through the optics. The star will span a certain number of pixels depending on the
optics. Throughout this section the word blob is frequently used. The term blob here
refers to a collection of pixels with a value higher than a specified threshold level.
Those pixels represent a star as seen by the sensor. To express a single row of pixels in
the blob the word rowblob is used.

Figure 9a shows an close-up view of a star as seen by the sensor. After applying a
threshold filter the image of the resulting blob is obtained as seen in Figure 9b. The blob
detection algorithm uses a threshold value to separate the stars from the background.

(a) Original image. (b) Thresholded image.

Figure 9: Close-up view of a star before and after applying a threshold filter. The right
image shows the resulting blob after applied threshold. In this example the threshold
value was set to th = 305. The star is successfully separated from the background.

4.1 Realtime Centroid Calculation
Blob detection and centroid calculations are key challenges for the functionality of a
star tracker. There are several ways of detecting objects in an image. Some are more
advanced than others. In the case of the star tracker, it is the simplest possible scenario.
The source image has a black background with white spots (stars) on it. The extracted
spots by applying a threshold filter are what we call blobs. A centroid calculation is
needed to get one single value of the location of a blob. This location is the one closest
to the real location of the star on the image plane. The centroid calculation uses the
intensity of the pixels within the blob to calculate the center of intensity by means of
weighted sums. In this way sub-pixel accuracy can be obtained. In the algorithm pre-
sented in section 4.2 sub-pixel accuracy is not implemented. The algorithm is however
easy to modify to obtain sub-pixel precision. Due to the relatively high native resolu-
tion of the image sensor sub-pixel accuracy is probably not needed.

The image from the image sensor is a 12 bit 5 MP grayscale image. The interesting

11

spots vary in size and intensity. The first step is to separate the background from the
rest of the image keeping only the spots. This is where the threshold value is used. If
a pixel is detected to have a value higher than the threshold, it is handled as potentially
being part of a blob. Objects having an intensity lower than the threshold will not be
possible to detect. How the threshold value is chosen is explained in Section 4.2.4.

Many of the existing solutions of blob detection need full access to a whole image
from the camera. For this project such a solution is not desirable. It would have needed
an external memory to temporarily save the picture for later processing. The use of ex-
ternal memory would result in larger physical design, higher power consumption and
longer processing times.

The blob detection method considered in this thesis uses data directly from the im-
age sensor as it is clocked out. This results in an extremely low latency. The solution
uses a rotating FIFO buffer to accomplish the task and has according to research not
been used in star trackers before. The method has similarities with sliding window
methods but is more dynamic. Since the algorithm is very efficient and runs on the
fly in near real-time it could certainly be useful in high speed applications. Some ex-
amples of this could be camera based touch screens and infrared reflective eye tracking.

Because of the complexity of the algorithm, it would have been hard and time-
consuming to directly implement the algorithm in the FPGA. To simplify the develop-
ing phase the algorithm was first implemented and simulated in C#. The coding style
was done in a way to fake a hardware implementation. The algorithm was tested and
debugged until it behaved satisfactory. The software developed for simulating the blob
detection algorithm grew larger than initially planned. Many other features were added
to simplify the developing and testing. Because of the many features implemented in
the software section 5.4 is dedicated for explaining them further.

The image sensor works in such a way that it clocks out pixel by pixel, row by row.
Figure 10 schematically shows how a scene is projected on the image sensor. A result
of the imaging is that the scene is mirrored on the sensor. After exposure the pixels are
clocked out starting from the bottom right corner on the sensor corresponding to the
upper left corner of the scene.

The algorithm computes the coordinates and intensity for each detected blob in the
frame. The output from the algorithm is a set of values, X, Y and I, for each blob. X
corresponds to the horizontal location of the blob and has a value between 0 and 2592.
Y corresponds to the vertical location of the blob and has a value between 0 and 1944.
I is the intensity of the whole blob and have a value between 2 · th and 224, where th is
the threshold level. It is calculated as the sum of all pixels with a value higher than the
threshold level contained in the blob. Since each blob contains at least two pixels the
minimum possible value of I is 2 · th.

12

Figure 10: Projection of the scene on the image sensor [1, p. 11].

The algorithm presented in the next section is mainly designed for circular blobs.
However due to its dynamic detection it is useful even for slightly deformed blobs.
This happens if the exposure time of the camera is too long resulting in smeared stars.

4.2 Realtime Centroid Calculation Algorithm
The blob detection and centroid calculation algorithm is divided in four layers for easier
overview. The bottom layer is in direct contact with the raw pixel data from the image
sensor. The top layer is more abstract and is the layer which computes the final values
of X, Y and I for each blob. The layering principle is visualized in Figure 11. The
figures presented in this section explaining the algorithm do not contain all details.
Flags and signals between the layers are omitted for simplicity reasons. The complete
VHDL code for the algorithm is given in Appendix C.

13

Figure 11: Visualization of the blob detection algorithm as four layers. The first layer
(bottom) has direct contact with the raw data from the sensor. The fourth and topmost
layer is the most abstract layer outputting processed blobdata.

Following is the principle of the blob detection algorithm presented. The four lay-
ers of the algorithm all run in parallel and are synchronized with flags.

Assume a stream of pixel values entering the detection algorithm. The first criterion
needed to trigger the detection is a threshold override. A pixel P with intensity higher
than the threshold level th triggers this event. When a threshold override is detected, the
algorithm goes to the next step to create two important sums. The horizontal position
on the row on which the event was triggered is saved as Xstart. The first sum is

∑
(n · P)

where n is the current number of pixels in the ongoing rowblob. n increases with the
number of pixels detected for the rowblob. This is a weighted sum of intensities by
their location on the row. The next sum Irow =

∑
P is the integrated intensity of the

ongoing rowblob. The two sums are the numerator and denominator in an equation
used to calculate which column in the rowblob has the center of intensity. The center
column by intensity is called Xcenter and is calculated as

Xcenter =

w∑
n=1

(n · P)

w∑
n=1

P
+ Xstart, (2)

14

where w is the width of the rowblob.

Figure 12 shows fundamental parts of the detection algorithm. When the next pixel
in the stream entering the algorithm, is detected to have an intensity lower than the
threshold, a ghosting phase is initiated. The ghosting phase gives a distance (ghost-
ing distance) in which pixels can be detected and still be grouped with the ongoing
rowblob. If the next pixel overriding the threshold value appears outside the ghosting
distance, it will be handled as a completely new blob. The ghosting phase is imple-
mented to improve the functionality of the algorithm and help in the event of broken
pixels.

Figure 12: Ghosting and checking distance. Xcenter is the center of intensity column
in the detected blob on row 2. In this example located on row 2, column 5 (2,5). The
ghosting level is here set to 3 giving a ghosting distance of 3 pixels.

The ghosting level is set with parameter Ghosting Level. The value of the parame-
ter gives an equal ghosting distance. If no pixel overrides the threshold in the ghosting
distance, the calculations for the rowblow can be taken to the next step and finalized.
Equation 2 is now calculated using the completed sums in the numerator and denomi-
nator. The detection of threshold override and sum creation are implemented in layer
1 as pictured in Figure 13. The calculation of Equation 2 is done in layer 2 as pictured
in Figure 14.

The data for each blob are saved in a FIFO buffer as 2 × 62 bits. 128 bits in total
for each blob. Some of the bits are however not used and reserved for future improve-
ments. When a new rowblob is discovered it is always compared with the first element
in the FIFO buffer. The checking distance is the area in which a newly detected row-
blob needs to have pixels located to be merged with the blob in FIFO. The checking
distance is shown in Figure 12. If this occurs data are appended to the blob in the
FIFO and put in the FIFO’s last position. The FIFO rotates in such a way that the first
entry is always the one to possible append data to. If no new pixels are discovered in
the checking distance to the blob in the FIFO the blob is ready to be released. A flag
triggers the fourth layer which makes the final processing on the blob. The logics for

15

Figure 13: Layer 1 (bottom layer). This layer is in direct contact with the pixels clocked
out from the sensor. P is the value of the current pixel. The threshold level is denoted
th.

Figure 14: Layer 2.

FIFO rotation and merging of blobs is implemented in layer 3 as shown in Figure 15.
The fourth layer with the final processing is shown in Figure 16.

16

Fi
gu

re
15

:L
ay

er
3.

L
og

ic
s

fo
rF

IF
O

ro
ta

tio
n

an
d

bl
ob

m
er

gi
ng

.

17

Figure 16: Layer 4.

How the FIFO packages are constructed and what data they contains are shown in
Table 4 and Table 5.

Table 4: FIFO data. Package 1 of 2.

Value
∑

Xcenter Xcenter Startrow Rowspan PX count
Number of bits 24 12 12 6 10
Bits in package 63:40 39:28 27:16 15:10 9:0

Table 5: FIFO data. Package 2 of 2.

Value
h∑

n=1
(Irow · n)

h∑
n=1

Irow unused

Number of bits 24 24 16
Bits in package 63:40 39:16 15:0

A final check is done on the blob before it is released to the SPI send buffer. It
must contain at least two pixels. To prevent the send buffer to overflow in the event
of too many detected blobs a limiter is set. The limiter is called MaxS tarsInFrame
and specifies how many blobs are allowed to be detected in one frame. The limiter in
the current implementation is set to 25. For comparison the commercial star tracker
A-STR has a maximum tracking capability capability of 10 stars [9, p. 6].

18

When a blob finally is ready to be released Xblob, Yblob and Iblob are calculated.
Xblob is calculated as

Xblob =

∑
Xcenter

Rowspan
,

where Rowspan is the number of rows in the blob. This is an ordinary mean value.

The center of intensity in Y-direction is calculated using weighted sums similar to
Equation 2. The center position in Y-direction is called Yblob and is calculated as

Yblob =

∑
(Irow · Y)∑

Irow
+ Ystart, (3)

where Irow is the integrated intensity of each individual row. Y is the current row in the
blob. Ystart is the vertical starting position of the blob on the image sensor.

The intensity Iblob for the whole blob is calculated as the sum of intensities of all
rows in the blob

Iblob =
∑

Irow.

All calculations containing divisions are implemented in hardware VHDL using
serial dividers. The implementation of the divider is explained further in Section 4.2.3.

19

4.2.1 Row by Row Explanation of FIFO Events

How the blobs are discovered row by row is shown in Figure 17. What happens for
each row and the current state of the FIFO buffer are as follow:

(Row 1) i. Blob 1 is discovered and enqueued. →[1]→

(Row 2) i. Data are added to blob 1. Dequeued and enqueued. →[1]→

ii. Blob 2 is discovered and enqueued. →[2,1]→

(Row 3) i. Blob 3 is discovered and enqueued. →[3,2,1]→

ii. Data are added to blob 1. →[1,3,2]→

iii. Data are added to blob 2. →[2,1,3]→

(Row 4) i. Data are added to blob 3. →[3,2,1]→

ii. Blob 1 is released. →[3,2]→

iii. Data are added to blob 2. →[2,3]→

(Row 5) i. Data are added to blob 3. →[3,2]→

ii. Blob 4 is discovered. →[4,3,2]→

iii. Blob 2 is released. →[4,3]→

(Row 6) i. Blob 3 is released. →[4]→

ii. Data are added to blob 4. →[4]→

(Row 7) i. Data are added to blob 4. →[4]→

ii. Blob 5 is discovered. →[5,4]→

(Row 8) i. Blob 4 is released. →[5]→

ii. Data are added to blob 5. →[5]→

(Row 9) i. Data are added to blob 5. →[5]→

(Row 10) After the last row blob 5 is still in the FIFO. The reason for this is that it was
on the bottom border and could therefore not be released. The whole FIFO is
now cleared before the start of next frame.

20

(a) Row 1 (b) Row 2 (c) Row 3

(d) Row 4 (e) Row 5 (f) Row 6

(g) Row 7 (h) Row 8 (i) Row 9

Figure 17: The image from the sensor is read out rowwise, left to right. Figure a-i
shows how a picture with five stars is detected row by row.

21

4.2.2 Design Constraints

By implementing an algorithm in hardware, physical design constraints will be present.
Vectors of fixed lengths are used for storing values and only integers can be used with-
out doing ”fancy tricks” using floats, which require more space. A rectangular blob
with height h, width w and all pixels with the same intensity P is considered to investi-
gate how wide signal vectors are needed. Let k be the bit-width of the signal vector.

The relationship that must be fulfilled is

h∑
n=1

(P · w) · n = 2k. (4)

This constraint originates from the numerator in Equation 3. This part can grow
very large and is the main limitation. For simplicity the blob is assumed to be square
shaped with sides h = w = x. Equation 4 can be rewritten as

x∑
n=1

(P · x) · n = 2k.

By rewriting the sum one get the equation

P · (x3 + x2) = 2k+1. (5)

Solving for the real-roots of x in Equation 5 for some chosen values of P and k one
obtains the maximum blob dimensions as in Table 6. Since each pixel P is 12 bit it can
have a value between 0 and 4095.

Table 6: Vector Constraints.

P k x
2048 24 25.069
4095 24 19.832
2048 32 160.94
4095 32 127.68

In Table 6 it shows that increasing the vector width from 24 bits to 32 allows for
significantly larger values of x. It seems beneficial to use a 32 bit vector since it can
handle very large square blobs. It can thus handle even larger circular blobs. A 32 bit
vector however require more space in the FPGA fabric and results in slower division. A
slower divider may introduce other problems such as timing issues. A vector width of
24 bits is therefore chosen and used for all divisions in the algorithm. This is reasonable
since a star usually spans over just a couple of pixels and should generally not cause
any troubles. A vector width of 24 bits allow blobs containing 25 × 25 pixels with
P = 2048 to be detected without overflowing.

22

4.2.3 Digital Division in the Algorithm

The blob detection algorithm relies on a set of sums and divisions to be computed
correctly. Sums are easy to compute in hardware but divisions generally cause trou-
ble. One special case is division with 2n which is particularly easy as it is only a right
shifting of bits n steps. For the blob detection algorithm a complete division had to be
implemented.

In hardware logic, divisions can be implemented in two ways. The first type is a
pipelined implementation which solves the division in only one clock cycle. This can
be beneficial with smaller signal vectors in the division. In this case the division is done
with two 24 bit vectors and the hardware logics therefore becomes huge. It occupies
near 100 % of the FPGA core which is not feasible. Instead a serial divider is imple-
mented. The downside is that a serial divider becomes slower and requires 24 clock
cycles to compute. The VHDL code for the serial divider is attached in Appendix B.

4.2.4 Threshold Value for the Algorithm

The background of the image is not perfectly flat. Depending on conditions, it may vary
and does not have a constant value. One way of determining this value is by the use of
histogram. Since the majority of the picture is black background the most frequently
occurring value in the histogram can be said to be the background level. The threshold
value for the blob detection algorithm has to be set slightly higher than the background
level. For this application it should give satisfactory results to analyse histograms once
for some sample pictures of stars and obtain the suitable value of the threshold level. A
more dynamic way of doing it would be to calculate a histogram in the camera FPGA
on the fly and adjust the threshold value automatically giving a dynamic threshold.

The values of the pixels vary between frames due to noise. When the threshold
value is picked this has to be kept in mind. One has to make sure that the noise level
from the background wont disturb the blob detection algorithm and give false threshold
overrides. In the current implementation, the threshold value has been set experimen-
tally for indoor tests using simulated stars. For the final version of the tracker, the
threshold level needs to be tested carefully together with the optics and different expo-
sure times to get the best possible performance.

4.2.5 Timing Issues

Since the blob detection algorithm uses a serial divider it can cause timing issues be-
tween the different layers. If a new blob is detected before the division is complete,
one blobrow may be skipped. This can be resolved by increasing the ghosting value.
The value should be increased so that a new blobrow is not released until the previous
division is complete. This results however in a constraint limiting how close two stars
can be to each other and still be separable. The ghosting level is the limiting factor
how close to each other stars can be detected. The checking distance is another pa-

23

rameter that should be set with the ghosting level in mind. A rule of thumb is to keep
checking distance ≤ ghosting level.

4.3 Camera FPGA Firmware
There are essentially two firmwares developed for camera FPGA in the star tracker. The
basic functionality of the camera and I2C communication in both of them originates
from the ISAAC Experiment [11]. The main firmware contains the blob detection
algorithm and SPI communication. The second is only designed for testing the image
sensor.

4.3.1 Firmware 1, Blob Detection

This is the main firmware in which the blob detection algorithm is implemented. An
SPI interface is implemented to communicate between the Smartfusion2 and the cam-
era FPGA. Since this particular model of FPGA is small with only 250 K grids most of
it becomes occupied with the blob detection algorithm. In the current implementation
87 % the FPGA core is used. The camera is set to run at 4 fps.

The blockdiagram for the FPGA is drawn in Viewdraw by Microsemi. Viewdraw
is part of Libero IDE which is the development tool used for the FPGA. The Viewdraw
schematic concerning the blob detection algorithm is shown in Figure 18. It shows
how the block containing the algorithm is connected with the FIFO buffer and SPI
send buffer.

4.3.2 Firmware 2, Camera Testing

The camera test firmware allows saving of images to flash memory. The images will
however not have the full 5 MP resolution. The pixels are binned 4×4 giving an image
resolution of 648 × 486 pixels. The firmware allows images to be saved continuously
at 2 fps giving a sequence of images.

The camera testing firmware communicates with a PC using UART and a serial ter-
minal. For reading the images saved in the memory a terminal with logging capabilities
such as Teraterm [12] is needed. The resulting logfile after a readout session can then
be opened in the multi-purpose software. If the logfile contains a sequence of images it
can then be played as a movie in the software. All communication is done using UART
and by sending keystrokes corresponding to different commands. The commands for
communicating are listed in Table 7.

4.4 SPI Communication with Camera FPGA
The communication with the camera FPGA is done with a SPI bus. The camera FPGA
is a SPI slave and the Smartfusion2 is the SPI master. SPI communication is always
initiated by the master. The protocol implemented has eight message codes specifying

24

Fi
gu

re
18

:V
ie

w
dr

aw
sc

he
m

at
ic

.

25

Table 7: Commands in the Camera Test Firmware

Command Keypress
Toggle memory readout on/off a

Toggle image saving on/off y
Rewind memory R
Erase memory Q

Print current memory position F

what kind of package is currently being transmitted or received. The SPI packet size
is set to a fixed length of 32 bits. The first 8 bits is the command sent to the slave, and
the remaining 24 bits are the actual data. In this implementation only the first 4 bits of
the command is processed. The leftmost bit of these four is not to be used since it can
have an unknown state. This gives three usable bits for command codes resulting in a
total of eight possible commands. The 24 bit data can be sent either to the slave or be
read from the slave depending on the command used. A list of all SPI commands for
communication with the camera FPGA is shown in Table 8.

Table 8: SPI commands

Code
(Bits 0-7)

Payload
(Bits 8-31)

Response
(Bits 8-31)

Request status 0x00 - Status message
Request star data
(Part 1 of 3) 0x10 - Star data, 1 of 3
Request star data
(Part 2 of 3) 0x20 - Star data, 2 of 3
Request star data
(Part 3 of 3) 0x30 - Star data, 3 of 3

(not implemented) 0x40 - -
(not implemented) 0x50 - -
(not implemented) 0x60 - -
(not implemented) 0x70 - -

The SPI master always checks the status message (code 0x00) if any new data are
available in the slave. The structure of the status message is shown in Table 9. If bit
8 (Buffer not empty flag) is 1, new data are available. One should then read part 1,
part 2 and part 3 sequentially to receive all information. The status message is checked
and the read action is repeated until no more data are available, eg reading data until
Buffer not empty flag becomes zero. The data contained in the three parts corresponds
to data for one blob and can be either real star data or a new frame message. The
structure of the three SPI packages are shown in Table 10, Table 11, and Table 12 re-
spectively.

26

As seen in Table 10, the first part contains a bit called NF indicator. This is the bit
specifying if the package is an actual star package or a new frame indicator. 1 = new
frame. 0 = stardata.

The data from the camera FPGA needs to be read as soon as possible after it has
become available. This is done by repeatedly polling the status message shacking if
any new data are available. If the Smartfusion2 for any reason is unable to keep up
the pace of reading the star data an overflow may occur in the camera FPGA buffer
resulting in lost stars. Another reason to read the star buffer as quick as possible is to
get as low delay as possible between the data acquisition and processing.

Table 9: Status message

Bits 23:12 11:9 8 7:0
Contains 0xAAA 0b000 Buffer not empty flag Stars in buffer

Table 10: Part 1 of star message.

Bits 23 22:16 15:12 11:0
Contains NF indicator Spare 0b0000 X-position

Table 11: Part 2 of star message.

Bits 23:20 19:12 11:0
Contains 0b0000 Pixel count Y-position

Table 12: Part 3 of star message.

Bits 23:0
Contains Intensity I

27

28

5 Testing
The blob detection algorithm has been tested extensively indoors. To be able to test
the camera in daylight a red-pass filter from Edmund Optics is mounted on the camera.
The filter allows only red light at a narrow wavelength to pass through and enter the
image sensor. Small red light sources have been used to simulate stars indoor.

5.1 Simulated Stars
To simulate stars in the lab a pinpoint light source has been built. This has been of
good use during the testing of the system, specifically the blob detection and centroid
calculation. The light source consists of a plastic box containing a rechargeable Li-ion
battery, dip-switches, a potentiometer to vary the intensity and a set of light sources.
The charging of the internal battery is done with a USB connector. The light sources
are red 1206 SMD LEDs soldered on a set of flat cables. The LEDs have inbuilt lenses
to get a narrow light output. A fine fiber optic strand is also included in the box. The
fibre is driven from a low power red laser giving a very good pinpointed (Ø1 mm)
monochromatic light. The fiber is painted black to prevent light being emitted else-
where than from the edge. The dip-switches select which light sources to be lit.

The constructed device is shown in Figure 19. The fibre optic strand giving a
Ø1 mm light source is shown in Figure 20. The USB jack for charging the battery is
shown in Figure 21. An indicator indicates when the battery is fully charged.

Figure 19: Rechargeable light source with adjustable intensity to simulate stars.

29

Figure 20: Fiber optic strand driven from a red laser diode.

5.2 More Complicated Star Patterns
To simulate actual star signs a video projector can be used to project stars modified to
be realistic as seen from the star tracker. An example of software capably of projecting
stars as seen with a specific field of view is the free and open source software Stellarium
[13].

5.3 Star Photography
Several tests have been performed with the image sensor and the Fujinon CCTV lens
outdoors a couple of dark nights in February and April. A set of star pictures with
different settings have been taken with a development kit for the image sensor. This
was done in order to have material to analyse to be able to characterise the behaviour
of the lens and the image sensor. The result of the data are discussed further in the
companion master thesis [5].

The blob detection algorithm was also tested in a real scenario during the photo
sessions. The tests were however not successful. The image sensor had the default set-
tings giving a too short exposure time. As explained in Section 3.2 the default exposure
time is tEXP = 0.2070 s. With the Fujinon lens set to F1.4 and the default settings of
the image sensor, no stars could be detected. By increasing the signal gain and expo-
sure time the blob detection algorithm would probably had worked. The exposure time
should however be kept below 0.25 s to allow 4 fps from the image sensor. A single
lens system with higher light input will also help in the detection of stars. Unfortu-
nately, the settings could not be changed out in the field and no more photo sessions
were made.

30

Figure 21: USB charging jack and charging indicator.

31

5.4 Multi-purpose Software
An application has been coded in C# to help the development of the star tracker. It
allows the user to perform the blob detection algorithm in software on a loaded image
and several other functions. It can read common image formats such as ordinary bmp,
jpg and png files. Raw images saved by Aptina Sensor Demo Software [14] can also
be loaded. The software have got the nickname ”The Blobber”.

Figure 22 shows the graphical user interface (GUI) and the arrowed controls are:

a: Menu item for loading log files saved by the camera test firmware.

b: Settings for the serial port. Open and close the port.

c: Controls for real-time star data. The received data are displayed in the gray box.
Indicators for frame number and framerates are shown. If checkbox Save logfile
is ticked the received realtime data will be recorded. When the checkbox is
unticked the data will be saved on the harddrive in the directory logs/. Filename
is created automatically containing the date and time. If Trails is ticked fading
trails are shown between the detected real-time blobs.

d: Images located in the folder bilder/ in the software folder. Select which image to
work with.

e: Settings for the blob detection algorithm. Threshold value is set with the slider
or by typing in the text box right to it. The radius of the markers is adjusted
with the second slider. Checkboxes selects if single pixel blobs should be made
visible and if numbers should be shown next to the markers.

f: Button to run the blob detection algorithm.

g: Result after the blob detection process. All detected blobs and corresponding
data such as width W, number of pixels PX, horizontal position X, vertical posi-
tion Y and intensity I are visible. By scrolling down a matrix called Francesco
containing X, Y and I for each detected blob is visible. The text can be copied
and used in other locations.

h: If a log file containing a sequence of images have been loaded the Play button
can be clicked to play the sequence. Frame indicator shows the current frame
being displayed. Min-max indicator shows the minimum and maximum values
detected for all pixels in the sequence.

i: Load image button loads the selected image and displays it in j.

j: Panel showing the original image or log file loaded.

k: Panel showing the thresholded image and the detected blobs.

32

Fi
gu

re
22

:G
U

Io
ft

he
m

ul
ti-

pu
rp

os
e

so
ft

w
ar

e.

33

By loading an image file in the software the blob detection algorithm can be eval-
uated and images can be analysed with different threshold levels. The threshold can
be changed and the result is shown in the right panel. A convenient matrix called
Francesco is shown containing X, Y, I of each detected star in the image. The matrix is
given in a Matlab friendly format. It can then be used together with star identification
algorithms to perform various test.

Figure 23 shows an raw image of stars taken with the image sensor and Fujinon
lens loaded in the left panel. The right panel shows the thresholded image with de-
tected blobs. By checking the box Show single pixel detection the software will display
all detected blobs, even ones containing only one single pixel. The result is shown in
Figure 24. A significant amount of single pixel blobs is detected. This is due to the
non-optimal picture taken with the camera containing a cloudy sky. Some pixels on
the sensor are however defective (hot pixels) and will give some falsely detected single
pixel blobs. These become visible when the Show single pixel detection box is ticked.

Figure 23: Blobber software. Left panel shows the loaded picture. The right panel
shows the detected blobs.

Logfiles containing images saved with the camera test firmware can be used to-
gether with the software. Logfiles are opened by clicking File-> Open logfile. If the
logfile contains several images they are loaded in a sequence. The sequence can then
be played as a movie by clicking the Play button. Figure 26 shows a logfile loaded and
displayed in the left panel.

A feature is added in the multi-purpose software to display detected stars in real-
time. To use this feature a simple relaying is performed in the Smartfusion2. It forwards

34

Figure 24: Blobber software showing single pixel detection with green markers.

the data received on the SPI bus from the camera FPGA to the UART connection to the
computer. The data as seen on the SPI bus are repacked to a simpler format that can be
interpreted by the software.

The UART package for use with real-time data is 7+3 bytes long. The message start
with a header character (+) followed by an identifying bit specifying if it is a newframe
message or a star. The payload in the message contains X, Y and I information of the
blob. Even the number of pixels in the blob is contained in the message. Each message
ends with a carriage return and line feed command. The structure of the real-time
packet for usage with the software is shown in Table 13. Figure 25 shows the output
format as it is captured by a serial terminal.

Figure 25: Real-time data from the Smartfusion2 UART connection as captured by a
serial terminal. Rows 1-3, 5-7 and 9-11 contains star data and row 4 and 8 are new
frame indicators.

35

Table 13: Star message to be interpreted by the software.

Value Number of bits
Header + (0x2B) 8
Payload Identifier (1=NF, 0=ST) 1
Payload Spare 3
Payload Spare 4
Payload X 12
Payload Y 12
Payload I 24
Payload PX count 8
Tail carriage return (0x0D) 8
Tail line feed (0x0A) 8

Figure 26: A logfile containing a video sequence being played in the blobber software.
A phone with a stopwatch is seen on the recording for checking the frame rate.

If the UART connection of the Smartfusion2 is connected to the computer running
the mult-purpose software real-time data can be displayed. The detected blobs appear
in the right panel as they are received by the computer. The settings for the serial port
are changed under the menu Serial port. The supported baud rates are:

• 38400 Baud

• 460800 Baud

• 2000000 Baud

where 460800 Baud is the default speed of the Smartfusion2 board.

36

6 Conclusions and Discussion
An electrical platform for a miniature star tracker has been developed and tested. An
innovative star detection algorithm has been implemented in the camera FPGA and a
set of communication protocols have been defined. The FPGA used for image pro-
cessing is very limited but a working star detection algorithm could successfully be
implemented running on the fly.

A multi-purpose software has been written to make the development of the star
tracker easier and more convenient. What is yet to be done is to implement the actual
LISA algorithm and the tracking of the stars in the Smartfusion2. The software cur-
rently written for the Smartfusion2 gives easy access to X, Y and I of each detected star
in a frame. The SPI communication between the camera FPGA and the Smartfusion2
is fully functional but should be extended to add more features. Some of the features
can be the ability to change threshold and exposure settings of the camera from the
Smartfusion2.

To make the star tracker and blob detection algorithm more robust a couple of
problems and design flaws need to be addressed. The blob detection method described
herein contains several limitations. They can however be avoided if one is aware of
them. Large object in the field of view will cause trouble. Since the hardware im-
plementation contains physical limitations too large objects will result in overflow of
signal vectors and strange phenomena’s can happen. A big object will usually result in
the detection of several false blobs. Big objects are the earth, sun and the moon.

Depending on the lens configuration used, the moon may not be a problematic
object. A narrow field of view will make objects appear larger on the sensor and po-
tentially cause trouble. However when the field of view is narrow a bright object such
as the moon will stay in sight for shorter periods compared with a wider field of view.

A frame condition status can be implemented in the blob detection algorithm to
resolve this issue. The percentage of the frame having a threshold override can be
calculated and compared with a certain threshold. If the frame contains an unusually
high number of pixels overriding the threshold value, the frame condition status should
indicate a bad frame. If the Smartfusion2 receives a bad frame status it can decide to
discard the whole frame and no tracking is performed.

A horizon in the field of view such as in Figure 27 is problematic since it is a big
object. Since the image is read from top to bottom the image in Figure 27 could still
work. Any other orientation of the horizon creates direct problems. In the case of hori-
zon in the lower half of the image, the stars in the upper half will be detected as they
should. When the algorithm scans the row containing the horizon a multitude of poten-
tial blobs will be detected until the number specified in MaxS tarsInFrame parameter
is reached. The frame condition status previously mentioned can help the Smartfusion2
in this case to be aware of a bad frame captured by the camera.

Another issue is blobs located on the border of the image sensor. If a blob contains

37

Figure 27: Horizon in the FOV is a problem for the star tracker. The picture is a
composition of an image of earth taken from MUSCAT Experiment [15] and a star
picture taken with the actual image sensor for the star tracker.

pixels on any of the four borders one cannot be sure that the centroid calculation is
done correct. The star might contain parts projected outside the sensor which is not
detected. Hence, the blob detection algorithm may calculate the wrong centroid. In the
current implementation there is no border control of detected blobs. This could easily
be implemented and a blob condition flag can be set wherever it is a normal blob or a
border blob detection. In that case, all blobs will still be captured and the decision to
keep it or skip it is made in the Smartfusion2 software. Another way of dealing with
this is to set a virtual border slightly smaller than the actual image sensor size. This
can be implemented in the Smartfusion2 and be made to skip blobs detected outside
the virtual border.

Fast moving object is another issue with this algorithm but heavily related to the
frame rate and exposure time of the camera. Since fast moving objects in combination
with relatively long exposure time results in trails this can cause issues. Horizontal
trails can be handled very well but diagonal trails are more prone to cause trouble. Di-
agonal trails can move outside of the detecting range in the blob detection algorithm.
This will make it hard for the algorithm to merge rowblobs together resulting in multi-
ple detection of one object.

To get the best possible result from this system the image quality from the camera
needs to be as good as possible. The sensor need to capture a clear image of the stars
and the lens has to be in focus. The focusing of the lens is however problematic since
the picture from the sensor cannot be viewed directly in an easy way. One suggestion
to address this problem is to design a special PCB that can easily be attached to the
connector on the image sensor board. The purpose of this PCB is to help focusing by
outputting the picture from the image sensor to a monitor. The focusing process will
be much easier if a visual feedback is available during the process.

38

The implemented protocol between the camera FPGA and the Smartfusion2 SOC
is merely a suggestion and could be improved in several ways. More commands should
be added so the Smartfusion2 can change more parameters inside the camera FPGA.
This may involve threshold level, exposure time and sensor gain.

6.1 Social and Ethical Aspects
The star tracker presented in this thesis is targeted for space applications. By incorpo-
rating a star tracker in a satellite, it enables higher precision of measurements and more
precise attitude control can be performed. Research on the environment on earth and
various physical phenomena’s are frequently carried out in space. The technology help
us learn about phenomena’s in nature where the results can benefit life on earth. By
equipping more satellites with star trackers the research quality can be increased.

As always with technology, it can be used for other purposes than the one primarily
intended. In the case of star trackers they have multiple uses. They are not only devel-
oped and used for space related research, but also for some less peaceful applications.
The high accuracy of a star tracker is useful in airborne weapon system. Some cruise
missiles use star trackers in their guidance system to increase target precision and atti-
tude control.

The possibilities with technology are endless. There are always other ways of using
technology than as primary intended. This is something to be aware of. The defence
industry however pushes technology forward and has made many modern and socially
appreciated innovations possible. Lockheed Martin is a company taking advantage of
this by producing technology aimed for both space applications and defence. One of
their products is an advanced star tracker.

39

40

References
[1] Aptina Imaging, “ MT9P031 CMOS Digital Image Sensor Data Sheet (Rev.F),”

2011.

[2] Wikimedia Commons, Public Domain, “Plath sextant,” http://commons.
wikimedia.org/wiki/File:Sextant.jpg, 2014, [Online; accessed 17-June-2014].

[3] European Commission, “7 th Framework Programme for Research and Techno-
logical Development,” http://ec.europa.eu/research/fp7/understanding/fp7inbrief/
what-is en.html, 2014, [Online; accessed 7-June-2014].

[4] “Francesco Vallegra, Private communication, MSc thesis due in 2014.” 2014.

[5] “Nikola Shterev, Private communication, MSc thesis due in 2014.” 2014.

[6] Space Alliance, http://www.spacealliance.ro/articles/view.aspx?id=

201002250904, 2014, [Online; accessed 7-June-2014].

[7] A. R. Eisenman, C. C. Liebe, and J. L. Jorgensen, “The New Generation of
Autonomous Star Trackers,” http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/

22609/1/97-1120.pdf, 1997, [Online; accessed 20-June-2014].

[8] Blue Canyon Technologies, http://bluecanyontech.com/all products/
star-trackers/, 2014, [Online; accessed 17-June-2014].

[9] F. Boldrini and A. Landi, “The Officine Galileo Autonomous Star Tracker,”
http://www.dlr.de/Portaldata/49/Resources/dokumente/archiv3/1409P.pdf, 2014,
[Online; accessed 17-June-2014].

[10] Microsemi, “Single Event Effects (SEE),” http://www.microsemi.com/products/
fpga-soc/reliability/see, 2014, [Online; accessed 17-June-2014].

[11] ISAAC (RX15), “SED v4.2,” 2014.

[12] Sourceforge, “Teraterm v4.73,” 2012. [Online]. Available: http://ttssh2.
sourceforge.jp/

[13] Stellarium, http://www.stellarium.org/, 2014, [Online; accessed 11-June-2014].

[14] Aptina Imaging, “Aptina DevSuite,” 2014. [Online]. Available: http:
//www.aptina.com/support/Devsuite.jsp

[15] MUSCAT (RX13), “SED v5.1,” 2013.

41

http://commons.wikimedia.org/wiki/File:Sextant.jpg
http://commons.wikimedia.org/wiki/File:Sextant.jpg
http://ec.europa.eu/research/fp7/understanding/fp7inbrief/what-is_en.html
http://ec.europa.eu/research/fp7/understanding/fp7inbrief/what-is_en.html
http://www.spacealliance.ro/articles/view.aspx?id=201002250904
http://www.spacealliance.ro/articles/view.aspx?id=201002250904
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/22609/1/97-1120.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/22609/1/97-1120.pdf
http://bluecanyontech.com/all_products/star-trackers/
http://bluecanyontech.com/all_products/star-trackers/
http://www.dlr.de/Portaldata/49/Resources/dokumente/archiv3/1409P.pdf
http://www.microsemi.com/products/fpga-soc/reliability/see
http://www.microsemi.com/products/fpga-soc/reliability/see
http://ttssh2.sourceforge.jp/
http://ttssh2.sourceforge.jp/
http://www.stellarium.org/
http://www.aptina.com/support/Devsuite.jsp
http://www.aptina.com/support/Devsuite.jsp

42

A Exposure Time Calculation
Matlab code written by Nicola Schlatter for calculation of exposure time.

Reg03=hex2dec (' 0797 ') ; Row_size=Reg03 ;
Reg04=hex2dec (' 0A1F ') ; Column_Size=Reg04 ;
Reg05=0;HB=Reg05+1;
Reg06=hex2dec (' 0019 ') ; %V e r t i c a l Blank Def 25 Range
Reg08=0; %S h u t t e r Width Upper ; Def 0 ; Range 0−15
Reg09=hex2dec (' 0797 ') ; %S h u t t e r Width Lower ; Def 1943 ; Range 0−65535
Reg12=0; %S h u t t e r Delay ; Def 0 ; Range 0−8191

t_PIXCLK=1 /32 .768 e6 ; %32 .768 MHz

Shutter_Width_Upper=Reg08 ;
Shutter_Width_Lower=Reg09 ;
Shutter_Delay=Reg12+1;

Row_Skip=0;
Column_Skip=0;
Row_Bin=0;
Column_Bin=0;

VB=Reg06+1;

%s h u t t e r wid th
SW=max ([1 , (2 ˆ 1 6 * Shutter_Width_Upper)+Shutter_Width_Lower]) ;

SD=Shutter_Delay+1;
i f SW<3

SDmax=1232;
e l s e

SDmax=1504;
end
SO=208*(Row_Bin+1)+98+min (SD , SDmax) −94;

i f Column_Bin==0
Wdc=80;

e l s e i f Column_Bin==1
Wdc=40;

e l s e i f Column_Bin==3
Wdc=20;

end

HBmin=346*(Row_Bin+1) +64+(Wdc / 2) ;
W=2* c e i l ((Column_Size+1) / (2 * (Column_Skip+1))) ;

t_ROW=2*t_PIXCLK*max ([((W / 2) +max (HB , HBmin)) , (41+346*(Row_Bin+1) +99)]) ;

t_EXP=SW*t_ROW−SO*2*t_PIXCLK

43

B Serial Divider
Serial divider in VHDL.

−−−−−−−−−−−D i v i d e r 1 s i g n a l s −−−−−−−−−−−−
SIGNAL a_div1 : std_logic_vector (23 DOWNTO 0) ;
SIGNAL b_div1 : std_logic_vector (23 DOWNTO 0) ;
SIGNAL result_div1 : std_logic_vector (23 DOWNTO 0) ;
SIGNAL buffer_div1 : std_logic_vector (47 DOWNTO 0) ;
SIGNAL cnt_div1 : std_logic_vector (4 DOWNTO 0) ;
SIGNAL Data_Prepare_State : std_logic_vector (3 DOWNTO 0) ;

c a s e Data_Prepare_State i s
when x” 0 ” => −− I d l e , w a i t f o r some d a t a

−−R e l e v a n t s t u f f f o r t h e c e n t e r o f i n t e n s i t y c a l c u l a t i o n
a_div1 <= XI_sum_New ; −−n u m e r a t o r
b_div1 <= I_sum_New ; −−d e n o m i n a t o r

when x” 1 ” => −− S t a r t d i v i d i n g !
−− J u s t check i f t h e r e i s any p o i n t i n do ing some l o o p i n g .
−−You n e v e r know , somet imes you can be l u c k y and a b l e t o t a k e a s h o r t c u t←↩

!
i f a_div1 < b_div1 t h e n −−Cannot d i v i d e i f n u m e r a t o r i s s m a l l e r t h a n ←↩

d e n o m i n a t o r . r e s u l t = 0
result_div1 <= x” 000000 ” ;
Data_Prepare_State <= x” 3 ” ;

e l s i f a_div1 = b_div1 t h e n −−Can d i v i d e e x a c t l y one t ime . r e s u l t = 1
result_div1 <= x” 000001 ” ;
Data_Prepare_State <= x” 3 ” ;

e l s e −−We have t o do some c a l c u l a t i o n s . . .
cnt_div1 <= ” 00000 ” ;
buffer_div1 <= x” 000000 ” & a_div1 ;
Data_Prepare_State <= x” 2 ” ; −−Go and do some l o o p i n g ! :)

end i f ;

when x” 2 ” => −−Di v i de loop s t a t e
i f buffer_div1 ((48 −2) DOWNTO 23) >= b_div1 t h e n

buffer_div1 (47 downto 24) <= ' 0 ' & (buffer_div1 ((48 −3) downto 23) − ←↩
b_div1 ((24 −2) downto 0)) ;

buffer_div1 (23 downto 0) <= buffer_div1 (22 downto 0) & ' 1 ' ;
e l s e

buffer_div1 <= buffer_div1 (46 downto 0) & ' 0 ' ;
end i f ;

i f cnt_div1 /= ” 11000 ” t h e n −−24 c y c l e s
cnt_div1 <= cnt_div1 + 1 ;
Data_Prepare_State <= x” 2 ” ;

e l s e
result_div1 <= buffer_div1 (23 downto 0) ;
Data_Prepare_State <= x” 3 ” ;

end i f ;

when x” 3 ” => −−D i v i s i o n i s done

−−Use t h e r e s u l t i n r e s u l t d i v 1 (23 DOWNTO 0)

. . .

when o t h e r s =>
Data_Prepare_State <= x” 0 ” ;

end c a s e ;

44

C Blob Detection Algorithm
The Blob Detection Algorithm in VHDL.

−− BlobAlg . vhd
−−

−− Thi s module i s r u n n i n g t h e b lob d e t e c t i o n a l g o r i t h m i n f o u r f l a g − s y n c h r o n i z e d←↩
s t a t e machines . I t i s t o be used i n t h e m i n i a t u r e s t a r t r a c k e r .

−− The a l o r i t h m t a k e s t h e image from t h e camera , d e t e c t s s t a r s / b lobs , g ro up s ←↩
them t o g e t h e r and o u t p u t s s i m p l e (X, Y, I)−d a t a f o r each s t a r .

−−

−− Each s t a t e machine can be seen as r e p r e s e n t i n g a l a y e r i n t h e a l g o r i t h m i n ←↩
which t h e f i r s t one (l a y e r 1) i s i n d i r e c t c o n t a c t w i th t h e p i x e l d a t a from ←↩
t h e s e n s o r . Low l e v e l

−− The f o u r t h s t a t e machine (l a y e r 4) i s e v e n t u a l l y p u t t i n g t h e d e t e c t e d s t a r s (←↩
X, Y, I) i n t o t h e SPI b u f f e r . H i g h e s t l e v e l

−−

−− 2014−05−16
−− Marcus Lindh (marcu l in@kth . se)
−− 073−9786602
−−

l i b r a r y IEEE ;
u se IEEE . std_logic_1164 . a l l ;
use IEEE . std_logic_unsigned . a l l ;
use IEEE . numeric_std . a l l ;

e n t i t y BlobAlg i s
g e n e r i c (SIZE : INTEGER := 24) ;
p o r t

(
CLK , Reset : i n std_logic ;
Enable : i n std_logic ;
FrameValid : i n std_logic ;
LineValid : i n std_logic ;
Data_Camera : i n std_logic_vector (11 DOWNTO 0) ;
FIFO_in : i n std_logic_vector (63 DOWNTO 0) ;
FIFO_empty : i n std_logic ;

Threshold_in : i n std_logic_vector (15 DOWNTO 0) ;
Threshold_refresh : i n std_logic ;

New_Blob_Detected : o u t std_logic ;
FIFO_we : o u t std_logic ;
FIFO_re : o u t std_logic ;
Blob_Data_Out : o u t std_logic_vector (31 DOWNTO 0) ;
FIFO_out : o u t std_logic_vector (63 DOWNTO 0)

) ;

end BlobAlg ;

a r c h i t e c t u r e behavioral of BlobAlg i s

−−−

−− S i g n a l d e c l a r a t i o n
−−−

SIGNAL Threshold_Value : std_logic_vector (11 DOWNTO 0) ; −− ←↩
t h r e s h o l d i n g v a l u e

SIGNAL Threshold_refresh_old : std_logic ;

−−−−−−−−−−−−−−−−−−−−−−−−−−Blob a l g o r i t h m s i g n a l s −−−−−−−−−−−−−−−−−−−−−−−
SIGNAL Ghosting : std_logic_vector (7 DOWNTO 0) ; −−

45

CONSTANT Ghosting_Level : std_logic_vector (7 DOWNTO 0) :=x” 19 ” ; −− ←↩
S e t s t h e G h o s t i n g Leve l t o 25

SIGNAL Blobber_State : std_logic_vector (3 DOWNTO 0) ; −−

SIGNAL Data_Prepare_State : std_logic_vector (3 DOWNTO 0) ; −−

SIGNAL Release_State : std_logic_vector (3 DOWNTO 0) ; −−

−−S i g n a l s b e l o n g i n g t o t h e s t a t e machine i n t e g r a t i n g b l o b r e l a t e d p i x e l s
SIGNAL XI_sum : std_logic_vector (23 DOWNTO 0) ; −−

SIGNAL I_sum : std_logic_vector (23 DOWNTO 0) ; −−

SIGNAL Blob_Width : std_logic_vector (7 DOWNTO 0) ; −−

−−S i g n a l s s e n t from t h e i n t e g r a t i n g s t a t e machine t o be p r o c e s s e d .
SIGNAL XI_sum_New : std_logic_vector (23 DOWNTO 0) ; −− ←↩

Thi s i s a two s t e p b u f f e r , d a t a t r a n s f e r r e d t o XI sum
SIGNAL I_sum_New : std_logic_vector (23 DOWNTO 0) ; −− ←↩

Thi s i s a two s t e p b u f f e r , d a t a t r a n s f e r r e d t o I sum
SIGNAL X_center : std_logic_vector (11 DOWNTO 0) ; −−

SIGNAL Blob_Row : std_logic_vector (11 DOWNTO 0) ; −−

SIGNAL RowBlob_Start_Column_New : std_logic_vector (11 DOWNTO 0) ; −− ←↩
Thi s i s a two s t e p b u f f e r , d a t a t r a n s f e r r e d t o RowBlob Star t Column

SIGNAL RowBlob_Start_Column : std_logic_vector (11 DOWNTO 0) ; −−

SIGNAL New_Blob_To_Calculate : std_logic ; −− ←↩
T r i g g e r s n e x t s t a t e machine

SIGNAL New_Frame : std_logic ;

−− Data r e l a t e d t o t h e b lob a t f i r s t p o s i t i o n i n FIFO
SIGNAL FIFO1_X_center : std_logic_vector (11 DOWNTO 0) ; −−

SIGNAL FIFO1_X_center_Sum : std_logic_vector (23 DOWNTO 0) ; −−

SIGNAL FIFO1_Rowspan : std_logic_vector (7 DOWNTO 0) ; −−

SIGNAL FIFO1_IrowN_sum : std_logic_vector (23 DOWNTO 0) ; −−

SIGNAL FIFO1_Irow_sum : std_logic_vector (23 DOWNTO 0) ; −−

SIGNAL FIFO1_Y_stopp : std_logic_vector (11 DOWNTO 0) ; −−

SIGNAL FIFO1_PXcount : std_logic_vector (9 DOWNTO 0) ; −−

SIGNAL FIFO1_Data_Snatched : std_logic ; −− ←↩
Data i s w a i t i n g i n t h e FIFO1 t o be used . Only compare v a l u e s wi th FIFO1 i f ←↩
t h i s i s ' 1 ' .

SIGNAL FIFO1_Temp1 : std_logic_vector (63 DOWNTO 0) ; −−

SIGNAL FIFO1_Temp2 : std_logic_vector (63 DOWNTO 0) ; −−

SIGNAL FIFO1_Conditioner_State : std_logic_vector (3 DOWNTO 0) ; −−

−− Data t h a t i s used from a blowrow when a dd in g d a t a t o t h e FIFO
SIGNAL RowBlob_X_center : std_logic_vector (11 DOWNTO 0) ; −−

SIGNAL RowBlob_X_center_Sum : std_logic_vector (23 DOWNTO 0) ; −−

SIGNAL RowBlob_Irow_sum : std_logic_vector (23 DOWNTO 0) ; −−

SIGNAL RowBlob_IrowN_sum : std_logic_vector (31 DOWNTO 0) ; −−

SIGNAL RowBlob_Row : std_logic_vector (11 DOWNTO 0) ; −−

SIGNAL RowBlob_PXcount : std_logic_vector (11 DOWNTO 0) ; −−

SIGNAL RowBlob_NewFlag : std_logic ;
SIGNAL RowBlob_Rowspan : std_logic_vector (7 DOWNTO 0) ; −−

46

SIGNAL Tmp1_message1 : std_logic_vector (63 DOWNTO 0) ; −−

SIGNAL Tmp1_message2 : std_logic_vector (63 DOWNTO 0) ; −−

SIGNAL Tmp2_message1 : std_logic_vector (63 DOWNTO 0) ; −−

SIGNAL Tmp2_message2 : std_logic_vector (63 DOWNTO 0) ; −−

SIGNAL ReleaseFlag : std_logic ;

−− The c u r r e n t column and Row we a r e r e a d i n g camera d a t a from
SIGNAL Column : std_logic_vector (11 DOWNTO 0) ; −−

SIGNAL Row : std_logic_vector (11 DOWNTO 0) ; −−

SIGNAL Newframe_Send_Flag : std_logic ;

−− Count t h e numbers o f s t a r s d e t e c t e d i n t h e Frame .
SIGNAL StarsInFrame : std_logic_vector (4 DOWNTO 0) ;
CONSTANT MaxStarsInFrame : std_logic_vector (7 DOWNTO 0) :=x” 19 ” ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−D i v i d e r 1 s i g n a l s −−−−−−−−−−−−−−−−−−−−−−−−−−−−
SIGNAL a_div1 : std_logic_vector (23 DOWNTO 0) ;
SIGNAL b_div1 : std_logic_vector (23 DOWNTO 0) ;
SIGNAL result_div1 : std_logic_vector (23 DOWNTO 0) ;
SIGNAL buffer_div1 : std_logic_vector (47 DOWNTO 0) ;
SIGNAL cnt_div1 : std_logic_vector (4 DOWNTO 0) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−D i v i d e r 2 s i g n a l s −−−−−−−−−−−−−−−−−−−−−−−−−−−−
SIGNAL a_div2 : std_logic_vector (23 DOWNTO 0) ;
SIGNAL b_div2 : std_logic_vector (23 DOWNTO 0) ;
SIGNAL result_div2 : std_logic_vector (23 DOWNTO 0) ;
SIGNAL buffer_div2 : std_logic_vector (47 DOWNTO 0) ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−D i v i d e r 3 s i g n a l s −−−−−−−−−−−−−−−−−−−−−−−−−−−−
SIGNAL a_div3 : std_logic_vector (23 DOWNTO 0) ;
SIGNAL b_div3 : std_logic_vector (23 DOWNTO 0) ;
SIGNAL result_div3 : std_logic_vector (23 DOWNTO 0) ;
SIGNAL buffer_div3 : std_logic_vector (47 DOWNTO 0) ;

SIGNAL cnt_div23 : std_logic_vector (4 DOWNTO 0) ;

−−−−−Now t h e j o u r n e y b e g i n s !−−
b e g i n

ThresholdUpdate : p r o c e s s (RESET , CLK)
BEGIN

IF (RESET = ' 1 ') THEN
Threshold_refresh_old <= ' 0 ' ;
Threshold_Value <= x” 200 ” ; −−D e f a u l t va lue , 512

ELSIF falling_edge (CLK) THEN

47

−−R e f r e s h t h r e s h o l d v a l u e on r i s i n g edge o f t h e t h r e s h o l d r e f r e s h ←↩
s i g n a l

i f Threshold_refresh = ' 1 ' and Threshold_refresh_old = ' 0 ' t h e n
Threshold_Value <= Threshold_in (11 downto 0) ;

end i f ;

Threshold_refresh_old <= Threshold_refresh ;

END IF ;

END PROCESS ;

Blobbing : p r o c e s s (CLK , Reset) −−Blob d e t e c t i o n a l g o r i t h m
b e g i n

i f Reset /= ' 0 ' t h e n

Blobber_State <= x” 0 ” ;
XI_sum <= x” 000000 ” ;
I_sum <= x” 000000 ” ;
Column <= x” 000 ” ;
Row <= x” 000 ” ;
Blob_Row <= x” 000 ” ;

RowBlob_Start_Column <= x” 000 ” ;
RowBlob_Start_Column_New <= x” 000 ” ;

Data_Prepare_State <= x” 0 ” ;

New_Blob_To_Calculate <= ' 0 ' ;

FIFO_we <= ' 0 ' ;
FIFO_re <= ' 0 ' ;

FIFO1_Conditioner_State <= x” 0 ” ;
FIFO1_Data_Snatched <= ' 0 ' ;

New_Blob_Detected <= ' 0 ' ; −− I m p o r t a n t t o have t h i s h e r e ! . O t h e r w i s e ←↩
i f i t i s 1 a t s t a r t t h e s t a t e machine w i l l g e t s t u c k

FIFO1_Data_Snatched <= ' 0 ' ;

RowBlob_NewFlag <= ' 0 ' ;
New_Frame <= ' 0 ' ;

−−F o u r t h s t a t e machine f o r r e l e a s i n g b l o b s
Release_State <= x” 0 ” ;
ReleaseFlag <= ' 0 ' ;

Ghosting <= x” 00 ” ;

StarsInFrame <= ” 00000 ” ;

e l s i f falling_edge (CLK) t h e n

−−O u t s i d e t h e f rame . C l e a r v a r i a b l e s
i f FrameValid = ' 0 ' t h e n

Column <= x” 000 ” ;
Row <= x” 000 ” ;
Blobber_State <= x” 0 ” ;
StarsInFrame <= ” 00000 ” ; −−C l e a r t h e b lob c o u n t e r f o r each new ←↩

f rame
e l s e

Newframe_Send_Flag <= ' 1 ' ;
end i f ;

−−The g h o s t i n g h e l p s f o r dead p i x e l s i n a row and d e c i d e s when a ←↩

48

b lob on row i s ended
i f Ghosting > 0 t h e n

Ghosting <= Ghosting − 1 ;
end i f ;

−−−−−−−−−−−−Algor i t hm l a y e r 4
c a s e Release_State i s

when x” 0 ” => −− I d l e s t a t e , w a i t f o r some d a t a
i f ReleaseFlag = ' 1 ' t h e n

Tmp2_message1 <= Tmp1_message1 ; −−Put d a t a t o t h e ←↩
t e m p o r a r y s i g n a l v e c t o r

Tmp2_message2 <= Tmp1_message2 ; −−Put d a t a t o t h e ←↩
t e m p o r a r y s i g n a l v e c t o r

Release_State <= x” 1 ” ;

New_Frame <= ' 0 ' ; −−O r d i n a r y message

e l s i f FrameValid = ' 0 ' and Newframe_Send_Flag = ' 1 ' t h e n −−←↩
O u t s i d e t h e frame , send one newframe message
Release_State <= x”D” ;
Newframe_Send_Flag <= ' 0 ' ;

New_Frame <= ' 1 ' ; −−Thi s t e l l s t h e Blobmessage t h a t I ←↩
s h o u l d send a NewFrameMessage

end i f ;

when x” 1 ” =>
Release_State <= x” 2 ” ;

−−D i v i d e r 2 c a l c u l a t e s t h e X c e n t e r by mean
a_div2 <= Tmp2_message1 (63 downto 40) ; −−Sum of a l l ←↩

X c e n t e r s −−n u m e r a t o r .
b_div2 <= ” 000000000000000000 ” & Tmp2_message1 (15 downto 10)←↩

; −−Number o f rows −−d e n o m i n a t o r .

−−D i v i d e r 3 c a l c u l a t e s

a_div3 <= Tmp2_message2 (63 downto 40) ; −−Sum of ←↩
r o w i n t e n s i t i e s *n −−n u m e r a t o r

b_div3 <= Tmp2_message2 (39 downto 16) ; −−Sum of ←↩
r o w i n t e n s i t i e s −−d e n o m i n a t o r

when x” 2 ” =>
Release_State <= x” 3 ” ;

buffer_div2 <= x” 000000 ” & a_div2 ; −−p r e p a r e b u f f e r f o r ←↩
d i v i d i n g

buffer_div3 <= x” 000000 ” & a_div3 ; −−p r e p a r e b u f f e r f o r ←↩
d i v i d i n g

cnt_div23 <= ” 00000 ” ; −−R e s e t t h e c o u n t e r

when x” 3 ” => −−Di v i de loop s t a t e

−−D i v i d e r 2
i f buffer_div2 ((48 −2) DOWNTO 23) >= b_div2 t h e n

buffer_div2 (47 downto 24) <= ' 0 ' & (buffer_div2 ((48 −3) ←↩

49

downto 23) − b_div2 ((24 −2) downto 0)) ;
buffer_div2 (23 downto 0) <= buffer_div2 (22 downto 0) & ←↩

' 1 ' ;
e l s e

buffer_div2 <= buffer_div2 (46 downto 0) & ' 0 ' ;
end i f ;

−−D i v i d e r 3
i f buffer_div3 ((48 −2) DOWNTO 23) >= b_div3 t h e n

buffer_div3 (47 downto 24) <= ' 0 ' & (buffer_div3 ((48 −3) ←↩
downto 23) − b_div3 ((24 −2) downto 0)) ;

buffer_div3 (23 downto 0) <= buffer_div3 (22 downto 0) & ←↩
' 1 ' ;

e l s e
buffer_div3 <= buffer_div3 (46 downto 0) & ' 0 ' ;

end i f ;

i f cnt_div23 /= ” 11000 ” t h e n −−24 c y c l e s
cnt_div23 <= cnt_div23 + 1 ;
Release_State <= x” 3 ” ;

e l s e
result_div2 <= buffer_div2 (23 downto 0) ;
result_div3 <= buffer_div3 (23 downto 0) ;
Release_State <= x” 4 ” ;

end i f ;

when x” 4 ” => −−D i v i s i o n i s done
Release_State <= x”D” ;

when x”D” =>
Release_State <= x”E” ;

i f ((Tmp2_message1 (9 downto 0) > 1) o r New_Frame = ' 1 ') t h e n←↩
−−There where more t h a n 1 p i x e l s i n t h e b lob
New_Blob_Detected <= ' 1 ' ; −−Enab le w r i t i n g t o UART ←↩

b u f f e r

i f New_Frame = ' 1 ' t h e n −−New frame message

Blob_Data_Out <= ” 1 ” & ” 000 ” & ” 0000 ” & x” 000000 ” ;

e l s e −−o r d i n a r y message
−−Blob Da ta Ou t <= r e s u l t d i v 2 (11 downto 0) & ”0” & ←↩

Tmp2 message1 (5 DOWNTO 0) & ”0” & Tmp2 message1←↩
(27 downto 16) ;

Blob_Data_Out <= ” 0 ” & ” 000 ” & ” 0000 ” & result_div2←↩
(11 downto 0) & ((Tmp2_message1 (27 downto 16) −←↩

(” 000000 ” & Tmp2_message1 (15 downto 10))) + ←↩
result_div3 (11 downto 0)) ;

−− I n c r e a s e t h e d e t e c t e d s t a r c o u n t e r
StarsInFrame <= StarsInFrame + 1 ;

end i f ;

end i f ;

when x”E” =>
Release_State <= x”F” ;

i f New_Frame = ' 1 ' t h e n −−New frame message
Blob_Data_Out <= x” 00000000 ” ; −−The second message

50

e l s e
Blob_Data_Out <= Tmp2_message2 (39 downto 16) & ←↩

Tmp2_message1 (7 DOWNTO 0) ;
end i f ;

when x”F” =>
Release_State <= x” 0 ” ;

New_Blob_Detected <= ' 0 ' ; −−Stop w r i t i n g t o UART b u f f e r
ReleaseFlag <= ' 0 ' ; −−R e s e t t h e f l a g t h a t s t a r t e d t h i s s t a t e←↩

machine

when o t h e r s =>
Release_State <= x” 0 ” ;

end c a s e ;

−−−−−−−−−−−−Algor i t hm l a y e r 3

−−Thi s s t a t e machine g e t s t h e d a t a from t h e FIFO b u f f e r and s t o r e s ←↩
i t i n t h e t e m p o r a r y v e c t o r s .

−− I t a l s o c he c ks i f t h e FIFO1 b lob s h o u l d be r e l e a s e d o r n o t . I t ←↩
a l s o s e r v e s f o r ad d i ng new b l o b s t o t h e FIFO ,

−− r e g a r d l e s s t h e y a r e new or composed from FIFO1 d a t a
c a s e FIFO1_Conditioner_State i s

when x” 0 ” => −− I d l e s t a t e , w a i t f o r some d a t a

i f FIFO1_Data_Snatched = ' 0 ' and FIFO_empty = ' 0 ' t h e n
FIFO1_Conditioner_State <= x” 1 ” ;
FIFO_re <= ' 1 ' ; −− NOTE! Data i s d e l a y e d 2 c l k c y c l e s . ←↩

S e t r e h igh 2 c l k c y c l e s b e f o r e a c c e s s i n g d a t a .

e l s i f FIFO1_Data_Snatched = ' 1 ' t h e n
FIFO1_Conditioner_State <= x” 5 ” ; −−Jump d i r e c t l y t o ←↩

t h e w a i t i n g s t a t e t o r e l e a s e t h e b lob or combine ←↩
wi th new row d a t a

e l s i f RowBlob_NewFlag = ' 1 ' t h e n
FIFO1_Conditioner_State <= x”A” ; −−Go and enqueue ←↩

d a t a . S i n c e t h e FIFO i s empty t h i s i s a c o m p l e t e l y ←↩
new b lob

end i f ;

−−Grab d a t a from t h e FIFO (i t i s a c t u a l l y 2x p a c k a g e s)
when x” 1 ” =>

FIFO1_Conditioner_State <= x” 2 ” ;

when x” 2 ” =>
FIFO1_Conditioner_State <= x” 3 ” ;
FIFO1_Temp1 <= FIFO_in ; −−Read f i r s t d a t a ←↩

package
FIFO_re <= ' 0 ' ; −− s t o p r e a d i n g

when x” 3 ” =>
FIFO1_Conditioner_State <= x” 4 ” ;
FIFO1_Temp2 <= FIFO_in ; −−Read second d a t a ←↩

package

−−E x t r a c t d a t a from f i r s t package

51

FIFO1_X_center_Sum <= FIFO1_Temp1 (63 DOWNTO 40) ;
FIFO1_X_center <= FIFO1_Temp1 (39 DOWNTO 28) ;
FIFO1_Y_stopp <= FIFO1_Temp1 (27 DOWNTO 16) ;
FIFO1_Rowspan <= ” 00 ” & FIFO1_Temp1 (15 DOWNTO 10) ;
FIFO1_PXcount <= FIFO1_Temp1 (9 DOWNTO 0) ;

when x” 4 ” =>
FIFO1_Conditioner_State <= x” 5 ” ;

FIFO1_Data_Snatched <= ' 1 ' ; −−We have s n a t c h e d t h e ←↩
d a t a from t h e FIFO1 p o s i t i o n . (dequeued)

−−E x t r a c t d a t a from second package

FIFO1_IrowN_sum <= FIFO1_Temp2 (63 DOWNTO 40) ;
FIFO1_Irow_sum <= FIFO1_Temp2 (39 DOWNTO 16) ;

−−Thi s i s t h e w a i t i n g s t a t e . Check i f t h e b lob s h o u l d be ←↩
r e l e a s e d . I f we a r e i n t h i s s t a t e and t h e

−−g h o s t i n g c o u n t e r i s n o t e d t o be > 0 i n a c e r t a i n r e g i o n ; t h e ←↩
FIFO1 b lob b e l o n g s t o t h e ongoing b lob !

−−New b l o b s can be added .
−− I f we a r e o u t s i d e t h e f rame and s t i l l have b l o b s i n t h e FIFO , ←↩

t h e FIFO i s c l e a r e d , b l o b s s e n t t o SPI b u f f e r . Th i s
−−happens i f t h e r e a r e b l o b s on t h e l a s t row .
when x” 5 ” =>

i f FrameValid = ' 0 ' and FIFO_empty = ' 0 ' t h e n −−We need t o ←↩
c l e a r t h e FIFO . Th i s happens i f t h e r e a r e b l o b s on t h e ←↩
bot tom b o r d e r
FIFO1_Conditioner_State <= x”E” ; −−Send t o SPI b u f f e r

e l s e

i f (Column > (FIFO1_X_center − x” 00A”)) and (Column < (←↩
FIFO1_X_center + x” 00A”)) and (Ghosting > 0) t h e n
FIFO1_Conditioner_State <= x” 6 ” ; −− Ongoing ←↩

rowblob b e l o n g s t o t h e FIFO1 b lob . Combine !

e l s i f RowBlob_NewFlag = ' 1 ' t h e n
FIFO1_Conditioner_State <= x”A” ; −− A c o m p l e t e l y ←↩

new b lob d e t e c t e d !

e l s i f (Column > (FIFO1_X_center + x” 00A”)) and (←↩
FIFO1_Y_stopp /= Row) t h e n
FIFO1_Conditioner_State <= x”E” ; −− R e l e a s e t h e ←↩

blob , Send t o SPI b u f f e r i n n e x t s t a t e machine ←↩
(l a y e r 4)

end i f ;

end i f ;

when x” 6 ” => −−Wait f o r t h e ongoing rowblob t o f i n i s h . We w i l l ←↩
merge some d a t a and t h e n p u t i t back i n t o t h e FIFO

i f RowBlob_NewFlag = ' 1 ' t h e n
FIFO1_Conditioner_State <= x” 7 ” ;

end i f ;

when x” 7 ” => −−Here we combine t h e new rowblob d a t a wi th t h e ←↩
d a t a saved i n t h e FIFO
FIFO1_Conditioner_State <= x”B” ;

52

FIFO1_Data_Snatched <= ' 0 ' ; −−The p r e v i o u s l y s n a t c h e d d a t a ←↩
i s no l o n g e r v a l i d . Go and r e s n a t c h i n s t a t e 0 .

RowBlob_X_center_Sum <= RowBlob_X_center + ←↩
FIFO1_X_center_Sum ;

RowBlob_PXcount <= RowBlob_PXcount + FIFO1_PXcount ;
RowBlob_Rowspan <= FIFO1_Rowspan + 1 ;

−−B u i l d t h e sums used f o r c a l c u l a t i n g Y− c e n t e r

RowBlob_Irow_sum <= RowBlob_Irow_sum + FIFO1_Irow_sum ;
RowBlob_IrowN_sum <= RowBlob_IrowN_sum (23 DOWNTO 0) *←↩

FIFO1_Rowspan + FIFO1_IrowN_sum ;

when x”A” => −−We go h e r e i f i t was a c o m p l e t e l y new b lob
FIFO1_Conditioner_State <= x”B” ;

RowBlob_Rowspan <= x” 01 ” ; −− one row
RowBlob_X_center_Sum <= x” 000 ” & RowBlob_X_center ; −−The ←↩

f i r s t v a l u e t o t h e sum

−−Thi s p a r t queues d a t a t o t h e FIFO
when x”B” =>

FIFO1_Conditioner_State <= x”C” ;

−−Clock o u t t h e f i r s t message
FIFO_out <= RowBlob_X_center_Sum (23 DOWNTO 0) & ←↩

RowBlob_X_center (11 DOWNTO 0) & RowBlob_Row (11 DOWNTO ←↩
0) & RowBlob_Rowspan (5 DOWNTO 0) & RowBlob_PXcount (9 ←↩
DOWNTO 0) ;

FIFO_we <= ' 1 ' ;

when x”C” =>
FIFO1_Conditioner_State <= x”D” ;

−−Clock o u t t h e second p a c k e t
FIFO_out <= RowBlob_IrowN_sum (23 DOWNTO 0) & ←↩

RowBlob_Irow_sum (23 DOWNTO 0) & x”ABCD” ;

when x”D” =>
FIFO1_Conditioner_State <= x” 0 ” ;

FIFO_we <= ' 0 ' ;
RowBlob_NewFlag <= ' 0 ' ; −−C l e a r t h e s e n d i n g f l a g

when x”E” =>−−C r e a t e t h e temp messages
FIFO1_Conditioner_State <= x” 0 ” ;

ReleaseFlag <= ' 1 ' ; −−Thi s s t a r t s t h e f o u r t h s t a t e machine
Tmp1_message1 <= FIFO1_X_center_Sum (23 downto 0) & ←↩

FIFO1_X_center (11 downto 0) & FIFO1_Y_stopp (11 downto ←↩
0) & FIFO1_Rowspan (5 DOWNTO 0) & FIFO1_PXcount (9 downto←↩

0) ;
Tmp1_message2 <= FIFO1_IrowN_sum (23 DOWNTO 0) & ←↩

FIFO1_Irow_sum (23 DOWNTO 0) & x” 0000 ” ;

FIFO1_Data_Snatched <= ' 0 ' ; −−We have consumed t h e ←↩
d a t a t e m p o r a r y s t o r e d from FIFO1 . We need t o g e t some ←↩

53

new d a t a
RowBlob_NewFlag <= ' 0 ' ;

when o t h e r s =>
FIFO1_Conditioner_State <= x” 0 ” ;

end c a s e ;

−−−−−−−−−−−−Algor i t hm l a y e r 2

−−P r e p a r e t h e d a t a f o r e n q u e u e i n g
c a s e Data_Prepare_State i s

when x” 0 ” => −− I d l e , w a i t f o r some d a t a
i f New_Blob_To_Calculate = ' 1 ' t h e n

Data_Prepare_State <= x” 1 ” ;

−−R e s e t t h e f l a g t h a t b r o u g h t us h e r e
New_Blob_To_Calculate <= ' 0 ' ;

−−R e l e v a n t s t u f f f o r t h e c e n t e r o f i n t e n s i t y c a l c u l a t i o n
a_div1 <= XI_sum_New ; −−n u m e r a t o r
b_div1 <= I_sum_New ; −−d e n o m i n a t o r

−−We a l r e a d e have t h i s d a t a so j u s t move i t t o t h e i r ←↩
r e s p e c t i v e l y s i g n a l s

RowBlob_Irow_sum <= I_sum_New ;
RowBlob_IrowN_sum (31 DOWNTO 0) <= x” 00 ” & I_sum_New ; −−←↩

Thi s i s t h e f i r s t v a l u e so n=1 (I sum New *n = ←↩
I sum New)

RowBlob_Row <= Blob_Row ;
RowBlob_PXcount <= ” 0000 ” & Blob_Width ;
RowBlob_Start_Column <= RowBlob_Start_Column_New ;

end i f ;

when x” 1 ” => −− S t a r t d i v i d i n g !

i f Blob_Width = x” 01 ” t h e n −−Can d i v i d e e x a c t l y one t ime i f ←↩
t h e r e i s on ly 1 p i x e l i n t h e rowblob
result_div1 <= x” 000001 ” ;
Data_Prepare_State <= x” 3 ” ;

e l s e −−We have t o do some c a l c u l a t i o n s . . .
cnt_div1 <= ” 00000 ” ;
buffer_div1 <= x” 000000 ” & a_div1 ;
Data_Prepare_State <= x” 2 ” ; −−Go and do some d i v i s i o n ←↩

l o o p i n g ! :)
end i f ;

when x” 2 ” => −−Di v i de loop s t a t e

i f buffer_div1 ((48 −2) DOWNTO 23) >= b_div1 t h e n
buffer_div1 (47 downto 24) <= ' 0 ' & (buffer_div1 ((48 −3) ←↩

downto 23) − b_div1 ((24 −2) downto 0)) ;
buffer_div1 (23 downto 0) <= buffer_div1 (22 downto 0) & ←↩

' 1 ' ;
e l s e

buffer_div1 <= buffer_div1 (46 downto 0) & ' 0 ' ;
end i f ;

54

i f cnt_div1 /= ” 11000 ” t h e n −−24 c y c l e s
cnt_div1 <= cnt_div1 + 1 ;
Data_Prepare_State <= x” 2 ” ;

e l s e
result_div1 <= buffer_div1 (23 downto 0) ;
Data_Prepare_State <= x” 3 ” ;

end i f ;

when x” 3 ” => −−D i v i s i o n i s done
Data_Prepare_State <= x” 0 ” ;
RowBlob_NewFlag <= ' 1 ' ; −− Thi s t r i g g e r s t h e n e x t s t a t e ←↩

machine
RowBlob_X_center <= result_div1 (11 DOWNTO 0) + ←↩

RowBlob_Start_Column ; −−X c e n t e r i s t h e r e s u l t from t h e←↩
d i v i s i o n

when o t h e r s =>
Data_Prepare_State <= x” 0 ” ;

end c a s e ;

−−−−−−−−−−−−Algor i t hm l a y e r 1

−−Thi s s t a t e machine c he c ks i f p i x e l v a l u e > t h r e s h o l d . I f so i t ←↩
i n t e g r a t e s t h e i n t e n s i t y and r e l e v a n t sums .

−−When we a r e done i n t e g r a t i n g t h e b lob on t h i s row , t h e p i x e l v a l u e ←↩
i s < t h r e s h o l d and g h o s t i n g = 0 we s e t t h e

−− f l a g N e w B l o b T o C a l c u l a t e <= ' 1 ' . Th i s s i g n a l s t h a t we can ←↩
t r i g g e r t h e o t h e r s t a t e machine t o s t a r t do ing some ←↩
c a l c u l a t i o n s .

i f LineValid = ' 1 ' t h e n

−−Coun t ing rows and columns
i f Column /= x”A1F” t h e n −−(2592 −1)

Column <= Column + 1 ;
e l s e

Column <= x” 000 ” ;
Row <= Row + 1 ;

end i f ;

c a s e Blobber_State i s
when x” 0 ” => −−− i d l e . Wai t i ng f o r t h r e s h o l d o v e r r i d e

i f Data_Camera > Threshold_Value t h e n
Blobber_State <= x” 1 ” ;
Ghosting <= Ghosting_Level ;

−− i n i t i a t e v a r i a b l e s
RowBlob_Start_Column_New <= Column ;
Blob_Width <= x” 01 ” ;
XI_sum <= x” 000 ” & Data_Camera ;
I_sum <= x” 000 ” & Data_Camera ;

end i f ;

when x” 1 ” =>

i f Data_Camera > Threshold_Value t h e n
Ghosting <= Ghosting_Level ;
Blob_Width <= Blob_Width + 1 ;

55

XI_sum <= XI_sum + Blob_Width *(Data_Camera) ;
I_sum <= I_sum + Data_Camera ;

end i f ;

i f Ghosting = x” 00 ” t h e n −− I f g h o s t i n g i s 0 , n e x t s t e p
Blobber_State <= x” 2 ” ;

XI_sum_New <= XI_sum ;
I_sum_New <= I_sum ;
Blob_Row <= Row ;

end i f ;

when x” 2 ” =>

Blobber_State <= x” 0 ” ; −−Go back

i f StarsInFrame < MaxStarsInFrame t h e n −−Only p r o c e s s ←↩
t h e s t a r i f we have d e t e c t e d l e s s t h a n t h e maximum ←↩
number o f s t a r s i n a f rame
New_Blob_To_Calculate <= ' 1 ' ; −−C a l c u l a t e t h e C e n t e r←↩

of i n t e n s i t y o f t h e blobrow , s t a r t n e x t s t a t e ←↩
machine

end i f ;

when o t h e r s =>
Blobber_State <= x” 0 ” ;

end c a s e ;
end i f ;

end i f ;
end p r o c e s s ;

end behavioral ;

56

	Abbreviations
	Introduction
	Objectives

	Prestudy
	Different Types of Trackers
	Comparision of Commercial Star Trackers
	Principle of Operation

	Components of the Star Tracker
	Optical Assembly
	Image Sensor
	Camera FPGA
	Smartfusion2 SoC
	Communication
	Housing

	Camera FPGA and Image Processing
	Realtime Centroid Calculation
	Realtime Centroid Calculation Algorithm
	Row by Row Explanation of FIFO Events
	Design Constraints
	Digital Division in the Algorithm
	Threshold Value for the Algorithm
	Timing Issues

	Camera FPGA Firmware
	Firmware 1, Blob Detection
	Firmware 2, Camera Testing

	SPI Communication with Camera FPGA

	Testing
	Simulated Stars
	More Complicated Star Patterns
	Star Photography
	Multi-purpose Software

	Conclusions and Discussion
	Social and Ethical Aspects

	Exposure Time Calculation
	Serial Divider
	Blob Detection Algorithm

