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Abstract
Today, software is one of the most complex and intriguing
technologies around us. Software development companies
must be able to protect their products in order to stay
strong against its competitors and against other threats.
One solution to this problem is code obfuscation. This
master’s thesis investigates how to protect Java source code
against reverse engineering. Three obfuscating transforma-
tions was successfully implemented and evaluated within a
specific obfuscator named JBCO. The conclusion is that in
many cases, code obfuscation provides a higher level of ob-
scurity to a program, which makes code obfuscation a good
supplement to complicate the reverse engineering process.

Referat
Obfuskera Java bytekod: en utvärdering av
obfuskeringstransformationer med JBCO

För att ett företag ska vara konkurrenskraftigt krävs det
ofta att företaget skyddar sina produkter. Det kan vara för-
ödande för ett företag om en konkurrent får tillgång till de-
ras produkthemligheter och leda till företagets undergång.
Detta gäller framförallt företag som utvecklar mjukvara. En
lösning på detta problem är kodobfuskering. Detta examens-
arbete undersöker hur man skyddar Java källkod mot de-
kompilatorer. Tre stycken obfuskeringstransformationer im-
plementerades och evaluerades i obfuskeraren JBCO. Slut-
satsen är att kodobfuskering i många fall leder till att ett
program blir svårare att tyda för en människa. Detta gör
obfuskering till ett bra komplement för att försvåra proces-
sen att dekompilera ett program.
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Chapter 1

Background

1.1 Problem
In order to stay strong against its competitors, a company must be able to protect
its business secrets. Business secrets can be anything from design philosophy and
ideas to complex solutions. The consequences could be devastating for the company
if any of those secrets were revealed to the rest of the world.

Today’s software is one of the most complex and intriguing technologies around us.
As a company that is developing software, it is important to protect the products
against reverse engineering. Reverse engineering in this case means reconstructing
source code from a compiled program. To protect the software against reverse
engineering, a code obfuscator can be used. Code obfuscation is the technique of
creating code that is:

• difficult for humans to read and understand, and

• hard to reverse engineer.

It is important to remember that an obfuscator does not guarantee full protection;
it should be seen as a supplement to the code that makes the reverse engineering
process difficult.

Some programs are more vulnerable than others. Programs written in the program-
ming language Java is exposed due to the Java bytecode, which normally contains
enough information to permit type checking. Therefore it is particularly important
to protect programs written in Java.

1.1.1 Goal
The purpose of this master’s thesis is to investigate how to protect Java code against
theft. More specifically, how to protect the code against reverse engineering (de-
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CHAPTER 1. BACKGROUND

compilation). This is a known problem, a number of tools already exist where the
main purpose is to make it harder to decompile Java code. This thesis focuses on
the tool JBCO (Java ByteCode Obfuscator). Since it is an open source project
and an automatic obfuscation tool, it is easy to further develop and to use. The
thesis’s main contribution is to implement new obfuscating transformations within
the JBCO to contribute to the ongoing research of code obfuscation.

1.1.2 Thesis delimitations
Several improvements could be made to the JBCO tool, but this thesis only focuses
on the three different Obfuscating Transformations listed below:

OT1 Outlining conditions.

OT2 Array restructuring.

OT3 Variable restructuring.

1.2 Thesis outline
Chapter 2 serves as an introduction and provides the reader with necessary infor-
mation for this thesis. The reader is first introduced to code obfuscation and the
Java language. This is followed by more advanced background facts such as Java
bytecode obfuscators, JBCO, code obfuscation methods and decompilers. Lastley
the analysis metrics is presented. In chapter 3 the methods and the approach for
the thesis are presented.

In chapter 4, the implementation of each obfuscating transformation is presented
followed by the result in chapter 5.

The thesis ends with a discussion in chapter 6 followed by conclusions drawn in
chapter 7 based on the result and lastly future research in chapter 8.
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Chapter 2

Theory

This chapter presents the necessary theory and concepts to understand this thesis.

2.1 Code obfuscation
Code obfuscation is the technique of creating code that is difficult for humans to
read and to reverse engineer. To create this type of obscured code, an obfuscator
is used. An obfuscator is a program that obfuscates an input program and outputs
an obfuscated program with the same semantics as the input, see figure 2.1.

Figure 2.1: An obfuscator takes a program and obfuscates the code with different obfus-
cating transformations and outputs a transformed program. The transformed program is
semantically equivalent to the original program and it is harder to reverse engineer.

To obscure a program, one or more obfuscating transformations must be applied
on the code. Collberg et al. described the notation and definition of obfuscating
transformations as follows:

Definition 1 (Obfuscating transformation)
Let P

τ−→ P ′ be a transformation of a source program P into a target program P ′.
P

τ−→ P ′ is an obfuscating transformation, if P and P ′ have the same observable
behaviour. More precisely, in order for P

τ−→ P ′ to be a legal obfuscating transfor-
mation the following conditions must hold:

5



CHAPTER 2. THEORY

• If P fails to terminate or terminates with an error condition, then P ′ may or
may not terminate.

• Otherwise, P ′ must determinate and produce the same output as P .

The term observable behaviour is defined loosely as “behaviour as experienced by
the user” by Collberg et al. This means that P ′ may have side effects that P does
not, as long as these side effects are not experienced by the user. Side effects such as
creating files, sending messages over the Internet etc. It is not required that P and
P ′ are equally efficient, P ′ is probably slower and may use more memory than P [3].

2.1.1 History

Early obfuscation attempts were made by Cohen [2], which involved rewriting
machine-level instructions. He attempted obfuscations such as replacement of in-
structions, small sequences of instructions, instruction reordering, adding or remov-
ing arbitrary jumps and outlining methods. Later on, Collberg et al. presented
a more theoretical approach to obfuscations. They defined the term obfuscating
transformation and formed a terminology to describe an obfuscation in terms of
affect and quality as follows:

Potency: the level of obscurity a specific transformation gives.

Resilience: measures how well an obfuscation holds up against reverse engineering
attacks.

Cost: the performance and size penalties incurred by the obfuscation.

Stealth: how hard it is to detect whether the transformation has been applied to
a program.

They suggested a number of obfuscating transformations such as false refactoring
and method cloning, and array restructuring through splitting or merging. Some
years later, Collberg and Thomborson [3] suggested control-flow obfuscation. They
used opaque predicates to introduce dead code (dead branches).

2.2 The Java language
The Java language is a high-level and architecture-neutral programming language
which was released by Sun Microsystems in 1995. Many of Java’s object-oriented
features are influenced by the programming language C++. This in turn is a de-
scendant of the programming language C, and it is from C Java inherits its syntax.
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2.2. THE JAVA LANGUAGE

Historically, the original impetus for Java was not the Internet. The primary mo-
tivation was the need for a platform-independent (architecture-neutral) language
that could be used to create software which could be imbedded in various consumer
electronic devices. The trouble with C and C++ was that they were designed to be
compiled for a specific target. Around the same time when the details of Java were
worked out, the World Wide Web took shape. The Internet helped catapult Java
into becoming one of the more popular programming languages due to the forward-
thinking design approaches, which were unique to the Internet medium [21].

2.2.1 Primary characteristics of Java

The primary characteristics of Java are presented below.

Object-oriented language

Java is an object-oriented language and uses the principles of abstraction, encap-
sulation and inheritance. Objects and classes are fundamental parts of Java, and a
class contains both data (attributes) and executable code (methods).

Multithreading

Java provides a multithreading mechanism, which means that processes can execute
simultaneously within an application.

Dynamic linking

In Java, the existence of libraries is verified during compilation, and code is loaded
from these libraries when the program is executed. This mechanism is called dy-
namic loading and means that the size of executables decreases, which makes it
possible to optimize the loading of libraries.

Garbage collector

Java has a garbage collector, which is a mechanism that clears memory of all objects
that are no longer being used.

Security

The Java virtual machine performs very strict verifications of Java code before it is
executed, which means that code cannot bypass the protection mechanisms imposed
by the language and the code cannot try to define pointers to directly access memory
[20].
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CHAPTER 2. THEORY

Portability

Each kind of machine (e.g. computer) has its own instruction set. It is generally
true that a program that runs on one machine will not run on another. The services
provided by the operating system, which each system describes in its own unique
way, will cause a compatibility and portability problem.

Java gets around this problem by inserting its virtual machine between the appli-
cation and the environment (the machine and operation system). This results in
Virtual Machine code (e.g. Java bytecode) instead of machine code. The main dif-
ference between these two is that machine code is specific to the computer system
in use and bytecode is platform independent [24, 22].

2.2.2 Java Virtual Machine and Bytecode
Bytecode is a highly optimized set of instructions (stored in a class file) designed to
be executed by the Java virtual machine (JVM), which is the Java run-time system.
The JVM is a platform-independent execution environment that converts bytecode
into machine code and executes it.

When a JVM loads a class file, it gets one stream of bytecodes for each method in
the class, these streams are stored in the method area of the JVM. The bytecode
for a method is executed when that method is invoked in the program, and can be
executed by interpretation, just-in-time compiling, etc.

A method’s bytecode stream is a sequence of instructions for the JVM. Each in-
struction consists of a one-byte opcode (indicates the action to take) followed by
zero or more operands. Each type of opcode has a mnemonic, which means that
streams of Java bytecode can be represented in the style of assembly language fol-
lowed by any operand values.

Instructions fall into broad groups which can be seen in table 2.1.

Group Example

Load and store iload_0, lstore
Arithmetic and logic iadd, fcmpl
Type conversion f2b, i2d
Object creation and manipulation new, putfield
Operand stack management swap, dup2
Control transfer ifeq, goto
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Method invocation and return invokespecial, areturn

Table 2.1: Instructions.

Each bytecode opcode is one byte in length and each byte has 256 potential values.
The JVM supports seven primitive data types. These can be seen in table 2.2.

Prefix/Suffix Operand Type Example

i integer iadd
l long ladd
s short sadd
b byte badd
c character cadd
f float fadd
d double dadd
z boolean zadd
a reference aadd

Table 2.2: Primitive data types.

These types appear as operands in bytecode streams. All types that occupy more
than 1 byte are stored in big-endian order in the bytecode stream, which means
higher-order bytes precede lower-order bytes.

Many opcodes push constants onto the stack. There are three different ways to
indicate which constant value is to be pushed:

• The constant value is implicit in the opcode itself: when the constant value is
implicit in the opcode, it indicates a type and a constant value to push. An
example is the iconst_1 opcode which tells the JVM to push integer value 1.
Another example is the opcode iconst_m1 which pushes integer value -1, and
the opcode aconst_null which pushes a null object reference onto the stack.

• The constant value follows the opcode in the bytecode stream as an operand:
two opcodes indicate that the constant to be pushed onto the stack has an
operand that immediately follows the opcode.
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CHAPTER 2. THEORY

• The constant value is taken from the constant pool: three opcodes push con-
stants from the constant pool. Constants that are stored in the constant pool
are associated with a class, such as final variable values. Opcodes that push
constants from the constants pool have operands that indicate which constant
to push by specifying a constant pool index. This index follows the opcode in
the bytecode stream.

All compilation in the JVM are centered on the stack. Since the JVM has no
registers for storing arbitrary values, everything has to be pushed onto the stack
before it can be used in a calculation. Bytecode instructions primarily operate
on the stack [23]. A stack stores stack frames, and a frame is created each time a
method is invoked. Each frame consists of three sections: an array of local variables,
the operand stack, and a reference to the runtime constant pool of the class of the
current method, see figure 2.2. The array of local variables is determined at compile
time and is dependent on the number and size of local variables and formal method
parameters.

Figure 2.2: A frame containing an array of local variables, the operand stack and a
reference to the runtime constant pool of the class of the current method.

There exists a corresponding opcode that pops the top of the stack back onto the
local variable for each opcode that pushes a local variable onto the stack [8].

2.3 Java bytecode obfuscators

Several Java bytecode obfuscators exists that are commercial, free or open-source.
In the list below, some of the most popular Java bytecode obfuscators are presented.

10



2.4. JBCO: THE JAVA BYTECODE OBFUSCATOR

ProGuard A free Java class file shrinker, optimizer, and obfuscator. ProGuard
finds and removes unused classes, fields, methods and attributes. It optimizes
bytecode and removes unused instructions and renames the remaining classes,
fields and methods by using meaningless names. The Jar files becomes smaller
and harder to reverse engineer. The latest version was released March, 2013
[13].

Zelix KlassMaster A Java bytecode obfuscator that modifies Java class files. It
changes class, field and method names to meaningless short strings. The
obfuscator also performs flow obfuscations, exception obfuscation and Java
string encryption. The latest version was released June 23, 2013 [14].

JBCO The Java ByteCode Obfuscator is built on top of the Soot framework and
operates on Java class files. JBCO can perform three different types of ob-
fuscations: operator level obfuscations, obfuscating program structure, and
exploiting the design gap. The latest version was released January 22, 2012
[16].

yGuard A free Java bytecode obfuscator and shrinker. Renames packages, classes,
fields methods according to a selectable name mapping scheme. The latest
version was released October 12, 2012 [26].

2.4 JBCO: The Java ByteCode Obfuscator
This thesis only focuses on one obfuscator where new obfuscating transformations
were implemented: The Java ByteCode Obfuscator (JBCO). JBCO is a Java byte-
code obfuscator built on top of the framework Soot and is developed by Batchelder.
It is written in Java, and JBCO is a free open source project. JBCO transforms
code to be more complex and esoteric, to make it harder to decompile. To get a
better understanding of the JBCO, the framework Soot is presented first.

2.4.1 Soot: A Java Optimization Framework
Soot is a Java optimization framework from the Sable Research Group at McGill
University in Quebec, Canada. Soot provides four intermediate representations for
analysing and transforming Java bytecode. These four provide different levels of
abstraction on the represented code and are targeted for different uses. During
execution, Soot transforms Java source code or bytecode into one of the following
representations: Baf, Jimple, Grimp or Shimple [5].

Baf is a streamlined stack-based representation of bytecode. It is used to inspect
Java bytecode as a stack code, but abstracts away the constant pool and the
type dependent variations of instructions into a single instruction. In contrast
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to bytecode, which has several instructions for adding primitive data types
like int, long etc., Baf only has one instruction for adding primitive data.
This representation is useful for bytecode analyses, optimizations and trans-
formations. Listing 2.1 shows the example method faculty in Java source
code, and listing 2.2 shows the same method in Baf.

1 public int faculty(int n) {
2 int mult = 1;
3 for(int i = 1; i <= n; i++) {
4 mult = mult*i;
5 }
6 return mult;
7 }

Listing 2.1: Example method faculty in Java source code.

1 public int faculty(int)
2 {
3 word r0 , i0 , b2 , i3;
4

5 r0 := @this: Math;
6 i0 := @parameter0: int;
7 push 1;
8 store.b r0;
9 push 1;

10 store.b b2;
11 goto label1;
12

13 label0:
14 load.b r0;
15 load.b b2;
16 mul.b;
17 store.i i3;
18 load.b b2;
19 push 1;
20 add.b;
21 store.i i3;
22

23 label1:
24 load.b b2;
25 load.i i0;
26 ifcmple.b label0;
27

12



2.4. JBCO: THE JAVA BYTECODE OBFUSCATOR

28 load.b r0;
29 return.b;
30 }

Listing 2.2: Example method faculty in Baf form. Math is the name of the class and the
single characters following the dots are the type of the instruction. The instruction store.i
stores an int.

Jimple is a typed 3-address intermediate representation and a very good founda-
tion for most analyses since it does not need the explicit control flow. The
translation from bytecode to Jimple is performed using a naïve translation
from bytecode to untyped Jimple. This is made by introducing new local
variables for implicit stack locations and using subroutine elimination to re-
move jsr instructions. For local variables the types are inferred in the untyped
Jimple and then added. The most important and special part about the trans-
formation to Jimple is that the transformation is a linearization of expressions,
so statements only reference at most 3 local variables or constants. Jimple
only has 15 different statements, compared to Java bytecode which has more
than 200 different instructions. The Jimple statements can be seen in the
table 2.3.

Statement Type of statement

NopStmt Core statement
IdentityStmt Core statement
AssignStmt Core statement
IfStmt Intraprocedural control-flow
GotoStmt Intraprocedural control-flow
TableSwitchStmt Intraprocedural control-flow
LookupSwitchStmt Intraprocedural control-flow
InvokeStmt Interprocedural control-flow
ReturnStmt Interprocedural control-flow
ReturnVoidStmt Interprocedural control-flow
EnterMonitorStmt Monitor statement
ExitMonitorStmt Monitor statement
ThrowsStmt -
BreakpointStmt -
RetStmt -

Table 2.3: All Jimple statements.
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The Jimple local variables start with a dollar sign ($) and represent stack po-
sitions (not local variables in the original program). In listing 2.3 the method
faculty is showed in Jimple.

1 public int faculty(int)
2 {
3 Math r0;
4 int i0, i3, i4;
5 byte b1, b2;
6

7 r0 := @this: Math;
8 i0 := @parameter0: int;
9 b1 = 1;

10 b2 = 1;
11 goto label1;
12

13 label0:
14 i3 = b1 * b2;
15 i4 = b2 + 1;
16

17 label1:
18 if b2 <= i0 goto label0;
19

20 return b1;
21 }

Listing 2.3: Example method faculty in Jimple form. Math is the name of the class.

These two representations are used by the JBCO to analyse and perform the trans-
formations. The two representations presented below are not used by the JBCO,
and therefore they are not explained in detail.

Grimp is an aggregated version of Jimple suitable for decompilation and code
inspection.

Shimple is a Static Single Assignment-form version of the Jimple representation
and guarantees that each local variable has a single static point definition,
which simplifies analyses.
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2.4.2 The functionality of JBCO

JBCO operates on Java class files or source code and produces obfuscated Baf,
Jasmin, or class files [1]. Jasmin is an assembler for the JVM and it takes ASCII
descriptions (JVM instruction set syntax) of Java classes and converts them into
binary Java class files [17]. The JBCO itself is just a number of Jimple and Baf
transformations and each module falls under one of three categories:

Information Aggregator: data from the program such as identifier names, con-
stant usage or local variables to type pairings are collected for other transfor-
mations.

Code Analyses: build new forms of information about the code such as control-
flow graphs, stack height and type data or use-define chains, which are used
to identify where in the program transformations can be applied.

Instrumenters: the algorithms within JBCO that modify the code, which means
adding obfuscations or shuffling the code to obscure meaning. There are two
different types of transformations: those that operate on the program as a
whole and those that operate on one method at a time.

JBCO can be used in two different ways; as a command-line tool or via a graphical
user interface. A user can choose which transformation or transformations to use
and each transformation has a weight of 0-9, where 0 turns it off and 9 corresponds
to applying it everywhere possible. Another mechanism is to limit the obfuscations
to specific regions of a program by using regular expressions to specify classes, fields,
or methods [1].

2.5 Code obfuscation methods

This section focuses on the code obfuscation methods within JBCO. These obfus-
cations can be divided into three groups: operator level obfuscations, obfuscating
program structure, and exploiting the design gap.

2.5.1 Operator level obfuscations

Operator level obfuscation simply reworks the low-level program logic and does not
change the design structure of the program or the control flow of method execution.
These kinds of obfuscations are not built to confuse a decompiler, they are made to
confuse a human.
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Renaming identifiers: classes, methods and fields

Replacing class, field and method names in bytecode can avoid revealing impor-
tant information, since names of functions often reveals the purpose of the function.
Identifiers are renamed with the help of randomly generated sequences, or by taking
names from other methods or fields within the program. In JBCO the randomly
generated sequences consists of characters which look alike and are difficult to dis-
tinguish. These characters are:

[S, 5, $] : a uppercase letter S, a digit five and a dollar sign.

[l, 1, I] : a lowercase letter L, a digit one, a uppercase letter i.

[_] : an underscore.

An example of a renaming of identifiers transformation can be seen in figure 2.3,
where both before and after the transformation is listed.

1 public void helloWorld (){
2 System.out.print(hello);
3 HelloWorldAgain ();
4 }

1 public void S55$S (){
2 System.out.print(ll1);
3 lI1I1 ();
4 }

Figure 2.3: A Java source code snippet before (listing to the left) and after (listing to the
right) a renaming of identifiers’ transformation.

Embedding constant values as fields

Constants are often used, and are separately stored in bytecode. Each class file
stores constant data in a constant pool and each constant is accessed by its index
within the pool. To obfuscate these constants, each constant is moved into a static
field and then the references to the constant are changed into references to the field.
An example of before and after an ’Embedding constant values as fields’ transfor-
mation, can be seen in figure 2.4.
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1 try {
2 i=new FileInputStream(n);
3 }catch (IOException e){
4 System.err.print
5 ("File opening failed.");
6 }

1 try {
2 i=new FileInputStream(n);
3 } catch (IOException e){
4 System.err.print
5 (ObjectA.field1 );
6 }

Figure 2.4: A Java source code snippet before (listing to the left) and after (listing to the
right) the embedding constant values as fields transformation.

Packing local variables into bitfields

It is possible to combine local variables with primitive types and pack them together
into one variable, which has more bits. For each local variable the range of bits are
randomly chosen.

Example:
An integer is represented by 32 bits and it is packed into a long between its 9th and
41rd bits.

Converting arithmetic expressions to bit-shifting operations

Complex operations such as multiplication or division can be obscured by convert-
ing them into sequences of cheaper operations. JBCO looks for expressions in the
form of v ·C or v/C, where v is a variable and C is a constant. The largest integer
i is extracted from C, where i < C, and i = 2s, where s = floor(log2(v)). The
remainder is computed r = v − i. If s is in the range of −128. . . 127, the original is
converted to v << s + (v · r), and the expression v · r can be further decomposed.
To further obscure, a random multiple m is chosen and an equivalent shift value
s′ = (byte)(s + (m · 32)) is computed.

Example:
Before obfuscation: v · 195
After obfuscation: first phase: (v << 7) + (v << 6) + (v << 1) + v, in the second
phase the three shift values are further obfuscated to:
(v << 39) + (v << 38) + (v << −95) + v.

2.5.2 Obfuscating program structure

Program structure can be divided into two categories: high-level object-oriented
design (moving methods, creating new classes) and the low-level control flow (con-
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fusing the control flow of a method). The obfuscation transformations presented in
this section operates according to one of these two categories.

Adding dead-code switch statements

This obfuscation adds edges to the control flow graph by inserting a dead switch
to complicate flow analysis. The switch construct in Java bytecode offers a control
flow obfuscation tool. It is the only way to create control flow graphs that has
a node whose successor count is greater than two. The switch is wrapped in an
opaque predicate to ensure that it is not executed. All bytecode instructions with a
stack height of zero are safe jump targets for cases in the switch. JBCO randomly
selects some as targets for the cases switch, which increases the couplings and the
complexity of a method.

Finding and reusing duplicate sequences

By finding duplications in a method, and replacing them with a single switched
instance, the size of the method can potentially be reduced. There are a number of
rules which define whether a sequence is a proper duplicate.

Replacing if(non)null instructions with Try-Catch blocks

This obfuscation exploits two facts of Java. One is that invoking an instance method
from a null object will always result in a NullPointerException being thrown. The
other is that two null objects will always be considered equal by the ifacmpeq
instruction, and a non-null object will always be considered not equal to a null
object. Every ifnull and ifnonnull instruction in a method is considered for this
transformation. The ifnull instruction being transformed is removed and either
replaced with a call to toString or an ifacmpeq instruction comparing the origi-
nal object to a null reference. An example of before and after the replacing of the
if(non)null instructions with Try-Catch blocks transformation can be seen in figure
2.5.

1 if(arg == null) {
2 System.out.print
3 ("Failed.");
4 return;
5 }

1 try{
2 arg.equals(null);
3 }catch(NullPointerException e){
4 System.out.print("Failed.");
5 return;
6 }

Figure 2.5: A Java source code snippet before (listing to the left) and after (listing to the
right) the replacing of if(non)null instructions with Try-Catch blocks transformation.

18



2.5. CODE OBFUSCATION METHODS

Building API buffer methods

Methods that call direct execution into standard Java libraries cannot be renamed.
Instead, the names of the Java library methods can be obscured by indirecting all
Java library method calls through intermediate methods with nonsensical identifiers.

Building library buffer classes

This obfuscation attempts to create confusion by adding extra layers, if a class ex-
tends a library class. If a class C extends a library class L, then a buffer class B is
created and inserted as a child of L and a parent of C. Since B is never used directly
in the program, methods over-ridden in C can be defined as nonsense methods in
B, which adds confusion.

2.5.3 Exploiting the design gap
There are certain gaps between what can be represented in Java source code and
what can be represented in bytecode. The obfuscation transformations presented
in this section attempt to exploit these gaps.

Converting branches to jsr instructions

The jsr bytecode (Jump to SubRoutine) is analogous to the goto bytecode, except
that it pushes a return address on the stack. The return address is normally stored
in a register after a jsr jump. When the subroutine is complete, the ret bytecode
is used to return. This Obfuscation replaces if and goto targets with jsr instruc-
tions. Each old jump target is prepended by a pop in order to throw the return
address which is pushed onto the stack. A goto is inserted after a jump target if its
predecessor in the instruction sequence falls through, which causes a jump directly
to the old target. The transformation changes almost all control flow to be jsr
based.

Reordering load instructions above if instructions

In situations where a local variable is used directly following both paths of a if (the
first instruction loads the variable on to the stack), the transformation can be used.
The obfuscation moves the load instruction above the if, removing its clones along
both branches.

Disobeying constructor conventions

In the Java source the first statement must be a super call, which means that class
constructors always must call either an alternate constructor of the same class or
their parent class constructor as the first directive. If no one is specified, javac ex-
plicitly adds a call to the parent. In bytecode this is not required. This obfuscation
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exploits that, and randomly chooses between four approaches to achieve confusion.
The four approaches are: wrapping the super call within a try block, taking advan-
tage of classes which are children of java.lang.Throwable, inserting a jsr jump and
a pop directly before the super constructor call, or adding new instructions before
the super call.

Partially trapping switch statements

This obfuscation traps sequential sections of bytecode that are not necessarily se-
quential in Java source code. The Java construct allows only well-nested and struc-
tured uses of try-catch blocks, but the bytecode implementation is at a lower ab-
straction. An example is the switch construct. In Java source, the switch encapsu-
lates different blocks of code as targets of the switch. In bytecode there is nothing
explicit tying the switch instruction to the different code blocks. This means that
if the switch is placed within a trap range along with only part of the code blocks
which are associated as its targets, then there will be no way for a decompiler to
output semantically equivalent code. This obfuscation is limited to those switch
constructs which are not already trapped.

Combining Try blocks with their Catch blocks

This obfuscation combines a try-catch block such that both the beginning of the
try block and the beginning of the catch block are the same instructions. Try-catch
blocks can only be presented in one way in Java source code, with a try block
directly followed by one or more catch blocks associated with it. This rule is not
applied to bytecode. Try blocks can protect the same code that is used to handle the
exceptions it throws, or one of its catch blocks can appear above it in the instruction
sequence. To obfuscate, the first unit of the try block prepends with an if that
branches to the try code or to the catch code depending on an control flow flag.

Indirecting if instructions

This obfuscation exploit the fact that javac always produces predictable try blocks
by indirecting if branching through goto instructions which are within a certain
try block. Since a try block protects gotos, the gotos cannot be removed unless the
code can be statically shown to never raise an exception.

Goto instructions augmentation

Explicit goto statements exist in bytecode, but are not allowed in Java source. This
obfuscation splits a method randomly into two sequential parts, then reorders these
two parts and inserts two goto instructions [10, 1].
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2.6 Reverse engineering

The concept of reverse engineering is the process of extracting the knowledge or
design from anything made by man. It is often conducted to obtain missing knowl-
edge, ideas and design philosophy when that information is unavailable. There can
be several reasons why the technique is used. The information could be owned by
someone who is not willing to share it, or perhaps the information has been lost
or destroyed. The process to extract desirable information often involves dissecting
the product to uncover the secrets of the design. Often the product is examined
under a microscope, or is even disassembled in order to examine the parts. The
secrets that are retrieved are usually used to make similar or improved products.

In the software world, reverse engineering is a known problem. Software reverse engi-
neering is about understanding of what is happening ’under the hood’ of a program.
The information gained can be used for security-related or software development-
related applications. Reverse engineering is heavily used in connection with mali-
cious software; both malware developers and those developing the antidotes use it.
Reverse engineering has been employed in encryption research, involving reversing
an encryption product and evaluating the level of security the product provides.
The reversing technique is also used when hackers use it to analyse and crack copy
protection schemes.

2.6.1 Decompilers

In order to reverse engineer a program, a decompiler can be used. A decompiler
takes an executable binary file and attempts to produce readable high-level lan-
guage code from it. This is done by trying to reverse the compilation process and
then hopefully retrieve the original source file or a file similar to it. The output
might be structured somewhat differently because of the compiler optimizations.
The architecture of a decompiler is similar to a compiler, but works in the reverse
order. In a conventional compiler the front-end is the component that parses the
source code. In a decompiler, the front-end decodes low-level language instructions
and translates them into an intermediate representation. This representation is
gradually improved by eliminating useless details and emphasizing valuable details.
The improved intermediate representation is then used by the back end to produce
a high-level language representation [4].

Decompile Java bytecode

Decompilation of Java bytecode involves transforming Java bytecode to Java source
code. This is easier than decompilation of machine code. Java bytecode is easier to
decompile since it normally contains enough information to permit type checking.
What this means is that bytecode contains explicit abstractions for methods, vari-
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ables and the type of each variable. To decompile Java bytecode requires analysis
of most of the local variable types. It also requires to flat stack-based instructions
and to structure loops and conditionals.

Several Java decompilers exists that are commercial, free or open-source. In this
report only a few decompilers were tested, in order to analyse the result of obfus-
cated Java bytecode. The following decompilers were tested:

Jad Java Decompiler is a free tool for non-commercial use. It is a closed source
program, currently unmaintained. Jad is written in the programming language
C++ and provides a command-line user interface to extract source code from
class files. There is also a graphical user interface: jadClipse, which is a
plugin to the Eclipse IDE. The decompilation process is confidential. The
latest update for Linux and Windows was in 2001, but in 2006 an OS X
version was added [9].

Dava A decompiler which is part of the Soot Java Optimisation Framework from
the Sable Research Group at McGill Univerity in Quebec, Canada. Dava is
using pattern matching and information obtained through data flow control
analyses. Dava is under constant development and the latest version of the
Soot framework was released in January 22, 2012 [18].

2.7 Analysis metrics

In this section a qualitative analysis of Java obfuscation is presented, or more pre-
cisely, a qualitative method to evaluate how well obfuscation is performed.

2.7.1 Quality of Java obfuscation

Karnick et al. [12] propose a qualitative analysis of Java obfuscation. To evaluate
the performance for an obfuscator, the overall performance is denoted as Squality,
the quality of obfuscation. Squality includes the factors: potency, resilience and cost
(as described in section 2.1). In this context, the potency, Spot, refers to how much
obscurity needs to be added to the code in order to prevent humans from under-
standing it. The resilience, Sres, is a measure of how strong the program can hold
up against reverse engineering attacks. These attacks can be defined as attempts
to transform the code back to the original source code by decompilers. The cost,
Scst, refers to how much computational overhead is added to an obfuscated program
compared to a non-obfuscated program. Both potency and resilience have a positive
impact on Squality, since they illustrate how well the transformation protects the
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code. Resilience is given a higher weight than potency, due to the fact that cogni-
tive ability of a computer program is far inferior to that of humans. Cost have a
negative impact on Squality. Measuring these factors with different weights will yield
a normalized score for the quality. A score of zero means that no obscurity have
been added to the program. A higher score gives a higher quality of obfuscation.

Squality = 0.4 · Spot + 0.6 · Sres − Scst

Karnick et al. found that the weights 0.4 and 0.6 gave the most feasible result.

2.7.2 Measurement of potency

Measuring potency is difficult since the analysis is based on human cognitive ability.
To make the analysis easier, the potency can be divided into smaller measurements.
Karnick et al. breaks potency into the following four complexity areas: nesting
complexity, control flow complexity, variable complexity and program length.

Nesting complexity

The nesting complexity measure the number of iterative loops at different hierar-
chical levels in a program. Hierarchical levels of loops are defined as: a leveln loop
is the loop within the body of a leveln−1 loop. The nesting is calculated as follows:

cnesting =
∑N
i=1 leveli · counti

Where counti is the number of iterative loops in the nesting level i, and N is the
deepest level of nesting in the program.

To finally calculate how well an obfuscation transformation changes the nesting com-
plexity, a ratio is taken to represent a change in the transformation which yields
snesting. The total nesting is calculated as follows:

snesting = c′nesting−cnesting

cnesting

Where c′nesting and cnesting denote the nesting complexity before and after the ob-
fuscation transformation.
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Control flow complexity

The control flow complexity measures non-sequential code. Non-sequential means
that a program contains labels and goto statements. The control flow complexity
score is divided into label score, goto score and unreadable score.

The label score is the percentage of duplicate labels in a transformed program. A
duplicate label would be the label appearing in two different methods with the same
name. The score increases with the number of duplicate labels. The label score is
computed as follows:

slabel = l′duplicate

l′
total

Where l′duplicate is a number of duplicate labels and l′total is the total number of
labels in the transformed application.

The goto score is the percentage of non-sequential goto statements in a transformed
program. The goto score is computed as follows:

sgoto = g′non−seq

g′
total

Where g′non−seq is the number of non-sequential goto statements and g′total is the
total number of goto statements.

The unreadable score involves the number of lines of code that a decompiler could
not translate back to source code. Unreadable in this case means that the decompiler
leaves Java instructions that is readable by the virtual machine but not for human
interpretation. The unreadable score is the percentage of unreadable lines of code
in a transformed program and is proportional to the number of uncompiled lines in
the code. The unreadable score is computed as follows:

sunreadable = c′undecompiled

c′LOC

Where c′undecompiled is the number of unreadable lines of code and c′LOC is the total
lines of code in the transformed application.

Variable complexity

The variable complexity has four factors that yield its measurement. The factors
are: duplicate variable score, extra variable score, description variable and string
encryption.
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The duplicate variable score, sduplicate, measures the percentage of variables in trans-
formated code with the same name but different meanings. The duplicate variable
score is computed as follows:

sduplicate = v′duplicate

v′
total

where v′duplicate is the number of duplicate variables and v′total is the number of total
variables in the transformed program.

The extra variable score, sextra, measures variables in transformed code with dif-
ferent names but have the same meaning. The extra variable score is computed as
follows:

sextra = v′extra
v′

total

where v′extra is the number of extra variables.

The descriptive variable score, svariable, is defined as a Boolean expression, that de-
scribes if the transformation has renamed descriptive variables in the original code
to non-descriptive ones. There are two possible scenarios that can occur. First
scenario is that obfuscation does not conduct any variable renamings no matter if
the original code have descriptive variables, and yields a score of 0. Second scenario
is that the transformation changes descripted variables into non-descriptive ones,
and yields a score of 1.

The string encryption score, sstring, has an integer range from 0 to 3, with four
possible scenarios. The first one is that no string encryption takes place, which
gives a score of 0. The second is that string encryptions occur with a decryption
method detected in the same class file, with a score of 1. The third is that string
encryptions occur with a decryption method detected in the program, which gives
a score of 2. The fourth is that string encryptions occur with no decryption method
detected, which gives a score of 3.

Program length

The last measurement is the ratio of how many lines of code (LOC) are added or
removed in comparison to the original program length. The program length score
is computed as follows:

sLOC = c′LOC−cLOC

cLOC

where c′LOC and cLOC are the count of the transformed code and of the original one.
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Overall measurement of potency

The potency score, Spot, which measures how potent a transformation is, consists
of the nine variables described above. It is measured on a scale from 0 points
to 100 points, where 100 means extremely potent and zero extremely weak. The
nine variables are all weighted, depending on how much they influence the potency.
Karnick et al. assigned low weight to the factors that add minor overhead into the
original code, which results in modest increased time for deciphering the code. A
medium weight implies that it has not changed the top-down structure, but adds
more time to decipher the code. A high weight implies that the transformation
removes the sequential methodology of the structure and adds much overhead and
deciphering time. Karnick et al. classified the nine factors and gave them the values
as follows:

Low weight: unreadable, duplicate variable, extra variable, and descriptive vari-
able scores. Weight 6.25.

Medium weight: nesting, string encryption and LOC. Weight 12.50.

High weight: label and goto. Weight 18.75.

The final equation for the potency score is computed as follows:

Spot = x · snesting + y · slabel + y · sgoto + z · sunreadable + z · sduplicate + z · sextra + z ·
sdescriptive + x · sstring + x · sLOC

where x = 12.50, y= 18.75 and z = 6.25.

2.7.3 Measurement of resilience
The resilience measures how strong the program can hold up against reverse engi-
neering attacks with decompilers. The grading scale for resilience is based on results
from decompilers. There are three different scenarios. If no error occurs from de-
compilation, the score 0 is given. If errors occur during tree parsing, a score of 1 is
given. Finally, if the decompilation fails, a score of 2 is given. For a Java program
consisting of multiple class files, the score is calculated by averaging the individual
scores of the transformation on classes.

2.7.4 Measurement of cost
The cost measures extra resources that an obfuscated program consumes during
runtime. Cost is divided into three types: memory, storage space and runtime.
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Memory

The memory score is the ratio of additional memory consumption used by an ob-
fuscated program against that of the original one. There are two types of memory:
heap memory and non-heap memory. Heap memory is the runtime data area from
which memory for all class instances and arrays are allocated. Non-heap mem-
ory stores per-class structures such as the runtime constant pool, field and method
data. Non-heap memory also stores the code for methods, constructors and interned
Strings.

The heap memory score is computed as follows:

sm−heap = p′heapmem−pheapmem

pheapmem

where p′heapmem is the amount of heap memory consumed by the obfuscated code
during runtime, and pheapmem is the amount of heap memory consumed by the orig-
inal code during runtime.

The non-heap memory score is computed as follows:

sm−nonheap = p′nonheapmem−pnonheapmem

pnonheapmem

where p′nonheapmem is the amount of non-heap memory consumed by the obfuscated
code during runtime and pnonheapmem is the amount of non-heap memory consumed
by the original code during runtime.

The total memory score is computed as follows:

smemory = a · sm−nonheap + b · sm−heap

In the pilot studies made by Karnick et al., they found that a = 0.375 and b =
0.625 gave the most feasible result. They believed that the heap memory was more
critical than the non-heap memory.

Storage

The storage is computed as follows:

sstorage = p′storage−pstorage

pstorage

where p′storage and pstorage denote the file size of the obfuscated program and the
original one.
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Runtime

The runtime can be very important if a program’s purpose is to perform a set of
operations quickly and efficiently. The runtime score is computed as follows:

sruntime = p′runtime−pruntime

pruntime

where p′runtime is the obfuscated program’s runtime and pruntime is the original pro-
gram’s runtime.

Overall measurement of cost

The total cost score is computed as follows:

Scst = x2 · smemory + y2 · sstorage + z2 · sruntime

In the pilot studies by Karnick et al., they found that x2 = 0.4, y2 = 0.15, z2 = 0.45
gave the most feasible result. They believed that the memory and runtime are far
more expensive resources than the size of the obfuscated program. Negative cost
scores represent positive impact on the overall quality of a transformation.
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Methodology

In this chapter the methodology used in this thesis is presented and motived.

3.1 Methods for implementing obfuscating
transformations within JBCO

To create new obfuscating transformations some decisions have to be made about
how to tackle the implementation. In this section, the choice of intermediate rep-
resentation within JBCO is motivated, as well as the structure choice of the imple-
mentation.

3.1.1 Choice of intermediate representation
To be able to implement obfuscating transformations within JBCO, one needs to
be familiar with the framework Soot, which JBCO is build on top of. As mentioned
in the previously chapter 2, the JBCO itself is just a number of Jimple and Baf
transformations. In this thesis, the obfuscating transformations are created using
the representation Jimple. The Jimple representation is used since:

– the typed 3-adress intermediate representation, which makes the representa-
tion easy to control and to modify.

– the 15 different statements which makes it easy to handle and use.

– the similarity to Java code, compared with Baf.

3.1.2 Choice of obfuscating transformations
Today, JBCO contains a number of different obfuscating transformations, but there
will always be room for more. Batchelder proposed several new transformations
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to JBCO. One desirable transformation he proposed was to outline conditions. If
statements use conditions to determine if the statement is true or false, also while
loops and for loops uses conditions.

JBCO handles a lot of different types of transformations, but has no transformations
that obscure arrays and local variables. The first desirable behaviour of an array
transformation is to change the structure of it using a scanner array, to confuse a
person trying to reverse engineer. The second desirable behaviour of a transfor-
mation is to change the structure of a variable, also to confuse a person trying to
reverse engineer.

Based on this reasoning, the following three transformations have been chosen:

OT1 Outlining conditions.

OT2 Array restructuring.

OT3 Variable restructuring

Each transformation only handles values of type integer. The delimitation is due to
the time constraints since each data type is represented differently in Jimple code.
A lot of time is needed to fully understand how the translation from Java source
code to Jimple code is done for each data type. Since there is not enough time, the
handling of several data types are not prioritized. Instead each transformation only
focuses on one data type. The data type integer was chosen because it is commonly
used.

3.1.3 Structure

The new obfuscating transformations are stand-alone modules within JBCO, which
makes it easy to use only one transformation or to combine multiple. The method
used to implement the new obfuscating transformations in JBCO are presented in
the list below and can be seen in the figure 3.1.

1. JBCO takes a Java class file containing Java bytecode as input.

2. Soot transforms the Java bytecode to the intermediate Jimple representation.

3. JBCO adds 1 to N obfuscating transformations to the code.

4. Soot transform the obscured intermediate Jimple representation back to Java
bytecode.

5. A new Java class file is created as output.
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Figure 3.1: A flow chart to describe how the new obfuscating transformations are imple-
mented in Soot. A module corresponds to an obfuscating transformation.

3.2 Analysis methods

To analyse the new transformations, the analysis metrics from chapter 2 are used.
The metrics are used to analyze each implemented transformation, despite the fact
that the metrics was originally intended to analyze a complete obfuscator. In this
section the computer system used and the methods to implement and perform the
analysis on the transformations are described.

3.2.1 System

The analytical tests are running on the same computer with the Mac OS X op-
erating system and a Java runtime environment present. This set-up guarantees
accurate results because everything uses the same resources. Information about the
system can be seen in table 3.1.

Processor 1,8 GHz Intel Core i7
Memory 4 GB 1333 Mhz DDR3
Software Mac OS Lion 10.7.5

Table 3.1: Information about the computer system used in the analysis.
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3.2.2 Quality of Java obfuscating
The metric was calculated according to the equation in section 2.7.1, with the same
weights as Karnick et al. used.

3.2.3 Potency
The metric was calculated according to the equation in section 2.7.2, with the same
weights as Karnick et al. used on variables x, y and z. The potency score is
measured on the Jimple code after the transformation.

Nesting complexity

The nesting complexity score was calculated as it is defined in section 2.7.2 and cal-
culated manually. A negative score (a decrease of nesting complexity) is considered
0.

Control flow complexity

The control flow complexity scores were calculated as they are defined in section
2.7.2. The label score, goto score and unreadable score were calculated manually
by hand.

Variable complexity

The variable complexity scores were calculated as they are defined in section 2.7.2.
Both the duplicate variable score and the extra variable score score were calculated
by hand. The descriptive variable score can only result in 0 or 1, and the score is
calculated manually. Retrieve the string encryption score, which can give a score in
the range of 0 to 3, is also calculated manually.

Program length

The program length score was calculated as it is defined in section 2.7.2. To get the
ratio of how many lines of code are added or removed in comparison to the original
program length, an automatic tool was implemented to do this.

3.2.4 Resilience
The resilience score was measured using decompilers. In this thesis, the following
two decompilers were used and are described in chapter 2:

• Jad

• Dava
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The same grading scale presented in section 2.7.3 was used to rate the result, and
the score is given manually by hand. For the interested reader, the result from the
two decompilers (Java source code) are also presented, to give the reader a better
overview.

3.2.5 Cost

The metric was calculated according to the equation in section 2.7.4, with the same
weights as Karnick et al. used on variables x2, y2 and z2.

Memory

The memory scores were calculated as they are defined in section 2.7.4. The total
memory score equation used the same values as Karnick et al. used on variables a
and b. To get the heap memory score and the non-heap memory score, a profiler
tool named YourKit Java Profiler [25] was used to obtain the mean value of heap
memory and mean value of non-heap memory consumed by the program during
runtime.

Storage

The storage score was calculated as it is defined in section 2.7.4 and is calculated
manually by hand.

Runtime

The runtime score was calculated as it is defined in section 2.7.4. An automatic
tool was implemented to get the runtime of a program.

3.3 Benchmarks
The benchmarks have been culled from open source projects and well known algo-
rithms. Each project is written in Java source language and is compiled with Javac.
The benchmarks represent different projects with different purposes and sizes. In
the analysis, each program is obfuscated and analysed. In the list below a brief
description of each program’s key features is presented.

Game solvers: A program that can solve mazes and Sudoku games.

Jadretro: A class transformer tool which helps to successfully decompile Java
classes by modern Java compilers (Java 1.4 or later), by transforming the
class files into files which could be processed by an old Java decompiler (Java
1.3 or earlier) [15].
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MARS: An encryption algorithm. MARS is a shared-key block cipher that works
with a block size of 128 bit and a variable key size [7].

Mathematical algorithms: A program that can handle matrix operations such
as adding two matrices together, multiply two matrices, subtract one matrix
from another matrix, finding the cofactor, determinant, inverse and transpose.
The program can also calculate prime numbers, compute the discrete Fourier
transform (DFT) and its inverse with the fast Fourier transform (FFT) algo-
rithm, and solve continuous-space linear programming problems by the sim-
plest method.

ProjectEuler: A couple of solutions to Project Euler problems. Project Euler
problems are different mathematical problems [11].

Sorting algorithms: Program that sorts elements with the sorting algorithm Quick-
sort and Radix sort.

Turing Machine: A Turing Machine program that manipulates symbols according
to a table of rules.

Virus Scanner: A program that scans for viruses in files [19].

In the analysis all programs are analysed as one single program, which means that
the programs are analysed together instead of being analysed separately. This
composite program is called Test_Program and consists of approximately 10000
lines of Java source code, including blank lines and comments.
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Chapter 4

Implementation

In this chapter the new obfuscating transformations that has been developed are
presented and the theory learned in the Introduction part of this thesis will come
in use.

4.1 The new obfuscating transformations
The main task of this master’s thesis was to implement three new obfuscating
transformations in JBCO, these three transformations are motivated in chapter 3
and are as follows:

OT1 Outlining conditions.

OT2 Array restructuring.

OT3 Variable restructuring

Each one of these transformations was implemented as a stand-alone module within
the JBCO. This means that each transformation can be activated independently
and depending on the severity of obfuscation desired, each transformation can also
be weighted independently using the weighting mechanism. All transformations use
a weighting mechanism. This mechanism can be set within the range of 0-9. If the
weight is set to 0, the transformation will not be applied at all, and if it is set to
9 the transformation will be applied everywhere possible. If no weight is specified,
a weight of 9 will be used by default. To ensure that the transformations produce
output that is correct, none of the transformations can be applied on constructors,
fields or main methods in classes.

The modules are written in the programming language Java and the modules were
developed in the integrated development environment Eclipse [6].
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These new obfuscating transformations can be applied on a program by using the
command-line. The transformations are enabled by adding command-line options,
see table 4.1:

Obfuscating
transformation

Command-line option

OT1 -t:W: wjtp.jbco_de
OT2 -t:W: wjtp.jbco_ar
OT3 -t:W: wjtp.jbco_vr

Table 4.1: Command-line options for the new obfuscating transformations OT1, OT2 and
OT3, where W is a weight.

To obscure a program in the command-line, the expression below is used:

java soot.jbco.Main -w –t:W: wjtp.jbco_PN -app Example

Where W is a weight, PN is the phase name and Example is the class with the
entry point (main method).

4.2 Outlining conditions (OT1)
This obfuscating transformation takes the condition of an if statement, a while loop
or a for loop and replaces it with a method call to a new method where the condition
has been extracted to. The transformation is designed so that each subcondition
of a condition becomes a new method. The new method always returns a Boolean
value. This transformation does the opposite of an inline expansion, lets define the
term outlining. A pseudo code example of how the outlining condintions transfor-
mation works can be seen in listing 4.1 and 4.2.

1 [if|while|for](x0 RO_0 y0 LO_0 .. LO_N -1 xN RO_N yN){
2 body
3 }

Listing 4.1: Outlining conditions pseudo code example before the transformation. RO
stands for Relational operator and LO stands for Logical operator.
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1 [if|while|for]( newMethod0(x0 ,y1) LO_0 .. LO_N -1 newMethodN(xN ,yN)){
2 body
3 }
4

5 boolean newMethod(x0,y0){
6 return x0 RO_0 y0
7 }
8 .
9 .

10 boolean newMethodN(xN,yN){
11 return xN RO_N yN
12 }

Listing 4.2: Outlining conditions pseudo code example after the transformation. RO
stands for Relational operator and LO stands for Logical operator.

4.2.1 The type of the Outlining conditions transformation
As mentioned in chapter 2 obfuscating transformation can be divided into three cat-
egories. This Outlining transformation belongs to the Obfuscating program structure
category because of the confusing control flow of if statements, while loops and for
loops. The code structure after the transformation will make the code harder to
reverse engineer.

4.2.2 The Outlining conditions transformation algorithm
The first step in the algorithm is to identify where the transformation can be applied
in the program to be obscured. The algorithm scans one method at a time in each
class in the program and when the algorithm finds an if statement, a while loop or
a for loop where a relational operator exists, the outlining transformation starts.
There are several relational operators in the Java language. The various relational
operands identified by the transformation can be seen in table 4.2.

Operator Description

== Checks if the value of two operands are equal, if yes then the
condition becomes true.

!= Checks if the value of two operands are not equal, if yes then the
condition becomes true.

> Checks if the value of left operand is greater than the value of
right operand, if yes then the condition becomes true.
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< Checks if the value to left operand is less than the value of right
operand, if yes then the condition becomes true.

>= Checks if the value of left operand is greater than or equal to the
value of right operand, if yes then condition becomes true.

<= Checks if the value of left operand is less than or equal to the value
of right operand, if yes then the condition becomes true.

Table 4.2: The relational operands the outlining transformation can identify.

The data types used in a condition can be clustered into three different groups.
Each group is handled differently by Soot, due to the Jimple code which differs for
each one of them. The three data types groups can be seen in table 5.9. Only vari-
ables in the first group is transformed by the Outlining conditions transformation,
which means that both variables in the condition must belong to group one.

Category Data types Jimple statements used

C1 int, byte, char, short, boolean IfStmt
C2 long, float, double AssignStmt(Comparison expres-

sion) followed by IfStmt
C3 String AssignStmt(Virtual Invoke ex-

pression) followed by IfStmt

Table 4.3: The three data type groups the Outlining conditions transformation can handle.
For more information about the Jimple statements, see table 2.3.

The algorithm, which makes the transformation possible, operates as follows:

1. Let E be the expression to be transformed if: E is an instance of IfStmt, does
not contain a local Jimple variable, both variables belongs to group one and
the weighting mechanism allows the transformation.

2. Let C be the container that stores the variables: goto and destination d.

3. Create a new method m with the information found in C. The method name
is chosen in the same way as in the Renaming Identifiers transformation. The
new method returns the Boolean value of E.

4. Create a new expression which calls m and inserts the expression before E.
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5. Create another expression which checks if the return value of m is true or
false, and let the goto destination be d. Insert the expression before E and
remove E.

4.2.3 A concrete example of the Outlining conditions transformation

To demonstrate how the outlining transformation works in reality, a hands-on exam-
ple is presented. In listing 4.3 a Java source code snippet before the transformation
is shown and in listing 4.4 a Java source code snippet after the transformation can
be seen. The if statement condition in the example consists of two subconditions.
For each subcondition a method will be created.

1 public void convertG(int gLoop , int gValue , int gType ){
2 while(gLoop >= 0){
3 if(gValue > 1000 && gType != 1){
4 createG4367 ();
5 }
6 }
7 }

Listing 4.3: A Java source code snippet before obfuscation with the outlining transforma-
tion.

1 public void convertG(int gLoop , int gValue , int gType ){
2 while(________(gLoop , 0)){
3 if(S$5$5(gValue , 1000) && ll1Il(gType , 1))
4 createG4367 ();
5 }
6 }
7

8 private boolean ________(int i0, int i1){
9 return i0 >= i1;

10 }
11

12 private boolean S$5$5(int i0 , int i1){
13 return i0 > i1;
14 }
15

16 private boolean ll1Il(int i0 , int i1){
17 return i0 != i1;
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18 }

Listing 4.4: A Java source code snippet after obfuscation with the outlining transforma-
tion. For each subcondition a new method is created.

4.3 Array restructuring (OT2)
This obfuscating transformation changes the structure of an integer array, to make
it more difficult for an attacker to understand its structure at runtime. The trans-
formation creates a scanner array to each array and the scanner arrays are used to
get the right order of each array. A pseudo code example of how the transformation
works can be seen in listing 4.5 and 4.6.

1 int[] array = {a, b, c, d, e};
2 for(int i = 0; i < array.length; i++){
3 do something with array[i];
4 }

Listing 4.5: Array restructuring pseudo code example before obfuscating transformation.

1 int[] array = {b, e, a, d, c};
2 int[] scanner = {w, u, y, x, v};
3 for(int i = 0; i < array.length; i++){
4 do something with array[scanner[i]];
5 }

Listing 4.6: Array restructuring pseudo code example after obfuscating transformation.

4.3.1 The type of the Array restructuring transformation
As mentioned in chapter 2 obfuscating transformation can be divided into three
categories, this Array restructuring transformation belongs to the Operator level
obfuscations category due to the restructuring of the low-level logic. The code
structure after the transformation will make the code harder to reverse engineer.

4.3.2 The Array restructuring transformation algorithm
The algorithm consists of two phases. For all phases, let P be the program to be
obscured and let A be the container which holds the array names of all arrays which
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have been modified in P .

The first phase of the algorithm identifies where the transformation can be applied
and more important, where the transformation cannot be applied in the program
to be obscured. It searches for arrays of the type integer and scans one method
at a time in each class in the program. The algorithm for the first phase works as
follows:

1. Let M be the method being examined. If M returns a variable of type Array
where the values are of type int, dismiss the method. If not, read M line by
line.

2. Let H be a container that stores arrays which will not be transformed and let
A be an array of type int in M .

3. If a field is assigned the value of A, add A to H. If a method call exist with
parameter A or a method call with return type Array where the values are of
type int, dismiss the method.

The second phase detects approved arrays, modifies them and creates a scanner to
each array as follows:

1. Let OA be the array to be transformed in P , if the examined expression is
an instance of AssignStmt, the right side of the statement is an instance of
Array Type, does not exist in H and the type is an instance of int and the
weighting mechanism allows the transformation.

2. Let C be a container that stores variable names and the size s of OA.

3. Create a new scanner array SA of size s in C and randomly shuffle the elements
in SA.

4. Create a new empty array NA of size s in C which later will contain the
elements from OA, but in a different order so the elements can be accessed by
SA.

5. Iterate through each position in OA and store the elements in NA with the
new position which can be accessed by SA. Give NA the same variable name
as OA. Add NA to P .

6. Add the variable name of NA to A.

7. Add SA to P .

In the second phase the algorithm finds all occurrences where the old arrays were
used. The algorithm uses A to find them. If the algorithm finds an occurrence, then
the pointer to NA is redirected to SA, which will give the correct value of NA.
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4.3.3 A concrete example of the Array restructuring transformation
To demonstrate how the Array restructuring transformations works in reality, a
hands-on example is presented. In listing 4.7 a Java source code snippet before
the transformation is shown and in listing 4.8 a Java source code snippet after the
transformation can be seen. The array in this example contains the first 10 prime
numbers and the method only prints them in the correct order.

1 public void primeNumbers (){
2 int[] primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
3 for(int i = 0; i < primes.length; i++){
4 System.out.println(primes[i]);
5 }
6 }

Listing 4.7: A Java source code snippet before obfuscation with the Array restructuring
transformation.

1 public void primeNumbers (){
2 int[] primes = {19, 3, 13, 29, 7, 17, 23, 2, 11, 5};
3 int[] scanner = {7, 1, 5, 9, 3, 6, 8, 0, 4, 2};
4 for(int i = 0; i < primes.length; i++){
5 System.out.println(primes[scanner[i]]);
6 }
7 }

Listing 4.8: A Java source code snippet after obfuscation with the Array restructuring
transformation.

4.4 Variable restructuring (OT3)
This obfuscating transformation changes the structure of an integer variable, to
make it more difficult for an attacker to understand the value at runtime. The
Variable transformation takes an integer variable and creates a new char array of
the same size containing random characters. For each element in the new char array
a digit is added and in the end the char array contains the same value as the integer
value. The only difference is that the integer value is now hidden within the char
array.

A pseudo code example of how the transformation works can be seen in listing 4.9
and 4.10.
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1 int variable = i; //i = i0i1i2 ...iN

Listing 4.9: Variable restructuring pseudo code example before obfuscating transforma-
tion. Each ix, where 0 ≤ x ≤ N , represents a subnumber of x.

1 char[] temp = {c0 , c1 , c2 , ..., cN};
2 temp [0] += y0;
3 temp [1] += y1;
4 temp [3] += y2;
5 .
6 .
7 temp[c.length] += yN;
8 int variable = Integer.parseInt(new String(temp ));

Listing 4.10: Variable restructuring pseudo code example after obfuscating transforma-
tion. Each yx, where 0 ≤ x ≤ N , represents a value which is connected to c (see section
4.4.2 to understand how they are connected).

4.4.1 The type of the Variable restructuring transformation
As mentioned in chapter 2 obfuscating transformation can be divided into three
categories, this Variable restructuring transformation belongs to the Operator level
obfuscations category due to the restructuring of the low-level logic. The code struc-
ture after the transformation will make the code harder to reverse engineer.

4.4.2 The Variable restructuring transformation algorithm
The first step in the algorithm is to identify where the transformation can be applied
in the program to be obscured. The algorithm scans one method at a time in each
class in the program and when the algorithm finds an variable of type int, then the
Variable restructuring algorithm transforms the variable. Let P be the program to
be obscured. The algorithm works as follows:

1. Let i be the variable of type int, if the examined expression is an instance of
AssignStmt and of type int.

2. Let C be a container that stores the variable name of i and number of char-
acters n that the variable consists of (units = 1, tens = 2, hundreds = 3, and
so on).

3. Create an char array O of i and a char array R of length n. Populate R with
random char elements within the range of 65 to 122. The interval is chosen

45



CHAPTER 4. IMPLEMENTATION

based on the decimal values that correspond to the characters: a-z, A-Z, [, ],
,̂ _, ‘. For better understanding see Ascii table 4.4. Add the initiation of R
to P .

4. For each element at position j in R, create an expression u which adds a
specific digit to the element, to regain the same value that can be find in
the same position j in O. The digit is obtained by the subtraction: R[j] =
O[j]−R[j]. Add each u to P .

5. Create an expression f which converts R to type int, let g be the integer
value. Add f to P . The value of g is not explicitly visible in f , it is hidden
within f , which complicates the process to see the true value of g. The vari-
able g is equal to i.

Dec Char Dec Char Char Dec Char Dec Dec Char
65 A 77 M 89 Y 101 e 113 q
66 B 78 N 90 Z 102 f 114 r
67 C 79 O 91 [ 103 g 115 s
68 D 80 P 92 \ 104 h 116 t
69 E 81 Q 93 ] 105 i 117 u
70 F 82 R 94 ^ 118 j 112 v
71 G 83 S 95 _ 119 k 112 w
72 H 84 T 96 ‘ 108 l 120 x
73 I 85 U 97 a 109 m 121 y
74 J 86 V 98 b 110 n 122 z
75 K 87 W 99 c 111 o
76 L 88 X 100 d 112 p

Table 4.4: Ascii table that the variable restructuring transformation uses, with the excep-
tion of character "\" with decimal value 92.

4.4.3 A concrete example of the Variable restructuring transformation
To demonstrate how the Variable restructuring transformations works in reality, a
hands-on example is presented. In listing 4.11 a Java source code snippet before
the transformation is shown and in listing 4.12 a Java source code snippet after the
transformation can be seen. The method in the example adds two integer variables
together and returns the value.

1 public int getPrice (){
2 int price1 = 1495;
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3 int price2 = 69;
4 return price1 + price2;
5 }

Listing 4.11: A Java source code snippet before obfuscation with the Variable restructur-
ing transformation.

1 public int getPrice (){
2 char[] temp0 = {’d’, ’L’, ’B’, ’H’};
3 temp0 [0] += -51;
4 temp0 [1] += -24;
5 temp0 [2] += -9;
6 temp0 [3] += -19;
7 int price1 = Integer.parseInt(new String(temp0 ));
8

9 char[] temp1 = {’F’, ’_’};
10 temp1 [0] += -16;
11 temp1 [1] += -38;
12 int price2 = Integer.parseInt(new String(temp1 ));
13

14 return price1 + price2;
15 }

Listing 4.12: A Java source code snippet after obfuscation with the Variable restructuring
transformation.
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Chapter 5

Results

In this chapter the results are presented. For details on how the different scores are
calculated and obtained, read section 2.7 in chapter 2 and section 3.2 in chapter 3.

5.1 Outlining conditions (OT1)

Number of transformation occurrences: 444

The Outlining conditions transformation was applied 444 times to the Test_Program,
which means that 444 new methods were created. Each new method consists of 14
lines of Jimple code and one extra line of Jimple code to call the new method.

5.1.1 Potency
The result of the nesting complexity (nesting score) for the Outlining condition
transformation was 0, since no such nesting changes were made.

In table 5.2, the result of the control flow complexity (label score, goto score
and unreadable score), variable complexity (duplicate variable score, extra vari-
able score, descriptive variable score and string encryption score), program length
(length score) and overall potency score is presented for the Outlining condition
transformation. Most scores were 0, since there were no duplicated labels or vari-
ables, non-seq goto, unreadable lines, extra variables, descriptive variables or string
encryption.
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Transformed
Number of labels 3276
Number of duplicate labels 0

Label score 0
Total number of goto 3768
Number of non-seq goto 0

Goto score 0
Total number of lines 35031
Number of unreadable lines 0

Unreadable score 0
Total number of variables 7008
Number of duplicate variables 0

Duplicate variable score 0
Total number of variables 7008
Number of extra variables 0

Extra variable score 0
Descriptive variable score 0
String encryption score 0

Total number of lines in original 24432
Total number of lines in transformed 35031

Length score 0.4338
Overall potency score 5.42

Table 5.2: The result for all potency scores.

5.1.2 Resilience
In table 5.3, the result after using the decompilation tools Dava and Jad are pre-
sented for the Outlining condition transformation. The result is based on the Java
source code after the transformation.

Original Dava Jad
Number of labels 0 80 146
Number of duplicate labels 0 0 10
Total number of goto 0 0 120
Total number of lines 7921 12916 15646
Number of unreadable lines 0 2275 200
Total number of variables 1801 2168 2559
Number of extra variables 0 2 0

Table 5.3: The result for the Outlining condition transformation after using the decompi-
lation tools Dava and Jad, in an attempt to reproduce the Java source code again.
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Both Dava and Jad gave the same resilience score of 1 and the two decompilers are
therefore not treated separately. Since both tools gave the same result, it does not
matter which decompilation tool is used.

5.1.3 Cost
In table 5.4, the result of the cost (overall memory score, storage score, runtime score
and overall cost score) is presented for the Outlining condition transformation.

Original Transformed
Mean value of heap memory (MB) 72.64 67.03
Mean value of non-heap memory (MB) 9.09 9.71

Heap memory score -0.0772
Non-heap memory score 0.0686
Overall memory score -0.0225

Size (KB) 272 779
Storage score 1.8636

Runtime (s) 72 76
Runtime score 0.0556

Overall cost score 0.30

Table 5.4: The result for all cost scores.

5.1.4 Quality of obfuscation
The quality of obfuscation is 2.47 for the Outlining condition transformation.

5.2 Array restructuring (OT2)

Number of transformation occurrences: 4

The Array restructuring transformation was applied 4 times to the Test_Program,
which means that 4 new arrays of were created. The number of new lines of Jimple
code is n + 2 for each integer array, where n is the number of elements in the array.
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Each time an element in the array was used, 2 new lines of Jimple code was added
to the code to access the right element through the scanning array.

5.2.1 Potency
The result of the nesting complexity (nesting score) for the the Array restructuring
transformation was 0, since no such nesting changes were made.

In table 5.6, the result of the control flow complexity (label score, goto score
and unreadable score), variable complexity (duplicate variable score, extra vari-
able score, descriptive variable score and string encryption score), program length
(length score) and overall potency score is presented for the Array restructuring
transformation. Most scores were 0, since there were no duplicated labels or vari-
ables, non-seq goto, unreadable lines, extra variables, descriptive variables or string
encryption.

Transformed
Number of labels 2832
Number of duplicate labels 0

Label score 0
Total number of goto 3324
Number of non-seq goto 0

Goto score 0
Total number of lines 29150
Number of unreadable lines 0

Unreadable score 0
Total number of variables 6231
Number of duplicate variables 0

Duplicate variable score 0
Total number of variables 6231
Number of extra variables 0

Extra variable score 0
Descriptive variable score 0
String encryption score 0

Total number of lines in original 24432
Total number of lines in transformed 29150

Length score 0.1931
Overall potency score 2.41

Table 5.6: The result for all potency scores.
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5.2.2 Resilience
In table 5.7, the result after using the decompilation tools Dava and Jad are pre-
sented for the Array restructuring transformation. The result is based on the Java
source code after the transformation.

Original Dava Jad
Number of labels 0 80 146
Number of duplicate labels 0 0 10
Total number of goto 0 0 118
Total number of lines 7921 10320 11077
Number of unreadable lines 0 2275 200
Total number of variables 1801 1532 1693
Number of extra variables 0 2 3

Table 5.7: The result for the Array restructuring transformation after using the decompi-
lation tools Dava and Jad, in an attempt to reproduce the Java source code again.

Both Dava and Jad gave the same resilience score of 1 and the two decompilers are
therefore not treated separately. Since both tools gave the same result, it does not
matter which decompilation tool is used.

5.2.3 Cost
In table 5.8, the result of the cost (overall memory score, storage score, runtime score
and overall cost score) is presented for the Array restructuring transformation.

Original Transformed
Mean value of heap memory (MB) 72.64 63.97
Mean value of non-heap memory (MB) 9.09 9.03

Heap memory score -0.1192
Non-heap memory score -0.0058
Overall memory score -0.0767

Size (KB) 272 705
Storage score 1.5917

Runtime (s) 72 75
Runtime score 0.0417

Overall cost score 0.23

Table 5.8: The result for all cost scores.
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5.2.4 Quality of obfuscation
The quality of obfuscation is 1.26 for the Array restructuring transformation.

5.3 Variable restructuring (OT3)

Number of transformation occurrences: 811

The Variable restructuring transformation was applied 811 times to the Test_Program.
The number of new lines of Jimple code is n · 7 + 6 for each integer variable, where
n is the length of the variable.

5.3.1 Potency
The result of the nesting complexity (nesting score) for the the Variable restructur-
ing transformation was 0, since no such nesting changes were made.

In table 5.10, the result of the control flow complexity (label score, goto score
and unreadable score), variable complexity (duplicate variable score, extra vari-
able score, descriptive variable score and string encryption score), program length
(length score) and overall potency score is presented for the variable restructuring
transformation. Most scores were 0, since there were no duplicated labels or vari-
ables, non-seq goto, unreadable lines, extra variables, descriptive variables or string
encryption.

Transformed
Number of labels 2832
Number of duplicate labels 0

Label score 0
Total number of goto 3324
Number of non-seq goto 0

Goto score 0
Total number of lines 38670
Number of unreadable lines 0

Unreadable score 0
Total number of variables 9857
Number of duplicate variables 0
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Duplicate variable score 0
Total number of variables 9857
Number of extra variables 0

Extra variable score 0
Descriptive variable score 0
String encryption score 0

Total number of lines in original 24432
Total number of lines in transformed 38670

Length score 0.5828
Overall potency score 7.29

Table 5.10: The result for all potency scores.

5.3.2 Resilience
In table 5.11, the result after using the decompilation tools Dava and Jad are pre-
sented for the Variable restructuring transformation. The result is based on the
Java source code after the transformation.

Original Dava Jad
Number of labels 0 80 150
Number of duplicate labels 0 0 11
Total number of goto 0 0 119
Total number of lines 7921 13078 18879
Number of unreadable lines 0 2275 200
Total number of variables 1801 3288 2582
Number of extra variables 0 210 0

Table 5.11: The result for the Variable restructuring transformation after using the de-
compilation tools Dava and Jad, in an attempt to reproduce the Java source code again.

Both Dava and Jad gave the same resilience score of 1 and the two decompilers are
therefore not treated separately. Since both tools gave the same result, it does not
matter which decompilation tool is used.

5.3.3 Cost
In table 5.12, the result of the cost (overall memory score, storage score, runtime
score and overall cost score) is presented for the Variable restructuring transforma-
tion.
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Original Transformed
Mean value of heap memory (MB) 72.64 194.40
Mean value of non-heap memory (MB) 9.09 8.07

Mean value of heap memory score 1.6762
Mean value of non-heap memory score -0.1103

Overall memory score 1.0062
Size (KB) 272 995

Storage score 2.66
Runtime (s) 72 138

Runtime score 0.9167
Overall cost score 6.95

Table 5.12: The result for all cost scores.

5.3.4 Quality of obfuscation
The quality of obfuscation is 3.22 for the Variable restructuring transformation.
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Chapter 6

Discussion

In this chapter the results are discussed and analysed thoroughly. First the potency
is discussed, then the resilience and lastly the cost for each obfuscating transforma-
tion is discussed. In this chapter, the abbreviations for each obfuscating transfor-
mation name from section 4.1 are used in the figures.

6.1 Overall analysis

All obfuscating transformations could be applied to the Test_Program1. The re-
sults for each transformation can be seen in figure 6.1. Variable restructuring had
the highest number of transformation occurrences and Array restructuring had the
lowest number of occurrences.

The Outlining conditions transformation was applied 444 times to the program.
The large number can be explained by the frequent use of control statements in
programs, which includes if statements, while loops and for loops.

The Array restructuring transformation was only applied 4 times to the program,
which means that it was not a useful transformation in this particular case, since a
small number of transformations do not create as much confusion in the obfuscated
code as a larger number of transformations would do. The transformation could
have been dismissed. Many factors must be met, for the transformation to be ap-
plied in the code. The most important factor is that the transformation looks for
an integer array that is declared and initialized at the same time. The second most
important factor is that the array is not a field and is not created in the constructor
or in the main method. According to the test program, an array that can meet both
requirements seems uncommon.

1Read about Test_Program in section 3.3 in chapter 3.
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Figure 6.1: The number of transformation occurrences for each transformation.

The Variable restructuring transformation was applied 811 times to the program.
The large number can be explained due to the large number of integer variables.

6.2 Potency

The overall potency score for each obfuscating transformation can be seen in figure
6.2. Variable restructuring gave the highest score and Array restructuring gave the
lowest score.

Figure 6.2: The overall potency score for each transformation.
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6.2.1 Outlining conditions

The overall potency score for Outlining conditions was 5.42 out of 100, which means
that the transformation gave a positive level of obscurity to the code.

Outlining conditions did not affect the nesting complexity in the program, since the
transformation does not create any new loops, only changes the conditions of if state-
ments, while loops and for loops. Neither did any duplicate labels, non-sequence
gotos, unreadable lines, duplicate variables or descriptive variables appear, which
was as expected. Also, no string encryption was added to the program.

The main difference between the original Jimple code compared with the Jimple
code after the transformation, was the code size. When an Outlining conditions
transformation is made, the code size grows. In Test_Program the transformation
was applied 444 times, which means that 444 new methods were created, each one
with 14 lines of Jimple code and one extra line to call the new method. On this
assumption, the total size of the transformed program would be the original size
(24432), see table 5.2, plus number of transformations (444) multiplied with the
number of new lines (14 + 1). This returns the result of 31092 lines of code. The
calculated result for the total number of lines after transformation (31092) does
not match the result from the survey in this thesis (35031), which can be seen in
table 5.2. There is a difference of 3939 lines of code, which means that JBCO
increases the size of the code. The extra code is probably added when the original
bytecode is disassembled and converted to Jimple code and then reassembled to
bytecode again. The translation back to bytecode from Jimple code is probably
done differently, which gives the bytecode another structure.

6.2.2 Array restructuring

The overall potency score for Array restructuring was 2.41 out of 100, which means
that the transformation gave a positive level of obscurity to the code, but the score
was close to zero.

The Array restructuring did not affect the nesting complexity in the program, since
the transformation only change integer arrays. Neither did any duplicate labels,
non-sequence gotos, unreadable lines, duplicate variables or descriptive variables
appear, which was as expected. Also, no string encryption was added to the pro-
gram.

As for the Outlining conditions transformation, the main difference between the
original Jimple code compared with the Jimple code after the transformation, was
also the code size. Since the Array restructuring transformation only was applied
4 times, the code should have grown only a little in size. According to the result
in table 5.6, the total number of lines in the original program was 24432 and the

61



CHAPTER 6. DISCUSSION

total number of lines in the transformed program was 29150. That is a difference
of 4718 lines of code. The code is expected to grow, but not that drastically,
there is approximately 4000 lines of additional code. The Outlining conditions
transformation also had about 4000 lines of extra code, that seems to correlate with
the Array restructuring transformation. In the previous section 6.2.1 these extra
lines of code are discussed and explained.

6.2.3 Variable restructuring

The overall potency score for Variable restructuring was 7.29 out of 100, which
means that the transformation gave a positive level of obscurity to the code.

The Variable restructuring did not affect the nesting complexity in the program,
since the transformation only change integers. Neither did any duplicate labels,
non-sequence gotos, unreadable lines, duplicate variables or descriptive variables
appear, which was as expected, due to the inner workings of the transformation.
Also, no string encryption was added to the program.

As was the case with the Outlining conditions and Array restructuring transfor-
mations, the main difference between the original Jimple code compared with the
Jimple code after the transformation, was also the code size. When a Variable re-
structuring transformation is made, the code size grows. It is hard to calculate how
much the size grows, because it depends on how large each number is. A program
that contains many large integer numbers will after the transformation consist of
more lines of code than a program with few large integer numbers.

According to the result in table 5.10 the total number of lines in the original pro-
gram was 24432 and the total number of lines in the transformed program was
38670, which gives a difference of 14238 lines of code. The transformation was
applied 811 times to the program, and the number of new lines of Jimple code is
n · 7 + 6 for each integer variable, where n is the length of the variable. There
are often many numbers of length 1 in program, but of course there are also large
numbers in the program. To get the exact number of extra lines, the average inte-
ger length was calculated to 1.13 for the Test_Program. If the mean value of each
integer in the program was of length 1.13, the number of extra lines of code would
be 1.13 · 7 + 6 multiplied with 811, which is 11281. The total number of lines would
be 24432 + 11281, which is 35713. The calculated result for the total number of
lines after transformation (35713) does not match the result from the survey in this
thesis (38670) in table 5.10. There is a difference of 2957 lines of code. The Out-
lining conditions and Array restructuring did also have lines of extra code, which
seems to be a correlation for all three transformations. In the section 6.2.1 these
extra lines of code are discussed and explained.
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6.3 Resilience

All obfuscating transformations with both Dava and Jad have the same resilience
score 1 out of 2, which means that error occurred during tree parsing. It is safe to
say that the problem regarding the decompilation is not due to the transformation.
Both decompilers failed to decompile the same number of lines in each obfuscating
transformation. Dava failed to decompile 2275 lines of code and Jad failed to de-
compile 200 lines of code, see tables 5.3, 5.7 and 5.11.

Despite the fact that Jad manages to decompile more lines of code than Dava, the
quality of the Java source code was lower. The code decompiled with Jad would
require more work compared with the code decompiled with Dava, to make the
test program executable. It is hard to understand how Jad works since there is no
documentation about how the decompilation process works. Dava is a newer de-
compiler and is probably a more advanced tool than Jad since it uses flow-analysis
information. That is probably the reason why Dava performs better than Jad.

The resilience score in the qualitative analysis is determined by how well the de-
compiler manages to decompile the Java code. It is only based on whether there
were no errors from decompilation, if errors occur during tree parsing, or if the
decompilation fails. The resilience score does not take into account the number of
errors or how the code is structured, which in this case do not affect the choice of
decompiler. Therefore, no further investigation was made regarding why Dava and
Jad behave differently apart from the short analysis below.

For the interested reader, the test program decompiled with Jad contained more
lines of code, more labels and goto statements compared with the test program
decompiled with Dava, for all transformations. For both the Outlining conditions
transformation and the Array restructuring transformation, the code decompiled
with Jad contained more variables than the code decompiled with Dava. It is the
opposite for the Variable restructuring transformation, where the code decompiled
with Dava contained more variables than the code decompiled with Jad. This prob-
ably means that Dava treats arrays differently than Jad.

6.4 Cost

The overall cost score for each obfuscating transformation can be seen in figure
6.3. The cost score does not have an upper limit, but a positive score has negative
impact on the overall quality of a transformation. Variable restructuring gave the
highest score and Array restructuring gave the lowest score.
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Figure 6.3: The overall cost score for each transformation.

6.4.1 Outlining condition

The overall cost score for Outlining conditions was 0.30, which has a negative im-
pact on the quality.

The memory score was −0.0225 and a negative score has a positive impact on the
overall quality. The mean value of heap memory was higher for the original test
program compared to the transformed program, but the difference was very small.
Probably some optimizations were made by the JBCO, when the code was con-
verted between different representations. The mean value of non-heap memory was
lower for the original program compared to the transformed program, which was as
expected, because the transformed test program consists of more methods than the
original test program.

The storage score was 1.8636, which has a negative impact on the overall quality.
As expected, the size of the transformed test program was larger than the size of
the original test program. The transformed test program is larger because a new
method is added each time the transformation is applied.

The runtime score was 0.0556, which has a negative impact on the overall quality.
As expected the runtime for the original program was shorter than the runtime for
the transformed program, due to that the transformed program consists of more
methods and method calls.
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6.4.2 Array restructuring

The overall cost score for Array restructuring was 0.23, which has a negative impact
on the quality.

The memory score was −0.0767, which have a positive impact on the overall quality.
The mean value of heap memory was higher for the original test program compared
to the transformed program. As discussed in the precious section 6.4.1, some op-
timizations were probably made by the JBCO. The non-heap memory score was
higher for the original program compared to the transformed program. Once again,
it has to do with the optimizations made by the JBCO.

The storage score was 1.517, which has a negative impact on the overall quality.
The storage score was not expected, due to the fact that the transformation only
was applied 4 times to the code. Learnt from section 6.2, the JBCO adds extra
lines of code to a program, which explains why the transformed program is of larger
size. Even though extra lines of code are added to the transformed program, the
size should not be twice the original program’s size.

The runtime score was 0.0417, which has a negative impact on the quality. The
runtime for the original program was shorter than the runtime for the transformed
program, which can be explained by the extra lines of code that have been added
to the transformed program.

6.4.3 Variable restructuring

The overall cost score for Variable restructuring was 6.95, which has a negative
impact on the quality.

The memory score was 1.0062, which have a negative impact on the overall qual-
ity. The mean value of heap memory was higher for the transformed test program
compared to the original program. The result is explained due to the restructuring
of all integer variables, which requires more memory. The mean value of non-heap
memory was lower for the transformed program compared to the original program,
since there were no new method calls and due to optimization by the JBCO.

The storage score was 2.66, which has a negative impact on the overall quality. The
size was expected to be larger after the transformation, due to the restructuring of
all integer variables.

The runtime score was 0.9167, which has a negative impact on the quality. The
runtime for the original program was shorter than the runtime for the transformed
program, which was expected due to the restructuring of all integer variables.
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6.4.4 Quality of obfuscation
The quality for each obfuscating transformation can be seen in figure 6.4. The
quality score does not have an upper limit, but a positive score increases the level
of obfuscation. The resilience result for Dava and Jad was the same for all trans-
formations, and they are therefore not treated separately in the figure 6.4, where
the result for the quality is presented for each transformation.

Figure 6.4: The result for the quality of each obfuscating transformation.

The Variable restructuring gave the highest quality of obfuscation and Array re-
structuring gave the lowest. This was expected, because the Variable restructuring
transformation was applied 811 times to the program compared to the Array re-
structuring transformation, which only was applied 4 times to the program. It is
important to keep in mind that the quality result may differ depending on which
program is to be obscured.

The level of obscurity was low for all obfuscating transformations, but if each trans-
formation is combined with all the other transformations, the level of obfuscation
will increase. It is important to remember that the intention is not to run each trans-
formation separately; the intention is to use each transformation together with other
transformations in JBCO, which hopefully will give a higher and more satisfying
level of obscurity to the program.
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Chapter 7

Conclusions

In this chapter the conclusions of the thesis are presented. The conclusions are
based on the results presented in chapter 5 and chapter 6.

7.1 Quality of obfuscation
The results presented in chapter 5 indicate that obfuscating transformations in-
creases the level of obscurity of the Test_Program1. The transformations imple-
mented in this thesis are not as general as many of the already existing transfor-
mations in JBCO (presented in chapter 2). More general transformations will most
likely give a higher quality score than transformations that are more specific. The
purpose of this thesis was not to create transformations that could be compared
with the existing transformations in JBCO that are very general. It would be un-
fair to compare them against each other because they are different in the aspect of
generality. The purpose was to add new obfuscating transformations to the JBCO,
transformations that would offer extra value to the tool, which the new transfor-
mations did.

As previously mentioned, it is important to remember that an obfuscator does
not guarantee one hundred percent protection. Given the right amount of time
and effort, the code can be reverse engineered. A person trying to reverse engineer
Test_Program will first encounter problems when trying to decompile the code with
a decompilation tool, such as Dava and Jad. Subsequently, errors will occur during
the tree parsing phase, which will result in non-executable code or result in no code
at all. The successfully decompiled code will be messy and difficult to read, and
will complicate the reverse engineer process.

From an analytical perspective, it is hard to determine how difficult it is to reverse
engineer obfuscated code because it is a subjective process. Regarding how difficult

1Read about Test_Program in section 3.3 in chapter 3.
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it is, different people would have different opinions. This makes it cumbersome
to test the quality of the obfuscations in a quantitatively and scientific way. A
thorough evaluation of such a survey would require a large number of participants
and it could be hard to find qualified participants and it could also be costly. Un-
fortunately, this kind of survey could not be carried out in this thesis due to the
reasons mentioned above. Instead, the analysis metric used in this thesis are partly
based on decompilers, which gives a good indication of how hard it is to decompile
code, without using any participants. The drawback with the method used is that
an evaluation with decompilers does not reflect the reality to the same extent as a
survey with people would do. Despite this fact, decompilers should not be under-
estimated; they are excellent tools which have been very useful and have provided
credible results.

A problem with obfuscation is that the transformed programs often tend to increase
in size and memory usage. In many cases, new code is added to the program after
the transformation, such as adding dead-code to the program to complicate flow
analyses. The obfuscating transformations this thesis focuses on (Outlining condi-
tions, Array restructuring and Variable restructuring) are no exceptions. As can be
seen in the result, the size and memory usage increases. This is not necessarily bad;
it depends on how the program should be used and which delimitations that exist.
One solution to minimize the size would be to reduce the weight of the transfor-
mation, which means that the transformation is applied less frequently in the code.
This is a setting that the user can experiment with in order to find the best result
to fulfil his or her purpose.

The analysis metrics used in this thesis were originally intended to analyse a com-
plete obfuscation, not to analyse one transformation at a time. This fact explains
the low scores obtained in chapter 5 and why many of the factors used in the analysis
yielded a value of zero. Despite the low scores from the analysis metrics, compar-
ing the factors with values greater than zero gave valuable information about each
obfuscating transformation. However, a value of zero is still a valid result and a
descriptive outcome.

7.2 Outlining conditions

The Outlining conditions transformation increased the level of obscurity to the pro-
gram. The transformation changed the flow control of the program, which in this
case means that the conditions of if statements, while loops, and for loops were
outlined in new methods.

This transformation increases both size and memory usage of the program, which
the person using the transformation have to keep in mind in order to get the best

68



7.3. ARRAY RESTRUCTURING

result. A good advice is to set a low weight to the transformation if the size of
the program after the transformation is considered too big compared to the original
program size.

7.3 Array restructuring
As the Array restructuring transformation is designed right now, it is weak and
many factors must be met in order for the transformation to be applied on the
code. The transformation changes the structure of integer arrays to make it more
difficult for an attacker to understand their structures at runtime.

Despite the fact that the transformation was only applied 4 times to the Test_Program,
the transformation can be useful in programs that contains many integer arrays.
Compared to Outlining conditions and Variable restructuring, this Array restruc-
turing transformation is not as general as they are.

7.4 Variable restructuring
The Variable restructuring transformation increased the level of obscurity to the
program. The transformation changes the structure of integer variables, to make it
more difficult for an attacker to understand the values at runtime.

This transformation also increases size and memory usage of the program, which
can be seen in the results. The size can be reduced by changing the weight of the
transformation to a lower weight, which results in lower obscurity of the program.
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Chapter 8

Future work

This chapter discusses improvements and future work for each transformation.

8.1 Improvements of obfuscations
There is always room for improvement, and several improvements can be made to
enhance the quality of each obfuscating transformation. These improvements are
presented in this section.

8.1.1 Outlining conditions
The greatest improvement that can be made is to make the Outlining conditions
transformation more general. At the moment, the transformation can only han-
dle conditions of type Integer. This means that conditions of other types will not
be obfuscated, which leads to lower level of obscurity. If the Outlining conditions
transformation could handle types such as long, float, double and String, the quality
for the transformation would be higher.

Another improvement would be if the transformation could be applied in the con-
structor and in the main method and still guarantee that the transformed program
is semantically equivalent to the original program.

The quality of the transformation would also increase if the conditions could be
more obscured.

8.1.2 Array restructuring
There are several improvements that can be made in the Array restructuring trans-
formation. The biggest problem in this study was that the transformation was only
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applied 4 times on the test program, which is not a good result. If the transforma-
tion was able to transform more types such as long, float, double and String, the
transformation would be more general and perform better.

As for the Outlining transformation in section 8.1.1, the transformation would be
improved if the transformation could be applied in the constructor and in the main
method, which would provide a better coverage in terms of obfuscation. The quality
of the transformation would also be improved if the transformation could be applied
on fields.

8.1.3 Variable restructuring
The Variable restructuring transformation can be improved by making the trans-
formation more general as described above in the Outlining condition and Array
restructuring sections in this chapter. Also the transformation could be improved
if the transformation could be applied in the constructor and in the main method
and on fields as described in the section 8.1.2.

As can be seen in table 5.10 in section 5.3, there is a big difference between the total
number of lines in the original program compared in the transformed program. An
improvement would be to try reducing the length of the transformed program by
minimizing the Variable restructuring transformation’s output. As the transforma-
tion works now, an integer of length n will increase the code length with n · 7 + 6
new lines. A reduction of the code length would result in a better overall cost score,
which would increase the quality of the obfuscating transformation.

8.2 New obfuscations
The best way to improve the level of obfuscation is to combine different transfor-
mations, as discussed in section 6.4.4 in chapter 6. JBCO already consist of many
different obfuscating transformations, there are still areas within bytecode and the
JVM which JBCO does not cover.

Batchelder [1] discussed new transformations and transformations which can be fur-
ther obscured. He discussed transformations such as the thread locking mechanism
of Java and embedding constant values in fields, packing local variables into bit-
fileds and converting arithmetic expressions to bit-shifting operations could be more
obscured with the addition of opaque predicates.

Batchelder also discussed improving obfuscation-point decisions through the static
detection of hot spots. A hot spot is a region of a program where a high proportion
of executed instructions occur or where most time is spent during the program’s
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execution. Instead of applying obfuscating transformation on a whole program, the
transformation could be applied only on the hot spots in the program, which can
improve the quality of an obfuscated program.

Combining these new obfuscating transformations with already existing transfor-
mation will hopefully give a high level of obscurity to the program.

8.3 Improvements of analysis methods
One way of improving the accuracy of the overall quality score for each obfuscat-
ing transformation is to use participants instead of decompilers to calculate the
resilience score. It would require numerous participants and the goal for each par-
ticipant would be to reverse engineer obfuscated code. A participant’s perception
for how difficult it was could be graded and act as the result. A survey like this
would give a better understanding of the reverse engineering process and yield a
more justified resilience score. Unfortunately, this type of survey is not feasible
since it requires a lot of work.

8.4 Final words
It is certain to say that code obfuscation is a good supplement to make the reverse
engineering process more difficult. It is especially important to protect Java source
code, because it normally contains enough information to permit type checking.

A drawback of code obfuscation is that the efficiency of the program often is re-
duced, at least when it comes to the three transformations presented in this thesis.
Some might argue that the efficiency of a program is much more important than the
obscurity of a program. Usually it is about finding the balance between these two
parameters. The balance is most likely determined by the program. Factors such as
the program’s main purpose, how the program will be used, and which limitations
that exist; these are factors that have a significant impact on how the balance is
divided between efficiency and obscurity.

Finding the right balance can be hard but in order for a company to stay strong
against competitors, code obfuscation can be the answer to the problem.
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