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Abstract

Estimating the battery state-of-charge is an important aspect of prolonging
battery life and optimizing discharge cycles. In this thesis, a hybrid method
for estimating state-of-charge for lead-acid batteries is developed and imple-
mented in a motor controller. The method uses a combination of impedance
measurements and a linear regression model for estimation. Measurements are
done at stand-still. The method does not require sensors that are external to
the motor controller or auxiliary battery connections other than terminal con-
nections. The final estimation model shows good results but exhibits a slight
ambient temperature dependence.
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Sammanfattning

Att estimera ett batteris laddstatus är av stor vikt när det gäller att för-
länga livslängden hos batteriet och att optimera urladdningscykler. I detta ex-
amensarbete utvecklades en hybridmetod för laddstatusestimering som sedan
implementerades i en motorstyrning. Metoden använder en kombination av
impedansmätningar och en linjär regressionsmodell för estimering. Mätningar
görs vid stillastående. Metoden kräver inga externa sensorer eller andra bat-
terianslutningar än terminalanslutningarna. Den slutgiltiga modellen uppvisar
god prestanda men uppvisar ett visst temperaturberoende.
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Nomenclature and abbreviations

Notations
p Peukert exponent.

R Battery hour rating, in hours.

φ Phase offset between current and voltage waves, in system ticks.

Ri Measured Ohmic impedance, in Ohms.

Vt Battery terminal voltage, in Volts.

V̇t
d
dtVt, in V/s.

Abbreviations
EV Electric vehicle.

Li-ion Lithium-ion.

NiMH Nickel metal hydride.

SOC State of charge.

SOH State of health.

Ah Ampere-hour.

OCV Open circuit voltage.

CCA Cold cranking amps, in Amperes.

IDE Integrated development environment

CAN Controller area network

PWM Pulse width modulation
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Chapter 1

Introduction

In this day and age we are highly dependent on energy in many ways. We need it
to power devices that provide us with everything from heat to cold to transporta-
tion and communication. The general migration to wireless systems has caused a
boom in battery technology, pushing more energy dense alternatives such as Li–
Ion and NiMH forward. Commonly noted advantages except the higher energy
density includes lower battery weight and the utilization of more environmentally
friendly materials. However, the newer technologies come at a higher cost per kWh
and requires more complex infrastructure such as battery management systems to
supervise cell aging and charging/discharging.

One battery consuming market segment stands out from most others, namely
the materials handling and low cost electric vehicle market. In materials handling,
low battery weight is more of a disadvantage than an advantage since it is used to
counter-balance the handled material, and the low cost and simple infrastructure of
the lead acid battery technology makes a shift to newer types hard to motivate.

Inmotion Technologies AB is a company that designs and manufactures a variety
of products in the controls area, with emphasis on hybrid or all-electric vehicle
control. The main end sector is materials handling. The Stockholm office houses
R&D, manufacturing, quality and testing, applications engineering and sales.

1.1 Background

Although considered rugged and insensitive to deep cycling, neglectful use of lead
acid batteries can shorten its life span significantly. It is important to not discharge
the battery too deeply, and also to not store it while discharged. This damages
the battery which is very costly for the owner, and also generates large amounts of
lead waste. The easiest way to avoid this is to monitor the state of charge (SOC)
and recharge the battery if needed. The problem is that precise SOC measurement
is hard and usually involves external hardware. Specifically in vehicle lead acid
applications, the battery is often disconnected from the vehicle while charging. This
makes the amount of charge supplied to the battery ”invisible” to vehicle mounted
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Chapter 1 Introduction

monitors that track current input/output dynamics. It would be preferable to do
the measurement without external sensors or hardware to reduce complexity, and
also to do estimates of absolute SOC instead of using a relative method of tracking
input/output currents to avoid drifting.

The reason as to why we aren’t already seeing such minimalistic SOC estimators
is because of the fact that batteries are inherently non-linear. They need advanced
models to be accurately approximated, alternatively be tested in a controlled lab-
oratory environment in order to determine the exact SOC. Simple hardware SOC
monitors are being sold today, but most rely on terminal voltage and look-up tables
to estimate SOC and that approach is highly sensitive to ambient temperature, time
since last load application, and the state of health (SOH) of the battery. Inmotion
Technologies AB has requested an investigation into the development of a SOC es-
timation algorithm to be embedded in their motor controllers. This thesis work is
initially intended for powered pallet trucks and stackers which might benefit from
low-cost and low-complexity SOC estimation functionality.

1.2 Hypothesis
With sufficiently advanced motor control, an accurate SOC estimation algorithm
can be designed and implemented without using external sensors.

Grounds for accepting the hypothesis

To accept the hypothesis, the SOC estimation algorithm should be able to offer a
performance within ±10 percentage units in the final prototype, not depend on any
external sensors and be able to execute in the ambient processor environment.

1.3 Purpose
The purpose of this thesis is to develop a novel minimalistic approach for embedded
SOC estimation.

1.4 Scope
The scope of this thesis is:

• Set up a laboratory environment for battery applications.

• Identify possible methods of estimation for the target application.

• Design an embedded SOC estimation algorithm implemented in a motor con-
troller based on most suitable method.

• Perform validation/verification and estimate the accuracy of the algorithm.

2



1.5 Delimitations

• Ensure that the estimation function fits in the embedded environment without
exclusion of any existing functionality.

1.5 Delimitations
• Estimation must be performed without using external sensors and/or hard-

ware except for in the development phase.

• Due to scope size, this thesis will not cover:

– ambient climate dependencies, it would expand the scope beyond what
is reasonable.

– effects of battery health, since there is only access to a single battery.
– behavioral differences between batteries, inverters and/or motors, due to

scope.
– vehicle implementation and field testing, due to scope and lack of a ve-

hicle for testing.
– on-line SOC estimation – meaning during movement and/or operation.

This is due to the increased scope and complexity.

1.6 Methodology
This thesis has a deductive approach, data collection was done experimentally and
analysis done statistically. Firstly, methods of SOC estimation were collected. Some
of these were then iteratively removed from the list of possible implementations after
considering constraints such as complexity, software size or dependency on external
sensors. The most suitable method was chosen and the subsequent work reflects that
choice. Much of the work involved was building a solid foundation of measurable
data for parameterization.

Thesis strategy
Initially, a background study is performed to identify methods of estimation. These
methods are then evaluated based on complexity, calculation times and flexibility.
The methods that are assumed to be implementable are then ranked and possibly
combined to form the final estimation model.

3



Chapter 1 Introduction

1.7 Report outline
Frame of reference

Covers the theoretical background needed for understanding the details of the prob-
lem and implementation.

Lab setup

Describes the software and hardware setup that was used.

Method

Details the chosen method of estimation and design decisions.

Implementation

Explains design choices and software architecture.

Results

This section contains an account of results.

Analysis and conclusion

Analysis of the results and final words on the hypothesis of the thesis.

Future work

Possible future extensions to the work in this thesis.
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Chapter 2

Frame of reference

2.1 Lead acid batteries
This section describes the history, construction and characteristics of the lead acid
battery.

2.1.1 Battery overview
The lead acid battery was invented in 1859 by a French physicist, Gaston Planté.
It is – in its essence – a number of lead and lead oxide plates submerged in sulfuric
acid electrolyte, with separators in between. There are two general lead acid bat-
tery types, namely the ”starting battery” and the ”deep cycle battery”. Both are
constructed roughly the same way, with minor variations pertaining to the different
characteristics and applications. This is described in more detail in section 2.1.3.

2.1.2 General principle of operation
A fully charged lead acid battery cell consists of a negative plate of lead and a
positive plate of lead oxide submerged in sulfuric acid. As the cell discharges, both
plates react with the electrolyte and form lead sulfate. The electrolyte in turn is
gradually diluted to water by the recombination of aqueous hydrogen and oxygen.
The process is reversed during charging.[1]

Lead acid cell reaction
Discharge

PbO2 + Pb+ 2H2SO4 � 2PbSO4 + 2H2O
Charge

2.1.3 General characteristics and behavior
Lead acid type batteries are relatively insensitive to over charging and over dis-
charging compared to for example lithium ion type batteries, making it a safer

5



Chapter 2 Frame of reference

choice for consumer applications. Deep cycle lead acid batteries are designed to
power devices such as electric motors with a medium continuous current draw for
longer periods of time, as opposed to the starting battery. The starting battery is
designed to provide very high currents while powering the starter motor in a com-
bustible fuel vehicle, after which it is float charged by the generator and providing
a limited current to various electrical systems. The major difference in construc-
tion between the two is the surface area of the plates compared to the overall plate
mass. A larger surface area can provide higher currents due to an electrochemical
phenomenon called surface charge, also referred to as charge diffusion or interface
charge. During discharge, current originates from the boundary layer of the elec-
trodes and electrolyte. As current is initially drawn from the plate, the surface
charge of the plate is ”spent”, and further current draw must rely on the rate of
charge diffusion from the inner volume of the electrode to the surface. This causes
a current drop after the initial surge. It can also cause a reduction in charge accep-
tance when charging with a constant current, as the charge accumulates near the
surface and thereby decreases the voltage differential at the boundary layer.[2]

Factors affecting battery health

Another phenomenon that also causes drops in maximum current output is stratifi-
cation. Stratification is an electrolyte gradient from acid to water that may appear
either during high rates of discharge or after several charge/discharge cycles where
the lighter water gathers at the top of the battery and the heavier acid at the bot-
tom. This causes an uneven potential distribution over the plate surface that also
gives an illusion of a higher state of charge by showing a ”false” low internal resis-
tance. This can also have negative effects on long-term battery health. The water
that gathers at the top of the cells causes corrosion, while the bottom is the only
area in contact with the denser electrolyte and providing a current. The bottom
part is then more deeply cycled and more often deeply discharged, which may cause
sulfation. Lead sulphate is always formed on the surface of the active material dur-
ing discharge and normally easily reverts to lead and lead oxide, but after long and
deep discharging the lead sulphate can become crystalline. In this state the cell will
not accept charge as easily, it might start to shed its active material and the crystal
formation might put the cell structure under mechanical stress.[3][4]

2.1.4 Capacity and its dependencies
Coulombic efficiency

As with all batteries, there are several factors that affect the total capacity. Due to
the non-linear behavior of the battery, capacity is expressed in Ampere hours (Ah)
at a predetermined discharge rate, and also generally at a specific temperature.
The rate is called C, and 1 C refers to the current that will theoretically drain the
battery in one hour. For example, a 100 Ah battery has a 1C rate of 100 A. It
is important to know the discharge rate for the associated capacity, since a higher
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2.1 Lead acid batteries

current than specified will have adverse affects on capacity. A German scientist,
Wolfgang Peukert, addressed this by introducing an exponent that exponentially
increases capacity drain with increasing current. This is used in practice as an
extended form of Coulomb counting, and is covered in section 2.2.[5]

Temperature

Temperature is a factor that affects both battery capacity, performance and health.
A high temperature increases capacity and performance, but has adverse affects
on battery life. Low temperatures does the opposite, and low temperature storage
also reduces self-discharge due to the decreased performance. The temperature
dependency comes from the need of a certain activation energy dependent on the
type of cell reaction. Low temperature also slows electrolyte convection which is the
cause of reduced cold cranking amps (CCA), which is the maximum current output
from a ”cold” state. In this context, ”cold” means a battery that has been at rest
and is at ambient temperature.[6][7]

Electrolyte density

There are two main factors affecting electrolyte density: temperature and concen-
tration of sulfuric acid. A decrease in density can be ascribed to either decreased
acid concentration or increased temperature. In the case of concentration decrease,
this would affect SOC in a negative way due to loss of charge transfer ions. If the
cause of density decrease would be an increase in temperature, the effect on SOC
would be positive due to increased available activation energy and electrolyte con-
vection speed. It is important to consider these phenomena when doing analysis of
data containing temperature and/or electrolyte density.[8][9]

Coup de Fouet

Another phenomenon that adds additional complexity to SOC estimation is the
so called coup de fouet (lit. ”crack of the whip”) which is a phenomenon that
occurs at the first time interval of discharge when the battery is fully charged. The
coup de fouet can be observed as a sudden initial terminal voltage drop, that after a
relatively short time – dependent on capacity and discharge current – displays a local
minimum (the ”trough” voltage) and then starts to increase to a local maximum (the
”plateau” voltage). See figure 2.1. Not much research has been done to determine
the mechanism of the phenomenon, but there is an explanation that is said to
be widely accepted in literature. According to that explanation, the responsible
mechanism is a crystallization overvoltage, an energy gap necessary for lead sulphate
formation. [10][11]
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Chapter 2 Frame of reference

Vtrough

Vplateau

Vt

t

Figure 2.1: Typical behavior of the coup de fouet

2.1.5 Modeling
There is a large number of models for lead acid batteries, all increasing in complexity
with the demand for accuracy. Major model types are chemical, machine learning
and equivalent circuit models. Each type has its advantages and disadvantages, and
is chosen depending on the type of application. One of the most common simpler
models is the Randles model, as seen in figure 2.2.[12]

RS

Cdl

Rct

Figure 2.2: Basic Randles battery model

In the figure, RS denotes active electrolyte resistance, Cdl the double layer ca-
pacitance of the battery and Rct the charge transfer resistance. Double layer capac-
itance is a result of the electrode being immersed in electrolyte, and charge transfer
resistance is ascribed to electrolyte temperature and reaction product concentration
among others. [13]

8



2.2 SOC estimation methods

2.2 SOC estimation methods

There are several methods of SOC estimation, and not all are implementable in this
thesis work. [14] The methods that have been considered are those that survive
the constraints of computational power, program size and ease of implementation.
Those that have been considered plausible for implementation are outlined in the
running text below.

2.2.1 Impedance measurements

Impedance spectrometry is a general term of measuring impedance at one or more
frequencies. The method is common for evaluating electrochemical processes that
affect both state of charge and state of health. It is often used to parameterize
an equivalent circuit model of the battery, where individual parameters can be
correlated to SOH. By analyzing AC frequency response, various relations to SOC
have been found.[15]

The method has been said to be quite temperature dependent, although the
dependency has been proved to be significantly smaller at frequencies at or above
100 Hz. [16][17]

2.2.2 Coulomb counting

Considered the most common method of estimation, Coulomb counting works by
accumulating charge and discharge currents, thereby giving an idea of SOC. The
main issue with Coulomb counting is that the Coulombic efficiency is quite different
between charge and discharge, charge being less efficient than discharge. This needs
to be taken into account in applications that feeds current back into the battery
when for example braking. It is also a relative estimator. It does not give an exact
value of the state of charge, but only a relative value change from the last known
value.[14]
A common way to implement the method with a Peukert modification is

SOC = 1− 1
C

t∫
0

I(t)pdt (2.1)

or in discrete form:

SOC = 1− T

C

n∑
i=1

Ii
p (2.2)

where C denotes the rated capacity of the battery, p the Peukert exponent –
which is usually a value between 1 and 2 – and T the timing period.
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Chapter 2 Frame of reference

2.2.3 Linear model
Attempts have been made to linearize the SOC measurements using various linear
models. Usually, parameters depending on the type of application are chosen for
estimation and parameters are then established using least-mean-square calculations
on an overdetermined linear system, for example using Gaussian or Gauss-Jordan
elimination. [14][18]

2.3 Induction motor current control
In the case of three phase AC induction motors, control can be quite complex. This
is much attributed to the stationary reference frame and rotating magnetic fields
involved in torque production. Induction motors work by the stator magnetic field
inducing a rotor current and in turn a rotor magnetic field. The rotor magnetic
field opposes the stator field, and so the rotor starts to turn in the same direction
as the stator field. Under load, the rotor will rotate at a speed somewhat below
synchronous speed, which is the stator field speed. Because the rotor current is
induced by the change in the magnetic field, if the rotor rotates at synchronous
speed there is no current induced.

To reduce complexity, it is possible to transform the three phase stationary
reference frame to a rotating frame of DC quantities using a so called dq0-transform.
The transform is in essence a series of stationary rotations and applying a rotation
with the speed of the rotating stator field. The result is two orthogonal axes, the
direct and the quadrature axis. The direct axis is involved in flux linkage and the
direct axis current is also called the magnetization current. The quadrature axis
current is responsible for motor torque production and is in quadrature to the direct
axis. Operations on the currents can then be done in the dq-plane and subsequently
inversely transformed back to the three phase stationary reference frame. [19]

This thesis work is only concerned with the direct axis current as the goal is to
not produce torque.

10



Chapter 3

Laboratory environment

3.1 Environment schematic
The following figure represents the experimental setup used in the lab. The major
components are descried in text in the following sections.

ubatt

AV

Charger

Contactor

Load

ibatt

Motor
controller

w

v

u

3-phase induction
motor representation

Figure 3.1: Laboratory environment schematic. Only the battery, motor controller
and motor would be present in a live application.

3.2 Battery
The battery used in this thesis work is a 24 Volt Hawker-Enersys Perfect Plus rated
120 Ah when discharging at a 5 hour rate. This means that the battery is to
be considered ”depleted” after a 5 hour discharge at 24 A. The effective SOC at
depletion is 20%, to protect the battery from being over-discharged.[8]

3.2.1 Battery selection and acquisition

With the help of Inmotion Technologies AB contact was made with the battery
supplier of one of the company’s bigger clients. After consulting with a salesman
at Enersys-Hawker, a 24 V, 120 Ah battery with a central water refill system was
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Chapter 3 Laboratory environment

ordered. The capacity was determined by the fact that there would be extensive
cycling of the battery during the thesis work, and charging/discharging a larger
battery would take too much time.

3.3 Current transducer

For current measurements, a IT 700-S current transducer was used. The transducer
was mounted so that it captured both charge and discharge currents. The transducer
outputs a voltage that is translated to the actual measured current by a factor of
1750. The voltage output was fed to and translated into current by the DAQ
described in section 3.4.

3.4 Data acquisition

In order to log and supervise system voltage and currents, a Dewesoft Dewe-43 DAQ
was wired to the battery terminals and to the current sensor. It was used to verify
the DC current regulation done by the motor controller, with respect to amplitude,
frequency and DC offset.

3.5 DC load unit

To discharge the battery without potentially overheating the motor used in SOC
estimation, a Chroma 63203 DC load was connected to the battery. It provided
constant current discharge for cycling.

3.6 Motor controller

The motor controller used was a Gen6 ACS36S. The controller can be seen as a 24
V DC to 3-phase AC inverter with variable amplitude and frequency.

3.7 Density meter

To be able to measure the density of the electrolyte, a mechanical floater type
Biltema density meter was rebuilt to work with the battery. It measures densities
between roughly 1100 to 1350 g/l which works well for this application.

3.8 Software

This section describes the software development environment.

12



3.8 Software

Figure 3.2: Gen6 ACS36S. Source: Inmotion Technologies AB

3.8.1 IDE
Software development was primarily done in Visual Studio. Even though develop-
ment could have been done with any text editor, the code completion functionality
was very efficient when working on a large software platform.

3.8.2 Compilation and code download
The build system was simple enough to not integrate into Visual Studio. Code
compilation was done with the IAR compiler and download to the motor controller
was done over CAN with the software CodeLoader. CAN is a well known serial
communications bus. [20]

3.8.3 On-line parameter adjustment
To make adjustments to the software parameters while running the application in
the motor controller, the locally developed PC software DriveTool was used. Drive-
Tool communicates over the CAN bus with the motor controller. The controller has
a communications layer that can externalize selected application variables. Those
variables can then be adjusted and visualized directly in the DriveTool environment
in text form or in bar sliders or gauges.
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Chapter 4

Method

This thesis work is divided into several distinct parts. Those parts are described in
detail in this section.

4.1 Data acquisition
First, data was collected to provide a basis for validation and verification of SOC
estimation. This was done by battery discharge from 100 to 20% with continuous
density measurements. Electrolyte density has a linear relationship with SOC, which
is why this method was chosen. [14]

Measurements were indeed linear over time with a constant current draw, and
a simple conversion from electrolyte density to SOC was formed:

SOC = 0.5 · ρelectrolyte − 550 (4.1)

which puts a 100% SOC at 1300 g/l, and 20% at 1140 g/l as per the battery
data sheet, ρ denoting the density in g/l.

Figure 4.1 shows the linear relationship between measured electrolyte density
and calculated SOC. The battery was discharged at the rated current of 24 A for
5 hours, giving the rated capacity of 120 Ah. This was later used throughout the
thesis work to verify prototype estimation algorithms and for providing a regression
target.
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Figure 4.1: Plot over electrolyte density versus SOC
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4.2 Method of SOC estimation
The chosen estimation method is mainly based on impedance measurements but
also incorporates a linear model for regression. Impedance measurements make up
the data foundation used for estimation with the help of linear regression. This
was mainly decided because of the versatility of the impedance method and the
fact that there was no need for a battery model other than for supporting intuition
when doing data analysis. In addition, a linear model that can be externally pa-
rameterized shrinks the application footprint compared to more complex embedded
implementations. A downside with the method is that measurements cannot be
taken while there is a load present, making it a requirement that the vehicle is at
stand still with a minimal amount of external loads. With the constraint of not
using external sensors, the chosen combination was perceived to offer the greatest
flexibility and ease of implementation. Implementation is described in section 5.6.

4.3 DC bus current control
To excite a sine wave on the DC bus, it was necessary to control the voltages and
currents on the AC side (or motor side) of the system. DC bus voltage, direct
and quadrature voltages and currents are measured by the motor controller. DC
bus current is derived from those values. To control the DC bus current, stepwise
updates of the voltage reference on the AC side were made using the following power
relationship:

Pbatt u PAC
Tdq0−−−→ Pbatt u Pd + Pq

ubattibatt u
3
2(udid + uqiq)

(4.2)

Where Px denotes power in Watts and ux and ix momentary voltage and current,
respectively. Since measurements are not done parallel in time, there is a slight
time delay between them. The fraction 3

2 comes from the equation of instantaneous
power for a dq0–transformed quantity.[19] This delay is hard to define, but can be
assumed to be of minor importance since the regulation period is much smaller than
the regulated wave form period, and the total run time of the estimation function is
a few µs. Equation 4.2 is said to be an approximate equality since ud and uq are not
measured but calculated from DC bus voltage and PWM duty cycle. The built-in
sensors measure DC voltage and AC currents in two phases. In this application,
the accuracy in this calculation is not of great importance as long as the current is
in the form of a proper sine wave on the DC bus.

Since we want the rotor to be stationary during the estimation we excite the
current by stator losses only, therefore uq = 0 and equation 4.2 becomes

ubattibatt = 3
2udid (4.3)
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Internally, a discretized sine wave current reference was kept using amplitude,
DC offset and frequency parameters. The current reference is updated at 4 kHz,
which is the period of the SOC estimation algorithm. The momentary amplitude
of the reference is

ibattref = Voffset +A · sin 2πft (4.4)

where Voffset denotes the DC voltage offset, A the sine wave amplitude and f the
frequency. The sign of the current had to be kept positive, and in this application
this means in the direction away from the battery. The motor cannot excite a
negative current from a state of rest, therefore the current must be kept positive
with some margin to avoid dead band effects. The equation becomes

ibattref = 5A
4 +A · sin 2πft (4.5)

We now need to translate our DC bus current reference to a reference that the
motor controller can use. In this application, the direct axis voltage was used as a
reference. Using equation 4.3 gives

udref = 2
3 · ubatt ·

ibattref

id
(4.6)

Validating the current control algorithm was done by data recording with the
DAQ unit described in section 3.4. Amplitudes and frequencies were verified with
the software scope feature in a PC environment. A reference update at 4 kHz implies
that high sine wave frequencies are more prone to generate harmonics which might
disturb the estimation process. At the same time, to avoid too much temperature
dependency the frequency should be at or above 100 Hz, as explained earlier. As a
compromise, a frequency of 150 Hz was chosen. At this frequency, the number of
algorithm periods per wave period is

4000s−1

150s−1 = 26.666 . . . ≈ 27 (4.7)

and with 27 steps per period a wave of sufficiently good quality can theoretically
be excited, as can be seen in figure 4.2.

4.4 Estimation
The method of estimation is actually a hybrid between impedance measurement and
a linear model using several different measurements. It consists by 1 second con-
stant current preload draw at several tens of Amperes and 2 seconds of impedance
measurements, see figure 4.3. Estimation is performed when the system is approxi-
mately equivalent to open circuit. This means shortly after the vehicle has come to
a stand still. Note specifically that the system state for estimation is open circuit,
and not necessarily at the open circuit voltage.
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Figure 4.2: Sine wave discretization at 150 Hz

Figure 4.3: Current excitation concept. The dashed line represents the initial ter-
minal voltage and shows the exaggerated difference between voltages before and
after an estimation cycle due to reduced SOC
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The impedance measurement is done by taking the quotient of the amplitudes
of the induced DC bus voltage and excited DC bus current wave form. Using the
simplified battery model depicted in figure 2.2, this quotient would roughly reflect
the electrolyte resistance when measured at a high enough frequency. The frequency
needed for this to be true is not easily calculated or derived from literature, mostly
because of variances between batteries. Instead, the highest possible frequency with
respect to the minimum amount of harmonics is used. Since estimation is done by
linear regression, the regression model is more important than the actual nature of
the measurement.

The preload was implemented to lower short term capacitive effects of the bat-
tery and also to get the terminal voltage at a constant and known load. It was
observed during early algorithm prototyping that if the terminal voltage was given
time to recover, the measurements would suggest a high SOC. In the same manner,
if a measurement was performed close to the end of a load cycle, the measurements
suggest a low SOC. By using a DC preload that transitions into an impedance
measurement, results became more consistent.

Parameters that are used for SOC estimation are terminal voltage slope at start
of preload, terminal voltage at end of preload, measured phase difference between
current and voltage peaks, and lastly the Ohmic impedance. In [15], phase angle was
found to vary with SOC, making it an interesting parameter for the estimation. All
measurements are done using only the motor controller without external hardware,
although as previously mentioned, external hardware was used for verification of
function. Data was collected using DriveTool and processed in Microsoft Excel for
ease of visualization.

Early prototypes used a simpler linear model of the terminal voltage, measured
Ohmic impedance and was somewhat successful in estimating the SOC. To expand
insight and improve estimation, the model was extended to include said parameters.

Model parameterization

Model parameters p1 . . . p8 were determined using Gauss-Jordan elimination imple-
mented in Excel. With our measurements vectorM(m×8) consisting ofm measure-
ments taken at several intervals throughout the SOC and our known SOC vector
S(m× 1) (determined by density measurements at the time of each measurement),
we can solve for the optimal P (8× 1) parameter vector:

MP = S

MTMP = MTS
(4.8)

which when solved using Gauss-Jordan elimination yields
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1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1





p1
p2
...
...
p8


= (MTM)−1MTS (4.9)

4.4.1 Final model for estimation
The final model is a segmented regression model consisting of one 1st order Vt

polynomial and three 2nd order polynomials in V̇t, Ri and φ, all four with shared
constant coefficient.

Notations:

Vt Battery terminal voltage, in Volts.

V̇t
d
dtVt, in V/s.

Ri Measured Ohmic impedance, in Ohms.

φ Phase offset between current and voltage waves, in system ticks.

A matrix form representation of one of the two model parts looks as follows:

SOC =
[
p1 p2 p3 p4 p5 p6 p7 p8

]



Vt

V̇t

V̇ 2
t

Ri

R2
i

φ

φ2

1


(4.10)

and as a linear combination:

SOC = p1Vt + p2V̇t + p3V̇
2

t + p4Ri + p5R
2
i + p6φ+ p7φ

2 + p8 (4.11)

The model has been divided into two segments separated by a boundary ter-
minal voltage Vtb. The segment responsible for estimation above Vtb is designed to
cope with the effects of slight overcharge and the coup de fouet. The other seg-
ment is responsible for the fairly quadratic remainder of the solution space. Both
models are functionally identical, but the parameters p1 . . . p8 differs slightly. To
smoothen the transition between model segments, each segment was parameterized
with measurements slightly above and below Vtb, respectively.
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Chapter 5

Software implementation

5.1 Design overview
The software is for the most part organized in a hierarchy of different state machines
with varying purposes:

• An external state machine tracks the overall state of the function by looking
at a number of variables, such as the status of the power stage and SOC
estimation request flag.

• Inside the measurement state of the external state machine is the internal mea-
surement state machine. It tracks the progression of the estimation sequence
by a timer variable and two Kalman filter flags.

• Measurements of the various impedance quantities are done using dual state
machines that track sine wave forms.

Figure 5.1 and the associated text explains the outline of the application flow.
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Figure 5.1: Software outline

5.2 Voltage slope tracking

To measure the terminal voltage slope with respect to time, a filtered internal voltage
measurement was read by the estimation function. To cope with the remaining
noise, a piecewise mean value algorithm was applied. It was implemented as a
circular two-tier buffer. The lower buffer calculates the mean voltage over 10 ms
and stores the value in the upper buffer. When the upper buffer is full, a mean
slope is calculated by the difference between the head and tail of the upper circular
buffer.
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5.3 Main state machine
The main state machine of the function keeps track of the measurement process,
and uses various variables to decide what action to take. Initially, a timer variable
keeps track of the amount of time spent preloading the battery with a direct current.
Afterwards, action taken is dependent on the number of measurements taken while
regulating the sine wave.

5.4 Timing function
A simple timing function was implemented to track algorithm performance using
system ticks. Each pass through the function is timed and saved as an external
parameter that can be plotted using DriveTool.

5.5 Entry check
For access control to the measurement algorithm, i.e. when to do measurements and
when to stop et cetera, a bouncer semantic was applied. If the function had gotten
an external SOC request – or is already processing an old request – program flow
would enter the measurement algorithm. The bouncer would also check if the active
request is new in which case it would have to reset the measurement parameters,
and if the motor controller power stage is enabled.

5.6 Taking measurements
To simplify program flow and increase code readability, all measurements were done
simply by feeding the momentary terminal voltage and DC bus current to its respec-
tive state machine – not to be confused with the encompassing main state machine.
This state machine type is designed to track sine wave forms. Peaks and valleys
are tracked by slope sign transitions and the potential difference between peaks and
valleys is stored for both DC bus current and terminal voltage.

A shared variable was introduced to the two state machines that allowed for
simple communication. Using this variable, the estimation function was able to
measure the phase difference between current and voltage in function ticks.

Several filters were used to reduce high frequency noise and DC components of
measurements. Low pass filters used were discretized first-order RC filter circuits.
Bandpass filters were implemented using double low pass filters as

yfiltered = F1(y)− F2(y) (5.1)
where F1 and F2 denotes a low pass filter output function with associated cut

off frequencies f1 and f2, and where

f1 > f2 (5.2)
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Resulting in the output signal with frequencies

f1 < fyfiltered < f2 (5.3)

In reality – since the filters are first-order – there will still exist signals with
frequencies lower than f1 and higher than f2, although with dampening proportional
to the distance to their respective cut-off frequency.

To filter the measured excited DC bus voltage and current potential differences,
a mean value function working on a circular buffer was combined with a one di-
mensional Kalman filter with sliding measurement error covariance, R. During the
measuring process, R is stepped up from a low initial value to a relatively high end
value. This way the filter converges faster than if a fixed high R is used, and noise
is progressively smoothened out.
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Chapter 6

Results

6.1 Estimation
At 32-bit shift resolution, the composite model shows a mean SOC error of +0.5
percentage points, with a standard deviation of 1.048. The estimation error was
measured to be in the interval of +0.5 ±2.7 percentage points (P = 0.99) when
applied to the data used for regression, affirming the model design. See figure 6.1.

Figure 6.1: Absolute error over a discharge cycle using regression data.

After model implementation, the algorithm was tested ”live” in the motor con-
troller on a separate occasion. The results showed an estimation error of -3.7 ±4.8
percentage points (P = 0.99). The difference between actual and measured SOC
can be seen in figure 6.2. The model still produces a fairly linear relationship with
the actual SOC as can also be seen in figure 6.3, which also shows low precision in
high SOC.
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Figure 6.2: 15-point average measured SOC versus actual SOC from acid density.

Figure 6.3: Distribution of measurements by acid density.
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6.2 Algorithm performance
The implemented algorithm was evaluated using the timer function described in
section 5.4. In figure 6.4 the number of system ticks per function run is shown
versus the number of function runs per SOC estimation sequence. The red line
when high represents a period of active SOC request.

Figure 6.4: System ticks per function run and total number of function runs.

It is shown that the number of system ticks per function run has a maximum
of roughly 1200 ticks, which translates to 1200

72MHz ≈ 16.7µs. Since the function
frequency is 4 kHz this makes up 16.7·10−6

1/4000 ≈ 6.7% of the entire period. The number
of function runs per estimation sequence is slightly above 10000, which is ≈ 10000

4000 =
2.5s.
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Analysis and conclusion

7.1 Analysis

A deviant result was observed when the algorithm was implemented in the motor
controller as opposed to the results from the development of the regression model.
This is most probably ascribed to the fact that the measurements took place on
different occasions, during the second of which the ambient temperature was no-
ticeably lower compared to the first. This caused a measurable thickening of the
electrolyte, which in turn seemed to increase internal battery resistance and phase
shift. This strongly suggests – not surprisingly – that the proposed model has a
slight temperature dependency, but still keeps an accuracy within the set limits of
the hypothesis, especially given that the exploration of temperature dimensionality
was outside the scope of the thesis work.

It is worth noting that while the battery SOC estimation was offset negatively
because of lower electrolyte temperature, the lower temperature also decreases avail-
able capacity. This effectively balances the error in SOC estimation, but to what
extent is not explored. Intuitively, if the battery is fully charged but with 10% re-
duced capacity because of low ambient temperature, it can also be viewed as being
at 90% SOC with respect to baseline capacity. Recalling equation 4.1 and using the
battery data sheet, we see that a 10 degree Celsius change in temperature corre-
sponds to a change in percentage units of 3.5, which may explain the -3.7 percentage
units offset described in the results section 6.1 and graphically in figure 6.2.

The temperature aspect could also help explain the estimation improvement
near the end of the discharge cycle. In the figure, end of discharge corresponds to
the acid density interval of roughly 1140–1180. The electrolyte density has already
been established to be linear in time at a fixed discharge current and temperature.
Making the assumption that electrolyte resistance is moderately proportional to the
density of charge transfer ions and therefore increasing in a linear fashion during
discharge, the power dissipated in the electrolyte would also be linearly increasing.
Integrating over time, the total amount of energy transferred to the electrolyte
would then increase quadratically. As the temperature increases quadratically, so
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would the estimated SOC value due to faster electrolyte convection. In figure 6.2,
estimated SOC can be seen increasing somewhat quadratically towards the end.
Therefore, a possible explanation is that the electrolyte temperature passed the
parameterization temperature at a density of slightly below 1160 g/l.

7.2 Conclusion
Considering the constraints of the thesis work, the algorithm has managed to per-
form adequately under controlled circumstances. Even without taking the possibil-
ity of temperature self-balancing into account, the algorithm performs within the
limits of the ±10 percentage units set beforehand. This has been achieved using no
external sensors and designed and implemented in a way that fits in the ”ambient”
thread environment in the processor. With this, the proposed hypothesis can be
accepted.
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Recommendations and future work

8.1 Recommendations

For anyone who is looking to engage in researching batteries – regardless of tech-
nology – one main consideration quickly springs to mind: never underestimate the
non-linearity of batteries. The few parameters and attributes that are vaguely lin-
ear tend to need a very long resting period to be valid for SOC estimation. The
electrochemical processes involved in battery operation cannot be approximated to
simpler models without a significant loss of accuracy.

It is also a strong recommendation to always consider the temperature depen-
dency when working on battery analysis. Different applications are sure to need
different approaches for battery state-of-function estimation, and temperature de-
pendency is present in more or less all aspects of estimation. Depending on the
application at hand, make sure to try to find and use parameters that exhibit the
least temperature dependency.

8.2 Future Work

8.2.1 Temperature dependency

The most obvious aspect to consider in future work building on this model would
be to include a dimension of electrolyte temperature. It would be interesting to
see if temperature affects inter-parameter relationships, and therefore would make
the model able to account for temperature without needing an actual measurement.
The laboratory setup would have to be extended with an insulated and temperature
controlled housing for the battery, and sufficient time for temperature stabilization.
A concern with that setup is that the electrolyte resistance would cause internal
heating of the battery, and thereby disturb measurements if not accounted for.

Another temperature aspect that has been briefly touched on earlier in the
report is the estimation error due to altered ambient temperature. In a colder lab-
oratory environment, SOC is estimated to be lower than in a relatively warmer
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environment. It would be of interest to investigate how much this actually reflects
a lowered capacity instead of being an error in estimation. This would demand a
controlled environment for the battery, electrolyte temperature sensing and tem-
perature compensation of state-of-charge calculations from acid density.

8.2.2 Non-linear model
To try to model the non-linear behavior of the battery, the now linear model could
be extended to non-linearity. Considering the simplicity of the underlying battery
model and noisy measurements, it would most likely require a large amount of work,
and the net gain in accuracy after including time spent in development might be
less than satisfactory.

8.2.3 Square wave generation
One disadvantage with exciting a sine wave for measurements of Ohmic resistance is
that the resolution of the wave form decreases quickly at higher frequencies than 200
Hz. To cope with the resolution shift, a solution could be to change wave form to
a square wave. Current regulation would be much simpler and potential harmonics
could be filtered out or taken into account when measuring the voltage response.
The square wave frequency would still be limited by the rise time of the current
regulator and by the maximum current amplitude that can be excited. A higher
current amplitude excites a higher amplitude in the voltage response , making it
less sensitive to noise.

8.2.4 Frequency sweeping
With or without the implementation of the square wave form, a frequency sweep
could improve estimation accuracy by providing a much larger data set. Complexity
and calculation times would increase with the number of frequencies to sweep, which
is another argument for square wave implementation because of the more lightweight
regulation.

There are however some concerns to take into account. During the thesis work,
it was found that long discharge times (more than a few seconds) would affect
measurements more than what could be seen in the change in SOC in the same
time. It might be that a sequential sweep could generate overly skeptic readings in
the last few frequencies. Although, to mitigate this risk it could simply be a matter
of taking those effects into account. On the other hand, the whole estimation model
would change drastically with sweep timing changes.

8.2.5 Noise reduction
Avoiding prolonged discharge is advantageous for several reasons. Partly for reasons
mentioned in the previous paragraph, but also for the fact that the currents drawn
from the battery while performing estimation are large, in the order of 50 to 100
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A. In the case of single frequency measurements, the effect might be negligible but
in case of a frequency sweep the current could very well actually affect the SOC.
Also, long measurement periods could mean that the SOC estimation might not
have time to finish before the vehicle starts moving again.

8.2.6 Static slope point of measurement
If the voltage tracking functionality were to be improved, the dimension of voltage
slope could be dropped from the model. By setting a threshold value for the slope,
measurements would be performed at a near static slope value. This simplifies the
model and opens up for other possible model parameters. For example, measuring
the difference in terminal voltage before and at the end of the preload period. With a
static slope point, it would also be possible to develop faster and simpler algorithms
that are less accurate but more easily implemented.

8.2.7 Coulomb counter
If the system has an accurate DC bus current sensor, it would be simple to imple-
ment a Coulomb counter in parallel with any kind of absolute SOC value estimator.
This would make the system capable of estimating not only SOC but also the SOH
of the battery by comparing the change in absolute value to the outgoing Ampere
hours.

8.2.8 Flow optimization
The processor load footprint could be reduced to close-to-none during vehicle oper-
ations with code optimization and a slight program flow redesign. At the moment,
terminal voltage tracking is performed continuously instead of only when needed.
The need for tracking would only arise when the vehicle comes to a stop and the
time since the last estimation has exceeded an arbitrary threshold.
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