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Abstract

Dissipative quantum systems are often described in terms of a quantum
master equation, typically of a linear, Lindblad-type of form. Such a master
equation can arise from several microscopic models, such as the weak-coupling
interaction of radiation with matter and the Caldeira-Leggett model. The re-
sultant density matrix equation enables the investigation of general features
of the quantum system, like irreversibility, entropy production, and relax-
ation to equilibrium. It has the general form of a dynamic equation with
both reversible and irreversible terms (generated by energy and entropy, re-
spectively). Recently, a new thermodynamic quantum master equation has
been proposed by Prof. Dr. H. C. Öttinger, which provides a useful tool for
describing dissipative quantum systems.

The dynamics of a two-level system and of a damped harmonic oscilla-
tor, both coupled to one heat bath have already been investigated with such
a master equation. However, modelling atoms or molecules with two quan-
tum states is insufficient to properly capture physical non-linear regimes, for
example, in quantum optics. To go beyond, it is necessary to model the sys-
tem of interest with a more rich internal structure. Considering three levels
offers a compromise between an appropriate degree of complexity and simplic-
ity. This level of description permits to study many phenomena like coherent
population trapping, Autler - Townes splitting, electromagnetically induced
transparency (EIT), nonlinear susceptibility or stimulated Raman adiabatic
passage. In this contribution, we present results from the application of this
new non-linear master equation, to a three-level system (often named qutrit)
and a harmonic oscillator, each one coupled to two heat baths, in order to
explore non-linear phenomena in open quantum systems.

In this Master’s thesis, we have focused on the description of three-level
quantum systems through master equations for their density matrix, involving
a recently proposed non-linear thermodynamic one. In the first part of this
work, we focus on a three-level system interacting with two heat baths, a hot
and a cold one. We investigate the rate of heat flow from the hot to the cold
bath through the quantum system, and how the steady-state is approached.
Additional calculations here refer to the rate of entropy production and the
evolution of all elements of the density matrix of the system from an arbitrary
initial state to their equilibrium or steady-state value. The results will be
compared against those of a linear, Lindblad-type master equation designed
so that for a quantum system interacting with only one heat bath, the same
final Gibbs steady state is attained.

In the second part of this thesis, we focus on the electromagnetically in-
duced transparency (EIT), a phenomenon typically achievable only in atoms
with specific energy structures. For a three level system (to which the present
study has focused), for example, EIT requires two dipole allowed transitions
(the 1-3 and the 2-3) and one forbidden (the 1-2). The phenomenon is ob-
served when a strong laser (termed the control laser) is tuned to the resonant
frequency of the upper two levels. Then, as a weak probe laser is scanned
in frequency across the other transition, the medium is observed to exhibit
both: a) transparency at what was the maximal absorption in the absence
of the coupling field, and b) large dispersion effects at the atomic resonance.
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We discuss the Hamiltonian describing the phenomenon and we will present
results from two types of master equations: a) an empirically modified Von-
Neumann one allowing for decays from each energy state, and b) a typical
Lindblad one, with time-dependent operators. In the first case, an analytical
solution is possible, which has been confirmed through a direct solution of
the full master equation. In the second case, only numerical results can be
obtained. We present and compare results from the two master equations
for the susceptibility of the system with respect to the probe field, and we
will discuss them in light also of available experimental data for this very
important phenomenon.
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Chapter 1
Introduction

An open quantum system is a quantum system which is found to be in interaction with
an external quantum system, the environment. Such a system can also be viewed as a
distinguished part of a larger closed quantum system, the other part being the environ-
ment. Lately, there is an upsurge of interest in problems concerning an open quantum
system, which is an important concept in many fields such as quantum optics, quantum
measurement theory, quantum statistical mechanics, quantum information science, quan-
tum cosmology and semi-classical approximations. Quantum optics provided one of the
first testing grounds for the application of the formalism of open quantum systems [4].

Quantum theory introduces a deterministic law, the Schrödinger equation, which gov-
erns the dynamics of the probability distributions. This equation describes the evolution
of chance, that is the dynamics of ensembles of isolated systems. However, as a probabilis-
tic theory quantum mechanics must also encompass the random occurrence of definite
events which are the realizations of the underlying probability distributions. In order
to effect the occurrence of chance events a quantum system must be subjected to inter-
actions with its surroundings. Master equations are probably the most prevalent tool
used in the study of open quantum systems and the density matrix (or density operator)
formalism is quite often the language used in such studies. This formalism describes the
statistical distribution of quantum states in a system and allows to treat an ensemble of
particles statistically.

The theory of open quantum systems addresses the problems of damping and dephas-
ing in quantum systems by the assertion that all real systems of interest are open systems,
surrounded by their environments. The environment is the left-over of what is there if the
quantum subsystem one is interested in would be absent. There are many approaches to
deal with these systems. Among the most well-known methods are the projection opera-
tor techniques by the elimination of the environmental degrees of freedom is regarded as
a formal projection [2], [5]. As widely applied are the Lindblad master equations which
represent the most general set of equations by which the quantum subsystem can be
evolved under Markovian and linearity assumptions [2], [6]. Other popular approaches
exploit stochastic dynamics [2], [7], path integral formalism [2], [6] or quantum-classical
equations [8]. In the latter approach the quantum subsystem is described quantum me-
chanically, whereas the environment is governed by classical equations. The validity of
standard approaches is usually restricted to high temperatures, where quantum effects are
supposed to be small. The popular treatment in terms of Lindblad master equations can
even be shown to be inconsistent which is known as the failure of the quantum regression
hypothesis [5], [8].

1



CHAPTER 1. INTRODUCTION

Dissipative quantum systems are often described in terms of a quantum master equa-
tion, typically of a linear, Lindblad-type of form [9]. Such a master equation can arise
from several microscopic models, such as the weak-coupling interaction of radiation with
matter and the Caldeira-Leggett model. The resultant density matrix equation enables
the investigation of general features of the quantum system, like irreversibility, entropy
production, and relaxation to equilibrium. It has the general form of a dynamic equation
with both reversible and irreversible terms (generated by energy and entropy, respec-
tively).

Recently, a new thermodynamic quantum master equation has been proposed by
Prof. Dr. H. C. Öttinger, which provides a useful tool for describing dissipative quantum
systems [8]. A powerful treatment in terms of quantum-classical equations has been used
in which the quantum subsystem and the environment couple irreversibly to each other.
The environment is described by an extension of the GENERIC formalism of classical
nonequilibrium systems, while the dynamics of the quantum subsystem is described by
a quantum master equation [8]. The most striking feature of this master equation is its
deep non-linearity improving the relaxation behavior of solutions most visibly for low
temperatures. For the case where we have a heat bath environment it has been shown
in [5] by H. Grabert that the quantum master equation is used in the present work is
the Markovian limit of the exact master equation that resulted from the application of a
projection operator technique. The equation has been rediscovered in [10] by extending
the classical framework of irreversible thermodynamics [11] to open quantum systems.

The dynamics of a two-level system and of a damped harmonic oscillator, both coupled
to one heat, bath have already been investigated with such a master equation [8], [12].
However, modelling atoms or molecules with two quantum states is insufficient to prop-
erly capture physical non-linear regimes, for example, in quantum optics. To go beyond,
it is necessary to model the system of interest with a more rich internal structure. Con-
sidering three levels offers a compromise between an appropriate degree of complexity
and simplicity. This level of description permits to study many phenomena like coherent
population trapping, Autler - Townes splitting, electromagnetically induced transparency
(EIT), non-linear susceptibility or stimulated Raman adiabatic passage.

In this work, we are interested in the application of the non-linear quantum master
equation to a three-level system (often named qutrit) and a harmonic oscillator, each one
coupled to two heat baths, compared to a Lindblad-type of master equation, constructed
in order to relax to the same equilibrium (Gibbs state) as the nonlinear one for the special
case where the quantum subsystem is coupled to one heat bath. First, we introduce the
Lindblad-type of master equation and which is its form for the two cases where we
examine. Subsequently, in the next section, the non-linear quantum master equation is
presented and again how is formulated for the two systems. Later on, we present the
numerical methods that were applied in order to solve the two master equations. The
time integration is achieved with an Adams - Bashforth integration scheme. We have
also implemented an independent, non-linear matrix algebra solver for computing the
steady-state solution of the density matrix. Finally, we show and discuss our results
which obtained from the Lindblad-type of and the non-linear thermodynamic quantum
master equations for both systems of interest; the three-level (qutrit) and the harmonic
oscillator.
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Chapter 2
Quantum Mechanics

In this chapter, we present an overview of quantum mechanics and its fundamental ele-
ments. Fist, we make a short introduction, then we explain the wave - particle duality,
and afterwards we present the Scrödinger equation, which is fundamental equation of
quantum mechanics. Finaly, we introduce the Dirac notation, which we are going to use
along this work.

2.1 Introduction

Quantum mechanics is a branch of physics which deals with physical phenomena at
microscopic scales, where the action is on the order of the Planck constant, h. It departs
from classical mechanics primarily at the quantum realm of atomic and subatomic length
scales and also, provides a mathematical description of much of the dual particle-like and
wave-like behaviour and interactions of energy and matter.

In advanced topics of quantum mechanics, some of these behaviours are macroscopic
and emerge at only extreme (i.e., very low or very high) energies or temperatures. The
name quantum mechanics derives from the observation that some physical quantities
can change only in discrete amounts (quanta), and not in a continuous (analog) way.
For example, the angular momentum of an electron bound to an atom or molecule is
quantized. In the context of quantum mechanics, the wave particle duality of energy
and matter and the uncertainty principle provide a unified view of the behaviour of
photons, electrons, and other atomic-scale objects.

The mathematical formulations of quantum mechanics are abstract. A mathematical
function known as the wavefunction provides information about the probability ampli-
tude of position, momentum, and other physical properties of a particle. Mathematical
manipulations of the wavefunction usually involve the bra - ket notation, also known as
Dirac notation, which requires an understanding of complex numbers and linear func-
tionals. The wavefunction treats the object as a quantum harmonic oscillator, and the
mathematics is akin to that describing acoustic resonance. Many of the results of quan-
tum mechanics are not easily visualized in terms of classical mechanics. For instance, the
ground state in a quantum mechanical model is a non-zero energy state that is the lowest
permitted energy state of a system, as opposed to a more ”traditional” system that is
thought of as simply being at rest, with zero kinetic energy.

The earliest versions of quantum mechanics were formulated in the first decade of the
20th century. At around the same time, the atomic theory and the corpuscular theory of
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light (as updated by Einstein) first came to be widely accepted as scientific fact; these lat-
ter theories can be viewed as quantum theories of matter and electromagnetic radiation,
respectively. Early quantum theory was significantly reformulated in the mid - 1920s by
Werner Heisenberg, Max Born and Pascual Jordan, who created matrix mechanics; Louis
de Broglie and Erwin Schrdinger (Wave Mechanics); and Wolfgang Pauli and Satyen-
dra Nath Bose (statistics of subatomic particles). And the Copenhagen interpretation
of Niels Bohr became widely accepted. By 1930, quantum mechanics had been further
unified and formalized by the work of David Hilbert, Paul Dirac and John von Neumann,
with a greater emphasis placed on measurement in quantum mechanics, the statistical
nature of our knowledge of reality, and philosophical speculation about the role of the
observer. Quantum mechanics has since branched out into almost every aspect of 20th
century physics and other disciplines, such as quantum chemistry, quantum electronics,
quantum optics, and quantum information science. Much 19th century physics has been
re-evaluated as the ”classical limit” of quantum mechanics, and its more advanced devel-
opments in terms of quantum field theory, string theory, and speculative quantum gravity
theories.

Quantum mechanics had enormous success in explaining many of the features of our
world. It is often the only tool available that can reveal the individual behaviours of
the subatomic particles that make up all forms of matter (electrons, protons, neutrons,
photons, and others). Quantum mechanics is also critically important for understanding
how individual atoms combine covalently to form molecules. The application of quantum
mechanics to chemistry is known as quantum chemistry. Relativistic quantum mechanics
can, in principle, mathematically describe most of chemistry. Quantum mechanics can
also provide quantitative insight into ionic and covalent bonding processes by explicitly
showing which molecules are energetically favourable to which others, and the magnitudes
of the energies involved [13]. Furthermore, most of the calculations performed in modern
computational chemistry rely on quantum mechanics.

A great deal of modern technological inventions operate at a scale where quantum ef-
fects are significant. Examples include the laser, the transistor (and thus the microchip),
the electron microscope, and magnetic resonance imaging (MRI). The study of semicon-
ductors led to the invention of the diode and the transistor, which are indispensable parts
of modern electronics systems and devices.

Researchers are currently seeking robust methods of directly manipulating quantum
states. Efforts are being made to more fully develop quantum cryptography, which will
theoretically allow guaranteed secure transmission of information. A more distant goal is
the development of quantum computers, which are expected to perform certain computa-
tional tasks exponentially faster than classical computers. Another active research topic
is quantum teleportation, which deals with techniques to transmit quantum information
over arbitrary distances.

Quantum tunneling is vital to the operation of many devices - even in the simple
light switch, as otherwise the electrons in the electric current could not penetrate the
potential barrier made up of a layer of oxide. Flash memory chips found in USB drives
use quantum tunneling to erase their memory cells.

While quantum mechanics primarily applies to the atomic regimes of matter and en-
ergy, some systems exhibit quantum mechanical effects on a large scale - superfluidity,
the frictionless flow of a liquid at temperatures near absolute zero, is one well-known
example. Quantum theory also provides accurate descriptions for many previously un-
explained phenomena, such as black body radiation and the stability of the orbitals of

4



CHAPTER 2. QUANTUM MECHANICS 2.2. WAVE - PARTICLE DUALITY

electrons in atoms. It has also given insight into the workings of many different biological
systems, including smell receptors and protein structures [14]. Recent work on photo-
synthesis has provided evidence that quantum correlations play an essential role in this
basic fundamental process of the plant kingdom [15]. Even so, classical physics can often
provide good approximations to results otherwise obtained by quantum physics, typically
in circumstances with large numbers of particles or large quantum numbers.

2.2 Wave - particle duality

Wave - particle duality postulates that all particles exhibit both wave and particle prop-
erties . A central concept of quantum mechanics, this duality addresses the inability of
classical concepts like ”particle” and ”wave” to fully describe the behaviour of quantum-
scale objects. Standard interpretations of quantum mechanics explain this paradox as a
fundamental property of the Universe, while alternative interpretations explain the dual-
ity as an emergent, second-order consequence of various limitations of the observer. This
treatment focuses on explaining the behaviour from the perspective of the widely used
Copenhagen interpretation, in which wave - particle duality serves as one aspect of the
concept of complementarity, that one can view phenomenon in one way or in another,
but not both simultaneously.

The idea of duality originated in a debate over the nature of light and matter that
dates back to the 17th century, when Christiaan Huygens and Isaac Newton proposed
competing theories of light: light was thought either to consist of waves (Huygens) or of
particles (Newton). Through the work of Max Planck, Albert Einstein, Louis de Broglie,
Arthur Compton, Niels Bohr, and many others, current scientific theory holds that all
particles also have a wave nature (and vice versa). This phenomenon has been verified
not only for elementary particles, but also for compound particles like atoms and even
molecules. For macroscopic particles, because of their extremely long wavelengths, wave
properties usually cannot be detected

The relations that connect these two classically incompatible behaviours are the fol-
lowing

E = hf, p =
h

λ
(2.2.1)

or, equivalently

f =
E

h
, λ =

h

p
(2.2.2)

. In Eq. 2.2.1, the relations refer to whatever considered only as wave, i.e. the electro-
magnetic waves, and connect the wave features f and λ, the frequency and the wavelength
respectively, with the particle features E and p, the energy and the momentum, respec-
tively, of the particle. Similarly, the form in Eq. 2.2, the relations refer to whatever
considered initially only as particle, i.e the electron, and connect the particle features
with the wave features of the respective wave. The link between these two features, the
wave and particle, is the Planck constant h If, instead of f and λ, we describe the waves
with the use of the angular frequency and the wavenumber

ω =
2π

T
= 2πf and k =

2π

λ
, (2.2.3)

then form Eq. 2.2.1 we get
E = h̄ω, p = h̄k (2.2.4)

5
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where h̄ = h
2π

is the reduced Planck constant or Dirac constant. The above relations,
Eq. 2.2.4, constitute the starting point of quantum mechanics, which will be asked to
describe subatomic particles as particles and waves simultaneously.

2.3 Schrödinger Equation

The quantitative description of waves in classical mechanics requires a suitable wave
equation. In the case of a mechanical wave, in three - dimensional space, this equation
is of the form

∇2u− 1

c2

∂2u

∂t2
= 0, (2.3.1)

where u = u(r, t) is the displacement of the point r from the equilibrium point, at time
t and

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2.3.2)

is the Laplace operator or Laplacian.
Hence, a severe quantitative description of the material waves, waves that ”accom-

pany” the motion of the material particles, according to the wave - particle duality is not
possible if a respective wave equation is not available. An equation should first devised
and afterwards to check its legitimacy. The search of such an equation has been done by
the Austrian physicist Erwin Schrödinger, who formulated in late 1925, and published in
1926 the so-called Schrödinger equation,

ih̄
∂ψ

∂t
=

(
− h̄2

2m
∇2 + V (r)

)
ψ (2.3.3)

where m is the particle’s mass, V (r) is its potential energy, ∇2 is the Laplacian, and ψ =
ψ(r, t) is the wavefunction. The Schrödinger equation is a partial differential equation
that describes how the quantum state of some physical system changes with time. In
plain language, it means ”total energy equals kinetic energy plus potential energy”

In classical mechanics, the equation of motion is Newton’s second law, and equiva-
lent formulations are the Euler Lagrange equations and Hamilton’s equations. All of
these formulations are used to solve for the motion of a mechanical system and math-
ematically predict what the system will do at any time beyond the initial settings and
configuration of the system. In quantum mechanics, the analogue of Newton’s law is
Schrödinger’s equation for a quantum system (usually atoms, molecules, and subatomic
particles whether free, bound, or localized). It is not a simple algebraic equation, but
(in general) a linear partial differential equation. The differential equation describes the
wave function of the system, also called the quantum state or state vector.

In the standard interpretation of quantum mechanics, the wave function is the most
complete description that can be given to a physical system. Solutions to Schrödinger’s
equation describe not only molecular, atomic, and subatomic systems, but also macro-
scopic systems, possibly even the whole universe [16]. Furthermore, Eq. 2.3.3 is written
in the following form

ih̄
∂ψ

∂t
= Ĥψ (2.3.4)

where Ĥ is the Hamiltonian operator

Ĥ = − h̄2

2m
∇2 + V (r). (2.3.5)
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The latter equation, Eq. 2.3.4 is known as the time-dependent Schrdinger equation,
which gives a description of a system evolving with time.Here, an operator is a function
acting on the space of physical states. As a result of its application on a physical state,
another physical state is obtained, very often along with some extra relevant information.
It is important to note that the operators used in quantum mechanics are linear and the
application on a linear combination of wavefunctions is transferred on each function of
the combination separately. To apply the Schrdinger equation, the Hamiltonian operator
is set up for the system, accounting for the kinetic and potential energy of the parti-
cles constituting the system, then inserted into the Schrödinger equation. The resulting
partial differential equation is solved for the wave function, which contains information
about the system.

The time-dependent Schrödinger equation predicts that wave functions can form
standing waves, called stationary states (also called ”orbitals”, as in atomic orbitals
or molecular orbitals). These states are important in their own right, and moreover if
the stationary states are classified and understood, then it becomes easier to solve the
time-dependent Schrdinger equation for any state. The time-independent Schrödinger
equation is the equation describing stationary states and it is only used when the Hamil-
tonian itself is not dependent on time. Its form is the following

Eψ = Ĥψ (2.3.6)

which states that when the Hamiltonian operator , Ĥ, acts on the wave function ψ the
result might be proportional to the same wave function ψ. If it is, then ψ is a stationary
state, and the proportionality constant, E, is the energy of the state ψ. In linear algebra
terminology, this equation is an eigenvalue equation, where E is the eigenvalue and ψ is
the corresponding eigenvector.

Like Newton’s Second law, the Schrödinger equation can be mathematically trans-
formed into other formulations such as Werner Heisenberg’s matrix mechanics, and
Richard Feynman’s path integral formulation. Also like Newton’s Second law, the Schrödinger
equation describes time in a way that is inconvenient for relativistic theories, a problem
that is not as severe in matrix mechanics and completely absent in the path integral for-
mulation. The equation is derived by partially differentiating the standard wave equation
and substituting the relation between the momentum of the particle and the wavelength
of the wave associated with the particle in De Broglie’s hypothesis.

2.4 Dirac Notation

In quantum mechanics, bra - ket notation is a standard notation for describing quantum
states, composed of angle brackets and vertical bars. It was introduced in 1939 by Paul
Dirac [17] and is also known as Dirac notation, though the notation has precursors in
Grassmann’s use of the notation [ψ|ψ] for his inner products nearly 100 years previously
[18].

Two major mathematical traditions emerged in quantum mechanics; Heisenbergs ma-
trix mechanics and Schrdingers wave mechanics. These distinctly different computational
approaches to quantum theory are formally equivalent, each with its particular strengths
in certain applications. Heisenbergs variation is based on matrix and vector algebra, while
Schrdingers approach requires integral and differential calculus. Diracs notation can be
used in a first step in which the quantum mechanical calculation is described or set up.
Afterwards, one chooses either matrix or wave mechanics to complete the calculation,

7
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depending on which method is computationally the most expedient. In the recent work,
the bra - ket or Dirac notation is used.

Bra ket formalism can also be used to denote abstract vectors and linear functionals
in mathematics. It is so called because the inner product (or dot product on a complex
vector space) of two states is denoted by a 〈bra | ket〉,

〈φ |ψ〉 ,

consisting of a left part, 〈φ| , called the bra, and a right part, |ψ〉, called the ket.
This notation is widespread in quantum mechanics. Almost every phenomenon that

is explained using quantum mechanics, including a large portion of modern physics, is
usually explained with the help of this notation. Part of the appeal of the notation is
the abstract representation - independence it encodes, together with its versatility in
producing a specific representation (e.g., x, or p, or eigenfunction base) without much
excessive reliance on the nature of the linear spaces involved. The overlap expression
〈φ |ψ〉 is typically interpreted as the probability amplitude for the state ψ to collapse
into the state φ.

8



Chapter 3
Density Matrix

3.1 Introduction

Density matrices, also called density operators, conceptually take the role of the state
vectors as they encode all the accessible information about a quantum mechanical system.
The notion of ensemble is an ingredient of the statistical interpretation of quantum me-
chanics. It describes the statistical distribution of quantum states in a system and allows
to treat an ensemble of particles statistically. It turns out that the pure states, described
by state vectors |ψ〉 on Hilbert space H (a complete, abstract vector space possessing the
structure of an inner product that allows length and angle to be measured), are ideal-
ized descriptions that cannot characterize statistical (incoherent) mixtures, which often
occur in the experiment. These objects are very important for the theory of quantum
information and quantum communication.

3.2 General Properties

Consider an observable A in the pure state ψ with the expectation value given by

〈A〉ψ = 〈ψ |A |ψ〉 (3.2.1)

Then, the density matrix ρ for the pure state ψ is defined as

ρ := |ψ〉 〈ψ| (3.2.2)

This density matrix has the following properties:

(a) ρ2 = ρ, projector

(b) ρ† = ρ, hermicity

(c) Tr(ρ) = 1, normalization

(d) ρ ≥ 0, positivity

From the last property (d) it follows that the eigenvalues of ρ are greater or equal to
zero, which is important because probabilities are always greater or equal to zero. The
expectation value of an observable in the state ψ can be reproduced and is given by

〈A〉ρ = Tr(Aρ) (3.2.3)

9
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3.3 Pure and Mixed States

Now we can introduce a broader class of states represented by density matrices, the mixed
states in contrast to the states we have considered until now, the pure states.

3.3.1 Pure States

Consider an ensemble of given objects in the states {|ψ〉} . If all the objects are in the
same state, the ensemble is represented by a pure state. To make probabilistic statements
the whole ensemble of identically prepared systems must be considered.

Let the system be in the state ψ which can be expanded with respect to the eigenstates
of a hermitian operator Â

|ψ〉 =
∑
n

cn |n〉 , where Â |n〉 = an |n〉 (3.3.1.1)

The expectation value is then given by〈
Â
〉
ψ

=
∑
n

|cn|2an =
∑
n

Nn

N
an, (3.3.1.2)

where |cn|2 is the probability to measure the eigenvalue an . It corresponds to the fraction
Nn/N, the incidence the eigenvalue an occurs, where Nn is the number of times this
eigenvalue has been measured out of an ensemble of N objects.

The state is characterized by a density matrix of the form of Eq. 3.2.2, with the same
properties, where we can combine properties (c) and (d) to conclude Tr(ρ2) = 1.

3.3.2 Mixed States

Let now study the situation where not all of the N systems (objects) of the ensemble are
in the same state, for example Ni systems are in the state |ψi〉 respectively, such that∑
Ni = N .

While quantum measurement destroys the measured system, it is necessary to have
available an entire collection of identical particles in order to make possible to check the
theoretical statistical predictions by repeated measurements upon its unused members.
This is succeeded by making use of the mean or expectation value equation Eq. 3.2.1,
which summarize the physical content.

Hence, in practice all the ensembles that made available are not always pure. These
ensembles consist of individual ones, each of them corresponding to a specific quantum
state |ψi〉, different from the other states. Such a statistical mixture, a mixed ensemble,
will be fully known if we know the participation rate p1, p2, . . . , pN of the individual
pure ensembles in it. This rates πi are the probabilities if a random member of the full
ensemble is described by the state |ψi〉. This probability pi to find an individual system
of the ensemble described by the state |ψi〉 is given by

pi =
Ni

N
, where

∑
i

pi = 1. (3.3.2.1)
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Thus we can express the mixed state as a convex sum (weighted sum with
∑
i

pi = 1) of

pure state density matrices

ρ =
∑
i

piρi =
∑
i

pi |ψi〉 〈ψi| (3.3.2.2)

The expectation value is again given by Eq. 3.2.1 which we can express this as a
convex sum of expectation values of its constituent pure states

〈A〉ρ =
∑
i

pi 〈ψi |A |ψi〉 . (3.3.2.3)

in the case of mixed states, the following properties hold for the density matrix

(a) ρ2 6= ρ

(b) ρ† = ρ

(c) Tr(ρ) = 1

(d) ρ ≥ 0

(e) Tr(ρ2) < 1

The trace of ρ2, Tr(ρ2) is a good measure for the mixedness of a density matrix, since it
is equal to 1 for pure states and strictly smaller than 1 for mixed states. For a maximally
mixed state we have for a given dimension d of the system

Tr(ρ2) =
1

d
> 0. (3.3.2.4)

A simple example of a such a statistical mixture is a gas consisting of Hydrogen atoms
in thermodynamic equilibrium in temperature T . This collection of atoms will be a mixed
one, in which one part will be in the ground state, described by the state vector |ψ1〉 and
the other part will be in the excited state, described then by the state vector |ψ2〉. The
percentages of each part being in the corresponding state will be given by the Boltzmann
equation

Pn = Ae
− En/kBT , (3.3.2.5)

where A is the normalization coefficient which is determined through the condition

∑
Pn = 1⇒ A =

1

e− En/kBT
=

1

Z
(3.3.2.6)

where

Z =
∞∑
n=1

e
− En/kBT (3.3.2.7)

is the partition function of the system.
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3.4 Time Evolution of Density Matrices

Given the importance of the density matrix (or density operator) ρ, the next step is to
investigate how it evolves with time. As to the nature of the statistical mixture, it is
required to accept that the time evolution of all the states ψi, contained in the mixture, are
governed by the same Hamiltonian, H. From the time-dependent Schrödinger equation
and its hermitian conjugate

ih̄
∂

∂t
|ψi(t)〉 = H |ψi(t)〉 ⇒ −ih̄

∂

∂t
〈ψi(t)| = 〈ψi(t)|H. (3.4.1)

Then the differentiation of the equation-definition of the density matrix

ρ(t) =
∑
i

pi |ψi(t)〉 〈ψi(t)| (3.4.2)

with respect to time will give

ih̄
∂

∂t
ρ(t) =

∑
i

pi

(
ih̄
∂

∂t
|ψi(t)〉

)
〈ψi(t)|+

∑
i

pi |ψi(t)〉
(
ih̄
∂

∂t
〈ψi(t)|

)
=
∑
i

piH |ψi(t)〉 〈ψi(t)|+
∑
i

pi |ψi(t)〉 (−〈ψi(t)|H)

= H

(∑
i

pi |ψi(t)〉 〈ψi(t)|

)
−

(∑
i

pi |ψi(t)〉 〈ψi(t)|

)
H

= Hρ− ρH
= [H, ρ].

(3.4.3)

So, it holds that

ih̄
∂

∂t
ρ(t) = [H, ρ(t)]. (3.4.4)

This result denotes that the density matrices satisfy the von Neumann Equation, which
is the quantum analogue to the classical Liouville equation.

The time evolution of the density matrix can be also described by applying a unitary
operator, the time shift operator U(t, t0), also called propagator

U(t, t0) = e−
i
h̄
H(t−t0). (3.4.5)

This allows to relate the density matrix at a later time t to the density matrix at some
earlier time t0

ρ(t) = U(t, t0)ρ(t0)U †(t, t0). (3.4.6)

Furthermore, it helps to prove, for instance, that the mixedness Tr(ρ2) of a density matrix
is time independent

Tr(ρ2(t)) = Tr(Uρ(t0)U †Uρ(t0)U †) = Tr(ρ(t0)ρ(t0)U †U) = Tr(ρ2(t0)) (3.4.7)

where we used that U †U = UU † = I and the cyclic property of the trace operation, which
is

Tr(ABCD) = Tr(BCDA) = Tr(CDAB) = Tr(DABC).
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Chapter 4
Bloch or Coherence Vector

In quantum mechanics, the Bloch sphere (Poincar sphere in optics) is a geometrical
representation of the pure state space of a two-level quantum mechanical system (qubit),
named after the physicist Felix Bloch. There is a one-to-one correspondence between
the states of a qubit and the points of a unit ball in R3 the Bloch ball. It has been
generalized to systems with arbitrary number of levels. Unfortunately, for quantum
systems with more than two levels, i.e for a three-level (qutrit), the correspondence is not
so clear anymore as in the qubit case, because the subset of points of the Bloch ball that
correspond to valid quantum states has a non trivial shape [1], [19]. But still the Bloch
vectors provide a visual insight into the world of quantum states. Many operations on
single qubits that are commonly used in quantum information processing can be neatly
described within the Bloch sphere picture.

4.1 Two-Level System (Qubit)

Let’s start with a simple definition of qubits. A qubit is a two-state quantum-mechanical

system with basis states |0〉 =
(
1 0

)T
(ground state) and |1〉 =

(
0 1

)T
(excited state),

as shown in Fig. 4.1. A pure qubit state is a linear superposition of the basis states,
represented as a linear combination of the basis states:

|ψ〉 = α |0〉+ β |1〉 (4.1.1)

where α and β are probability amplitudes and can in general both be complex numbers.
Also, the following relation holds:

|α|2 + |β|2 = 1 (4.1.2)

where |α|2 and |β|2 are the probabilities of outcomes |0〉 and |1〉, respectively.
At this point, we will introduce the Bloch (or coherence) vector [1], [19] which will be
useful for the solution of the Master Equation. In the case of qubits we use the SU(2)
unitary group. This group requires three linearly independent generators gk which can
be expressed in terms of the Pauli matrices σk with k = 1, 2, 3:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(4.1.3)
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Figure 4.1: A two-level system (qubit) with basis states |0〉 and |1〉

The above matrices are hermitian, traceless and follow the following relations:

[σa, σb] =
∑
c

εabcσc

{σa, σb} = 2δabI

(4.1.4)

where δab is the Kronecker delta and εabc is the Levi-Civita symbol (a, b, c = 1, 2, 3).
Then, the Bloch vector rb ∈ R3 , can be obtained through the relation:

rb,k = Tr(ρσk), k = 1, . . . , 3 (4.1.5)

where ρ is the 2× 2 density matrix and σk are the Pauli matrices. More analytically

rb,1 = ρ12 + ρ21

rb,2 = i(ρ12 − ρ21)

rb,3 = ρ11 − ρ22

(4.1.6)

Knowing the Bloch vector, we can express the density matrix as:

ρb =
1

2
(I+ rb · σ) (4.1.7)

where I is the 2 × 2 identity matrix. From another perspective, unit Bloch sphere is
a geometrical representation of the pure state space of a two-level quantum mechanical
system (qubit). According to the length of this vector we can declare whether the states
of the system are pure or mixed. So, if |rb| = 1 then we have pure states, if |rb| < 1 then
we have mixed ones, otherwise if |rb| = 0 then he states are completely mixed.

Figure 4.2: Bloch sphere in a two-level system (qubit) [1]
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4.2 Three-Level System (Qutrit)

Similarly to qubit, a qutrit is a three-state quantum-mechanical system with basis states

|1〉 =
(
1 0 0

)T
(ground state), |2〉 =

(
0 1 0

)T
(intermediate excited state) and |3〉 =(

0 0 1
)T

(Rydberg excited state) and are usually studied in three configurations, as
shown in Fig. 4.2.1. Each configuration has two dipole allowed transitions and one dipole
forbidden transition, with the only difference being the relative arrangement of the energy
levels. A pure qutrit state is a linear superposition of the basis states, represented as a
linear combination of |1〉, |2〉 and |3〉:

|ψ〉 = α |1〉+ β |2〉+ γ |3〉 (4.2.1)

where α, β and γ are probability amplitudes and can in general both be complex numbers.
As in qubit, the following relation should hold:

|α|2 + |β|2 + |γ|2 = 1 (4.2.2)

where |α|2, |β|2 and |γ|2 are the probabilities of outcomes |1〉, |2〉 and |3〉, respectively.

(a) cascade or ladder (Ξ) (b) lamda (Λ)

(c) vee (V)

Figure 4.2.1: The three types of a three-level system (qutrit) with basis states |1〉, |2〉 and |3〉

Contrary to the qubit where we use the SU(2) unitary group of dimension three, here
we have the SU(3) unitary group which is of dimension eight. This group requires eight
linearly independent generators gk which can be expressed in terms of the Gell-Mann
matrices λk with k = 1, . . . , 8 (two diagonals and six off-diagonals):

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0



λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0



λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2



(4.2.3)
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All matrices are hermitian, traceless and follow the following relations:

Tr(λaλb) = 2δab

[λa, λb] = 2ifabcλc

{λa, λb} =
4

3
δab + 2dabcλc

(4.2.4)

where δab is the Kronecker delta, dabc are completely symmetric structure constants and
fabc are completely antisymmetric structure constants (a, b, c = 1, . . . , 8).

Now, the coherence vector in the case of qutrits [1], [19] rt ∈ R8 and can be obtained
through the relation:

rt,k = Tr(ρλk), k = 1, . . . , 8 (4.2.5)

where in this case ρ is the 3 × 3 density matrix and σk are the Pauli matrices. More
analytically

rt,1 = ρ12 + ρ21

rt,2 = i(ρ12 − ρ21)

rt,3 = ρ11 − ρ22

rt,4 = ρ13 + ρ31

rt,5 = i(ρ13 − ρ31)

rt,6 = ρ23 + ρ32

rt,7 = i(ρ23 − ρ32)

rt,8 =
1√
3

(ρ11 + ρ22 −
√

2ρ33)

(4.2.6)

Knowing the coherence vector rt, we can express the density matrix as:

ρt =
1

3
(I+

√
3rt · λ) (4.2.7)

where I is the 3× 3 identity matrix.
As for the length of the coherence vector, for qutrits, if |rt| = 1 then we have pure

states, otherwise if |rb| < 1 then we have mixed ones. It should be noticed that not all
coherence vectors with |rb| ≤ 1 correspond to valid qutrit states because a valid state
has density matrix with non-negative eigenvalues. Also, the largest hypersphere, that
contains only valid states has radius |rb| = 2

3
.

Figure 4.2.2: Two-dimensional sections of the Bloch (or Coherence) vector space for three-level
systems. The grey parts are the domain of the Bloch vector. [1]
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Chapter 5
Quantum Master Equations

5.1 Closed & Open Systems

5.1.1 Dynamics of Closed Quantum Systems

A closed quantum system a system that is closed in the sense that it does not interchange
any information with another system (i.e. energy, particles, etc.). In physical applica-
tions one often encounters the situation that the system under consideration is driven
by external forces, an external electromagnetic field for example. If in such a case the
dynamics of the system can still be formulated in terms of a possibly time-dependent
Hamiltonian generator H(t) the system will again be said to be closed, while we reserve
the term isolated to mean that the Hamiltonian of the system is time independent. The
Planck’s constant h̄ has been set equal to 1.

The time evolution of a pure state |ψ(t)〉 ∈ H generated by the Hamiltonian H(t) is
determined by the Schrödinger equation

d |ψ(t)〉
dt

= − i
h̄
H(t) |ψ(t)〉 , (5.1.1.1)

.
Due to the linearity of the Schrödinger equation its solution is given by an evolution

family U(t, t0) such that
|ψ(t)〉 = U(t, t0) |ψ(t0)〉 , (5.1.1.2)

where U(t, t0) is a unitary time-evolution operator, i.e. U †(t, t0)U(t, t0) = U(t, t0)U †(t, t0) ≡
I, which transforms the state |ψ(t0)〉 at some initial time t0 to the state |ψ(t)〉 at time
t. If we substitute Eq. 5.1.1.2 into Eq. 5.1.1.1 we get an operator equation for the
time-evolution for U(t, t0)

dU(t, t0)

dt
= − i

h̄
[H(t), U(t, t0)]. (5.1.1.3)

which is subjected to the initial condition

U(t0, t0) = I. (5.1.1.4)

For a closed, isolated physical system the Hamiltonian H is time independent and Eq.
5.1.1.3 is readily integrated to yield the following expression

U(t, t0) = e−iH(t−t0). (5.1.1.5)
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5.1. CLOSED & OPEN SYSTEMS CHAPTER 5. QUANTUM MASTER EQUATIONS

For a time-dependent Hamiltonian the solution of Eq. 5.1.1.3 subjected to the initial
condition 5.1.1.4 represented as a time-ordered exponential

U(t, t0) = T←−exp

(
−i

t∑
t0

dsH(s)

)
(5.1.1.6)

where T←− denotes the chronological time-ordering operator which orders products of
time-dependent operators such that their time-arguments increase from right to left as
indicated by the arrow.

If the system under consideration is in a mixed state the corresponding quantum
statistical ensemble may be characterized with the help of the statistical operator ρ.
Assuming that at some initial time t0 the state of the system is described by the density
matrix

ρ(t0) =
∑
α

wα |ψα(t0)〉 〈ψα(t0)| , (5.1.1.7)

where wα are positive weights and ketψα(t0) are normalized state vectors. The state of
the system at time t will therefore be given by

ρ(t) = U(t, t0)ρ(t0)U †(t, t0). (5.1.1.8)

In this case, the time evolution of a mixed state, ρ(t), is determined by the Liouville
- von Neumann equation

dρ(t)

dt
= − i

h̄
[H(t), ρ(t)]. (5.1.1.9)

which is often written in a form analogous to the classical Liouville equation

dρ(t)

dt
= L(t)ρ(t). (5.1.1.10)

Here, L is the Liouville operator is defined through the condition that

L(t)ρ(t) = −i[H(t), ρ(t)]. (5.1.1.11)

Often, L is called a Liouville superoperator since it acts on an operator to yield another
operator. In close analogy with Eq. 5.1.1.6 the Liouville equation 5.1.1.10 leads to

ρ(t) = T←−exp

(
t∑
t0

dsL(s)

)
ρ(t0). (5.1.1.12)

For the case of a time independent Hamiltonian the Liouville superoperator is also time
independent and hence we have

ρ(t) = eL(t−t0)ρ(t0). (5.1.1.13)

5.1.2 Dynamics of Open Systems

In general terms, an open system is a quantum system S which is coupled to another
quantum system B called the environment. It thus represents a subsystem of the com-
bined total system S+B, whereby in most cases it is assumed that the combined system
is closed, following Hamiltonian dynamics. The state of the subsystem S, however, will
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CHAPTER 5. QUANTUM MASTER EQUATIONS 5.1. CLOSED & OPEN SYSTEMS

change as a consequence of its internal dynamics and of the interaction with the surround-
ings. The interaction leads to certain system-environment correlations such that the re-
sulting state changes of S can no longer, in general, be represented in terms of unitary,
Hamiltonian dynamics. The dynamics of the subsystem S induced by the Hamiltonian
evolution of the total system is often referred to as reduced system dynamics, and S is
also called the reduced system. Let us denote by HS, the Hilbert space of the system
and by HB the Hilbert space of the environment. The Hilbert space of the total system
S + B is then given by the tensor product space H = HS ⊗HB. The total Hamiltonian
H(t) may be taken to be of the form

H(t) = HS ⊗ IB + IS ⊗HB +HI(t) (5.1.2.1)

where HS is the self-Hamiltonian of the open system S, HB is the free Hamiltonian of
the environment B, and HI(t) is the Hamiltonian describing the interaction between the
system and the environment. A schematic picture of the typical situation under study
is shown in Fig. 5.1.1 Following the notation in [2], if we speak of an open system S

Figure 5.1.1: Schematic picture of an open quantum system. [2]

we shall use the general term environment for the system B coupled to it. The term
reservoir refers to an environment with an infinite number of degrees of freedom such
that the frequencies of the reservoir modes form a continuum. As will be seen, it is this
property which generally leads to an irreversible behaviour of the open quantum system.
Finally, the term bath or heat bath will be used for a reservoir which is in a thermal
equilibrium state.

The motivation for the study of open systems is mainly that in many physically
important situations a complete mathematical model of the combined system’s dynamics
is much too complicated. The environment may represent, for example, a reservoir or
a heat bath consisting of infinitely many degrees of freedom, in which case an exact
treatment requires the solution of an infinite hierarchy of coupled equations of motion.
Even if a solution is known one is confronted with the task of isolating and determining the
interesting physical quantities through an average over the remaining, irrelevant degrees of
freedom. Moreover, one often encounters the situation that the modes of the environment
are neither known exactly nor controllable. One therefore tries to develop a simpler
description in a reduced state space formed by a restricted set of physically relevant
variables which is achieved by employing various analytical methods and approximation
techniques.

We regard an open system S to be singled out by the fact that all observations of
interest refer to this subsystem. The observables referring to S are all of the form A⊗IB,
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5.2. LINDBLAD QUANTUM MASTER EQUATION CHAPTER 5. QUANTUM MASTER EQUATIONS

where A is an operator acting on the Hilbert space HS and IB denotes the identity in the
Hilbert space HB. If the state of the total system is described by some density matrix ρ,
then the expectation values of all observables acting on the open system’s Hilbert space
are determined through

〈A〉 = TrS(AρS), (5.1.2.2)

where

ρS = TrB(ρ) (5.1.2.3)

is the reduced density matrix of the open quantum system S. The notation TrS denotes
the partial trace over the open system’s Hilbert space, while TrB denotes the partial trace
over the degrees of freedom of the environment B. The reduced density operator ρS will
be the quantity of central interest in the description of open quantum systems.

The reduced density matrix ρS(t) at time t is obtained from the density matrix ρ(t) of
the total system by taking the partial trace over the degrees of freedom of the environment.
Since the total density matrix evolves unitarily we have

ρS(t) = TrB
(
U(t, t0)ρ(t0)U †(t, t0)

)
, (5.1.2.4)

where U(t, t0) is the time-evolution operator of the total system. In an analogous way,
the equation of motion for the reduced density matrix is obtained by taking the partial
trace over the environment on both sides of the Liouville - von Neumann equation for
the total system,

dρS(t)

dt
= −iT rB[H(t), ρ(t)]. (5.1.2.5)

5.2 Lindblad Quantum Master Equation

The general Lindblad form of a master equation is given by equation 5.2.1, where H
is the Hamiltonian, which is Hermitian, and {Ak} are so-called Lindblad operators such
that for every operator its hermitian conjugate is also in the set labelled by k. The
constants γk ≥ 0 are called decay constants.

dρ(t)

dt
= −i[H, ρ(t)] +

∑
k

γk

[
Akρ(t)A†k −

1

2
{A†kAk, ρ(t)}

]
(5.2.1)

Introducing superoperators we can write the Lindblad quantum master equation as

Lρ(t) = −i[H, ρ(t)] +Dρ(t) (5.2.2)

where L is called the Lindbladian and D is the Dissipator.

5.3 Microscopic Derivations

5.3.1 Weak-Coupling Limit

We begin by considering a quantum mechanical system S weakly coupled to a reservoir
B. The Hamiltonian of the total system is assumed to be of the form

H = HS +HB +HI (5.3.1.1)
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where HS and HB denote respectively the free Hamiltonian of the system and of the
reservoir and HI describes the interaction between the system and the reservoir. The
derivation of a quantum Markovian master equation is most easily performed in the
interaction picture. The starting point is the interaction picture von Neumann equation

dρ(t)

dt
= −i[HI(t), ρ(t)] (5.3.1.2)

for the total density matrix ρ(t) and its integral form

ρ(t) = ρ(0)− i
t∫

0

ds[HI(s), ρ(s)]. (5.3.1.3)

Inserting the integral form into Eq. 5.3.1.2 and taking the trace over the reservoir we
find

dρS(t)

dt
= −

t∫
0

dsTrB[HI(t), [HI(s), ρ(s)]]. (5.3.1.4)

Here, it has been assumed that

TrB[HI(t), ρ(0)] = 0. (5.3.1.5)

In Eq. 5.3.1.4 still there is the density matrix of the total system, ρ(t) on right-hand
side. In order to eliminate it from the equation of motion we perform a first approxima-
tion, known as the Born approximation. This approximation assumes that the coupling
between the system and the reservoir is weak, such that the influence of the system on
the reservoir is small (weak-coupling approximation). Thus, the density matrix of the
reservoir ρB is only negligibly affected by the interaction and the state of the total system
at time t may be approximately characterized by a tensor product

ρ(t) ≈ ρS(t)⊗ ρB. (5.3.1.6)

Note that this does not imply that there are no excitations in the reservoir caused by the
reduced system. The Markovian approximation to be derived below provides a description
on a coarse-grained time scale and the assumption is that environmental excitations decay
over times which are not resolved. Inserting the tensor product into the exact equation
of motion, Eq.5.3.1.4, we obtain a closed integro-differential equation for the reduced
density matrix ρS(t)

dρS(t)

dt
= −

t∫
0

dsTrB[HI(t), [HI(s), ρS(s)⊗ ρB]]. (5.3.1.7)

In order to simplify the above equation we perform the Markov approximation, in which
the integrand ρS(s) is first replaced by ρS(t). In this way we obtain an equation of motion
for the reduced system’s density matrix in which the time development of the state of
the system at time t only depends on the present state ρS(t),

ρS(t)

dt
= −

t∫
0

dsTrB[HI(t), [HI(s), ρS(t)⊗ ρB]]. (5.3.1.8)
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This equation is called the Redfield equation [20], [21].
The Redfield equation is local in time, but it is not yet a Markovian master equation

since the time evolution of the reduced density matrix still depends upon an explicit
choice for the initial preparation at time t = 0. This implies that the dynamics of the
reduced system is not yet described by a dynamical semigroup. In order to achieve this
we substitute s by t−s in the integral in Eq. 5.3.1.8 and let the upper limit of the integral
go to infinity. This is permissible provided the integrand disappears sufficiently fast for
s >> τB. The Markov approximation is therefore justified if the time scale τR over which
the state of the system varies appreciably is large compared to the time scale τB over
which the reservoir correlation functions decay. Thus, we finally obtain the Markovian
quantum master equation

dρS(t)

dt
= −

∞∫
0

dsTrB[HI(t), [HI(t− s), ρS(t)⊗ ρB]]. (5.3.1.9)

The approximations performed above are usually termed as the Born-Markov ap-
proximation. In general they do not guarantee, however, that the resulting equation, Eq.
5.3.1.9 defines the generator of a dynamical semigroup ( [22]). One therefore performs
a further secular approximation which involves an averaging over the rapidly oscillating
terms in the master equation and is known as the rotating wave approximation (RWA).
To explain the procedure let us write the Schrödinger picture interaction Hamiltonian HI

in the form

HI =
∑
α

Aα ⊗Bα, (5.3.1.10)

where A†α = Aα and B†α = Bα. This is the more general form of the interaction. In order
to apply the this approximation, the interaction Hamiltonian, HI , should be decomposed
into eigenoperators of the system Hamiltonian, HS. Supposing the spectrum of HS to be
discrete this may be achieved as follows. Let us denote the eigenvalues of HS by ε and
the projection onto the eigenspace belonging to the eigenvalue ε by Π(ε). Then we can
define the operators

Aα(ω) ≡
∑

ε′−ε=ω

Π(ε)AαΠ(ε
′
). (5.3.1.11)

The above sum is extended over all energy eigenvalues ε
′

and ε of HS with a fixed energy
difference of ω. An immediate consequence of this definition is that the following relations
are satisfied,

[HS, Aα(ω)] = −ωAα(ω), (5.3.1.12a)

[HS, A
†
α(ω)] = −ωA†α(ω). (5.3.1.12b)

The operators Aα(ω) and A†α(ω) are therefore said to be eigenoperators of HS belonging to
the frequencies +ω and −ω, respectively. It follows from relations 5.3.1.12a and 5.3.1.12b
that the corresponding interaction picture operators take the form

eiHStAα(ω)e−iHSt = e−iωtAα(ω), (5.3.1.13a)

eiHStA†α(ω)e−iHSt = e−iωtA†α(ω). (5.3.1.13b)

Finally, we note that
[HS, A

†
α(ω)A†β(ω)] = 0, (5.3.1.14)
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and
A†α(ω) = Aα(−ω). (5.3.1.15)

Summing Eq. 5.3.1.11 over all energy differences and employing the completeness relation
we get ∑

ω

Aα(ω) =
∑
ω

A†α(ω) = Aα. (5.3.1.16)

This enables to cast the interaction Hamiltonian into the following form

HI =
∑
α,ω

Aα(ω)⊗Bα =
∑
α,ω

A†α(ω)⊗B†α. (5.3.1.17)

This is the desired decomposition of the interaction into eigenoperators of the system
Hamiltonian. Note that the frequency spectrum {ω} is, in general, degenerate; for a fixed
ω the index α labels the different operators Aα(ω) belonging to the same frequency. By
introducing this eigenoperator decomposition, the interaction picture interaction Hamil-
tonian can now be written in the particularly simple form

HI(t) =
∑
α,ω

e−iωtAα(ω)⊗Bα(t) =
∑
α,ω

e+iωtA†α(ω)⊗B†α(t), (5.3.1.18)

where
Bα(t) = eiHBtBαe

−iHBt (5.3.1.19)

are interaction picture operators of the environment. Now, the condition in Eq. 5.3.1.5
becomes

〈Bα(t)〉 = Tr(Bα(t)ρB = 0, (5.3.1.20)

which states that the reservoir averages of the Bα(t) vanish. Inserting Eq. 5.3.1.18 into
the master equation, Eq. 5.3.1.9 we obtain

dρS(t)

dt
=

∞∫
0

dsTrB (HI(t− s)ρS(t)ρB(t)HI(t)−HI(t)HI(t− s)ρS(t)ρB) + h.c.

=
∑
ω,ω′

∑
α,β

ei(ω
′−ω)Γα,β(ω)

(
Aβ(ω)ρS(t)A†

α′
− A†

α′
Aβ(ω)ρS(t)

)
+ h.c.

(5.3.1.21)

where h.c stands for the Hermitian conjugate expression and also have been introduced
the one-side Fourier transforms

Γαβ(ω) ≡
∞∫

0

dseIωs
〈
B†α(t)Bβ(t− s)

〉
(5.3.1.22)

of the reservoir correlation functions〈
B†α(t)Bβ(t− s)

〉
≡ TrB{B†α(t)Bβ(t− s)ρB}. (5.3.1.23)

Supposing that ρB is a stationary state of the reservoir, we get that [HB, ρB] = 0. The
reservoir correlation functions are then homogeneous in time which yields〈

B†α(t)Bβ(t− s)
〉

=
〈
B†α(s)Bβ(0)

〉
(5.3.1.24)
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showing that the quantities Γαβ do not depend on time. An interesting example in which
the reservoir correlation functions do depend on the time argument t is the case where
the reservoir represents a squeezed vacuum state [2]. The basic condition underlying
the Markov approximation is that the reservoir correlation functions 5.3.1.24 decay suf-
ficiently fast over a time τB which is small compared to the relaxation time τR. It is
important to note that a decay of the correlations can only be strictly valid for an envi-
ronment which is infinitely large and involves a continuum of frequencies. If the frequency
spectrum ωn of the reservoir modes is discrete, it is easy to see that, in general, correla-
tion functions of the type 5.3.1.24 are quasi-periodic functions of s. A rapid decay of the
reservoir correlations therefore requires a continuum of frequencies. We denote by τS the
typical time scale of the intrinsic evolution of the system S. This time scale TS is defined

by a typical value for |ω′ − ω|−1
, ω

′ 6= ω, that is by a typical value for the inverse of
the frequency differences involved. If τS is large compared to the relaxation time τR of
the open system the non-secular terms in 5.3.1.21, i.e. the terms for which ω

′ 6= ω, may
be neglected, since they oscillate very rapidly during the time τR over which ρS varies
appreciably. This condition is typically satisfied for quantum optical systems where it is
known as the rotating wave approximation (RWA). Thus we have

dρS(t)

dt
=

α,β∑
ω

Γαβ(ω)
(
Aβ(ω)ρS(t)A†α(ω)− A†α(ω)Aβ(ω)ρS(t)

)
+ h.c. (5.3.1.25)

It is convenient to decompose the Fourier transforms of the reservoir correlation functions
as follows

Γαβ(ω) =
1

2
γαβ(ω) + iSαβ(ω), (5.3.1.26)

where for fixed ω the coefficients

Sαβ(ω) =
1

2i
(Γαβ(ω)− Γ∗βα(ω)) (5.3.1.27)

form a Hermitian matrix and the matrix defined by

γαβ(ω) = Γαβ(ω) + Γ∗βα(ω) =

+∞∫
−∞

dseiωs
〈
B†α(s)Bβ(0)

〉
(5.3.1.28)

is positive. With these definitions we finally arrive at the interaction picture master
equation

dρS(t)

dt
= −i[HLS, ρS(t)] +D(ρS(t)). (5.3.1.29)

The Hermitian operator

HLS =

α,β∑
ω

Sαβ(ω)A†α(ω)Aβ(ω) (5.3.1.30)

provides a Hamiltonian contribution to the dynamics. This term is often called the Lamb
shift Hamiltonian since it leads to a Lamb-type renormalization of the unperturbed energy
levels induced by the system-reservoir coupling. Note that the Lamb shift Hamiltonian
commutes with the unperturbed system Hamiltonian,

[HS, HLS] = 0. (5.3.1.31)
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by virtue of Eq. 5.3.1.14. Finally, the dissipator of the master equation takes the form

D(ρS) =
∑
ω

∑
α,β

γαβ(ω)

(
Aβ(ω)ρSA

†
α(ω)− 1

2
{A†α(ω)Aβ(ω), ρS}

)
. (5.3.1.32)

Note that the master equation 5.3.1.29 is of the first standard form

LρS = −i[H, ρS] +
N2−1∑
i,j=1

αij

(
FiρSF

†
j −

1

2
{F †j Fi, ρS}

)
(5.3.1.33)

and can be brought into the Lindblad (diagonal) form

LρS = −i[H, ρS] +
N2−1∑
k=1

γk

(
AkρSA

†
k −

1

2
{A†kAk, ρS}

)
(5.3.1.34)

by diagonalization of the matrices γαβ.

5.4 Projector Operator Technique

We consider the general physical situation of an open system S coupled to an environment
B. The dynamics of the density matrix ρ(t) of the combined system is specified by some
microscopic Hamiltonian of the form

H = H0 + αHI (5.4.1)

where H0 generates the uncoupled time evolution of the system and environment. HI

describes their interaction, and α denotes a dimensionless expansion parameter. When
working in the interaction representation, the equation of motion for the density matrix
reads

∂ρ(t)

∂t
= −iα[HI(t), ρ(t)] ≡ αL(t)ρ(t) (5.4.2)

where we have set h̄ = 1 and the interaction picture representation of the interaction
Hamiltonian is defined by

HI(t) = eiH0tHIe
−iH0t (5.4.3)

The Liouville super-operator is denoted by L(t).

5.4.1 Projection Operators

In order to derive an exact equation of motion for the reduced density matrix ρS of the
open system it is convenient to define a super-operator P according to

ρ 7→Pρ = TrB(ρ)⊗ ρB ≡ ρS ⊗ ρB (5.4.1.1)

where ρB is some fixed state of the environment. This super-operator projects on the
relevant part of the density matrix ρ in the sense that Pρ gives the complete information
required to reconstruct the reduced density matrix ρS of the open system. Accordingly,
a complementary super-operator Q,

Qρ = ρ− Pρ (5.4.1.2)
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may be introduced, which projects on the irrelevant part of the density matrix. The
super-operators P and Q are maps in the state space of the combined system that is in
the space of density matrices of the total Hilbert space H = HS ⊗ HB. They have the
following properties

P + Q = I (5.4.1.3)

P2 = P (5.4.1.4)

Q2 = Q (5.4.1.5)

PQ = QP = 0 (5.4.1.6)

which can be carried out using Eqs 5.4.1.1, 5.4.1.2 and assuming ρB to be normalized,
Tr(ρB) = 1. The density matrix ρB used in Eq. 5.4.1.1 is an operator in HB. It may
represent a quite arbitrary, but known environmental state, called the reference state.
The choice of ρB strongly depends on the specific application one has in mind. In the
following we shall suppose this state to be time independent. Typically, it is taken to be
the stationary Gibbs state of the environment.

5.4.2 The Nakajima - Zwanzig equation

Our aim is now to derive a closed equation for the relevant part Pρ(t), i.e. for the density
matrix ρS(t) = TrBρ(t) of the open system. By applying the projection operators P
and Q to the Liouville-von Neumann equation, Eq. 5.4.2, and by invoking the time
independence of the reference state the following set of coupled differential equations for
the relevant and the irrelevant part of the density matrix is obtained,

∂Pρ(t)

∂t
= P

∂ρ(t)

∂t
= αPL(t)ρ(t) (5.4.2.1)

∂Qρ(t)

∂t
= Q

∂ρ(t)

∂t
= αQL(t)ρ(t) (5.4.2.2)

By inserting the identity I = P+Q between the Liouville operator and the density matrix
ρ this may also be written as

∂Pρ(t)

∂t
= αPL(t)Pρ(t) + αPL(t)Qρ(t) (5.4.2.3)

∂Qρ(t)

∂t
= αQL(t)Pρ(t) + αQL(t)Qρ(t) (5.4.2.4)

To get a closed equation for the relevant part of the density matrix we solve Eq. 5.4.2.4
and insert the solution into Eq. 5.4.2.3. The formal solution of 5.4.2.4 corresponding to
a given ρ(t0) at some initial time t0 may be expressed as

Qρ(t) = G (t, t0)Qρ(t0) + α

t∫
t0

dsG (t, s)QL(s)Pρ(s) (5.4.2.5)

where we have introduced the propagator

G (t, s) ≡ T←−e
α
t∫
s
ds
′
QL

(s
′
) (5.4.2.6)
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The operator T←−, describes the chronological time ordering; it orders any product of
super-operators such that the time arguments increase from right to left. The propagator
G (t, s) thus satisfies the differential equation

∂G (t, s)

∂t
= αQL(t)G (t, s) (5.4.2.7)

with the initial condition
G (s, s) = I (5.4.2.8)

Inserting the expression 5.4.2.5 for the irrelevant part of the density matrix into the
equation of motion 5.4.2.3 for the relevant part we obtain the desired exact equation for
the time evolution of the relevant part of the density matrix.

∂Pρ(t)

∂t
=αPL(t)G (t, t0)Qρ(t0) + αPL(t)Pρ(t)

+ α2

t∫
t0

dsPL(t)G (t, t0)QL(s)P ρ̃S

(5.4.2.9)

This equation is known as the Nakajima - Zwanzig equation. It is an exact equation for
the relevant degrees of freedom of the reduced system. The right-hand side involves an
inhomogeneous term PL(t)G (t, t0)Qρ(t0) depending on the initial condition at time t0,
and an integral over the past history of the system in the time interval [t0, t]. It thus
describes completely non - Markovian (i.e memoryless) memory effects of the reduced
dynamics. In many cases it may also be assumed that the odd moments of the interaction
Hamiltonian with respect to the reference state vanish

TrB (HI(t1)HI(t2) . . . HI(t2n+1) = 0) (5.4.2.10)

which leads to the following relation

PL(t1)L(t2) . . .L(t2n+1P = 0 (5.4.2.11)

for n = 0, 1, 2, . . . . In the case where n = 0, the second term in the Nakajima - Zwanzig
equation 5.4.2.9 vanishes and we may cast it into the compact form

dPρ(t)

dt
=

t∫
t0

dsK (t, s)Pρ(s) + αPL(t)G (t, t0)Qρ(t0) (5.4.2.12)

The convolution or memory kernel

K (t, s) = α2PL(t)G (t, s)QL(s)P (5.4.2.13)

represents a super-operator in the relevant subspace. The integro-differential equa-
tion5.4.2.12 is exact and holds for all initial conditions and for almost arbitrary systems
and interactions. Unfortunately, the NakajimaZwanzig equation is usually as difficult
to solve as the Liouville equation describing the dynamics of the total system [2]. This
means that perturbation expansions are needed in order to discuss the relevant dynamics
in a way accessible to analytical or numerical computations. For a factorizing initial con-
dition ρ(t0) = ρS(t0)⊗ ρB we have Pρ(t0) = ρ(t0) and, therefore, Qρ(t0) = 0. Hence the
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inhomogeneous term of the Nakajima-Zwanzig equation 5.4.2.12 vanishes and the exact
equation for the relevant part of the density matrix reduces to

∂Pρ(t)

∂t
=

t∫
t0

dsK (t, s)Pρ(s) (5.4.2.14)

To second order in the coupling strength α we obtain

K (t, s) = α2PL(t)QL(s)P +O(α3) (5.4.2.15)

which leads to an equation of motion of second order for Pρ(t)

∂Pρ(t)

∂t
= α2

t∫
t0

dsPL(t)L(s)Pρ(s) (5.4.2.16)

where we again made use of PL(t)P = 0. If we now introduce the explicit expressions
for the projection operator P and for the generator L(t) we get the Born approximation
of the master equation

∂ρS(t)

∂t
= −α2

t∫
t0

dsTrB[HI(t), [HI(s), ρS(s)⊗ ρB]] (5.4.2.17)

which we saw in Eq.5.3.1.7. This approach to the non-Markovian dynamics of open
quantum systems has some practical disadvantages. The perturbative approximation of
the memory kernel simplifies the derivation of the equations of motion, but unfortunately
not their structure. The approximate equation of motion is again an integro-differential
equation, whose numerical solution may be quite involved.

5.5 The Quantum Optical Master Equation

In this section, we consider a bound quantum system, e.g. an atom or a molecule, which
interacts with a quantized radiation field. The radiation field represents a reservoir with
an infinite number of degrees of freedom and the bound system is the reduced system
we are interested in. The uncoupled atom or molecule is described by some Hamilto-
nian HS, while the free quantized radiation field will be represented by the Hamiltonian
(subtracting an infinite c-number for the vacuum energy)

HB =
∑
~k

∑
λ=1,2

h̄ωkb
†
λ(
~k)bλ(~k). (5.5.1)

Here, we reintroduce all physical constants such as Planck’s constant h̄ and the speed of
light c. For simplicity we decompose the radiation field into Fourier modes in a box of
volume V , imposing periodic boundary conditions. These modes are labelled by the wave
vector ~k and two corresponding, transverse unit polarization vectors ~eλ(~k), such that

~k · ~eλ(~k) = 0 (5.5.2a)

~eλ(~k) · ~eλ′ (~k) = δλλ′ (5.5.2b)
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EQUATION∑
λ1,2

~eiλ(
~k)~ejλ = δij −

kikj

|~k|
2 , i, j = 1, 2, 3 (5.5.2c)

The dispersion relation is ωk = ck = c|~k|. The field operators bλ(~k) and b†λ(
~k) describe

the destruction and creation of photons with wave vector ~k and polarization ~eλ(~k). They
obey the commutation relations

[bλ(~k), bλ′ (
~k
′
)] = [b†λ(

~k), b†
λ′

(~k
′
)] = 0 (5.5.3)

[bλ(~k), bλ′ (
~k
′
)] = δ~k~k

′
δλλ

′
. (5.5.4)

Finally, we assume the interaction Hamiltonian to be given in the dipole approximation
by

HI = − ~D · ~E (5.5.5)

where ~D is the dipole operator of the system under consideration and ~E is the electric
field operator in the Schrdinger picture,

~E = i
∑
~k

∑
λ=1,2

√
2πh̄ωk
V

~eλ(~k)
(
bλ(~k)− b†λ(~k)

)
. (5.5.6)

With these definitions the total Hamiltonian governing the coupled system of the matter
degrees of freedom and the radiation degrees of freedom is given by

H = HS +HB +HI . (5.5.7)

At this point, we performing the Born-Markov approximation. decompose the dipole
operator ~D into eigenoperators of HS. The latter take the form

~A(ω) ≡
∑

ε′−ε−h̄ω

Π(ε) ~DΠ(ε
′
) (5.5.8)

Now we have
[HS, ~A(ω)] = −h̄ω ~A(ω) (5.5.9)

[HS, ~A
†(ω)] = +h̄ω ~A†(ω) (5.5.10)

and
~A†(ω) = ~A(−ω) (5.5.11)

The decomposition of the interaction picture dipole operator ~D(t) into eigenoperators
therefore reads

~D(t) =
∑
ω

e−iωt ~A(ω) =
∑
ω

e+iωt ~A†(ω) (5.5.12)

and the interaction Hamiltonian can now be written in the interaction picture

HI(t) = −
∑
ω

e−ωt ~A(ω) · ~E(t), (5.5.13)

where ~E(t) denotes the electric field operator in the interaction picture. Assuming as
that 〈

~E(t)
〉
≡ Tr

(
~E(t)ρB

)
= 0 (5.5.14)
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we can immediately write down the equation of motion, analogous to Eq. 5.3.1.21

dρS
dt

=
∑
ω,ω′

ei(ω
′−ω)tΓij(ω)

(
Aj(ω)ρSA

†
i (ω

′
)− A†i (ω

′
)Aj(ω)ρS

)
+ h.c. (5.5.15)

The correlation functions of the electric field operator are defined through

〈Ei(t)Ej(t− s)〉 ≡ TrB (Ei(t)Ej(t− s)ρB) (5.5.16)

and their one-sided Fourier transforms are given by

Γij(ω) ≡ 1

h̄2

∞∫
0

dseiωs 〈Ei(t)Ej(t− s)〉 . (5.5.17)

The matrix Γij(ω) will be referred to as the spectral correlation tensor. It depends,in
general, on t. In fact, without further assumption on the state ρB of the reservoir we find

Γij(ω) =
1

h̄2

∑
~k,~k′

∑
λ,λ′

√
2πh̄ωk
V

√
2πh̄ωk′

V
~eiλ(

~k)~ej
λ′

(~k
′
)

×
∞∫

0

ds

[ 〈
bλ(~k)b†λ′(

~k′)
〉
e+i(ωk′−ωk)t−i(ωk′−ω)s

+
〈
b†λ(
~k)bλ′(~k

′)
〉
e−i(ωk′−ωk)t−i(ωk′+ω)s

−
〈
bλ(~k)b†λ′(

~k′)
〉
e−i(ωk′−ωk)t−i(ωk′+ω)s

−
〈
b†λ(
~k)bλ′(~k

′)
〉
e+i(ωk′−ωk)t−i(ωk′−ω)s

]
(5.5.18)
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Chapter 6
Linear Dissipative Dynamics

6.1 Three-Level System (Qutrit)

Three-level systems arise in many physical contexts. A spin-1 particle in an external mag-
netic field, three states of atoms or molecules coupled by lasers or other interactions, and
oscillations among the three neutrino flavours are just a few varied examples. A widely
used class of equations, which proceed a full treatment of dissipation and decoherence, is
the Liouville von Neumann Lindblad equation [23]

ih̄
dρ

dt
= [H, ρ] +

1

2
i
∑
k

(
[Lkρ, L

†
k] + [Lk, ρL

†
k]
)

= [H, ρ] +
1

2
i
∑
k

(
L†kLkρ+ ρL†kLk − 2LkρL

†
k

) (6.1.1)

where ρ is the density matrix, H is a hermitian Hamiltonian, the Lk are operators in the
system through which dissipation and decoherence are introduced. More specifically, the
second term on the right-hand side is the Liouvillian super-operator describing coupling
to the environment and the resulting irreversibilities of dissipation and decoherence. The
above Master Equation 6.1.1 can be expressed in the Liouville - Bloch form as [23]:

ih̄
dη(t)

dt
= L(t)η(t) (6.1.2)

where η(t) is a column vector whose components etak(t) , k = 1, . . . , n2 − 1 are suitable
linear combinations of the density matrix elements ,similar to the coherence vector, and
L is a (n2− 1)× (n2− 1) a matrix which may not be hermitian (from now on h̄ = 1) . A
convenient choice for etak is ρ11− ρmm, ρnm + ρmn, ρnm− ρmn where m,n = 1, . . . , n and

m > n. In the case of qubits, Lk =
√

Γ
2
σk (k = 1, 2, 3) and H = ε(t)σ3 + Jσ1 we have

that:

L(t) =

 −iΓ −ε(t) 0
−ε(t) −iΓ 2J

0 2J −iΓ

 = −iΓI− ε(t)Az + 2JAx (6.1.3)

with

Ax =

0 0 0
0 0 1
0 1 0

 , Ay =

 0 0 −i
0 0 0
−i 0 0

 , Az =

0 1 0
1 0 0
0 0 0

 (6.1.4)
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and I the 3× 3 identity matrix.

Similarly, in the case of qutrits [24], Lk =
√

Γ
6
λk (k = 1, . . . , 8), and H = ε(t)Az + JAx

we have that:

L(t) =



−iΓ 0 0 ε(t) 0 0 0 2J(t)

0 −iΓ 0
√

3ε(t) 0 0 0
√

32J(t)
0 0 −iΓ 0 0 2J(t) 0 0

ε(t)
√

3ε(t) 0 −iΓ 2J(t) 0 0 0
0 0 0 2J(t) −iΓ 0 0 −ε(t)
0 0 2J(t) 0 0 −iΓ −ε(t) 0
0 0 0 0 0 −ε(t) −iΓ 0

2J(t) −
√

32J(t) 0 0 −ε(t) 0 0 −iΓ


= −iΓI+ ε(t)Bz + 2J(t)xx

(6.1.5)

where

Bx =



0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 −
√

3
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0

1 −
√

3 0 0 0 0 0 0


, By =



0 0 0 0 −2i 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −i 0
0 0 0 0 0 0 0 i
2i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 i 0 0 0 0 0
0 0 0 −i 0 0 0 0



Bz =



0 0 0 1 0 0 0 0

0 0 0
√

3 0 0 0 0
0 0 0 0 0 0 0 0

1
√

3 0 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 0
0 0 0 0 0 −1 0 0
0 0 0 0 −1 0 0 0


(6.1.6)

and I the 8× 8 identity matrix.
It is clear from Eq. 6.1.3 and 6.1.5 that the form of the matrix L(t) in qubits and qutrits
is common.
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Chapter 7
Applied Quantum Master
Equations

In this chapter, we will present the master equations that are applied and how do they
form in each system under investigation. More analytically, we make use of a Lindblad-
type master equation, specially constructed in order to relax to equilibrium (i.e to the
Gibbs state and not simply to the fully mixed state) [25]. This is crucial when comparing
it to the other master equation that is used, the non-linear thermodynamic quantum
master equation, which also relaxes to equilibrium [8].

7.1 Lindblad Master Equation

In this section, we explain how the specific linear markovian master equation in the
weak-coupling regime, also known as the Lindblad master equation, is obtained [25]. The
constructive approach of Davies [22] is followed, starting from a microscopic point of
view.

We consider a quantum system of interest S embedded in a bath B on the Hilbert
space H = HS ⊗HB. The total Hamiltonian is

H = HS ⊗ I+ I⊗HB + λHI (7.1.1)

where HS is the system Hamiltonian, HB is the Hamiltonian referring to the bath, HI

is the interaction Hamiltonian and λ is the coupling strength between system and bath
(here, is set to 1). The self-adjoint coupling operator Q, acting on the system S, is bound,
as is the self-adjoint coupling operator Φ acting on the bath HB. We have to assume
that HS is bound and has a discrete time-independent N -level spectrum. The dynamics
of the system S is then obtained by tracing out the equilibrium bath HB. The obtained
master equation is

∂ρ

∂t
= − i

h̄
[HS, ρ] +

λ2

h̄
K(ρ) (7.1.2)

where ρ is the density matrix, K(ρ) is the dissipative operator defined on the space of
the density matrices and is responsible for the irreversible evolution of the system, λ is
the coupling strength between system and bath and h̄ is the reduced Planck or Dirac
constant. We here neglect the shift of the free energy levels (it does not affect the final
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equilibrium solution) and write the dissipative generator as

K(ρ) =
∑
ω≥0

e(ω)

(
LωρL

†
ω −

1

2
{L†ωLω, ρ}

)
+
∑
ω≥0

α(ω)

(
L†ωρLω −

1

2
{LωL†ω, ρ}

) (7.1.3)

where the real constant e(ω) is responsible for the emission processes while α(ω) is re-
sponsible for the absorption processes taking place during the scattering events. The ω’s
appearing in the sum range in the set of all possible energy transitions of the system,
namely, ω = Ei − Ej for some (i, j) and the sum is taken over all such ω’s. The oper-
ators Lω and L†ω = L−ω are the scattering or Lindblad operators obtained by a spectral
decomposition of the self-adjoint coupling operator Q. They model jumps between the
eigenstates of the Hamiltonian HS induced by the scattering of the particles of the system
with the particles of the bath. We can see that the Hamiltonian of the system is linked
to the Lindblad operators of Eq. 7.1.3 by the relation

[Lω, HS] = ωLω, (7.1.4)

which in the energy eigenbasis gives

〈Ei | [Lω, HS] |Ej〉 =(Ej − Ei) 〈Ei |Lω |Ej〉
= (Ej − Ei)(Lω)ij

= (Ej − Ei)Qijδkr(Ei − Ej,−ω),

(7.1.5)

where Qij = 〈Ei |Q |Ej〉 is an ij matrix element of the coupling operator in the energy
eigenbasis. The kronecker δkr in the above equation tells us that only terms with EiEj = ω
are non-zero. Moreover, the fact that the Lindblad operators are defined in terms of
the energy eigenbasis of the Hamiltonian tells us that when we use a time-dependent
Hamiltonian we have to recompute the set of Lindblad operators at each time instant (and
possibly obtain a different number of operators due to energy degeneracies or crossings).
In practice, one would have to recalculate the Lindblad operator at every integration time
step (or at least each time that the spectrum of the Hamiltonian changes).

Concerning the scattering rates, the emission e(ω) and absorption α(ω) rates in Eq.
7.1.3 find their origin in the Fourier transformation of the correlation functions of the
bath [22]

h(t) = 〈ΦtΦ〉B = Tr
(
ρBe

i
HB
h̄
tΦe−i

HB
h̄
t
)

(7.1.6)

where ρB = e−βHB
ZB

is the Gibbs state of the bath, ZB = Tr(e−βHB) and β = 1
kBT

is the
fixed inverse temperature of the bath. The emission and absorption spectral functions

exist if
t∫

0

|h(t)| < 0, in which case we find that

ĥ(ω) =
1

h̄

+∞∫
−∞

eiωth(t)dt, (7.1.7)

ĥ(ω) = e(ω), ω ≥ 0, ĥ(ω) = a(ω), ω < 0. (7.1.8)
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During the time evolution, a given energy level will gain and loose excitations. More
precisely, the terms LωρL

†
ω and L†ωρLω are responsible for the gain while the terms

{L†ωρLω} and {LωρL†ω} are responsible for the loss. Therefore, to reach equilibrium, it
is necessary to have a proper detailed balance among the emissions and the absorptions.
Hence, having

α(ω) = e−βωe(ω), (7.1.9)

insures that the master equation converges to an equilibrium state [22] by balancing
the incoming and outgoing scattering for standard ergodic conditions (every energy level
should be connected to the others, at least indirectly). The precise form of the emission
e(ω) and absorption α(ω) rate present in the master equation given by 7.1.3 depend on
the nature of the bath (bosonic, fermionic, anionic, etc.).

7.1.1 Three-Level System (Qutrit)

The first system under investigation is the three-level, often named qutrit. For such a
system with non-degenerated energy levels, we have seven Lindblad operators. More
precisely,

L12 =

0 Q12 0
0 0 0
0 0 0

 , L21 =

 0 0 0
Q21 0 0
0 0 0

 ,

L13 =

0 0 Q13

0 0 0
0 0 0

 , L31 =

 0 0 0
0 0 0
Q31 0 0

 ,

L23 =

0 0 0
0 0 Q23

0 0 0

 , L32 =

0 0 0
0 0 0
0 Q32 0

 ,

L11 =

Q11 0 0
0 0 0
0 0 0

 , L22 =

0 0 0
0 Q22 0
0 0 0

 , L33 =

0 0 0
0 0 0
0 0 Q33

 .

(7.1.1.1)

where Qij (i, j = 1, 2, 3) are the (i,j) element of matrix Q defined later.

Figure 7.1.1: A three-level system (qutrit) with basis states |1〉, |2〉 and |3〉

We can rewrite these matrices in the form

Lij = Qijσij, (7.1.1.2)
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with Qij = Qji∗ and by defining the 3×3 σij basis matrices as follows,

σ12 =

0 1 0
0 0 0
0 0 0

 , σ23 =

0 0 0
0 0 1
0 0 0

 , σ13 =

0 0 1
0 0 0
0 0 0



σ21 =

0 0 0
1 0 0
0 0 0

 , σ32 =

0 0 0
0 0 0
0 1 0

 , σ31 =

0 0 0
0 0 0
1 0 0



σ11 =

1 0 0
0 0 0
0 0 0

 , σ22 =

0 0 0
0 1 0
0 0 0

 , σ33 =

0 0 0
0 0 0
0 0 1



(7.1.1.3)

with σij = σ†ji. The resulting dissipative operator, Eq. 7.1.3, is of the form

KTL(ρ) =
∑
ωij,k

[
Γijem,k

(
σijρσ

†
ij −

1

2

{
σ†ijσij, ρ

})

+ Γjiab,k

(
σ†ijρσij −

1

2

{
σijσ

†
ij, ρ
})]

+
∑
ωii

Γiidp,k

(
σiiρσii −

1

2
{σiiσii, ρ}

) (7.1.1.4)

where we used the fact that σiiσjj = 0 for i 6= j (this eliminates the cross terms in the
dephasing terms). Moreover, we can simplify the equation with the general properties
σijσji = σii and σjiσij = σjj . Also, Γijem,k, Γijab,k and Γiidp,k, with k = l, r (l:left, r:right
heat bath) and i, j = 1, 2, 3 (j > i), are scattering rates referring to emission, absorption
and dephasing respectively, given by Eq. 7.1.1.5,7.1.1.6 and 7.1.1.7 below,

Γijem,k = ek(ωij)
∣∣∣Q̃ji,k

∣∣∣2 = eβkω
ij 2γk
βk

∣∣∣Q̃ji,k
∣∣∣2 (7.1.1.5)

Γijab,k = αk(ωij)
∣∣∣Q̃ji,k

∣∣∣2 =
2γk
βk

∣∣∣Q̃ji,k
∣∣∣2 (7.1.1.6)

Γiidp,k = ek(0)
∣∣∣Q̃ii,k

∣∣∣2 =
2γk
βk

∣∣∣Q̃ii,k
∣∣∣2 (7.1.1.7)

where ωij = {ω12, ω23, ω13}, ωii = {ω11, ω22, ω33} and βk = 1
kBTk

. To reach equilibrium, it
is necessary to have a proper detailed balance among the emissions and absorptions, Eq.
7.1.9. The choice for αk(ωij) and ek(ωij) can be done using a ”flat” spectrum, independent
of the frequency,

αk(ωij) =
2γk
βk

(7.1.1.8)

where γ is the friction, to be as close as possible to the non-linear master equation. Now,
from Eq.7.1.9 we get the following

ek(ωij) =
2γk
βk

eβkωij (7.1.1.9)
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The Hamiltonian in the case of the three-level system (qutrit) is of the form

HS =

E1 0 0
0 E2 0
0 0 E3

 (7.1.1.10)

where

Ej = h̄ωij + Ei (7.1.1.11)

is the energy of each state (i = 1, 2, 3) and ωig are the eigenfrequencies.

7.1.2 Harmonic Oscillator (10 states)

In the case of the harmonic oscillator with 10 states, the distance among the energy levels
is equal,

En = n+
1

2
, n = 0, . . . , 9 (7.1.2.1)

Figure 7.1.2.1: The quantum harmonic oscillator system (10 states) with basis states |0〉, . . . ,
|9〉

Subsequently, the value of ωi,i+1 is the same among the energy levels of the system. In
this case of degenerated energy levels, we have less Lindblad operators. More precisely,
we get the following three Lindblad operators

• Lem, which corresponds to the emission terms (ωij = ω)

• Lab, which corresponds to the absorption terms (ωji = −ω)

• Ldp, which corresponds to the dephasing terms (ωii = ω0)
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The dissipative operator, Eq. 7.1.2, now takes the form

KHO(ρ) =
∑
k=l,r

[
Γem,k

(
Lem,kρL

†
em,k −

1

2

{
L†em,kLem,k, ρ

})
+ Γab,k

(
L†ab,kρLab,k −

1

2

{
Lab,kL

†
ab,k, ρ

})
+ Γdp,k

(
Ldp,kρLdp,k −

1

2
{Ldp,kLdp,k, ρ}

)] (7.1.2.2)

with

Lem,k =
9∑
i=1

Qii+1,kσii+1 (7.1.2.3)

Lab,k =
10∑
i=2

Qii−1,kσii−1 (7.1.2.4)

Ldp,k =
10∑
i=1

Qii,kσii (7.1.2.5)

Now, σij are 10×10, zero-valued matrices, with the corresponding ij element being the
only non-zero (similar to Eq. 7.1.1.3). The system Hamiltonian is the following 10× 10
matrix

HS =



E1 0 0 0 0 0 0 0 0 0
0 E2 0 0 0 0 0 0 0 0
0 0 E3 0 0 0 0 0 0 0
0 0 0 E4 0 0 0 0 0 0
0 0 0 0 E5 0 0 0 0 0
0 0 0 0 0 E6 0 0 0 0
0 0 0 0 0 0 E7 0 0 0
0 0 0 0 0 0 0 E8 0 0
0 0 0 0 0 0 0 0 E9 0
0 0 0 0 0 0 0 0 0 E10


(7.1.2.6)

where
Ej = h̄ωij + Ei (7.1.2.7)

is the energy of each state (i = 1, .., 10) and ωig are the eigenfrequencies.
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7.2 Thermodynamic Quantum Master Equation

7.2.1 Classical Environment

The approach that we use in order to describe dissipative quantum systems is carefully
motivated by [10] and is intended to describe the dynamics of a quantum subsystem
coupled to an arbitrary, possibly time-dependent environment. For that purpose, we
need a powerful formalism to describe the classical environmental degrees of freedom and
is succeeded The choice that as been made in [8], [12], [10] relies on an extension of the
GENERIC building block of classical nonequilibrium systems [11]. But before we go on,
we will try to briefly present the basic features of this powerful formalism.

7.2.2 GENERIC

In non-equilibrium thermodynamics, GENERIC is an acronym for General Equation for
Non-Equilibrium Reversible-Irreversible Coupling. It is the general form of dynamic
equation for a system with both reversible and irreversible dynamics (generated by en-
ergy and entropy, respectively). GENERIC formalism is the theory built around the
GENERIC equation, which has been proposed in its final form in 1997 by Miroslav
Grmela and Hans Christian Öttinger [26], [27].

The GENERIC equation is the following

dx

dt
= L(x) · δE

δx
(x) +M(x) · δS

δx
(x) (7.2.2.1)

where x denotes the set of independent variables required for a complete description of
the non-equilibrium system, E(x) and S(x) are the system’s total energy and entropy
expressed in terms of the state variables x, and L(x) and M(x) are certain linear oper-
ators (or matrices). Since x typically contains position dependent fields, such as mass,
momentum, and energy densities, the state variables are usually labelled by continuous
(position) labels in addition to discrete ones. A matrix multiplication, or the application
of a linear operator, hence implies not only summations over discrete labels but also in-
tegrations over continuous labels and δ

δx
typically implies functional rather than partial

derivatives. More specifically, L(x) is the Poisson matrix and is an antisymmetric matrix
describing the reversible dynamics of the system according to Hamiltonian mechanics.
M(x) is the friction matrix and is a positive semidefinite (and hence symmetric) matrix
describing the systems irreversible behaviour.

In addition to the above equation and the properties of its constituents, systems that
ought to be properly described by the GENERIC formalism are required to fulfil the
following degeneracy conditions

L(x) · δS
δx

(x) = 0 (7.2.2.2)

which express the conservation of entropy under reversible dynamics (the functional form
of the entropy is such that it cannot be affected by the operator generating the reversible
dynamics), and

M(x) · δE
δx

(x) = 0 (7.2.2.3)

which express the conservation of energy under irreversible dynamics.
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Further general properties of L and M are discussed most conveniently in terms of the
two brackets

{A,B} =
δA

δx
L(x)

δB

δx
(7.2.2.4a)

which is the Poisson bracket, and

[A,B] =
δA

δx
M(x)

δB

δx
(7.2.2.4b)

which is the dissipative bracket, where A and B are sufficiently regular real-valued func-
tions on the state space. The Poisson bracket, Eq. 7.2.2.4a, has the following properties:

a It is bilinear

b {A,B} = −{B,A}, stated as the antisymmetry property,

c {A,B,C} = A{B,C}+B{A,C}

d {A, {B,C}}+ {B, {C,A}}+ {C, {A,CB}} = 0, known as the Jacobi identity and
which express the time invariance of the Poisson bracket,

where C is an arbitrary sufficiently regular real-valued function on the state space. The
dissipative bracket, 7.2.2.4b, has the following properties:

a It is bilinear

b [A,B] = [B,A], stated as the symmetry property,

c [A,A] ≥ 0,∀A, stated as the non-negativeness condition.

From 7.2.2.2 (implying S,E = 0) and the non-negativeness condition above, guarantees
that the entropy is a non-decreasing function of time

dS

dt
≥ 0. (7.2.2.5)

In terms of these brackets, 7.2.2.1, 7.2.2.4a and 7.2.2.4b and the chain rule lead to the
following time-evolution equation of an arbitrary function A in terms of the two separate
generators E and S:

dA

dt
= {A,E}+ [A, S] (7.2.2.6)

where the first right-side term refers to reversible dynamics, whereas the second right-
hand side term refers to irreversible dynamics. A similar equation already existed from
A. N. Beris & B.J. Edwards [28]

dA

dt
= {A,F}+ [A,F ] (7.2.2.7)

where F = E − TS is the free energy and is recognized also as a special case of the
GENERIC approach [27].

The proper arena for quantum mechanics is provided by separable complete Hilbert
spaces, that is, complex vector spaces equipped with inner products. Observables are
densely defined self-adjoint linear operators on a Hilbert space H. As a consequence of
self-adjointness, observables are real. For nonequilibrium systems, we are interested in
the evolution of the averages of a sufficiently rich set of observables. It is not immediately
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obvious what sufficiently rich means for the characterization of the state of a quantum
system. We here focus on the evolution of the density matrix ρ, also known as the
statistical operator, which can be expressed in terms of an orthonormal basis |n〉 of the
Hilbert space H and the probabilities pn, namely,

ρ =
∑
n

pn |n〉 〈n| . (7.2.2.8)

The density matrix characterizes the state of our quantum subsystem and its time evo-
lution determines the evolution of the averages of all observables.

The corresponding arena for classical systems is given by functions or functionals on
a Poisson manifold as observables. Classical nonequilibrium thermodynamics provides
evolution equations for the values of observables in terms of Poisson and dissipative
brackets as the appropriate geometric structures [11], [28], [26], [27]. In practice, one
usually follows the evolution of a point x in a Poisson manifold. The evaluation of
observables as functions or functionals of the state variable(s) x is the classical counterpart
of the averaging of quantum observables with a density matrix ρ.

The key idea is the need for separate geometric structures for generating reversible
and irreversible dynamics from energy and entropy, respectively. In quantum mechanics,
the Hamiltonian and von Neumann’s entropy are available. The proper structure under-
lying reversible mechanics is known to be given by the quantum Poisson bracket of two
observables A and B in terms of their commutator and Planck’s constant h̄,

(A,B) =
1

ih̄
[A,B] (7.2.2.9)

motivated and introduced by Dirac [17]. The symbol (A,B) is used for the quantum
Poisson bracket and it should not be confused with the scalar product. The rate of
reversible change of the average 〈A〉ρ = Tr(Aρ) of a quantum observable A is given
by the average 〈(A,H)〉ρ, where the observable H is the Hamiltonian of the quantum
system. In the same spirit, we next propose the simple geometric structure behind all
irreversible dynamics. The essential structural element is 〈(A,Q); (B,Q)〉ρ where Q is an
operator that provides the weak dissipative coupling of the quantum subsystem with its
environment. The bilinear pairing 〈;〉ρ in its structural element is the canonical correlation
[29]

〈A;B〉ρ =

1∫
0

Tr(ρλAρ1−λB)dλ = Tr(AρB), (7.2.2.10)

where

Aρ =

1∫
0

ρλAρ1−λdλ, (7.2.2.11)

is basically the product of the observable A and the density matrix ρ but, it’s necessary
to compromise between writing ρ to the left or the right of A, it is placed as a subscript.
The canonical correlation has the following properties:

a. it is symmetric,
〈A;B〉ρ = 〈B;A〉ρ (7.2.2.12)

for all observables A, B, and
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b. It is positive,
〈A;A〉ρ ≥ 0, (7.2.2.13)

for all observables A.

Additional properties can be inferred from Lieb’s theorem [2]

ft(A,B) = −Tr{X+AtXB1−t} (7.2.2.14)

The functional ft is jointly convex in its arguments A and B, where A, B are positive
operators, X is an arbitrary fixed operator and t is a fixed number in the interval [0, 1].
In the very same way that the reversible structure 〈(A,B)〉ρ assists the Hamiltonian
to generate reversible evolution, irreversible evolution should be generated by entropy by
means of the irreversible geometric structure 〈(A,Q); (B,Q)〉ρ. Assuming von Neumann’s
logarithmic form of the entropy, this possibility relies on the following identity:

(lnρ, Aρ) = (ρ,A). (7.2.2.15)

To prove this result, which is crucial for a thermodynamically consistent construction
of irreversible dynamics generated by von Neumanns entropy, we can look at arbitrary
matrix elements formed with the eigenstates of the density matrix

(lnpn − lnpm) 〈n |Arho |m〉 = pmln
pn
pm

1∫
0

(
pn
pm

λ
)
dλ 〈n |A |m〉

= (pn − pm) 〈n |A |m〉 .

(7.2.2.16)

At this point, all the essential ingredients of nonequilibrium thermodynamics have been
presented and the formulation of the general evolution equations for dissipative quantum
systems is straightforward. The only new element is the canonical correlation of two
commutators required to construct irreversible dynamics from the entropy.

In order to obtain the total energy and entropy of a closed system consisting of a quan-
tum subsystem and its classical environment it is necessary to know the corresponding
pairs Ã of quantum and classical observables, A and Ae, so that on can write

Ã = 〈A〉ρ + Ae,x. (7.2.2.17)

where the subscript x indicates that an observable is evaluated in the classical state x.
For the energy H̃, A is the Hamiltonian H of the quantum subsystem and Ae is the
energy He of the environment. For the entropy S̃, the following S = −kBlnρ is chosen
as operator A, where kB is the Boltzmann’s constant, and Ae is the entropy Se of the
classical environment. Then, the evolution of the average Ā of any joint observable Ã of
the quantum system and its environment can be formulated in terms of the generators
H̃ and S̃,

Ã

dt
= P(Ã, H̃) +D(Ã, S̃), (7.2.2.18)

where P is the reversible Poisson contribution, while D is the irreversible dissipative
contribution. Both contributions consist of classical and quantum-mechanical contribu-
tions. This formulation is the most natural generalization of the GENERIC framework
of classical nonequilibrium thermodynamics [11], [26], [27]. So,

P(Ã, B̃) = {Ae, Be}x + 〈(A,B)〉ρ , (7.2.2.19)
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where {,} is the classical Poisson bracket and it should not be confused with the anticom-
mutator in quantum mechanics. The distinction between classical Poisson brackets and
quantum anticommutators (both expressed as curly brackets) as well as between classi-
cal dissipative brackets and quantum commutators (both expressed as square brackets)
should always be clear from the context, and this distinction is facilitated by using bold-
face brackets for the classical objects. For the dissipative contribution to evolution we
employ the following bracket structure:

D(Ã, B̃) =[Ae, Be]x + [He, He]
Q
x 〈(A,Q); (B,Q)〉ρ

− [Ae, He]
Q
x (H,Q); (B,Q)〉ρ

− [He, Be]
Q
x (A,Q); (H,Q)〉ρ

+ [Ae, Be]
Q
x (H,Q); (H,Q)〉ρ

(7.2.2.20)

The standard classical dissipative bracket, [, ], and the dissipative bracket, [, ]Q, are
both symmetric and positive semidefinite, but the latter does not need to fulfill the usual
GENERIC degeneracy expressing energy conservation. This conservation of energy is
guaranteed by the form of 7.2.2.20, which is actually motivated by energy conservation
and that is why the last three compensation terms are needed. All the essence of the
dissipative bracket is contained in the first line of Eq. 7.2.2.20. As the coupling between
the quantum system and its classical environment is purely irreversible, the entropy of
each subsystem is conserved by its own reversible dynamics, {Ae, Se} = 0 and 〈(A, S)〉ρ =
0 for arbitrary observables Ae and A. The dissipative structure, Eq. 7.2.2.20 can be
generalized by summing up contributions from several different coupling operators Q,
each of them coming with its own classical dissipative bracket [, ]Q. Also, The different
irreversible processes could even be coupled.

Considering now the fundamental equation 7.2.2.18 along with the reversible and ir-
reversible contributions, Eqs 7.2.2.19 and 7.2.2.20 respectively, and separating the contri-
butions involving the quantum observable A and the classical observable Ae, the following
equation is obtained for the evolution of averages in the quantum subsystem:

d 〈A〉ρ
dt

= 〈(A,H)〉ρ − [He, Se]
Q
x 〈(A,Q); (H,Q)〉ρ

+ kB[He, He]
Q
x 〈(Q, (Q,A))〉ρ .

(7.2.2.21)

The classical environment is governed by the evolution equation

dAe,x
dt

={Ae, He}x − kB[Ae, He]
Q
x 〈(Q, (Q,H))〉ρ

+ [Ae, Se]x + [Ae, Se]
Q
x 〈((H,Q); (H,Q))〉ρ .

(7.2.2.22)

From the consistent evolution of the averages of arbitrary observables A one can infer
the underlying evolution equation for the density matrix ρ. Indeed, the following master
equation for the density matrix reproduces the evolution equation 7.2.2.21 for arbitrary
averages

dρ

dt
=− (ρ,H) + [He, Se]

Q
x (Q, (Q,H)ρ)

+ kB[He, He]
Q
x (Q, (Q, ρ))

(7.2.2.23)
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as can be verified by means of the identities

〈(A,H)〉ρ = −Tr[A(ρ,H)] (7.2.2.24)

〈(Q, (Q,A))〉ρ = Tr[A(Q, (Q, ρ))] (7.2.2.25)

〈(A,Q); (H,Q)〉ρ = −Tr[A(Q, (Q,H)ρ)] (7.2.2.26)

〈A〉ρ = Tr(Aρ) (7.2.2.27)

which follow directly from the definitions 7.2.2.9 and 7.2.2.10. The master equation
7.2.2.23 is our fundamental equation for open quantum systems. The existence of a
master equation implies that the evolution of all averages is formulated in a consistent
way. In view of the definition 7.2.2.11, the second term in Eq. 7.2.2.23 will, in general,
be nonlinear in ρ. This quantum nonlinearity of an irreversible contribution caused by
noncommutativity of observables implies that the above master equation cannot be of
the popular Lindblad form [9]. The most natural linear approximation to the GENERIC
master equation 7.2.2.23 is obtained in terms of the symmetric anticommutator

(Q,H)ρ ≈
1

2
{(Q,H), ρ}, (7.2.2.28)

possibly in combination with a modification of the coefficients. Note, however, that
linearizations spoil the thermodynamic structure and are hence not recommendable. In
particular, the nonlinearity guarantees a proper equilibrium solution.

A similar master equation of the form of 7.2.2.23, referring to an arbitrary quantum
system in contact with a heat bath, has been derived from H. Grabert in 1982 [5] by
projection operator techniques with a relevant ensemble of the exponential form, given
in the next section.

7.2.3 Derivation by Projection Operator Techniques

As a general example of the GENERIC master equation 7.2.2.23 is provided by an arbi-
trary quantum system in contact with a heat bath, for which H. Grabert [5] has derived a
quantum master equation by projection operator techniques with a relevant ensemble of
the exponential form. That derivation was motivated by the failure of the frequently used
quantum regression hypothesis, which assumes that the decay of two-time correlations is
governed by exactly the same evolution equation as the decay of averages and which is
an essential part of the linear standard theory of quantum Markov processes.

To begin with, the Hilbert space H of the entire system is the tensor product of the
Hilbert spaces of HS and HR of the two subsystems S and R. The trace Tr over a
complete set of orthnomal functions in H can be carried out in two steps

Tr = trtrR (7.2.3.1)

where tr and trR denote the partial traces over a complete set of orthonormal states
in HS and HR, respectively. The state of the subsystem S is described by the reduced
density matrix

ρ(t) = TrR = W (t) (7.2.3.2)

where W (t) is the density matrix of the entire system. Because of Eq. 7.2.3.1, the mean
value of any variable u of S is found to be

〈u(t)〉 = Tr(uW (t)) = tr(uρ(t)) (7.2.3.3)
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so that ρ(t) contains complete information about S. In thermal equilibrium the state of
S ⊗R is described by a canonical density matrix

Wβ = Z−1
β e−βH , Zβ = Tr(e−βH ) (7.2.3.4)

where H is the Hamiltonian of the entire system. The corresponding reduced matrix
reads

ρβ = trRWβ. (7.2.3.5)

On defining an effective Hamiltonian H of S vy

H =
1

β
lntrRe

−β(H), (7.2.3.6)

the equilibrium state of S may be written as

ρβ = Z−1
β e−βH . (7.2.3.7)

Since H will depend on the reservoir temperature in general, it might more appropriately
be called the free energy operator of S. We now consider a nonequilibrium state. Given
the reduced density matrix ρ(t) of S, we may introduce a relevant density matrix W̄ (t)
of S ⊗R by

W̄ (t) = Z(t)−1e−β(H −µ(t)), Z(t) = Tr(e−β(H −µ(t))) (7.2.3.8)

where µ(t) is an operator acting in the Hilbert space HS of S only. This operator is
determined by the requirement

trRW̄ (t) = ρ(t). (7.2.3.9)

Hence, as far as the state of the subsystem S is concerned, the relevant density matrix
W̄ (t) and the true density matrix W (t) are equivalent. Furthermore, an initial nonequi-
librium state prepared by applying a perturbation Hext to the subsystem S is of the form
7.2.3.8 with µ(t) = −Hext. µ(t) may be looked upon as a thermodynamic force operator
conjugate to the reduced density matrix ρ(t). A small change δµ(t), of this force operator
leads to a change δW̄ (t) of the relevant density matrix 7.2.3.8 given by

δW̄ (t) = βK (t)(δµ(t)− ¯〈δµ(t)〉) (7.2.3.10)

where

K (t)U = (Z(t)β)−1

β∫
0

dαe−α(H −µ(t))Ue−(β−α)(H −µ(t)) (7.2.3.11)

and
¯〈δµ(t)〉 = Tr(δµ(t)W̄ (t)). (7.2.3.12)

Since a change of µ(t) by a c-number has no effect on W̄ (t) but is cancelled by the
associated change of the normalization factor Z(t), without a loss of generality it may
assumed

¯〈δµ(t)〉 = 0. (7.2.3.13)

From Eqs 7.2.3.8 and7.2.3.10 it is obtained for the change δρ(t) of the reduced density
matrix

δρ = βk(t)δµ(t) (7.2.3.14)
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where

k(t)u = TrR(K (t)u)

= (Z(t)β)−1

β∫
0

dαtrR(e−α(H − µ(t))ue−(β−α)(H )−µ(t)).
(7.2.3.15)

K (t) is a super-operator defined as a transformation of operators U of the entire system
S⊗R, while k(t) is defined as a transformation of operators u of the subsystem S. At this
point, it is necessary to distinguish k(t) and TrR(K (t)) in general. The transformation
trR(K (t)) reduces operators acting inH to operators acting inHS only. However, the two
transformations k(t) and TrR(K (t)) coincide when they are applied to the subsystem
S. Through combination of Eqs 7.2.3.2, 7.2.3.10, 7.2.3.13, 7.2.3.14 it is found that

δW̄ (t) = P(t)δW (t) (7.2.3.16)

where
P(t) = (K)(t)k(t)−1trR (7.2.3.17)

is a projection operator. From Eqs 7.2.3.15 and 7.2.3.16 we see that this projection
operator has the following properties

P(t)P(′t) = P(t) (7.2.3.18a)

and
˙̄W (t) = P(t)Ẇ (t). (7.2.3.18b)

The true density matrix W (t) obeys the Liouville - von Neumann equation

Ẇ (t) = −iL (t)W (t). (7.2.3.19)

The Liouville operator L (t) of the entire system S ⊗ R may contain a time-dependent
part of due to an external perturbation Hext(t) acting upon S

L (t) =
1

h̄
[H +Hext,%]. (7.2.3.20)

By decomposing W (t) into
W (t) = W̄ (t) + ∆W (t) (7.2.3.21)

where ∆W (t) is the deviation from the relevant form, from Eqs 7.2.3.18b 7.2.3.19 they
are obtained two coupled equations of motions

˙̄W (t) = −iP(t)L (t)W̄ (t)− iP(t)L (t)∆W (t) (7.2.3.22)

and
∆Ẇ (t) = −i(1−P(t))L (t)W̄ (t)− i(1−P(t))L (t)∆W (t). (7.2.3.23)

The integration of 7.2.3.23 leads to

∆W (t) = G (t, 0)∆W (0)−
t∫

0

dsG (t, s)(1−P(s))iL (s)W̄ (s). (7.2.3.24)
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Here we have introduced the time-ordered exponential

G (t, s) = Te
−

(1−P(u))iL (u)∫
s

du()
(7.2.3.25)

where operators are ordered from right to left as time increases. Inserting 7.2.3.24 into
7.2.3.22, it is found that

˙̄W (t) = −iP(t)L (t)W̄ (t)−
t∫

0

dsP(t)L (t)G (t, s)(1−P(s))L (s)W̄ (s)−iP(t)L (t)G (t, 0)∆W (0).

(7.2.3.26)
We will assume that the initial nonequilibrium state has been prepared by means of a
constant external perturbation applied to the subsystem S. When at time t = 0 the steady
state in the presence of this perturbation has been reached, the initial nonequilibrium
density matrix W (0) is of the relevant form. Then

∆W (0) = 0, (7.2.3.27)

and the last term in Eq. 7.2.3.26 vanishes. From Eq. 7.2.3.15 and 7.2.3.17 we get

trRP(t) = trR. (7.2.3.28)

Using 7.2.3.9, 7.2.3.27, 7.2.3.28 it is obtained from 7.2.3.26 for the time rate of change of
the reduced density matrix

ρ̇(t) = −itrR(L (t)W̄ (t))−
t∫

0

dstrR
(
L (t)G (t, s)(1−P(s))L (s)W̄ (s)

)
. (7.2.3.29)

By writing the Liouvilian 7.2.3.19 in the form

L (t) =
1

h̄
[H − µ(t),%] +

1

h̄
[µ(t) +Hext(t),%] (7.2.3.30)

where the first term commutes with W̄ (t). Using Eq. 7.2.3.9, it is found that

trR(L (t)W̄ (t)) = −1

h̄
[ρ(t), µ(t) +Hext(t)]. (7.2.3.31)

Furthermore, the identity

[A, eB] =

1∫
0

dφeφB[A,B]e(1−φ)B (7.2.3.32)

gives by virtue of 7.2.3.8, 7.2.3.11 and 7.2.3.20

L (t) = W̄ (t) = −βK (t)L (t)(H − µ(t))

= βK (t)L (t)(µ(t) +Hext(t)).
(7.2.3.33)

Now, by making use of Eqs 7.2.3.31 and 7.2.3.33, the evolution of equation 7.2.3.29 may
be transformed to

ρ̇(t) = −V (t)(µ(t) +Hext(t))−
1∫

0

dsD(t, s)(µ(s) +Hext(s)), (7.2.3.34)
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where we have introduced the transport operators

V (t)u = −1

h̄
[ρ(t), u] (7.2.3.35)

and

D(t, s)u = βtrR (L (t)G (t, s)(1−P(s))K (s)L (s)u) (7.2.3.36)

where V (t) describes the instantaneous transport while D(t, s) describes the retarded
transport caused by forces at earlier times. Their time dependence arises only through
µ(t) and Hext(t) Equation 7.2.3.34 is an exact evolution equation (generalized master
equation) for the density matrix ρ(t) of the subsystem S, which is nonlinear. This non-
linearity is a pure quantum effect.

At this point, we deal with the problem of finding an approximate equation of motion
in cases where memory effects may be disregarded. Such an approximation is conveniently
split into two parts. First, we aim at an approximate expression for the thermodynamic
force operator µ(t) in terms of the density matrix ρ(t). This amounts to an approximate
description of the static behavior of S. Second, approximate expressions for the transport
operators describing the dynamic behavior are sought for. The result of this investigation
is the Markovian master equation, which will be showed later on. The thermodynamic
force operator µ(t) introduced in 7.2.3.8 is determined by the requirement 7.2.3.9. We
now assume that this relation between µ(t) and ρ(t) can be replaced by

ρ(t) = N(t)e−β(H−µ(t), N(t) = tr
(
e−β(H−µ(t))

)
(7.2.3.37)

where H has been introduced earlier in Eq. 7.2.3.6. This approximation amounts to the
assumption that the steady state of S in the presence of a time-independent perturbation
Hext is of the form

ρst ∼ e−β(H+Hext). (7.2.3.38)

While this formula is precise for classical systems, it is valid only approximately in the
quantal case. The effective Hamiltonian H characterizing the equilibrium state of S
contains frequency shifts due to the interaction with R. When a perturbation Hext is
applied to S, the bath state is perturbed by the combined action of Hext and the coupling
between S and R. The modified bath state reacts upon S leading to a small change of
the effective Hamiltonian. This indirect effect of the perturbation, mediated by the bath,
is disregarded in 7.2.3.38. Using the approximate result 7.2.3.37, we obtain instead of
7.2.3.14

δρ = βK(t)δµ(t) (7.2.3.39)

where

K(t)u = (N(t)β)−1

β∫
0

dα(e−α(H − µ(t))ue−(β−α)(H)−µ(t))

=

1∫
0

dxρ(t)xuρ(t)1−x

(7.2.3.40)

is a special type of multiplication with the density matrix ρ(t) which in the classical limit
reduces to an ordinary multiplication. Note that K(t)u is self adjoint if u is selfadjoint.
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The transport operator V (t) describes the reversible organized motion of S. Since H −
µ(t) commutes with ρ(t), we obtain from 7.2.3.35 and 7.2.3.37

− V (t)(µ(t) +Hext) = − i
h̄

[H +Hext(t), ρ(t)] = −iL0(t)ρ(t) (7.2.3.41)

where L0(t) is the reversible Liouvillian. Thus the internal reversible dynamics are gov-
erned by the effective Hamiltonian H. The transport operator D(t, s) introduced in Eq.
7.2.3.36 reads

D(t, s)u = βtrR (L (t)(1−P(t))G (t, s)(1−P(s))K (s)L (s)u) (7.2.3.42)

where the term (1 −P()) has been inserted and is permitted because of Eq. 7.2.3.18a.
The Hamiltonian H (t) of S ⊗R can be split into

H (t) = HS +HR + ′H +Hext(t) (7.2.3.43)

The interaction ′H between S and R may be written as

′H =
∑
l

SlRl (7.2.3.44)

where Sl and Rl are variables of S and R respectively. Then, ot is shown that

trR (L (t)(1−P(t))U) =
1

h̄

∑
l

[Sl, trR(Rl(1−P(t))U)] (7.2.3.45)

and

(1−P(s))K (s)L (s)u =
1

h̄
(1−P(s))K (s)

∫
l

Rl[Sl, u] (7.2.3.46)

where U is an operator of S ⊗R while u is an operator of S. Using the above equations
?? and 7.2.3.46, the transport operator 7.2.3.42 may be transformed into

D(t, s)u =
∑
l,m

1

h̄2 [Sl, βDl,m(t, s)k(s)[Sm, u]] (7.2.3.47)

where the diffusion operators have been introduced

Dlm(t, s) = trR
(
Rl(1−P(t))G (t, s)(1−P(s))K (s)k(s)−1Rm

)
(7.2.3.48)

So far, all expressions for D(t, s) are exact. We shall assume now, that the motion of
the subsystem S is slow compared to the reservoir motion. This means that (in terms of
properly scaled variables) the commutator [Sl, u] may be regarded as small in compari-
son to a commutator of reservoir variables. Since 7.2.3.47 contains two Sl-commutators
explicitly, we may evaluate 7.2.3.48 by treating the variables of S as c-numbers. We
mention that the diffusion operators will depend on the state of the system S in general.
A related phenomenon is met within the theory of classical irreversible systems, where
the state-dependence of the diffusion kernels describes multiplicative thermal noise. To
keep things as simple as possible, this state-dependence will be disregarded. Finally, we
disregard the retardation in the generalized master equation, since memory effects are of
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the third order in the slowness parameter of S. This way, we obtain after some algebra
the Markovian approximation∫

0tdsDlm(t, s) = k(s)[Sm, µ(s) +Hext(s)] = DlmK(t)[Sm, µ(t) +Hext(t)] (7.2.3.49)

where Kt has been defined in 7.2.3.40. The diffusion coefficients Dlm are time-integrals
over canonical correlations of reservoir variables

Dlm =

∞∫
0

dt
1

β

β∫
0

dα 〈δRl(t− ih̄α)δRm〉R (7.2.3.50)

where
δRl = Rl − 〈Rl〉R . (7.2.3.51)

Instead od Dlm it is convenient to introduce damping coefficients γlm by

Dlm = kBTγlm (7.2.3.52)

because the γlm, remain finite in the low temperature limit T → 0. By virtue of Eqs
7.2.3.47, 7.2.3.49 and 7.2.3.52 the generalized master equation 7.2.3.34 reduces to the
approximate Markovian master equation

ρ̇(t) = −R(t)(µ(t) +Hext(t)) (7.2.3.53)

where R(t) is the transport operator in the Markovian limit. It consists of two parts, a
commutator

V (t) = − i
h̄

[ρ(t),%] (7.2.3.54)

and a sum of double commutators

D(t) =
i

h̄2

∑
l,m

γlm[Sl,K(t)[Sm,%]]. (7.2.3.55)

Equation 7.2.3.53 has the form of a transport equation. The thermodynamic force opera-
tor µ(t) driving the system to equilibrium is related to the density matrix ρ(t) by 7.2.3.37.
The Markovian master equation 7.2.3.53 may also be written in a different form. Using
the identity 7.2.3.32 and Eq. 7.2.3.40 one shows that

[Sm, ρ(t)] = −βK(t)[Sm, H − µ(t)] (7.2.3.56)

from which on can find

D(t)µ(t) =
i

h̄2

∑
l,m

γlm[Sl,K(t)[Sm, H] + kBT [Sm, ρ(t)]]. (7.2.3.57)

In the case that no external perturbation is applied, it is obtained from 7.2.3.53 by means
of 7.2.3.41 and 7.2.3.57 the following

ρ̇(t) = − i
h̄

[H, ρ(t)]− i

h̄

∑
l,m

γlm[Sl,K(t)Ṡm]− kBT

h̄2

∑
l,m

γlm[Sl, [Sm, ρ(t)]] (7.2.3.58)
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where

Ṡm =
i

h̄
[H,Sm]. (7.2.3.59)

Since in the second term on the right hand side of Eq. 7.2.3.58 the dependence on ρ(t)
arises through the multiplication operator K(t), Eq. 7.2.3.58) is not a linear equation.

The main results Eq. 7.2.3.53 is exactly of the form of Eq. 7.2.2.23 for the special
case of a heat bath as classical environment, that is, with constant coefficients [He, Se]

Q
x

and [He, He]]
Q
x = Te[He, Se]]

Q
x and without the accompanying feedback equation 7.2.2.22

for the evolution of the classical environment. It is quite remarkable that the detailed
projection operator derivation from statistical mechanics provides exactly the same non-
linear quantum master equation as the application of Diracs method of classical analogy
to the geometric formulation of nonequilibrium thermodynamics.

7.2.4 Applied Thermodynamic Quantum Master Equation

The quantum master equation describing the evolution of the density matrix (or statistical
operator) ρ of a quantum subsystem in contact with a classical environment in state x is

∂ρ

∂t
=
i

h̄
[ρ,Hs]−

1

kB

∑
k

[He, Se]
Qk
x [Qk, [Qk, Hs]ρ]−

∑
k

[He, He]
Qk
x [Qk, [Qk, ρ]] (7.2.4.1)

The first term describes the reversible contribution to the evolution generated by the
Hamiltonian H of the quantum subsystem via the commutator. The remaining terms
are of irreversible nature and arise due to the coupling of the quantum subsystem to
its environment and lead to non-unitary evolution of indicating that we go beyond the
simple Schrödinger-type of evolution of closed quantum systems. If the latter terms would
be absent (equal to zero), the resulting master equation would reduce to the well-known
Lindblad form describing the most general dynamics of a quantum subsystem exposed
to an environment under linearity and Markovian assumptions. The irreversible terms
are expressed through double commutators involving the self-adjoint coupling operator
Q so that the normalization condition, Tr(ρ) = 1, is automatically preserved in time.
As a consequence of the occurrence of commutators with the coupling operator Q, the
evolution of the average 〈Q〉ρ performed with the time-dependent density matrix ρ is not
explicitly affected by the dissipative terms.

As we mentioned, the type of coupling to the environment is characterized by the
self-adjoint operators Qk, whereas the corresponding coupling strength is given by the
dissipative brackets [·, ·]Qkx , defined as a binary operation on the space of observables for
the classical environment . If the equilibrium or non-equilibrium states of the environment
are characterized by state variables x, classical observables are functions or functionals
of x, and their evaluation at a particular point of the state space is indicated by the
subscript x. The classical observables He and Se in Eq. 7.2.4.1 are the energy and the
entropy of the environment, respectively. Dissipative brackets are commonly used to
characterize the entropy production rate in nonequilibrium thermodynamics [11], [28].
They are characterized by the following properties:
[Ae, Be] is bilinear in Ae and Be, is symmetric

[Ae, Be] = [Be, Ae], (7.2.4.2)

as well as non-negative
[Ae, Be] ≥ 0, (7.2.4.3)
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and satisfies the Leibniz or product rule

[AeBe, Ce] = Ae[Be, Ce] +Be[Ae, Ce], (7.2.4.4)

for arbitrary environmental variables Ae, Be, and Ce.
The non-linear part is embedded in the commutator [Qk, H]ρ. The subscript ρ below

an operator A indicates a compromise of placing the density matrix on the right and on
the left of this operator,

Aρ =

1∫
0

ρλAρ1−λdλ. (7.2.4.5)

In standard approaches [2], [6] the Liouvillian of quantum master equations contains terms
in which the density matrix ρ is placed on the right site, the left site, or alternatively
in between two coupling operators, but not on both sites of an operator simultaneously.
The structural element 7.2.4.5 includes this possibility. The resulting non-linear term
[Qk, [Qk, H]ρ] improves the relaxation behaviour of solutions and guarantees for the proper
long-time behaviour in case the classical environment is a heat bath [8]. The non-linear
terms in the quantum master equation, Eq. 7.2.4.1, appear in the form Aρ. To understand
their structure, we make use of the spectral decomposition of the density matrix,

ρ =
∑
n

pn |πn〉 〈πn|, (7.2.4.6)

where, pn and |πn〉 are the eigenvalues and orthonormal eigenvectors of the statistical
operator ρ, respectively. By performing the integration in Eq. 7.2.4.5, one obtains the
following identity [8], [12]

Aρ =
∑
m,n

pm − pn
ln pm − ln pn

Aπmn |πm〉 〈πn| , (7.2.4.7)

where Aπmn = 〈πm |A |πn〉 are the matrix elements of A in the eigenbasis of the density
matrix. The factor in front of Aπkl in Eq. 7.2.4.7 we have the inequalities

√
pmpn ≤

pm − pn
ln pm − ln pn

≤ pm + pn
2

, (7.2.4.8)

so that no problems occur for pm = pn. If pm or pn or both of them go to zero, also this
factor goes to zero. Moreover, like the bounds, the factor in the middle of Eq. 7.2.4.8
changes monotonically with pm, pn ∈ [0,1]. The operator Aρ can be decomposed into its
linear and non-linear contributions by means of

Aρ =
1

2

Aρ+ ρA+

1∫
0

[ρλ, [ρ1−λ, A]]dλ

 . (7.2.4.9)

If we neglect the last term in Eq. 7.2.4.9, then the master equation 7.2.4.1 becomes
linear. This linearization is not recommended [8] as it spoils the overall structure of the
thermodynamic approach. As a consequence of this linearization, the proper equilibrium
solution is not guaranteed in case of a heat bath environment.

In a heat bath environment the quantum subsystem cannot have any influence on the
state x of the environment. The complete thermodynamic information of the classical
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environment is encoded in the thermodynamic potentials. For convenience, we do this
description in terms of the entropy Se(He) which we use directly as the state variable x.
By means of the relation

1

Te
=
∂Se
∂t

(7.2.4.10)

we can assign a temperature Te to the heat bath. The most general form of the dissipative
bracket for a heat bath is given by

[Ae, Be]
Qk
Se

=
dAe
dHe

Mk(Te)
dBe

dHe

, (7.2.4.11)

where He can be obtained by Legendre transformation from Se. The functions Mk(Te)
and must be symmetric, positive semi-definite and satisfy the Leibniz rule. By combining
the previous equations, the heat bath obeys

Te[He, Se]
Qk
x = [He, He]

Qk
x (7.2.4.12)

This condition allows to write down all classical brackets appearing in the thermodynamic
quantum master equation 7.2.4.1 once the friction structures M j are known, so that
these carry the complete knowledge about the coupling strength between the quantum
subsystem and the environment:

∂ρ

∂t
=
i

h̄
[ρ,Hs]−

∑
k

1

kBTe,k
Mk(Te,k)[Qk, [Qk, Hs]ρ]−

∑
k

Mk(Te,k)[Qk, [Qk, ρ]]. (7.2.4.13)

It can be shown that the stationary solution of the quantum master equation, Eq.
7.2.4.13, is the Boltzmann distribution ρeq ∝ exp(− H

kBTe
) The guaranteed existence of

this solution is a direct consequence of the special form of the non-linear part [Qk, H]ρ in
the quantum master equation [8].

The general thermodynamic approach also provides an equation for the entropy pro-
duction [8]. The average S̄ of the total entropy of the quantum subsystem and its classical
environment evolves according the equation

dS̄

dt
= −kBTr

(
lnρ

dρ

dt

)
+
dSe,x
dt

. (7.2.4.14)

For two pure heat baths at temperature Tl and Tr, by construction of the dissipative
bracket the entropy production can be expressed in terms of the canonical correlation

dS̄

dt
=
∑
k=l,r

M(Tk)

kBTk
2 〈i[Qk, Fk]; i[Qk, Fk]〉ρ (7.2.4.15)

where
Fk = Hs + kBTkln(ρ), (7.2.4.16)

is the Helmholtz free energy operator,

〈i[Qk, Fk]; i[Qk, Fk]〉ρ = −〈[Qk, Fk]; [Qk, Fk]〉ρ
= −Tr

(
[Qk, Fk]ρ[Qk, Fk]

) (7.2.4.17)

The dissipative brackets are assumed to be given by the friction functions

Mk(Te,k) = γkTe,k (7.2.4.18)

Then, the non-linear thermodynamic quantum master equation 7.2.4.13 reads

∂ρ

∂t
= − i

h̄
[HS, ρ]−

∑
k=l,r

γk[Qk, [Qk, HS]ρ]−
∑
k=l,r

γkTe,k[Qk, [Qk, ρ]] (7.2.4.19)
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7.2.5 Three-Level System (Qutrit)

In the case of the three-level system, the form of the quantum master equation is of Eq.
7.2.4.19, where the coupling operators Qk (k = l, r) being 3 × 3 matrices, to be defined
later.

7.2.6 Harmonic Oscillator (10 states)

Similarly to the previous case, when the quantum subsystem is a harmonic oscillator the
form of the quantum master equation is of Eq. 7.2.4.19, where the coupling operators Qk

(k = l, r) being 10 × 10 matrices, to be defined later.
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7.3 Steady-State Effective Temperatures

Having the steady-state solutions in our hands for the density matrix, we can now com-
pute the Effective Temperatures of the systems from the following relation

ρii,ss
ρjj,ss

= e−βij(Ei−Ej) ⇔

βij = − 1

Ei − Ej
ln

(
ρii,ss
ρjj,ss

)
⇔

Tij = − Ei − Ej
ln
(
ρii,ss
ρjj,ss

) ,
(7.3.1)

which are as many as are the states of the system under study.

7.4 Heat Flux

Regardless what is the investigating quantum system, we have to respect some general
laws. In that sense, we have to somehow identify that the derived results are the expected
ones and lie on a reasonable basis. Someone might find enough ways to clarify this issue.
Although, consistency check which in our case illustrate this exact thing is that the
total heat flux of the open system is equal to zero. Consequently, this means that the
corresponding heat flux which enters the quantum system due to the heat bath with the
highest temperature values is equal to the one that exits the system towards the other
heat bath.

In order to do the above consistency check, the following relations must hold, depend-
ing on case that we study.

• Lindblad Master Equation

We define as the amount of heat flux reffering to each heat bath k as

JLME
k (t) = Tr (HSKk (ρ(t))) (7.4.1)

Hence, the total heat flux of the system is the sum of the above

JLME(t) =
∑
k

JLME
k (t) =

∑
k=l,r)

Tr (HSKk (ρ(t))) (7.4.2)

• Non-Linear Thermodynamic Quantum Master Equation

Likewise the previous case, the heat flux of corresponding to each heat bath k is
given by

JTQME
k (t) = Tr (HS (γk[Qk, [Qk, HS]ρ] + γkTe,k[Qk, [Qk, ρ]])) (7.4.3)

Consequently, the total heat flux of the system is given by

JTQME(t) =
∑
k

JTQME
k (t). (7.4.4)
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In both cases, the consistency check that we perform is that the following relation must
hold in steady-state

JLME(t→∞) = 0 (7.4.5)

and
JTQME(t→∞) = 0. (7.4.6)

which means that when the system reaches equilibrium, the total heat flux is equal to
zero and the individual ones are equal of opposite sign.
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Chapter 8
Numerical Methods

In this section, we are going to present the numerical methods that were implemented
for the solution of both master equations; the Lindblad-type of and the thermodynamic
quantum master equation. Each of them were applied to the case of the three-level and
harmonic oscillator quantum system, coupled each time to two heat baths of different
temperatures.

8.1 Adams-Bashforth method

Linear multi-step methods are used for the numerical solution of ordinary differential
equations. Conceptually, a numerical method starts from an initial point and then takes
a short step forward in time to find the next solution point. The process continues with
subsequent steps to map out the solution. Single-step methods (such as Euler’s method
of the form yn+1 = yn + hf(tn, yn)) refer to only one previous point and its derivative to
determine the current value. Methods such as Runge-Kutta take some intermediate steps
(for example, a half-step) to obtain a higher order method, but then discard all previous
information before taking a second step. Multi-step methods attempt to gain efficiency
by keeping and using the information from previous steps rather than discarding it.
Consequently, multi-step methods refer to several previous points and derivative values.
In the case of linear multi-step methods, a linear combination of the previous points
and derivative values is used. Numerical methods for ordinary differential equations
approximate solutions to initial value problems of the form

y′ = f(t, y), y(t0) = y[0]. (8.1.1)

The result is approximations for the value of y(t) at discrete times ti:

yi ≈ y(ti) where ti = t+ 0 + ih, (8.1.2)

where h is the time step. Multi-step methods use information from the previous s steps
to calculate the next value. In particular, a linear multi-step method uses a linear com-
bination of yi and f(ti, yi) to calculate the value of y for the desired current step. Thus,
a linear multi-step method is a method of the form

yn+s + as−1yn+s−1 + as−2yn+s−2 + · · ·+ a0yn

= h
(
bsf(tn+s, yn+s) + bs−1f(tn+s−1, yn+s−1) + · · ·+ b0f(tn, yn)

)
,

(8.1.3)
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The coefficients a0, . . . , as−1 and b0, . . . , bs determine the method. The designer of the
method chooses the coefficients, balancing the need to get a good approximation to the
true solution against the desire to get a method that is easy to apply. Often, many
coefficients are zero to simplify the method. One can distinguish between explicit and
implicit methods. If bs = 0 , then the method is called ”explicit”, since the formula can
directly compute yn+s . If bs 6= 0 then the method is called ”implicit”, since the value
of yn+s depends on the value of f(tn+s, yn+s) , and the equation must be solved for yn+s.
Iterative methods such as Newton’s method are often used to solve the implicit formula.
Sometimes an explicit multi-step method is used to ”predict” the value of yn+s. That
value is then used in an implicit formula to ”correct” the value. The result is a predic-
torcorrector method. Three families of linear multi-step methods are commonly used:
Adams-Bashforth methods, Adams-Moulton methods, and the backward differentiation
formulas (BDFs). The Adams-Bashforth-methods are explicit methods. The coefficients
are as−1 = −1 and as−2 = · · · = a0 = 0, while the bj are chosen such that the methods
has order s (this determines the methods uniquely). The Adams-Bashforth methods with
s = 1, 2, 3, 4, 5 are [30], [31] :

yn+1 = yn + hf(tn, yn), (This is the Euler method)

yn+2 = yn+1 + h

(
3

2
f(tn+1, yn+1)− 1

2
f(tn, yn)

)
,

yn+3 = yn+2 + h

(
23

12
f(tn+2, yn+2)− 4

3
f(tn+1, yn+1) +

5

12
f(tn, yn)

)
,

yn+4 = yn+3 + h

(
55

24
f(tn+3, yn+3)− 59

24
f(tn+2, yn+2)

+
37

24
f(tn+1, yn+1)− 3

8
f(tn, yn)

)
,

yn+5 = yn+4 + h

(
1901

720
f(tn+4, yn+4)− 1387

360
f(tn+3, yn+3)

109

30
f(tn+2, yn+2)

−637

360
f(tn+1, yn+1) +

251

720
f(tn, yn)

)
.

(8.1.4)

The coefficients bj can be determined as follows. Use polynomial interpolation to find
the polynomial p of degree s− 1 such that

p(tn+i) = f(tn+i, yn+i), for i = 0, . . . , s− 1. (8.1.5)

The Lagrange formula for polynomial interpolation yields

p(t) =
s−1∑
j=0

(−1)s−j−1f(tn+j, yn+j)

j!(s− j − 1)!hs−1

s−1∏
i=0
i6=j

(t− tn+i). (8.1.6)

The polynomial p is locally a good approximation of the right-hand side of the differential
equation y′ = f(t, y) that is to be solved, so consider the equation y′ = p(t) instead. This
equation can be solved exactly; the solution is simply the integral of p. This suggests
taking

yn+s = yn+s−1 +

∫ tn+s

tn+s−1

p(t) dt. (8.1.7)
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The Adams-Bashforth method arises when the formula for p is substituted. The coeffi-
cients bj turn out to be given by

bs−j−1 =
(−1)j

j!(s− j − 1)!

∫ 1

0

s−1∏
i=0
i6=j

(u+ i) du, for j = 0, . . . , s− 1. (8.1.8)

Replacing f(t, y) by its interpolant p incurs an error of order hs, and it follows that the
s-step Adams-Bashforth method has indeed order s [32] The Adams-Bashforth methods
were designed by John Couch Adams to solve a differential equation modelling capillary
action due to Francis Bashforth. Bashforth in 1883 published his theory and Adams’
numerical method [33].

A major disadvantage of multistep formulas is that they are not self-starting. Thus,
in the Adams-Bashforth method with s = 4 in Eq. 8.1.4, we must have four successive
values of f(x, y) at equally spaced points before this formula can be used. These starting
values must be obtained by some independent method. We might, for example, use
single-step Euler’s method or one of the Runge-Kutta methods to obtain these starting
values. We must also be assured that these starting values are as accurate as necessary
for the overall required accuracy. A second disadvantage of the Adams-Bashforth method
is that, although the local discretization error is O(h5), the coefficient in the error term
is somewhat larger than for formulas of the Runge-Kutta type of the same order. Runge-
Kutta methods are generally, although not always, more accurate for this reason. On
the other hand, the multistep formulas require only one derivative evaluation per step,
compared with four evaluations per step with Runge-Kutta methods, and are therefore
considerably faster and require less computational work [34].

In this work, the Adams-Bashforth method with s = 4 in Eq. 8.1.4 (4th order) is used,
with the help of single-step Euler’s scheme in order to obtain the four starting values.
The main reason for choosing this integration scheme to solve the two master equations
is because it requires less computational work which is very important, especially in the
case the quantum thermodynamic master equation, Eq. 7.2.4.1. The step that were
chosen was h = 10−2

8.2 Newton-Raphson Method

In numerical analysis, Newton’s method (also known as the Newton-Raphson method),
named after Isaac Newton and Joseph Raphson, is a method for finding successively
better approximations to the roots (or zeroes) of a real-valued function.

x : f(x) = 0. (8.2.1)

The Newton-Raphson method in one variable is implemented as follows: Given a function
f defined over the real x, and its derivative f ′, we begin with a first guess x0 for a root of
the function f . Provided the function satisfies all the assumptions made in the derivation
of the formula, a better approximation x1 is

x1 = x0 −
f(x0)

f ′(x0)
. (8.2.2)

The process is repeated as

xn+1 = xn −
f(xn)

f ′(xn)
, (8.2.3)
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until a sufficiently accurate value is reached.
In our implementation, we have a set of partial differential equations, corresponding

to the density matrix elements. Under steady-state condition, these equations become
algebraic and we write them in the residual form. We express each such equation, referring
to a density matrix element, to the real and imaginary component. So we have a set of
2× d equations, where d is the dimension of the density matrix in each case. So, we have
the following

F (xi) = 0, (8.2.4)

where x is the vector of unknown of dimension 2 × d. The first step is to calculate the
function values at a guessed, initial value, xi. Later on, we compute the Jacobian matrix,
J , at the current guess for the solution. Afterwards, we solve the linear system

Jdx = −F (xi) (8.2.5)

using LU decomposition, for the values of dx and then we update the guessed value

xi+1 = x+ dx. (8.2.6)

This procedure should be repeated, using the updated value of xi as the guess, until the
values of the residual vector, F (x) are sufficiently close to zero.
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Chapter 9
Non-Dimensionalization - Inputs

9.1 Non-Dimensionalization

The dimensionless form of the thermodynamic quantum master equation 7.2.4.19 is the
following:

∂ρ̃

∂t̃
= −i[H̃S, ρ̃]− γk[Qk, [Qk, H̃S]ρ]− γk ˜Te, k[Qk, [Qk, ρ̃]] (9.1.1)

where

• ω0 ≡ ω

• t̃ = tω0

• H̃S = HS
h̄ω0

• T0 = h̄ω0

kB

• ˜Te,k =
Te,k
T0

= T
T0

Specification of the characteristic frequency ω0 defines all dimensionless variables.
In this work, the above dimensionless form is applied to the systems of interest, in

order to extract our results.
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9.2 Inputs

As inputs to the solution of these master equations we have used the following: The
chosen Hamiltonian, HS, of the corresponding system under investigation, is

• Three-Level System (Qutrit)

HS =

0 0 0
0 0.7 0
0 0 1

 (9.2.1)

The coupling operators corresponding to the left (l) and the right (r) heat bath are
the following:

Ql =

 0 i i
−i 0 i
−i −i 0

 , (9.2.2a)

Qr =

0 −i −i
i 0 −i
i i 0

 (9.2.2b)

where we have chosen Qk = Qk
† for k = l, r.

• Harmonic Oscillator (10 states)

HS =



0.5 0 0 0 0 0 0 0 0 0
0 1.5 0 0 0 0 0 0 0 0
0 0 2.5 0 0 0 0 0 0 0
0 0 0 3.5 0 0 0 0 0 0
0 0 0 0 4.5 0 0 0 0 0
0 0 0 0 0 5.5 0 0 0 0
0 0 0 0 0 0 6.5 0 0 0
0 0 0 0 0 0 0 7.5 0 0
0 0 0 0 0 0 0 0 8.5 0
0 0 0 0 0 0 0 0 0 9.5


(9.2.3)

The coupling operators corresponding to the left (l) and the right (r) heat bath are
now the 10×10 matrices:

Ql =



0 i 0 0 0 0 0 0 0 0
−i 0 i 0 0 0 0 0 0 0
0 −i 0 i 0 0 0 0 0 0
0 0 −i 0 i 0 0 0 0 0
0 0 0 −i 0 i 0 0 0 0
0 0 0 0 −i 0 i 0 0 0
0 0 0 0 0 −i 0 i 0 0
0 0 0 0 0 0 −i 0 i 0
0 0 0 0 0 0 0 −i 0 i
0 0 0 0 0 0 0 0 −i 0


(9.2.4a)
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Qr =



0 −i 0 0 0 0 0 0 0 0
i 0 −i 0 0 0 0 0 0 0
0 i 0 −i 0 0 0 0 0 0
0 0 i 0 −i 0 0 0 0 0
0 0 0 i 0 −i 0 0 0 0
0 0 0 0 i 0 −i 0 0 0
0 0 0 0 0 i 0 −i 0 0
0 0 0 0 0 0 i 0 −i 0
0 0 0 0 0 0 0 i 0 −i
0 0 0 0 0 0 0 0 i 0


(9.2.4b)

where Qk = Qk
† for k = l, r.

At this point, it is important to note that the ij elements of the coupling operators
Qk (Qij

k ) that were used in order to define the Lindblad operators in 7.1.1.2 and 7.1.2.3
in the case of the Lindblad master equation 7.1.2, are condensed in a matrix Qk where
is the one that we defined above and are used in the thermodynamic quantum master
equation.

The temperature of the two heat baths were selected to be different to each other
and equal to Te,l = 0.4, for the left, and Te,r = 0.8 for the right one. As for the friction
coefficient, γl = γr = 0.01 assuming weak coupling with the environment . Also, we
assume h̄ = ω = kB = 1. The values of the coupling operators in each occasion have been
given earlier, in Eq. 9.2.2 and Eq. 9.2.4.

The initial condition used in both systems is that all the population is initially in the
ground state, i.e. at t = 0 the (1, 1) element of the density matrix is equal while all the
other element are equal to zero.

An important note is to check the properties of the density matrix, ρ, and if those
properties are fulfilled throughout our calculations. First of all, the diagonal elements
have to be real and greater than zero, while the sum of these terms must be equal to one,
as they express probability values. Also, the eigenvalues of this matrix each time must
be real and positive.
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Chapter 10
Results

10.1 Quantum Susbsystem coupled to One Heat

Bath

In this section, results are presented that have been obtained through the time integration
and the direct calculation of the steady-state values using the Lindblad Master Equation
(LME), Eq. 7.1.2, and the Thermodynamic Quantum Master Equation (TQME), Eq.
7.2.4.1. These results refer to the two cases that we study; the three-level and the
harmonic oscillator as quantum subsystems coupled to one heat bath. The inputs where
the same mentioned for the left heat bath only in section 9.2, with Te = 0.4 and γ = 0.01.

10.1.1 Time Integration

The integration scheme used in this work is the Adams-Bashforth 4th order (s = 4) in
Eq. 8.1.4) with the help of single-step Euler’s scheme in order to obtain the four starting
values. The integration time step that we set was h = 10−2.
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Three-Level System (Qutrit)
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Figure 10.1.1.1: Time evolution of the real and imaginary part of the diagonal density matrix
elements, ρ11, ρ22, ρ33, using the Lindblad Master Equation (LME) (real (green), imaginary
(black)) and the Thermodynamic Quantum Master Equation (TQME) (real (blue), imaginary
(red)) for the case of the Three-Level system (Qutrit), with Te = 0.4 and γ = 0.01.
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Figure 10.1.1.2: Same as 10.1.1.1 but for the non-diagonal density matrix elements, ρ12, ρ13,
ρ23.
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Figure 10.1.1.3: Same as 10.1.1.1 but for the eigenvalues of the density matrix.
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Figure 10.1.1.4: Same as 10.1.1.1 but for the heat flux of the heat bath and the energy E of
the system.
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Figure 10.1.1.5: Time evolution of the real and imaginary part of the entropy S of the system
and dS

dt , using the Thermodynamic Quantum Master Equation (TQME) (real (green), imaginary
(black)) for the case of the Three-Level system (Qutrit), with Te = 0.4 and γ = 0.01.
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Harmonic Oscillator (10 states)

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

ρ 11

t

 

 

real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)
Gibbs state

(a)

0 100 200 300 400 500

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

t

ρ 22

 

 

real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)
Gibbs state

(b)

0 100 200 300 400 500
−1

0

1

2

3

4

5

6

7
x 10

−3

t

ρ 33

 

 

real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(c)

0 100 200 300 400 500
−1

0

1

2

3

4

5

6

7
x 10

−4

t

ρ 44

 

 

real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)
Gibbs state

(d)

0 100 200 300 400 500
−1

0

1

2

3

4

5
x 10

−5

t

ρ 55

 

 

real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)
Gibbs state

(e)

Figure 10.1.1.6: Time evolution of the real and imaginary part of the diagonal density matrix
elements, ρ11, ρ22, ρ33, using the Lindblad Master Equation (LME) (real (green), imaginary
(black)) and the Thermodynamic Quantum Master Equation (TQME) (real (blue), imaginary
(red)) for the case of the Harmonic Oscillator (10 states), with Te = 0.4 and γ = 0.01.
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Figure 10.1.1.7: Same as 10.1.1.6 but for the diagonal density matrix elements, ρ66, ρ77, ρ88,
ρ99, ρ1010.

71



10.1. QUANTUM SUSBSYSTEM COUPLED TO ONE HEAT
BATH CHAPTER 10. RESULTS

0 50 100 150 200 250 300 350 400
−5

0

5
x 10

−18

t

ρ 12

 

 

real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(a)

0 100 200 300 400 500
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

t

ρ 13

 

 
real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(b)

0 100 200 300 400 500
−6

−4

−2

0

2

4

6
x 10

−18

t

ρ 14

 

 
real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(c)

0 100 200 300 400 500
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−6

t

ρ 15

 

 
real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(d)

0 100 200 300 400 500
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−18

t

ρ 16

 

 
real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(e)

0 100 200 300 400 500
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−9

t

ρ 17

 

 
real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(f)

Figure 10.1.1.8: Same as 10.1.1.6 but for the non-diagonal density matrix elements, ρ12, ρ13,
ρ14, ρ15, ρ16, ρ17.
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Figure 10.1.1.9: Same as 10.1.1.6 but for the non-diagonal density matrix elements, ρ18, ρ19,
ρ110, ρ23, ρ24, ρ25.
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Figure 10.1.1.10: Same as 10.1.1.6 but for the non-diagonal density matrix elements, ρ26,
ρ27, ρ28, ρ29, ρ210, ρ34.
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Figure 10.1.1.11: Same as 10.1.1.6 but for the non-diagonal density matrix elements, ρ35,
ρ36, ρ37, ρ38, ρ39, ρ310.
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Figure 10.1.1.12: Same as 10.1.1.6 but for the non-diagonal density matrix elements, ρ45,
ρ46, ρ47, ρ48, ρ49, ρ410.
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Figure 10.1.1.13: Same as 10.1.1.6 but for the non-diagonal density matrix elements, ρ56,
ρ57, ρ58, ρ59, ρ510, ρ67.
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Figure 10.1.1.14: Same as 10.1.1.6 but for the non-diagonal density matrix elements, ρ68,
ρ69, ρ610, ρ78, ρ79, ρ710.

78



CHAPTER 10. RESULTS
10.1. QUANTUM SUSBSYSTEM COUPLED TO ONE HEAT

BATH

0 100 200 300 400 500
−5

0

5
x 10

−23

t

ρ 89

 

 
real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(a)

0 100 200 300 400 500

−5

−4

−3

−2

−1

0

1

2

3

4
x 10

−11

t

ρ 81
0

 

 

real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(b)

0 100 200 300 400 500
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−23

t

ρ 91
0

 

 

real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(c)

Figure 10.1.1.15: Same as 10.1.1.6 but for the non-diagonal density matrix elements, ρ89,
ρ810, ρ910.
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Figure 10.1.1.16: Same as 10.1.1.6 but for the first five eigenvalues of the density matrix.
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Figure 10.1.1.17: Same as 10.1.1.6 but for the last five eigenvalues of the density matrix.
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Figure 10.1.1.18: Same as 10.1.1.6 but for the heat flux of the heat bath and the energy E
of the quantum system.
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Figure 10.1.1.19: Time evolution of the real and imaginary part of the entropy S of the
system and dS

dt , using the Thermodynamic Quantum Master Equation (TQME) (real (green),
imaginary (black)) for the case of the Harmonic Oscillator (10 states), with Te = 0.4 and γ =
0.01.
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10.1.2 Direct Steady-State Solution

In this section, we present the results obtained by an independent, non-linear matrix
algebra solver that we implemented for computing the steady-state solution of the density
matrix. These steady-state solutions are compared with the corresponding values taken
from the dynamic relaxation of numerical integration for all the studied occasions.

Three-Level System (Qutrit)
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Figure 10.1.2.1: Comparison of the steady-state solution of the diagonal density matrix
elements, ρ11, ρ22, ρ33, between the time integration and the direct calculation of the steady-state
values, using the Lindblad Master Equation (LME) (time integration: real (green), imaginary
(black), steady-state solution: real (grey triangular)) and the Thermodynamic Quantum Master
Equation (TQME) (time integration: real (blue), imaginary (red), steady-state solution: real
(light blue circle)), in the case of the Three-Level system (Qutrit), with Te = 0.4 and γ = 0.01.
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Harmonic Oscillator (10 states)
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Figure 10.1.2.2: Comparison of the steady-state solution of the diagonal density matrix el-
ements, ρ11, ρ22, ρ33, ρ44, ρ55, between the time integration and the direct calculation of the
steady-state values, using the Lindblad Master Equation (LME) (time integration: real (green),
imaginary (black), steady-state solution: real (grey triangular)) and the Thermodynamic Quan-
tum Master Equation (TQME) (time integration: real (blue), imaginary (red), steady-state
solution: real (light blue circle)), in the case of the Harmonic Oscillator (10 states), with Te =
0.4 and γ = 0.01.
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Figure 10.1.2.3: Same as 10.1.2.2 but for ρ66, ρ77, ρ88, ρ99, ρ1010.
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10.2 Quantum Susbsystem coupled to Two Heat

Baths - 1st Set

In this section, results are presented that have been obtained through the time integration
and the direct calculation of the steady-state values using the Lindblad Master Equation
(LME), Eq. 7.1.2, and the Thermodynamic Quantum Master Equation (TQME), Eq.
7.2.4.1. These results refer to the two cases that we study; the three-level and the
harmonic oscillator as quantum subsystems coupled to two heat baths. The inputs where
the same mentioned in section 9.2, with Te,l = 0.4, Te,r = 0.8 and γl = γr = 0.01.

10.2.1 Time Integration

The integration scheme used in this work is the Adams-Bashforth 4th order (s = 4) in
Eq. 8.1.4) with the help of single-step Euler’s scheme in order to obtain the four starting
values. The integration time step that we set was h = 10−2.
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Figure 10.2.1.1: Time evolution of the real and imaginary part of the diagonal density matrix
elements, ρ11, ρ22, ρ33, using the Lindblad Master Equation (LME) (real (green), imaginary
(black)) and the Thermodynamic Quantum Master Equation (TQME) (real (blue), imaginary
(red)) for the case of the Three-Level system (Qutrit), with Te,l = 0.4, Te,r = 0.8 and γl = γr
= 0.01.
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Figure 10.2.1.2: Same as 10.2.1.1 but for the non-diagonal density matrix elements, ρ12, ρ13,
ρ23.
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Figure 10.2.1.3: Same as 10.2.1.1 but for the eigenvalues of the density matrix.
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Figure 10.2.1.4: Same as 10.2.1.1 but for the heat flux of the left (10.2.1.4a), right (10.2.1.4b)
heat baths and the total one (10.2.1.4c).
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Figure 10.2.1.5: Same as 10.2.1.1 but for the energy E of the system.
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Figure 10.2.1.6: Time evolution of the real and imaginary part of the entropy S of the system
and dS

dt , dS
dt (left), dS

dt (right), using the Thermodynamic Quantum Master Equation (TQME)
(real (green), imaginary (black)) for the case of the Three-Level system (Qutrit), with Te,l =
0.4, Te,r = 0.8 and γl = γr = 0.01.
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Figure 10.2.1.7: Time evolution of the real and imaginary part of the diagonal density matrix
elements, ρ11, ρ22, ρ33, using the Lindblad Master Equation (LME) (real (green), imaginary
(black)) and the Thermodynamic Quantum Master Equation (TQME) (real (blue), imaginary
(red)) for the case of the Harmonic Oscillator (10 states), with Te,l = 0.4, Te,r = 0.8 and γl =
γr = 0.01.
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Figure 10.2.1.8: Same as 10.2.1.7 but for the diagonal density matrix elements, ρ66, ρ77, ρ88,
ρ99, ρ1010.

93



10.2. QUANTUM SUSBSYSTEM COUPLED TO TWO HEAT
BATHS - 1ST SET CHAPTER 10. RESULTS

0 50 100 150 200 250 300 350 400
−5

0

5
x 10

−18

t

ρ 12

 

 

real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(a)

0 50 100 150 200 250 300 350 400
−6

−4

−2

0

2

4

6

8
x 10

−3

t

ρ 13

 

 
real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(b)

0 50 100 150 200 250 300 350 400
−8

−6

−4

−2

0

2

4

6

8
x 10

−18

t

ρ 14

 

 

real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(c)

0 50 100 150 200 250 300 350 400
−3

−2

−1

0

1

2

3
x 10

−5

t

ρ 15

 

 
real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(d)

0 50 100 150 200 250 300 350 400
−6

−4

−2

0

2

4

6
x 10

−18

t

ρ 16

 

 
real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(e)

0 50 100 150 200 250 300 350 400
−1

−0.5

0

0.5

1

1.5

2
x 10

−10

t

ρ 17

 

 
real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(f)

Figure 10.2.1.9: Same as 10.2.1.7 but for the non-diagonal density matrix elements, ρ12, ρ13,
ρ14, ρ15, ρ16, ρ17.
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Figure 10.2.1.10: Same as 10.2.1.7 but for the non-diagonal density matrix elements, ρ18,
ρ19, ρ110, ρ23, ρ24, ρ25.
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Figure 10.2.1.11: Same as 10.2.1.7 but for the non-diagonal density matrix elements, ρ26,
ρ27, ρ28, ρ29, ρ210, ρ34.
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Figure 10.2.1.12: Same as 10.2.1.7 but for the non-diagonal density matrix elements, ρ35,
ρ36, ρ37, ρ38, ρ39, ρ310.
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Figure 10.2.1.13: Same as 10.2.1.7 but for the non-diagonal density matrix elements, ρ45,
ρ46, ρ47, ρ48, ρ49, ρ410.
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Figure 10.2.1.14: Same as 10.2.1.7 but for the non-diagonal density matrix elements, ρ56,
ρ57, ρ58, ρ59, ρ510, ρ67.
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Figure 10.2.1.15: Same as 10.2.1.7 but for the non-diagonal density matrix elements, ρ68,
ρ69, ρ610, ρ78, ρ79, ρ710.
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Figure 10.2.1.16: Same as 10.2.1.7 but for the non-diagonal density matrix elements, ρ89,
ρ810, ρ910.
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Figure 10.2.1.17: Same as 10.2.1.7 but for the first five eigenvalues of the density matrix.
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Figure 10.2.1.18: Same as 10.2.1.7 but for the last five eigenvalues of the density matrix.
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Figure 10.2.1.19: Same as 10.2.1.7 but for the heat flux of the left (10.2.1.4a), right (10.2.1.4b)
heat baths and the total one (10.2.1.4c).
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Figure 10.2.1.20: Same as 10.2.1.7 but for the energy E of the system.
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Figure 10.2.1.21: Time evolution of the real and imaginary part of the entropy S of the
system and dS

dt , dS
dt (left), dS

dt (right), using the Thermodynamic Quantum Master Equation
(TQME) (real (green), imaginary (black)) for the case of the Harmonic Oscillator (10 states),
with Te,l = 0.4, Te,r = 0.8 and γl = γr = 0.01.
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10.2.2 Direct Steady-State Solution

In this section, we present the results obtained by an independent, non-linear matrix
algebra solver that we implemented for computing the steady-state solution of the density
matrix. These steady-state solutions are compared with the corresponding values taken
from the dynamic relaxation of numerical integration for all the studied occasions.
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Figure 10.2.2.1: Comparison of the steady-state solution of the diagonal density matrix
elements, ρ11, ρ22, ρ33, between the time integration and the direct calculation of the steady-state
values, using the Lindblad Master Equation (LME) (time integration: real (green), imaginary
(black), steady-state solution: real (grey triangular)) and the Thermodynamic Quantum Master
Equation (TQME) (time integration: real (blue), imaginary (red), steady-state solution: real
(light blue circle)), in the case of the Three-Level system (Qutrit), with Tl = 0.4, Tr = 0.8 and
γl = γr = 0.01.
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Harmonic Oscillator (10 states)
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Figure 10.2.2.2: Comparison of the steady-state solution of the diagonal density matrix el-
ements, ρ11, ρ22, ρ33, ρ44, ρ55, between the time integration and the direct calculation of the
steady-state values, using the Lindblad Master Equation (LME) (time integration: real (green),
imaginary (black), steady-state solution: real (grey triangular)) and the Thermodynamic Quan-
tum Master Equation (TQME) (time integration: real (blue), imaginary (red), steady-state
solution: real (light blue circle)), in the case of the Harmonic Oscillator (10 states), with Tl =
0.4, Tr = 0.8 and γl = γr = 0.01.
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Figure 10.2.2.3: Same as 10.2.2.2 but for ρ66, ρ77, ρ88, ρ99, ρ1010.
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10.2.3 Effective Temperatures

Here, we present the effective, steady-state temperature using Eq. 7.3.1 and the steady-
state values of the diagonal elements of the density matrix, acquired from the direct
steady-state solution in the previous section. The following results refer to both quantum
systems, the three-level and the harmonic oscillator, using the Lindblad-type and the
Thermodynamic Quantum Master Equation.

ρ11,ss ρ22,ss ρ33,ss

LME 0.6949 0.1947 0.1104
TQME 0.6665 0.2076 0.1259

Table 10.2.3.1: Steady-state solutions for the diagonal density matrix elements using the Lind-
blad Master Equation (LME) and the Thermodynamic Quantum Master Equation (TQME),
for the Three-Level system (Qutrit), with Tl = 0.4, Tr = 0.8 and γl = γr = 0.01.

T eff12 T eff23 T eff13

LME 0.5503 0.5280 0.5434
TQME 0.6000 0.6000 0.6000

Table 10.2.3.2: Effective steady-state temperatures using the Lindblad Master Equation
(LME) and the Thermodynamic Quantum Master Equation (TQME), for the Three-Level sys-
tem (Qutrit), with Tl = 0.4, Tr = 0.8 and γl = γr = 0.01.

ρ11,ss ρ22,ss ρ33,ss ρ44,ss ρ55,ss

LME 0.8434 0.1320 0.0207 3.236E-03 5.066E-04
TQME 0.8111 0.1532 0.0289 0.0055 0.0010

Table 10.2.3.3: Steady-state solutions for the first five diagonal density matrix elements using
the Lindblad Master Equation (LME) and the Thermodynamic Quantum Master Equation
(TQME), for the Harmonic Oscillator system (10 states), with Te,l = 0.4, Te,r = 0.8 and γl =
γr = 0.01.

ρ66,ss ρ77,ss ρ88,ss ρ99,ss ρ1010,ss

LME 7.9E-05 1.2E-05 1.9E-06 3.0E-07 4.8E-08
TQME 0.0002 3.676E-05 6.9E-06 1.3E-06 2.5E-07

Table 10.2.3.4: Same as Table 10.2.3.3 for the last five diagonal density matrix elements.

T effij , for j > i, i, j = 1, . . . , 10

LME 0.5393
TQME 0.6000

Table 10.2.3.5: Effective steady-state temperatures using the Lindblad Master Equation
(LME) and the Thermodynamic Quantum Master Equation (TQME), for the Harmonic Oscil-
lator system (10 states), with Te,l = 0.4, Te,r = 0.8 and γl = γr = 0.01.
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10.2.4 Parametric Analysis

In this section, we present steady-state results for the density matrix and the effective
temperatures for a variety of temperature pairs acquired from the direct steady-state
solver. These results refer to both quantum systems, the three-level and the harmonic
oscillator, using the Lindblad-type and the Thermodynamic Quantum Master Equation.

Te,l Te,r ρ11,ss ρ22,ss ρ33,ss

0.1 0.8 0.9916 0.0079 0.0004
0.2 0.8 0.8742 0.0977 0.0281
0.3 0.8 0.7611 0.1619 0.0770
0.4 0.8 0.6950 0.1947 0.1103
0.5 0.8 0.6540 0.2142 0.1318
0.6 0.8 0.6256 0.2273 0.1470
0.7 0.8 0.6042 0.2371 0.1587
0.8 0.8 0.5871 0.2447 0.1682
0.9 0.8 0.5726 0.2511 0.1763
1 0.8 0.5605 0.2563 0.1832

Table 10.2.4.1: Steady-state solutions for the diagonal density matrix elements, referring to
the Three-Level system (Qutrit), using the Lindblad Master Equation (LME) for several values
of the heat bath temperatures, Tl and Tr, and γl = γr = 0.01.

Te,l Te,r T eff12 T eff23 T eff13

0.1 0.8 0.14 0.10 0.13
0.2 0.8 0.32 0.24 0.29
0.3 0.8 0.45 0.40 0.44
0.4 0.8 0.55 0.53 0.54
0.5 0.8 0.63 0.62 0.62
0.6 0.8 0.69 0.69 0.69
0.7 0.8 0.75 0.75 0.75
0.8 0.8 0.80 0.80 0.80
0.9 0.8 0.85 0.85 0.85
1 0.8 0.89 0.89 0.89

Table 10.2.4.2: Effective steady-state temperatures, referring to the Three-Level system
(Qutrit), using the Lindblad Master Equation (LME) for several values of the heat bath tem-
peratures, Te,l and Te,r, and γl = γr = 0.01.

110



CHAPTER 10. RESULTS
10.2. QUANTUM SUSBSYSTEM COUPLED TO TWO HEAT

BATHS - 1ST SET

Tl Tr ρ11,ss ρ22,ss ρ33,ss

0.1 0.8 0.7579 0.1599 0.0821
0.2 0.8 0.7236 0.1784 0.0979
0.3 0.8 0.6933 0.1942 0.1125
0.4 0.8 0.6665 0.2076 0.1259
0.5 0.8 0.6429 0.2190 0.1380
0.6 0.8 0.6221 0.2289 0.1491
0.7 0.8 0.6036 0.2373 0.1591
0.8 0.8 0.5871 0.2447 0.1682
0.9 0.8 0.5723 0.2512 0.176
1 0.8 0.5591 0.2568 0.1840

Table 10.2.4.3: Steady-state solutions for the diagonal density matrix elements, referring
to the Three-Level system (Qutrit), using the Thermodynamic Quantum Master Equation
(TQME) for several values of the heat bath temperatures, Tl and Tr, and γl = γr = 0.01.

Tl Tr T eff12 T eff23 T eff13

0.1 0.8 0.45 0.45 0.45
0.2 0.8 0.50 0.50 0.50
0.3 0.8 0.55 0.55 0.55
0.4 0.8 0.60 0.60 0.60
0.5 0.8 0.65 0.65 0.65
0.6 0.8 0.70 0.70 0.70
0.7 0.8 0.75 0.75 0.75
0.8 0.8 0.80 0.80 0.80
0.9 0.8 0.85 0.85 0.85
1 0.8 0.90 0.90 0.90

Table 10.2.4.4: Effective steady-state temperatures, referring to the Three-Level system
(Qutrit), using the Thermodynamic Quantum Master Equation (TQME) for several values
of the heat bath temperatures, TE,l and Te,r, and γl = γr = 0.01.

Tl Tr ρ11,ss ρ22,ss ρ33,ss ρ44,ss ρ55,ss

0.1 0.8 0.9996 4.0791E-04 1.7E-07 6.8E-11 2.8E-14
0.2 0.8 0.9692 0.0298 0.000919012 2.82992E-05 8.7E-07
0.3 0.8 0.9018 0.0886 0.008696108 8.53947E-04 8.3857E-05
0.4 0.8 0.8434 0.1320 0.02067123 0.0032 5.0661E-04
0.5 0.8 0.7996 0.1602 0.032113877 0.0064 0.0013
0.6 0.8 0.7654 0.1795 0.042110026 0.0099 0.0023
0.7 0.8 0.7374 0.1936 0.050833087 0.0133 0.0035
0.8 0.8 0.7135 0.2044 0.058567457 0.0168 0.0048
0.9 0.8 0.69225 0.2131 0.065549415 0.0202 0.0062
1 0.8 0.6734 0.2199 0.07184711 0.0235 0.0077

Table 10.2.4.5: Steady-state solutions for the first five diagonal density matrix elements,
referring to the Harmonic Oscillator system (10 states), using the Lindblad Master Equation
(LME) for several values of the heat bath temperatures, Tl and Tr, and γl = γr = 0.01.

111



10.2. QUANTUM SUSBSYSTEM COUPLED TO TWO HEAT
BATHS - 1ST SET CHAPTER 10. RESULTS

Tl Tr ρ66,ss ρ77,ss ρ88,ss ρ99,ss ρ1010,ss

0.1 0.8 1.1E-17 4.6E-21 1.9E-24 6.4E-28 3.1E-31
0.2 0.8 2.7E-08 8.3E-10 2.5E-11 7.8E-13 2.4E-14
0.3 0.8 8.2346E-06 8.1E-07 7.9E-08 7.8E-09 7.6E-10
0.4 0.8 7.931E-05 1.2415E-05 1.9E-06 3.0E-07 4.8E-08
0.5 0.8 2.5848E-04 5.1802E-05 1.0381E-05 2.1E-06 4.2E-07
0.6 0.8 5.4334E-04 1.2743E-04 2.9891E-05 7.0E-06 1.6E-06
0.7 0.8 9.2E-04 2.4154E-04 6.3418E-05 1.6650E-05 4.4E-06
0.8 0.8 0.0014 3.9462E-04 1.1306E-04 3.2393E-05 9.3E-06
0.9 0.8 0.0019 5.8700E-04 1.8057E-04 5.5550E-05 1.7088E-05
1 0.8 0.0025 8.1792E-04 2.6717E-04 8.7270E-05 2.8507E-05

Table 10.2.4.6: Same as Table 10.2.4.5 but for the last five diagonal density matrix elements.

Te,l Te,r T eff12 T eff23 T eff34 T eff45 T eff56

0.1 0.8 0.13 0.13 0.13 0.13 0.13
0.2 0.8 0.29 0.29 0.29 0.29 0.29
0.3 0.8 0.43 0.43 0.43 0.43 0.43
0.4 0.8 0.54 0.54 0.54 0.54 0.54
0.5 0.8 0.62 0.62 0.62 0.62 0.62
0.6 0.8 0.69 0.69 0.69 0.69 0.69
0.7 0.8 0.75 0.75 0.75 0.75 0.75
0.8 0.8 0.80 0.80 0.80 0.80 0.80
0.9 0.8 0.85 0.85 0.85 0.85 0.85
1 0.8 0.89 0.89 0.89 0.89 0.89

Table 10.2.4.7: Effective steady-state temperatures for the first five transitions, referring to
the Harmonic Oscillator system (10 states), using the Lindblad Master Equation (LME) for
several values of the heat bath temperatures, Tl and Tr, and γl = γr = 0.01.

Te,l Te,r T eff67 T eff78 T eff89 T eff910

0.1 0.8 0.13 0.13 0.13 0.13
0.2 0.8 0.29 0.29 0.29 0.29
0.3 0.8 0.43 0.43 0.43 0.43
0.4 0.8 0.54 0.54 0.54 0.54
0.5 0.8 0.62 0.62 0.62 0.62
0.6 0.8 0.69 0.69 0.69 0.69
0.7 0.8 0.77 0.75 0.75 0.75
0.8 0.8 0.80 0.80 0.80 0.80
0.9 0.8 0.85 0.85 0.85 0.85
1 0.8 0.89 0.89 0.89 0.89

Table 10.2.4.8: Same as 10.2.4.7 for the last four transitions.
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Te,l Te,r ρ11,ss ρ22,ss ρ33,ss ρ44,ss ρ55,ss

0.1 0.8 0.8916 0.0966 0.0105 0.0011 1.2297E-04
0.2 0.8 0.8647 0.1170 0.0158 0.0021 2.9006E-04
0.3 0.8 0.8377 0.1360 0.0221 0.0036 5.8153E-04
0.4 0.8 0.8111 0.1532 0.0289 0.0055 0.0010
0.5 0.8 0.7857 0.1684 0.0361 0.0077 0.0016
0.6 0.8 0.7603 0.1822 0.0437 0.0105 0.0025
0.7 0.8 0.7364 0.1941 0.0511 0.0135 0.0035
0.8 0.8 0.7135 0.2044 0.0586 0.0168 0.0048
0.9 0.8 0.6916 0.2133 0.0658 0.0203 0.0062
1 0.8 0.6708 0.2208 0.0727 0.0239 0.0079

Table 10.2.4.9: Steady-state solutions for the first five diagonal density matrix elements,
referring to the Harmonic Oscillator system (10 states), using the Thermodynamic Quantum
Master Equation (TQME) for several values of the heat bath temperatures, Te,l and Te,r, and
γl = γr = 0.01.

Te,l Te,r ρ66,ss ρ77,ss ρ88,ss ρ99,ss ρ1010,ss

0.1 0.8 1.3326E-05 1.4E-06 1.6E-07 1.7E-08 1.8E-09
0.2 0.8 3.9256E-05 5.3E-06 7.2E-07 9.7E-08 1.3E-08
0.3 0.8 9.4394E-05 1.5322E-05 2.5E-06 4.0E-07 6.5E-08
0.4 0.8 1.94859E-04 3.6769E-05 6.9E-06 1.3E-06 2.4E-07
0.5 0.8 3.5366E-04 7.5524E-05 1.6097E-05 3.4E-06 7.3E-07
0.6 0.8 6.0105E-04 1.4404E-04 3.4520E-05 8.3E-06 2.0E-06
0.7 0.8 9.3717E-04 2.4704E-04 6.5118E-05 1.7165E-05 4.52E-06
0.8 0.8 0.0014 3.9462E-04 1.1306E-04 3.2393E-05 9.3E-06
0.9 0.8 0.0019 5.9466E-04 1.8344E-04 5.6546E-05 1.7437E-05
1 0.8 0.0026 8.5370E-04 2.8103E-04 9.2514E-05 3.0455E-05

Table 10.2.4.10: Same as Table 10.2.4.9 but for the last five diagonal density matrix elements.

Tl Tr T eff12 T eff23 T eff34 T eff45 T eff56

0.1 0.8 0.45 0.45 0.45 0.45 0.45
0.2 0.8 0.50 0.50 0.50 0.50 0.50
0.3 0.8 0.55 0.55 0.55 0.55 0.55
0.4 0.8 0.60 0.60 0.60 0.60 0.55
0.5 0.8 0.65 0.65 0.65 0.65 0.65
0.6 0.8 0.70 0.70 0.70 0.70 0.70
0.7 0.8 0.75 0.75 0.75 0.75 0.75
0.8 0.8 0.80 0.80 0.80 0.80 0.80
0.9 0.8 0.85 0.85 0.85 0.85 0.85
1 0.8 0.90 0.90 0.90 0.90 0.90

Table 10.2.4.11: Effective steady-state temperatures for the first five transitions, referring
to the Harmonic Oscillator system (10 states), using the Thermodynamic Quantum Master
Equation (TQME) for several values of the heat bath temperatures, Tl and Tr, and γl = γr =
0.01.
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Tl Tr T eff67 T eff78 T eff89 T eff910

0.1 0.8 0.450000014 0.450000018 0.45000002 0.450000022
0.2 0.8 0.500000002 0.500000002 0.500000002 0.500000002
0.3 0.8 0.549999739 0.54999976 0.549999762 0.549999762
0.4 0.8 0.599653821 0.599305437 0.598831861 0.598663963
0.5 0.8 0.647713735 0.646896873 0.645945614 0.645631154
0.6 0.8 0.7 0.700000001 0.700000001 0.700000001
0.7 0.8 0.749999999 0.749999999 0.75 0.750000001
0.8 0.8 0.799999744 0.799999744 0.799999745 0.799999746
0.9 0.8 0.850000004 0.850000005 0.850000007 0.850000008
1 0.8 0.900000005 0.900000006 0.900000008 0.90000001

Table 10.2.4.12: Same as Table 10.2.4.11 but for the last four transitions.
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10.3 Quantum Susbsystem coupled to Two Heat

Baths - 2nd Set

In this section, results are presented that have been obtained through the time integration
and the direct calculation of the steady-state values using the Lindblad Master Equation
(LME), Eq. 7.1.2, and the Thermodynamic Quantum Master Equation (TQME), Eq.
7.2.4.1. These results refer to the two cases that we study; the three-level and the
harmonic oscillator as quantum subsystems coupled to two heat baths. The inputs where
the same mentioned in section 9.2, with Te,l = 0.4, Te,r = 0.8 and γl = γr = 0.001.

10.3.1 Time Integration

The integration scheme used in this work is the Adams-Bashforth 4th order (s = 4) in
Eq. 8.1.4) with the help of single-step Euler’s scheme in order to obtain the four starting
values. The integration time step that we set was h = 10−2.
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Figure 10.3.1.1: Time evolution of the real and imaginary part of the diagonal density matrix
elements, ρ11, ρ22, ρ33, using the Lindblad Master Equation (LME) (real (green), imaginary
(black)) and the Thermodynamic Quantum Master Equation (TQME) (real (blue), imaginary
(red)) for the case of the Three-Level system (Qutrit), with Te,l = 0.4, Te,r = 0.8 and γl = γr
= 0.001.
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Figure 10.3.1.2: Same as 10.3.1.1 but for the non-diagonal density matrix elements, ρ12, ρ13,
ρ23.
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Figure 10.3.1.3: Same as 10.3.1.1 but for the eigenvalues of the density matrix.
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Figure 10.3.1.4: Same as 10.3.1.1 but for the heat flux of the left (10.3.1.4a), right (10.3.1.4b)
heat baths and the total one (10.3.1.4c).
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Figure 10.3.1.5: Same as 10.3.1.1 but for the energy E of the system.
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Figure 10.3.1.6: Time evolution of the real and imaginary part of the entropy S of the system
and dS

dt , dS
dt (left), dS

dt (right), using the Thermodynamic Quantum Master Equation (TQME)
(real (green), imaginary (black)) for the case of the Three-Level system (Qutrit), with Te,l =
0.4, Te,r = 0.8 and γl = γr = 0.001.
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Figure 10.3.1.7: Time evolution of the real and imaginary part of the diagonal density matrix
elements, ρ11, ρ22, ρ33, using the Lindblad Master Equation (LME) (real (green), imaginary
(black)) and the Thermodynamic Quantum Master Equation (TQME) (real (blue), imaginary
(red)) for the case of the Harmonic Oscillator (10 states), with Te,l = 0.4, Te,r = 0.8 and γl =
γr = 0.001.
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Figure 10.3.1.8: Same as 10.3.1.7 but for the diagonal density matrix elements, ρ66, ρ77, ρ88,
ρ99, ρ1010.

122



CHAPTER 10. RESULTS
10.3. QUANTUM SUSBSYSTEM COUPLED TO TWO HEAT

BATHS - 2ND SET

0 500 1000 1500 2000 2500 3000 3500
−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−18

t

ρ 12

 

 
real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(a)

0 500 1000 1500 2000 2500 3000 3500
−6

−4

−2

0

2

4

6

8
x 10

−4

t

ρ 13

 

 
real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(b)

0 500 1000 1500 2000 2500 3000 3500
−4

−3

−2

−1

0

1

2

3

4
x 10

−18

t

ρ 14

 

 
real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(c)

0 500 1000 1500 2000 2500 3000 3500
−4

−3

−2

−1

0

1

2

3
x 10

−7

t

ρ 15

 

 
real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(d)

0 500 1000 1500 2000 2500 3000 3500
−6

−4

−2

0

2

4

6
x 10

−18

t

ρ 16

 

 
real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(e)

0 500 1000 1500 2000 2500 3000 3500

−0.5

0

0.5

x 10
−10

t

ρ 17

 

 
real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(f)

Figure 10.3.1.9: Same as 10.3.1.7 but for the non-diagonal density matrix elements, ρ12, ρ13,
ρ14, ρ15, ρ16, ρ17.
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Figure 10.3.1.10: Same as 10.3.1.7 but for the non-diagonal density matrix elements, ρ18,
ρ19, ρ110, ρ23, ρ24, ρ25.

124



CHAPTER 10. RESULTS
10.3. QUANTUM SUSBSYSTEM COUPLED TO TWO HEAT

BATHS - 2ND SET

0 500 1000 1500 2000 2500 3000 3500
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−8

t

ρ 26

 

 
real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(a)

0 500 1000 1500 2000 2500 3000 3500
−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−18

t

ρ 27

 

 
real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(b)

0 500 1000 1500 2000 2500 3000 3500
−4

−3

−2

−1

0

1

2

3

4
x 10

−12

t

ρ 28

 

 
real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(c)

0 500 1000 1500 2000 2500 3000 3500
−2

−1

0

1

2
x 10

−19

t

ρ 29

 

 
real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(d)

0 500 1000 1500 2000 2500 3000 3500
−6

−4

−2

0

2

4

6
x 10

−16

t

ρ 21
0

 

 
real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(e)

0 500 1000 1500 2000 2500 3000 3500
−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−18

t

ρ 34

 

 
real (TQME)
imaginary (TQME)
real (LME)
imaginary (LME)

(f)

Figure 10.3.1.11: Same as 10.3.1.7 but for the non-diagonal density matrix elements, ρ26,
ρ27, ρ28, ρ29, ρ210, ρ34.
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Figure 10.3.1.12: Same as 10.3.1.7 but for the non-diagonal density matrix elements, ρ35,
ρ36, ρ37, ρ38, ρ39, ρ310.
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Figure 10.3.1.13: Same as 10.3.1.7 but for the non-diagonal density matrix elements, ρ45,
ρ46, ρ47, ρ48, ρ49, ρ410.
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Figure 10.3.1.14: Same as 10.3.1.7 but for the non-diagonal density matrix elements, ρ56,
ρ57, ρ58, ρ59, ρ510, ρ67.
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Figure 10.3.1.15: Same as 10.3.1.7 but for the non-diagonal density matrix elements, ρ68,
ρ69, ρ610, ρ78, ρ79, ρ710.
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Figure 10.3.1.16: Same as 10.3.1.7 but for the non-diagonal density matrix elements, ρ89,
ρ810, ρ910.
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Figure 10.3.1.17: Same as 10.3.1.7 but for the first five eigenvalues of the density matrix.
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Figure 10.3.1.18: Same as 10.3.1.7 but for the last five eigenvalues of the density matrix.
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Figure 10.3.1.19: Same as 10.3.1.7 but for the heat flux of the left (10.3.1.4a), right (10.2.1.4b)
heat baths and the total one (10.3.1.4c).
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Figure 10.3.1.20: Same as 10.3.1.7 but for the energy E of the system.
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Figure 10.3.1.21: Time evolution of the real and imaginary part of the entropy S of the
system and dS

dt , dS
dt (left), dS

dt (right), using the Thermodynamic Quantum Master Equation
(TQME) (real (green), imaginary (black)) for the case of the Harmonic Oscillator (10 states),
with Te,l = 0.4, Te,r = 0.8 and γl = γr = 0.001.
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10.3.2 Direct Steady-State Solution

In this section, we present the results obtained by an independent, non-linear matrix
algebra solver that we implemented for computing the steady-state solution of the density
matrix. These steady-state solutions are compared with the corresponding values taken
from the dynamic relaxation of numerical integration for all the studied occasions.

Three-Level System (Qutrit)
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Figure 10.3.2.1: Comparison of the steady-state solution of the diagonal density matrix
elements, ρ11, ρ22, ρ33, between the time integration and the direct calculation of the steady-state
values, using the Lindblad Master Equation (LME) (time integration: real (green), imaginary
(black), steady-state solution: real (grey triangular)) and the Thermodynamic Quantum Master
Equation (TQME) (time integration: real (blue), imaginary (red), steady-state solution: real
(light blue circle)), in the case of the Three-Level system (Qutrit), with Te,l = 0.4, Te,r = 0.8
and γl = γr = 0.001.
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Harmonic Oscillator (10 states)
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Figure 10.3.2.2: Comparison of the steady-state solution of the diagonal density matrix el-
ements, ρ11, ρ22, ρ33, ρ44, ρ55, between the time integration and the direct calculation of the
steady-state values, using the Lindblad Master Equation (LME) (time integration: real (green),
imaginary (black), steady-state solution: real (grey triangular)) and the Thermodynamic Quan-
tum Master Equation (TQME) (time integration: real (blue), imaginary (red), steady-state
solution: real (light blue circle)), in the case of the Harmonic Oscillator (10 states), with Te,l =
0.4, Te,r = 0.8 and γl = γr = 0.001.
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Figure 10.3.2.3: Same as 10.3.2.2 but for ρ66, ρ77, ρ88, ρ99, ρ1010.
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10.3.3 Effective Temperatures

Here, we present the effective, steady-state temperature using Eq. 7.3.1 and the steady-
state values of the diagonal elements of the density matrix, acquired from the direct
steady-state solution in the previous section. The following results refer to both quantum
systems, the three-level and the harmonic oscillator, using the Lindblad-type and the
Thermodynamic Quantum Master Equation.

ρ11,ss ρ22,ss ρ33,ss

LME 0.6949 0.1947 0.1104
TQME 0.6665 0.2076 0.1259

Table 10.3.3.1: Steady-state solutions for the diagonal density matrix elements using the Lind-
blad Master Equation (LME) and the Thermodynamic Quantum Master Equation (TQME),
for the Three-Level system (Qutrit), with Tl = 0.4, Tr = 0.8 and γl = γr = 0.001.

T eff12 T eff23 T eff13

LME 0.5503 0.5280 0.5434
TQME 0.6000 0.6000 0.6000

Table 10.3.3.2: Effective steady-state temperatures using the Lindblad Master Equation
(LME) and the Thermodynamic Quantum Master Equation (TQME), for the Three-Level sys-
tem (Qutrit), with Tl = 0.4, Tr = 0.8 and γl = γr = 0.001.

ρ11,ss ρ22,ss ρ33,ss ρ44,ss ρ55,ss

LME 0.8434 0.1320 0.0207 3.236E-03 5.066E-04
TQME 0.8111 0.1532 0.0289 0.0055 0.0010

Table 10.3.3.3: Steady-state solutions for the first five diagonal density matrix elements using
the Lindblad Master Equation (LME) and the Thermodynamic Quantum Master Equation
(TQME), for the Harmonic Oscillator system (10 states), with Te,l = 0.4, Te,r = 0.8 and γl =
γr = 0.001.

ρ66,ss ρ77,ss ρ88,ss ρ99,ss ρ1010,ss

LME 7.9E-05 1.2E-05 1.9E-06 3.0E-07 4.8E-08
TQME 0.0002 3.676E-05 6.9E-06 1.3E-06 2.5E-07

Table 10.3.3.4: Same as Table 10.3.3.3 for the last five diagonal density matrix elements.

T effij , for j > i, i, j = 1, . . . , 10

LME 0.5393
TQME 0.6000

Table 10.3.3.5: Effective steady-state temperatures using the Lindblad Master Equation
(LME) and the Thermodynamic Quantum Master Equation (TQME), for the Harmonic Oscil-
lator system (10 states), with Te,l = 0.4, Te,r = 0.8 and γl = γr = 0.001.
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10.3.4 Parametric Analysis

In this section, we present steady-state results for the density matrix and the effective
temperatures for a variety of temperature pairs acquired from the direct steady-state
solver. These results refer to both quantum systems, the three-level and the harmonic
oscillator, using the Lindblad-type and the Thermodynamic Quantum Master Equation.

Te,l Te,r ρ11,ss ρ22,ss ρ33,ss

0.1 0.8 0.9916 0.0079 0.0004
0.2 0.8 0.8742 0.0977 0.0281
0.3 0.8 0.7611 0.1619 0.0770
0.4 0.8 0.6950 0.1947 0.1103
0.5 0.8 0.6540 0.2142 0.1318
0.6 0.8 0.6256 0.2273 0.1470
0.7 0.8 0.6042 0.2371 0.1587
0.8 0.8 0.5871 0.2447 0.1682
0.9 0.8 0.5726 0.2511 0.1763
1 0.8 0.5605 0.2563 0.1832

Table 10.3.4.1: Steady-state solutions for the diagonal density matrix elements, referring to
the Three-Level system (Qutrit), using the Lindblad Master Equation (LME) for several values
of the heat bath temperatures, Tl and Tr, and γl = γr = 0.001.

Te,l Te,r T eff12 T eff23 T eff13

0.1 0.8 0.14 0.10 0.13
0.2 0.8 0.32 0.24 0.29
0.3 0.8 0.45 0.40 0.44
0.4 0.8 0.55 0.53 0.54
0.5 0.8 0.63 0.62 0.62
0.6 0.8 0.69 0.69 0.69
0.7 0.8 0.75 0.75 0.75
0.8 0.8 0.80 0.80 0.80
0.9 0.8 0.85 0.85 0.85
1 0.8 0.89 0.89 0.89

Table 10.3.4.2: Effective steady-state temperatures, referring to the Three-Level system
(Qutrit), using the Lindblad Master Equation (LME) for several values of the heat bath tem-
peratures, Te,l and Te,r, and γl = γr = 0.001.
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Tl Tr ρ11,ss ρ22,ss ρ33,ss

0.1 0.8 0.7579 0.1599 0.0821
0.2 0.8 0.7236 0.1784 0.0979
0.3 0.8 0.6933 0.1942 0.1125
0.4 0.8 0.6665 0.2076 0.1259
0.5 0.8 0.6429 0.2190 0.1380
0.6 0.8 0.6221 0.2289 0.1491
0.7 0.8 0.6036 0.2373 0.1591
0.8 0.8 0.5871 0.2447 0.1682
0.9 0.8 0.5723 0.2512 0.176
1 0.8 0.5591 0.2568 0.1840

Table 10.3.4.3: Steady-state solutions for the diagonal density matrix elements, referring
to the Three-Level system (Qutrit), using the Thermodynamic Quantum Master Equation
(TQME) for several values of the heat bath temperatures, Tl and Tr, and γl = γr = 0.001.

Tl Tr T eff12 T eff23 T eff13

0.1 0.8 0.45 0.45 0.45
0.2 0.8 0.50 0.50 0.50
0.3 0.8 0.55 0.55 0.55
0.4 0.8 0.60 0.60 0.60
0.5 0.8 0.65 0.65 0.65
0.6 0.8 0.70 0.70 0.70
0.7 0.8 0.75 0.75 0.75
0.8 0.8 0.80 0.80 0.80
0.9 0.8 0.85 0.85 0.85
1 0.8 0.90 0.90 0.90

Table 10.3.4.4: Effective steady-state temperatures, referring to the Three-Level system
(Qutrit), using the Thermodynamic Quantum Master Equation (TQME) for several values
of the heat bath temperatures, TE,l and Te,r, and γl = γr = 0.001.

Tl Tr ρ11,ss ρ22,ss ρ33,ss ρ44,ss ρ55,ss

0.1 0.8 0.9996 4.0791E-04 1.7E-07 6.8E-11 2.8E-14
0.2 0.8 0.9692 0.0298 0.000919012 2.82992E-05 8.7E-07
0.3 0.8 0.9018 0.0886 0.008696108 8.53947E-04 8.3857E-05
0.4 0.8 0.8434 0.1320 0.02067123 0.0032 5.0661E-04
0.5 0.8 0.7996 0.1602 0.032113877 0.0064 0.0013
0.6 0.8 0.7654 0.1795 0.042110026 0.0099 0.0023
0.7 0.8 0.7374 0.1936 0.050833087 0.0133 0.0035
0.8 0.8 0.7135 0.2044 0.058567457 0.0168 0.0048
0.9 0.8 0.69225 0.2131 0.065549415 0.0202 0.0062
1 0.8 0.6734 0.2199 0.07184711 0.0235 0.0077

Table 10.3.4.5: Steady-state solutions for the first five diagonal density matrix elements,
referring to the Harmonic Oscillator system (10 states), using the Lindblad Master Equation
(LME) for several values of the heat bath temperatures, Tl and Tr, and γl = γr = 0.001.
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Tl Tr ρ66,ss ρ77,ss ρ88,ss ρ99,ss ρ1010,ss

0.1 0.8 1.1E-17 4.6E-21 1.9E-24 6.4E-28 3.1E-31
0.2 0.8 2.7E-08 8.3E-10 2.5E-11 7.8E-13 2.4E-14
0.3 0.8 8.2346E-06 8.1E-07 7.9E-08 7.8E-09 7.6E-10
0.4 0.8 7.931E-05 1.2415E-05 1.9E-06 3.0E-07 4.8E-08
0.5 0.8 2.5848E-04 5.1802E-05 1.0381E-05 2.1E-06 4.2E-07
0.6 0.8 5.4334E-04 1.2743E-04 2.9891E-05 7.0E-06 1.6E-06
0.7 0.8 9.2E-04 2.4154E-04 6.3418E-05 1.6650E-05 4.4E-06
0.8 0.8 0.0014 3.9462E-04 1.1306E-04 3.2393E-05 9.3E-06
0.9 0.8 0.0019 5.8700E-04 1.8057E-04 5.5550E-05 1.7088E-05
1 0.8 0.0025 8.1792E-04 2.6717E-04 8.7270E-05 2.8507E-05

Table 10.3.4.6: Same as Table 10.2.4.5 but for the last five diagonal density matrix elements.

Te,l Te,r T eff12 T eff23 T eff34 T eff45 T eff56

0.1 0.8 0.13 0.13 0.13 0.13 0.13
0.2 0.8 0.29 0.29 0.29 0.29 0.29
0.3 0.8 0.43 0.43 0.43 0.43 0.43
0.4 0.8 0.54 0.54 0.54 0.54 0.54
0.5 0.8 0.62 0.62 0.62 0.62 0.62
0.6 0.8 0.69 0.69 0.69 0.69 0.69
0.7 0.8 0.75 0.75 0.75 0.75 0.75
0.8 0.8 0.80 0.80 0.80 0.80 0.80
0.9 0.8 0.85 0.85 0.85 0.85 0.85
1 0.8 0.89 0.89 0.89 0.89 0.89

Table 10.3.4.7: Effective steady-state temperatures for the first five transitions, referring to
the Harmonic Oscillator system (10 states), using the Lindblad Master Equation (LME) for
several values of the heat bath temperatures, Tl and Tr, and γl = γr = 0.001.

Te,l Te,r T eff67 T eff78 T eff89 T eff910

0.1 0.8 0.13 0.13 0.13 0.13
0.2 0.8 0.29 0.29 0.29 0.29
0.3 0.8 0.43 0.43 0.43 0.43
0.4 0.8 0.54 0.54 0.54 0.54
0.5 0.8 0.62 0.62 0.62 0.62
0.6 0.8 0.69 0.69 0.69 0.69
0.7 0.8 0.77 0.75 0.75 0.75
0.8 0.8 0.80 0.80 0.80 0.80
0.9 0.8 0.85 0.85 0.85 0.85
1 0.8 0.89 0.89 0.89 0.89

Table 10.3.4.8: Same as 10.3.4.7 for the last four transitions.

141



10.3. QUANTUM SUSBSYSTEM COUPLED TO TWO HEAT
BATHS - 2ND SET CHAPTER 10. RESULTS

Te,l Te,r ρ11,ss ρ22,ss ρ33,ss ρ44,ss ρ55,ss

0.1 0.8 0.8916 0.0966 0.0105 0.0011 1.2297E-04
0.2 0.8 0.8647 0.1170 0.0158 0.0021 2.9006E-04
0.3 0.8 0.8377 0.1360 0.0221 0.0036 5.8153E-04
0.4 0.8 0.8111 0.1532 0.0289 0.0055 0.0010
0.5 0.8 0.7857 0.1684 0.0361 0.0077 0.0016
0.6 0.8 0.7603 0.1822 0.0437 0.0105 0.0025
0.7 0.8 0.7364 0.1941 0.0511 0.0135 0.0035
0.8 0.8 0.7135 0.2044 0.0586 0.0168 0.0048
0.9 0.8 0.6916 0.2133 0.0658 0.0203 0.0062
1 0.8 0.6708 0.2208 0.0727 0.0239 0.0079

Table 10.3.4.9: Steady-state solutions for the first five diagonal density matrix elements,
referring to the Harmonic Oscillator system (10 states), using the Thermodynamic Quantum
Master Equation (TQME) for several values of the heat bath temperatures, Te,l and Te,r, and
γl = γr = 0.001.

Te,l Te,r ρ66,ss ρ77,ss ρ88,ss ρ99,ss ρ1010,ss

0.1 0.8 1.3326E-05 1.4E-06 1.6E-07 1.7E-08 1.8E-09
0.2 0.8 3.9256E-05 5.3E-06 7.2E-07 9.7E-08 1.3E-08
0.3 0.8 9.4394E-05 1.5322E-05 2.5E-06 4.0E-07 6.5E-08
0.4 0.8 1.94859E-04 3.6769E-05 6.9E-06 1.3E-06 2.4E-07
0.5 0.8 3.5366E-04 7.5524E-05 1.6097E-05 3.4E-06 7.3E-07
0.6 0.8 6.0105E-04 1.4404E-04 3.4520E-05 8.3E-06 2.0E-06
0.7 0.8 9.3717E-04 2.4704E-04 6.5118E-05 1.7165E-05 4.52E-06
0.8 0.8 0.0014 3.9462E-04 1.1306E-04 3.2393E-05 9.3E-06
0.9 0.8 0.0019 5.9466E-04 1.8344E-04 5.6546E-05 1.7437E-05
1 0.8 0.0026 8.5370E-04 2.8103E-04 9.2514E-05 3.0455E-05

Table 10.3.4.10: Same as Table 10.3.4.9 but for the last five diagonal density matrix elements.

Tl Tr T eff12 T eff23 T eff34 T eff45 T eff56

0.1 0.8 0.45 0.45 0.45 0.45 0.45
0.2 0.8 0.50 0.50 0.50 0.50 0.50
0.3 0.8 0.55 0.55 0.55 0.55 0.55
0.4 0.8 0.60 0.60 0.60 0.60 0.55
0.5 0.8 0.65 0.65 0.65 0.65 0.65
0.6 0.8 0.70 0.70 0.70 0.70 0.70
0.7 0.8 0.75 0.75 0.75 0.75 0.75
0.8 0.8 0.80 0.80 0.80 0.80 0.80
0.9 0.8 0.85 0.85 0.85 0.85 0.85
1 0.8 0.90 0.90 0.90 0.90 0.90

Table 10.3.4.11: Effective steady-state temperatures for the first five transitions, referring
to the Harmonic Oscillator system (10 states), using the Thermodynamic Quantum Master
Equation (TQME) for several values of the heat bath temperatures, Tl and Tr, and γl = γr =
0.001.
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10.3. QUANTUM SUSBSYSTEM COUPLED TO TWO HEAT

BATHS - 2ND SET

Tl Tr T eff67 T eff78 T eff89 T eff910

0.1 0.8 0.450000014 0.450000018 0.45000002 0.450000022
0.2 0.8 0.500000002 0.500000002 0.500000002 0.500000002
0.3 0.8 0.549999739 0.54999976 0.549999762 0.549999762
0.4 0.8 0.599653821 0.599305437 0.598831861 0.598663963
0.5 0.8 0.647713735 0.646896873 0.645945614 0.645631154
0.6 0.8 0.7 0.700000001 0.700000001 0.700000001
0.7 0.8 0.749999999 0.749999999 0.75 0.750000001
0.8 0.8 0.799999744 0.799999744 0.799999745 0.799999746
0.9 0.8 0.850000004 0.850000005 0.850000007 0.850000008
1 0.8 0.900000005 0.900000006 0.900000008 0.90000001

Table 10.3.4.12: Same as Table 10.3.4.11 but for the last four transitions.
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Chapter 11
Discussion

In the previous section, we presented our results concerning a three-level system (qutrit)
and a harmonic oscillator (of ten states), coupled with two heat baths of different tem-
peratures, using the Lindblad-type of equation, Eq. 7.1.2, and the thermodynamic quan-
tum master equation, 7.2.4.1. The solutions refer to the time-integration of the above
equation, using a fourth order Adams-Bashforth integration scheme with the help of a
single-step Euler scheme for the starting values, and to an independent, non-linear ma-
trix algebra solver for computing the steady-state solution of the density matrix using
the Newton-Raphson method.

To begin with, the Lindblad master equation is linear while the thermodynamic one
is strongly non-linear. The coupling constants have been chosen so that in the special
case of interaction with one heat bath, both lead to the same final (Gibbs) steady-state,
Figs 10.1.1.1, 10.1.1.6 - 10.1.1.7. In the case where the quantum system is coupled
with two heat baths, the results in each set for the diagonal components are different.
Also the dynamics is diferent; non-diagonal terms go to zero but by taking in-between
non-zero values, Fig. 10.2.1.2, 10.2.1.9 - 10.2.1.16. In addition to this case, we observe
that the steady-state values of the two sets, where all inputs are the same except from
γk (k = l, r), they differ only in the relaxation time. More analytically, in set 2, where γk
is smaller, the time distance to equilibrium is larger.

Another point is that the eigenvalues in all the cases of interest, as well as the diagonal
elements of the density matrix, are real and positive and the sum of the latter terms is
equal to one during the simulation process, Figs. 10.2.1.3, 10.1.1.3, 10.1.1.16 - 10.1.1.17,
10.2.1.3, 10.2.1.3, 10.2.1.17 - 10.2.1.18, 10.3.1.3, 10.3.1.3, 10.3.1.17 - 10.3.1.18. These
results ensures that the calculations are performed in the right manner, preserving the
properties of the density matrix.

Furthermore, we can observe in Figs. 10.1.1.4a, 10.1.1.18a, 10.2.1.4c, 10.2.1.19c,
10.3.1.4c, 10.3.1.19c that the total heat flux We have verified that the total heat flux
is driven to zero, as we expected. This exact result verifies the consistency check that
we mentioned earlier and shows that the amount of heat flux coming from the heat bath
with higher temperature value (right) towards the quantum subsystem is equal to the
amount of heat flux exiting from it, towards the heat bath with the lower temperature
(left). One more observation is that the individual heat fluxes, coming in or out, are of
opposite sign, as shown in Figs. 10.2.1.4a, 10.2.1.4b, 10.2.1.19a, 10.2.1.19b, 10.3.1.4a,
10.3.1.19a, 10.3.1.4b, 10.3.1.19b.

Also, another observation is that the entropy of the composite system (quantum
system and environment), in the case of the thermodynamic quantum master equation
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for both examining systems, Figs. 10.2.1.6,10.2.1 10.3.1.6,10.3.1, increases continuously
with time as heat flows from the hot to cold environment through the quantum subsystem.
At steady state the term dS

dt
attains a constant (but non-zero) value.

Finally, the steady-state values obtained from the time integration and the direct,
algebraic solution are in a very good agreement, according to Figs. 10.1.2.1 - 10.1.2.3,
10.2.2.1 - 10.2.2.3, 10.3.2.1 - 10.3.2.3. This result allows us to study the response of
the quantum system coupled with the two heat baths for several values of the two bath
temperatures, and friction coefficients.
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Chapter 12
Electromagnetically Induced
Transparency (EIT)

12.1 Introduction

Coherent preparation by laser light of quantum states of atoms and molecules can lead
to quantum interference in the amplitudes of optical transitions. Electromagnetically
induced transparency (EIT) is a quantum interference phenomenon that arises when co-
herent optical fields couple to the states of a material quantum system. In EIT the inter-
ference occurs between alternative transition pathways, driven by radiation fields within
the internal states of the quantum system. Interference effects arise, because in quantum
mechanics the probability amplitudes (which may be positive or negative in sign), rather
than probabilities, must be summed and squared to obtain the total transition probability
between the relevant quantum states. Interference between the amplitudes may lead to
either an enhancement (constructive interference) or a complete cancellation (destructive
interference) in the total transition probability. As a consequence, interference effects
can lead to profound modification of the optical and nonlinear optical properties of a
medium. Thus, control of optical or nonlinear optical properties and processes becomes
possible.

The cause of the modified optical response of an atomic medium in this case is the
laser-induced coherence of atomic states, which leads to quantum interference between
the excitation pathways that control the optical response. We can in this way eliminate
the absorption and refraction (linear susceptibility) at the resonant frequency of a tran-
sition. This was termed electromagnetically induced transparency (EIT) by Harris and
co-workers [35] in 1990. The importance of EIT stems from the fact that it gives rise to
greatly enhanced nonlinear susceptibility in the spectral region of induced transparency
of the medium and is associated with steep dispersion. The first experimental observation
of this effect was demonstrated by Boller et al. [36] in Strontium (Sr) vapour, in 1991.

EIT is achievable only in atoms with specific energy structures. For a three level
system, EIT requires two dipole allowed transitions (|1〉 → |3〉 and |2〉 → |3〉) and one
forbidden transition (|1〉 → |2〉 is dipole forbidden). A strong laser, what we term the
control laser, is tuned to the resonant frequency of the upper two levels. Then, a weak
probe laser is scanned in frequency across the other transition. The medium is observed
to have the properties plotted in Fig. 12.1.1 in response to the probe beam.
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Figure 12.1.1: Simple EIT Plot. Here we are plotting the real and imaginary components
of the complex linear susceptibility. The imaginary component corresponds to absorption - on
the left we see a typical Lorentzian absorption peak while the control laser is inactive. When
the control laser is applied, the absorption peak splits revealing a transparency at what was
the maximal absorption. The real components appear in the dispersion relation, relating wave
speed to frequency. [3]

The most interesting effect of EIT is not the transparency itself - this level of trans-
parency could be achieved by tuning our laser away from the atomic resonance. What
is particularly interesting is that EIT also induces large dispersion effects at the atomic
resonance. In particular, a very steep linear dispersion relation is found at the point of
minimal absorption.

There are three energy level configurations for three level atoms that can demonstrate
EIT, shown in Fig. 12.1.2. While all three systems demonstrate EIT, we will be deriving
EIT for a three level Λ-atom, as the effects are diminished in cascade (Ξ) and V systems
due to high decay rates from |2〉, which shortens the coherence lifetime. The Λ-atom’s
|2〉 state is a metastable state with greatly reduced decays and longer coherence lifetimes.
We are ultimately interested in the optical properties of the medium, specifically the
dispersion and absorption of the probe laser. These characteristics are described to first
order by the frequency dependent complex valued linear electric susceptibility χ, which
is defined by

P = ε0χE (12.1.1)

where P is the dielectric polarization of the medium, E is the electric field, and ε0 is the
permittivity of free space. Knowledge of χ completely determines the material properties
we are seeking. Note that P , E and χ are all macroscopic quantities. However, in order
to find χ, we need to consider individual atoms.
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Figure 12.1.2: EIT capable systems. All three level systems capable of demonstrating EIT
have one of three possible energy level structures: Λ type, V type, and cascade or Ξ type. Each
has two dipole allowed transitions and one dipole forbidden transition, with the only difference
being the relative arrangement of the energy levels. [3]

In the following section, we present the procedure followed in order to calculate the
susceptibility of a medium, for two different master equations. Our approach is based
on [3].

12.2 Derivation of HEIT

The system under investigation is a three level Λ atom, consisting of the eigenstates |1〉,
|2〉 and |3〉, with corresponding eigenvalue energies h̄ωn. We have labelled the states in
order of increasing energy, where |1〉 is a stable ground state, |2〉 is a metastable state,
and both are coupled to the excited state |3〉.

Figure 12.2.1: Lambda atom with detunings and decay. States |1〉 → |3〉 are resonant with
frequency ω31 = ω3 − ω1, states |2〉 → |3〉 are resonant with frequency ω32 = ω3 − ω2. These
transitions are driven, respectively, with a probe laser of frequency ωp and control laser of
frequency ωc. The probe laser is detuned from resonance by ∆p = ωp − ω31, while the control
laser is detuned from resonance by ∆c = ωc − ω32. The upper states have a decay rate γ3 and
γ2, while the ground state is stable. The transition |1〉 → |2〉 is dipole forbidden, resulting in a
very small γ2 (|2〉 is a metastable state). [3]

The first step is to describe how the quantum mechanical atom behaves in the applied
field. For this it is constructed a Hamiltonian (H0) describing the three level atom, and
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approximate the field’s effects as a dipole perturbation (H1), which is given as the energy
of the dipole moment operator (℘).

H0 =

(∑
n

|n〉 〈n|

)
H

(∑
n

|n〉 〈n|

)
=

h̄ω1 0 0
0 h̄ω2 0
0 0 h̄ω3

 (12.2.1)

The |2〉 → |3〉 transition is driven by a strong control field of amplitude Ec and frequency
ωc, while the |1〉 → |3〉 transition is driven by a weak probe field of amplitude Ep and
frequency ωp. All other energy levels are assumed to be sufficiently off resonance for other
transitions to be negligible.The applied field can be written as

E = Epcos(ωpt− kp · r) + Eccos(ωct− kc · r), (12.2.2)

where k are the wave vectors associated with ω. For incident light with wavelengths
much longer than the effective radius of the atom, λ >> r, the spatial component can be
dropped and electric field, Eq. 12.2.2 becomes

E = Epcos(ωpt) + Eccos(ωct)

= Ep
1

2

(
eiωpt + e−iωpt

)
+ Ec

1

2

(
eiωct + e−iωct

) (12.2.3)

The energy of this perturbation will be given by

H1 = −qE · r̂, (12.2.4)

where q is the electron charge, E is the classical vector valued electric field and r̂ is
the position operator.The term −qE · r̂ is simply the energy associated with a dipole of
charge q and separation vector r̂ in the applied field E. Thus, the assumption λ >> r
is known as the dipole approximation. Assuming the dipole is aligned with the electric
field we have

H1 = −qE · r̂. (12.2.5)

The dipole operator is defined as ℘ = qr̂, and the elements of the operator in the eigenbasis
of H0 by ℘nm = ℘∗mn = 〈n |℘ |m〉. The perturbation becomes

HI = −℘E = −

(∑
n

|n〉 〈n|

)
wp

(∑
n

|n〉 〈n|

)
E = −E

℘11 ℘12 ℘13

℘21 ℘22 ℘23

℘31 ℘32 ℘33

 (12.2.6)

To simplify the dipole moment operator, we assume ℘12 = ℘21 = 0, consistent with the
forbidden |1〉 → |2〉 transition. Additionally we assume ℘ii = 0, removing all the diagonal
elements. This amounts to assuming that the atoms have no permanent dipole moments,
which is true for atoms with spherically symmetric wavefunctions. So, we get that

HI = −E

 0 0 ℘13

0 0 ℘23

℘31 ℘32 0

 (12.2.7)

The full Hamiltonian, H = H0 +HI , can be massaged with some approximations and
transformations to a more agreeable form, what we term the EIT Hamiltonian (HEIT ).
To find this Hamiltonian, the Rotating Wave Approximation (RWA) is used, which ne-
glects any rapidly oscillating terms (i.e., exponentials with large-valued superscripts) in
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the Hamiltonian. To reveal these terms, transformation of the Hamiltonian into the
interaction picture is required using the time evolution operator

U(t) = e
iH0t
h̄ =

eiω1t 0 0
0 eiω2t 0
0 0 eiω1t

 (12.2.8)

Applying this transformation to H1 (H0 remains unaffected), as UHIU
† we get that

UHIU
† = −E

 0 0 ℘13e
i(ω1−ω3)t

0 0 ℘23e
i(ω2−ω3)t

℘13e
−i(ω1−ω3)t ℘23e

−i(ω2−ω3)t.

 (12.2.9)

Substituting the electric field and expanding the cosines in terms of exponentials, as
below

E = −Epcos(ωpt) + Eccos(ωct)

= Ep
1

2

(
eiωpt + e−iωpt

)
+ Ec

1

2

(
eiωct + e−iωct

) (12.2.10)

we get

(UHIU
†)13 = −

(
Ep

1

2

(
eiωpt + e−iωpt

)
+ Ec

1

2

(
eiωct + e−iωct

))
℘13e

i(ω1−ω3)t (12.2.11a)

(UHIU
†)31 = −

(
Ep

1

2

(
eiωpt + e−iωpt

)
+ Ec

1

2

(
eiωct + e−iωct

))
℘31e

−i(ω1−ω3)t (12.2.11b)

(UHIU
†)23 = −

(
Ep

1

2

(
eiωpt + e−iωpt

)
+ Ec

1

2

(
eiωct + e−iωct

))
℘23e

i(ω2−ω3)t (12.2.11c)

(UH1U
†)32 = −

(
Ep

1

2

(
eiωpt + e−iωpt

)
+ Ec

1

2

(
eiωct + e−iωct

))
℘32e

−i(ω2−ω3)t (12.2.11d)

Afterwards, applying the Rotating Wave Approximation (RWA) (where terms con-
taining the sums ω3 − ω1 + ωp and ω3 − ω2 + ωc are dropped)

(UHIU
†)13 = −1

2
Ep℘13e

i(ω1−ω3+ωp)t (12.2.12a)

(UHIU
†)31 = −1

2
Ep℘31e

−i(ω1−ω3+ωp)t (12.2.12b)

(UHIU
†)23 = −1

2
Ec℘23e

i(ω2−ω3+ωc )t (12.2.12c)

(UH1U
†)32 = −1

2
Ec℘23e

−i(ω2−ω3+ωc )t (12.2.12d)

Returning now to the Schrödinger picture by reversing the transformation as U †(UHIU
†)U

as follows

HI = − h̄
2

 0 0 ℘13Epe
iωpt

0 0 ℘23Ece
iωct

℘31Epe
−iωpt ℘32Ece

−iωct 0

 (12.2.13)

The dipole operator can be separated into magnitude and phase as

℘13 = ℘∗31 = |℘13|eiφp (12.2.14a)
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℘23 = ℘∗32 = |℘23|eiφc . (12.2.14b)

Defining the Rabi frequencies as

Ωp =
Ep|℘13|
h̄

(12.2.15a)

Ωc =
Ec|℘23|
h̄

(12.2.15b)

we acquire the following result for HI

HI = − h̄
2

 0 0 Ωpe
iφpeiωpt

0 0 Ωce
iφceiωct

Ωpe
−iφpe−iωpt Ωce

−iφce−iωct 0.

 (12.2.16)

From the combination of H0 and HI , we have the complete EIT Hamiltonian

HEIT =
h̄

2

 2ω1 0 −Ωpe
iφpeiωpt

0 2ω2 −Ωce
iφceiωct

−Ωpe
−iφpe−iωpt −Ωce

−iφce−iωct 2ω3

 (12.2.17)

Subsequently, another transformation is applied in order to remove all the time de-
pendence from the Hamiltonian, as well as the phase of the dipole moment operator. The
new basis is known as the rotating basis, which will be denoted with˜’s on transformed
elements. The new basis is related to the old one by |ñ〉 = Ũ(t) |n〉, where Ũ is given by

Ũ(t) =

eiωpteiφp 0 0
0 eiωcteiφc 0
0 0 1

 (12.2.18)

For this transformation to be sensible, it must be unitary (Ũ(t)U(t) = I). Also the
transformed Hamiltonian satisfies the Schrödinger equation,

H̃EIT |ñ〉 = ih̄
∂

∂t
|ñ〉

= ih̄
∂

∂t

(
Ũ |n〉

)
= ih̄

(
∂Ũ

∂t
ñ+ Ũ

∂ |n〉
∂t

)

= ih̄

(
∂Ũ

∂t
ñ+
−i
h̄
ŨHEIT |n〉

)

=

(
ih̄
∂Ũ

∂t
Ũ † + ŨHEIT Ũ

†

)
Ũ |n〉 H̃EIT |ñ〉

=

(
ih̄
∂Ũ

∂t
Ũd† + ŨHEIT Ũ

†

)
|ñ〉

(12.2.19)
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The use of this transformation simplifies the Hamiltonian,

H̃EIT = ih̄
∂Ũ

∂t
Ũd† + ŨHEIT Ũ

†

=
h̄

2

2ωp 0 0
0 2ωc 0
0 0 0

+
h̄

2

 2ω1 0 −Ωp

0 2ω2 −Ωc

−Ωp −Ωc 2ω3


H̃EIT =

h̄

2

2(ω1 + ωp) 0 −Ωp

0 2(ω2 + ωc) −Ωc

−Ωp −Ωc 2ω3


(12.2.20)

The above Hamiltonian can be brought into its standard form by noting that we can
add a multiple of the identity to the Hamiltonian without changing any physical results.
Adding −2(ω1 + ωp)I to the Hamiltonian, Eq. 12.2.20 gives

H̃EIT =
h̄

2

 0 0 −Ωp

0 2(ω2 + ωc − ω1 − ωp) −Ωc

−Ωp −Ωc 2(ω3 − ω1 − ωp)

 (12.2.21)

Defining the laser detunings as

∆p = ωp − ω3 + ω1 (12.2.22a)

∆c = ωc − ω3 + ω2 (12.2.22b)

we obtain the following expression

H̃EIT =
h̄

2

 0 0 −Ωp

0 −2(∆p −∆c) −Ωc

−Ωp −Ωc −2∆p

 . (12.2.23)

12.3 Von - Neumann Master Equation

The EIT Hamiltonian, describes a single atom interacting with the external electromag-
netic field, but in our system we have an ensemble of atoms. It is therefore natural to
transition from describing the system with single atom wave functions, to describe it with
density operators (ρ), which model the state of a population of atoms. Using the Von-
Neumann equation, which is equivalent to the Schrödinger equation but has the benefit
that it makes no reference to pure states,

ρ̇ = − i
h̄

[H, ρ] (12.3.1)

and taking into account effects which removes population from a given state, by adding
in phenomenological decay terms

ρ̇ = − i
h̄

[H, ρ]− 1

2
{Γ, ρ} (12.3.2)

where Γ is defined by

Γ =

Γ1 0 0
0 Γ2 0
0 0 Γ3

 . (12.3.3)
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These added terms account for decays from each state for a general set of energy levels,
but in a Λ system matters simplify. Firstly, Γ1 will drop to zero, since conservation of
energy prevents relaxations out of the ground state. Secondly, since |2〉 is a metastable
state, Γ2 will be dramatically smaller than Γ3 (Γ2 << Γ3). The long lifetime of |2〉 is
essential for maintaining coherence and EIT. The Von-Neumann Equation in component
form is

ρ̇ij =
∑
k

[
− i
h̄

(Hikρkj − ρikHkj)−
1

2
(Γikρkj − ρikΓkj)

]
. (12.3.4)

We saw before that the Schrödinger equation holds in the new basis, and so, as
they are equivalent, the Von-Neumann Equation also holds for ρ̃ and H̃EIT .The resulting
equations are:

˙̃ρ11 = i
Ωp

2
(ρ̃31 − ρ̃13)− Γ1ρ̃11 (12.3.5a)

˙̃ρ22 = i
Ωc

2
(ρ̃32 − ρ̃23)− Γ2ρ̃22 (12.3.5b)

˙̃ρ33 = i
1

2

(
Ωp(ρ̃13 − ρ̃31) + Ωc(ρ̃23 − ρ̃32)

)
− Γ3ρ̃33 (12.3.5c)

˙̃ρ12 = ˙̃ρ∗21 = i
1

2

[
Ωpρ̃32 − Ωcρ̃13 + 2(∆c −∆p)ρ̃12

]
− 1

2
(Γ1 + Γ2)ρ̃12 (12.3.5d)

˙̃ρ13 = ˙̃ρ∗31 = i
1

2

[
Ωp(ρ̃33 − ρ̃11)− Ωcρ̃12 − 2∆pρ̃13

]
− 1

2
(Γ1 + Γ3)ρ̃13 (12.3.5e)

˙̃ρ23 = ˙̃ρ∗32 = i
1

2

[
−Ωpρ̃21 + Ωc(ρ̃33 − ρ̃22)− 2∆cρ̃23

]
− 1

2
(Γ2 + Γ3)ρ̃23 (12.3.5f)

where ∗’s represents complex conjugates. It is important to note that the Γ decay terms
remove atoms from our population entirely. This aspect is undesired, since decays from
|2〉 and |3〉 would not actually leave the system, but would instead decay to |1〉. We can
fix this issue by noting that our system is being pumped into |1〉 by the action of the
strong control beam. As long as our probe beam is weak, the atoms will primarily inhabit
the |1〉 state in steady state solutions. This strong control beam assumption makes our
system essentially conservative, allowing us to interpret the diagonal elements ρii as the
fraction of atoms in our ensemble that are in state |i〉. We can use the assumption of
a strong control beam to simplify these equations. As we mentioned, the atoms will
primarily be in the ground state |1〉, with few atoms in the excited states. This allows us
to write

ρ̃11 ≈ 1, ρ̃22 ≈ 0, ρ̃33 ≈ 0 (12.3.6)

Substituting this approximation, it gives for the non-diagonal terms:

˙̃ρ12,ss = ˙̃ρ∗21,ss = i
1

2

[
Ωpρ̃32 − Ωcρ̃13 + 2(∆c −∆p)ρ̃12

]
− 1

2
(Γ1 + Γ2)ρ̃12 (12.3.7a)

˙̃ρ13,ss = ˙̃ρ∗31,ss = i
1

2

[
−Ωp − Ωcρ̃12 − 2∆pρ̃13

]
− 1

2
(Γ1 + Γ3)ρ̃13 (12.3.7b)

˙̃ρ23,ss = ˙̃ρ∗32,ss = i
1

2

[
−Ωpρ̃21 − 2∆cρ̃23

]
− 1

2
(Γ2 + Γ3)ρ̃23 (12.3.7c)

We search for the steady state solutions of ρ̃12, ρ̃13 and ρ̃32. From the last set of
equations, in steady state (where the derivative in respect to time t is zero) we obtain
the solution for ρ̃32

ρ̃32 =
iΩpρ̃

V N
12,ss

−i2∆c + (Γ2 + Γ3)
(12.3.8)
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At this point, we can write the above system of equations for the off-diagonal terms
ρ̃12 and ρ̃13 in matrix form as:

Ẋ = M ·X +A (12.3.9)

where

X =

[
ρ̃12

ρ̃13

]
(12.3.10)

MV N =


i (∆c −∆p)−

1

2
(Γ1 + Γ2)

+
1

4

Ω2
p

i∆c − 1
2
(Γ2 + Γ3)

−i1
2
Ωc

−i1
2
Ωc −i∆p − 1

2
(Γ1 + Γ3)

 (12.3.11)

and

A =

[
0

−iΩp
2

]
(12.3.12)

.
In steady state, where Ẋ = 0, the solution of the system is

X = −M−1A, (12.3.13)

from where we obtain the following steady-state solutions:

ρ̃12,ss =
−1

4
ΩcΩp[

i (∆c −∆p)−
1

2
(Γ1 + Γ2) +

1

4

Ω2
p

i∆c − 1
2
(Γ2 + Γ3)

] [
−i∆p − 1

2
(Γ1 + Γ3)

]
+ 1

4
Ω2
c

(12.3.14a)

ρ̃13,ss =

[
i (∆c −∆p)−

1

2
(Γ1 + Γ2) +

1

4

Ω2
p

i∆c − 1
2
(Γ2 + Γ3)

](
iΩp

2

)
[
i (∆c −∆p)−

1

2
(Γ1 + Γ2) +

1

4

Ω2
p

i∆c − 1
2
(Γ2 + Γ3)

] [
−i∆p − 1

2
(Γ1 + Γ3)

]
+ 1

4
Ω2
c

(12.3.14b)

Overall, the steady solutions for the off-diagonal density matrix elements are the
following:

ρ̃12,ss = ρ̃∗21,ss =
−1

4
ΩcΩp[

i (∆c −∆p)− Γ12 +
1

4

Ω2
p

i∆c − Γ23

]
[−i∆p − Γ13] + 1

4
Ω2
c

(12.3.15a)

ρ̃13,ss = ρ̃∗31,ss =

[
i (∆c −∆p)− Γ12 +

1

4

Ω2
p

i∆c − Γ23

](
iΩp

2

)
[
i (∆c −∆p)− Γ12 +

1

4

Ω2
p

i∆c − Γ23

]
[−i∆p − Γ13] + 1

4
Ω2
c

(12.3.15b)

ρ̃32,ss = ρ̃∗23,ss =
iΩpρ̃12,ss

2 (−i∆c + Γ23)
(12.3.15c)
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where we defined as Γij = 1
2

(Γi + Γj) (i, j = 1, 2, 3). Now, we have to go from density
to susceptibility. We will see that the ρ13 element of the density matrix determines the
susceptibility of the medium as seen by the probe. From this description of the medium,
we can generate an expression of the macroscopic polarization in terms of the expectation
of the dipole moment operators

P = N 〈℘〉
= NTr(ρ℘)

= N (℘31ρ13 + ℘32ρ23 + ℘13ρ31 + ℘23ρ32)

(12.3.16)

where N is the density of atoms. We computed the density matrix elements in Eqs 12.3.15
in the rotating basis. We can convert these elements in the regular basis by using the
inverse transformation ρ = Ũ †ρ̃Ũ

ρ = Ũ †ρ̃Ũ =

 ρ̃11 ρ̃12e
i(ωp−ωc)te−iφceiφp ρ̃13e

iωpteφp

ρ̃21e
−i(ωp−ωc)teiφce−iφp ρ̃22 ρ̃23e

iωceiφc

ρ̃31e
−iωpte−φp ρ̃32e

−iωce−iφc ρ̃33

 (12.3.17)

or we can compute the inverse

ρ̃ = ŨρŨ † =

 ρ11 ρ12e
i(ωp−ωc)te−iφceiφp ρ13e

iωpteφp

ρ21e
−i(ωp−ωc)teiφce−iφp ρ22 ρ23e

iωceiφc

ρ31e
−iωpte−φp ρ32e

−iωce−iφc ρ33

 (12.3.18)

We can now write the polarization from Eq. 12.3.16 in terms of the known ρ̃ density
matrix elements

P = N
(
℘31ρ̃13e

iωpteiφp + ℘32ρ̃23e
iωcteiφc + ℘13ρ̃31e

−iωpte−iφp + ℘23ρ̃32e
−iωcte−iφc

)
,

(12.3.19)
Remembering that we are looking for the linear susceptibility χ, given by the P = ε0χE
and writing the electric field in full we have

P = ε0χE

= χωpε0Ep
1

2

(
eiωpt + e−iωpt

)
+ χωcε0Ec

1

2

(
eiωct + e−iωct

) (12.3.20)

Also, we have the relation
N 〈℘〉 = ε0χE, (12.3.21)

from which we can solve for χ. Using Eq. 12.3.21, comparing the last two equations, Eqs
12.3.19 and 12.3.20, from which we can match the time - dependent exponentials for ρ13,
and solving for χ(ωp) we get

χ(ωp) =
2N℘31

ε0Ep
ρ̃13e

iφp

=
2N |℘13|
ε0Ep

ρ̃13

(12.3.22)

where Eq. 12.2.14a was used. Adding the solution for ρ̃13 from Eq. 12.3.15b, the final
equation for the susceptibility is

χ(ωp) =
2N |℘13|
ε0Ep

[
i (∆c −∆p)− Γ12 +

1

4

Ω2
p

i∆c − Γ23

](
iΩp

2

)
[
i (∆c −∆p)− Γ12 +

1

4

Ω2
p

i∆c − Γ23

]
[−i∆p − Γ13] + 1

4
Ω2
c

(12.3.23)
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We now will split χ into real and imaginary components. After simplification, these
are

Re [χ(ωp)] =
2N |℘13|
ε0Ep

Ωp

 − Ω4
p∆p

+ Ω2
p

(
8∆p(∆

2
c − Γ12Γ23)−∆c

(
8∆2

p − Ω2
c

))
− 4(Γ2

23 + ∆2
c)
(

4∆p

(
(∆c −∆p)

2 + Γ2
12

)
+ (∆c −∆p)Ω

2
c

)



2Ω4

p(Γ
2
13 + ∆2

p)

− 4Ω2
p

[
(∆c∆p − Γ13Γ23) Ω2

c +
(
∆2
p + Γ2

13

)
(∆c (4∆c −∆p − Γ12Γ23))

]
+ 2

(
Γ2

23 + ∆2
c

) [Ω4
c + 8 (Γ12Γ13 + ∆p(∆c −∆p)) Ω2

c

+ 16
(
∆2
p + Γ2

13

) (
(∆c −∆p)

2 + Γ2
12

)]


(12.3.24a)

Im [χ(ωp)] =
2N |℘13|
ε0Ep

Ωp

 − Ω4
pΓ13

+ Ω2
p

(
8Γ13 (∆c (∆c −∆p)− Γ12Γ13)− Γ23Ω2

c

)
− 4

(
Γ2

23 + ∆2
c

) [
4Γ13

(
(∆c −∆p)

2 + Γ2
12

)
+ Γ12Ω2

c

]



2Ω4

p(Γ
2
13 + ∆2

p)

− 4Ω2
p

[
(∆c∆p − Γ13Γ23) Ω2

c +
(
∆2
p + Γ2

13

)
(∆c (4∆c −∆p − Γ12Γ23))

]
+ 2

(
Γ2

23 + ∆2
c

) [Ω4
c + 8 (Γ12Γ13 + ∆p(∆c −∆p)) Ω2

c

+ 16
(
∆2
p + Γ2

13

) (
(∆c −∆p)

2 + Γ2
12

)]


(12.3.24b)
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12.4 Lindblad Master Equation

In this section we will apply the Lindblad master equation, in order to study the phe-
nomenon of the electromagnetically induced transparency (EIT). We will in the basis of
|n〉 and the Hamiltonian that describe our system of interest will be the respective one
that we saw earlier, after the application of the rotating wave approximation (RWA). So
the EIT Hamiltonian in this case is of the form:

HEIT =
h̄

2

 2ω1 0 −Ωpe
iωpteiφp

0 2ω2 −Ωce
iωcteiφc

−Ωpe
−iωpte−iφp −Ωce

−iωcte−iφc 2ω3

 =

= h̄

 ω1 0 −Ωp
2
eiωpteiφp

0 ω2 −Ωc
2
eiωcteiφc

−Ωp
2
e−iωpte−iφp −Ωc

2
e−iωcte−iφc ω3

 −ω1I=

= h̄

 0 0 −Ωp
2
eiωpteiφp

0 ω2 − ω1 −Ωc
2
eiωcteiφc

−Ωp
2
e−iωpte−iφp −Ωc

2
e−iωcte−iφc ω3 − ω1

 =

= h̄

 0 0 −Ωp
2
eiωpteiφp

0 (ω3 − ω1)− (ω3 − ω2) −Ωc
2
eiωcteiφc

−Ωp
2
e−iωpte−iφp −Ωc

2
e−iωcte−iφc ω3 − ω1

 {
(ω3 − ω1) = ωp ±∆p

(ω3 − ω2) = ωc ±∆c

}
=

= h̄

 0 0 −Ωp
2
eiωpteiφp

0 ωp ±∆p − (ωc ±∆c) −Ωc
2
eiωcteiφc

−Ωp
2
e−iωpte−iφp −Ωc

2
e−iωcte−iφc ωp ±∆p

⇒
HEIT = h̄

 0 0 −Ωp
2
eiωpteiφp

0 (ωp ±∆p)− (ωc ±∆c) −Ωc
2
eiωcteiφc

−Ωp
2
e−iωpte−iφp −Ωc

2
e−iωcte−iφc (ωp ±∆p)


(12.4.1)

which has time and phase dependence.
The Lindblad master equation has the following expression [25]:

ρ̇ = −i[HEIT , ρ] +
∑
ω≥0

α(ω)eβω
(
LωρL

†
ω −

1

2
{L†ωLω, ρ}

)
+
∑
ω>0

α(ω)

(
L†ωρLω −

1

2
{LωL†ω, ρ}

)
+
∑
ωii

α(0)

(
LωiiρLωii −

1

2
{LωiiLωii , ρ}

) (12.4.2)

where ω = {ω12, ω13, ω23} is the set of the possible transitions, Lω are the Lindblad
operators, α(ω) is a real quantity, responsible for the absorption processes which take
place. We will refer to these terms analytically later on.

In order to find the steady-state solution for the ρ13 density matrix element, which
as we saw in the previous section is proportional to the electric susceptibility χ(ωp), we
have to integrate in respect to time the set of the differential equations. At this point, it
is necessary to follow the steps below in order to apply this scheme:

• First, we have to diagonalize the Hamiltonian ĤEIT = U †HEITU to get the N
eigenvalues Ei but also the N eigenvectors |Ei〉 to construct the base change matrix
U .
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• Next, go to the basis of the ĤEIT , i.e. apply the transformation Q = U †Q0U to the
coupling operator.

• Then, compute the set of eigenfrequencies ωij = Ei − Ej from the eigenvalues of

the Hamiltonian ĤEIT .

• Eliminate possible duplicated frequencies ωij (originating from equally spaced en-
ergy levels produced by degeneracies in the Hamiltonian) to construct the set of
eigenfrequencies ω.

• Use 〈Ei |Lω |Ej〉 = 〈Ei |Q |Ej〉 δkr (Ei − Ej,−ω) to construct the matrix element
of the different Lindblad operators:

◦ Each time that a (Ei − Ej) match with a given −ω, we put the coefficient Qij

at position (i, j) in the Lindblad operator Lω (this procedure take into account
degeneracies).

• The Lindblad operators Lω are defined in the basis where the Hamitlonian is diag-
onal so that they are already in the right basis (no transformation needed).

• The absorption rate α(ω) are then computed for the different unique frequencies
ω obtained and the corresponding emission rate are given by the detailed balance
e(ω) = eβωα(ω):

◦ For a bosonic bath, we for example, use α(|ω|) = γ
β

β|ω|
e|β|ω−1

so that at high

temperature it converges to α(ω) = γ
β
. Moreover, the case α(0) = γ

β

is well defined.

• For a time-dependent Hamiltonian HEIT (t), this procedure has to be re-iterated at
each time step of the simulation giving rise to a time-dependent detailed balance
(the system converges at each time step to a different Gibbs state due to the time-
dependence of the Hamiltonian). Hence, the matrix elements change in time pro-
ducing time-dependent Lindblad operators 〈Ei(t) |Lω |Ej(t)〉 = 〈Ei(t) |Q |Ej(t)〉
δkr (Ei(t)− Ej(t),−ω) where ω comes from ĤEIT (t). Absorption α(ω) and emis-
sion e(ω) rates are recomputed at each time step too.

• As a final check, one could compute the two sides of [Lω(t), ĤEIT (t)] = ωLω(t) for
one or more Lω(t) to check the procedure.

According to the procedure described above, ωij = λj − λi where λk (k = 1, 2, 3) are
the eigenvalues of HEIT , in ascending order. The term α(ω) is chosen to be of the form:

α(ω) =
γ

β

βω

eβω − 1
(12.4.3)

with β = 1
kBTe

. In the case of the dephasing terms, α(0) = γ
β
. Also, the initial expression

of the coupling operator Q

Q0 =

 0 0 Q013

0 0 Q023

Q∗013
Q∗023

0

 (12.4.4)

159



12.4. LINDBLAD MASTER EQUATION CHAPTER 12. EIT

where we put the values of the elements (12) and (21) to zero as our three-level system
is of Λ-configuration with the |1〉 → |2〉 being dipole-forbidden, Also, we neglect the
diagonal terms, which does not affect the steady-state solution but the dynamics of the
system [25]. The general form of the coupling operator, since we go to the energy basis
through the transformation Q = U †Q0U is

Q =

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 (12.4.5)

whereU is the base change matrix (to the Hamiltonian basis) including the corresponding
eigenvectors (to the eigenvalues) of HEIT . Then, we are in position to define the Lindblad
operators, as shown below:

L12 =

0 Q12 0
0 0 0
0 0 0

 L†12 =

 0 0 0
Q21 0 0
0 0 0

 (12.4.6a)

L13 =

0 0 Q13

0 0 0
0 0 0

 L†13 =

 0 0 0
0 0 0
Q31 0 0

 (12.4.6b)

L23 =

0 0 0
0 0 Q23

0 0 0

 L†23 =

0 0 0
0 0 0
0 Q32 0

 (12.4.6c)

L11 = L†11 =

Q11 0 0
0 0 0
0 0 0

 L22 = L†22 =

0 0 0
0 Q22 0
0 0 0

 L33 = L†33 =

0 0 0
0 0 0
0 0 Q33


(12.4.6d)
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The resulting equations for the density matrix acquired through the Lindblad master
equation are:

ρ̇11 = i
1

2
Ωp

(
eiωpteiφpρ31

− e−iωpte−iφpρ13

)
+

[
α(ω12)

(
eβω12ρ22 − ρ11

)
Q12Q21

+ α(ω13)
(
eβω13ρ33 − ρ11

)
Q13Q31

]
(12.4.7a)

ρ̇22 = i
1

2
Ωc

(
eiωcteiφcρ32

− e−iωcte−iφcρ23

)
+

[
− α(ω12)

(
eβω12ρ22 − ρ11

)
Q12Q21

+ α(ω23)
(
eβω23ρ33 − ρ22

)
Q23Q32

]
(12.4.7b)

ρ̇33 = i
1

2

[
Ωp

(
e−iωpte−iφpρ13 − eiωpteiφpρ31

)
+ Ωc

(
e−iωcte−iφcρ23 − eiωcteiφcρ32

)]+

[
− α(ω13)Q13Q31

(
eβω13ρ33 − ρ11

)
− α(ω23)Q23Q32

(
eβω23ρ33 − ρ22

)]
(12.4.7c)

ρ̇12 = ρ̇∗21 = i
1

2

[
Ωpe

iωpteiφpρ32 − Ωce
−iωcte−iφcρ13

+ 2 (ωp − (∆p − ωc ±∆c)) ρ12

]
− 1

2


α(ω12)Q12Q21(eβω12 + 1)

+ α(ω13)Q13Q31

+ α(ω23)Q23Q32

+ α(0)Q2
11 + α(0)Q2

22

 ρ12

(12.4.7d)

ρ̇13 = ρ̇∗31 = −i 1

2

Ωpe
iωpteiφp (ρ11 − ρ33)

+ Ωce
iωcteiφcρ12

− 2 (ωp ±∆p) ρ13

− 1

2


α(ω12)Q12Q21

+ α(ω13)Q13Q31

(
eβω13 + 1

)
+ α(ω23)Q23Q32e

βω23

+ α(0)Q2
11 + α(0)Q2

33

 ρ13

(12.4.7e)

ρ̇23 = ρ̇∗32 = −i 1

2

Ωpe
iωpteiφpρ21

+ Ωce
iωcteiφc (ρ22 − ρ33)

− (ωc ±∆c) ρ23

− 1

2


α(ω12)Q12Q21e

βω12

+ α(ω13)Q13Q31e
βω13

+ α(ω23)Q23Q32

(
eβω23 + 1

)
+ α(0)Q2

22 + α(0)Q2
33

 ρ23

(12.4.7f)

161



12.4. LINDBLAD MASTER EQUATION CHAPTER 12. EIT

Assuming that at steady state, mainly the ground state will be populated, we can
write that: ρ11 ≈ 1, ρ22 ≈ 0, ρ33 ≈ 0 and the simplified equations for the off-diagonal
terms read:

ρ̇12 = ρ̇∗21 = i
1

2


Ωpe

iωpteiφpρ32

− Ωce
−iωcte−iφcρ13

+ 2

(
ωp ±∆p

− (ωc ±∆c)

)
ρ12

− 1

2


α(ω12)Q12Q21(eβω12 + 1)

+ α(ω13)Q13Q31

+ α(ω23)Q23Q32

+ α(0)Q2
11 + α(0)Q2

22

 ρ12

(12.4.8a)

ρ̇13 = ρ̇∗31 = −i 1

2

Ωpe
iωpteiφp

+ Ωce
iωcteiφcρ12

− 2 (ωp ±∆p) ρ13

− 1

2


α(ω12)Q12Q21

+ α(ω13)Q13Q31

(
eβω13 + 1

)
+ α(ω23)Q23Q32e

βω23

+ α(0)Q2
11 + α(0)Q2

33

 ρ13

(12.4.8b)

ρ̇23 = ρ̇∗32 = −i 1

2

[
Ωpe

iωpteiφpρ21

− 2 (ωc ±∆c) ρ23

]
− 1

2


α(ω12)Q12Q21e

βω12

+ α(ω13)Q13Q31e
βω13

+ α(ω23)Q23Q32

(
eβω23 + 1

)
+ α(0)Q2

22 + α(0)Q2
33

 ρ23 (12.4.8c)

Defining:

D12 =
1

2


α(ω12)Q12Q21(eβω12 + 1)

+ α(ω13)Q13Q31

+ α(ω23)Q23Q32

+ α(0)Q2
11 + α(0)Q2

22

 (12.4.9a)

D13 =
1

2


α(ω12)Q12Q21

+ α(ω13)Q13Q31

(
eβω13 + 1

)
+ α(ω23)Q23Q32e

βω23

+ α(0)Q2
11 + α(0)Q2

33

 (12.4.9b)

D23 =
1

2


α(ω12)Q12Q21e

βω12

+ α(ω13)Q13Q31e
βω13

+ α(ω23)Q23Q32

(
eβω23 + 1

)
+ α(0)Q2

22 + α(0)Q2
33

 (12.4.9c)
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we get

ρ̇12 = ρ̇∗21 = i
1

2

Ωpe
iωpteiφpρ32

− Ωce
−iωcte−iφcρ13

+ 2
(
ωp ±∆p − (ωc ±∆c)

)
ρ12

−D12ρ12 (12.4.10a)

ρ̇13 = ρ̇∗31 = −i 1

2

Ωpe
iωpteiφp

+ Ωce
iωcteiφcρ12

− 2 (ωp ±∆p) ρ13

−D13ρ13 (12.4.10b)

ρ̇23 = ρ̇∗32 = −i 1

2

[
Ωpe

iωpteiφpρ21

− 2 (ωc ±∆c) ρ23

]
− 1

2
D23ρ23 (12.4.10c)

In order to extract the solutions of ρij, we follow the steps below:

a. Perform time integration of the Lindblad master equation, Eqs 12.4.7, for a specific
value of ∆p.

b. In steady state, the solution of the non-diagonal terms (both real and imaginary
parts) shows an oscillatory behaviour. For the specification of the susceptibility
χ(ωp), we only need the element ρ13. So, we fit its solution with a (wave) function
of the form ρ13 = A13e

iω13teφ13 , from where we obtain A13 and φ13 with ω13 ≡ ωp
fixed.

c. Determine the susceptibility through the relation χ(ωp) = A13e
iφ13 .

d. Repeat this procedure for several values of ∆p.
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Figure 12.4.1: Typical example of the oscillatory behaviour of the solution of ρ13 density
matrix element (real and imaginary part) obtained from the Lindblad master equation, for a
specific value of ∆p.

In the following section we present results obtained from both master equations, for
the susceptibility of the system with respect to the probe field.
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12.4.1 Results

In this section we present results referring to the susceptibility, χ, of the system with
respect to the probe field, ∆p, through two master equations.

The first one, a modified Von-Neumann master equation, is an empirical one allowing
for decays from each energy state. In this case, an analytical solution is possible, Eqs
12.3.15, 12.3.23.

The other equation is a typical Lindblad one, with time-dependent operators from
which only numerical results can be obtained. The procedure for the time integration of
the corresponding equations, Eqs 12.4.7, is described in the previous section. Although
the Lindblad operators should be updated in every time step, here they are computed once
(at the beginning) and then are kept constant. However, we observe the EIT phenomenon.
We can see below the referring results:
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Figure 12.4.1: Analytical solution for the electric susceptibility (real and imaginary part)
acquired through the Von-Neumann Master Equation (VNE).
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Figure 12.4.2: Numerical solution for the electric susceptibility (real and imaginary part)
acquired through the Lindblad Master Equation (LME).
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The input data for the exact results are the following:

∆c = 0, Ωc = 1.2, Ωp =
1

50
, Te = 0.2, γ = 0.01,

Q0 =

 0 0 i
0 0 10i
−i −10i 0

 (12.4.1)
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